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ABSTRACT

ENERGY Supply Chains (ESCs) are complex systems made up of a
number of heterogeneous components/agents interacting with each
other, the environment, its hazards and threats. The components/a-

gents are structured in a hierarchical system, within which they operate and
cooperate in a balanced transaction environment to realize the maximiza-
tion of the benefits, under various environmental and safety constraints.
ESCs significantly contribute to the sustainment of many industrial areas,
such as biomass, oil and gas, chemical processing, sustainable and renew-
able energy, etc.

However, ESCs are challenged by multiple sources of uncertainties and
risks. Uncertainties exist in supply and demand, propagate through the in-
teractions over the whole ESC and influence the agents profits and the ESC
operations. Due to the uncertainties, the risk of supply failure is difficult
to predict. In such situation, ESCs must offer enhanced flexibility, innova-
tive connectivity and communication, to guarantee an orderly and healthy
supply management, so as to sustain the operation of the energy industry.

The objectives of the Ph.D. work are to develop a modeling framework
for ESC process modeling simulation and optimization, which includes:
1. ESC modeling to identify, understand and analyze the complex interac-
tions and for the evaluation of the resilience of ESCs. 2. ESCs efficient
production planning optimization under multiple sources of uncertainty. 3.
ESCs production planning considering risk of supply failure. 4. Solving
the Many-objective Optimization Problem (MaOP) caused by the different
agents for efficient production planning of ESCs.
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With respect to the objective 1, an Agent-based Modeling(ABM) ap-
proach is proposed for modeling and simulating ESCs of the oil and gas in-
dustry, capturing the peculiarities of its diverse interacting elements, such as
plants, refineries, storages, etc. Different disruption scenarios and recovery
strategies are considered in the Agent-based ESC model for investigating
the relevant factors influencing ESC resilience.

With respect to the objectives 2 and 3, a simulation-based Multi-Objective
Optimization (MOO) framework for ESC production planning is devel-
oped. The ABM simulation is embedded into a Non-dominated Sorting
Genetic Algorithm (NSGA-II) is then adopted for identifying the Pareto
solutions. For ESCs with uncertainties and changing structures, the ESC
total profit is maximized and the disequilibrium among the agents’ profits
is minimized. Moreover, considering disruption risks, the ESC total profit
is maximized and ESC risk under uncertainties is minimized.

Furthermore, an improved Cooperative Co-evolutionary Particle Swarm
Optimizer (CCPSO) is proposed to solve the Many-objective Optimization
Problem (MaOP) in the agent-based ESC model. The variables are decom-
posed into different species based on agents relationships and allowed to
evolve independently during the optimization process. Each species has its
own repository to keep a historical record of the nondominated vectors in
which the solutions are evaluated and updated by cooperating with other
species. The effectiveness of CCPSO is proven by test functions and a case
study.

KEYWORDS
Energy Supply Chain; Oil and Gas Supply Chain; Agent-based Mod-

eling; Multi-objective Optimization; Uncertainty; Risk; Changing Struc-
ture; Monte Carlo Simulation; Non-dominated Sorting Genetic Algorithm;
Many-objective Optimization Problems (MaOPs); Co-evolutionary Algo-
rithm; Multi-objective Particle Swarm Optimization (MOPSO); Coopera-
tive Co-evolutionary Particle Swarm Optimizer (CCPSO).
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SECTION I: GENERALITIES

This part of the dissertation introduces the context of the research, its rel-
evance, the state-of-the-art methods, the challenges that are addressed and
the research objectives. Furthermore, it briefly describes the developed
methods and the applications carried out for their validation.
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CHAPTER1
Introduction

1.1 ESC

ESCs are complex systems made up of numerous components/agents in-
teracting with each other, the environment and its hazards. An ESC may
be view as an network of components/agents (e.g. retailer, refinery, stor-
age, crude oil producer) and transportation (e.g. pipe line, crude oil tranker,
truck) [1, 2]. ESCs management is a complex process because of many
factors involved.

Energy companies in the ESC have to face uncertainties and risks. The
demand, manufacturing and supply uncertainties involving the unknowns
related to product characteristics are the major sources of uncertainties [3].

Along with these uncertainties, the considerations assigned to risk have
grown. For example, new, unconventional sources of energy such as shale
gas, tight oils, coal seam gas and oil sands are heavily influencing the en-
ergy market, while requiring the ESC to still offer reliable and high quality
of service, but also to be more flexible and resilient. Yet, price volatility
and increasing operating costs are causing energy companies to scrutinize
the existing sourcing strategies and the costs associated with the VMI, con-
signments, etc. [4]. Moreover, the number of terroristic attacks impact-

3



Chapter 1. Introduction

ing on supply chains has increased steadily over the past decade, reaching
3299 attacks in 2010 [5]. These attacks entail possibly disastrous conse-
quences on societies, which nowadays depends on the effective functioning
of complex network systems (e.g., power supply networks, transportation
networks, etc.) [6, 7]. Setting measures for withstanding the attacks has
also led to an increment in the operation costs of ESC. These considera-
tions justify the increasing interest in analyzing the ESC risk which could
be categorized into two types: disruption risks and operational risks [8, 9].
The disruption risks are related to circumstances such as natural disaster,
terrorist attacks and labor strikes, while operation risks are caused by high
uncertainty and unbalance between supply and demand [10, 11]. The risk
is hard or even impossible to be predicted which makes the ESC disrupted
and influences the ESC function [12].

Except for the influencing of uncertainties and risks, the structure of
ESC is complex. The components/agents such as crude oil producers, re-
fineries, storages in ESC are physically and functionally heterogeneous and
organized in a hierarchy of subsystems, what happens to one individual will
directly or indirectly affect others and spread through the whole ESC. For
example, if the disruption happens on ESC, energy company may lose a
drilling day waiting on mud system arrival, lose a week of production be-
cause of a treating chemical stock out, or miss a day of retail sales because
the refinery production schedule was not balanced with demand. Secondly,
the interaction between components/agents is complex and dynamic which
is difficult to describe by traditional analytical methods [13].

According to the system and complexity’s theories, we view an ESC as
a complex system or in other words, it is a system in a complex system-of-
system. Under such background, we focus our research on modeling and
optimizing ESC which are important and significant issues and have been
paid more and more attention but they are challenged by diverse factors.

1.2 Challenges in ESC

I. Uncertainty and risk challenge: The phenomena of uncertainties and
risks needs to be addressed when designing ESC. Thus, there is a need
to develop novel hybrid approaches combining the strengths of multiple
techniques of optimization under uncertainties and risks [1].

II. Modeling challenge: This challenge arises from the need to accu-
rately model materials and information flows in ESC [1]. Due to the com-
plex features in ESC, identifying, understanding and analyzing the complex
interactions between agents represent a challenge to ESC.
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1.3. Research Objectives of The Thesis

III. Optimization challenge: The efficient operation of energy com-
panies’ production planning is required. However, it is difficult and chal-
lengeable for ESC to get the production planning optimization in complex
ESC environment.

III. Computation challenge: There are many agents (e.g. retailer,
refinery, storage) whose variables and objectives are independent, so the
MaOPs are caused in ESC which are difficult to be solved by traditional
EA. It rises another challenge to ESC.

1.3 Research Objectives of The Thesis

In this context, considering the challenges mentioned above, we aim at
solving the problem of modeling, analyzing, designing ESC in uncertain
and risky environment. The research objectives focus on four of the most
challenging problems:

I. Modeling to evaluate the resilience of the ESC
From the complexity of agents’ interdependences, risk scenarios can

originate in an unpredictable way, threatening the normal operation of the
entire ESC and endangering its supply capability. New methodologies are,
then, being developed for carrying out ESC risk and resilience analyses. In
this study, we rely on ABM to build a multi-layer ESC modeling for an-
alyzing its resilience. Every element in the ESC is simulated as an agent
implementing basic functions like sending and receiving orders, and pro-
ductions. We simulate different disruption scenarios and recovery strategies
to investigate the essential factors influencing the resilience of the overall
ESC.

II. Designing efficient energy companies’ production planning
Energy production companies have to make planning decisions to sat-

isfy the customers uncertain demands and to maximize their own profits. In
this work, we propose a simulation-based MOO framework for the efficient
management of the ESC sustaining production. The ESC agents interaction
is uncertain and the ESC structure can dynamically change. ABM is used to
model and simulate the agents actions and behavior, and the ESC transac-
tion processes. The simulation is embedded into an NSGA-II optimization
scheme for identifying the Pareto front of solutions for which the ESC total
profit is maximized and the disequilibrium among the agents profits is mini-
mized. Based on the Min-Max method, a single best compromised solution
is identified. Finally, the MC simulations approach is used to operational-
ize the proposed ABM-MOO framework in presence of the uncertainty that
affects the ESC.
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Chapter 1. Introduction

For demonstration, we consider an oil and gas ESC modeling with five
layers, including crude oil producers, storages, refineries, terminal storages
and retailers. The results show that the proposed framework enables the op-
timization of the ESC planning, while taking into account multiple sources
of uncertainty and the structure dynamics that challenge the ESC operation.

III. Optimizing the planning of ESCs considering the disruption
risk

The planning of an ESC aims at maximizing the benefits of the ESC
agents, while satisfying the demands of the customers [14, 15]. Demand
variability and supply disruption, originating from the connectivity between
supply and demand, can disturb the agents interactions and impair the agents
management [16]. In this study, we propose a risk-based optimization ap-
proach for the management of ESC. We introduce a CVaR measure with
the purpose of measuring and controlling the risk to the ESC management.
The NSGA-II is performed to search for the solutions optimal with respect
to the maximization of the ESC total profit and the minimization of the risk
under uncertainties.

For demonstration, an application is carried out considering a specific
oil&gas ESC modeling with five layers, including crude oil producers, stor-
ages, refineries, terminal storages and retailers. Results show that the opti-
mization approach enables the trade-off between the ESC optimal planning
and the source of risk that it is subjected to.

IV. Solving Many-objective Optimization Problems (MaOPs) in ESC
In ESCs, multiple agents proactively interact and cooperate in a coor-

dinated production process, where each of them aims to grab the maximal
own profits. In this study, we propose a cooperative co-evolutionary ap-
proach to solve such an ESC Many-objective Optimization Problem (MaOP)
where the agents own profits are maximized. The autonomous behavior of
the ESC agents and the interactive transaction processes are modelled in
the context of ABM. A CCPSO algorithm is embedded into ABM for iden-
tifying the Pareto Front (PF). The effectiveness of the proposed approach is
verified by the test functions.

For demonstration, we also illustrate the proposed approach by consid-
ering an oil and gas ESC model with five layers, including crude oil produc-
ers, storages, refineries, terminal storages and retailers. The results show
that the proposed CCPSO enables the many-objective optimization for the
efficient production planning of the ESC, whilst taking into account multi-
ple sources of uncertainty and the structure dynamics challenging the ESC
operation balance.
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Figure 1.1: ESC models

1.4 State-of-the-Art Literature Review on ESC Models

A variety of models have been used to model and describe the character-
istics of an ESC, and they can be identified into three categories based on
model types, as shown in Figure 1.1.

Mathematical programming has been widely used to solve the problem
of the optimal design of ESC networks. A variety of techniques have been
applied in this context, like LP, MILP, NLP and MINLP, etc. For example,
a simple LP model is presented for the optimal allocation of palm biomass
supply chain [17]. Bittante et al. [18] have applied MILP to find the
supply chain structure that minimizes costs associated with fuel procure-
ment. Robertson et al. [19] have used NLP model to solve refinery pro-
duction scheduling and unit operation optimization problems. In Ref.[20],
a two-stage stochastic MINLP model combined with chance constraint is
proposed to minimize the total cost of producing electricity from woody
biomass in a four-level integrated bioenergy supply chain. Although appli-
cable to the treatment of problems involving blending, continuous flow pro-
cessing, production and distribution, strategic/tactical planning, etc., math-
ematical programming models are not flexible in dealing with the stochas-
ticity, uncertainty and complexity of structure and interaction typically en-
countered in supply chains [21, 14].

Analytical models build on mathematical expressions and numerical
models characterize the ESC behavior, and find solutions to ESC manage-
ment problems by use of, for example, Game theory, MCDM (including
DEA, AHP), etc.[22]. In Ref.[23], authors proposed a novel Game-theory-
based stochastic model for optimizing decentralized supply chains under
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uncertainty. Optimization of renewable power sources has been tackled
with a fuzzy MCDM technique based on cumulative prospect theory in
Ref.[24]. A DEA model has been used to reduce the complexity of solving
the proposed model in the literature [25]. In Ref.[26], AHP combined with
a fuzzy set theory enhances the reliability of the sustainable results along
different stages of petroleum refinery industry projects. Analytical model-
ing can be used to evaluate and improve the performance of an ESC, but
has strong limitation in the description of realistically complex supply pro-
cesses including stochastic and dynamic structures, uncertainty and partial
information sharing [13].

Simulation models, e.g. DES and DS, have been developed to explore
the behavior of agents in ESC, with the further goals of evaluation [27],
analysis and optimization [28], risk management [29], and so on. For ex-
ample, Windisch et al.[28] have applied DES to simulate the raw material
planning in an energy wood supply chain. Becerra-Fernandez et al. [30]
have proposed a DS model for assessing alternative security of supply pol-
icy along the natural gas value chain. The modeling benefits and the large
computational capacities make simulation models increasingly attractive
for the modeling of ESC realistic problems.

ABM provides another way to model and simulate ESC, also applicable
to continuous processes [31, 32] and also applied to various types of supply
chains. For example, Guo et al. [33] applied ABM to build an integrated
system modeling framework for a resource-food-bioenergy nexus applica-
tion. Raghu et al. [34] relied on ABM and GIS to assess the environmental
impact on the forest biomass supply chain. Moncada et al. [35] developed
a spatially explicit agent-based model to analyze the impact of different
blend mandates and taxes levied on investment in processing capacity, and
on production and consumption, of ethanol in the biofuel supply chain. In
Ref.[36], the authors used ABM to analyze the evolution of biofuel produc-
tion and production capacity.

These published researches confirm that ABM can be effectively used
for modeling, simulating, assessing and analyzing ESC but, rarely it has
been used in optimizing ESC operations. To the authors’ knowledge, no
study has yet attempted to solve ESC planning problems by using ABM
within an optimization framework and also considering demand and sup-
ply uncertainties and structure dynamics at the same time. This is done
here, thanks to the capability of ABM in dealing with complex production
processes and service problems under uncertainty.
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1.5 Overview of The Proposed Framework

1.5.1 Simulation-optimization framework

To the best of my knowledge, the hybrid simulation-optimization frame-
work is first proposed by Subramanian, pekny and Reklaitis. They present
the hybrid simulation-optimization framework to assess the uncertainty and
control the risk in the pipeline [37]. Now, some researches have been done
in this area.

For instance, Jung et al.[37] use a simulation-based optimization ap-
proach to determine the safety stock level and scheduling applications.
Nikolopoulou and Ierapetritou [38] combine methematical progamming
and simulation model to minimize the summation of production cost, trans-
portation cost, inventory holding and shortage costs. Sahay and Ierapetri-
tou propose a hybrid simulation-based optimization framework to solve the
two-stage optimization problem [39].

In the hybrid simulation-based optimization, the method can be divided
into phase: simulation phase and optimization phase. In the simulation
phase, ABM is a good modeling to give a realistic representation of ESC.
In the optimization phase, finding the high-quality solutions is the most
important task [38]. This demand leads to various optimization algorithms
applied in this field. The choice of optimization algorithm is important
because it influences the effect and efficiency of the results [40]. Realistic
ESC problems have multi-objective or even many-objective which contains
more than three objectives. EA working with a population of solutions
naturally offers a suited algorithm to solve such optimization problems [41,
42].

1.5.2 ABM

Although analytical model has been proven useful in many fields [38], it
still has some limitation in describing some complex phenomenon from
system perspective. ESC is a complex system which is dynamic, has com-
plex structure and contains plenty of uncertainties, so traditional analytical
model is confining in modeling ESC [13]. Overcoming these shortages of
analytical model, ABM shows its advantage in modeling ESC.

Firstly, ABM is good at dealing with complex. Some systems are too
complex for us to adequately model. However, Agent-based model is “bot-
tom up” modeling approach which can model the complexity arising from
individual actions and interactions [31, 43]. Secondly, ABM is easy to
operate. ABM just needs to describe basic behaviors and interactions from
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individuals which are formalized by simple equations, (decision) rules such
as if-then kind of rules or logical operation [44]. Moreover, it is easy to im-
plement individual variations and random influences(stochasticity) in ABM
[44]. Thirdly, ABM is observable. The Agent-based simulation approach
is a method that allows to observe the behaviors through time and the dy-
namics of the supply chain from interactions [45].

Due to these advantages, at present, ABM is widely used in modeling
supply chain. For example, ABM is used in Wu et al. [46] to investigate re-
tail stockouts. In this literature, authors develop an Agent-based simulation
model to understand the influence of different stockout length for different
products and the response from the retailer and the manufacturers of the
product. Fox et al. [47] rely on ABM to manage perturbation in the supply
chain with complex cooperative work. Julka et al. [48] rely on ABM to
model, monitor, and manage supply chains. Authors view elements in the
supply chain as entities, flows and relationships. Entities are modeled as
agents and flows are modeled as objects. The authors use two case studies
to illustrate the framework. Finally, Gjerdrum et al. [49] develop a supply
chain by applying ABM. In this literature, authors model every different
role in the supply chain as an agent. All the agent types include customer,
external logistics, warehouse, internal logistics, factory, spot market and
transportation. In the experiment, authors investigate how optimal schedul-
ing influence the behavior.

ABM offers possible way to control complex agents’ behavior and their
interaction in ESC. In this thesis, ABM is implemented in the software
ANYLOGIC, which is exported as a jar file and then, imported and run in
ECLIPSE.

1.5.3 Evolutionary algorithm

EAs are the algorithms that are based on the evolution of the species [50].
EAs use bio-inspired mechanisms, including mutation, crossover, selection
and survival of the fittest to refine a set of solution candidates iteratively
[51]. GA is one typical algorithm of EAs.

In GA, a set of candidate solutions represented as chromosomes is gen-
erated. By selection, crossover, mutation the GA iteratively eliminates poor
solutions and the solutions with high fitness value have high probability to
survive in the next generation. Consequently, GA is convergent to overall
good solutions.

In the field of supply chain, many problems are solved by applying GA.
For instance, Altiparmak et al. apply GA to solve a supply chain network
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design problem in order to minimize the total cost and the capacity utiliza-
tion ratio in supply chain network and maximize the total customer demand
(in %) [52]. Naso et al. propose a novel meta-heuristic approach based
on GA to solve supply chain scheduling problem [53]. In literature [54],
a heuristics based genetic algorithm is proposed by Kannan, Sasikumar
and Devika to solve the optimum usage problem of secondary lead recov-
ered from the spent lead-acid batteries for producing new battery. Yeh and
Chuang use the multi-objective GA approach to solve the partner selection
problem in green supply chain. GA is considered as a primary tool to solve
many multi-objective problems in supply chain.

In spite of the liveliness of research applying GA in supply chain, only
a few papers combine GA and AMB to solve problems in supply chain.
Considering the good ability of ABM in dealing with complex problem un-
der uncertainty. Simulation-based optimization combining GA and ABM
offers a possible way to solve variety of problems in supply chain, more so
in case of ESC [55].

1.5.4 CEA

CEA is similar to EA but CEA co-evolves sub-populations of individuals
representing different parts of the global solution instead of evolving one
population of similar individuals representing a global solution [56]. There
are several advantages of CEA [57]: For example, decomposed problem
allows calculating in parallel which speeds up the optimization process.
Moreover, separated species help to maintain good solution diversity [58],
increase the robustness against the modules’ errors and failures and enhance
the reusability in dynamic environments [59].

According to the relationship between sub-populations, CEA can be di-
vided into two main types: the competitive CEA and the cooperative CEA
[56]. In competitive CEA, individual competes with others so it usually
contains the whole problem and variables but individual in cooperative
CEA decomposes the problem and has partial variables.

In the competitive CEA, individuals in the populations compete among
themselves, characterizing the classical predator-prey or an arms race co-
evolution [60], and usually individuals contain the whole variables. The
fitness of an individual is the result of a series of encounters with other
individuals from other species [61, 56].

A variety of MaOPs have been solved by the competitive CEA. The
competitive CEA is firstly proposed in Ref.[62], where two sub-populations
are considered as the hosts and the parasites to evolve simultaneously and
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interact through their fitness function. The competitive CEA can be imple-
mented in a predator-prey-like way, in order to imitate the competitive be-
havior between two sub-population, for example, a biogeography optimiza-
tion in the constrained design of a brushless dc wheel motor [63]. Whereas,
another way based on competitive fitness is adopted in the arms race forms
of all-againts-all, bipartite, all versus best, tournament, k-random and so on
[56, 64, 65, 66, 67].

For the cooperative CEA, the fitness of an individual is the performance
collaborating with other individuals from other species[68, 69] in which
individuals usually contain partial variables. Comparing with competitive
CEA, the species in cooperative CEA has to cooperate with others to as-
semble the whole variables, and then, the fitness value can be calculated.

Potter and De Jong [69], for the first time, proposed a CCGA approach
in which the decision variables are divided into the small size species,
evolved independently, evaluated cooperatively. Bergh and Engelbrecht
proposed two new cooperative PSO models: CPSO-Sk and CPSO-Hk, by
applying Potter’s co-evolutionary technique to the PSO [70]. It is proven
that the PSO-based algorithms surpass the performances of the GA-based
algorithms on the test problem [70]. Besides, some other researches are
proposed to implement cooperative CEA architecture. For example, An-
tonio and Coello Coello [71] proposed an Indicator-based Cooperative Co-
evolutionary Multi-objective Evolutionary Algorithm (IBCCMOEA) which
uses the CCGA framework and Differential Evolution (DE) as the main
multi-objective optimizer. Tan, Yang and Goh [72] proposed a cooperative
CEA for multiobjective optimization incorporated with features like archiv-
ing, dynamic sharing and extending operator. These studies show that co-
operative CEAs have many different architectures which usually combine
with GA or PSO and all of them are effective to deal with MOO problem
or even MaOP.

The cooperative CEAs have also been applied to supply chains. For
example, Gong et al. [73] proposed dynamic interval multi-objective coop-
erative co-evolutionary optimization framework to handle dynamic inter-
val MOPs. Pedrasa, Spooner and MacGill [74] improved the formulation
of the cooperative PSO to investigate the potential consumer value added
by the coordinated Distributed Energy Resources (DER) scheduling. In
Ref.[75], the authors proposed a Cooperative Co-evolutionary bare-bones
PSO with Function Independent Decomposition (FID), for a multiperiod
three-echelon a large-scale supply chain network design with uncertainties
problem. The cooperative CEAs have been successfully applied to solve
optimization problem in supply chain but rarely used in solving MaOP in
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ESC.
Cooperative CEA highly fits the characteristics of ABM because ABM

is made up of several individuals/agents with its own variables to be opti-
mized and its own problem to be solved which need to cooperate to obtain
the optimal objective, so cooperative CEA is more appropriate to used in
solving MaOP in agent-based ESC modeling.

1.6 Case Studies

In this Ph.D. thesis, the studied field is the ESC. The ESC has some funda-
mental properties comparing with supply chain such as the network struc-
ture, organization made of people, information and resources moving. In
order to build a comprehensible formulation for ESC problem, we take a
petroleum supply chain as object of study which is organized in five layers:
retailers, bottling & storage, refinery, port storage and crude oil producers.
The framework of our Agent-based ESC model is shown in Figure 1.2.

Generally, we assume the total transaction days are 1000 days and every
30 days the agents make a deal. The variables (the supply and the demand)
are sampled from Gaussian distributions when the agents make a deal and
the beginning time is different for each agent, so the sampling size is about
30. Every agent makes decisions based on the oil production in hand and
the order amount. The price fluctuations are not considered.

In the thesis, we assume the normal distribution in the supply and de-
mand, which is a common assumption in the ESC modeling [76, 77, 78]. In
the case study of Chapter 3, we optimize two objective functions which can
be solved by NSGA-II effectively. When it comes to Many-objective Prob-
lem (MaOP) in the ESC, the problem of ”curse of dimensionality“ is easily
caused, which is considered and solved in Chapter 5 by Co-evolutionary
Algorithm (CEA). In Chapter 2, we consider 5 recovery strategies to help
ESC to come back to be normal which are shown in Section 2.2. In Chapter
4, the recovery strategy is not considered in the case study. We assume that
every disruption influences one transaction. After the transaction finishes,
the disruption vanishes and the ESC come back to be normal.

The ESC modeling in this thesis features the following characteristics:
I. Make decisions by agent itself: In this model, customer agents try

their best to get enough productions from suppliers. Simultaneously, sup-
plier agents have right to choose the demanders who can bring them higher
profit. Driven by these internal motivations, agents generate a series of be-
havior to realize their expectations. These behaviors are shown in Chapter
2. These behaviors define the internal rules and decision processes when
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Figure 1.2: The framework of our agent-based ESC modeling

agents face other agents and variational environment. Meanwhile, by do-
ing these behaviors, orders flow from retailers (layer1) to crude oil pro-
ducers(layer5) and productions flow from crude oil producers (layer5) to
retailers(layer1).

II. Uncertainty in demand and supply: We consider a set of customer
agents who dynamically demand refined production and a set of supplier
agents who dynamically supply crude oil. Because of the network structure
of ESC and complex behaviors of agent, these uncertainties are easy to
spread through the whole ESC, influence the agents’ decision making and
causally change the whole ESC structure.

III. Dynamic structure: An important aspect in ESC is that the ESC
structure may change dynamically due to the interaction among agents. In
ESC, every individual may take decisions independently at any time and
these anonymous decisions cause the whole structure to change, which
makes the ESC adaptive and dynamic. Therefore, the ESC structure dy-
namics must be considered when modeling ESC. In this modeling, every
agent makes decisions by itself, based on the production amount of the
supply and the demand. The supply and the demand are uncertain, so the
agents decisions may be different in each transaction process, and thus, the
structure changes from time to time.
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Table 1.1: The related factors considered in each chapter

Agent-based Modeling Uncertainty Structure Dynamic Disruption Risk Many-objective Problem Optimization
Chapter 2 Yes Yes Yes Yes No No
Chapter 3 Yes Yes Yes No No Yes
Chapter 4 Yes Yes Yes Yes No Yes
Chapter 5 Yes Yes Yes No Yes Yes

1.7 Thesis Structure

In Chapter 2, we develop an agent-based ESC to investigate the resilience of
the whole ESC under different disruptions. Based on the agent-based ESC
modeling in Chapter 2, the research in Chapter 3, Chapter 4, and Chapter 5
have been done. Chapter 3 consider a multi-objective optimization problem
under the uncertainty and the structure dynamic in the ESC. In Chapter
4, besides the uncertainty and the structure dynamic, the disruption risk
is considered when optimize the ESC. Also based on Chapter 3, a many-
objective optimization problem is solved in Chapter 5. The related factors
we consider are shown in Table 1.1.

Figure 1.3 shows the structure of this PhD thesis. The following 4 Chap-
ters (from 2 to 5) are dedicated to the deepening of the theoretical back-
ground of the exploited methods, to the description of the application and
of the results provided by the developed methods, particularly focusing on
the novelty and the original contributions introduced in this Ph.D. research
work. Finally, in Chapter 6, some conclusions and remarks on the devel-
oped work are drawn, and the perspective regarding the possible future ap-
plications of the developed methods will be discussed. At the end of this
Ph.D. thesis work, we also included a collection of the published/under re-
view international journal papers to which the reader can refer to for further
details.
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Figure 1.3: The structure of the PhD thesis
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SECTION II: DETAILS OF THE DEVELOPED
FRAMEWORK

This part is the main body of the thesis which includes 4 Chapters (from
Chapter 2 to Chapter 5) and presents the original contributions of the re-
search works.
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CHAPTER2
ABM for ESC Resilience Analysis

The objective of this work is to describe complex interaction between agents
and assess the resilience of an ESC and for these we adopt an ABM frame-
work, which allows modeling large interconnected systems. This capability
comes from the fact that ABM is a bottom-up modeling approach, which
focuses on modeling individual agents and their interactions, from which
phenomena emerges, which are difficult to model by the traditional top-
down modeling methods [43]. Every agent is defined by a set of behavioral
functions, which give it intelligence to make decisions in response to its
interactions with other agents and the environment. The simulation of the
agents behaviours yields the overall system behavior.

2.1 The Proposed Method

In this study, we take an oil supply chain as object of study. The supply
chain is considered organized in five layers: retailers, bottling & storage, re-
finery, port storage and crude oil producers. Every layer contains its agents,
which are competitors. The structure of the ESC of the reference example
is shown in Figure 2.1.
In this model, we consider bidirectional flows in the ESC: the orders flow
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Figure 2.1: ESC structure

from the retailer (layer 1, on the right) to the producer (layer 5, on the left)
in sequence, whereas the production, in turn, proceeds backward from the
producers to the retailers. The basic idea of the negotiation strategy is that
the demander sends orders to its preferred supplier. The supplier accepts
or rejects the orders and, then, sends back its response. After a number of
negotiation runs, the supply chain network sets up. The main parameters
and variables are given below.

2.1.1 Modeling of agent uncertain behavior

We consider an ESC with L layers and each l-th layer consists of Vl agents,
al,1, al,2, ..., al,v, ..., al,Vl (Figure 2.2). In the ESC, the orders sent from
Layer 1 flow layer-by-layer to the end layer L, whose VL agents are suppli-
ers that send supply decisions backward to the demanders.

An agent al,v, v = 1, 2, ..., Vl, in the l-th layer, is assigned with behav-
iors, which allow the agent to adaptively interact with the others. The de-
tails of the model are described in the following.

2.1.1.1 Sending Orders

The process of sending orders of an agent al,v in the l-th layer (Figure 2.3)
is as follows:

(a) al,v chooses the supplier(s) al+1,v′ in the upper layer l + 1.
(b) al,v sends orders to al+1,v′ .
(c) al,v updates the list of alternative suppliers.
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Figure 2.2: The ABM-ESC model

Figure 2.3: The process of sending orders
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2.1.1.2 Receiving Orders and Choosing Demanders

The process of an agent al,v receiving orders and choosing demander(s) is
shown in Figure 2.4 and described as follows:

(a) al,v receives the order from al−1,v′′ in the lower layer l − 1.
(b) al,v checks whether the received order is empty:

• If yes, al,v does not choose demanders.

• Otherwise, (c) al,v checks whether it has available productions that
satisfy the received orders.

– If yes, (d) al,v checks whether the received orders exceed the ex-
isting production limitation Ul,v(t) defined as:

Ul,v(t) = Sl,v(t)− S∗l,v(t) (2.1)

where Sl,v is the storage of al,v and S∗l,v is the back-up safety
storage of al,v.

* If yes, (e) al,v refuses the order from al−1,v′′ demanded with
the lowest bid price, and returns to (d).

* Otherwise, (f) the agent al,v accepts the order and makes a
contract with al−1,v′′ .
Then, the existing oil production limitation of the agent al,v
(Eq.(2.2)) updates for the next time t+ 1:

Ul,v(t+ 1) = Ul,v(t)−
∑

v′′,v′′∈{va}

xl−1,v
′′

l,v (t) (2.2)

where, xl−1,v
′′

l,v (t) is the amount of orders accepted by the
agent al,v which are sent by the agent al−1,v′′

– Otherwise, (g) al,v sends a response back to the demander al−1,v′′ .

2.1.1.3 Response

One demander al,v may negotiate with its supplier al+1,v′ , in case of re-
ceiving a response from al+1,v′ . This process is shown in Figure 2.5 and
described as follows:

(a) The agent al,v receives a response from the supplier al+1,v′ .
(b) Check whether the order plan is satisfied:

• If yes, al,v stops sending the order plan.
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Figure 2.4: The process of receiving orders and choosing demander(s)
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• Otherwise, (c) al,v checks whether all the alternative suppliers have
been considered:

– If yes, the agent al,v stops sending the order plan.

– Otherwise, (d) the agent al,v updates its demands,

yl+1,v′

l,v (t+ 1) = yl+1,v′

l,v (t)−
∑

v′,v′∈{va}

xl,vl+1,v′(t) (2.3)

where, yl+1,v′

l,v (t) is the amount of orders sent by the agent al,v
which are received by the agent al+1,v′ at time t, xl,vl+1,v′(t) is the
amount of orders accepted by the agent al+1,v′ which are sent by
the agent al,v at time t.
And, (e) send orders (as discussed in Section 2.1.1.1) again.

2.1.1.4 Selling Production

An agent al,v should sell productions after accepting an order plan. This
process is shown in Figure 2.6 and defined as follows:

(a) al,v checks whether it stores enough productions satisfying the ac-
cepted order plan:

• If yes, (b) sells the productions to the demander al−1,v′′ and updates the
set of accepted orders and the storage for the next time t+1 (Eq.(2.4)):

Sl,v(t+ 1) = Sl,v(t)−
∑

v′′,v′′∈{va}

zl−1,v
′′

l,v (t) (2.4)

where Sl,v is the production storage of al,v and, zl−1,v
′′

l,v (t) is the amount
of the production sold by al,v to al−1,v′′ .

• Otherwise, (c) al,v sells the productions to the demander who makes
its income highest, and, then, updates the set of accepted orders and
the storage Sl,v(t+ 1).

(d) Check whether the storage or the set of accepted orders is empty.

– If not, repeat (c).

– Otherwise, end.
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Figure 2.6: The process of selling production

2.1.1.5 Receiving Production

An agent al,v receives the oil production from the upstream agents al+1,v′

and updates its storage Sl,v(t+ 1) for the next time t+ 1:

Sl,v(t+ 1) = Sl,v(t) + wl+1,v′

l,v (t) · kl,v (2.5)

where Sl,v is the production storage of al,v, w
l+1,v′

l,v (t) is the amount of the
oil production sent by the the agent al,v which are received by the agent
al+1,v′ time t, kl,v is the production capacity of al,v.

2.1.2 Resilience measurement

For simplicity, we consider a deterministic and static metric for measuring
the resilience of the considered ESC ([79]), which is formally defined as:

RL =

∫ t2

t1

Q(t)dt (2.6)

where t1 and t2 are the endpoints of the time interval under consideration
and Q(t) is the performance percentage:
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Figure 2.7: Resilience loss

Q(t) = 1−

V∑
i=1

D′1,i(t)

V∑
i=1

D1,i(t)

(2.7)

where D is the quantity of the total production that customers demand and
D′1,i is the quantity of the total production delivered to the retailer after
disruptions. In words, Eq. 2.6 denotes the shaded area in Figure 2.7. To
estimate the ESC resilience, we apply MC simulations. We repeat simulat-
ing the ABM model for N times; in each trial, we insect a disruption and
strategy. Then, we get resilience RLi(i = 1, 2, ..., N). We finally average
the resilience values.

2.2 Case Study

According to the structure of the 5-layer ESC model, we assume that there
are 5 agents in each layer. Every agent can implement the basic function
like sending and receiving orders and production. The orders flow from the
retailer agents to the producer agents, whereas the production flows from
the producer agents to the retailer agents. In this case study, we consider
several disruptions scenarios occurring in ESC. In order to investigate how
these disruptions influence the resilience of the whole ESC, the following
scenarios are considered.

Disruptions:
S1: an increase in demand (10%) for 15 transaction cycles
S2: an increase in demand (30%) for 15 transaction cycles
S3: a decrease in supply (10%) for 15 transaction cycles
S4: a decrease in supply (30%) for 15 transaction cycles
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Figure 2.8: The resilience loss in the scenario S1 and S2

S5: a break in supply process

In the scenario S5, we assume that if the disruption happens, agent a2,1 in
Layer 2 cannot get oil production from upstream agents and thus, it cannot
offer oil production for any downstream demanders.

To recover the ESC from disruption, we consider following strategies
respectively: 1. The safety inventory. 2. The flexible production capacity.
These strategies in detail are shown as follows.

Storage:
O1: Original storage
O2: Increasing storage 30%
O3: Increasing storage 50%

Supplier:
A1: Increase internal production capacity by 5% of existing capacity
A2: Increase internal production capacity by 10% of existing capacity

In each scenario, after the disruption happens, the retailers get less pro-
duction than before, so there is a gap after the disruption happens which
can be proven by comparing S1 and S2 in Figure 2.8 or S3 and S4 in Figure
2.9. However, if we take strategies, these strategies can effectively mitigate
the influence of the disruption.
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Figure 2.9: The resilience loss in the scenario S3 and S4

Figure 2.10: The resilience loss in the scenario S5
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If we take the safety inventory (O1, O2 or O3) in the retailer storage
as the mitigatory strategy, we assume that once the disruption happens, the
agents take actions immediately, so in the beginning, the resilience loss gets
smaller. After a while, the safety inventory is depleted, so the resilience loss
becomes same as the resilience loss without taking any strategies. The total
resilience loss gets smaller if the safety inventory is larger which can be
demonstrated by comparing S2O1, S2O2 and S3O3 in Figure 2.8, S4O1,
S4O2 and S4O3 in Figure 2.9 and S5O1, S5O2 and S5O3 in Figure 2.10.

If we take the flexible production capacity (A1 or A2) in the finery as the
mitigatory strategy, we still assume that once the disruption happens, the
agents take actions immediately, but we increase the production capacity
until the disruption terminates. The results show that increasing production
capacity can effectively decrease the resilience loss which are demonstrated
by comparing S2A1 and S2A2 in Figure 2.8, S4A1 and S4A2 in Figure 2.9
and S5A1 and S5A2 in Figure 2.10.

The resilience loss for disruption impact under different scenarios and
recovery strategies are represented in Table 2.1 and Table 2.2 in detail.

Table 2.1: The resilience loss comparing with taking the safety inventory to mitigate the
influence of disruption

Scenario No Strategy O1 O2 O3

S1 1.372 1.126 1.044 0.990
S2 3.476 3.269 3.199 3.153
S3 1.740 1.473 1.383 1.323
S4 5.224 4.953 4.863 4.803
S5 1.483 1.302 1.242 1.202

Table 2.2: The resilience loss comparing with taking the flexible production capacity to
mitigate the influence of disruption

Scenario No Strategy A1 A2

S1 1.372 0.637 0.006
S2 3.476 2.846 2.269
S3 1.740 0.980 0.217
S4 5.224 4.634 4.045
S5 1.483 0.808 0.147

In this work, we simulate a basic ESC model within the Agent-based
simulation framework. The main agents in ESC as retailers, bottling &
storages, refineries, port storages and crude oil producers, which can com-
municate (sending and receiving orders) and interact (sending and receiving
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production) with each other. This ESC model is built for investigating the
resilience of the whole ESC under different disruptions.

To this aim, we considered different scenarios and we used the resilience
measurement to estimate the system resilience. It is notable that the more
serious disruption will make more resilience loss. In addition, safety inven-
tory and flexible production capacity are essential factors influencing the
resilience of the ESC.

Based on this model, we know how disruption influence the resilience in
the ESC. It also provides future scope for improvements. In the following,
we plan to construct an Agent-based ESC model which has some specific
difference from common supply chain and it is related to the energy system.
How to design inter-system or/and inter-component dependencies and how
to deal with their uncertainties will be more challenging. Finally, we desire
to optimally design the ESCs with higher levels of resilience.
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CHAPTER3
A Simulation-based MOO Framework for

ESCs

Energy production companies have to make planning decisions to satisfy
the customers uncertain demands and to maximize their own profits. In
this work, we propose a simulation-based MOO framework for the efficient
management of the ESC sustaining production. The ESC agents interaction
is uncertain and the ESC structure can dynamically change. ABM is used to
model and simulate the agents actions and behavior, and the ESC transac-
tion processes. The simulation is embedded into an NSGA-II optimization
scheme for identifying the Pareto front of solutions for which the ESC total
profit is maximized and the disequilibrium among the agents profits is mini-
mized. Based on the Min-Max method, a single best compromised solution
is identified. Finally, the MC simulations approach is used to operational-
ize the proposed ABM-MOO framework in presence of the uncertainty that
affects the ESC.

For demonstration, we consider an oil and gas ESC model with five
layers, including crude oil producers, storages, refineries, terminal storages
and retailers. The results show that the proposed framework enables the op-
timization of the ESC planning, while taking into account multiple sources
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of uncertainty and the structure dynamics that challenge the ESC operation.

3.1 The Planning Problem of The ESC

ESC can be effectively described by ABM. ABM can provide logical rules
to describe the agent behavior and interactions and allows simulating the
ESC transaction processes in an uncertain, dynamic and time-dependent
environment [31, 45, 48, 80, 81]. Thus, in our work, we apply ABM to the
modeling, analysis and optimization of ESCs, taking into account both the
demand and supply uncertainties, and the structure dynamics.

We consider an ESC with L layers and each l-th layer consists of Vl
agents, al,1, al,2, ..., al,v, ..., al,Vl . In the ESC, the orders sent from Layer 1
flow layer-by-layer to the end layer L, whose VL agents are suppliers that
send supply decisions backward to the demanders.

An agent al,v, v = 1, 2, ..., Vl, in the l-th layer, is assigned with behav-
iors, which allow the agent to adaptively interact with the others. The de-
tails of the model are described in Chapter 2 Section 2.1.1.

In the aforementioned ESC, each agent al,v needs to make decisions on
the planning to satisfy its customers uncertain demands and to maximize
the own profits. This is challenging due to the fact that the uncertainty
originating from the production and purchase quantities (e.g., cost, price,
demand, supply, etc.) influences the agents decisions associated with the
interaction structure, which, in turn, affects the agents profits. The uncer-
tainty propagates throughout the dynamic transaction process in the whole
ESC, making it difficult to deal with production schedules and purchase
orders.

To deal with this, we formulate a MOO problem in terms of the ESC
total profit (that is expected to be maximized) and the agents own profits
(for which the disequilibriums are supposed to be minimized).

Eq.(3.1) defines the ESC total profit P :

P =
T∑
t=1

L∑
l=1

Vl∑
v=1

(A−B − C)−D (3.1)

where A is related to the income from selling the oil production to the
customer, expressed in Eq.(3.2).

A =

V
′′
l−1∑

v′′=1

pl−1,v
′′

l,v zl−1,v
′′

l,v (t) (3.2)
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where pl−1,v
′′

l,v is the unit price of the agent al,v when selling the oil produc-
tion to the agent al−1,v′′ , z

l−1,v′′
l,v (t) is the production sent by the agent al,v,

which is received by the agent al−1,v′′ at time t.
B is the purchase cost, which includes the procurement cost plus the

other costs e.g. the transportation cost, the labor cost and so forth.

B =
V ′∑
v′=1

(pl,vl+1,v′ + ol+1,v′

l,v )wl+1,v′

l,v, (t) (3.3)

where pl,vl+1,v′ is the unit price of the agent al+1,v′ for selling the oil produc-
tion to agent al,v , ol+1,v′

l,v is the unit price for the other cost, wl+1,v′

l,v,t is the
amount of the oil production sent by the agent al+1,v′ , which is received by
the agent al,v.

The item C calculates the storage cost.

C = cSl,vSl,v(t) (3.4)

where cSl,v is the agent al,v storage unit cost, Sl,v,t is the production storage
of the agent al,v at time t.

And, D is a penalty from the loss [82],

D =
T∑
t=1

r(t)εP (3.5)

where r(t) is equal to 1 when the agent suffers a loss after the oil production
transaction at time t; otherwise, 0. εP is an arbitrary large number for the
total profit.

On the other hand, the profits of the agents are expected to be different
in a healthy ESC. It is of importance to measure and control the disequi-
libriums among the agents own profits, E, which is defined as the sum of
the dispersion quantifying the deviation of the agents real profits from the
expected values (F ) and the penalty of loss in all the transaction cycles (G):

E = F +G (3.6)

F =
L∑
l=1

σ2
l

|µl|
(3.7)

G =
T∑
t=1

r(t)εE (3.8)
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where σl is the standard deviation of the profits of the agents in the layer
l, µl is the mean of the agents profits in the layer l, r(t) is equal to 1 if the
agent suffers a loss after the oil production transaction at time t; otherwise,
0. εE is an arbitrary large number for the disequilibrium.

Hence, the MOO problem can be formulated:

maxP (ȳ1,1, ..., ȳl,v, ..., ȳL−1,VL , p
1,1
2,1, ..., p

l−1,v′′
l,v , ..., p

L−1,VL−1

L,VL
) (3.9)

minE(ȳ1,1, ..., ȳl,v, ..., ȳL−1,VL , p
1,1
2,1, ..., p

l−1,v′′
l,v , ..., p

L−1,VL−1

L,VL
) (3.10)

s.t.
ȳmin
l ≤ ȳl,v ≤ ȳmax

l (3.11)

pmin
l ≤ pl−1,v

′′

l,v ≤ pmax
l (3.12)

The problem will be solved by maximizing the ESC total profit (3.9)
and minimizing the disequilibrium (3.10), simultaneously. Eq.(3.11) and
Eq.(3.12) are constraints defining the feasible regions for the average orders
and the prices.

3.2 The ABM-MOO Framework

An ABM-MOO framework is originally proposed to obtain the non-dominant
solutions of the Pareto fronts, which can maximize the total ESC profit P
and minimize the disequilibrium among the agents profits E. To account
for demand and supply uncertainties, MC simulations are used, as sketched
in Figure 3.1, to operationalize the ABM-MOO framework. NSGA-II as a
type of GA is easy and flexible to be applied to the optimization problem
in our ESC. The general advantages of NSGA-II are list as follows [83]: 1.
The non-dominated sorting techniques is used to get the optimal solution
closely. 2. The crowding distance techniques is used to maintain diversity
of the solutions. 3. The elitist techniques is used to preserve the best solu-
tion in the next generation. Specially, in our case, the number of decision
variables is 39 which is difficult to be solved by derivative based methods
but can be easily encoded and then optimized by NSGA-II.

The algorithm is summarized as follows:
Initialization

• Initialize the MC simulations.

• Set a total of MGmax runs of the MC loop.
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Initialization of the ABM-MOO in each n-th MC run

• Set the transaction time t = 0, 1, 2, ..., NTmax, the GA population size
NP , the maximum number of GA generations NGmax, the crossover
coefficient Cc and the mutation coefficient Mc.

• Generate QL,VL(t) ∼ N(µQ, σ
2
Q), where QL,VL(t) is the amount of

productions which are produced by the agent aL,VL in the last layer at
time t, µQ is the average value, σ2

Q is the variance.

• Set the NSGA-II generation index k = 1.

• Randomly generate the order and price decision matrices POP n
i (k) =

{[ȳ1,1, ..., ȳl,v, ..., ȳL−1,VL , p
1,1
2,1, ..., p

l−1,v′′
l,v , ..., p

L−1,VL−1

L,VL
]n1 , ..., [ȳ1,1, ..., ȳl,v, ...,

ȳL−1,VL , p
1,1
2,1, ..., p

l−1,v′′
l,v , ..., p

L−1,VL−1

L,VL
]nNP}within the feasible space. They

are coded into the chromosomes of the GA.

• Generate yl+1,v′

l,v (t) ∼ N(ȳl,v, σ
2
y), where yl+1,v′

l,v (t) is the amount of
orders sent by the agent al,v which are received by the agent al+1,v′ at
time t, ȳl,v is the average value and σ2

y the variance.

Begin the NSGA-II loop

• Input all the generated values into the ABM ESC model, to simulate
the transactions.

• Calculate the values of P and E, according to Eq.(3.1) and Eq.(3.6),
respectively.

• Rank the chromosomes POP n
i (k) by running the fast non-dominated

sorting algorithm.

• Rank the chromosome POP n
i (k) based on the crowding distance,

aimed at finding the Euclidean distance between chromosomes in a
front that maximizing P and minimizing E. It is worth pointing out
that the chromosomes in the boundary are selected all the time, since
they are assigned with infinite distance.

• Select the chromosome POP n
i′ (k) by using a binary tournament selec-

tion with crowded-comparison-operator(≺λ), where λ is a predefined
tournament size.

• Apply the polynomial mutation [84, 85] and the simulated binary
crossover operator [84, 86] to generate the offspring populations POP n

i

(k + 1).
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• Set k = k + 1 and check that the NSGA-II stopping criterion (k >
NGmax) is reached:

– If yes, return the ranked Pareto-optimal {F n
1 , F

n
2 , ..., F

n
nd} where

F n
1 is the best front and F n

nd is the least good front, set n = n+ 1.

– Otherwise, begin a new NSGA-II cycle.

• Check whether the MC simulations stopping criterion reaches (n >
MGmax).

– If yes, end ABM-MOO and get all the Pareto fronts.

– Otherwise, begin a new MC simulations cycle.

Notice that a set of Pareto fronts can be identified from each MC run
of the ABM-MOO framework and a best compromised solution can be
identified among them by the Min-Max method [87, 88]. The Min-Max
finds the highest value that one objective can be sure to get without know-
ing the strategy that would satisfy the other objective. Given Pareto front
H ≡ (P,E) the relative deviations of P and E are defined, respectively:

zP =
|P − Pmin|
Pmax − Pmin

(3.13)

where Pmin and Pmax are the minimum and maximum of the fitness values
P , respectively.

zE =
|E − Emin|
Emax − Emin

(3.14)

where Emin and Emax are the minimum and maximum of the fitness values
E, respectively.

The best compromised solution is determined as

zH = min[max{zP , zE}] (3.15)

3.3 Case Study

For illustration, we consider an oil ESC which is structured in five layers,
including retailers (Layer 1), terminal storage (Layer 2), refinery (Layer
3), storage (Layer 4) and crude oil producers (Layer 5). Three cooper-
ative agents are modeled in Layer 1 (i.e., a1,1, a1,2, a1,3), Layer 2 (i.e.,
a2,1, a2,2, a2,3) and Layer 3 (i.e., a3,1, a3,2, a3,3), respectively. Two agents
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Figure 3.1: The flowchart of the ABM-MOO framework
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Table 3.1: The setting of the parameters for the ABM-MOO

Symbol Description Value
NTmax The total transaction time 1000(days)
MGmax The number of MC simulations 100
NP GA population size 200

NGmax Maximum number of GA generations 100
Cc Crossover coefficient 0.8
Mc Mutation coefficient 0.8
µQ The average value of QL,VL

(t) 362.5(ton)
σQ The standard deviation value of QL,VL

(t) 2(ton)
σy The standard deviation value of yl+1,v′

l,v (t) 2(ton)
εP An arbitrary large number for the total profit 100000
εE An arbitrary large number for the uncertainty 1000
kl,v The production capacity of agent al,v 1 (if l = 3, 0.8)

Table 3.2: The values of the orders and prices limitations

l = 1 l = 2 l = 3 l = 4
ȳmin
l (ton) 100 100 100 100
ȳmax
l (ton) 400 450 300 600

pmin
l (¤/ton) 40 25 15 10
pmax
l (¤/ton) 55 40 25 15

are modeled in Layer 4 (i.e., a4,1, a4,2) and Layer 5 (i.e., a5,1, a5,2), respec-
tively.

Customer agents try to get enough productions from suppliers and, at the
same time, supplier agents have to choose the demander(s) who can bring
them the highest profits. Motivated by this, agents take relative behaviors to
realize their expectations. These behaviors have been illustrated in Chapter
2 Section 2.1.1, and define the rules and decision processes of the agents
interacting with other agents in an uncertain environment.

We apply the ABM-MOO framework to the ABM of the aforementioned
oil ESC, for a total of MGmax = 100 MC simulations runs, in a period of
1000 transaction days. Table 3.1 summarizes the main parameters set for
the ABM-MOO algorithm. Table 3.2 lists the constraints as discussed in
Eqs.3.11 and 3.12, and Table 3.3 lists the unit prices ol+1,v′

l,v for the other
cost from al+1,v′ to al,v. The uncertain variables are distributed as Gaussian
distributions.
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Table 3.3: The values of the unit prices ol+1,v′

l,v (¤/ton) for the other cost from al+1,v′ to
al,v

Agent Unit Price Agent Unit Price Agent Unit Price
o2,11,1 3 o3,12,1 9 o4,13,1 2

o2,21,1 3 o3,22,1 2 o4,23,1 4

o2,31,1 5 o3,32,1 6 o4,13,2 4

o2,11,2 22 o3,12,2 5 o4,23,2 3

o2,21,2 15 o3,22,2 4 o4,13,3 3

o2,31,2 2 o3,32,2 5 o4,23,3 4

o2,11,3 5 o3,12,3 11 o5,14,1 2

o2,21,3 5 o3,22,3 10 o5,24,1 3

o2,31,3 4 o3,32,3 5 o5,14,2 4

o5,24,2 3

3.3.1 Sensitivity analysis

Based on the literature [89] and the literature [90], we have unformed sen-
sitive analysis by using Sobol indices. In the Sobol indices, the higher the
Sobol indices values, the more influential the respective model parameters
are. The result is shown in Figure 3.2.

Regarding the objective total profit, the order amounts of the agents are
more important than the prices of the agents. Based on Eq.(4.3) - Eq.(4.6)
in the paper, the total profit can be written as:

P = P1 + P2 + P3 + P4 + P5

≈
T∑
t=1

V∑
v=1

p01,vz
0
1,v(t)−

T∑
t=1

L−1∑
l=1

V∑
v=1

V ′∑
v′=1

ol+1,v′

l,v wl+1,v′

l,v (t)−
T∑
t=1

V∑
v=1

p5,v6 w6
5,v(t)

−
T∑
t=1

L∑
l=1

V∑
v=1

cSl,vSl,v(t)

(3.16)
where p01,v is the unit price of the agent a1,v by selling the oil production

to the customers, z01,v(t) is the amount of the oil production sent by the
agent a1,v which is received by the customers at time t, ol+1,v′

l,v is the unit
price for the other cost, wl+1,v′

l,v (t) is the amount of the oil production sent
by the the agent a1+1,v′ , which is received by the agent a1,v at time t, p5,v6

is the unit price of the crude oil production, w6
5,v(t) is the amount of the oil
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Figure 3.2: Sensitivity for the profit and the disequilibrium

production received by the agent a5,v at time t, cSl,v is the agent al,v storage
unit cost and Sl,v(t) is the storage of the agent al,v at time t.

The Eq.(3.16) shows that the total profit is related to the order amount
but has weak sensitivity on the price, because the price of one agent is the
buying cost of others. The price influence is neutralized when calculating
the total profit.

Figure 3.3 shows the sensitivity on the order amount for the total profit.
The agents in the higher layer (up-stream) have higher sensitivity for the
total profit, which makes sense because the oil supply chain model is a
Make-to-Stock model. The down-stream agents profit strongly relies on
the up-stream agents production amount in their hand. The agents in the
higher layer have higher control on the total profit.

Every layer has at least one important variable sensitive to it regarding
the objective of disequilibrium, ȳ1,2 in layer 1, ȳ2,1 in layer 2, p3,14,2 in layer
3, ȳ4,2 in layer 4 are most sensitive to the objective disequilibrium. In each
layer, the influence of the order amount and the price on the disequilibrium
is complicated and different from layer to layer. For example, ȳ1,2 in layer
1 is sensitive because its cost is large if it buys the production from agent
a2,1 and agent a2,2 in layer 2 which influences the equilibrium of the profit
in layer 1.

3.3.2 Result of the Pareto front

As shown in Figure 3.4, the Pareto front is not continuous and broken into
three pieces, mainly due to the fact that the model is complex, with discrete
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Figure 3.3: Sensitivity on the order amounts for the profit

and continuous values variables, whose combinations give rise to jumps in
the objective function values.

The Pareto front shows that the ESC total profit increases when the dis-
equilibrium among the agents profits tends to be large, which makes sense
because some agents have price and cost advantages when they look for oil
productions. Some agents can get more profit than others, which increases
the total profit but also the disequilibrium among the agents profits.

According to Eq.(3.15) discussed in Section 3.2, the best compromised
solution is identified by Min-Max method after substituting H1, with P
equal to ¤518440.3 and E equal to ¤1569.5.

Figure 3.4 shows that no single solution exists that simultaneously opti-
mizes each objective and all solutions on the Pareto front are equally good
but give different strategies to the ESC ABM and get different results for the
total profit and the total disequilibrium. Some solutions (like H3 in Figure
3.4) can get large total profit but at the expresses of a large disequilibrium.
Some solutions (like H2 in Figure 3.4) can get small disequilibrium but for
small profit.

In order to show the agent own profits with the disequilibrium of each
layer, three typical Pareto solutions (H1, H2 and H3) are chosen to input
into the original ESC ABM simulation again, where, H1 is the best com-
promised solution identified, H2 is the solution with the smallest values of
both the ESC total profit and the disequilibrium, andH3 is the solution with
the highest values of both the ESC total profit and the disequilibrium. The
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Figure 3.4: The Pareto front

values of decision variables getting H1, H2 and H3 are shown in Figures
3.5 and 3.6.

3.3.2.1 Agent own profits obtained while re-inputting H1 into the ESC ABM

Figure 3.7 shows the simulation results when the best compromised solu-
tion H1 operationalizes the ESC ABM again. Figure 3.7(a)-(e) show the
profits of the agents of different layers during the transaction processes.
The results show that every agent in ESC gets a profit rather than a loss,
due to the fact that the penalty terms Eq.(3.5) and Eq.(3.8) keep each agent
from a profit loss.

In details, in Layer 1 (Figure 3.7(a)), we can find that Retailer 1 can
get more profits, with an average of ¤3830, than Retailers 2 and 3 in the
transaction processes after the initial phase, thanks to the relatively lower
total cost giving higher opportunities to be accepted by the suppliers in
Layer 2. This phenomenon is obvious in the intermediate Layer 2. As
shown in Figure 3.7(b), Terminal Storage 1 beats Terminal Storage 2 and
3, profiting most in Layer 2. The difference among agents own profits
weakens in Layer 3 and 4, as shown in Figure 3.7(c) and (d), respectively,
due to the fact that the agents in the same layer are bidding with similar
price levels and, thus, have equal chances to order productions from the
agents in the upper layer and to sell productions to the agents in the lower
layer. It should be noted that despite slight differences in the profits of
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Figure 3.5: The values of the orders (ton) sent by the agent al,v for getting Pareto solu-
tions H1, H2 and H3

the two crude oil producers in Layer5 (Figure 3.7(e)), both profits fluctuate
severely during the transactions, because the supplier profits are mainly
determined by the propagation of the demand and supply uncertainties in
the supply chain network.

Figure 3.7(f) shows the disequilibrium for each layer. The results show
that Layer 3 reaches the smallest value of the disequilibrium, equal to
¤90.8, followed by Layer 4 with value equal to ¤130.3. This makes sense
because the agents in Layers 3 and 4 profit with slight difference, which
makes their deviations from the expected profits small, equivalent to the
results of Figures 3.7(c) and (d), respectively. In contrast, Layers 1 and
2 result in relatively large values of disequilibriums, equal to ¤643.7 and
¤478.4, respectively, mainly due to the imbalance of profits among agents
in the layers. A value of ¤226.3 in Layer 5 proves that the propagation of
uncertainty in the supply chain network can also result in a relative high
probability of the imbalanced profits among agents.

3.3.2.2 Comparison of results obtained from the re-inputs of H1, H2 and H3

We also re-input the Pareto solutions H2 and H3 into the ESC ABM, to op-
erationalize the simulations of the transaction processes again. The agents
profits of different layers obtained from the re-inputs of H2 and H3, respec-
tively, show the same trends as the re-input of H1. The simulation results
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Figure 3.6: The values of prices (¤/ton) for getting H1, H2 and H3
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are attached in Figure 3.8 and Figure 3.9.
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Furthermore, we compare the disequilibriums of each layers from the
re-inputs of Pareto solutions into the ESC ABM, as shown in Figure 3.11.
Despite the highest ESC total profit (¤526831.4), the re-input of H3 leads
to the largest disequilibriums for all the layers, especially an extreme value
equal to ¤2056.3 in the first layer, which can make the retailers own profits
uncertain and less-foreseeable. In spite of the relatively large values of
the disequilibriums of Layers 1 and 2, the re-input of the best compromise
solutionH1 can achieve relatively small disequilibriums, equal to¤90.8 for
Layer 3, ¤130.3 for Layer 4, and ¤226.3 for Layer 5, which are very close
to those obtained from the re-input ofH2 (which gives the smallest expected
disequilibriums), equal to ¤36.1, ¤123.2 and ¤204.4, respectively. These
results demonstrate that the re-input of the best compromise solution H1

can be of use in solving the ESC planning problem while leveraging the
ESC total profit with the disequilibrium of the ESC layers.

The results of Figures 3.10 and 3.11 show that the agents in a same
layer can get close profits to decrease their disequilibrium, but sacrificing
the maximization of their own profits at the same time. This is because
the weak agents in the layer are constrained by the cost and the production
amount, so the strong agents have to sacrifice their own profits in order
to get similar profits as the weak agents and, eventually, to minimize their
disequilibrium.

3.3.3 Results from the total MC runs

MC simulations are used to operationalize the proposed ABM-MOO frame-
work, in presence of supply and demand uncertainties influencing the agents
behaviors. Figure 3.12 shows the results of the Pareto fronts for different
scenarios from a total of 100 MC runs. In each time, we generate 100
population size, and obtain 100 Pareto fronts (i.e., 10000 Pareto solutions).
According to the equation:

√
n =

λαs

φ
(3.17)

in the literature [91], given a confidence level α, the sample size n is
determined by the level of precision φ and the sample standard deviation
s. Assuming s is fixed, an order of magnitude increasing in the level of
precision φ requires an increasing of two orders of magnitude in the sample
size n. Therefore, simply increasing n is not a valid and practical solution
in our study due to the huge expense of the running time. In fact, here we
get 100 Pareto fronts containing 10000 pareto solutions, which are enough
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for our study because we estimate that the sample standard deviation s in
the profit equals to 12072. If we set the confidence level α = 0.1, the
level of precision φ = 197.98, which is acceptable regarding to the order of
magnitudes 105 in the profit.

The Pareto solutions are distributed roughly in three regions in Figure
3.12. This is meaningful because, as mentioned before, the ESC ABM
considers a number of continuous and discrete design variables and vari-
ous other design constraints, which consequently make the design space of
ESC ABM system discontinuous and generate inherent non-linearities in
the ESC ABM, whose concave section is dominated to produce the discon-
tinuous Pareto front.

We calculate the mean values and the double-sided 95% confidence in-
tervals of the ESC total profit and the ESC disequilibrium. The results show
that the mean value of the expected ESC total profit (equal to ¤517084.5)
and of the ESC disequilibrium (equal to ¤1835.4 ) are close to those of H1

(equal to ¤518440.2 and ¤1569.5, respectively), demonstrating the effec-
tiveness of selecting and re-inputting the best compromise solutions into
the ESC ABM simulations.

Notice that we consider the MC simulations to control the demand and
supply uncertainties and the dynamic structure in the proposed ABM-MOO
framework. The estimates of the double-sided 95% confidence intervals can
identify the range of the ESC total profit and the disequilibrium that their
true values lie in. The ESC total profit is bounded within ¤493435.2 and
¤532110.5 with 95% level of confidence, which provides a range of values
(¤493435.2, ¤532110.5) that the expected ESC profit lies in, whereas, the
disequilibrium is bounded between ¤516.5 and ¤3756.8, that suggests the
ESC may operate in an uncertain way if the agents transact in an unbalanced
and competitive environment.

In this work, we have proposed an ABM-MOO framework for optimal
production planning in an ESC, where the agents interactive behavior is
uncertain and the ESC structure dynamically changes. ABM is originally
used to model and simulate the transaction processes by multiple behavioral
and interactive agents, occurring in an ESC with ESC dynamic structure,
and supply and demand uncertainties. An MOO problem is defined to drive
the optimization of the production planning towards maximizing the ESC
total profit, and at the same time, minimizing the disequilibrium among the
agents profits. An MC sampling approach is deployed to operationalize
the proposed ABM-MOO framework, with proper handling and control-
ling the uncertainty originating from multiple sources that can reduce the
confidence in decision-making for optimal planning.
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Figure 3.10: The ESC total profits obtained from the re-inputs of H1, H2 and H3

Figure 3.11: The disequilibrium for each layer considering variables of H1, H2 and H3
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Figure 3.12: Pareto fronts in MC simulations
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CHAPTER4
ESCs Planning: Risk-based Optimization

The planning of an ESC aims at maximizing the benefits of the ESC agents,
while satisfying the demands of the customers [14, 15]. Demand variabil-
ity and supply disruption, originating from the connectivity between sup-
ply and demand, can disturb the agents interactions and impair the agents
management [16]. In this study, we propose a risk-based optimization ap-
proach for the management of ESC. We introduce a CVaR measure with
the purpose of measuring and controlling the risk to the ESC management.
An MOO based by the NSGA-II is performed to search for the solution
optimal with respect to the maximization of the ESC total profit and the
minimization of the risk under uncertainties.

4.1 The Proposed Method

4.1.1 Uncertainty and risk assessment

In this study, we use the CVaR to measure the risk in the cost of supply
[92, 93, 94, 95, 20, 96]. The definitions of VaR and CVaR are shown as
follows:

V aRα(X) = inf{Z ∈ R : FX(Z) > α} (4.1)
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Figure 4.1: Distribution of sending production loss

where X is the loss, FX is the discrete approximation of the probability
distribution of the loss X , α is the α-percentile for the function FX , Z is
the smallest value of loss whose probability is greater than α.

CV aRα(X) = E(X|X ≥ V aRα(X)) (4.2)

where X is the loss and E(X) is the expected value of X which is larger
than V aRα(X) defined in 4.1.

In order to understand the CVaR in a comprehensive view, we draw a
graphical definition in Figure 4.1.

Figure 4.1 shows that VaR is the smallest value of the loss for a confi-
dence level α of the probability distribution. Although the VaR has been
widely used in measuring risk, it also presents some deficiencies [92].

CVaR is the expected value of the loss given that the loss is greater than
or equal to the V aRα(X). The definitions and properties of CVaR are given
in detail in Ref.[97] and Ref.[98].

The ESC planning problem under risk and uncertainty is described in
Section 4.1.2.

4.1.2 MOO problem formulation

In the ESC, every agent wants to maximize its profit. Here, we assume
that the main income is from selling oil production and the main cost is in
buying oil production.

Eq.(4.3) defines the ESC total profit P over a time horizon T :

P =
T∑
t=1

L∑
l=1

Vl∑
v=1

(A−B − C −D) (4.3)
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4.1. The Proposed Method

A is related to the income from selling the oil production to the cus-
tomer, expressed as:

A =

V
′′
l−1∑

v′′=1

pl−1,v
′′

l,v zl−1,v
′′

l,v (t) (4.4)

where pl−1,v
′′

l,v is the unit price of the agent al,v when selling the oil produc-
tion to the agent al−1,v′′ , z

l−1,v′′
l,v (t) is the production sent by the agent al,v,

which is received by the agent al−1,v′′ at time t.
B is the purchase cost, which includes the procurement cost plus other

costs like the transportation cost, the labor cost and so forth:

B =
V ′∑
v′=1

(pl,vl+1,v′ + ol+1,v′

l,v )wl+1,v′

l,v, (t) (4.5)

where pl,vl+1,v′ is the unit price of the agent al+1,v′ for selling the oil produc-
tion to agent al,v , ol+1,v′

l,v is the unit price for the other costs, wl+1,v′

l,v,t is the
amount of the oil production sent by the agent al+1,v′ and which is received
by the agent al,v.

The item C accounts for the storage cost:

C = cSl,vSl,v(t) (4.6)

where cSl,v is the agent al,v storage unit cost, Sl,v,t is the production storage
of the agent al,v at time t.

Finally, D is the penalty for supply shortage:

D = αl,v

V
′′
l−1∑

v′′=1

(xl−1,v
′′

l,v (t)− zl−1,v
′′

l,v (t)) (4.7)

where αl,v is the unit penalty cost, xl−,v
′′

l,v (t) is the amount of orders accepted
by the agent al,v which are sent by the agent, zl−1,v

′′

l,v (t) is the amount of oil
production sent by the agent al,v, which are received by the agent al−1,v′′ at
time t.

Then, the total cost at time t could be defined as:

E(t) =
L∑
l=1

Vl∑
v=1

(B + C +D) (4.8)
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The general MOO problem is, then, formulated as:

maxP (ȳ1,1, ..., ȳl,v, ..., ȳL−1,VL , p
1,1
2,1, ...,

pl−1,v
′′

l,v , ..., p
L−1,VL−1

L,VL
)

(4.9)

minCV aR(ȳ1,1, ..., ȳl,v, ..., ȳL−1,VL ,

p1,12,1, ..., p
l−1,v′′
l,v , ..., p

L−1,VL−1

L,VL
)

= CV aRα(
L∑
l=1

Vl∑
v=1

El,v(t))

(4.10)

s.t.
ȳmin
l ≤ ȳl,v,t ≤ ȳmax

l (4.11)

pmin
l ≤ pl−1,v

′′

l,v ≤ pmax
l (4.12)

Eq.4.9 maximizes the total profit and Eq.4.10 minimizes the risk, si-
multaneously. The constraint 4.11 and the constraint 4.12 give the feasible
region for the average orders and the price.

4.2 The ABM-MOO Framework

GA is used to search a set of feasible solutions optimal with respect to the
objective functions because its flexible and convenient capability to deal
with complex problems [99]. In our case, there are 39 variables needing
to be optimized which can be a problem for derivative based methods but
can be easily encoded and then optimized by GA. These solutions (chromo-
somes, in GA terminology) are input in the simulation model. Figure 4.2
shows the framework of the hybrid simulation-based optimization process.

A set of Pareto solutions is, eventually, identified and a best-compromised
solution can be chosen among them by the Min-Max method ([87, 88]).
Given the Pareto solutions H ≡ (P,CV aR) the relative deviations of P
and CVaR are defined, respectively:

zP =
|P − Pmin|
Pmax − Pmin

(4.13)

where Pmin and Pmax are the minimum and maximum of the fitness values
P , respectively.

zCV aR =
|CV aR− CV aRmin|
CV aRmax − CV aRmin

(4.14)
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4.3. Case Study

Figure 4.2: The flowchart of the ABM-MOO framework

where CV aRmin and CV aRmax are the minimum and maximum of the
fitness values CV aR, respectively.

The best-compromised solution is determined as

zH = min[max{zP , zCV aR}] (4.15)

4.3 Case Study

An ESC ABM of five layers is considered. This includes retailers (Layer1),
terminal storages (Layer2), refineries (Layer3), storages (Layer4) and crude
oil producers (Layer5). In Layer1, Layer2 and Layer3, there are 3 agents
respectively. In Layer4 and Layer5, there are 2 agents in each layer. In
this ESC, we assume that there is 10% probability that the refinery 3 is
disrupted. When it is disrupted, it is not able to send oil production to down
stream demanders. The recovery strategy is not considered in this case
study. We assume that every disruption influences one transaction. After
the transaction finishes, the disruption vanishes and the ESC come back to
be normal.

Figure 4.3 shows the Pareto front which reflects that the CVaR increases
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Figure 4.3: The Pareto front with the best-compromised solution

Figure 4.4: The cost frequency distribution under the ESC normal state

when the ESC total profit tends to be large. Then increasing CVaR means
increasing risk: if the agents want to get more profit they have to face larger
risk which makes sense because high profit are always accompanied by
high risk. According to Eq.(4.15) discussed in Section 4.2, the best compro-
mised solution is identified, and the total profit P equals to ¤3924956.04
and CV aR equals to ¤75851.93.

Figure 4.4 shows the cost frequency distribution in the normal state
which is optimized in the literature ([15]). Figure 4.5 shows the cost fre-
quency distribution with disruption risks if we do not take any measure to
control them. Figure 4.6 shows the cost frequency distribution with disrup-
tion risk if the ESC is optimized.

Figure 4.4 shows that if the ESC is without disruption risk, the cost is
distributed in the range from ¤7.16 × 104 to ¤7.34 × 104 which is a rela-
tively concentrated range. Comparing Figure 4.4 with Figure 4.5 and Fig-
ure4.6, the range of the cost distribution increases, because the disruption
risks cause the refinery storage cost and shortage penalty to increase. On
the other hand, after the disruption happens, some oil production has to be
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Figure 4.5: The cost frequency distribution with the ESC disruption risk

Figure 4.6: The cost frequency distribution with the ESC disruption risk after optimization
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stored in Refinery 3. When the ESC goes back to normal, Refinery 3 does
not need to order new oil production from up stream storage, so the pro-
curement cost is decreasing, which further increases the range of the cost
distribution. In Figure 4.5, the CV aR95% of the cost is ¤88650. In Figure
4.6, the CV aR95% of the cost is ¤75851.93. Comparing Figure 4.5 with
Figure 4.6, the proposed ABM-MOO framework is effective to decrease
the CVaR related to the risk disruption.

The objective of this study is to manage the production planning prob-
lem in ESCs, where the agent interaction behavior is uncertain and the
ESC faces disruption risk. In order to address this problem, we propose
a simulation-based MOO framework which enables decision making on
planning production, including the price and the amount of purchased oil
production. Firstly, we use ABM to model and simulate the agent behav-
iors and the ESC transaction processes. Secondly, we use NSGA-II to get
the optimal solutions that maximize the ESC total profit and minimize the
disruption risk. An oil ESC model with five layers, including crude oil pro-
ducers, storages, refineries, terminal storages and retailers is presented to
demonstrate the methodology.
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CHAPTER5
A Cooperative Co-evolutionary Approach
for Many-objective Optimization in ESCs

In ESCs, multiple agents proactively interact and cooperate in a coordi-
nated production process, where each of them aims to grab the maximal
own profits. In this study, we propose a cooperative co-evolutionary ap-
proach to solve such an ESC MaOP where the agents own profits are max-
imized. The autonomous behavior of the ESC agents and the interactive
transaction processes are modelled in the context of ABM. A CCPSO al-
gorithm is embedded into ABM for identifying the Pareto Front (PF). The
effectiveness of the proposed approach is verified by the test functions.

For demonstration, we illustrate the proposed approach by considering
an oil and gas ESC model with five layers, including crude oil producers,
storages, refineries, terminal storages and retailers. The results show that
the proposed CCPSO enables the many-objective optimization for the effi-
cient production planning of the ESC, whilst taking into account multiple
sources of uncertainty and the structure dynamics challenging the ESC op-
eration balance.
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Optimization in ESCs

5.1 The ESC MaOP

In chapter 3 and chpater 4, the optimization problem is the Multi-objective
Optimization Problem (MOP) containing less than three objective func-
tions. In chapter 5, the optimization problem is an ESC Many-objective
Optimization Problem (MaOP), which contains more than three objective
functions.

EAs can flexibly adjust to MOP thanks to its capabilities to address the
uncertainty in supply and demand conveniently and limit the computational
burden. However, they are deteriorative and suffer from the curse of dimen-
sionality, when solving a Many-objective Optimization Problem (MaOP)
where the number of objectives becomes more than three [100, 101]. By
contrast, Co-Evolutionary Algorithm (CEA) releases the evolutionary pres-
sure of EAs converging the various individuals to a same niche, but coe-
volves sub-populations of individuals that represent different parts of the
global solution making it possible to solve MaOPs. CEA can be used to
obtain Pareto solutions for MaOP by decomposing problem into subprob-
lems, and solving each subproblem with a subpopulation, evolved by an
individual Evolutionary Algorithm (EA). CEA allows calculating decom-
posed problems in parallel, which speeds up the optimization process [59].
On the other hand, separated species help to maintain good solution diver-
sity, increase the robustness against the modules’ errors and failures, and,
thus, enhance the reusability in dynamic environments [58, 59].

Cooperative CEA highly fits the characteristics of ABM because ABM
is made up of several individuals/agents with its own variables to be opti-
mized and its own problem to be solved which need to cooperate to obtain
the optimal objective, so cooperative CEA is more appropriate to used in
solving MaOP in agent-based ESC modelling.

ESC can be effectively described by ABM. ABM can provide logical
rules to describe the agent behavior and interactions and allows simulating
the ESC transaction processes in an uncertain, dynamic and time-dependent
environment [45, 48, 80, 81, 31]. Thus, in our work, we apply ABM to the
modeling, analysis and optimization of ESCs, taking into account both the
demand and supply uncertainties, and the structure dynamics.

We consider an ESC with L layers and each l-th layer consists of Vl
agents, al,1, al,2, ..., al,v, ..., al,Vl . In the ESC, the orders sent from Layer 1
flow layer-by-layer to the end layer L, whose VL agents are suppliers that
send supply decisions backward to the demanders.

An agent al,v, v = 1, 2, ..., Vl, in the l-th layer, is assigned with behav-
iors, which allow the agent to adaptively interact with the others. The de-

64



5.1. The ESC MaOP

tails of the model are described in Chapter 2 Section 2.1.1.
In an ESC, each agent al,v makes decisions on the planning to satisfy

its customers uncertain demands and to maximize the own profits. To deal
with this, a MaOP is formulated with the aim of maximizing the profit.

Eq.(5.1) defines the profit P for each agent al,v:

Pl,v =
T∑
t=1

Al,v −Bl,v − Cl,v (5.1)

where Al,v is related to the income from selling the oil production to the
customer, expressed in Eq.(5.2).

Al,v =

V
′′
l−1∑

v′′=1

pl−1,v
′′

l,v zl−1,v
′′

l,v (t) (5.2)

where pl−1,v
′′

l,v is the unit price of the agent al,v when selling the oil produc-
tion to the agent al−1,v′′ , z

l−1,v′′
l,v (t) is the production sent by the agent al,v,

which is received by the agent al−1,v′′ at time t.
Bl,v is the purchase cost, which includes the procurement cost plus the

other costs e.g. the transportation cost, the labor cost and so forth.

Bl,v =
V ′∑
v′=1

(pl,vl+1,v′ + ol+1,v′

l,v )wl+1,v′

l,v, (t) (5.3)

where pl,vl+1,v′ is the unit price of the agent al+1,v′ for selling the oil produc-
tion to agent al,v , ol+1,v′

l,v is the unit price for the other cost, wl+1,v′

l,v,t is the
amount of the oil production sent by the agent al+1,v′ , which is received by
the agent al,v.

The item C calculates the storage cost.

Cl,v = cSl,vSl,v(t) (5.4)

where cSl,v is the agent al,v storage unit cost, Sl,v,t is the production storage
of the agent al,v at time t.

Hence, the MaOP problem is solved by:

maxPl,v(ȳl,v, p
1,1
2,1, ..., p

l−1,v′′
l,v , ..., p

L−1,VL−1

L,VL
) (5.5)

s.t.
ȳmin
l ≤ ȳl,v ≤ ȳmax

l (5.6)
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pmin
l ≤ pl−1,v

′′

l,v ≤ pmax
l (5.7)

where Pl,v is the profit for the agent al,v, ȳl,v is the amount of average orders
sent by the agent al,v, p

l−1,v′′
l,v is the unit price of the agent al,v by selling the

oil production to the agent al−1,v′′ , ȳmin
l is the minimum for the average

orders, ȳmax
l is the maximum for the average orders, pmin

l is the minimum
for the unit price, pmax

l is the maximum for the unit price. Eq.(5.6) and
Eq.(5.7) are constraints defining the feasible regions for the average orders
and the prices.

5.2 The Agent-based CEA

5.2.1 The agent-based cooperative CEA

In order to embed CA into ABM appropriately, we address the following
issues of problem: the decomposition, the interdependencies between sub-
components, and the maintenance of selection pressure.

5.2.1.1 Decomposition

Each agent in ESC has its own decision variables. These variables are put
into species based on their owner-member relationship. For example, the
variables x1, x2, x3 are decided by the agent 1, so they are assigned to
species 1. Each agent has a group of sub-populations representing vari-
able(s) which it uses to interact with other agents to get the fitness value(s).

5.2.1.2 Interdependencies Between Subcomponents

In CEAs, the agent has to cooperate with other agents to assemble the com-
plete solution. The fitness value of an individual is evaluated based on their
interactions with others. If it has good cooperation with others, the sub-
population gets good fitness value.

5.2.1.3 Maintenance of Selection Pressure

In our CCPSO, to allow PSO to deal with MaOP, we consider the MOPSO
framework which contains a external repository to record the nondomi-
nated variables [102] which is also updated, recorded and used by each
agent when cooperating. On one hand, in order to make MOPSO suit for
the ABM, we synthesize the co-evolutionary into original MOPSO. On the
other hand, to overcome the loss of sufficient selection pressure caused by
the Pareto-ranking approach and the decomposition approach [103, 104,
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105], the balanceable fitness estimation (BFE) method is used [103]. For
each particle Hj

i = [ȳl,v, p
1,1
2,1, ..., p

l−1,v′′
l,v , ..., p

L−1,VL−1

L,VL
], its BFE(D(pji )) is

defined as:

D(Hj
i ) = α× Cd(Hj

i ) + β × Cv(Hj
i ) (5.8)

where Hj
i indicates the i-th particles current position in the j-th swarm.

Cd(Hj
i ) and Cv(Hj

i ) denote the normalized diversity and convergence dis-
tance of the particle Hj

i . α and β are two factors to tune the impacts of the
diversity and convergence distances, respectively.

The speed of particle is defined as:

vji = w × vji + c1 × r1 × (pbestji −H
j
i ) + c2 × r2 × (Rj

h −H
j
i ) (5.9)

where vji is the i-th particles speed in the j-th swarm,w is the inertia weight,
c1 and c2 are the acceleration coefficients, r1 and r2 are random numbers in
[0, 1], pbestji is the personal-best particle position, Hj

i is the i-th particles
current position in the j-th swarm, Rj

h is the h-th particle’s position in the
j-th external repository.

Then, the position of particle updates as:

Hj
i = Hj

i + vji (5.10)

where Hj
i is the i-th particles current position in the j-th swarm, vji is the

i-th particles speed in the j-th swarm.
The pseudocode of CCPSO is described in Algorithm 1.

5.2.2 Test problem

To show the effectiveness of the proposed CCPSO, the test problems ZDT2
and DTLZ2 are used. The variables number and the objectives number of
ZDT2 and DTLZ2 are shown in Table 5.1. In order to show the effective-
ness of our CCPSO, we compare it with the original MOPSO framework
which is a preliminary approach without using the co-evolutionary frame-
work. The parameter settings of CCPSO and MOPSO for the test problem
ZDT2 and DTLZ2 are shown in Table 5.2 and Table 5.3 respectively.

Figure 5.1 shows the Pareto front for the test problem ZDT2. In this test,
the small generation number 50 is used. MOPSO is close to the true Pareto
front but CCPSO shows its more efficient capability to get close to the true
Pareto front comparing with MOPSO.
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Algorithm 1 Cooperative Co-evolutionary Particle Swarm Optimization (CCPSO)
1: Set m swarms and in jth swarm, there are nj particles;
2: Initial the particles in each swarm Sj = [Hj

1 ;H
j
2 ; ...;H

j
i ; ...;H

j
nj

] and the external repository Rj =
null;

3: Randomly initialize position Hj
i and speed vji = 0 for each particle in each swarm;

4: Randomly set PBEST j = [pbestj1; pbest
j
2; ...; pbest

j
i ; ...; pbest

j
nj

];

5: Assemble the complete solutions for particle Hj
i in each swarm:

G1 = [S1, PBEST 2, ..., PBEST j , ...PBESTm];
G2 = [PBEST 1, S2, ..., PBEST j , ...PBESTm];
......;

6: Evaluate the objective value F j = [fj1 , f
j
2 , ...f

j
i , ..., f

j
nj

] for particles in each swarm;
7: Assemble all the solutions and corresponding objective values:

G = [G1;G2; ...;Gm]; F = [F 1;F 2; ...;Fm];
8: Put non-dominated solutions into R1,R2,...Rm;
9: while (t < T ) do

10: Select out leader h;
11: Update the speed vji and the position Hj

i for particles in each swarm based on Eq.5.9 and Eq.5.10;
12: Use mutation operator for particles in each swarm respectively;
13: Check boundaries for particles in each swarm respectively;
14: Assemble the complete solutions:

G1 = [S1, R2
h, ..., R

j
h, ...R

m
h ];

G2 = [R1
h, S

2, ..., Rj
h, ...R

m
h ];

......;
15: Evaluate the objective values F j = [fj1 , f

j
2 , ...f

j
i , ..., f

j
nj

] for particles in each swarm;
16: Assemble all the solutions and corresponding objective values:

G = [G1;G2; ...;Gm]; F = [F 1;F 2; ...;Fm];
17: Select out good particles based on BFE:

R = updateArchive(Rf , Rs, F, S)
18: Update particles position in the R;
19: Update the best position for each particle;
20: if pbestji cannot dominate Hj

i then
21: pbestji = Hj

i ;
22: end if
23: end while

Test problem DTLZ2 is a MaOP with 10 objectives. We draw the objec-
tive values in the parallel coordinates (Figure 5.2) and each vertical axis in-
dicates an objective value. It shows that CCPSO has an better convergence,
with its Pareto solutions ranging from 0 to 1 in contrast to the MOPSO’s
Pareto solutions ranging from 0 to 3 [106].

The CCPSO applied co-evolutionary framework which helps to avoid
the weakness of the MOPSO [68, 70]. In co-evolutionary framework, the
various swarms have their own evolutionary directions instead of evolving
in one direction which improved efficiency of evolution. The test problems
also demonstrate such perspective that the proposed CCPSO is effective
and efficient to deal with MOP or even MaOP.
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Figure 5.1: The Pareto front of CCPSO and MOPSO for ZDT2

Figure 5.2: The Pareto optimal solutions of CCPSO and MOPSO for DTLZ2
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Table 5.1: The variable number and the objective number of ZDT2 and DTLZ2

The variable number The objective number
ZDT2 30 2

DTLZ2 19 10

Table 5.2: The parameter settings of CCPSO and MOPSO for ZDT2

CCPSO MOPSO
Generation Number 50 50

Swarm Number 5 -
Total Particles 100 100

Particles in Each Swarm 20 -
Total Variable Number 30 30

Variables in Each Swarm 6 -

5.2.3 CCPSO in agent-based ESC modeling

An ABM-MOO framework is originally proposed to obtain the non-dominant
solutions of the Pareto front, which can maximize each agent’s ESC profit
Pl,v. The overall framework is shown in Figure 5.3. CCPSO is used to
search a set of feasible solutions optimal with respect to the objective func-
tions. These solutions are input in the simulation agent-based ESC model-
ing. After several iterations, the Pareto front is obtained.

5.3 Case Study

For illustration, we consider an oil ESC which is structured in five layers,
including retailers (Layer 1), terminal storage (Layer 2), refinery (Layer
3), storage (Layer 4) and crude oil producers (Layer 5). Three cooper-
ative agents are modeled in Layer 1 (i.e., a1,1, a1,2, a1,3), Layer 2 (i.e.,
a2,1, a2,2, a2,3) and Layer 3, respectively. Two agents are modeled in Layer
4 and Layer 5, respectively.

Customer agents try to get enough productions from suppliers and, at the

Figure 5.3: The framework for MaOP in agent-based ESC modeling
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Table 5.3: The parameter settings of CCPSO and MOPSO for DTLZ2

CCPSO MOPSO
Generation Number 200 200

Swarm Number 5 -
Total Particles 150 150

Particles in Each Swarm 30 -
Total Variable Number 19 19

Variables in Each Swarm 4 or 3 -

Figure 5.4: The framework for MaOP in agent-based ESC modeling case study

same time, supplier agents have to choose the demander(s) who can bring
them the highest profits. Motivated by this, agents take relative behaviors to
realize their expectations. These behaviors have been illustrated in Chapter
2 Section 2.1.1, and define the rules and decision processes of the agents
interacting with other agents in an uncertain environment.

We optimize the price and the amount of production orders between the
retailers (Layer 1) and the terminal storages (Layer 2) by applying the pro-
posed CCPSO. There are 6 agents in Layer 1 and Layer 2, so 6 objectives
maximizing the agent profit are generated. Figure 5.4 shows the frame-
work for MaOP in agent-based ESC modeling case study and the agents
optimized are shown in the red box.

5.3.1 Evaluation indicators

There are many indicators can be used to evaluate the algorithm perfor-
mance regarding the results such as Generational Distance (GD) [107], Di-
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Table 5.4: The setting of the parameters for the ABM-MOO

Symbol Description Value
NTmax The total transaction time 1000(days)
NGmax Maximum number of generations 200
µQ The average value of QL,VL

(t) 362.5(ton)
σQ The standard deviation value of QL,VL

(t) 2(ton)
σy The standard deviation value of yl+1,v′

l,v (t) 2(ton)
kl,v The production capacity of agent al,v 1 (if l = 3, 0.8)
M Swarms number 3
TN Total particles 90
N Particles in each swarm 30
Tv Total variables 12
w Inertia coefficient 0.4
c1 Personal confidence factor 2
c2 Swarm confidence factor 2

Table 5.5: The values of the orders and prices limitations

ȳmin
l (ton) ȳmin

l (ton) pmin
l (¤/ton) pmax

l (¤/ton)
l = 1 100 250 40 55

versity Measure [108], Inverted Generational Distance (IGD) [109] etc.,
but some of them need the reference solutions set. In the case research, the
ideal solutions are unavailable, so we select Hypervolume (HV) to evalu-
ate the algorithm performance to prove the reliability of the results which
integrates the convergence and diversity performance. When evaluate the
quality of the results, a larger HV value indicates a better approximation of
the true Pareto Front regarding both convergence and diversity.

5.3.2 Parameter settings

We apply the ABM-MOO framework to the ABM of the aforementioned oil
ESC, in a period of 1000 transaction days. Table 5.4 summarizes the main
parameters set for the ABM-MOO algorithm. Table 5.5 lists the constraints,
and Table 5.6 lists the unit prices o2,v

′

1,v for the other cost from a2,v′ to a1,v.
The uncertain variables are distributed as Gaussian distributions.

5.3.3 Result and performance of the Pareto front

Utilizing the method proposed in Section 5.2, we get the Pareto front for
the MaOP in the ESC which is shown in Figure 5.5. We draw the Pareto
front in a parallel coordinates in which each vertical axis indicates an objec-
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5.3. Case Study

Table 5.6: The values of the unit prices ol+1,v′

l,v (¤/ton) for the other cost from al+1,v′ to
al,v

Agent Unit Price Agent Unit Price Agent Unit Price
o2,11,1 3 o2,11,2 22 o2,11,3 5

o2,21,1 3 o2,21,2 15 o2,21,3 5

o2,31,1 5 o2,31,2 2 o2,31,3 4

Figure 5.5: The Pareto optimal solutions

tive value. In Figure 5.5, we can see the objectives distributing in different
ranges which makes sense because some agents have price and cost advan-
tages when they look for oil productions. Some agents can get more profit
than others, so different agent has different ranges for profit.

In order to evaluates the algorithm performance to test the reliability of
optimized results, the HV result is shown in Figure 5.6. With an increase
in the number of generations, the HV increases which illustrates the diver-
sity gets increasing. In addition, the HV value goes stable since about 50
generations. It means that the Pareto solutions set has been converged.

In this work, we have proposed a CCPSO for the optimal production
planning in an ESC, where the agents interactive behavior is uncertain and
the ESC structure dynamically changes. ABM is originally used to model
and simulate the transaction processes by multiple behavioral and inter-
active agents. An MaOP problem is defined to drive the optimization of
the production planning towards maximizing each agent profit. The test
problem is used to prove the effectiveness and efficiency of the proposed
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Chapter 5. A Cooperative Co-evolutionary Approach for Many-objective
Optimization in ESCs

Figure 5.6: The HV metric values

CCPSO. An oil ESC with five layers is considered to illustrate the frame-
work combining ABM and CCPSO. The results of the case study show that
the CCPSO is effective to address the MaOP for the ESC planning prob-
lem.
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CHAPTER6
Conclusions and Perspectives

In the Ph.D. thesis, the studied field is ESC which has some fundamental
particular properties of complex system. Based on the system and com-
plexity’s theories, we view ESC as a complex system or in other words, it
is a system in a complex system-of-system. In this research work, we have
tackled the problem of modeling, analyzing, designing ESC in uncertain
and risky environment.

For the research limitation, because we combine the simulation module
and the optimization module, when we run the optimization algorithm for
one iteration, it needs to run the simulation once, which is burdensome from
the completed time point of view.

The developed computational methods have been shown able to: 1.
Identify, understand and analyze the complex interactions to the evaluation
of the resilience of ESC. 2. Design efficient production planning in ESC
under multiple sources of uncertainty. 3. Optimize the production planning
considering the ESC risk. 4. Solve MaOPs caused by different agents for
efficient production planning in ESC.

In the thesis, we mainly use two optimization algorithms to implement
the computation framework for optimization: EA and CEA. In EA, we
use NSGA-II to optimize the ESC. NSGA-II is traditional and widely used
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Table 6.1: Original contributions of this Ph.D. work

Research I: ABM for ESC resilience analysis
Proposed method ABM

Originalities a) An ESC modeling within the Agent-based simulation framework is
built.
b) Different scenarios and a resilience metric are used for investigating
the resilience of the whole ESC.

Research II: A simulation-based MOO framework for ESCs
Proposed method ABM, NSGA-II

Originalities
a) ABM is adopted to model and simulate an ESC with multiple behav-
ioral and interactive agents.
b) MOO is originally embedded within the ABM model.
c) MC is used to operationalize the proposed ABM-MOO framework,
in a way to properly handle and control the uncertainty originating from
multiple sources.

Research III: ESCs planning risk-based optimization
Proposed method ABM, NSGA-II, CVaR

Originalities a) CVaR is used with the purpose of measuring and controlling the risk
to the ESC management.
b) An MOO based by the NSGA-II is performed to search for the so-
lution optimal with respect to the maximization of the ESC total profit
and the minimization of the risk under uncertainties.

Research IV: A cooperative co-evolutionary approach for many-objective optimization
in ESCs
Proposed method ABM, CCPSO

Originalities a) The CCPSO is developed to embed in agent-based ESC modeling.
b) The ESC production planning MaOP is solved by the proposed
CCPSO algorithm.

algorithm in the optimization. Like most EA, NSGA-II is flexible and con-
venient to be used in optimizing ESC but it is inefficient to deal with MaOP
in ESC. CEA has higher efficiency when solving MaOP due to the char-
acteristic of the parallel computing, the mechanism of maintaining good
solution diversity, which is more appropriate to be used to deal with MaOP
in ESC.

6.1 Original contributions of this PhD work

The proposed methods in this Ph.D. work, the originalities with respect to
the four research objectives are summarized in Table 6.1.
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6.2 Perspectives

Various research directions can be taken to extend the work developed in
this thesis. Regarding the research objectives, important issues to be ad-
dressed are reported in Table 6.2:

Table 6.2: Perspectives of this Ph.D. work

Future Research I: An ESC design considering disruption and revival policies
Proposed method ABM, EA

Description Considering possible risks, the ESC is optimized under the environment
that the recovery policies are applied during the disruption period.

Future Research II: Game between agents in ESC
Proposed method ABM, Game Theory

Description Game theory has become an important analyzing tool in ESC with mul-
tiple agents. In this work, we plan to rely on Game theory to find an
optimal balance between pricing, supplier relations etc. in the ESC.
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