

EXECUTIVE SUMMARY OF THE THESIS

SELF-DRIVING CARS AND OPENPILOT: A COMPLETE

OVERVIEW OF THE FRAMEWORK

TESI MAGISTRALE IN INGEGNERIA INFORMATICA

CANDIDATO: FRANCESCO FONTANA

RELATORE: LUCIANO BARESI

ANNO ACCADEMICO: 2020-2021

1. Introduction

The approach of many car manufacturers is that of

developing their machine learning algorithm and

providing their cars with a precise set of sensors.

However, in a trial to democratize self-driving cars

and make them available to everyone, Comma.ai

with Openpilot offered a single device, able to

bring the power of a machine learning algorithm

trained on thousands of hours of drive in any

compatible car. Openpilot is an open-source, semi-

automated driving system developed by the

company Comma.ai, founded by George Hotz. It is

a comprehensive system of driver assistance

features supporting a wide range of car models.

Over 200 users contributed to its development and

each new release of the software includes new

functionalities and bug fixes that were made

possible also thanks to the users’ feedbacks and

concrete additions to the code base. Even if a basic

documentation is available on the official GitHub

repository page, no technical documentation,

explaining what each software component of

which Openpilot is made does, is available, and

also the integration of the different submodules

with the main software is not made clear by the

documentation, resulting in a lot of confused

developers that are willing to contribute but don’t

know how to work with the code base.

The purpose of the thesis is to explicit what are the
relationships of dependency that incur among the
submodules and Openpilot, and assess the quality
of the software by looking at the way it is tested
and analyzing the development process that went
through over the years.

2. Submodules

Openpilot needs many components that allow the

software to interface with the car and exchange

messages with it. These components, after the

open-sourcing of the software, were organized in

different repositories, allowing to better manage

them and have a clear distinction of what role each

component plays. In this excursus of the

submodules that are available in the main

Openpilot repository will be analyzed the

functionalities that each one of them provides, how

they were tested to ensure the required levels of

reliability, and what was the development process

they went through.

Executive summary Francesco Fontana

2

2.1. Cereal

Cereal is both a messaging specification for

robotics systems as well as a generic high-

performance inter-process communication

protocol enabling the communication among a

single Publisher and multiple Subscribers (IPC

pub/sub) for all the components that implement it.

One of its main purposes is to enable easy and

effective logging of all the events that occur during

the usage of Openpilot, as well as enabling the

different modules of the software to communicate

with each other. The main components that cereal

provides are messaging, which is the actual

messaging specification library, and VisionIPC,

which allows exchanging visual data.

The PubSub mechanism is implemented by the

components PubSocket and SubSocket, that allows

the processes of Openpilot to subscribe to a certain

socket and exchange messages. There can be only

one process sending messages on a certain socket,

but multiple processes can subscribe to that same

socket and receive the messages.

Figure 1 - PubSub design pattern

Similarly, VisionIPC implements the same

mechanism to exchange the acquired camera

frames and among the different processes. The

frames can be encoded in RGB or YUV, according

to the usage that will be done with them. The only

component managing acting as the Publisher of the

camera frame is the process managing the cameras

of the device where Openpilot is executed, while

the acquired frames are received by the predictive

model of the software, that based on what detects

in the external environment has to quickly predict

where to lead the car.

2.2. Common

The common package contains methods, variables,

and processes that are used by all the other

packages to perform common operations. The

provided functionalities include the API

developed by Comma.ai and available at

https://api.commadotai.com/, a simple Kalman

filter, and a series of methods useful to transform

the reference frames that are used by the software.

The API provide different functionalities to

retrieve the key parameters of the car that are

recorded by the device where Openpilot is

installed and expose them on a web socket to

access them remotely. The key process managing

the creation of the web socket and of the response

to send to the remote caller is Athena.

The Kalman filter is used to smooth the series of

values acquired from the different actuators. It

uses a series of measurements observed over time,

containing statistical noise and other inaccuracies,

and produces estimates of unknown variables that

tend to be more accurate than those based on a

single measurement alone, by estimating a joint

probability distribution over the variables for each

timeframe. The involved variables in the

application of the Kalman filtering algorithm are

the initial state (𝑥0), the state transition matrix (𝐴),

the state covariance matrix (𝐶), and the Kalman

gain (𝐾). The first step of the algorithm is the

predictive step, which applies (2.1) to the acquired

variables.

[
𝐴𝐾0 𝐴𝐾1

𝐴𝐾2 𝐴𝐾3
] =   [

𝐴00 − 𝐾00𝐶00 𝐴01 − 𝐾00𝐶01

𝐴10 − 𝐾10𝐶00 𝐴11 − 𝐾10𝐶01
] (2.1)

The second step is the update step, in which the

prediction is used to calculate the new state of the

system.

[
𝑥00
𝑥10

] = [
𝐴𝐾0 ∗ 𝑥00 + 𝐴𝐾1 ∗ 𝑥10 + 𝑘00 ∗ 𝑚𝑒𝑎𝑠
𝐴𝐾2 ∗ 𝑥00 + 𝐴𝐾3 ∗ 𝑥10 + 𝑘10 ∗ 𝑚𝑒𝑎𝑠

] (2.2)

The implementation in common provides the

methods to perform these two steps, optimized for

the Openpilot software.

The transformation functionalities provide the

methods to transform the different reference

frames that are used by Openpilot, which include

Geodetic, ECEF (Earth-Centered, Earth-Fixed),

NED (North, East, Down), Device, Calibrated, Car,

View, Camera, Normalized camera, Model, and

Normalized model frames. The transformation

functionalities are mainly used on the acquired

camera frames, to convert the acquired images in

the correct format.

2.3. Laika

Laika is an open-source library for processing

GNSS.The Global Navigation Satellite System

https://api.commadotai.com/

Executive summary Francesco Fontana

3

(GNSS) refers to the set of constellations of

satellites that include Europe’s Galileo, the USA’s

NAVSTAR Global Positioning System (GPS),

Russia’s Global'naya Navigatsionnaya

Sputnikovaya Sistema (GLONASS), and China’s

BeiDou Navigation Satellite System. The

different constellations of satellites provide signals

from space that include positioning and timing

data and the GNSS receivers use all these data to

determine the exact location.

Laika can process raw GNSS observations with

data gathered online from various analysis groups

to produce data ready for position/velocity

estimation, producing accurate results, readable

and easy to use. One of the possible methodologies

that can be adopted to determine the position of a

GNSS receiver is that of the Time-Of-Arrival. The

different satellites have known orbits, so it is

possible to determine their positions at any time.

Since the signals travel at the speed of sound, by

measuring the time that passes from when the

signal is sent to when is received is possible to

calculate the distance of the receiver from the

satellite. The possibility to acquire data from

different sources and combine them makes Laika

much more precise than the data acquired by U-

blox, the GPS device embedded in the Comma

device. The data acquired by Laika can be pre-

elaborated and cached, allowing the system to

quickly access them. Filtering these data using a

Kalman filter gives results that are on average 40%

more reliable.

Figure 2 - Comparison of the measurements

acquired with Laika and U-Blox.

2.4. OpenDBC

OpenDBC is a repository containing all the

reverse-engineered signals corresponding to the

supported car. The signals coming from the cars

are reversed engineered through Cabana,

accessible at https://my.comma.ai/cabana/, which

allows visualizing the messages exchanged on the

CAN bus and creating a DBC file specific for the

car. In the master branch are also provided tools

that allow generating a DCB file. A DBC file is a

proprietary file format that describes the data over

a CAN bus. OpenDBC provides the component to

interpret, parse and generate CAN messages that

can be correctly interpret by the car as a normal

message traveling on the CAN bus, with no

distinction from other messages sent by other car

components. OpenDBC allows, together with the

tool Cabana, to easily add the support to new car

models by defining the structure of the message

that travel on its CAN bus. Cabana helps to

reverse-engineer these messages by interfacing

directly with the car and provides an interface to

easily generate a new DBC file.

2.5. Panda

Panda is a universal car interface developed by

Comma.ai. It connects to the ODB-II port and the

camera of the car, supporting the majority of

communication busses adopted by many car

manufacturers. In combination with OpenDBC, it

allows to read and interpret all the signals

traveling on the car network. The device,

embedded in the newer version of the Comma

devices (Comma Two and Comma Three) is based

on a STM32 board and is able to support 3 CAN

buses, 2 LIN buses, and 1 GMLAN bus to interface

with the car. The software that is executed on the

Panda device allows Openpilot to send and receive

messages, delegating to this component the

conversion into signals that can be sent over the

buses.

2.6. Rednose

Rednose is a Kalman filter library that can be used

for a wide range of optimization problems. In

particular, it is used for problems in the field of

visual odometry and sensor fusion localization

(SLAM). It is designed to provide very accurate

results, work online or offline, and be

computationally efficient. The library applies the

Rauch-Tung-Striebel (RTS) Smoother algorithm,

which is composed of two passes: the forward pass

consists of a standard Extended Kalman Filter

(EKF), while the backward pass is introduced to

reduce the inherent bias in the EKF estimates. In

estimation theory, EKF is the nonlinear version of

https://my.comma.ai/cabana/

Executive summary Francesco Fontana

4

the Kalman filter which linearizes about an

estimate of the current mean and covariance. The

EKF can be considered as the de facto standard in

the theory of nonlinear state estimation, navigation

systems, and GPS. The library offers a series of

helper functions and classes that allow performing

the filtering actions.

The Extended Kalman Filter allows to predict

values that are much closer to the actual

measurements acquired than a normal simulation

is able to do.

Figure 3 - Kinematik EKF simulation plot

3. Selfdrive

The source code of Openpilot, is contained in the

directory selfdrive and includes the implementation

of all the processes that compose the software.

3.1. AthenaD

This service allows real-time communication with

the car. It runs also if the car is parked and not

moving and allows to access different

functionalities of the car from a dedicated

application.

3.2. BoardD/PandaD

This process boardD represents the receiving side of

the Panda firmware. It parses and sends data

through USB by using the library libusb. The board

daemon is started by the process pandaD, which is

a Python wrapper of boardD that updates the

Panda first. It uses the Python Panda library to

configure the device and after that, it launches the

main boardD process.

3.3. CameraD

The camera daemon captures both the road and

driver camera and handles autofocus and

autoexposure.

The camera daemon uses VisionIPC, in

combination with the Cereal library, to send the

frames data to the other component. In particular,

the VisionIPC server sends the data frames directly

to the model daemon, which uses the frames to

compute the predictions.

3.4. ControlsD

This process represents the main 100 Hz loop

driving the car. It receives a plan from the planner

daemon and constructs the CAN packets required

to actuate that plan.

3.5. PlannerD

After processing the camera images through the AI

model, Openpilot has to compute a way to bring

the car in a position that is coherent with that

indicated by the output model. The planner

process executes three Model Predictive Control

(MPC) loops based on Automatic Control and

Dynamic Optimization (ACADO), one for lateral

control and two for longitudinal control.

3.6. RadarD

This process parses the data acquired by the radar.

3.7. CalibrationD

This process canonicalizes the acquired frames by

converting them into calibrated frames, which are

then used by the other Openpilot components. This

is important because users can mount their

Comma devices in different positions and

transforming them allows the model to ignore the

error in the predictions that this could introduce.

3.8. LocationD

This process runs a global localizer, which

estimates the vehicle position, speed, and

acceleration and how they change in the three

dimensions. It combines the data coming from

multiple sources, including the camera, the GPS

and inertial measurement unit (IMU) sensors.

Executive summary Francesco Fontana

5

3.9. UbloxD

Comma devices come with a u-blox chip, which is

capable of acquiring data from up to three GNSS

concurrently, granting a high level of accuracy. U-

blox data are acquired by the Panda, published on

a dedicated socket, and then parsed.

3.10. ModelD

The main model takes in a picture from the road

camera and answers the question “Where should I

drive the car?” It also takes in a desire input, which

can command the model to act.

3.11. DMonitoringModelD

The Driver Monitoring Model tracks the head pose,

eye positions, and eye states. It runs on the Digital

Signal Processor to not use CPU or GPU resources

needed by the other daemons, giving it room to

grow.

3.12. DMonitoringD

The driver monitoring process takes the data

elaborated from the driver monitoring model and

the other component monitoring the status of

Openpilot.

3.13. LoggerD

This daemon subscribes to all the sockets and log

all the messages intercepted. It also subscribes to

all the device’s camera and saves the drive

recording.

4. Conclusions

Each submodule is itself a complex process that

deals with different aspects of the software, and

each component is necessary to make Openpilot

work reliably and safely. Due to the risks that

malfunctioning of Openpilot could bring, both for

the driver and other people on the road, the

software is heavily tested and has to respect strict

security constraints.

As turns out, the performances of Openpilot are

comparable, and often higher, than other car

manufacturer’s self-driving solutions.

5. References

[1] "comma.ai blog," Comma.ai, [Online].

Available: https://blog.comma.ai/

[2] "openpilot" Comma.ai, [Online]. Available:

https://github.com/commaai/openpilot

[3] "DBC Format," 11 October 2017. [Online].

Available:

http://socialledge.com/sjsu/index.php/DBC_

Format

[4] M. di Preez, "OBD II diagnostic interface

pinout," 2 December 2017. [Online].

Available:

https://pinoutguide.com/CarElectronics/car_

obd2_pinout.shtml

[5] C. Woei-Leong and H. Fei-Bin,

"Implementation of the Rauch-Tung-Striebel

Smoother for Sensor Compatibility

Correction of a Fixed-Wing Unmanned Air

Vehicle," November 2011. [Online].

Available:

https://doi.org/10.3390/s110403738

https://blog.comma.ai/
https://github.com/commaai/openpilot
http://socialledge.com/sjsu/index.php/DBC_Format
http://socialledge.com/sjsu/index.php/DBC_Format
https://pinoutguide.com/CarElectronics/car_obd2_pinout.shtml
https://pinoutguide.com/CarElectronics/car_obd2_pinout.shtml
https://doi.org/10.3390/s110403738

	1. Introduction
	2. Submodules
	2.1. Cereal
	2.2. Common
	2.3. Laika
	2.4. OpenDBC
	2.5. Panda
	2.6. Rednose

	3. Selfdrive
	3.1. AthenaD
	3.2. BoardD/PandaD
	3.3. CameraD
	3.4. ControlsD
	3.5. PlannerD
	3.6. RadarD
	3.7. CalibrationD
	3.8. LocationD
	3.9. UbloxD
	3.10. ModelD
	3.11. DMonitoringModelD
	3.12. DMonitoringD
	3.13. LoggerD

	4. Conclusions
	5. References

