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Abstract
Nowadays, datasets have become so huge that it is impossible to analyze them using
only the resources of a single computer. To be able to process them in a timely
manner, computations need to be distributed on clusters of multiple machines.

Unfortunately, programming distributed software systems is very difficult. Since the
advent of distributed computing, researchers and practitioners have been striving to
devise abstractions that are flexible and easy to use, yet efficient and scalable. On
one extreme, the option is to implement ad-hoc solutions for each processing task,
exploiting low-level facilities to handle the communication and the coordination
between the different machines. This approach is very flexible, and it is able to
extract as much performance as possible from the available resources. However, the
development of these custom solutions is usually time-consuming, and the resulting
code can be very complex and hard to maintain.

To address these drawbacks, many data processing frameworks, such as Apache
Spark and Apache Flink, were developed in the recent years. These systems au-
tomatically handle the parallelization of the computations, providing to the user
a rich set of features that can be used to easily implement processing pipelines.
These frameworks, however, are not able to provide performance on par with that of
ad-hoc solutions.

This thesis presents Noir, a novel stream-processing framework implemented in Rust.
Its objective is to fill the gap existing between ad-hoc solutions and distributed pro-
cessing frameworks, providing better performance than the latter while maintaining
their simplicity and ease of use. Even providing similar expressiveness to Apache
Flink, our evaluation shows that Noir is able to achieve up to 30× its throughput,
and it rivals custom MPI solutions in some workloads.
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Sommario
Al giorno d’oggi, i dataset sono così immensi che è impossibile analizzarli usando
solo le risorse di un singolo computer. Per poterli elaborare in modo tempestivo, è
necessario distribuire la computazione su un cluster di più macchine.

Purtroppo, programmare correttamente un sistema distribuito è estremamente
difficile. Dall’avvento del distributed computing, ricercatori e sviluppatori si sono
impegnati per ideare astrazioni flessibili e facili da usare, ma che siano allo stesso
tempo anche efficienti e scalabili. Da un lato, l’opzione è quella di implementare
soluzioni ad-hoc per ciascun task, sfruttando interfacce di basso livello per gestire
la comunicazione e il coordinamento tra le diverse macchine. Questo approccio
è molto flessibile ed è in grado di ottenere le massime prestazioni possibili dalle
risorse disponibili. Tuttavia, lo sviluppo di queste soluzioni personalizzate richiede
solitamente molto tempo e il codice risultante può essere molto complesso e difficile
da mantenere.

Per sopperire a questi inconvenienti, negli ultimi anni sono stati sviluppati molti
framework di elaborazione dati, come Apache Spark e Apache Flink. Questi siste-
mi gestiscono automaticamente la parallelizzazione, fornendo all’utente un ricco
insieme di funzionalità che possono essere utilizzate per implementare facilmente
le pipeline di elaborazione. Questi framework, però, non sono in grado di fornire
prestazioni alla pari di soluzioni ad-hoc.

Questa tesi presenta Noir, un nuovo framework per lo stream-processing implemen-
tato in Rust. Il suo obiettivo è quello di colmare il divario esistente tra soluzioni
ad-hoc e framework di elaborazione distribuita, fornendo prestazioni migliori di
questi ultimi pur mantenendo la loro semplicità e facilità d’uso. Anche fornendo
un’espressività simile ad Apache Flink, la nostra analisi mostra che Noir è in grado
di raggiungere fino a 30× il suo throughput, riuscendo a competere con MPI in
alcuni casi.
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Introduction 1
In today’s world, technology usage is widespread and is shaping our professional
and personal lives. An immense amount of data is being produced every day, at
a rate that keeps increasing year after year. In the last few decades, the term Big
Data has been widely used to represent datasets that are so big that they become
very difficult to manage, store and analyze. They are characterized by the so-called
“3Vs”: volume, variety and velocity. Volume clearly refers to the huge size of the
dataset: in many cases this means that the dataset cannot be stored in a single
machine, but more complex systems are needed to reach the necessary storage
capacity and performance. Variety refers instead to the fact that these datasets can
contain very different types of data coming from different sources, ranging from
structured records to videos, images and tweets. Finally, velocity refers to both the
very fast rate of data generation, but also to the need of being able to process and
analyze these datasets in a timely manner, for example when dealing with strict
temporal constraints.

In any case, datasets are usually not useful on their own, but they need to be
processed in order to extract knowledge. For example, while data is a very im-
portant asset for companies, it is useful only if it can be analyzed to extract the
necessary strategic information needed to make business decisions. Processing of
huge amounts of data is also needed when considering research experiments in
many scientific areas, like High Energy Physics (HEP) [2]. Just like big datasets
are difficult to store, they are for the same reasons difficult to process. Even when
considering the latest technology improvements, the processing power provided by
a single machine is not nearly enough to handle such workloads, let alone executing
them in an appropriate amount of time. The only solution is to use a cluster of
interconnected machines, moving from a shared-memory model to a distributed-
memory model. This poses new challenges for these processing pipelines, making
their development much more difficult and time-consuming.

The first and oldest way to develop these kinds of distributed workflows is to design
ad-hoc solutions, by manually handling the communication, synchronization and
data sharing between the various machines. This can be facilitated by the use of
libraries that provide some abstractions over the low-level facilities provided by the
operating system. One of the most successful is MPI (Message Passing Interface),
which represents the de facto standard protocol used for distributed high perfor-
mance computing. It provides many facilities that can be used to communicate
between different processes, including both point-to-point and collective communi-
cation, such as the broadcast, scatter and gather primitives. It can also be used to
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synchronize the various processes, either implicitly by sending and receiving special
messages, or explicitly using barriers.

This approach provides high flexibility in the implementation of the distributed
computation, which also makes it possible to achieve very high performance. On
the flip side, developing these kinds of systems is a very hard task that takes a lot
of time and is very error-prone. The developers have the burden to decide how
to parallelize and distribute the computation, in which way the various processes
communicate, but they also need to make sure that these computations are correctly
synchronized. This results in much more complex code, which can quickly become
difficult to maintain, debug and tune to achieve optimal performance.

To overcome these limitations many distributed processing frameworks were de-
veloped in the last years, such as Apache Spark and Apache Flink. These systems
provide a high-level interface that makes the development of distributed and parallel
computations much easier. Workflows are defined as a series of transformations on
a given dataset, abstracting away all the challenges of running them in a distributed
environment. In particular, the cooperation and interactions of the various processes
are automatically handled. Thus, programmers are free to focus only on implement-
ing the logic of the application without having to deal with the communication and
the synchronization between the various machines. These frameworks also provide
bindings to many popular languages like Java, Python and Scala, which make
their adoption even more convenient. Even though these systems provide many
advantages, in many cases they are not able to provide the same performance level
that can be achieved with ad-hoc solutions developed using lower-level primitives.

Given these considerations we propose Noir, a new distributed processing system
written in Rust [32] whose objective is to fill the performance gap between the
development of custom solutions and the use of already existing frameworks, while
keeping their ease of use and expressiveness. Noir is influenced by both Apache
Flink and MPI, and it can be considered the successor to RStream [6], which tried
to achieve this same goal. However, Noir differs from all of them in many key
areas. With respect to Flink, it is able to achieve much better performance while
still providing a high-level interface which supports many of Flink’s features. On
the other hand, Noir is much more expressive than both MPI and RStream, as the
former only provides communication primitives and the latter is very limited in the
transformations that can be made to the dataset.

Even providing a very high-level interface, Noir offers much better performance
than Flink, achieving up to 30× its throughput. Noir is consistently faster than Flink
in all the benchmarks we have tried, always ending at, or pretty close to, the lead.

Chapter 2 will introduce the main concepts of the dataflow model, the main abstraction
Noir is based on.

Chapter 3 will present some of the most popular frameworks that have been devel-
oped for distributed processing, outlining their strengths and weaknesses.

Chapter 4 will discuss the architecture of Noir, presenting the internal structure and
its components.
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Chapter 5 will describe the API of Noir, which can be used to define distributed
computations.

Chapter 6 will analyze the performance of Noir, presenting the results of the
benchmarks and a comparison between Noir and the other frameworks.

Chapter 7 will draw the conclusions and suggest some future work.
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Dataflow Paradigm 2
In this chapter we introduce the dataflow model [1], an abstraction in which compu-
tations are described as directed graphs, where each node is an operator and data
flows on the edges between them. This paradigm is the foundation on which Noir is
built: it is inherently parallel, and it can handle bounded and unbounded datasets
while providing both high throughput and low latency.

2.1 Introduction

Imperative programming is the usual way in which programs are written. In this
model, programs are defined as a sequence of statements executed in a specified
order. Since each of the statements can modify the state of the program, it is
fundamental that they are executed in the correct order. This is one of the reasons
why this paradigm is not very well suited to describe parallel programs that need to
be executed in distributed environments, as most of the time statements cannot be
reordered and executed in parallel. Another factor to take into consideration is that,
when using multiple threads of execution running concurrently, synchronization
mechanisms are needed to make sure that there are no conflicts when accessing the
shared state of the program. This further limits the parallelization potential of the
program.

The dataflow paradigm, instead, describes the program in terms of operators and
focuses its attention on how data is exchanged between them. These operators are
arranged in a directed graph and data elements, sometimes called tuples, flow on
the connections between them, starting from a source operator and ending in a
sink one. Unlike imperative programming, in the dataflow paradigm there is not a
single global state of the program, but each operator has its own independent local
one. This is very important, because it makes it possible to execute each operator
in parallel and independently of the others. This abstraction is also able to handle
unbounded streams of data, since each operator is just a black box that receives some
data, makes some computation and generates new data to be sent to the operators
downstream in the graph. It is also possible to achieve very low end-to-end latency,
given that computations are done in a streaming fashion. This approach is different
from the so called micro-batch processing, which divides the unbounded stream in
very small batches of tuples that are then scheduled and processed as if they were
bounded datasets. Note that the batches are very small so that the latency of the
computation is not affected much by the waiting needed to fill the batch.
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2.2 Sources, Operators and Sinks

Tuples are generated and injected into the system by special operators called sources,
which are operators that do not have any incoming connections. From the abstrac-
tion’s point of view, it is not important from where sources read the data elements;
for example, they can read them from the network, from a local file, from an external
system like a Kafka topic and so on.

Sinks, instead, are the exact opposite of sources, since they are operators which do
not have any outgoing connections. As for sources, it is not important what sinks
do with the tuples they receive: they can be written to a disk, sent over the network,
displayed on the screen and so on.

In general, operators receive a stream of tuples from upstream operators, use them to
make some calculations and generate new data elements that are sent to downstream
operators. In other words, operators can be considered as transformations that map
a stream of elements into another one. Operators are stateless if they consider one
element at a time, and the calculation they make on each element does not depend
on elements of the stream received previously. However, some operators need
to keep a local state, so they are called stateful. This is the case, for example, of
operators that need to reduce the stream of elements into a single tuple. In addition,
operators are called blocking if they need to consume the whole input stream of data
before being able to generate the elements of the output stream. Note that blocking
operators are always stateful, but the opposite is not always true.

2.3 Partitioning

When using operators that aggregate elements into a single value, it is sometimes
useful to partition the stream into multiple substreams by dividing its elements into
multiple groups. This means that, instead of reducing the whole stream into a single
value, each partition is aggregated independently of the others. To achieve this, we
can use a special grouping operator that divides the tuples based on the value of a
key. In particular, the user can specify a way to obtain a key from each data tuple,
and tuples having the same key are grouped together.

After performing a grouping operation, each downstream operator can consider each
stream partition independently of the others. For our purposes, this is particularly
interesting because it can be exploited to extract more parallelism. Since each
substream divides the operators’ work into multiple independent subtasks, they can
be executed in parallel without any synchronization. This is also valid for operators
that, when considering non-grouped streams, would be difficult to parallelize.

2.4 Timestamps

Given the ability to handle unbounded data streams while maintaining low latency,
the dataflow paradigm is ideal for event processing, which is the processing of
real-time events to extract complex information. In this case, each element of the
stream is composed of some data that describes the event, together with a timestamp
that refers to when the event occurred.
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There are two time domains that we are generally interested in: event time and
processing time. When considering event time, the timestamp associated with each
event is the time at which the event actually occurred, and it is assigned by the
external system that generated the event. In the case of processing time, instead, the
timestamp refers to the time at which the event is observed during the computation,
based on the local system time. Given a single event, the main difference between
the two time domains is that event time is assigned once and never changes, while
processing time varies every time the data flows through the pipeline.

2.5 Watermarks

When dealing with tuples timestamped in the event-time domain, sources are not
required to generate them with timestamps that are in the correct order, for example
to deal with late events. Moreover, network latencies can cause the clocks on the
various hosts to be out of sync, causing the relative order of the timestamps to be
incorrect. Therefore, the system needs to put in place a mechanism to deal with
unordered timestamps, because processing time and event time advance indepen-
dently, and they can be skewed. There is not a unique way to track the progress of
time, see for example Timely Dataflow in Section 3.2.3. In any case, the mechanism
we are interested in is that of watermarks.

Watermarks are periodic markers that flow along the pipeline, together with data
tuples, and each of them has an associated timestamp. In general, a watermark tracks
the event time of the stream it is flowing in. When a watermark with timestamp t is
received, then the operator is sure that all the following elements in that stream will
have a timestamp greater than t. An example of that can be found in Figure 2.1.

15 12 13 11

> 11

8 12 7

> 7

4 7 2 12

Figure 2.1: Watermarks (the circles) are elements of the stream. The
value inside an element is its timestamp. All the elements following a
watermark must have a timestamp greater than the watermark’s one.

Watermarks are generated by the various sources. When an operator has multiple
incoming streams, it will receive watermarks from each one of them and, in general,
each stream will be at a different point in event time. In this case, the operator’s
event time is the same as the minimum event time of the incoming streams. When an
operator receives a watermark that advances its event time, it will also forward the
watermark downstream. This makes sure that even if the incoming streams are not
synchronized in event time, the outgoing streams will contain coherent watermarks.

2.6 Cyclic computations

To add more advanced facilities, the dataflow model has been extended by the
various processing systems that implement its features. In particular, iterations and
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cyclic computations are one of the most common extensions.

While different systems provide different semantics, the main difference between
iterations and all the other operators is that they create cycles in the dataflow graph.
This means that the same data tuple can flow through the same operator multiple
times before reaching a sink. When cycles are present in the dataflow graph, special
care is needed to avoid never-ending or incorrect computations. In particular,
there should be mechanisms that ensure that no tuple can get stuck in a cycle.
Furthermore, special attention should be paid to how watermarks interact with
cyclic computations.
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Background and Related Work 3
We already passed the point where it was enough to scale vertically, that is using
more powerful hardware, to analyze very big datasets. All things considered, there
is the need to scale horizontally exploiting the computational power of multiple
machines.

There are already many solutions to this problem, including some that embrace
the dataflow paradigm, and others that do not. Over the years, many researchers
devised and implemented a vast variety of tools, libraries, and frameworks to help
software engineers develop applications that are able to store and process huge
amounts of data in a timely manner.

Expressiveness is a very important property of a platform, as you may not be able
to solve your problem if you rely on a platform that is not expressive enough.
Also, performance and scalability are key to a successful system, as they reduce the
computational requirements and therefore the costs needed for the infrastructure.
One must also not forget about the ease of use: an easier to use platform requires less
code, which usually means less programming mistakes. Furthermore, developing
on an easier platform makes it possible to deploy more quickly, experiment more
with the code, and debug more easily.

Expressiveness, performance and ease of use are difficult to achieve together. In
this section some of the most popular frameworks are presented, from industry
standard frameworks such as MPI, Apache Spark, and Apache Flink, followed by
Timely Dataflow, an emergent new framework written in Rust, and concluding with
RStream, the framework that kick-started Noir.

3.1 Low-level solutions: MPI and OpenMP

Message Passing Interface (MPI) [12] and OpenMP [4] are two technologies that
enable C, C++ and Fortran programs to achieve high level of parallelism: the former
allows using multiple hosts in a cluster, while the latter allows exploiting local
parallelism inside a single host. They are a very popular solution for HPC (High
Performance Computing), offering APIs for executing parallel code using multiple
threads, and providing communication primitives for a multi-host deployment.

Being pretty low level, MPI and OpenMP offer the highest flexibility to the developer,
without forcing any parallel programming paradigm. In fact, MPI and OpenMP
are not based on the dataflow model as the other systems described in this chapter.
This allows the developers to write very efficient and optimized code, tuned for the
specific application and cluster architecture. One notable difference with systems
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based on the dataflow model is that, due to manual memory management, it is
possible to modify the dataset in-place. In some cases, this might lead to a big
performance improvement, given that this avoids doing allocations and copies of
the memory. Instead, in the dataflow paradigm, each data stream is immutable and
operators perform computations by transforming one data stream into a new one.
Benchmarks (see Chapter 6) show how MPI and OpenMP are able to beat the other
systems pretty much in every benchmark.

High performance comes at the cost of a much steeper learning curve, forcing the
developer to implement from scratch most aspects of the application. The developer
must think about the cluster topology, the data distribution, the communication, the
parallelism, the synchronization and so on. Usually MPI and OpenMP programs are
longer to write and debug, it is hard to tune them to achieve the best performance
possible and they are also more difficult to maintain. Not only that, but C and
C++ are considered to be harder languages to use, also because of manual memory
management.

RStream and Noir took inspiration from how MPI spawns processes. In particular,
the same MPI program is executed on multiple hosts, and runtime checks based on
the process rank determine the behavior of the program. Similarly, in Noir the same
program is executed, the same execution graph is built, but different hosts execute
different parts of the program.

3.2 Dataflow-based Frameworks

This section describes various frameworks which provide many abstractions that
can make the development of distributed computations much easier. These systems
do not have exactly the same feature sets, but they are all inspired by the dataflow
paradigm described in Chapter 2. In particular, they model the computations as
networks of operators, where each of them transforms one dataset into another.

3.2.1 Apache Spark

Apache Spark [13] is an open-source system for large-scale distributed data process-
ing. It is implemented in Scala, and it provides APIs for Java, Scala, Python, and R.
It provides an abstraction based on the concept of Resilient Distributed Dataset (RDD).

An RDD is a dataset whose elements are partitioned and distributed across multiple
machines in a cluster; it is created from a file saved in supported file systems or from
collections in the driver program. Two types of parallel operations can be performed
on RDDs: transformations, which generate a new RDD from a given one (e.g. map),
and actions, which run a computation on the dataset and return some results (e.g
reduce).

Whenever a new operation is invoked on a RDD, Spark creates a new task which
is then scheduled on the workers present in the cluster. Each task is divided in
subtasks which process each partition of the RDD.

Unlike other systems like MapReduce [5], Spark supports complex graph computa-
tions and provides many high-level operations including joins and iterations. In
particular, iterations are achieved by reusing the same RDD multiple times. To make
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the execution of iterative programs faster, RDD can be persisted to memory, instead
of being recreated and recomputed each time they are accessed.

While initially supporting only batch-processing on RDDs, Spark has since been
expanded with many more functionalities. In particular, Spark also provides an
interface to define streaming computations: by default it uses a micro-batching
processing engine, but from version 2.3 it also provides a new Continuous Processing
mode which is able to reach much lower latencies, sometimes as low as 1 ms. Queries
can also be defined using the SQL language, thanks to the Spark SQL module. Finally,
the MLlib and GraphX libraries include ready-to-use algorithms for machine learning
and graph processing.

Given that both Spark and Flink provide similar features, that they are both written
in languages that run on the Java Virtual Machine (JVM), and that they have similar
performance [7, 9], we decided not to consider Apache Spark during the evaluation
of Noir and its comparison with other distributed data processing systems.

3.2.2 Apache Flink

Apache Flink [3] is an open-source stream-processing and batch-processing frame-
work. It follows the dataflow paradigm just like RStream and Noir. In fact, RStream
design was heavily influenced by Flink, and many of Flink’s concepts are still present
in Noir.

Flink is written in Java and Scala, offering APIs for Java, Scala and Python. Batching
tasks are expressed via the DataSet1 API, while streaming tasks are defined using
the DataStream API. It is also possible to use relational APIs expressing queries
using an SQL dialect, or using the Table API.

Java is a compiled language, so most of the programming mistakes are caught early
on. The type system is able to enforce that the type of the tuples is consistent.
Unfortunately, it is still pretty easy to build an invalid topology that compiles well,
but fails to execute. Furthermore, sometimes it is also necessary to help the type
system with annotations [18] (see Listing 1).

1 env.fromElements(1, 2, 3)
2 .map(i -> Tuple2.of(i, i))
3 .returns(Types.TUPLE(Types.INT, Types.INT))
4 .print();

Listing 1: In this simple example, the only operator is a map that cre-
ates a tuple with two integers using a lambda function. Unfortunately,
the Java type system is not able to expose the lambda’s return type to
Flink, so the user needs to explicitly state it. Note that without line 3

the snippet compiles but throws an InvalidTypesException.

In Listing 2 there is a simple implementation of the word count algorithm. Just like
the example shown for RStream (see Listing 3), this code reads the input file and
processes it all in parallel. With respect to the same example in RStream, in some
cases the Flink’s code is more verbose. It might be required to define a new class

1Starting from Flink 1.14, the DataSet API will be unified with the DataStream API.
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even for the most simple operators (FlatMapFunction in this case), or to explicitly
specify the return type. On the other hand, some operators like groupBy and sum
are more convenient to use since they are better integrated with tuples.

1 MultipleParameterTool params = MultipleParameterTool.fromArgs(args);
2 ExecutionEnvironment env =

ExecutionEnvironment.getExecutionEnvironment();↩→

3 env.getConfig().setGlobalJobParameters(params);
4

5 DataSet<String> text = env.readTextFile(params.get("input"));
6 DataSet<Tuple2<String, Integer>> counts = text
7 .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
8 @Override
9 public void flatMap(String value, Collector<Tuple2<String,

Integer>> out) {↩→

10 for (String word : value.split(" ")) {
11 out.collect(word);
12 }
13 }
14 })
15 .groupBy(0) // group by word
16 .sum(1); // sum the counts
17 counts.count();

Listing 2: A simple word-count implementation in Apache Flink.

Even if the feature sets of Spark and Flink are quite similar, there is a fundamental
difference in the way they parallelize and distribute the computation. Considering
batch-processing and micro-batch stream-processing, Spark creates a task each
time an operation needs to be executed, which is then scheduled on the available
machines. On the other hand, Flink directly schedules pipelines on the various nodes,
which are composed of instances of consecutive operators. This means that each
instance of each operator is started at the beginning of the computation, and it keeps
running until the very end.

Flink is very mature and its public repository received contributions from nearly a
thousand contributors. It offers many advanced features, like optional fault tolerance,
exactly-once semantics, and a rich web interface. Unfortunately its performance is
the worst of all the systems analyzed (see Chapter 6).

3.2.3 Timely Dataflow

Timely Dataflow is a framework based on Naiad [11], which processes data in a
dataflow manner. Naiad’s first implementation was in C#, but it was later ported to
Rust with the name of Timely Dataflow [34].

It is a very efficient dataflow framework, but it is not a good fit for every application.
Its API exposes very few low-level operators, which makes this framework not
always easy to use in real-world applications.
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A more expressive system is Differential Dataflow. Differential Dataflow [10] is
an advanced dataflow framework for differential computations written on top of
Timely Dataflow. It exposes a few more operators, but at the cost of losing some
performance due to the fact that it is also able to perform differential computations.

Timely Dataflow tracks the progress of time in a way that is similar to watermarks
(see Section 2.5), but differs from that approach in some key aspects. Instead of
explicit messages flowing in the stream, each operator keeps a set of capabilities, and
a frontier of the upstream operators’ capabilities. A capability of C is a token that
allows an operator to send messages with a timestamp greater or equal to C. When
the operator knows that no more messages will ever be sent with a given timestamp,
it can drop or downgrade the capability. Internally Timely Dataflow keeps track of
all the capabilities alive and will update the frontiers of the downstream operators
accordingly. This time tracking mechanism is very powerful, but it makes it difficult
to implement new operators.

Looking at performance and ease of use, Timely Dataflow lays between MPI and
Noir. In fact, Timely Dataflow usually offers marginally better performance than
Noir, but it is not as easy to use. In particular, given that it exposes only few
primitives, many operators need to be implemented from scratch.

In Section 6.3.1 we will see how Timely Dataflow performs against the other systems
in one of the presented benchmarks. Its lack of an extensive API makes it less
suitable for our benchmarks. Indeed, there is no out-of-the-box support for either
windows or join operations.

3.2.4 RStream

RStream [6] is a very recent framework based on the dataflow paradigm, developed
by Alessio Fino at Politecnico di Milano. It fully embraces the dataflow paradigm,
supporting sources, operators and sinks of various types. Noir is inspired by
RStream and can be considered its successor, as it shares some internal architectural
design choices and their APIs are sometimes very similar. There are also many
important differences, both in the architecture and API (see Section 4.10).

Both RStream and Noir are written in Rust [32], a pretty recent programming
language with many interesting features:

• It is really fast, usually with comparable performance to C and C++: it is
compiled by the rustc compiler, which internally uses the LLVM backend.

• It guarantees memory safety at compile-time with strict borrow-checking rules,
drastically reducing the number of runtime crashes.

• It is convenient to use: there are many battle-tested tools and the “ecosystem”
is very rich and active.

• It is easily extendable: it is very easy to use external libraries, called crates,
as dependencies, thanks to the publicly accessible crate registry [16], and the
language can be extended using procedural macros.

• It is evolving: the language itself is actively developed, as well as its ecosystem.
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• It is expressive: it provides language constructs that help developers, but that
are not too abstract.

The main features of RStream are its ease of use, and its very good performance. It
can compete head-to-head with MPI and OpenMP while being very simple to use
and very concise. RStream can handle both batching tasks (i.e. with a finite dataset)
and streaming tasks (i.e. with an unbounded amount of data). Unfortunately, its
expressiveness is not great: many essential operators like join are missing, and it
does not support complex computation graphs which include nested iterations, side
inputs and concurrent streams. In any case, both RStream and Noir lack the support
for fault tolerance: if an operator or a host crashes, then the entire job fails, and it
has to be restarted from the beginning. The objective of Noir is to extend RStream
and improve its expressiveness, while keeping comparable performance and ease of
use.

In Listing 3 there is a simple implementation of the word count algorithm. This is
a complete program that is able to read the dataset, split each line into words and
count how many times each word appears, distributing the computation on multiple
hosts available in the cluster. The same algorithm is implemented in Listing 4, but
this time using the Noir framework. In Chapter 6 the performance of a similar
algorithm is compared between all the presented platforms.

1 fn main() {
2 let path: String = env::args()
3 .nth(1)
4 .expect("Pass the dataset path as an argument");
5 let word_count: Vec<(String, u32)> = Stream::from_readlines(&path)
6 .flat_map(|line| line.split_whitespace())
7 .group_by_reduce(
8 |(word, _count)| word.clone(),
9 |(word, count1), (_word, count2)| (word, count1 + count2),

10 )
11 .collect_vec();
12 finalize();
13 println!("{}", word_count.len());
14 Ok(())
15 }

Listing 3: A simple word-count implementation in RStream. This
program takes as argument the path to a text file, it reads it in parallel

on all hosts, and counts how many times each word appears.
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1 fn main() {
2 let (config, args) = EnvironmentConfig::from_args();
3 let mut env = StreamEnvironment::new(config);
4 env.spawn_remote_workers();
5

6 let path = &args[0];
7 let source = FileSource::new(path);
8 let result = env
9 .stream(source)

10 .flat_map(move |line| line.split_whitespace())
11 .group_by_count(|word| word.clone())
12 .collect_vec();
13 env.execute();
14 if let Some(res) = result.get() {
15 eprintln!("{}", res.len());
16 }
17 }

Listing 4: The same program of Listing 3, but implemented using
Noir.
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Architecture 4
This chapter shows the internal structure of Noir, analyzing its architecture and
design choices. In the end there will be a discussion on the differences between
RStream and Noir.

4.1 Job Graph and Execution Graph

The Job Graph is a directed graph in which the nodes are the operators, and the
arcs are the connections induced by the inputs and outputs of the operators. If an
operator � receives data from an operator �, then there will be an arc connecting �
to �.

Let us consider a simple example of a stream formed by a source of integers, an
operator that doubles each number, and finally a sink. The resulting Job Graph is
very simple (Figure 4.1), there are just 3 nodes, one for the source (�), one for the
operator (�) and one for the sink (�). The operator receives data from the source, so
there is an arc from (�) to (�); the operator sends data to the sink, so there is an arc
from (�) to (�).

� � �

Figure 4.1: A simple Job Graph.

Many graph topologies are supported, including graphs with cycles when the
stream contains iterations (see Section 4.7). Each node can have zero, one or more
predecessors and zero, one or more successors. A source has no predecessors, while
a sink has no successors. There exist operators with more than one predecessor (e.g.
join), and operators with more than one successor (e.g. split). In Figure 4.2 there
is an example of a complex Job Graph that includes an iteration loop (� −� −� − �),
a split operator (�), and a join operator (�). Note that (�) receives data from (�)
as an iteration side-input.

To achieve higher parallelism, most operators are instantiated multiple times, and
each copy of an operator is called instance. The Job Graph does not consider how
operators are partitioned, so the instances are not represented. This means that each
operator is represented only once in the graph, even if during the execution it will be
instantiated on many hosts. To represent the actual connections between instances
we introduce the Execution Graph.

The Execution Graph is built from the Job Graph. Each operator, that is each node
of the Job Graph, is duplicated as many times as the number of its instances in



18 Chapter 4. Architecture

�

�

��

�

�

�

�

Figure 4.2: A more complex Job Graph.

the system. The connections between nodes in the Execution Graph show how the
data is transferred between the instances. These connections are derived from the
ones present in the Job Graph, considering also the forward strategy of each operator,
which will be later described in Section 4.2. From the Execution Graph it is possible
to see how the operators are partitioned into independent subtasks, and see how
they are assigned to the various hosts. Noir provides tools to analyze these graphs
and the load of the network caused by them (see Appendix B).

Host 1 Host 2

�1

�1 �2 �3 �4 �5 �6 �7 �8

�1 �2 �3 �4 �5 �6 �7 �8

Figure 4.3: A possible Execution Graph relative to the Job Graph in
Figure 4.1.

As an example, consider the previous Job Graph: assuming that the cluster has
2 hosts with 4 cores each, Figure 4.3 shows a possible Execution Graph. In this
example, let us assume that the source cannot be parallelized (for example because
the numbers are generated by a not parallelizable function), but the sink can.
Therefore, the execution graph will contain only one instance of the source operator,
8 instances of the intermediate operator and 8 instances of the sink.

Note that the Job Graph does not depend on the number of hosts nor on the number
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of instances of each operator. On the other hand, the Execution Graph heavily
depends on those factors, as well as the scheduling algorithm that determines on
which host each instance is spawned.

4.2 Forward Strategy

When an element has been processed by an operator, it has to decide where to go
next. Which operator to go to is decided by the links of the Job Graph, instead
which instance of that operator is decided by the Forward Strategy. There are a few
Forward Strategies an operator has to choose among.

Random (Figure 4.4) Each element will select a random instance where to go to.
This can be used to reshuffle the data between the partitions of the stream, balancing
the load. The next instance is selected according to a uniform distribution.

operator 1
instance 2

operator 1
instance 1

operator 2
instance 2

operator 2
instance 1

Figure 4.4: Random Forward Strategy.

GroupBy (Figure 4.5) Each element is processed by a keying function that extracts
a hash from the value of an element. This value is then used to deterministically
select the instance of the next operator where the element will go to. This makes
sure that elements with the same key will end up in the same instance. Therefore,
this Forward Strategy can be used for implementing the operators in the group by
family (see Section 5.6.4).

operator 1
instance 2

operator 1
instance 1

operator 2
instance 2

operator 2
instance 1

Figure 4.5: GroupBy Forward Strategy.

OnlyOne (Figure 4.6) Send each element to the only sensible destination. This
strategy can be used only under specific conditions.

• If the next operator has only one instance, all the instances will send the
messages to the only one.
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• If the next operator is instantiated exactly like the current one (same number
and same host allocation), each instance will send only to the corresponding
instance in the same host.

• All the other topologies are not valid and this strategy cannot be used.

operator 1
instance 2

operator 1
instance 1

operator 2
instance 2

operator 2
instance 1

operator 1
instance 2

operator 1
instance 1

operator 2
instance 1

Figure 4.6: OnlyOne Forward Strategy.

All (Figure 4.7) Each element will be sent to all the instances of the next operator.
This means that, unlike the other strategies, each message will be copied and sent to
more than one destination. This is useful to implement broadcasting.

operator 1
instance 2

operator 1
instance 1

operator 2
instance 2

operator 2
instance 1

Figure 4.7: All Forward Strategy.

4.3 Block Structure

A block is a sequence of contiguous operators that are grouped for optimization
purposes. The idea of fusing contiguous operators is not new, it is a well-established
technique in query optimization [14].

Block 42

( � � � �� (

Forward
Strategy

Scheduler
Requirement

Iteration
Stack

Figure 4.8: Overview of the internal structure of a Block.
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In Figure 4.8, a high level overview of the block structure is shown. The block
contains 3 operators (�, � and �), with two structural operators ( and �, respectively
the StartBlock and EndBlock. The purpose of those two additional operators
is explained in the following section. Other than the operators, the block also
stores some information for the scheduler and the runtime, such as the Scheduler
Requirements, the block’s Forward Strategy, and a stack with the iteration scopes
(see Section 4.7).

An integer identifier, called block ID, is associated to each block. This identifier is
unique inside the environment, and all the hosts in the cluster assign these identifiers
in a deterministic way.

The main optimization obtained by grouping the operators is that all the commu-
nication overhead between those operators can be avoided. In fact, the operators
inside a block rely on the Iterator pattern [22] to exchange data. An operator can ask
for some data to the previous one simply by calling a function (see Section 5.4). This
means that all the data exchanged in a block is passed as function return values; no
synchronization and no network is required to do so.

Not all operators can be grouped, if an operator requires the network or does not
use the OnlyOne Forward Strategy (see Section 4.2), the block has to be split into
two. However, all the simple operators that just transform the incoming data do not
require doing so.

To allow for such function calls to the previous operator, each operator keeps an
Operator Chain. An Operator Chain is a recursive structure (see Figure 4.9) in which
an operator contains the previous one, up to the first operator in the block. When
the last operator of the chain (EndBlock) is asked for the next element, it can request
some data to the previous one in the chain. This request can bubble up the chain
recursively up to the first operator (StartBlock), which can fetch the data from the
network.

Operator �
prev:

Operator �
prev:

Operator �
prev: StartBlock

Figure 4.9: How operator � from the example above stores its Opera-
tor Chain.

The Rust [32] compiler is able to inline most of those function calls, thanks to the
monomorphization of the operators. This is possible only if the Operator Chain is
part of the type of the operator; using dynamic dispatch (e.g. by using pointers)
prevents this optimization. This inlining leads to huge performance improvements
(see Section 4.9.1).
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Extra block operators

In Figure 4.8 there are 2 special operators inside the block, in the example called
( and �. Those operators abstract away the logic for the network from the actual
operators (�, � and � in the example).

The first one is called StartBlock and its job is to read from the network and manage
the state of the block and of the following operators. It receives the messages from
the network, unpacks them into multiple elements, and lets them flow downstream
one at the time. It also keeps a watermark frontier: before letting a watermark pass
downstream, it has to wait for all the watermarks coming from the other instances
of the previous blocks. This is required to make sure that the watermark property is
respected (see Section 2.5): if watermarks are simply let through, they can end up
in the wrong order. This can happen, for example, when an instance falls behind
the others, since they are not synchronized. For an example on how it is done see
Figure 4.10.

C = 1 C = 2 C = 3 C = 4

instance 1

instance 2

instance 3

frontier

1

1

2

1

3

3

3

0 1 1 3

Figure 4.10: Watermark frontier: at C = 1 the frontier cannot advance
to 1 since the third instance has not sent watermark 1 yet. At C = 2 all
the instances sent a watermark greater or equal to 1, so the frontier
can advance to 1. At C = 3 instance 2 skipped watermark 2 and
jumped to 3, still the frontier cannot advance due to instance 3. At
C = 4 all the instances sent a watermark greater or equal to 3, so the
frontier can advance to 3. The frontier will emit a watermark every

time it changes value (values underlined).

StartBlock also keeps track of the iteration state lock, a data structure that prevents
out-of-sync instances from processing elements from the wrong iterations (see
Section 4.7). Additionally, it may also keep track of the cache of the incoming
elements to be replayed by the replay operator (see Section 5.6.8).

After all the operators of a block there is another special operator called EndBlock.
Its job is to collect the elements produced by the block, group them into batches and
send them to the correct instance of the next block. The Batch Mode (see Section 4.4)
defines how elements are grouped into batches, and the Forward Strategy (see
Section 4.2) describes which instances will receive them.

According to the Batch Mode, the StartBlock can insert into the stream a control
element called FlushBatch (see Section 5.5), that will cause the corresponding
EndBlock to stop batching the elements and flush the current batch, even if it is not
full. This element is generated by the StartBlock instead of the EndBlock since it
is much more efficient to put a timeout on the receiving side of a channel (i.e. a
network timeout) instead of tracking the time at the end of the block. As described
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in Section 4.9.5, that would have required adding new threads, since that operator is
blocked on the call to get new elements from the operator chain.

4.4 Batch Mode

The EndBlock operator, after applying the Forward Strategy to determine where an
element is directed, batches the elements into messages. Each message will contain
one or more elements that will be sent to a specific instance.

The Batch Mode controls how the messages are buffered, in particular it determines
when a batch should be closed and sent to the instance. There are two batch modes,
Fixed and Adaptive.

Fixed(#) Each batch will contain at most # elements. In practice, each batch
will contain exactly # elements, except the last batch which may contain fewer
elements. This mode is the most lightweight of the two, since it does not depend
on the passing of time or on timeouts. The biggest downside is that if the stream
has a low throughput and # is set to a value too high, the stream can be slowed
down increasing the overall latency. In fact, the maximum latency of a block is not
bounded; for example, if the source stops for an arbitrarily long time, the batch will
not be flushed and its elements will be stuck in the queue.

Adaptive(# , C) Similarly to Fixed(#), Adaptive(# , C) produces batches of at most
# elements. Furthermore, it tries to limit the time an element is stuck waiting in a
batch. Formally, a batch is flushed either when it reached # elements, or when its
elements waited more than C time. Checking the timing condition is more complex
than checking the one of Fixed(#). There is an optimization in place to measure
time very quickly: on supported platforms, time intervals are measured using TSC
instructions [33] and the coarsetime [27] crate is used to avoid expensive syscalls.
This limits the precision of the measured time, but it is much faster; experimentally,
the time resolution is about 3–4 ms. Compared to Fixed(#), this mode keeps the
maximum latency to a bounded value, at the expense of a slightly higher overhead.

In Section 6.3.10 we explore in more detail the impact of the batch mode on the
overall latency.

4.5 Block Allocation

This section will describe how the execution plan is computed, passing from the Job
Graph to the actual Execution Graph.

All the hosts in the cluster have to agree on the same Execution Graph, otherwise
if different hosts construct different Execution Graphs the computation will not
be correct. There are two ways to achieve this: either hosts use a deterministic
algorithm to build the execution plan, or it is computed on a single host and it is
later shared with the others. We opted for the former approach, since it avoids
the synchronization step due to the communication between hosts. This approach
also allows for an online scheduling approach, that is to say building the Execution
Graph while building the Job Graph.
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When the Job Graph is being built, the scheduler’s job is to keep track of all the
operators present. When an operator requires the block to be split, the scheduler is
notified, it takes the new block and schedules it. Firstly, it determines the number of
instances to spawn by looking at the scheduler requirements of the block. Then, it
selects deterministically where to allocate those instances.

Where to allocate the instances of a block is determined following the lexicographic
order of the hosts. Each host can accept up to as many instances of a block as it has
cores (defined in the configuration file). Note that each host can hold, between all
blocks, more instances than cores. This resource over commitment helps to balance the
load between the blocks: if two blocks alternate their computational requirements,
they can share the same CPU core. This approach is very similar to the one used by
Flink with the Task Slots [19]. The job of balancing the CPU time between different
instances is left to the kernel scheduler. Some (failing) attempts have been made
to help the kernel scheduler optimize better the CPU time allocation by using the
sched_setaffinity [31] system call (see Section 4.9.2).

In Figure 4.11 you can find an example allocation.

Host 1
Core 1 Core 2 Core 3

Host 2
Core 1 Core 2

block 1

block 2 block 2 block 2 block 2 block 2

block 3 block 3 block 3 block 3

block 4 block 4

block 1→ 1 instance

block 2→ max parallelism

block 3→ 4 instances

block 4→ 2 instances

Figure 4.11: Example of instance allocation. There are two hosts with
3 and 2 cores respectively. The first block is a bottleneck, the second
is instantiated as much as possible, the third and forth have a limited
parallelism. All the instances are assigned lexicographically from

host 1/core 1 to host 2/core 2.

This algorithm is a trade-off between simplicity and efficiency.

• The algorithm is as simple as it gets, and it is deterministic given a deterministic
assignment of host IDs.

• The first hosts in the list may tend to be the most loaded of the cluster, but on
the plus side the locality of the data is higher than with a better distributed
load. In practice, in our benchmarks this non-uniform distribution of load is
not evident.

In practice, most of the time, a block is either instantiated exactly once (e.g. reduce
on non-keyed stream), causing a bottleneck, or as much as possible. This opens
the possibility for more sophisticated scheduling algorithms. Consider the case
where a “bottleneck” block is preceded and followed by blocks with maximum
parallelism; for sure, there will be a network shuffle both before and after the block.
Under these conditions, we can allocate these “bottleneck” blocks in a round-robin
fashion. Doing so, the load is spread better without changing the locality of the data.
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Unfortunately, this is not doable online, since it is not possible to know if the block
will be followed by a block with maximum parallelism at the time it is scheduled.

When the instances of a block have been allocated to some hosts, each of those hosts
will spawn their instances and start them. Inside each host there is only one process,
and each instance is run by a single thread. This means that a host can handle more
than one instance just by running more threads in parallel. This allows for better
in-memory communication between instances inside the same host: in-memory
channels are used wherever possible, avoiding serialization and the usage of the
network stack.

4.6 Network Topology

After the blocks have been instantiated and allocated to the hosts, they have to
communicate. To do so, Noir provides some communication primitives for sending
and receiving messages.

Each instance has one or more Receiver Endpoints. A Receiver Endpoint is an
identifier of a connection from a block to an instance. In fact, each instance can
receive messages from all the instances of its previous blocks. The messages coming
from the instances of the same block are grouped together and will go through the
same Receiver Endpoint. Therefore, a Receiver Endpoint contains the identifier of
the sender block, and the coordinate of the receiving instance.

The identifier of the sender block is important because it determines the type of the
serialized messages going through the channel. In fact, a block may have more than
one preceding block, and they can send elements of different types (e.g. a join can
merge streams of different types).

The operators do not directly control the network layer, they simply use some high
level APIs for sending and receiving messages. Internally, the network layer manages
the connections between instances and the message serialization/deserialization.
This layer uses two kinds of network channels: local and remote.

Local channels are used for all the connections between instances inside the same
host. Since the instances are threads of the same process, they can communicate by
sending messages using in-memory channels. This avoids completely the kernel
network stack and skips the serialization/deserialization step. They are implemented
using either flume [29] or crossbeam [28]; the user can change which implementation
to use with a compiler flag. Crossbeam offers better performance when the channel
is not saturated, while the performance of flume is more consistent (see Section 4.9.3).
These in-memory channels are multiple-producers single-consumer queues. When
an instance wants to send a message to another instance, it simply enqueues the
message to the queue of the recipient. An example of this structure can be seen in
Figure 4.12.

Remote channels are more complicated. They use TCP sockets between the hosts,
but to avoid an excessive number of open sockets, some of them are aggregated. In
particular, ideally there would be a direct connection from each instance to all the
instances it connects to. This leads to a number of connections that is quadratic on
the number of instances. To reduce them, Noir aggregates all the channels between
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Host 1

block 1
instance 1

block 1
instance 2

block 2
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block 2
instance 2

in-memory
queue

in-memory
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Figure 4.12: Communication between instances in the same host.

two blocks of a pair of hosts. In other words, all the instances of a block in a host
will use the same connection for sending messages to all the instances of the next
block in a given host. The number of connections is now quadratic in the number
of hosts (which is significantly smaller than the number of instances). A high level
overview of this topology can be found in Figure 4.13.

Host 1 Host 2

block 1
instance 1

block 1
instance 2

block 2
instance 1

block 2
instance 2

block 3
instance 1

block 1
instance 3

block 3
instance 2

block 3
instance 3

Receiver Endpoint
Coord h2 b3
Prev block 1

Receiver Endpoint
Coord h2 b3
Prev block 2

Figure 4.13: High level overview of the network topology: there are
two hosts and 3 blocks. Block 1 and 2 send data to block 3. The first
block has 3 instances (2 in the first host, 1 in the second), the second
block has two instances in the first host, and the third block has 1
instance on Host 1 and 2 instances on Host 2. Colors identify the type
of elements in the channel, dashed arrows are serialized messages.
This image only represents the connections from Host 1 to Host 2

(the connections from Host 2 to Host 1 are not represented).

Reducing the number of channels may lead to an increased contention of those
channels. If the load is heavily unbalanced between the partitions, the overload of one
instance may cause back pressure. If this happens, the back pressure will propagate
through the channels backwards, and when it reaches a “shared” channel it may
impact other instances. Indeed, that channel will be saturated by the messages sent
to the slow instance, while the other instances will starve from the lack of incoming
bandwidth. This effect is represented in Figure 4.14. This problem can be mitigated
by increasing the size of the receiving buffers, but it cannot be fully avoided. In
general, a system that suffers from back pressure may be slowed down not only
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where the pressure is generated, but also in multiple unrelated parts.

slow

fast

fast

network buffer

Figure 4.14: The topmost instance cannot keep up with the incoming
messages, causing them to queue up. This leads to the saturation of
the network receiving buffer, the other instances have to wait for the

filled buffer.

In Figure 4.13 and Figure 4.14 there are components, represented with circles, that
handle the network connections. They are called Multiplexers and Demultiplexers.
Internally, they are made of few components that handle the network, the queues and
the message serialization. Figure 4.15 shows in the details how these components
are structured.

instance

instance

instance
Multiplexer for a remote Receiver Endpoint

in-memory
queue serializer TCPStream

Sender thread

Demultiplexer of a Receiver Endpoint

TCPStream

TCPListener

TCPStream deserializer router

instance list

instance list

Receiver thread for a single remote host

in-memory
queue instance

in-memory
queue instance

Figure 4.15: Internal structure of multiplexer and demultiplexer.

The Multiplexer receives the messages to send via an in-memory queue from the
local instances. This queue has the same characteristics of the ones used for the local
connections between instances, so the multiplexer is transparent to the senders and
it acts like a local instance. There is a consumer thread that reads from the queue,
serializes the messages and sends them via a TCP stream.

The TCP stream of the sender connects to the TCP listener on the receiving side. Each
demultiplexer listens on a TCP socket whose port is deterministically computed,
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therefore all the hosts know all the port assignments. These ports are chosen
sequentially from a base port that is set in the configuration file.

When a multiplexer connects to the demultiplexer, a new thread is spawned for
handling the socket. This thread reads from the TCP socket and deserializes the
messages. The messages are then routed based on their actual destination, and
sent to the recipient in-memory queue. This is the same queue used for the local
connections between instances, therefore also the demultiplexer is transparent to the
instances.

The router needs to know the list of local instances, together with their local in-
memory queues. The demultiplexer main thread and the host threads keep these
lists up-to-date sending messages to each other. This synchronization is required
because the network stack starts concurrently with the local instances, so a remote
connection can arrive before all the local instances are ready. When an instance is
ready to receive messages, it is added to these lists.

The serializers and deserializers use the bincode [25] crate for serializing the mes-
sages into binary format. The actual protocol is very simple: each network message
is composed of a header followed by the actual message (payload). The header has
fixed length and contains the length of the payload, together with some information
about the recipient. The payload is serialized using variable length integer encod-
ing [26], as this heavily reduces the network usage while not compromising by much
the performance of the system (see Section 6.4).

4.7 Iterations

Noir has a good support for iterations, see Section 5.6.8 for a detailed description of
the API. In this section it is described how they are implemented, since they require
special care to make sure the correct semantics are preserved.

Similarly to imperative programming loops, Noir’s iterations crate a new scope. A scope
wraps a group of operators that are executed repeatedly. The scope can be seen as
a new stream whose input is fed to the iteration body, and its output is processed
according to the kind of iteration, eventually feeding it back for the next iteration.
Inside a scope there can be any type of operator, including more iterations, achieving
this way nested iterations.

There are two kinds of iterations: iterate and replay. In the former the output
of an iteration is the input of the following iteration. In the latter the same input
stream is fed to the iteration body repeatedly, but the output is not fed back.

To signal the end of an iteration, a FlushAndRestart (see Section 5.5) is sent in the
stream. This is used to inform all the operators in the loop body that the iteration is
over, and the next elements will be part of the next iteration. Aggregating operators
are therefore able to flush their content and stop the current aggregation, before
resetting for the next one.
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State variables

The iterations support state variables, which are global variables that are shared
between iterations. A state variable can be used to keep track of the progress of the
iteration, or to keep track of partial results of the computation. They are similar to
broadcast variables in Flink.

The stream inside a scope has read-only access to the state variable. At the end of
each iteration there is a two-phase reduction for updating the state variable. Each
stream item of a partition is locally reduced to a DeltaUpdate. The state variable is
then updated once per iteration using the delta updates of that iteration. The state
is updated in a dedicated operator called IterationLeader. The IterationLeader
is a special operator that is not duplicated: for each scope there is exactly one leader.
The leader is responsible for updating the state variable, checking the loop condition
and coordinating the various iteration operators.

When all the partitions have completed an iteration, they send their delta updates to
the leader. The leader computes the new state, and checks if a new iteration should
start. Then, it communicates to all the instances the new state and whether a new
iteration is necessary. When the instances receive the new state, they will begin the
new iteration, if needed. It is important to synchronize the start of the iterations
between the partitions; to do so Noir uses special locks, as described in the following
section.

Iteration State Lock

Consider the case of an iteration with two hosts. Inside the scope there are two
blocks, each with one instance in each host. The iteration leader is in the first host,
and the network connection to the second host has a high latency (see Figure 4.16).

Each partition has an operator that knows to wait for the leader before starting the
next iteration. Unfortunately, the following blocks in the stream do not have such an
operator.

Now consider this scenario:

• An iteration ended, all the operators are informed because they received the
FlushAndRestart element;

• The delta updates have been sent to the leader;

• The leader has updated the state variable and checked the loop condition;

• The leader has sent the new state to the instances, but the second host has not
received it yet;

• The first host has received the new state, it starts the computation;

• The first block of the first host produced some data and sent it to the second
block of the second host (the red link in Figure 4.16);

• The second block of the second host must not start processing that message
since its state is not yet updated;
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Host 1 Host 2

block 1

block 2

leader block 1

block 2

Figure 4.16: Example topology of a problematic iteration. The two
Block 1 contain the iteration operators that communicate with the
leader. The dashed links transport delta updates, the dotted ones
transport the new state, and the red link is the one causing the

problems.

There is the need to synchronize the start of the blocks in a host, otherwise the
incoming data from other hosts trigger the start before the state is updated. There
are two main ways to do this:

• Using a distributed lock between all the instances and the leader;

• Using a local lock on the state variable.

The first approach consists in implementing two-phase commit: firstly the leader
sends the new state to the instances, they update it and inform the leader, and
then the leader confirms it starting the next iteration. This way no instance can
start the iteration before the state is globally known. On the flip side, this adds a
synchronization step that can be costly and does not scale well. Furthermore, all the
instances have to wait for the slowest host, instead of immediately starting.

With the second approach it is possible to achieve lower latencies, and it scales
better. Each StartBlock (which is present in all the blocks) can detect if the state is
out-of-date, and if so, it waits before receiving messages from the other hosts. To do
so it knows the current iteration number, and when the iteration ends it waits for
the state update before starting to receive. This way, when a state update is received,
the instance can immediately start processing the new messages, without waiting
for the other hosts. Noir uses this solution.

4.8 Cluster Spawning

Noir supports both local-only and distributed computations. The first is especially
useful for developing and debugging the algorithm, while the second allows you
to exploit the combined computational power of a cluster of machines. Starting
Noir locally is very simple: since for each host there is only one process, it’s enough
to start the compiled binary on the local machine, and the computation will be
parallelized using threads.

Spawning a job on multiples machines requires more steps. First of all, every host
must have access to a copy of the binary executable. Then, this binary should
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be launched on each host individually. Finally, each process in the cluster needs
information about every other running instance, including their network addresses,
port numbers and number of cores.

Noir uses an approach similar to the one of RStream [6], which is inspired by
MPI [12]. There is a single binary executable that is run by each host, and its internal
behavior changes according to the identifier of the host. This means that all the
hosts will agree on the same Job Graph and since the scheduler is deterministic, also
the Execution Graph will match exactly.

RStream and MPI spawn a cluster job using an extra program (streamrunner and
mpirun, respectively). Noir embeds this program directly into the program binary.
Doing so simplifies the cluster spawning and the deployment. The resulting binary
is therefore able to be executed locally as well as remotely without the need of
recompiling; the behavior can be changed via command line arguments.

To start a cluster job, the user has to execute the compiled binary in any host that is
able to connect to all the other hosts of the cluster using SSH. The binary detects
that the user wants to start a cluster job and, instead of running the computation
locally, the process performs these actions:

• Connects via SSH to each remote host;

• Sends via SCP the binary executable to a temporary directory;

• Starts the binary passing the configuration via environment variables (e.g. a
copy of the configuration file, the identifier of the remote host, extra Rust
logging configurations);

• Waits for the remote process to finish;

• Collects debugging metrics (if enabled);

• Cleans up the remote resources (remove the temporary executable).

Using the suggested argument parser, it is possible to spawn the same binary pro-
viding --local <number of cores> or --remote <config.yaml>. In the second
case, config.yaml is the configuration file that contains the cluster information. It
uses the YAML [36] format that is both human-readable and very flexible. This
file includes the list of hosts in the cluster, and optionally some extra configuration
(e.g. SSH configuration and debugging settings). Listing 5 shows an example of a
configuration file. In the hosts list, address is the hostname or IP address of the host,
base_port specifies the first TCP port to use, and finally num_cores is the number
of CPU cores available in the host.

4.9 Design Choices and Implementation Details

Some design choices and implementation details are analyzed in this section. Most of
the choices described here are data-driven, and whenever possible the performance
measurements are provided. This section explores many aspects of the design, so
this will go throughout language features, networking aspects, library selection,
custom allocators and even kernel parameter tweaking.
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1 hosts:
2 - address: host1 # either a domain name or an IP address
3 base_port: 9500 # first port to use in this host
4 num_cores: 32 # number of cores of this host
5 - address: host2
6 base_port: 18000
7 num_cores: 32
8 - address: host3
9 base_port: 9500

10 num_cores: 16

Listing 5: Minimal example YAML configuration file.

Even though this section is pretty vast, there is still plenty of room for improvements
and performance optimizations.

4.9.1 Closures inside Arc

As described in Chapter 5, many operators need to receive and store some closures
to execute computations defined by the user. For example, these include the closure
used by the map operator to transform each item, the one used by fold to aggregate
the elements of the stream, or the one needed by the group_by operator to extract
the key from each tuple. Note that each closure is created once on each host in the
main function, and then needs to be shared or cloned to be used by the various local
instances.

Initially, these closures were stored inside an Arc, which is a thread-safe reference-
counting pointer, using trait objects. This made the development of the various
operators a little easier, since there was no need to add a new generic type parameter
to the operators’ definitions. For example, the closure used by map was initially
saved as a Arc<dyn Fn(Out) -> NewOut + Send + Sync>, where Out is the type of
the input items and NewOut is the type of the output. The closure was shared by the
multiple local instances, but this did not represent a problem, given that the closure
is stateless.

At some point during the development of Noir, we removed the Arc from every
operator, adding a new type parameter to their definitions. Each closure also had to
implement the Clone trait, so that it could be cloned once for each local instance. By
doing so, we have seen unexpected performance improvements of more than 20%
(see Table 4.1).

There are multiple possible causes for these performance improvements. First,
not using Arc means that atomic operations for reference-counting are not needed
anymore. However, this is unlikely to be the cause of the performance improvements,
since the atomic operations are very few and are only done at the beginning and at
the end of the computation. Furthermore, there was also no need to use trait objects
and dynamic dispatch anymore. In any case, most of the improvements probably
came from the monomorphization of each operator, which resulted in better inlining
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Hosts Cores With Arc Without Arc Improvement

1 8 73.3 s 58.5 s 20.2 %
2 16 37.8 s 29.4 s 22.2 %
3 24 25.6 s 19.9 s 22.3 %
4 32 19.7 s 15.0 s 23.9 %

Table 4.1: Performance improvements due to the removal of Arc.
The results refer to the associative Wordcount benchmark (see Sec-

tion 6.3.1).

and helped the compiler to make more optimizations for each unique instantiation
of the operators.

4.9.2 Core Affinity

Before the beginning of the development of Noir, we experimented with core affinity,
which can be used to instruct the kernel’s scheduler to bind a process or thread
to a specific set of cores. In particular, we were interested in knowing if pinning
each thread to a different core could result in better performance due to less context
switches.

To do so, we implemented an ad-hoc version of the Wordcount benchmark in Rust that
exploited only local parallelism through the use of multiple threads. To communicate
between threads, we used the multi-producer multi-consumer channels provided by
the crossbeam [28] crate. Each thread was then pinned to a specific CPU core using
the affinity [24] crate. Under the hood, this crate uses the sched_setaffinity [31]
syscall of the Linux kernel.

Table 4.2 reports the results of this benchmark, using a CPU with four physical cores
and eight logical cores. In the best case, there is basically no difference in using core
affinity or not. However, when there are more threads than CPU cores, and their
number is not a multiple of the number of cores, then the performance is much
worse. This is what happens, for example, when we try to use five threads. Without
core affinity, the execution time is 6.2 s, very similar to the one with four threads.
However, with core affinity enabled, the running time is 23.9 s, which is worse than
the one using only a single thread. As expected, the scheduler of the Linux kernel is
very good at its job and, given the underwhelming results we obtained, we decided
not to use core affinity in Noir.

Threads With Core Affinity Without Core Affinity

1 22.1 s 21.6 s
2 11.6 s 11.7 s
3 8.3 s 8.4 s
4 6.2 s 6.5 s
5 23.9 s 6.2 s

Table 4.2: Execution time of an ad-hoc version of the Wordcount
benchmark, with and without setting the core affinity of each thread.
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4.9.3 Selection of the Channels Library

In Noir we heavily rely on multi-producer single-consumer channels to make
instances communicate with each other on the same host. For this reason, we
had to choose the right library that provided good performance, while also having
all the features we need, such as selection between multiple channels.

Initially, we relied on the channels provided by the crossbeam crate. In fact, its
homepage claims that “This crate is an alternative to std::sync::mpsc with more features
and better performance” [28]. To check this claim, we run the same ad-hoc implementa-
tion of the Wordcount benchmark of Section 4.9.2, using both the channels provided
by crossbeam and by the standard library.

Threads crossbeam flume std::sync::mpsc

1 6.3 s 6.1 s 6.2 s
2 3.4 s 3.5 s 3.3 s
3 2.5 s 2.6 s 2.4 s
4 2.0 s 2.2 s 1.9 s
5 1.8 s 1.9 s 1.9 s
6 2.0 s 1.7 s 1.7 s
7 3.1 s 1.8 s 1.7 s
8 5.6 s 2.0 s 1.7 s

Table 4.3: Execution time of an ad-hoc version of the Wordcount
benchmark, using either the channels of the crossbeam crate, or the

ones from flume, or of the standard library.

The results of this simple test are presented in Table 4.3. When dealing with few
threads, the crossbeam crate provides good performance, being on par or faster than
the channels of the standard library. However, we got unexpected results when
many threads are used: in this case, the standard library performance is still good,
while crossbeam gets worse the more threads are used. For example, the execution
time when using crossbeam with eight threads is 5.6 s, which is much worse than
the 1.7 s of the standard library. This behavior might be related to the issue #366 on
crossbeam’s GitHub repository, in which a user claims that “sending values relatively
quickly through a crossbeam channel results in a lot [of] yields and increased CPU usage
compared to std::sync::mpsc” [37].

Given the inconsistent performance of crossbeam and that some features needed
by Noir are not present in the channels of the standard library, we opted for the
flume [29] library, as it provides good and consistent performance. It is still possible
to use the crossbeam channels by passing the right feature flags at compile time.

In Figure 4.17 we can see that, when using crossbeam, most of the time is overhead
due to the channels. With the other implementations we can see that the majority of
the time is spent allocating strings and tokenizing words.

4.9.4 Async-await

Since version 1.39, Rust provides a way to define asynchronous functions that can
return the control of the execution flow to the runtime when they need to wait
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Figure 4.17: Flamegraphs of the three channels implementations
when using 8 cores (crossbeam on the top, flume in the middle,

std::sync::mpsc on the bottom).

for some event to happen. This is mainly used for asynchronous I/O, and it is
similar to the async-await constructs of languages like JavaScript, even if they
behave quite differently. In particular, Rust uses a “poll” model, so that futures can
be implemented as zero-cost abstractions: functions are not executed until they are
await-ed.

A prototype of Noir was developed using asynchronous functions for both the
network layer and the execution of the operators. However, we were not able to
achieve good performance and, given that async-await in Rust was still in its early
days, we decided not to use this feature.

It might be interesting to investigate an hybrid approach similar to the one used in
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RStream, exploiting asynchronous I/O to implement only the network layer, while
using blocking functions for the execution of the operators.

4.9.5 Batching without threads

Noir supports two batch modes, as described in Section 4.4. The batchers are the
components in charge of handling the batching of the items.

The Fixed(#) variant is very simple to implement, since the batcher only needs to
keep track of how many tuples are present in the batch under construction. As soon
as there are # items in the batch, it can be sent to the recipient instance.

The Adaptive(# , C) variant is harder to implement efficiently, as we have to deal
with timeouts. Initially, the batchers acted as proxies between the EndBlock and
the network. They were run using multiple threads, whose only job was to wait
for items coming from the corresponding EndBlock through in-memory channels,
by exploiting the recv_timeout facility. However, this required to spawn a lot of
threads and to use many in-memory channels, one for each pair of instances that
need to communicate. This hindered the performance of the system, as it can be
seen from Table 4.4.

Slots With Threads Without Threads Improvement

2 89.9 s 40.2 s 55.3 %
4 59.0 s 21.1 s 64.2 %
8 39.3 s 13.2 s 66.4 %
12 40.0 s 11.7 s 70.1 %
16 42.8 s 11.1 s 74.1 %

Table 4.4: Execution time of Wordcount, using and not using threads
to handle the batching of the items.

One possible solution would be to batch the items exploiting the already existing
threads used for handling the TCP streams. However, this meant losing batching
when the instances communicate locally using channels.

This problem was solved by making the batcher a part of the EndBlock and dealing
with the timeout both in the StartBlock and in the EndBlock. In particular, each
time the batcher receives an item, it checks if the timeout has expired; if so, it sends
the incomplete batch to the recipient instance. This has a big limitation: it might
happen that the batcher receives some items before the expiration of the timeout,
and then it does not receive any for a long time. This results in the batch waiting
for a long time, longer than the desired timeout indicated by the user. For this
reason, also the StartBlock checks the expiration of the timeout, by exploiting the
recv_timeout method on the in-memory channels it uses to receive the messages
read from the network. If it does not receive messages for more than the timeout, it
sends a control element (StreamElement::FlushBatch, see Section 5.5) downstream;
it will be received by the batcher, which will notice the timeout has expired and will
flush the current batch.
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4.9.6 MiMalloc

Many allocations and deallocations are done during the execution of a computa-
tion. This is the case, for example, when stashing received items inside operators,
when reading from and writing to the network, when using hash maps to handle
partitioned state and so on. For this reason, we investigated whether changing the
default allocator can improve the performance of Noir.

Rust, by default, uses the System allocator, which on Linux is based on malloc
usually from glibc. However, starting from version 1.28, Rust also provides an easy
way to change the global default allocator (see Listing 6).

1 // Change the global default allocator to MiMalloc
2 #[global_allocator]
3 static GLOBAL: mimalloc::MiMalloc = mimalloc::MiMalloc;

Listing 6: Change the default allocator to mimalloc in Rust.

In particular, we were interested in testing mimalloc [8], a very fast allocator that
was shown to outperform many other allocators, including tcmalloc and jemalloc.
To evaluate its performance, we run the Wordcount and the Associative Wordcount
benchmarks using both the default allocator and mimalloc. Table 4.5 and Table 4.6
shows the results of these two tests.

Hosts Cores Default Allocator mimalloc Improvement

1 8 94.2 s 87.4 s 7.2 %
2 16 63.7 s 56.3 s 11.6 %
3 24 47.4 s 38.5 s 18.8 %
4 32 43.4 s 31.7 s 27.0 %

Table 4.5: Execution time of the Wordcount benchmark, using the
default allocator and mimalloc.

Hosts Cores Default Allocator mimalloc Improvement

1 8 51.7 s 49.9 s 3.5 %
2 16 27.3 s 26.6 s 2.6 %
3 24 19.0 s 18.3 s 3.7 %
4 32 14.5 s 14.0 s 3.4 %

Table 4.6: Execution time of the Associative Wordcount benchmark,
using the default allocator and mimalloc.

The results show that using mimalloc usually improves the performance of the
system. As expected, we see bigger improvements in the Wordcount benchmark. This
is due to the fact that it sends over the network many more tuples than Associative
Wordcount, thus making more allocations and deallocations.

Noir uses by default the System allocator, but mimalloc can be chosen by setting the
right feature flag during the compilation of the program.
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4.10 Differences with RStream

Noir and RStream share many design choices, but there are also many important
differences both in the architecture and in the API.

Use of threads This design choice heavily influenced the architecture of Noir.
RStream achieves parallelism in one host by spawning many processes, while Noir
uses a single process per-host and instead uses threads. Threads allow the use of
better synchronization primitives, such as in-memory channels, locks and atomic
variables. With those primitives Noir is able to support more advanced operators
(such as joins and more advanced iterations), keeping comparable performance.

Moreover, having a single address space (i.e. not using multiple processes) helps in
debugging and measuring performance. With RStream assessing the performance
of the various blocks is tricky. For example, using perf [30] it is possible to track the
impact of a single process, but aggregating these metrics it is not an easy task. With
Noir it is enough to run each process under perf and all the threads are automatically
aggregated, making it a lot easier to measure the system’s performance and to spot
the bottlenecks.

In-memory channels RStream runs each block in a separate process, therefore
inter-process communication channels (such as TCP) are required. Those channels
are usually much slower than the in-memory counterpart since they require each
message to be serialized and then deserialized to cross the address space boundary.
Furthermore, sending a message requires a syscall and the serialized message may
be copied in kernel space, and it may need to traverse the network stack.

Noir is able to exploit in-process channels that avoid all those overheads. By using
the network abstraction described in Section 4.6, the implementation of the operators
is not impacted, and the performance is significantly improved.

More advanced scheduler By using threads instead of processes, it is possible
to spawn a dynamic number of workers inside each host. RStream is limited to
spawning as many processes as slots defined in its configuration file. Instead, Noir
is able to use a much more sophisticated scheduler that is aware of the various
hosts and their connections. It also can perform some analysis on the Job Graph to
determine where to allocate each block.

Having this scheduler lifts the user the need to compute manually the number of
slots of each host. In RStream the number of slots to write in the configuration file is
a function of the host, the number of blocks in the Job Graph and whether the host
contains sources or sinks. In Noir the user just needs to know how many CPU cores
there are in each host.
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1 hosts:
2 - address: host1
3 base_port: 9500
4 num_cores: 8
5 - address: host2
6 base_port: 9500
7 num_cores: 8
8 - address: host3
9 base_port: 9500

10 num_cores: 8

1 ---
2 - hostname: host1
3 slots: 9 # 8 instances + 1

source↩→

4 - hostname: host2
5 slots: 8 # 8 instances
6 - hostname: host3
7 slots: 9 # 8 instances + 1 sink

The configuration file for Noir is on the left, the one for RStream is
on the right.

Consider a stream with a single non parallelizable source, followed
by a single block, and then a single non parallelizable sink. There are

3 hosts with 8 cores each.

Concurrent streams Noir supports a vast variety of Job Graph topologies, including
ones where there is more than one independent stream running in parallel. RStream
is very limited under this aspect, it allows Job Graphs that are either linear (i.e. no
branches) or cyclic (i.e. the graph is a single loop). Therefore, RStream is not able to
support many advanced operators (e.g. joins, nested iterations, . . . ) by design.

Richer API With a more advanced scheduler and the support for concurrent
streams, Noir offers many more operators than RStream and a much richer API.
Noir supports a vast range of join operators (see Section 5.6.7), better iterations with
support for nested loops and the possibility to keep state between different loop
iterations (see Section 5.6.8), many more aggregators, concurrent streams operators
(such as zip, split, concat, see Section 5.6.10) and rich operators (see Section 5.6.3).

More modular API While the APIs of RStream are pretty vast, their design does
not scale very well. For example, the window API couples the window definition (e.g.
counting, event time, sliding, tumbling) with the aggregation function (e.g. reduce,
map). In particular, each possible window variant is exposed as a different function:
sliding_count_reduce, tumbling_count_reduce, tumbling_e_time_reduce, and so
on. Noir tries to be more modular, separating the APIs for defining a window from
the APIs defining the aggregation function:

1 stream
2 .window(CountWindow::sliding(10, 3))
3 .map(|window| ...)
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API 5
This chapter outlines the Application Programming Interface (API) of Noir, first by
defining some important concepts and data types, and then by illustrating the most
important operators provided.

5.1 Environment

Before being able to define and start the computation, the user must create an
execution environment, which is used to maintain all the information needed to
schedule and run the user’s task. The environment is used to keep track of all the
blocks and operators present in the program, including how they are connected and
instantiated. The creation of the network topology is done on every host, so that
each of them is able to spawn the necessary operators and to connect to the other
hosts.

To create an environment, the user has to pass some configuration to the envi-
ronment constructor. This configuration describes whether the program will be
executed locally or remotely on multiple machines. It is also used to enable or
disable the debugging features provided by Noir, such as timing reports, logs, and
whether to collect profiling data used by the visualizer. As described more precisely
in Section 4.8, the environment’s configuration is either specified by using some
command line arguments, read from a file on disk or from the environment variables
of the process.

1 // Create an `EnvironmentConfig` from the command line arguments
2 let (config, _args) = EnvironmentConfig::from_args();
3 // Create the execution environment
4 let mut env = StreamEnvironment::new(config);
5 // Spawn the workers on the remote hosts
6 env.spawn_remote_workers();
7 // Define one or more streams with env.stream(...)
8 [...]
9 // Execute the program

10 env.execute()
11 // Finally, read the results produced by the execution
12 [...]

Listing 7: Creation of an execution environment.
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Note that the environment works as a kind of barrier between the graph definition,
the execution of the program and the retrieval of the results. In particular, the graph
of the computation can be defined only after the creation of the environment, but
before the call to the execute method. This method starts the computation and
blocks until all the operators have stopped. Finally, the results can be retrieved only
after the execute method has completed. Listing 7 provides an example of this
workflow.

5.2 Stream Types

After the creation of an environment, the user can define new streams. In particular,
the stream method of the environment creates a new Stream from a given source
(see Listing 8).

1 // Define a new source
2 let source = ...;
3 // Create a new `Stream`
4 let stream = env.stream(source);

Listing 8: Stream creation from a source.

There are four different stream types in Noir:

Stream the simplest type of stream, it is not partitioned and it does not have any
window applied to it.

KeyedStream a stream whose elements are partitioned by key; this is the type of
stream returned, for example, by the group_by operator.

WindowedStream a stream whose elements are grouped into windows; this is the
stream returned by the window_all operator.

KeyedWindowedStream a stream whose elements are partitioned by key, but they
are also grouped into windows; this is the stream returned by the window
operator, when called on a KeyedStream.

Each stream type has many methods, which represent the different operators that
can be applied to it. When applying one of the operators, the stream is consumed
and a new one is returned.

5.3 Data traits

In Noir, the data tuples of a stream are not limited to a given set of types, but
they can be whichever custom type the user wants. However, these custom types
must implement some specific traits, so that values can be moved between different
instances, both locally or using the network.

Items that need to be moved from one operator to the next one locally, without
using the network, must implement the Data trait. The ExchangeData trait, instead,
is used for items that need to be sent over the network: for this reason, it is a subtrait
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of Data, but it also requires traits used for the serialization and the deserialization of
the items.

Instead, when dealing with partitioned streams, the keys’ types must implement the
DataKey trait: it is a subtrait of Data, but it also requires that the instances of these
types can be hashed and that they can be compared one with the other, so that we
are able to find out if two keys are equal or not. When keys need to be sent over the
network, then they must implement the ExchangeDataKey trait.

The formal definitions of these traits are shown in Listing 9.

1 pub trait Data: Clone + Send + 'static {}
2 impl<T: Clone + Send + 'static> Data for T {}
3

4 pub trait ExchangeData: Data + Serialize + for<'a> Deserialize<'a> {}
5 impl<T: Data + Serialize + for<'a> Deserialize<'a> + 'static>

ExchangeData for T {}↩→

6

7 pub trait DataKey: Data + Hash + Eq {}
8 impl<T: Data + Hash + Eq> DataKey for T {}
9

10 pub trait ExchangeDataKey: DataKey + ExchangeData {}
11 impl<T: DataKey + ExchangeData> ExchangeDataKey for T {}

Listing 9: Definition of the Data, ExchangeData, DataKey and
ExchangeDataKey traits.

5.4 Operator trait

As seen in Chapter 2, operators are the basic building blocks used to describe the
computation that needs to be performed by the system. In Noir, operators are
defined by implementing the Operator trait (Listing 10), which is used to describe
how the operator behaves, that is how it transforms the input stream into the output
one. This trait is usually implemented on an appropriate struct, which maintains
all the information regarding the operator, including its state, the parameters defined
by the user (e.g. closures) and its operators chain.

1 pub trait Operator<Out: Data>: Clone + Send {
2 fn setup(&mut self, metadata: ExecutionMetadata);
3 fn next(&mut self) -> StreamElement<Out>;
4 fn to_string(&self) -> String;
5 fn structure(&self) -> BlockStructure;
6 }

Listing 10: Definition of the Operator trait.

First of all, the Operator trait has a generic type parameter Out, which implements
the Data trait: this is the type of the elements of the stream. For example, if we
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are dealing with a stream of strings, then Out will be String. This generic type
parameter is needed to have a single definition of the Operator trait that can be used
for any kind of stream.

The Operator trait also defines few methods that need to be implemented by each
operator. As the name implies, the setup method is called before the start of the
computation, and it is used to configure the operator. It receives as parameter
some metadata associated with the operator’s block, including the coordinates
of the current instance, the list of instances that execute this same block and a
global identifier of the current instance. This information can be used to make
the operator behave differently based on which instance it is running on. This
is useful, for example, when reading from a file parallelly: by using the global
identifier contained in the metadata, the different instances of the operator can
read different chunks of the file. Finally, this method must always propagate the
execution metadata backward in the chain of operators, by recursively calling the
setup method on the previous operators. This means that operators in a block
are configured from the bottom up, starting from the EndBlock operator up to the
StartBlock one.

The actual logic of the operator is implemented in the next method, whose function-
ing is heavily inspired by the Iterator trait in the Rust standard library [22]. Each
time this method is called, it returns the next element in the operator’s output stream.
To do so, the operator can of course call the next method recursively on the previous
operator. This starts a chain of method calls that reaches the StartBlock, which
will return elements read from the network and coming from other blocks. Note
that it is not mandatory to have a one-to-one mapping from incoming to outgoing
elements: when the next method is called, the operator can either return elements
that were stashed in previous calls to that method, or it can call the next method
on the previous operator one or more times, even up to the end of the stream. This
provides a great flexibility in implementing both simple stateless operators that just
need a single element at a time or stateful operators that need the whole stream to
produce some output (e.g. operators that reduce the stream to a single value).

Finally, the to_string and structure methods are used for debugging and visual-
ization purposes. The former returns a textual description of the operator, which
is used to represent the operator in the logs of the system. The latter returns
more structured information about the block, which is used by the visualizer (see
Appendix B).

For a sample implementation of a simple map operator, see Appendix A.

5.5 StreamElement

When dealing with a stream of a particular type, for example a stream of integers
or strings, one would expect that the elements generated by the operators have
the same type as the ones of the stream. However, looking closely at the defini-
tion of the Operator trait in Listing 10, the next method returns a value of type
StreamElement<Out> instead of Out, which is the type of the stream’s data tuples.
This is needed because there is some additional information other than the actual
data tuples that need to be preserved and propagated downstream.
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In particular, StreamElement<Out> is an enumeration with the following variants:

Item(Out) a simple data tuple of type Out.

Timestamped(Out, Timestamp) a data tuple of type Out, with its associated times-
tamp. This is used when dealing with events in either event time or processing
time domain (see Section 2.4).

Watermark(Timestamp) a watermark with its associated timestamp (see Section 2.5).

FlushBatch when using the adaptive batch mode, this control element indicates
that the batch needs to be flushed, even if it is not full yet (see Section 4.4).

FlushAndRestart is a control element used to signal that the stream has ended and
that each operator needs to restore their state to the initial one. This is also
used to mark the end of an iteration (see Section 4.7).

Terminate after receiving a FlushAndRestart element, this control element indicates
that the computation has ended and that each operator should stop as soon as
possible.

Using the regular expression notation1, the elements of a stream can be described as
follows:

((Item | Timestamped | Watermark | FlushBatch)∗ FlushAndRestart)+ Terminate

So, the stream is a non-empty sequence of sequences of Item, Timestamped, Watermark,
and FlushBatch, each followed by a FlushAndRestart, and all terminated with a
Terminate control element.

5.6 Operators

In this section we will describe the main operators provided by Noir. These include
sources, simple stateless operators, operators that handle the partitioning and
aggregation of the stream, windows, joins, iterations and sinks.

5.6.1 Sources

Sources are special operators that are needed to create new streams. For this
reason, the Source trait extends the Operator trait, requiring the additional method
get_max_parallelism (see Listing 11). This method should return the maximum
number of instances of the source that the system can spawn. This is needed, for
example, when dealing with non-parallelizable sources like IteratorSource.

Once a source is defined, a stream can be created with the help of the stream method
of the environment (see Listing 8).

10 |1 means one of 0 or 1, 0∗ means zero or more times 0, and 0+ means one or more times 0.
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1 pub trait Source<Out: Data>: Operator<Out> {
2 fn get_max_parallelism(&self) -> Option<usize>;
3 }

Listing 11: Definition of the Source trait.

Iterator Sources

In Rust, iterators are used to abstract the concept of a series of items. Given that
iterators are very similar to a stream of data, in Noir it is possible to use them as
sources (see Listing 12). However, iterators are usually non-parallelizable, so by
default IteratorSource will not be instantiated multiple times.

When a parallel source is needed, then ParallelIteratorSource can be used. In-
stead of accepting an iterator, this source requires a closure that, given the identifier
of a instance and the total number of instances of the source, returns the appropriate
iterator (see Listing 13).

It is also possible to implement custom sources by simply implementing custom
iterators that, for example, read the data from an external system or resource.

1 // In this example, the iterator used by the source is `(0..100)`.
2 // This will generate all the integers between 0 and 100 (excl.).
3 let source = IteratorSource::new((0..100));

Listing 12: Example of IteratorSource.

1 // This source will generate all the integers between 0 and 100
2 // (excluded), using multiple instances.
3 let n = 100;
4 let source = ParallelIteratorSource::new(move |id, num_instances| {
5 let chunk_size = (n + num_instances - 1) / num_instances;
6 let remaining = n - n.min(chunk_size * id);
7 let range = remaining.min(chunk_size);
8

9 let start = id * chunk_size;
10 let stop = id * chunk_size + range;
11 start..stop
12 });

Listing 13: Example of ParallelIteratorSource.

File Source

Noir provides a source that reads data from a file. In this case, each data tuple
produced by the source is a single line of the file. The file is divided in multiple
chunks, and it is read in parallel by many instances. For this reason, the file must be
available on every host, at the same location.
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1 // In this example, the source will read the file "/data.txt"
2 let source = FileSource::new("/data.txt");

Listing 14: Example of FileSource.

CSV Source

Just like FileSource, this source reads a CSV file in parallel. However, each record
in the file is deserialized into a user-provided type. This source supports multiple
customizations, including specifying whether the CSV file has a header row or
setting a custom delimiter character (see Listing 15).

1 // Custom type used to deserialize the records
2 #[derive(Clone, Deserialize, Serialize)]
3 struct MyType {
4 value: String,
5 count: u64,
6 }
7

8 // In this example, the source will read the file "/data.csv",
9 // deserializing each record into the `MyType` type

10 let source = CsvSource::<MyType>::new("/data.csv")
11 .delimiter(b';')
12 .has_headers(false);

Listing 15: Example of CsvSource.

5.6.2 Simple operators

After defining a source and constructing a stream, it is possible to apply multiple
operators to the stream, in order to achieve the desired computation graph. In
this section, we describe the most simple operators that Noir offers, which are the
stateless operators.

These operators process one element at a time, using the user-provided closures.
Being stateless operators, they only accept closures which implement the Fn trait,
that is to say closures which only take immutable references to captured variables.
When these operators are applied to a keyed stream, a tuple with both the key and
the value of each element is passed to the closure. However, the key is passed as
an immutable reference, since changing the key might result in a stream where
elements are not partitioned by key anymore. Due to their simplicity, these operators
do not need to move data between different instances and, for this reason, they can
be added to an already existing block of operators, without the need to create a new
one.
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Map

The map operator is one of the most used operators. As the name implies, this
operator is used to “map”, that is to “translate”, each incoming data tuple into a
new one. In order to do so, the map operator accepts one closure as a parameter,
with a single input and a single output. This closure is called repeatedly on every
incoming element, and the outgoing stream is composed of all the results returned
by it. Listing 16 shows an example in which each element of the stream is multiplied
by ten.

1 // `map` operator for `Stream`
2 stream.map(|val| val * 10);
3

4 // `map` operator for `KeyedStream`
5 stream.group_by(...).map(|(_key, val)| val * 10);

Listing 16: Examples of usage of the map operator.

Filter

The filter operator is used to remove some elements from the stream. Just like the
map operator, it takes a closure as parameter. However, this closure must return a
boolean: the function is called once for each element, and that element is removed
from the stream if the closure evaluates to false. Listing 17 shows how to keep only
the multiples of three from a stream of numbers.

1 // `filter` operator for `Stream`
2 stream.filter(|&n| n % 3 == 0);
3

4 // `filter` operator for `KeyedStream`
5 stream
6 .group_by(...)
7 .filter(|&(_key, n)| n % 3 == 0);

Listing 17: Examples of usage of the filter operator.

Flatten

In some cases, the items of a stream might be collections of values, for example
when elements are vectors of numbers or strings. The flatten operator is used
to remove one level of indirection, which means that the resulting stream will be
composed of all the values contained in all the elements of the incoming stream (see
Listing 18).
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1 // `flatten` operator for `Stream`
2 stream // Stream<Vec<String>>
3 .flatten(); // Stream<String>
4

5 // `flatten` operator for `KeyedStream`
6 stream.group_by(...).flatten();

Listing 18: Examples of usage of the flatten operator.

FilterMap

The filter_map operator is used to fuse a map and a filter operation together.
The closure used by this operator must return an Option::Some that contains the
translated value, or Option::None if the element needs to be discarded. As an
example, in Listing 19 odd numbers are removed from the stream and even numbers
are multiplied by three.

1 // `filter_map` operator for `Stream`
2 stream
3 .filter_map(|n| if n % 2 == 0 { Some(n * 3) } else { None });
4

5 // `filter_map` operator for `KeyedStream`
6 stream
7 .group_by(...)
8 .filter_map(|(_, n)| if n % 2 == 0 { Some(n * 3) } else { None });

Listing 19: Examples of usage of the filter_map operator.

FlatMap

One of the main limitations of the map operator is that each incoming element must
be transformed into exactly one output element. Instead, the flat_map operator
can be used when we need to return zero, one or more elements from a single
incoming element in the stream. This is achieved by fusing together a map with a
flatten operation: the former returns a collection of values derived from a single
element, which is then flattened by the latter. The flat_map operator can be used,
for example, to duplicate each element of the stream (see Listing 20).

1 // `flat_map` operator for `Stream`
2 stream.flat_map(|n| vec![n, n]);
3

4 // `flat_map` operator for `KeyedStream`
5 stream
6 .group_by(...)
7 .flat_map(|(_key, n)| vec![n, n]);

Listing 20: Examples of usage of the flat_map operator.
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5.6.3 Rich operators

Sometimes, simple stateless operators like map are not powerful enough to tackle
all the tasks we would like to execute. In some of these cases, we can use the so-
called “rich” operators, which are equivalent to the map, flat_map and filter_map
operators, except that they can have a state that is local to each instance.

State is handled automatically by the fact that these operators accept closures that
implement the FnMut trait, which is less restricting than the Fn trait required by the
simple operators seen in Section 5.6.2. This means that closures can capture user
defined variables by value, instead of by reference, which can be used to maintain
the necessary state. The closures must also implement the Clone trait, so that they
can be cloned once for each instance or for each partition of the stream.

As stated before, the state is local to each instance, and it is not shared between
them, so sometimes it might be necessary to change the parallelism of the operator
in order to get the expected results (see Section 5.6.11). For example, rich_map can
be used to implement an operator that calculates the prefix sums of the elements in
the incoming stream (see Listing 21). This can be done by keeping the partial sum
of all the elements processed since the beginning of the stream in a state variable,
updating it when new elements are received. However, if this operator is instantiated
multiple times, each instance would receive and process only a subset of all the
elements and the results would be wrong. This problem is not present when dealing
with a keyed stream, because each partition has its own private state, and all the
elements with a given key are processed by the same instance.

In general, rich operators should be avoided if the computation can be carried out
by using stateless operators, as they are generally faster. When working with keyed
streams, for example, each partition needs to have its own private state. This means
that the user-provided closure needs to be cloned once for each key and stored in a
hash map, so that elements with the same key are always processed by the same
closure. This introduces a lot of overhead with respect to stateless operators, which
can share the closure between different partitions of the stream.

1 // `rich_map` operator which calculates the prefix sums
2 stream.rich_map({
3 let mut sum = 0;
4 move |x| {
5 sum += x;
6 sum
7 }
8 });

Listing 21: Example of usage of the rich_map operator.
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1 // `rich_filter_map` operator which returns only the positive
2 // prefix sums
3 stream.rich_filter_map({
4 let mut sum = 0;
5 move |x| {
6 sum += x;
7 if sum >= 0 {
8 Some(sum)
9 } else {

10 None
11 }
12 }
13 });

Listing 22: Example of usage of the rich_filter_map operator.

1 // `rich_flat_map` which generates all the possible pairs of
2 // incoming elements
3 stream.rich_flat_map({
4 let mut elements = Vec::new();
5 move |y| {
6 let new_pairs = elements
7 .iter()
8 .map(|&x: &u32| (x, y))
9 .collect::<Vec<_>>();

10 elements.push(y);
11 new_pairs
12 }
13 })

Listing 23: Example of usage of the rich_flat_map operator.

5.6.4 Partitioning

In this section we describe operators that are used to shuffle data between different
instances. Since they need to transfer data between instances using the network,
they need to create a new block (see Section 4.3).

Shuffle

The shuffle operator is used to randomly distribute the elements of a stream
between all the different instances of a block. This can be useful when dealing with
an operator that creates an uneven quantity of tuples on different instances, for
example when dealing with unbalanced partitioning or join. They also come in
handy when using operators that cannot be instantiated multiple times. By applying
the shuffle operator, it is possible to evenly distribute the data coming from these
operators between all the hosts, thus restoring the maximum level of parallelism
that the cluster can offer.
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1 // shuffle the data between all the different instances
2 stream.shuffle()

Listing 24: Example of usage of the shuffle operator.

GroupBy

The group_by operator is used to partition the stream into logically independent
substreams. Elements are divided based on a key, which is a special value that can be
extracted from every element; elements that have the same key are grouped together
and are sent to the same instance. The key is extracted from each element by using
a user-provided closure. This operator can be used to apply other operators, such
as aggregations and reductions, independently on each partition. The group_by
operator can be applied to a Stream, and it returns a KeyedStream.

As an example, in Listing 25, elements are divided into groups based on their parity
and then summed together. Thus, the resulting stream will contain two elements,
the sum of the even numbers and the sum of the odd numbers. Note that since
the sum is an associative operation, the associative variant of the fold operator
(group_by_fold) is much more efficient (it is described later in this section).

1 // divide the numbers in two groups based on their parity
2 // and calculate their total value
3 stream
4 .group_by(|&n| n % 2)
5 .fold(0, |acc, value| *acc += value);

Listing 25: Example of usage of the group_by operator.

KeyBy

The key_by operator is very similar to the group_by one, with the exception that it
does not actually send tuples with the same key to the same instance. This avoids
splitting the block and using the network, but the user must make sure that the data
tuples are already partitioned correctly on the various instances. This means that, if
the user is not careful, the resulting KeyedStream might be malformed and behave
unexpectedly. In Listing 26, the tuples are already partitioned correctly thanks to
the usage of group_by, so the keyed stream will work as intended after using the
key_by operator.

1 // divide the numbers in two groups based on their parity
2 stream
3 .group_by(|&n| n % 2)
4 .unkey() // simply forgets about the key
5 .key_by(|&n| n % 2);

Listing 26: Example of usage of the key_by operator.
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5.6.5 Aggregations

As suggested by their name, aggregators are used to accumulate the values of a
stream into a single element. These are useful to compute aggregated results over a
dataset, such as the average or the total of a given set of values.

Fold

The fold operator is used to aggregate all the elements of a stream into a single value,
which can be of any type. This operator requires two parameters: the initial value of
the accumulator and the closure used to perform the aggregation. The closure is
executed on each item of the stream, passing both the value and a mutable reference
to the current partial accumulator. The closure updates the accumulator with the
value of the item. After processing all the elements, fold emits the accumulator. In
Listing 27, the fold operator is used to sum all the numbers in a stream.

Note that using the fold operator usually means that many elements are transferred
over the network. In fact, if it is applied to a non-keyed stream, then the operator has
only one instance, which receives all the elements of the stream. Instead, if it is used
on a keyed stream, then the elements are first partitioned and sent to the correct
instance based on their key, and then each partition is aggregated independently. If
the folding operation is associative, then it is better to use the associative variants
that will be presented later.

1 // sum all the numbers in the stream
2 stream.fold(0, |acc, value| *acc += value);
3

4 // sum all the numbers in each partition of the stream
5 stream
6 .group_by(...)
7 .fold(0, |acc, value| *acc += value);

Listing 27: Examples of usage of the fold operator.

Reduce

Sometimes, a stream has to be reduced into a value that has the same type of the
data tuples of the incoming stream. When this happens, it is usually easier to
use the reduce operator, instead of fold. This is due to the fact that the reduce
operator does not require an initial value to perform the aggregation. In particular,
if the stream contains only one element, then that element is returned. Instead,
if it contains two or more elements, then the first two of them are passed to the
user-provided closure to compute the first partial result. From the third element
onward, the reduce operator behaves exactly as fold. Listing 28 implements the
same computation of Listing 27, using the reduce operator instead of fold.

Just like the fold operator, also reduce usually requires to move a lot of data
tuples between the different instances. Also in this case, if the reducing operator
is associative then using the associative variants described later usually results in
better performance.
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1 // sum all the numbers in the stream
2 stream.reduce(|acc, value| *acc += value);
3

4 // sum all the numbers in each partition of the stream
5 stream
6 .group_by(...)
7 .reduce(|acc, value| *acc += value);

Listing 28: Examples of usage of the reduce operator.

Associative variants of Fold and Reduce

When the aggregating operation is associative, the fold and reduce operators can
be implemented much more efficiently. In particular, considering both keyed and
non-keyed streams, the elements can be partially accumulated before being sent
over the network. Then, these partial results will be combined into a single value
by the receiving instance. This greatly reduces the network usage and, in the case
of non-keyed streams, also provides a greater degree of parallelism. In fact, only
the partially reduced values are sent over the network; Figure 5.1 shows how this is
achieved.

group by fold

network

(a) group_by(...).fold(...)

key by local
fold

group by global
fold

network

(b) group_by_fold(...)

Figure 5.1: The two variants of group_by and fold, (b) is the associa-
tive version of (a). Rows represent different instances, while colors
different partitions. Rectangles represent where other operators can

be placed.

When considering reduce, its usage does not really change, except that for non-keyed
streams reduce_assoc is used instead of reduce. Considering keyed streams instead,
group_by(...).reduce(...) is replaced by the single operator group_by_reduce.
Listing 29 shows the same computation of Listing 28 but using the associative variant
of the reduce operator.

Instead, with the fold operator things get a bit more complicated. Due to the
fact that the resulting accumulator can have a generic type, the user also has to
describe how two partial results can be accumulated into one. For this reason,
the associative variants of fold accept two closures, instead of just one. In any
case, when dealing with non-keyed streams, fold is replaced by fold_assoc. In-
stead, when considering keyed streams, the operator group_by_fold is used instead
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of group_by(...).fold(...). Listing 30 uses the associative variants of fold to
implement the same computation of Listing 27.

1 // sum all the numbers in the stream, associatively
2 stream.reduce_assoc(|acc, value| *acc += value);
3

4 // sum all the numbers in each partition of the stream, associatively
5 stream
6 .group_by_reduce(..., |acc, value| *acc += value);

Listing 29: Examples of usage of the associative variants of the
reduce operator.

1 // sum all the numbers in the stream, associatively
2 stream.fold_assoc(
3 0, // initial value
4 // aggregate elements into partial results
5 |acc, value| *acc += value,
6 // combine two partial results into one
7 |acc1, acc2| *acc1 += acc2
8 );
9

10 // sum all the numbers in each partition of the stream, associatively
11 stream.group_by_fold(
12 ..., // key function
13 0, // initial value
14 // aggregate elements into partial results
15 |acc, value| *acc += value,
16 // combine two partial results into one
17 |acc1, acc2| *acc1 += acc2
18 );

Listing 30: Examples of usage of the associative variants of the fold
operator.

Common Aggregations

While fold and reduce are very flexible and they can be used to define many
different computations, there are some common aggregations that are usually present
in many programs. For this reason, Noir provides shortcuts to compute the minimum
element, the maximum element, the sum, the average value and the number of the
items of a keyed stream.

All these operators can be applied to a non-keyed stream and they accept a closure
to compute the key of each tuple. Except for group_by_count, all the other operators
also require a closure to extract a value from each item: this value will be used to
compute the minimum element, the maximum element, the sum or the average
value (see Listing 31). Note that this operators are implemented using the associative
variants of the fold and reduce operators.
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1 // Find the minimum element of each partition of the stream
2 stream.group_by_min_element(..., |&n| n);
3

4 // Find the maximum element of each partition of the stream
5 stream.group_by_max_element(..., |&n| n);
6

7 // Find the sum of all the elements of each partitions of the stream
8 stream.group_by_sum(..., |&n| n);
9

10 // Find the mean value of the elements of each partition of the stream
11 stream.group_by_avg(..., |&n| n as f64);
12

13 // Count the number of elements of each partition of the stream
14 stream.group_by_count(...);

Listing 31: Examples of usage of some common aggregators.

5.6.6 Windows

Windows are used to divide a stream into finite groups that evolve over time, which
are then processed independently. This is needed when dealing with unbounded
streams, since blocking operators like aggregations and joins need to consume all
the data to complete their computations. This is clearly a problem when the stream
is infinite and when dealing with low-latency constraints, as the operator would
never generate any output. In case of finite streams, instead, windows are optional:
if not used, the processing will be equivalent to those of batch processing systems.

There are two different policies used by windows to divide elements into groups:
based on their timestamp (time-based windows) and based on the tuples arrival
order (tuple-based windows). Note that, if windows are overlapping, each tuple
can end up in multiple groups. In general, each tuple might also not be part of any
window, but this case is rarely interesting as some data is lost. Windows can be
aligned if the same window is applied to the whole dataset or unaligned if there are
different windows for different subsets of the stream, for example per key after a
grouping operation.

Time-based windows group elements by their timestamp, either in the event time
domain or in the processing time domain. There are three different types of time-
based windows:

Sliding Windows (Figure 5.2) are aligned windows that are defined by a size and
a step period. This means that each window has the same size, and it starts
step amount of time after the previous one. Given that the step period can be
shorter than the size of the window, these windows may be overlapping.

Tumbling Windows (Figure 5.3) sometimes called fixed windows, are aligned win-
dows that are defined by a fixed length that determines both the size and
the step period of the window. For this reason, tumbling windows are non
overlapping.



5.6. Operators 57

Session Windows (Figure 5.4) are unaligned windows that are defined by a gap
period. They group elements based on their activity: two consecutive elements
belong to the same window if they are at most a gap amount of time apart.
Like tumbling windows, session windows are non overlapping.

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.2: Sliding Window with size 3 and step 2.

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.3: Tumbling Window with size 3.

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.4: Session Window with gap 2.

Tuple-based windows divide elements based on their arrival order. They are some-
times called count windows, since they group elements by counting them. There are
two different types of counting windows:

Sliding Count Windows (Figure 5.5) are defined by a size and a step length. The
first window contains the first size elements and from then on each window
contains the same elements of the previous one, except that the oldest step
elements are replaced with new ones. These windows may be overlapping.

Tumbling Count Windows (Figure 5.6) are defined by a size length. They are
equivalent to sliding count windows where the size is equal to the step length.
These windows are non overlapping.
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0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.5: Sliding Count Window with size 3 and step 2.

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.6: Tumbling Count Window with size 3.

Noir supports windowing on both Stream and KeyedStream. With the latter the
window is applied on a key-by-key basis, while on the former all the tuples are
considered together. To do so, on a Stream the operator to use is window_all, which
cannot be parallelized.

1 // Count windows
2 CountWindow::sliding(3, 2)
3 CountWindow::tumbling(3)
4

5 // Event time windows
6 EventTimeWindow::sliding(Duration::from_secs(120),

Duration::from_secs(10))↩→

7 EventTimeWindow::tumbling(Duration::from_secs(120))
8 EventTimeWindow::session(Duration::from_secs(120))
9

10 // Processing time windows
11 ProcessingTimeWindow::sliding(Duration::from_secs(120),

Duration::from_secs(10))↩→

12 ProcessingTimeWindow::tumbling(Duration::from_secs(120))
13 ProcessingTimeWindow::session(Duration::from_secs(120))

Listing 32: The supported windowing types to be passed to the
window operator.

After defining the windowing criteria, the next operator to use is an aggregation.
On windowed streams the supported operators are first, fold, join, map, max, min,
and sum.

The operators max, min, and sum are supported only if the type of the tuples support
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the corresponding operation; each window is reduced to a single tuple using the
corresponding mathematical operator.

1 stream
2 .group_by(...)
3 .window(CountWindow::tumbling(2))
4 .max()

Listing 33: Examples of usage of the window operator for a Tumbling
Count Window of size 2, whose aggregation operator is max.

When using map, the provided closure is called with a reference to the items of each
window, and it returns the new item to be emitted.

1 stream
2 .group_by(...)
3 .window(CountWindow::tumbling(2))
4 .map(|window| *window.last().unwrap())

Listing 34: Examples of usage of the window operator for a Tumbling
Count Window of size 2, whose aggregation operator is map.

Given two streams windowed in the same manner, the join produces the Cartesian
product of the two streams, on a window-by-window basis.

1 let keyed1 = stream1.group_by(...);
2 let keyed2 = stream2.group_by(...);
3 keyed1
4 .window(EventTimeWindow::tumbling(Duration::from_millis(2)))
5 .join(keyed2)

Listing 35: Examples of usage of the window operator for a Tumbling
Event Time Window of size 2 ms that joins two streams.

It is important to note that the elements produced by a window are timestamped as
well. This makes it possible to chain windows, potentially with different windowing
criteria. Chaining is especially useful when windows are aligned, so that they refer
to the same range of events of the original stream. With time-based windows, the
timestamp of each element produced is the ending time of the corresponding window.
Considering instead tuple-based windows, the timestamp is the maximum one of
items contained in the window, adjusted if watermarks with greater timestamps
have already passed.

5.6.7 Join

Join transformations are used to combine two streams, which are usually called left
and right stream, into a stream composed of pairs of values. These pairs are created
by matching elements coming from the first stream with elements coming from the
second one. In particular, a key value is assigned to each element of both streams,
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and each element of the first stream is matched with the elements of the second one
that have the same key.

There are three join variants, that determine which tuples will be present in the
output stream:

Inner Join elements of any of the two streams that have no matching values in the
other stream are not present in the output. This is the default variant.

Left Join elements of the left stream are always present in the output, even if they
are not matched to any element in the right stream. For elements of the right
stream, the behavior is the same as the inner join.

Outer Join elements of both streams are always present in the output, even if they
do not have matching elements.

Note that the right join variant does not exist, since it is equivalent to a left join
where the two input streams are exchanged.

The type of the data tuples in the output stream changes based on the chosen variant.
If the left stream has tuples of type L and the right stream of type R, then the output
stream will have tuples of type (L, R) in the case of an inner join, (L, Option<R>)
in the case of a left join, and (Option<L>, Option<R>) in the last case. Option is
used to handle the case in which an element does not have matching tuples in the
other stream: in that case, one of the two sides of the tuple will be None.

When joining two streams, two different strategies, called ship strategies, can be used
to distribute the elements between the different instances:

Hash Repartition elements with the same key are sent to the same instance; this is
the same behavior of the group_by operator.

Broadcast-Forward also called Broadcast-Right, elements of the left side are kept
local to each instance; elements of the right side are broadcast to each instance.
This is recommended when the left stream is very big, while the right stream
is composed by very few tuples.

Finally, two different local strategies can be used to generate the output tuples:

Hash Join the tuples are built using hash tables. In particular, two hash tables are
kept, one for each of the input streams, in which elements are indexed by key.
Whenever a new incoming element needs to be processed, it is matched with
the already received tuples of the other streams. This can be done efficiently by
simply accessing the hash table using the key of the element that is currently
being processed. After generating all the tuples, the new element is inserted in
the hash table corresponding to the input stream it came from. As soon as one
of the two streams reaches the end, the hash table corresponding to the other
input is dropped, since it is not useful anymore.

Sort and Merge the two input streams are stored in memory and then sorted by
key. The output tuples are generated by using an approach similar to the two
pointers technique.

The Hash Join strategy is chosen as the default one, since it has several advantages.
First of all, this strategy works well also when dealing with streaming workflows.
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Indeed, unlike the Sort and Merge strategy, it does not need to consume all the input
streams to start producing output elements. Furthermore, it can also use much less
memory, since it does not need to store all the elements of both streams in memory
in some cases.

Noir provides all the possible combinations of join variant, ship strategy and join
strategy, except outer joins do not support the Broadcast-Forward ship strategy.

By default, the join operator is an inner join with Hash Repartition ship strategy
and Hash Join local strategy. There are also the left_join and outer_join shortcuts,
that use the same strategies as join. Finally, the join_with operator can be used to
choose between all the possible variants and strategies. Note that all these operators
require three parameters: the right stream and two closures to extract the keys from
the elements of the two input streams. Listing 36 shows these operators in action.

1 // inner join / hash repartition / hash join strategy
2 left_stream.join(right_stream, ..., ...);
3

4 // left join / hash repartition / hash join strategy
5 left_stream.left_join(right_stream, ..., ...);
6

7 // outer join / hash repartition / hash join strategy
8 left_stream.outer_join(right_stream, ..., ...);
9

10 // customizable join
11 left_stream.join_with(right_stream, ..., ...)
12 .ship_hash() // or .ship_broadcast_right()
13 .local_hash() // or .local_sort_merge()
14 .inner(); // or .left() or .outer()

Listing 36: Examples of usage of the join operator and its variants.

Interval Join

When the items of the streams are timestamped, then also the interval_join
operator can be used. This operators joins two streams together, pairing the elements
based on their timestamps. In particular, this operator accepts two time durations
called lower_bound and upper_bound (see Listing 37). An item of the left stream
with timestamp t will be paired with all the tuples on the right side that have
timestamp q such that t− lower_bound ≤ q ≤ t+ upper_bound (see Figure 5.7).

This operator only support the inner join variant and it can be applied to both keyed
and non-keyed streams. When dealing with non-keyed streams, the operator will
not be instantiated multiple times.
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time
left side

right side

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

(2,0)
(2,1)

(3,1) (5,6) (7,6)
(7,7)

Figure 5.7: An example of the interval_join operator in action. The
lower bound is set to 2, while the upper bound is set to 1.

1 left_stream.interval_join(
2 right_stream,
3 Duration::from_secs(5), // lower_bound
4 Duration::from_secs(3), // upper_bound
5 );

Listing 37: Examples of usage of the interval_join operator. Each
tuple of the left side will be paired with items from the right side
whose timestamps are at most five seconds behind or three seconds

ahead of the left stream’s tuple timestamp.

5.6.8 Iterations

Noir supports iterative streams: streams that process data repeatedly. The iteration
body, the part in which the data recirculates, is defined inside a closure within a
new scope (see Section 4.7). The body is executed with maximum parallelism, and it
can access a scope-local state variable. The input stream must not have a limited
parallelism specified. At the end of each iteration, the operators of the loop body
are reset, so that the stream starts from a clean state each time. Inside the loop there
can be any operator, including nested iterations.

Noir offers two iteration operators: iterate and replay. Both operators execute the
body stream one or more times, taking as input a stream of elements. Additionally,
it is also possible to have side-inputs, which are streams that are injected into the
loop from outside its scope. In particular, only streams from the global scope (i.e.
streams not built inside any iteration) can be injected. The items of the side-inputs
are replayed at each iteration.

Neither of those operators support streams with timestamped data. This means
that iterations are supported only for streams that are bounded. Note that, while
Flink supports iterations on unbounded streams, the watermark contract is broken
and some operators will not work as expected. For this reason, Noir will reject any
iteration on an unbounded stream.

Iterate

Adding an iterate operator to a stream creates a loop whose first iteration’s items
are the items of the stream. When the input stream ends, the output of the loop is
fed back, and it is the input of the next iteration.



5.6. Operators 63

The iterate operator takes many parameters:
• num_iterations The maximum number of

iterations to perform.

• initial_state The initial value of the scope-
local state variable.

• body A closure that builds the body of the
loop. The closure takes as parameters the in-
put stream and a handle to the state variable,
and should return the feedback stream.

• local_fold A closure that is used to aggre-
gate the items that are fed back to produce a
DeltaUpdate.

iterate

body

input

feedback
remaining items

final state

• global_fold A closure that updates the state variable using the delta updates.

• loop_condition A closure that, given the state variable, returns false if the
loop should be stopped.

The iterate operator produces two different streams:

• The first stream yields a single item: the final state of the iteration;

• The second stream yields all the items of the last iteration (the feedback
stream).

The type of the state and of the delta update can be chosen by the user. This operator
can be used to iteratively compute values with the help of a state. For example,
Listing 38 shows how to find the number which has the longest Collatz sequence.

Replay

replay

body

input

final state

With replay, the input stream is replayed and used
as the input for the loop body at each iteration. The
items coming out of the loop are only used to update
the state and they are not fed back.

The replay operator takes the same parameters of
iterate, but it does not return the feedback stream.
This operator only returns a stream that produces a
single element: the final state of the iteration.

Just like iterate, this operator can be used to com-
pute some values with the help of a scope-local state, but the computation always
uses the same input data at each iteration.
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1 let source = IteratorSource::new(1..limit);
2 let (state, remaining) = env
3 .stream(source)
4 .shuffle()
5 .map(|n| (0, n, n)) // (# of steps, current val, original val)
6 .iterate(
7 1000, // number of iterations
8 (0, 0), // initial state: (max steps, starting value)
9 // loop body

10 |s, _state| {
11 s
12 .filter(|(_c, cur, _n)| *cur != 1) // remove 1s
13 .map(|(c, cur, n)| {
14 // Collatz
15 if cur % 2 == 0 {
16 (c + 1, cur / 2, n)
17 } else {
18 (c + 1, cur * 3 + 1, n)
19 }
20 })
21 },
22 // build a DeltaUpdate: get the maximum number of steps and
23 // relative initial value
24 |delta: &mut (i32, i32), x| *delta = (x.0, x.2).max(*delta),
25 // update the global state with the highest number of steps
26 |state, delta| *state = delta.max(*state),
27 // loop condition: do all the 1000 iterations
28 |_state| true,
29 );

Listing 38: Example of usage of the iterate operator. It considers
all the integers between 1 and limit and finds the one that has the

longest Collatz sequence, keeping it in the iteration state.

1 let state = stream
2 .replay(
3 num_iterations,
4 initial_state,
5 |s, state| {
6 ...
7 },
8 |delta: &mut DeltaUpdate, x| *delta = ...,
9 |state, delta| *state = ...,

10 |_state| ...,
11 );

Listing 39: Example of replay operator.
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5.6.9 Sinks

Sinks are special operators used to consume the stream and to collect the results of
the computation. Since they do not generate any new output, they implement the
Operator<()> trait and cannot have any downstream operators.

CollectVec

The collect_vec sink is used to collect the elements of the stream into a Rust’s Vec.
In particular, collect_vec returns a StreamOutput<Vec<Out>> value, which has a
get method that can be used to obtain the vector of elements. That method should
be called only after calling the execute method on the environment. Note that this
vector is populated with data only on one “master” host: all the other ones will
not receive any data (see Listing 40). Beware that this operator will store all the
elements of the incoming stream in memory, which can potentially end up causing
out-of-memory errors.

1 // collect all the elements generated by the source
2 let res = env.stream(source).collect_vec();
3 // execute the computation
4 env.execute();
5 // get the values
6 if let Some(values) = res.get() {
7 // only the "master" host will get here
8 ...
9 }

Listing 40: Example of usage of the collect_vec sink.

ForEach

Instead of storing all the items of the stream in memory, it is sometimes useful
to execute a given action once for each item. This can be achieved by using the
for_each sink. It accepts a closure that is applied to every item received by the
operator. This provides great flexibility; for example, it can be used to write the items
to disk or to an external system (e.g a database). The for_each operator is usually
instantiated multiple times on multiple hosts, so that items can be consumed in
parallel. As an example, Listing 41 prints all the items of the stream to the standard
output.

1 // print all the items to the standard output
2 stream.for_each(|n| println!("Item: {}", n));
3 // execute the computation
4 env.execute();

Listing 41: Example of usage of the for_each sink.
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5.6.10 Multiple streams

With respect to RStream, one of the main advantages of Noir is the support for
multiple streams executing concurrently. In particular, multiple streams can be
merged into a single one or, conversely, a single stream can be split into multiple
ones.

Split

The split operator is used to generate multiple streams from a single one. It accepts
as parameter the number of duplicated streams to be generated. This operator
returns a vector containing as many streams as requested. These streams will all
contain the same elements of the input stream. The split operator can be useful in
many cases, for example to make self-joins, that is a join between a stream and itself
(see Listing 42).

1 // duplicate the stream into two which have the same elements
2 let streams = stream.split(2);
3 let s1 = streams.pop().unwrap();
4 let s2 = streams.pop().unwrap();
5 // self-join
6 s1.join(s2, ..., ...);

Listing 42: Example of usage of the split operator.

Concat

The concat operator is the opposite of split. It is used to merge two streams into
one that contains the elements of both of them. However, the two input streams
must have the same type, the same degree of parallelism and it is not possible to
merge timestamped streams with non-timestamped ones. When used on keyed
streams, also the type of the keys must match.

1 // merge the two streams into one
2 let stream = stream1.concat(stream2);

Listing 43: Example of usage of the concat operator.

Zip

Just like concat, the zip operator is used to merge two streams into a single one.
However, in this case the output stream does not simply contain the items coming
from both the input streams. Instead, it will contain pairs of items, where the first
element of the pair comes from the first input stream and the second element is
from the second stream. Note that if the two input streams do not have the same
number of items, then items coming from the bigger stream that are not paired will
be discarded. Finally, the zip operator is not instantiated multiple times, so it can
become the bottleneck of the system.
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The same limitations to the two input streams imposed by concat are also required
by the zip operator. This means that it is not possible to mix timestamped and
non-timestamped streams and the two input streams must have the same degree of
parallelism. It is not necessary, however, that they have the same type of items.

1 // "zip up" the two streams
2 let stream = stream1.zip(stream2);

Listing 44: Example of usage of the zip operator.

5.6.11 Miscellaneous

The operators in this last section do not fall in any of the previous categories, they
can be used for customizing the general behavior of the streams.

AddTimestamps

The add_timestamps operator is used to add a timestamp, in event-time domain, to
each data tuple and to generate watermarks. This operator is usually added right
after creating a stream from a specified source and it requires two closures (see
Listing 45). The first one is called on each item, and it must return the timestamp
associated to it. The second function is also called on each tuple, but it returns an
optional watermark.

Note that the second closure must return watermarks that are coherent with the
timestamps of the data tuples. In particular, when a watermark with timestamp t is
generated, the following items cannot have a timestamp that comes before t.

1 // create a stream and add timestamps
2 env.stream(source).add_timestamps(
3 // each item has a timestamp equal to its value, in milliseconds
4 |&n| Timestamp::from_millis(n),
5 // given an item and its timestamp, generate a watermark
6 // only if the item is even
7 |&n, &ts| if n % 2 == 0 { Some(ts) } else { None }
8 );

Listing 45: Example of usage of the add_timestamps operator.

BatchMode

The batch_mode operator is used to change the batch mode of the stream (see
Section 4.4). The selected batch mode will be applied to the current block and to the
following ones.
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1 // set the batch mode to "fixed" with given size
2 env.stream(source).batch_mode(BatchMode::fixed(1024));
3 // set the batch mode to "adaptive" with given size and timeout
4 env.stream(source).batch_mode(
5 BatchMode::adaptive(256, Duration::from_millis(100)));

Listing 46: Example of usage of the batch_mode operator.

MaxParallelism

Sometimes it might be useful to decide how many times a block can be instantiated.
This can be done with the help of the max_parallelism operator. It accepts one
integer, the maximum number of instances that can be spawned; a new block with
this limit is then created.

1 stream
2 // make sure the following block has exactly one instance
3 .max_parallelism(1);

Listing 47: Example of usage of the max_parallelism operator.

Please note that this represents only an upper bound, since in some cases the
resources might not be enough to spawn all the instances requested. Beware that
this limit is reset to the default one when an operator splits the block into two. As
an example, this operator can be used to make sure that a block is instanced only
once (see Listing 47).

Unkey and DropKey

The unkey and drop_key operators are used to remove the logical partitioning from
a keyed stream. The tuples are not sent over the network, so they stay in the host
they were in. These operators can be applied to a KeyedStream and they return
a Stream. However, while unkey returns a stream composed of key-value pairs,
drop_key returns a stream containing only the values (see Listing 48).

1 // create a partitioned stream of key-value pairs
2 stream1.group_by(...)
3 // remove the partitioning while keeping the key-value pairs
4 .unkey();
5

6 // create a partitioned stream of key-value pairs
7 stream2.group_by(...)
8 // remove the partitioning and the keys, keeping only the values
9 .drop_key(); // equivalent to .unkey().map(|(_k, v)| v)

Listing 48: Example of usage of the unkey and drop_key operators.
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Evaluation 6
This chapter shows many experimental results to evaluate the performance and
behavior of Noir under a number of different conditions. We analyze both streaming
and batch processing workloads in synthetic and real-world scenarios, and measure
the latency and throughput of the system under varying types of load. We also
investigate the expressiveness and ease-of-use of each system by looking at the lines
of code needed to implement each benchmark. All the results are presented with a
comparison with existing frameworks, showing how Noir performs with respect to
them.

6.1 Environment

All the benchmarks in this chapter are executed using four virtual machines provided
by AWS EC2 [15]. Table 6.1 reports their main characteristics.

Machine type c5.2xlarge
Zone us-east-2b
Operating system Ubuntu 20.04.3 LTS

CPU Intel(R) Xeon(R) Platinum 8124M CPU
CPU Frequency 3.00 GHz
CPU Cores 4
CPU Threads 8
Cache L1i 128 KiB
Cache L1d 128 KiB
Cache L2 4 MiB
Cache L3 24.75 MiB (shared between 36 hardware threads)
RAM 16 GiB

Network 5 Gbps
Ping 0.12 ms

Table 6.1: Characteristics of the virtual machines used in the evalua-
tion.

The datasets we consider are small enough to fit in the Page Cache memory area
managed by the kernel. For this reason, the first warm-up run of each benchmark
is not timed, so that the dataset can be cached to RAM. Therefore, subsequent
executions of the same benchmark do not depend on the speed of the disks, given
that the Linux kernel serves the file content directly from RAM and avoids accessing
the disk.
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Table 6.2 contains the versions of the tools used in the benchmarks. The MPI
programs are executed with the following extra flags:

-oversubscribe Allows to run the benchmark with all the available cores, even the
hyperthreading ones;

-mca btl_base_warn_component_unused 0 Ignores the warning messages about
the unused high-bandwidth network card installed in the machine (it is not
available in our VM);

–map-by hwthread Map each MPI process to a single hardware thread;

-display-map Displays the mapping of the MPI processes to the hardware threads;

-mca mpi_yield_when_idle 1 Disable the busy-waiting loop in the MPI library.

RStream commit aacc085 (30/08/2021)
Rust 1.54.0

Flink 1.11.2
Java openjdk 14.0.2

MPI Open MPI 4.0.3
OpenMP 4.5
GCC 9.3.0

Table 6.2: Versions of the used tools.

6.2 Lines of Code

To get a rough idea of the effort required to use each framework, we measured the
amount of code needed to implement each benchmark. The results are reported in
Table 6.3. The values refer to the number of lines of code, excluding comments and
blank lines, as measured by tokei [35].

Benchmark RStream Noir Flink MPI Timely

Non-associative Wordcount 38 50 – – 95
Associative Wordcount 39 49 41 280 –
Windowed Wordcount 39 48 59 218 –
Car Accidents 155 220 159 790 * –
Rolling Top Words – 193 226 – –
:-means 157 167 200 419 * –
Enum Triangles – 57 212 309 * –
Connected Components – 94 161 152 * –
PageRank – 83 203 144 * –
Transitive Closure – 59 141 – –

Table 6.3: Lines of code, excluding comments and empty lines, of all
the tested benchmarks.

The cells marked with an asterisk do not include the code needed for the CSV parser.
Those lines are not counted since the parser can be simply downloaded and reused.
In fact, we used fast-cpp-csv-parser [17], which adds around 1000 lines of code.
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We can see that, in the simplest benchmarks, Noir, RStream and Flink need pretty
much the same amount of code. However, in the more complicated ones like Enum
Triangles, Connected Components, and PageRank, Noir requires a lot less code than
Flink. In almost all the cases, the MPI implementation is the longest, even without
considering the code for the CSV parser.

6.3 Benchmarks

This section shows the performance of Noir in heterogenous benchmarks conceived
to stress various aspects of the system. Indeed, Noir is compared with the systems
introduced in Chapter 3 in both batching and streaming workloads. Furthermore,
we analyzed the performance and the latency introduced by the network in the
latency benchmark.

Flink, RStream and Noir share the same abstraction and their APIs are very similar,
therefore our benchmarks are implemented in a comparable way, using the exact
same constructs whenever possible. On the other end, MPI is a very different tool,
and the implementation of the benchmarks is not as straightforward as for the other
frameworks. Since usually it is not possible to imitate the other systems, we opted
for writing the MPI’s benchmarks in the most natural way, even if under the hood
the programs behave quite differently with respect to the other frameworks.

The results of the benchmarks reported in the following sections are the average of
the results of three timed runs.

6.3.1 Wordcount

Wordcount is the simplest benchmark we analyzed. The dataset is a text file contain-
ing a number of words separated by spaces and new lines. The program counts how
many times each word appears in the whole document. To do so, the file is split
between the instances so that each instance has a different part of the dataset. We
analyzed two possible implementations, a non-associative and an associative one.

The non-associative algorithm works as follows:

• Instance 8 reads the 8-th chunk of the dataset;

• The lines are normalized by removing the punctuation (using a regular expres-
sion) and lower casing them;

• Each word F in the chunk is sent to the instance A = hash(F) % num_instances;

• Instance A receives all the copies of the word F and counts them;

The associative variant works as follows:

• Instance 8 reads the 8-th chunk of the dataset;

• The lines are normalized by removing the punctuation (using a regular expres-
sion) and lower casing them;

• The number of occurrences = of each word F in the chunk is counted (local
reduction);

• The pair (F, =) is sent to the instance A = hash(F) % num_instances;



72 Chapter 6. Evaluation

• Instance A receives all the pairs, and aggregates the counts;

Note that, in the associative variant, the words are not immediately sent over the
network. Instead, they are aggregated locally and only the partially aggregated
results are sent. This results in a significant performance improvement since the
network is used a lot less.

We used two different datasets: Gutenberg and Randomwords.

The Gutenberg dataset is the same used in the RStream thesis [6]. It is a 4 GB file
containing a subset of the Project Gutenberg library of Public Domain books [21]. Being
based on real-world text, there are many distinct words (100 443), but only few of
them have many occurrences.

The Randomwords dataset contains randomly generated words (1 GiB, 100 443
distinct words with uniformly distributed frequency).

The main difference between the two datasets is the words distribution: in Random-
words the distribution of the load is uniform, while in Gutenberg the presence of
a few very frequent words generates an uneven workload distribution between the
instances. In the latter case, the distribution may lead to some performance degrada-
tion due to the uneven back-pressure. This can be easily seen from Figure 6.1: the
instance 19 (in the third host) has more than double the words of most of the other
instances.
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Figure 6.1: Word distribution of Gutenberg between the instances
with 4 hosts.

Non-associative Wordcount

From Table 6.4 and Figure 6.2 we can see that, with the Gutenberg dataset, RStream
is slightly faster than Noir with one host, and it scales better with more hosts.
This performance gap is not present with the Randomwords dataset (Table 6.5 and
Figure 6.3). We suspect this is due to the fact that, with uneven back-pressure, the
network stack of Noir loses performance due to multiplexing (see Section 4.6). Thus,
RStream might be faster because it uses many more network channels, allowing the
faster instances to advance without waiting for the slower ones.
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Hosts Cores RStream Noir Timely

1 8 90.10 s (± 0.11 s) 88.72 s (± 0.21 s) 77.61 s (± 0.62 s)

2 16 51.17 s (± 0.09 s) 61.96 s (± 1.12 s) 49.92 s (± 0.21 s)

3 24 37.46 s (± 0.16 s) 44.35 s (± 0.51 s) 36.56 s (± 0.34 s)

4 32 30.04 s (± 0.30 s) 39.73 s (± 0.11 s) 31.29 s (± 0.07 s)

Table 6.4: Results of the non-associative Wordcount benchmark with
the Gutenberg dataset.
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Figure 6.2: Execution time and speedup of the non-associative Word-
count benchmark with the Gutenberg dataset.

Hosts Cores RStream Noir Timely

1 8 15.39 s (± 0.11 s) 14.34 s (± 0.07 s) 12.61 s (± 0.00 s)

2 16 8.80 s (± 0.04 s) 9.20 s (± 0.20 s) 7.53 s (± 0.20 s)

3 24 6.27 s (± 0.00 s) 6.42 s (± 0.07 s) 5.41 s (± 0.08 s)

4 32 5.17 s (± 0.02 s) 4.90 s (± 0.09 s) 4.51 s (± 0.41 s)

Table 6.5: Results of the non-associative Wordcount benchmark with
the Randomwords dataset.
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Figure 6.3: Execution time and speedup of the non-associative Word-
count benchmark with the Randomwords dataset.

Timely Dataflow, is generally the fastest of the three, even if for a small margin. On
the other hand, both RStream and Noir offer a richer API than Timely, which allows
them to write the associative variant of this benchmark. The associative variant is
not only much faster, but also requires less network bandwidth to be fast.
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Associative Wordcount

We tested many different implementations of the associative variant, since it is the
most natural way to implement this benchmark. Not only the execution time is a lot
shorter, but also the network usage is orders of magnitude smaller.

Hosts Cores RStream Noir Flink MPI

1 8 49.88 s (± 0.39 s) 50.88 s (± 0.15 s) 226.97 s (± 1.18 s) 10.56 s (± 0.02 s)

2 16 25.97 s (± 0.02 s) 25.74 s (± 0.12 s) 118.15 s (± 0.24 s) 6.20 s (± 0.05 s)

3 24 17.44 s (± 0.04 s) 17.36 s (± 0.05 s) 80.80 s (± 1.13 s) 4.43 s (± 0.11 s)

4 32 13.28 s (± 0.02 s) 13.14 s (± 0.09 s) 60.01 s (± 0.06 s) 3.63 s (± 0.09 s)

Table 6.6: Results of the Associative Wordcount benchmark with the
Gutenberg dataset.
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Figure 6.4: Execution time and speedup of the Associative Wordcount
benchmark with the Gutenberg dataset.

This version is much faster than the non-associative one, and pretty much all
implementations scale near ideally (see Table 6.6 and Figure 6.4). RStream and Noir
have pretty much the exact same performance, MPI is quite a bit faster, while Flink
is a lot slower by a factor of nearly 5×.

In Section 6.4 there is a detailed explanation of the network usage of this benchmark
in the two versions, in which we can see that Noir is able to use the network a lot
less than the other frameworks thanks to its variable length encoding for integer
values.

6.3.2 Windowed Wordcount

Windowed Wordcount is a simple variation of Wordcount (see Section 6.3.1), which
shows how to use count windows. The dataset format is the same used for the
Wordcount benchmark: a text file, where each line contains many words separated
by spaces. First, the file is read concurrently by multiple instances, and each line is
split into a set of words. This stream is then partitioned by word, which means that
the items of each partition are all the same word. On each partition, a sliding count
window with size 10 and step 5 is applied. Each window is then reduced into a tuple
(F, =), where F is the word corresponding to the partition and = is the number of
times F is contained in the window. Note that, for each word, = will always be equal
to ten, except for the last window in each partition which might be incomplete.
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We ran this benchmark with the same two datasets of Section 6.3.1. As in the
non-associative Wordcount, also in Windowed Wordcount with the Gutenberg dataset
there is an uneven load distribution among the hosts.

Hosts Cores RStream Noir Flink MPI

1 8 104.17 s (± 0.36 s) 105.36 s (± 1.08 s) 272.55 s (± 3.93 s) 27.71 s (± 0.17 s)

2 16 54.99 s (± 0.11 s) 70.66 s (± 0.09 s) 178.49 s (± 9.09 s) 20.38 s (± 0.11 s)

3 24 41.98 s (± 0.21 s) 52.46 s (± 0.30 s) 115.15 s (± 11.32 s) 14.28 s (± 0.10 s)

4 32 34.06 s (± 0.20 s) 44.91 s (± 0.27 s) 101.76 s (± 8.91 s) 15.36 s (± 0.01 s)

Table 6.7: Results of the Windowed Wordcount benchmark with the
Gutenberg dataset.
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Figure 6.5: Execution time and speedup of the Windowed Wordcount
benchmark with the Gutenberg dataset.

The results with the Gutenberg dataset can be found in Table 6.7 and Figure 6.5.

With the Gutenberg dataset we can see the same behavior as in the non-associative
Wordcount, RStream is a bit faster with a single host, and the gap grows adding more
hosts. As before, Flink is much slower (by at least 2×), and MPI is quite a bit faster.

Hosts Cores RStream Noir Flink MPI

1 8 19.46 s (± 0.10 s) 21.78 s (± 0.13 s) 64.17 s (± 0.13 s) 3.42 s (± 0.02 s)

2 16 10.70 s (± 0.11 s) 12.80 s (± 0.14 s) 32.01 s (± 0.10 s) 1.91 s (± 0.12 s)

3 24 7.55 s (± 0.01 s) 9.35 s (± 0.07 s) 23.99 s (± 0.13 s) 1.25 s (± 0.01 s)

4 32 6.15 s (± 0.01 s) 7.32 s (± 0.09 s) 19.98 s (± 0.04 s) 0.96 s (± 0.00 s)

Table 6.8: Results of the Windowed Wordcount benchmark with the
Randomwords dataset.

The results with the Randomwords dataset can be found in Table 6.8 and Figure 6.6.

This same behavior of the Gutenberg dataset is observed with the Randomwords
dataset, and RStream is still faster than Noir. However, the performance gap is
reduced: when considering four hosts, Noir is 31 % slower with the Gutenberg
dataset, but only 19 % when considering the Randomwords one. We suspect that
the implementation of windows in Noir is not efficient as it could be. However, it
must be noted that Noir provides many more aggregators on windows with respect
to RStream, and its API is much more flexible.
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Figure 6.6: Execution time and speedup of the Windowed Wordcount
benchmark with the Randomwords dataset.

6.3.3 Car Accidents

The Car Accidents benchmark executes three different queries on the dataset Motor
Vehicle Collisions [20] of the city of New York. This is a CSV file that contains
information about the crashes happened in New York, including the date and time,
the borough, the number of people killed or injured, the contributing factors of the
accident and the type of the vehicles involved. The dataset used to benchmark the
various systems is 4.3 GB big, and it corresponds to the original dataset duplicated
25 times, for a total of 23 898 200 events.

The first query calculates the total number of fatal crashes, that is accidents in which
at least one person is killed, for each week. This can be done very easily by simply
partitioning the stream by week, and then aggregating each individual partition.

Considering the second query, we want to know, for each contributing factor, how
many accidents were due to that factor and how many of them were also lethal. Note
that each accident can have one or more contributing factors related to it. Similarly
to the first query, this can be achieved by partitioning the stream appropriately and
aggregating each partition independently.

The third and final query requires finding out how many accidents there were in
each borough each week, but also the average percentage of lethal accidents in each
borough for each week, aggregating among all years. This can be calculated in
two steps. The first one calculates how many accidents there were in each week
in each borough, and how many of them were lethal. The second step uses these
intermediates results to calculate, for each week in a year, the total number of
accidents and the total number of lethal ones. The average percentage is just the
ratio of these two values.

This benchmark is very useful in checking the expressiveness and the richness of
the feature set of the various systems, given that the queries get progressively more
difficult to implement. In particular, one of the advantages of Noir over RStream
is the ability to share the data source between multiple streams. This makes it
possible to read and parse the CSV file only once, instead of doing that for each
query, resulting in significant performance improvements.

In Table 6.9 and Figure 6.7, we can see again that Flink is slower than the other
implementations, with RStream and Noir tied to the lead when they read the CSV
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Hosts Cores RStream Noir Noir (shared) Flink MPI

1 8 32.97 s (± 0.33 s) 32.38 s (± 0.10 s) 23.87 s (± 0.13 s) 66.02 s (± 0.13 s) 41.70 s (± 0.11 s)

2 16 17.19 s (± 0.05 s) 16.33 s (± 0.04 s) 12.20 s (± 0.45 s) 33.97 s (± 0.27 s) 21.23 s (± 0.06 s)

3 24 11.68 s (± 0.02 s) 10.99 s (± 0.09 s) 8.21 s (± 0.05 s) 26.33 s (± 0.17 s) 14.91 s (± 1.20 s)

4 32 9.02 s (± 0.04 s) 8.50 s (± 0.20 s) 6.44 s (± 0.25 s) 24.11 s (± 2.60 s) 10.69 s (± 0.02 s)

Table 6.9: Results of the Car Accidents benchmark.

8 16 24 32
Number of cores

0

10

20

30

40

50

60

Ex
ec

ut
io

n 
tim

e 
(s

)

Car Accidents
RStream
Noir (shared)
Noir
Flink
MPI

8 16 24 32
Number of cores

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

du
p

Car Accidents
ideal
RStream
Noir
Noir (shared)
Flink
MPI

Figure 6.7: Execution time and speedup of the Car Accidents bench-
mark.

file once per query. However, when Noir uses a single shared source for all the
queries, the speedup with respect to RStream is around 30 % considering all the four
hosts.

The MPI implementation reads the dataset once per query, and it is a bit slower
than RStream and Noir probably because of a poorly optimized implementation.
This shows that, even when developing ad-hoc solutions using low-level primitives,
good performance is not guaranteed and a lot of tuning is needed. Even without
advanced optimizations, its source code has more than twice the lines of code of
Noir (see Section 6.2).

From the point of view of the scalability, all the implementations but Flink’s scale
pretty much ideally with the number of cores, while Flink struggles with more hosts.

6.3.4 Rolling Top Words

While most of the benchmarks in this chapter consist of batch processing workflows,
Rolling Top Words tests the streaming capabilities of Noir, and it represents well a
very typical real-world application.

The input consists in a stream of words, called hashtags in this case. The generator
produces a random hashtag from a set of 50 (e.g. #love, #instagood, #fashion)
with a geometric distribution of parameter � = 0.1: the most frequent word has
probability � = 10%, the second (1−�)� = 9%, the third (1−�)2� = 8.1%, and so on.

The output, at every half second, is the top : = 4 most frequent words posted in the
last second. Therefore, the stream is processed with an event-time sliding window
of size 1 s, that slides every 500 ms.
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In Noir, the stream is processed by a first window that counts the number of
occurrences of each hashtag. It is followed by a window_all, a non-parallelizable
window, that selects the top : most frequent hashtags. Since this window cannot be
parallelized, it may become the bottleneck of the system. Instead, Table API is used
to implement this benchmark in Flink.

The data generator produces as many words as possible, spacing them exactly 1 ms
apart in event-time. This means that every window contains exactly 1000 hashtags.
The test measures how many words per second are processed; in this benchmark,
processing time and event time advance independently.
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Figure 6.8: Input throughput of Rolling Top Words in Flink, not
showing the first second.
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Figure 6.9: Input throughput of Rolling Top Words in Noir, not show-
ing the first second.

Figure 6.8 and Figure 6.9 show how many words per second Flink and Noir can
input into the stream. The first second of the execution is not considered, since the
throughput is not yet stable.
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We can notice that Flink scales pretty well from one host to three, but the forth one
does not increase the throughput by much. This suggests that the bottleneck is able
to handle at most three hosts before saturating. On the other hand, Noir does not
scale as well; the best performance is achieved with three hosts, but adding a forth
reduces the performance. However, Noir has a much higher throughput than Flink:
even with a single host it is around 25% faster than Flink with four hosts.

6.3.5 :-means

The :-means clustering algorithm receives as input a cloud of = 3-dimentional points,
and it partitions them into : clusters (see Figure 6.10). To each cluster corresponds a
centroid, and each point is part of the cluster with the nearest centroid. The algorithm
tries to minimize the total distance of the points from their corresponding centroid.

Figure 6.10: An example of a :-means dataset with 3 = 2. In this case
there are : = 5 obvious clusters.

This problem is NP-hard, however there exist efficient heuristic algorithms that
converge to a local optimum. This benchmark uses the standard (naive) :-means
algorithm, which is an iterative algorithm.

The initialization step is done by randomly selecting : points from the dataset:
they will be the initial : centroids used by the algorithm. Then, at each step, two
operations are performed:

• Each point is assigned to the nearest centroid;

• The list of centroids is updated by computing the mean of the points in each
cluster.

The algorithm terminates when the centroids do not change anymore, or when the
limit of iterations ℎ is reached.

This benchmark tries to analyze the performance of an iterative algorithm. The
impact of each parameter is analyzed separately by changing the value of : (the
number of centroids), ℎ (the number of iterations), and = (the number of points).
Each iteration of the algorithm considers each pair of point-centroid, therefore it has
a complexity of O(: · =). Overall, the algorithm has a complexity of O(: · = · ℎ).
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Hosts Cores RStream Noir Flink MPI

1 8 6.26 s (± 0.04 s) 4.68 s (± 0.03 s) 145.90 s (± 1.02 s) 3.58 s (± 0.00 s)

2 16 3.66 s (± 0.02 s) 2.52 s (± 0.03 s) 87.25 s (± 1.07 s) 1.95 s (± 0.01 s)

3 24 2.89 s (± 0.03 s) 1.89 s (± 0.12 s) 67.34 s (± 1.11 s) 1.40 s (± 0.01 s)

4 32 2.65 s (± 0.04 s) 1.79 s (± 0.02 s) 53.41 s (± 0.98 s) 1.14 s (± 0.01 s)

Table 6.10: Results of the :-means benchmark with : = 30, ℎ = 15
and = = 10 002 000.
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Figure 6.11: Execution time and speedup of the :-means benchmark
with : = 30, ℎ = 15 and = = 10 002 000. The second plot is the same

as the first, without Flink.

In Table 6.10 and in Figure 6.11 the results are shown for : = 30, ℎ = 15 and
= = 10 002 000. These results show that the performance of Noir is better than
RStream under these conditions, with MPI still being the best of all.

Flink, on the other hand, is much slower than the others, by up to a 30× factor with
respecto to Noir. This appears to be caused by the garbage collector threads that keep
stealing the CPU from the worker threads. Under a closer inspection of the code,
this is probably due to a very high number of allocations of “point” objects during
the iterations.

The aforementioned results are used as a baseline for the next analysis, which varies
one parameter at the time, looking at its impact on the performance of each system.

In Table 6.11 there is a comparison between the baseline and the results of the
benchmark with : = 300. The number of centroids has been increased by a factor of
10, essentially tenfolding the algorithm’s complexity. However, we can notice that
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Hosts Cores RStream Noir Flink MPI

1 8 26.21 s (± 0.08 s) 23.82 s (± 0.04 s) 252.23 s (± 2.98 s) 23.12 s (± 0.01 s)

* 1 8 6.26 s (± 0.04 s) 4.68 s (± 0.03 s) 145.90 s (± 1.02 s) 3.58 s (± 0.00 s)

2 16 13.58 s (± 0.01 s) 11.99 s (± 0.03 s) 144.71 s (± 0.07 s) 11.82 s (± 0.00 s)

* 2 16 3.66 s (± 0.02 s) 2.52 s (± 0.03 s) 87.25 s (± 1.07 s) 1.95 s (± 0.01 s)

3 24 9.54 s (± 0.04 s) 8.09 s (± 0.07 s) 104.62 s (± 0.02 s) 8.09 s (± 0.03 s)

* 3 24 2.89 s (± 0.03 s) 1.89 s (± 0.12 s) 67.34 s (± 1.11 s) 1.40 s (± 0.01 s)

4 32 7.61 s (± 0.04 s) 6.25 s (± 0.12 s) 83.82 s (± 1.06 s) 6.21 s (± 0.01 s)

* 4 32 2.65 s (± 0.04 s) 1.79 s (± 0.02 s) 53.41 s (± 0.98 s) 1.14 s (± 0.01 s)

Table 6.11: Results of the :-means benchmark with : = 300 (increased
from : = 30), ℎ = 15 and = = 10 002 000. The lines marked with an

asterisk are the same as the ones in Table 6.10 (the baseline).

the running times increase by factors smaller than 10×. This is due to the fact that
not all the execution time is spent making numerical operations, but some of it is
lost to synchronization and communication.

The relative order between the 4 frameworks remains the same. However, MPI and
Noir are now very close in term of performance, while RStream is a little bit slower.
This is expected, given that increasing the number of centroids increases primarily
the number of numerical operations, which do not require any synchronization.
Instead, the cost for the communication remains quite similar, so its relative weight
with respect to the whole computation decreases. In any case, Flink is still the worst
performer.

Hosts Cores RStream Noir Flink MPI

1 8 9.69 s (± 0.01 s) 8.26 s (± 0.01 s) 297.77 s (± 0.97 s) 6.35 s (± 0.02 s)

* 1 8 6.26 s (± 0.04 s) 4.68 s (± 0.03 s) 145.90 s (± 1.02 s) 3.58 s (± 0.00 s)

2 16 5.44 s (± 0.03 s) 4.35 s (± 0.04 s) 165.50 s (± 1.04 s) 3.34 s (± 0.01 s)

* 2 16 3.66 s (± 0.02 s) 2.52 s (± 0.03 s) 87.25 s (± 1.07 s) 1.95 s (± 0.01 s)

3 24 4.29 s (± 0.03 s) 3.37 s (± 0.07 s) 123.50 s (± 0.97 s) 2.36 s (± 0.00 s)

* 3 24 2.89 s (± 0.03 s) 1.89 s (± 0.12 s) 67.34 s (± 1.11 s) 1.40 s (± 0.01 s)

4 32 3.78 s (± 0.05 s) 2.83 s (± 0.24 s) 100.13 s (± 0.90 s) 1.86 s (± 0.00 s)

* 4 32 2.65 s (± 0.04 s) 1.79 s (± 0.02 s) 53.41 s (± 0.98 s) 1.14 s (± 0.01 s)

Table 6.12: Results of the :-means benchmark with : = 30, ℎ = 30
(increased from ℎ = 15) and = = 10 002 000. The lines marked with

an asterisk are the same as the ones in Table 6.10 (the baseline).

Doubling the number of iterations (see Table 6.12) causes Flink’s runtime to nearly
double, while the execution times of the other frameworks usually increase by a
smaller factor. Under these conditions, the implementation in MPI scales better than
the others, and Noir gains a bit of margin from RStream. The gap between Flink
and the others is even larger than before, with a factor of at least 35× with respect to
Noir.
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Hosts Cores RStream Noir Flink MPI

1 8 11.87 s (± 0.09 s) 9.30 s (± 0.01 s) 282.21 s (± 3.96 s) 6.85 s (± 0.00 s)

* 1 8 6.26 s (± 0.04 s) 4.68 s (± 0.03 s) 145.90 s (± 1.02 s) 3.58 s (± 0.00 s)

2 16 6.56 s (± 0.05 s) 4.76 s (± 0.06 s) 156.01 s (± 0.96 s) 3.59 s (± 0.00 s)

* 2 16 3.66 s (± 0.02 s) 2.52 s (± 0.03 s) 87.25 s (± 1.07 s) 1.95 s (± 0.01 s)

3 24 5.06 s (± 0.03 s) 3.49 s (± 0.10 s) 114.62 s (± 0.08 s) 2.50 s (± 0.01 s)

* 3 24 2.89 s (± 0.03 s) 1.89 s (± 0.12 s) 67.34 s (± 1.11 s) 1.40 s (± 0.01 s)

4 32 4.34 s (± 0.04 s) 2.88 s (± 0.19 s) 89.44 s (± 1.15 s) 1.96 s (± 0.00 s)

* 4 32 2.65 s (± 0.04 s) 1.79 s (± 0.02 s) 53.41 s (± 0.98 s) 1.14 s (± 0.01 s)

Table 6.13: Results of the :-means benchmark with : = 30, ℎ = 15
and = = 20 004 000 (increased from = = 10 002 000). The lines marked
with an asterisk are the same as the ones in Table 6.10 (the baseline).

The last version of this benchmark (see Table 6.13) uses a dataset that is double in
size. Again, the running time should be doubled, and in this case the execution
times are about twice as much as the baseline, as expected.

6.3.6 Enum Triangles

This is the first benchmark that deals with graph processing. In Enum Triangles the
input is an undirected graph, and the output is the list of all the triangles in it. A
triangle is a triplet of vertices that are directly connected together. In Figure 6.12
you can find an example.

1

2

3

Figure 6.12: An example of the Enum Triangles benchmark. There are
6 nodes and 7 edges, forming a total of 3 triangles.

This test shows the performance of the join operator. The algorithm works as
follows:

• For each undirected edge from 0 to 1, the algorithm considers only the directed
edge 0 → 1, with 0 < 1;

• The edges are grouped by their source vertex;

• For each vertex, the list of its neighbors is computed;

• From the list of neighbors, the list of potential triangles is generated, that is the
list of pair of edges sharing the same source vertex;

• This list is filtered (using a join) keeping only the closed triangles;

• Finally, the number of triangles is counted.
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The dataset we used is a randomly generated Erdős–Rényi graph1, with 1500 nodes
and 900 000 edges. In total there are 288 000 876 triangles in the graph.

Hosts Cores Noir Flink MPI

1 8 26.22 s (± 0.27 s) 269.30 s (± 0.95 s) 7.44 s (± 0.05 s)

2 16 17.27 s (± 0.33 s) 144.46 s (± 4.12 s) 4.39 s (± 0.05 s)

3 24 13.36 s (± 0.16 s) 96.41 s (± 0.11 s) 3.03 s (± 0.09 s)

4 32 10.98 s (± 0.17 s) 70.38 s (± 0.16 s) 2.68 s (± 0.08 s)

Table 6.14: Results of the Enum Triangles benchmark.
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Figure 6.13: Execution time and speedup of the Enum Triangles
benchmark.

From Table 6.14 and Figure 6.13 we can see how the execution time of Noir is much
lower than the Flink’s one, up to a factor of 10×. Even though Flink is much slower
than Noir, its scalability is close to be ideal. The implementation in MPI is a quite a
bit faster than the other ones.

6.3.7 Connected Components

As the name suggests, Connected Components counts the number of connected com-
ponents in a graph. That is, given an undirected graph, the number of maximal
subgraphs whose nodes are all reachable from each other. In Figure 6.14 you can
find a very simple example.

This is an iterative and exact algorithm, that also includes the join operator inside
the loop body. A component ID is assigned to each node, initially equal to the node
ID. This identifier corresponds to the smallest node ID in the component. The
algorithm repeats the following steps until the component ID of each node reaches
convergence:

• Process all the edges in the graph;

• If there is an edge 0 → 1 and comp0 ≠ comp1 , and assuming without loss of
generality that comp0 < comp1 , then comp1 is set to comp0 .

The number of iterations of this algorithm is, in the worst case, equal to the diameter
of the largest component.

1In an Erdős–Rényi network each pair of nodes has the same probability of being connected by an
edge.
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0 5

32 7

6
4 1

component 0
component 4

component 1

Figure 6.14: An example of the Connected Components benchmark.
There are 8 nodes and 6 edges, forming a total of 3 connected compo-

nents.

The dataset used is a random graph with 100 components, 200 000 nodes and
5 000 000 edges. The number of iterations required to reach convergence is 6.

Hosts Cores Noir Flink MPI

1 8 4.21 s (± 0.04 s) 17.36 s (± 1.22 s) 1.13 s (± 0.03 s)

2 16 2.52 s (± 0.02 s) 12.73 s (± 0.14 s) 1.10 s (± 0.01 s)

3 24 2.04 s (± 0.07 s) 10.63 s (± 0.11 s) 1.06 s (± 0.00 s)

4 32 1.55 s (± 0.04 s) 10.33 s (± 0.41 s) 1.04 s (± 0.00 s)

Table 6.15: Results of the Connected Components benchmark.
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Figure 6.15: Execution time and speedup of the Connected Components
benchmark.

The results can be found in Table 6.15 and Figure 6.15.

This benchmark is quite simple, and it allows some sophisticated primitives to be
used by MPI. The implementation in MPI uses MPI_Allgatherv to synchronize the
array with the component IDs, essentially placing all the communication at the
end of each iteration. This results in a very low overhead of communication, and
therefore in very short execution times.

On the other hand, Noir is from 4× up to 6× faster than Flink. The implementation
in Flink uses delta iterations, while the one in Noir keeps the components in the
iteration’s state.

All the implementations do not scale particularly well. MPI seems not to scale at all,
but its execution time is very low from the start, so probably most of it is due to the
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communication overhead. In any case, Noir scales better than both Flink and MPI,
achieving more than 2.5× performance with four hosts with respect to a single one.

6.3.8 PageRank

As the name implies, the PageRank benchmark is used to evaluate the performance
of the various systems when executing the PageRank algorithm. This algorithm can
be applied to directed graphs, and it is used to rate the importance of each node in
the network. Each node has a weight associated to it, called rank. The bigger the
rank, the more important the node is. This benchmark exploits many features of
Noir, including iterations, iterations’ state, side inputs and joins.

In particular, the algorithm works as follows. Initially, to each node is assigned the
same rank, and the sum of all the ranks must be equal to one. Then, each node
evenly distributes its own rank between all the nodes that it can reach using one of
its outbound edges. Finally, the ranks are modified using a damping factor (equal to
0.85 in our case). These steps are repeated until convergence, that is until the rank
of each node does not change anymore, or when the number of iterations reaches a
chosen limit.

The dataset used is a network derived from the Twitter social network, provided by
the Stanford Network Analysis Project [23]. It is a 26 MB CSV file containing the edges
of the graph. This graph is composed of 81 306 nodes and 2 420 766 directed edges.
The computation is performed for 100 iterations.

Hosts Cores Noir Flink MPI

1 8 8.60 s (± 0.08 s) 136.88 s (± 1.95 s) 3.70 s (± 0.09 s)

2 16 6.19 s (± 0.16 s) 130.03 s (± 1.10 s) 3.19 s (± 0.06 s)

3 24 5.50 s (± 0.24 s) 125.44 s (± 3.73 s) 2.52 s (± 0.03 s)

4 32 5.27 s (± 0.09 s) 125.69 s (± 0.95 s) 2.39 s (± 0.02 s)

Table 6.16: Results of the PageRank benchmark.
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Figure 6.16: Execution time and speedup of the PageRank bench-
mark.

The results of this benchmark can be found in Table 6.16 and Figure 6.16.
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As in Section 6.3.7, this benchmark allows for some sophisticated primitives to be
used by MPI. The rank of the nodes is shared via MPI_Allgatherv only at the end
of each iteration, achieving a very low synchronization overhead.

Just like the previous benchmarks, Noir’s performance is much better than Flink’s,
being at least 15× faster in all the scenarios considered. In any case, the scalability
of all the systems is quite far from being ideal, the best being Noir that is able to
achieve only about 1.5× the performance of a single host, when using four of them.

6.3.9 Transitive Closure

The last batch processing benchmark is Transitive Closure. This algorithm computes
the transitive closure of a directed graph: every time there are the edges 0 → 1 and
1 → 2, it adds, if missing, the edge 0 → 2, until convergence (see Figure 6.17).

Figure 6.17: An example of the Transitive Closure benchmark. The
original graph has 5 nodes and 4 edges. Its transitive closure adds 4

new edges (the dashed ones).

The peculiarity of this algorithm is that it is iterative, and the size of the data inside
the loop grows over time. Indeed, the number of edges at the end of the algorithm
can be quadratic with respect to the number of nodes, and the number of elements
present in the stream during the computation can be even cubic.

The dataset used for this benchmark consists in a randomly generated network with
2000 nodes and 3000 edges. At the end of the execution, there are 1 448 937 edges
present in the transitive closure of the graph.

Hosts Cores Noir Flink

1 8 15.47 s (± 0.21 s) 68.56 s (± 0.62 s)

2 16 8.49 s (± 0.10 s) 47.83 s (± 3.71 s)

3 24 6.30 s (± 0.06 s) 39.08 s (± 0.16 s)

4 32 5.26 s (± 0.13 s) 36.70 s (± 0.53 s)

Table 6.17: Results of the Transitive Closure benchmark.

From Table 6.17 and Figure 6.18, we can see that, again, Noir is much better than
Flink, both in terms of execution time and scalability. This is probably due to the
memory management of Flink, which might struggle in this benchmark as there are
many objects to allocate.
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Figure 6.18: Execution time and speedup of the Transitive Closure
benchmark.

6.3.10 Latency

This last benchmark tries to measure the latency of the system. The setup is pretty
simple:

• A number of instances insert items at a given rate into the system;

• All the items are sent to the instance -0, which tags each of them with the
local system time;

• The items are sent to the instance -1, then to the instance -2, then -3, then -4;

• Finally, the items are sent back to -0, and the latency is computed using the
difference between the local system time and the time of the item.

In total there are 5 network shuffles included in the measurement; during the
computation the messages simply pass through the operators, without changing in
number. This computation is accurate because the system time is measured on the
same node, so there is no need to synchronize the clocks between the hosts.

We analyzed the latency under three scenarios:

• Light load (1000 items per second), with batch mode fixed to 1000;

• Light load (1000 items per second), with batch mode adaptive (1000 items,
50 ms of maximum delay);

• Heavy load (as many items as possible per second), with batch mode fixed to
1000.

In Figure 6.19 we can see the measurements of the latency under light load, with
batch mode fixed to 1000. Since the throughput is 1000 items per second, a batch is
filled in about one second. Therefore, when items enter the first batch, the first one
of them has to wait for 1 s, while the last one does not wait any time at all, triggering
the flush of the batch. This means that, after 1000 tuples, the batch is full and is sent
over the network. Note that items only have to wait at the beginning of the pipeline
at -0, given that when they reach the second host at -1 the batch is already full, so
it is immediately sent downstream.
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Figure 6.19: Latency with fixed size batching under light load.

We can see that, under light load, the latency can be very high. If the throughput is
constant, and no message is added or removed from the stream, we can estimate the
maximum latency as the batch size divided by the throughput.
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Figure 6.20: Latency with adaptive batching under light load.

Figure 6.20 shows the latency obtained by using the adaptive batching mode, instead
of the fixed one. We can see that the average latency is much lower, and it is very
consistent throughout the experiment. Each network shuffle adds around 50 ms
of delay at most, as configured, so the overall latency is around 250 ms given that
there are five steps. Just like with fixed batching, the first tuple entering the batch
has to wait the full batch time (50 ms), while the last one does not; therefore the
overall latency oscillates between 200 ms and 250 ms. For these reasons, the adaptive
batching mode is the one used by default one when no batch mode is specified.

The last variant of this benchmark is the one under heavy load. All the available
instances generate data as fast as possible, until the back-pressure slows them down.
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Figure 6.21: Latency with adaptive batching under heavy load.

The batch mode has a marginal role in this case, since the batches are filled almost
immediately.

The behavior can be divided into three parts:

• At the very start, when the system is empty, the latency is very low since the
batches are filled quickly, and they can reach the sinks of the stream without
slowdowns.

• Then the system starts to fill up. The latency is still low, but it starts growing
over time since the operators are not able to keep up with the throughput.

• Finally, the back-pressure slows down the whole system, including the sources,
stabilizing the latency at a near-constant value.

We can see those phases in Figure 6.21: the first one lasts for about the first 200 000
items, the second one for about the next 300 000, and the third one until the end of
the test.

6.4 Network Usage

By using the profiler (see Appendix B), we are able to study the network usage of the
two variants of the Wordcount benchmark. The Job Graph of both variants consists
in three blocks; this means that we can measure the network usage between the first
two blocks, and between the last two blocks. The results are shown in Table 6.18,
and they refer to the Gutenberg dataset. We can see that the associative variant
uses a lot less the network than the non-associative one, and this is due to the local
reduction done in the first block.

By using the iptables kernel module we are also able to precisely measure the
network usage of all the frameworks, between two hosts. In Table 6.19 we can see
the results of both the associative and non-associative variants. While Noir and
RStream work pretty much in the exact same way, Noir is able to use send much
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Connection Non-associative Associative

1–2 3.3 GiB 25.1 MiB
2–3 866 KiB 849 KiB

Table 6.18: Network usage of Noir when executing the two variants
of the Wordcount benchmark with the Gutenberg dataset, using four

hosts.

fewer bytes of data over the network, thanks to the variable-size integer encoding
provided by bincode [26].

Noir RStream Flink MPI

Associative 2.1 MiB 7.7 MiB 6.1 MiB 33.1 MiB
Non-associative 236.3 MiB 1032.1 MiB – –

Table 6.19: Network usage from the first to the second host while
running Wordcount with the Gutenberg dataset, using four hosts.
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Conclusions and Future Work 7
In this thesis we presented Noir, a stream-processing framework that aims to provide
easy to use facilities to construct custom computations, with minimal compromises
to scalability and performance.

The benchmarks show that Noir consistently outperforms Apache Flink, while
providing a very similar API and feature set. At the same time, Noir is on par with
RStream, as they have similar behavior in nearly all benchmarks; however, Noir
provides many improvements and new operators, including joins and more flexible
iterations. Finally, while low-level implementations in MPI are usually faster than
all the other competitors, Noir is able to rival and sometimes beat them in some
workloads. All considered, these results show that it is actually possible to have a
much better trade-off between performance and ease-of-use than what is achievable
today with currently existing distributed processing frameworks.

7.1 Future Work

Noir provides very similar features to Apache Flink, with a notable exception: fault
tolerance. This is needed when dealing with long-lasting computations, such as
streaming pipelines that can be kept running for very long periods of time. One
possible approach is to implement a mechanism similar to coordinated checkpointing
or distributed snapshot to save the global state of the system to persistent storage. At
the same time, the data stream of each source needs to be persisted as well. In case
of failure, the system can be recovered by using one of these snapshots to rewind the
state of each operator and then replaying the streams of each source. In particular,
Flink uses a variant of the Chandy-Lamport algorithm called Asynchronous Barrier
Snapshotting [3]. Note that special care must be taken when dealing with iterations,
as the resulting Job and Execution Graphs are cyclic.

Another possible improvement is to provide high-level primitives that can be used
to define new computations. For example, Flink provides the Table API, a high-
level interface in which datasets are modeled as tables that can be modified using
relational operators such as selection, filtering and join. Flink also supports defining
queries using SQL. These APIs are very useful, as they make the framework more
accessible to developers familiar with SQL and RDBMS. Another option would be to
provide ready-to-use implementations of commonly used algorithms, for example
the ones used for graph analysis, event processing, machine learning and deep
learning.
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On the other hand, the support for custom operators is also missing. Even though the
interface provided by Noir is very complete and expressive, it might be interesting to
be able to define new operators that manually handle all the elements flowing into a
stream, including watermarks and control elements. This feature makes it possible
to implement operators with a very complex logic or that exploit peculiarities of the
stream to make optimized computations.

Considering the performance of the system, the benchmarks in Chapter 6 show that
Noir is generally very fast. However, there are some scenarios in which Noir is not
as performant or scales as well as expected, in particular in the Non-associative
Wordcount and Windowed Wordcount benchmarks. In the former, the slowness
seems to be related to back pressure, which is due to an uneven partitioning of
the load. Instead, windows seem to cause the latter benchmark to not perform as
well as possible. Therefore, some performance benefits can probably be gained by
optimizing or reworking the implementations of the windows and of the network
layer.

Finally, it might be interesting to investigate if it is convenient and feasible to
implement hardware acceleration, exploiting the processing power of GPUs or ad-
hoc coprocessors. This can be very beneficial for some of the proposed extensions to
Noir, such as the training of neural networks used in deep learning applications.
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Sample operator
implementation A
The map operator is defined by implementing the Operator trait on the Map struct.
This struct holds the operators chain (prev field) and the user-provided closure to
perform the mapping between input and output elements (f field).

1 #[derive(Clone, Derivative)]
2 #[derivative(Debug)]
3 pub struct Map<Out: Data, NewOut: Data, F, PreviousOperators>
4 where
5 F: Fn(Out) -> NewOut + Send + Clone,
6 PreviousOperators: Operator<Out>,
7 {
8 prev: PreviousOperators,
9 #[derivative(Debug = "ignore")]

10 f: F,
11 _out: PhantomData<Out>,
12 _new_out: PhantomData<NewOut>,
13 }

First of all, we define a new method so that the Map struct can be constructed.

14 impl<Out: Data, NewOut: Data, F, PreviousOperators> Map<Out, NewOut,
F, PreviousOperators>↩→

15 where
16 F: Fn(Out) -> NewOut + Send + Clone,
17 PreviousOperators: Operator<Out>,
18 {
19 fn new(prev: PreviousOperators, f: F) -> Self {
20 Self {
21 prev,
22 f,
23 _out: Default::default(),
24 _new_out: Default::default(),
25 }
26 }
27 }

Then, we implement the Operator trait to describe how the map operator behaves.
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28 impl<Out: Data, NewOut: Data, F, PreviousOperators> Operator<NewOut>
29 for Map<Out, NewOut, F, PreviousOperators>
30 where
31 F: Fn(Out) -> NewOut + Send + Clone,
32 PreviousOperators: Operator<Out>,
33 {
34 fn setup(&mut self, metadata: ExecutionMetadata) {
35 self.prev.setup(metadata);
36 }
37

38 fn next(&mut self) -> StreamElement<NewOut> {
39 self.prev.next().map(&self.f)
40 }
41

42 fn to_string(&self) -> String {
43 format!(
44 "{} -> Map<{} -> {}>",
45 self.prev.to_string(),
46 std::any::type_name::<Out>(),
47 std::any::type_name::<NewOut>()
48 )
49 }
50

51 fn structure(&self) -> BlockStructure {
52 self.prev
53 .structure()
54 .add_operator(OperatorStructure::new::<NewOut, _>("Map"))
55 }
56 }

Finally, we implement the map method on both Stream and KeyedStream, which
adds the operator to the operators chain of the given stream.

57 impl<Out: Data, OperatorChain> Stream<Out, OperatorChain>
58 where
59 OperatorChain: Operator<Out> + 'static,
60 {
61 pub fn map<NewOut: Data, F>(self, f: F) -> Stream<NewOut, impl

Operator<NewOut>>↩→

62 where
63 F: Fn(Out) -> NewOut + Send + Clone + 'static,
64 {
65 self.add_operator(|prev| Map::new(prev, f))
66 }
67 }
68

69 impl<Key: DataKey, Out: Data, OperatorChain> KeyedStream<Key, Out,
OperatorChain>↩→
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70 where
71 OperatorChain: Operator<KeyValue<Key, Out>> + 'static,
72 {
73 pub fn map<NewOut: Data, F>(
74 self,
75 f: F,
76 ) -> KeyedStream<Key, NewOut, impl Operator<KeyValue<Key,

NewOut>>>↩→

77 where
78 F: Fn(KeyValue<&Key, Out>) -> NewOut + Send + Clone + 'static,
79 {
80 self.add_operator(|prev| {
81 Map::new(prev, move |(k, v)| {
82 let mapped_value = f((&k, v));
83 (k, mapped_value)
84 })
85 })
86 }
87 }
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Graph and Metrics Visualizer B
Noir provides a visualizer for both the Job Graph and the Execution Graph. It also
displays useful runtime metrics collected during the execution of the stream.

Those metrics may cause some overhead, so they are disabled by default. To enable
them, add the compiler flag --features=profiler to the command line. This will
compile the support for the collection of the profiling information. Then, you have
to enable the profiler in the configuration file by adding the line:

1 tracing_dir: ./tracing

After a job is executed, the profile data will be written to the directory ./tracing.
The profile data is stored in a JSON file, that can be uploaded to the visualizer web
app.

In Figure B.1 the Job Graph for the non-associative Wordcount benchmark is shown.
There are three blocks, one with the source that reads from the dataset file, one that
performs the fold for counting the words, and the last one with the collect_vec
sink. Each operator is shown with its name, and the links connecting them are
labelled with the type of the tuples that flow between them. The links that connect
the blocks have a thickness proportional to the amount of data passing through
them.

In Figure B.2 the Execution Graph for the same benchmark is shown. In this case,
the cluster contains two hosts, each with two cores. You can see that the first two
blocks are fully replicated in all the hosts, while the last block is present only on the
first host.

Other than the graph topologies, the visualizer is also able to display the runtime
metrics collected during the execution. In fact, by clicking on some operators in
either graphs, the visualizer displays the metrics for that operator. The details of an
EndBlock of the first block are shown in Figure B.3. These include basic information
about the operator, as well as the blocks this operator connects to. Furthermore,
metrics about each connection are shown, indicating the amount of data passing
through each link. In this list only aggregated metrics are displayed, but by clicking
on one of them it is also possible to inspect the runtime behavior of each metric. In
Figure B.4 the evolution of each metric is shown.
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Figure B.1: The visualized Job Graph for the non-associative Word-
count benchmark.

Figure B.2: The visualized Execution Graph for the non-associative
Wordcount benchmark.
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Figure B.3: The metrics for the EndBlock of the first block, in the first
instance of the first host.

Figure B.4: The runtime metrics of one of the links.
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