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1. Introduction
Attention Deficit Hyperactivity Disorder
(ADHD) is one of the most common neu-
rodevelopmental disorders, affecting subject’s
normal cognitive and behavioral functioning
[5]. It is highly predominant in childhood,
affecting around 5% of children worldwide,
however, if not treated, ADHD could persist
into adulthood. Individuals with ADHD may
have problems focusing on a single task for
an extended period, sitting still for long or
controlling impulsive behaviors. According to
the kinds of symptoms, three different subtypes,
namely Inattentive, Hyperactive/Impulsive and
Combined types, can be identified.
Functional cognitive tests and observations
of the behavior represent useful tools for the
diagnostic process; nevertheless, there are
several difficulties affecting the diagnosis, such
as the subjectivity of ADHD symptoms and
diagnostic classification scales filled in by
parents or teachers. Indeed, over the last years,
Electroencephalography (EEG) has been widely
used in the diagnosis of ADHD, since this
disorder is largely related to neurophysiological

impairments.
This work of thesis aims at analyzing the EEG
signals of children affected by ADHD, acquired
during an attentional task, employing both
Spectral and Functional Connectivity analyses,
in order to find EEG-based biomarkers to
be used as diagnostic tools for the disorder.
The results obtained by these two types of
analyses were then used as features for a
Machine Learning-based classification, aimed at
distinguishing the ADHD children from healthy
ones.

2. Electroencephalography
applied to ADHD

EEG is a technique to measure the electrical
potentials reflecting the human brain electrical
activity, characterized by an excellent temporal
resolution (ms) and a poor spatial resolution.
Thanks to its non-invasiveness, it is one of
the most used tools to diagnose neurological
diseases.
EEG waveforms are a mixture of several dif-
ferent frequency bands, generally subdivided
in Delta (1-4Hz), Theta (4-8 Hz), Alpha (8-13
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Hz), Beta 1 (13-22 Hz), Beta 2 (22-30 Hz) and
Gamma (>30 Hz) waves. A Spectral Analysis
could be conducted on the mentioned frequency
bands, computing the EEG Power Spectral
Density (PSD), which reflects the distribution
of the energy in the different frequency ranges.
In order to study how functionally specialized
brain areas (Frontal, Temporal, Parietal and
Occipital) interact among each other, Brain
Connectivity could be analyzed, to understand
abnormal brain functions underlying various
neurological disorders, by mapping the brain as
a complex network [4].

According to the findings in literature, ADHD
children were found to be characterized by
elevated low frequency activity (Theta, located
mainly in Frontal and Central regions) and
decreased high frequencies (Alpha and Beta)
with respect to age-matched control subjects
during resting state. Nonetheless, the Spectral
Analysis alone has not reached a definitive
conclusion in finding an effective biomarker ca-
pable of discriminating the pathology from the
healthy state, therefore, this type of analysis has
often been coupled with Connectivity Analysis.
Previous works applying Functional Connectiv-
ity in ADHD have underlined hypoactivity in
brain functional networks involved in executive
control and attentional processing, such as
Fronto-Parietal and Ventral-Attentional net-
works; in addition, a reduced inhibition of the
Default Mode Network, which is characterized
by a higher level of activation during resting
state, has been noticed during attentional tasks
in ADHD.
Few studies have carried out a discrimination
of the ADHD children from the control ones
using Machine Learning techniques and most of
them have focused their attention on the resting
state condition, employing fMRI data or EEG
Event-Related Potentials (ERP).
In conclusion, most of the studies have ana-
lyzed the resting-state condition, however, it is
important to evaluate a neural network’s ability
to change from a passive to an active condi-
tion (cognitive task), reason why a temporal
dynamic approach was adopted in the present
work.

3. Materials and Methods
3.1. Study Design
Twenty-eight children (age 7 to 17 years) were
enrolled in the study: 16 subjects (mean age
12.3, 3 females) affected by ADHD and 12
healthy controls (mean age 11.4, 5 females). As
a first step of the experimental protocol, the
EEG signals were recorded in an eyes-open rest-
ing state of two minutes, during which the par-
ticipant looked at a screen. Afterwards, the sub-
ject performed a computerized Continuous Per-
formance Test (CPT), during which the partic-
ipants were instructed to press the left mouse
button with their right index finger as soon as
a letter different from X was presented (GO
or target stimulus) and not to press the but-
ton when the X appeared on the screen (NoGO
or No-target stimulus). The participants’ be-
havioral performance was assessed using task-
related scores, such as Commission and Omis-
sion Errors (CE and OE), Hit Response Time
(HRT), HRT Standard Deviation (HRT SD) and
CPT Variability.

3.2. Data Acquisition and
Preprocessing

A continuous EEG was recorded using 62
surface electrodes, positioned according to
the 10/20 International System, plus two
electrodes used for collecting the electrooculo-
gram (EOG) signals. FCz and AFz were the
recording reference and the ground electrodes,
respectively. Furthermore, after an appropriate
low-pass hardware filter, EEG recordings were
digitalized with a sampling rate equal to 500
Hz. A band-pass zero-phase FIR filter between
1 and 70 Hz was applied to the data together
with a Notch filter at 50 Hz. After that, the
signals were downsampled at 250 Hz. In order
to remove ocular and muscular artefacts, the
Independent Component Analysis (ICA) was
performed on the signals. Subsequently, the two
EOG electrodes and noisy channels (Tp9, Tp10
and Iz) were removed. As a last pre-processing
step, a re-referencing of the EEG traces was
performed with a Laplacian filter, in order to
reduce the volume conduction artifact, that is
the spreading of multiple brain sources at the
scalp [3].
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3.3. Spectral Analysis
The Welch’s periodogram was computed for
each EEG channel, in baseline and task con-
dition, after normalization by subtracting the
mean and dividing by its standard deviation.
In order to extract, for each frequency band
of interest, the relative Power Spectral Density
(PSD), which represents the percentage of
power in one band relative to the total power
of the signal [6], the integral of the PSD was
computed in the mentioned frequency ranges.
To evaluate the evolution of the brain activity
during the task, changes in power (ΔP%)
relative to the baseline were considered with a
time resolution of 10 seconds. Analyses were
then conducted considering the whole CPT task
(14 minutes) divided into 1-minute or 10-second
windows, depending on analysis needs, in order
to maintain the temporal information.

3.4. Connectivity Analysis
The Imaginary Part of the Coherency (ImCoh)
was chosen as Functional Connectivity measure
to estimate the magnitude of information flow
between EEG paired signals. Unlike the real
part of the Coherency, the imaginary part is
insensitive to artifactual interactions caused by
volume conduction [3]. Complex coherency was
firstly computed based on Welch’s method, ob-
taining a value every 10 seconds. Then, the ab-
solute value of ImCoh was extracted in Alpha,
Beta 1 and Theta frequency bands. The Surro-
gation Test with Phase Randomization method
was applied in order to define a statistical
threshold for assessing a 95% of significance of
the coupling between the time series. Adja-
cency matrices 59x59 (where 59 is the number
of considered electrodes) were obtained applying
the estimated threshold, resulting in weighted
graphs with only significant connections. From
each adjacency matrix (i.e. graph), computed
every 10 seconds, graph-based indices (Degree,
Strength, Betweenness Centrality, Global and
Local Efficiency, Shortest Path Length and Clus-
tering Coefficient) were derived. Except for the
Global Efficiency, which is a measure of the
overall network, a region-wise analysis was per-
formed considering the main four cerebral ar-
eas (Frontal, Central, Temporal and Parieto-
Occipital) for all the mentioned indices. A sta-

tistical analysis employing Wilcoxon test for in-
dependent samples was adopted to determine
which of the graph-based indices would have
been more useful to discriminate between the
two groups.

3.5. Machine Learning
Exploiting the Spectral and Connectivity
information obtained from the CPT, a model
aimed at the discrimination of ADHD and
control groups was built, employing the Support
Vector Machine (SVM) as non-linear classifier.
The observations were the 10-seconds segments
belonging to CPT (2184 samples), while the
ΔP% and the variations of graph indices with
respect to the baseline, for each band and
area, were selected as features (93 explanatory
variables). The binary target (0/1) corresponds
to CONTROL and ADHD, respectively. The
dataset was subdivided in three parts, main-
taining for each set the original balance in
the target class and choosing randomly the
corresponding observations. The Test set was
created leaving out 8% (175 samples) of the en-
tire dataset, while the Training and Validation
sets were formed by 75% and 25% respectively
of the remaining data. Subsequently, the
Standardization was performed on the samples
to make the features normally distributed.
Three Feature Selection methods, Analysis
of Variance (ANOVA), Maximum Relevance
Minimum Redundancy (MRMR) and Principal
Component Analysis (PCA), were tested and
compared to extract the most relevant features,
before the application of the SVM classifier.

4. Results
The analysis of Performance Indices revealed
that ADHD scores were characterized by higher
median values in all the measures considered
and, except for OE, by a higher variability with
respect to healthy controls. The Wilcoxon test
for independent samples performed on these in-
dices has not highlighted significant differences,
except for the HRT SD. A greater HRT SD is be-
lieved to reflect inefficient information flow dur-
ing the execution of a cognitive task [2], so, vari-
able responses might be due to inefficient or dis-
rupting information processing.
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4.1. Spectral Analysis
Median Scalp Maps of the two groups in each
frequency band were compared, resulting in
interesting findings in Theta and Alpha bands.

In Theta, from an overall point of view,
the control group shows a greater sparse ac-
tivation, as it can be seen in Figure 1. In
literature, an increase in Theta ΔP% is mainly
appreciated in the Fronto-Parietal area, as could
be observed partly in the obtained results. In
Sauseng et al. and Gevins et al. studies the
increased Theta activity in Frontal region was
associated with a higher level of cognitive task
demand.

Figure 1: Theta median Topographical Scalp
Maps, ADHD (top) and CONTROLS (bottom).

In Alpha band in the Parieto-Occipital zone a
synchronization of these rhythms is present in
both groups, but more accentuated in ADHDs.
Generally, Alpha Parieto-Occipital rhythms
are mitigated (desynchronization) in response
to visual stimuli [1]; hence, their increase
during the task, detected in the present work
mainly in ADHDs, could be interpreted as
difficulty for ADHD children in attending to
and processing visual stimuli as efficiently as
their healthy peers. In addition, ADHD group
shows a greater desynchronization in both
Central hemispheres with respect to Controls.
From the literature, Alpha rhythms localized in

the Central region (sensory-motor area), also
called Mu-Rhythms [1], can be inhibited by
the corresponding hand movement, while the
muscle relaxation enhances them. Indeed, the
higher desynchronization (the two blue spots
visible in Figure 2) in ADHDs might be due to
a greater strain of ADHD children to remain
calm during the task, since hyperactivity is
one of ADHD main symptoms. However, this
hypothesis could not be strengthened, due to
the lack of ADHD subtypes (inattentive and
hyperactive).

Figure 2: Alpha median Topographical Scalp
Maps, ADHD

Because of the interesting behavior shown by
ADHDs in Alpha on the motor cortex, the cor-
relation between Alpha ΔP% belonging to each
1-minute window and performance indices was
computed: this was done in order to explore
whether the supposed increased motor activity
during cognitive task influenced the subject per-
formance. Differently from what was expected,
significant correlations (p<0.05) were found only
for the Control group, revealing a negative cor-
relation with CE and a positive correlation with
HRT in all the windows. Hence, if Alpha activ-
ity increases in this area, it might signify that
the controls tend to move less during the task,
probably concentrating more and, consequently,
committing less errors, spending also more time
thinking about the response, not being impul-
sive.

4.2. Connectivity Analysis
From the graph analysis, a clear distinction be-
tween the two groups is visible during the exe-
cution of the CPT, as shown in Figure 3, while
a similar behavior between them is present in
the eyes-open resting state, with no tendency of
forming clusters.

4



Executive summary Ludovica Gaspari, Eleonora Iascone

Figure 3: CPT graphs

Indeed, during CPT, in Controls there is an
information flow among the Parieto-Occipital
and Central brain regions in Alpha band,
while ADHD patients are characterized by an
information flow mostly limited to the only
Parieto-Occipital area, indicating a higher
network segregation. The dense connections
visible in the Occipital lobe, for both groups,
might be due to the visual task, since this
lobe is responsible for receiving and integrating
visual information.

By analyzing graph-based indices, Tempo-
ral area, as well as Theta band, were considered
of particular interest. Indeed, ADHDs are
characterized by higher values of Betweenness
Centrality in Temporal area with respect to
Controls and shorter paths between the Central
and Temporal regions in Theta band. The ma-
jor involvement of the Temporal area in ADHDs
was hypothesized to be due to the adoption of
verbally mediated strategies (silently reading
letter to self or reminding self-instructions),
employed to improve the performance. This is
consistent with the role of Temporal area in
verbal working memory. Furthermore, greater
values of Global Efficiency were found in Theta
band in the control group, suggesting the
presence of an elevated integration of the brain
during the task. The relevance of Theta band
in cognitive tasks’ performance was assessed in
Martin Santiago et al. and Toth et al., hypothe-
sizing that a higher integration may reflect how
well the information flow is integrated before
the response [2]. In addition, ADHDs have
shown longer path lengths between Frontal and

Parieto-Occipital areas with respect to Controls
in Theta band, suggesting an inefficient infor-
mation integration between these two areas,
involved in attentional and visual processing
respectively.

4.3. Machine Learning
As already mentioned, three methods of fea-
ture selection, ANOVA, MRMR and PCA, were
chosen and compared. A positive outcome is
that all the features selected by ANOVA method
were also chosen by the MRMR; all of the at-
tributes coincide with the graph indices resulted
significant from the preliminary statistical test.
Furthermore, most of the selected features were
found in Theta band, coherently with the re-
sults of both Spectral and Connectivity analy-
ses. In conclusion, the performances in terms
of F1 score on the Test set are higher than 0.8
regardless of the feature selection method em-
ployed. The classifier reached better results in
classifying the ADHD group with respect to the
control one, probably due to the higher number
of samples belonging to the ADHD class.

5. Conclusions
The present master thesis work presented an
analysis of EEG activity of ADHD and control
children during an attentional task, exploring
Spectral characteristics and Brain Connectivity
through a temporal dynamic approach, with
the aim of discovering potential biomarkers to
distinguish the pathology.

Contrasting with the literature and differ-
ently from what it was expected, no particularly
interesting findings in the fluctuations of
Beta 1 ΔP% were discovered in the Frontal
region. In literature, higher values of Frontal
Beta power have been observed in the control
group compared to the ADHD one. Since
Frontal lobe is shown to be related to cognitive
functions, a poor activity in this area could
underline inability to focus on a task. However,
a discriminating characteristic of functional
connectivity found in Frontal region and Beta
1 band was the difference in Local Efficiency
and Clustering Coefficient for the two groups:
ADHDs are characterized by decreased values
of these indices, underlying a low ability in
exchanging information within the Frontal
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region. In addition, ADHDs show longer path
lengths between Frontal and Parieto-Occipital
areas with respect to Controls, suggesting
an inefficient information integration between
them. Even if interesting results were not found
in Beta 1 band in Frontal region through the
spectral analysis, ANOVA and MRMR selected
ΔP% located in this band and area, together
with some graph indices as features for the
classification model.

The most relevant findings were related to
Theta band and Temporal area, noticeable
mainly through the Functional Connectivity
and Graph Theory analyses. The major
involvement of the Temporal area in Theta
activity for ADHDs was hypothesized to be
due to the adoption of verbally mediated
strategies during the execution of the task.
Among the graph-based indices, Betweenness
Centrality, Global Efficiency and Shortest Path
Length showed interesting results. Betweenness
Centrality presented higher values in this area
in ADHDs, which show also more efficient
connections between the Central and Temporal
regions. Regarding Global Efficiency, greater
values were found in Theta band in the healthy
patients, suggesting the presence of an elevated
integration of the brain during the task; this
is supported by findings in literature which
associate higher values of this index in Theta
to more stable results in the performance,
deducted from the significant association of
Global Efficiency with the HRT SD [2]. Indeed,
a greater HRT SD is believed to reflect ineffi-
cient information flow during the execution of
a cognitive task, so variable responses might
be due to inefficient or disrupting information
processing [2]. In support of this hypothesis,
in the present work the HRT SD was the
only performance index showing a significant
difference between the two groups, with higher
values found in the ADHD subjects.

Even though a significant biomarker has
not been identified, the starting hypothesis,
that a Spectral Analysis alone is not enough to
reliably discriminate the disorder under study,
was confirmed. Indeed, it was observed that
functional brain connectivity is altered in chil-
dren with ADHD, underlined by significantly

different behavior of network indices compared
to healthy subjects, especially in Theta band
and Temporal area.

5.1. Limitations and Future Develop-
ments

The lack of performance data for each given
stimulus, such as the participant’s response and
the corresponding reaction time, represented
one of the main limitations associated to the
current research. These parameters could
have been used to understand how the brain
activity change according to given or not given
responses. Other aspects relative to the dataset
that should be taken into account are the
limited number of participants in the study,
the large range of participants’ age (7-17 years)
and the lack of clinical identification of ADHD
subtypes (inattentive, hyperactive/impulsive
and combination types). A future study
could be conducting an age-related analysis
considering clusters of individuals with a more
uniform age range and exploiting their clini-
cal information in order to find differences in
brain activity among the three ADHD subtypes.

In conclusion, the search for functional neural
correlates of ADHD, and consequently for
potential biomarkers of the disorder, is crucial
in the pursuit of its prevention, early detection
and more effective treatment. Combination of
the ImCoh and graph theory methods, together
with the dynamic temporal analysis, carried on
in the present study, would be a very useful
and novel approach for exploring underlying
mechanisms of the brain and for diagnosing
neurological disorders in the future.
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Abstract

Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most common
neurodevelopmental disorders in childhood, affecting subject’s normal cognitive
and behavioral functioning. Since the clinical diagnosis may be affected by the
subjectivity of ADHD symptoms and classification scales, Electroencephalography
(EEG) has been widely used to support the ADHD diagnosis. This work of
thesis aims at analyzing the EEG signals of children affected by ADHD, acquired
during an attentional task, in order to find EEG-based biomarkers to be used
as diagnostic tools for the disorder. Spectral features, Functional Connectivity,
computed through the Imaginary part of the Coherency, and Graph Analysis are
the methods employed in the present work: the study is conducted in the main
frequency bands (Alpha, Beta 1 and Theta) and cerebral regions, taking into
account the temporal dynamics of the entire task. The results obtained by these
analyses were used as features for a Machine Learning-based classification, aimed
at distinguishing the ADHD children from the healthy peers. The most relevant
results from Spectral and Connectivity analyses were noticed in Theta band and
Temporal area, as also confirmed by the feature selection methods employed in the
Machine Learning. Despite the scarcity of the dataset and the variability in the
patients’ age, good performances have been reached in the Machine Learning-based
classification, with a F1-score higher than 0.8. Even though a significant
biomarker has not been identified, the starting hypothesis, that a Spectral Analysis
alone is not enough to reliably discriminate the disorder under study, was confirmed.

Keywords: ADHD, EEG, Functional Connectivity, Theta, Temporal area,
Imaginary part of the Coherency, graph indices
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Abstract in lingua italiana

Il Disturbo da Deficit di Attenzione/Iperattività (ADHD) è uno dei disturbi del
neurosviluppo più comuni nell’infanzia, che colpisce il normale funzionamento
cognitivo e comportamentale del soggetto. Dal momento che diversi fattori
influenzano la diagnosi, ad esempio la soggettività dei sintomi e delle scale di
classificazione, l’Elettroencefalografia (EEG) è uno dei metodi maggiormente
impiegati nella diagnosi del disturbo. Questo lavoro di tesi ha come obiettivo
l’analisi di segnali EEG di bambini affetti da ADHD, acquisiti durante un test
di valutazione dell’attenzione sostenuta visiva, al fine di trovare dei biomarker da
utilizzare come strumenti diagnostici per il disturbo. A tale scopo, tenendo conto
della dinamica temporale dell’intero test, sono state analizzate le caratteristiche
spettrali, la connettività funzionale, calcolata mediante la parte immaginaria della
coerenza, e gli indici di grafo nelle principali bande di frequenza (Alfa, Beta 1 e
Theta) e regioni cerebrali. I risultati ottenuti da queste analisi sono stati utilizzati
come attributi volti a distinguere i bambini affetti da ADHD dai controlli sani,
mediante un algoritmo di Machine Learning. Le maggiori differenze tra i due
gruppi, ottenute dall’Analisi Spettrale e dalla Connettività Funzionale, sono state
notate in banda Theta e nell’area temporale, come confermato anche dai metodi
di selezione degli attributi impiegati nel Machine Learning. Malgrado i pochi dati
a disposizione e la variabilità dell’età dei pazienti, è stata raggiunta una buona
performance (F1 score maggiore di 0.8). Nonostante non sia stato identificato
un biomarker significativo legato all’EEG, è stata confermata l’ipotesi che la sola
analisi spettrale non è sufficiente a discriminare in maniera affidabile tale disturbo.

Parole chiave: ADHD, EEG, Connettività Funzionale, Theta, lobo Temporale,
parte immaginaria della Coerenza, indici di grafo
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Chapter 1

Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most common
neurodevelopmental disorders in childhood, affecting around 5% of children
worldwide [160]. Subjects affected by ADHD generally show an evident impairment
in learning performance and in interacting with family members and peers; in
addition, they often suffer of other psychiatric conditions, as anxiety and bipolar
disorders [14]. ADHD is consistently more prevalent in males than females and
highly predominant in children [161]; however, if not treated, ADHD could persist
into adulthood, eventually representing a risk factor for drug addiction and
criminality [160] [34] and probably implying difficulties with employment [160].

ADHD is characterized by symptoms of inattention, hyperactivity and impulsivity
[33], whose occurrence substantially affects subjects’ normal cognitive and
behavioral functioning. Children with ADHD may have problems focusing on
a single task for an extended period of time, sitting still for long or controlling
impulsive behaviors, such as restlessness, fidgeting or excessive talking [23].
According to the types of symptoms, three different subtypes can be identified
in the Diagnostic and Statistical Manual of Mental Disorders IV Text Revision
(DSM IV-TR): Inattentive, Hyperactive/Impulsive and Combined types [73]. The
combined type is when subjects show above-threshold levels of both symptoms
categories.

Treatment of ADHD children, aimed at reducing ADHD symptoms [32], as
medication with dopaminergic and noradrenergic activity, together with timely
recognition of ADHD-type difficulties provide an opportunity to reduce long-term
impairments [160]. Functional cognitive tests and observations of the behavior
represent useful tools for the diagnostic process; however, there are several
issues affecting the diagnosis, such as the difficulty of distinguishing attention
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and behavioral symptoms due to other disorders or the subjectivity of ADHD
symptoms and of diagnostic classification scales filled in by parents or teachers [73].

Indeed, over the last years, Electroencephalography (EEG) has been widely
used in the diagnosis of ADHD, due to the fact that this disorder is largely related
to neurophysiological impairments. In particular, most of the studies have been
demonstrated that ADHD children show abnormal EEG activity compared to
normal ones [130] [46].

This work of thesis aims at analyzing the EEG signals of children affected
by ADHD, acquired during an attentional task, in order to find EEG-based
biomarkers to be used as diagnostic tools for the disorder. The starting hypothesis
was that a Spectral Analysis alone was not enough to reliably discriminate the
disorder under study. However, a first exploration of EEG activity, in terms of
Power Spectral Density in Alpha, Beta, Delta, Gamma and Theta frequencies, has
been conducted, searching for evident differences between the two groups (ADHD
and control subjects) along the whole task duration. Indeed, the attention task
has been analyzed in a dynamic way, taking into account the temporal evolution
of the brain activity. Subsequently, a Brain Connectivity Analysis was carried
on, focusing the attention on the most used graph indices. The results obtained
by these two types of exploring analyses were used as features for a Machine
Learning-based classification, aimed at distinguishing the ADHD children from the
healthy ones.

The thesis work is divided into the following chapters:

• Chapter 1: the aim of the thesis, together with a brief description of the
disorder (ADHD), are introduced, explaining why EEG can be employed as a
useful diagnostic tool.

• Chapter 2: theoretical background of the brain structure, EEG
characteristics, brain connectivity and network theory are presented. The
chapter also provides a review of the state of the art on the current use of
spectral and connectivity analyses and machine learning techniques in ADHD
diagnosis.

• Chapter 3: the methods and mathematical tools employed for EEG spectral
and connectivity analyses are described in detail and a classification model for
discriminating ADHD and control groups is also presented.

• Chapter 4: results of EEG spectral and connectivity analyses, together with
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the performance reached by the different models built, are described and
possible interpretations are given.

• Chapter 5: conclusions, limitations and possible future developments of the
study are reported.
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Chapter 2

Electroencefalography applied to
ADHD

Before studying in deep what is Electroencephalography and how it could be applied
for treating ADHD, an overview of the brain and its functional areas will be
presented.

2.1 Brain Anatomy and Cerebral Cortex Functions

The Central Nervous System (CNS) is part of the nervous system and includes
the Brain and the Spinal Cord. The brain is composed by billions of neurons which
communicate among each other creating numerous connections and synapses [78].
As could be appreciated in Figure 2.1, three main parts of the brain could be
identified [88]:

• The Cerebrum is composed by Cerebral Cortex (or Gray Matter), the
outermost layer of the cerebrum containing neuronal cell bodies, and White
Matter, mainly constituted of myelinated axons [88]. In addition, the
Cerebrum is divided in left and right cerebral hemispheres.

• The Cerebellum is located in the lower part of the brain and its role is
fundamental in the motor control [162].

• The Brainstem is the structure that links the Cerebrum to the Spinal Cord
and Cerebellum [25].
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Figure 2.1: Lateral surface of the brain representing the three main parts of the brain: Cerebrum,
Cerebellum and Brainstem. [27]

The Cerebral Cortex is composed by four lobes (Figure 2.2), each one characterized
by a set of particular functions:

• The Frontal Lobe is located in the frontal part of the cerebral hemispheres
and it is mainly involved in prospective memory (e.g. future planning) [137],
speech and language production (Broca’s area), voluntary movements control
(Motor Cortex), personality, emotions and attention [88].

• The Parietal Lobe is positioned near the upper back portion of the skull,
behind the Frontal lobe and superior to the Temporal lobe. Its role consists in
receiving sensory information [30], sensorimotor planning, learning, language
and spatial recognition [88]. Furthermore, this lobe has a key role in attention
allocation [40].

• The Temporal Lobe is placed behind the Frontal lobe and it is generally
associated with the processing of auditory information [139] and formation
of visual memories, object recognition and in sequencing and organization of
tasks.

• The Occipital Lobe is found in the posterior brain region and its main role
is visual processing and interpretation [84].
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Figure 2.2: Representation of the main cerebral lobes: Frontal, Parietal, Temporal and Occipital.
The Central sulcus separates the Frontal region from the Parietal one and the primary motor cortex
from the primary somatosensory cortex [27].

Several brain imaging studies have identified a distributed network of areas in the
Frontal and Parietal lobes involved in sustained attention [151] [157]: the network
formed by these two areas is known as Frontal–Parietal Attention Network (FPAN)
and it has been studied in tasks involving sustained attention or at rest through
functional connectivity, discovering a relation with attention performance [120]
[166]. The FPAN supports executive control functions and ADHD affected subjects
were found to exhibit deficits in this field [110]. For this reason, different studies
have focused the attention on this network when dealing with ADHD.

Another network found to be impaired in ADHD is the Ventral-Attention
Network (VAN), which uses the Temporal-Parietal Junction (TPJ) and Ventral
Frontal Cortex (VFC) to reorient attention to salient behaviorally relevant stimuli
[66]. Furthermore, it was discovered by a recent meta-analysis that ADHD was
characterized by an hypoactivation of this network, with respect to the control
group, in tasks involving the modulation of attention in response to a target
stimulus [56].

Finally, ADHD subjects were discovered to show a different behavior in the
activation (and deactivation) of the resting state network (also referred as
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task-negative network), called Default Mode Network (DMN). DMN is active
when the brain is at wakeful rest, while it is deactivated during some external
goal-oriented tasks, such as visual attention or working memory tasks [45].

2.2 Electroencephalography

Electroencephalography (EEG) is a technique to measure the electrical
potentials reflecting the human brain electrical activity [168] and it is one of
the most useful tools to diagnose neurological diseases or to treat behavioral
disturbances such as attention disorders [80].

EEG is a non-invasive technique, since the recordings are obtained through
small electrodes placed in different locations on the scalp surface [168]. The signal
acquired by each EEG sensor is a time course, whose amplitude represents the
summed electrical activity, happening in a specific area of the cortex under the
electrode surface [105], and a background activity coming from far neural sources.
A typical EEG trace (Figure 2.3) is characterized by voltages, ranging from 0.5 to
100 µV in amplitude [180], in function of time [124].

Figure 2.3: EEG trace of an ADHD patient during the attentional task: on the vertical axis the
voltage in microvolt (µV) is displayed; on the x axis the time is shown in seconds (sec). The EEG
signals were acquired through 64 sensors, but only the EEG traces of the first 19 electrodes (10-20
International System) are reported.
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The greatest advantage of EEG is the excellent temporal resolution (ms) [113], that
allows to record complex patterns of neural activity, occurring within fractions of
a second after the administration of a stimulus [180]; in addition, through EEG it
is possible to capture the cognitive dynamics in the time frame in which cognition
occurs [53].
On the other hand, it provides a poor spatial resolution, since the electrical currents
recorded from the scalp do not always perfectly match with the specific underlying
brain structure [113], but rather, one electrode can record a mixture of activities
from many brain regions [53]. One of the main causes of this low spatial resolution
is the volume conduction effect, i.e. the spreading of multiple brain sources at
the scalp [37], that will be further explained in Section 2.2.3. However, through
pre-processing methods, such as the Surface Laplacian [111], or by increasing the
number of electrodes used for the acquisition [53], the spatial resolution can be
enhanced.

Two different types of EEG analyses are employed in research [154]:

• Qualitative (Clinical) EEG : visual analysis of EEG patterns [59].

• Quantitative EEG (QEEG): analysis that includes the study of frequency band
powers, symmetry indices [59] and analysis of connectivity [112].

2.2.1 EEG Signal Generation

For a better understanding of EEG, in this section the mechanisms underlying the
EEG signal generation will be explored.

As already mentioned, EEG is the recording of cerebral electrical potentials
by sensors placed on the scalp [35]. Since the skull and the other layers constituting
the human head provoke a great attenuation of the signals and most of the noise
is produced either within the brain (internal noise) or over the scalp (external
noise), the electrical activity generated by a single neuron is far too small to be
detected by EEG [156]; therefore, only large groups of active neurons are able
to generate a high enough potential detectable by scalp electrodes [156]. Indeed,
the electrical activity acquired by EEG sensors is generated by groups of cerebral
cortical neurons, located near the scalp where the electrodes are placed, with the
same spatial orientation [124]. In particular, Pyramidal Neurons, represented in
Figure 2.4, thanks to their unique perpendicular orientation of their long apical
dendrites to the cortical surface, play a major role in the generation of the EEG
signal [94].
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Figure 2.4: Generation of small electrical fields in Pyramidal Neurons [27].

Neural electrical activity can be distinguished in Action Potential (AP) and
Postsynaptic Potential (PSP): when the PSP reaches the threshold conduction level
in the postsynaptic neuron, the neuron starts firing, initiating the AP [168].
To be clear, EEG does not measure Action Potentials, but rather Postsynaptic
Potentials [31]: indeed, AP are too short to sufficiently sum up, differently from
PSP, which can last up to several tens of ms, being capable to produce potential
changes that could be recorded extracellularly from the scalp [94]. To summarize,
the principal contributors to the potentials measured by EEG are the summation
of Excitatory and Inhibitory PSP of cortical Pyramidal Neurons [176].
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2.2.2 EEG Waves and Spectral Analysis

EEG oscillations mirror the rhythmic fluctuations in the neurons excitability [176],
with a frequency varying generally between 0.05 Hz and 500 Hz [41]. These
oscillations could be described by three types of information [53]:

• Frequency : oscillations speed.

• Power : amount of energy contained in a frequency band.

• Phase: position along the sine wave at any given time point.

Frequency is one of the main criteria used to assess abnormalities in clinical EEGs
[168]: indeed, EEG waveforms are a mixture of several different frequency bands,
usually treated separately [113] through the signal decomposition, since they
provide useful information about the subject state (e.g. wakefulness, sleep) [168]
or the task demands [53].

Five major brain waves can be distinguished, characterized by different frequency
bands and ordered from low to high frequencies [156] (Figure 2.5):

• Delta (0.5-4 Hz): these waves are mainly present during deep sleep and
are generally associated with serious brain disorders and the waking state
[168]. They are often found in infants and young children; furthermore, brain
injuries, learning problems and severe ADHD are generally characterized by
an increase in these rhythms [10].

• Theta (4-8 Hz): Theta rhythms are involved in daydreaming, sleep and
deep meditation [168]. These waves are seen to be prominent in ADHD,
depression, hyperactivity, impulsivity and inattentiveness [10]. In general,
in literature Theta band has been associated to sustained attention processes
and working memory (central executive functions). Theta power increase is
usually observed in the Fronto-Parietal area, due to the involvement of the
Central Executive Network (CEN).

• Alpha (8-13 Hz): Alpha waves appear mainly during eyes-closed condition
or when the subject is in a relaxation state and are more visible in the
Occipital lobe [168]. A reduced activity of Alpha power is caused by opening
the eyes, anxiety, mental concentration or attention [156]. They have been
also associated to the inability to focus [10]. In particular, recent studies
interpreted these rhythms focusing on a distinction between Internally and
Externally directed attention [118].
As regard the External attention, when the patient is subjected to a visual
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stimulation, Alpha power decreases over Occipital sites [118] [156]. Thus,
it was hypothesized that the ability to suppress these rhythms is associated
to the strength of attention to external stimuli [185]. The decrease is also
observed during Sensorimotor tasks over Sensorimotor areas [147].
Contrarily, an increase in Alpha oscillations has been noticed during Internal
tasks, as visual imagery or arithmetic operations [55]. However, the precise
role of Alpha waves, together with their modulation provoked by the task, is
still unclear [118].

• Beta (13-30 Hz): Beta frequencies are usually varying symmetrically on
both hemispheres in the Frontal Area and their arousal is more evident when
the subject is actively engaged in mental tasks [168]. Beta is considered a brain
waking rhythm, associated with active thinking, attention and focusing [156].
ADHD, depression and poor cognition could be characterized by a suppression
of these oscillations [10]. Two different Beta rhythms could be identified: the
first type, called Rolandic Beta rhythms, is located over the sensory-motor
strip, while the Frontal Beta rhythms are found in the Frontal region [98]. A
suppression (desynchronization) of Rolandic Beta rhythms could be observed
during a GO/NOGO task, during the preparation of the movement, as well as
during finger pressing; this desynchronization is then followed by rebound Beta
synchronization [98]. Conversely to Rolandic rhythms, which are visible during
motor-related tasks, Frontal Beta frequencies arise in cognitive tasks and are
characterized by a synchronization, usually preceded by a desynchronization
[98].

• Gamma (>30 Hz): Gamma range comprehends frequencies above 30 Hz
(mainly up to 45 Hz). These oscillations usually show very low amplitude
values and their occurrence is rare, however, the detection of these frequencies
could be useful to confirm the presence of certain brain diseases [156]. Cortical
activity in this frequency range has been also linked to various cognitive
processes, including attention [24] [150]: different studies [64] [74] [167]
observed that an increase in Gamma power is related to arousal and attention.
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Figure 2.5: EEG Brain Waves: typical dominant brain frequencies, ordered from low to high
frequencies [156].

To perform an analysis of the mentioned frequency bands, EEG Power Spectral
Density (PSD) is employed, since it reflects the distribution of the energy in
the different frequency ranges. In particular, Spectral Analysis could be used to
find associations between the oscillations within a certain band with a particular
cognitive process or brain dysfunction [176]. The power associated to a frequency
band can be expressed in absolute or relative terms; relative power represents the
percentage of power in one band relative to all bands [92]. Calculating the relative
EEG power with respect to the absolute one is advantageous since it helps to
control for individual differences [154].
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2.2.3 EEG Acquisition and Re-referencing

During an EEG acquisition protocol, it is important how to place the electrodes,
since different lobes of the cerebral cortex are responsible for the processing
of various types of activities [168]. The conventional electrode setting is the
International 10-20 System [95], recommended by the International Federation
of Societies for Electroencephalography and Clinical Neurophysiology [156]. The
10-20 System relies on the identification of anatomical landmarks, such as the
Nasion, Inion and Preauricular points (electrodes connected to the left and right
earlobes, A1 and A2), which are used to place the electrode at a fixed distance with
respect to another electrode [82]. Specifically, the distances between neighbouring
electrodes are either 10% or 20% of the total front-back (Nasion-Inion) or right-left
(A1-A2) distance of the skull [168], as could be appreciated in Figure 2.6.
Extra electrodes could be added for the recording of Electrooculogram (EOG),
Electrocardiogram (ECG) and Electromyogram (EMG) and exploited for the
removal of artifacts [156].

The placement of the electrodes is named montage and at least two different
types of montage could be identified [156]:

• Bipolar (Differential) Montage: each channel represents the difference between
two neighbouring electrodes [168].

• Referential Montage: in this mode, generally one or two Reference Electrodes
are considered, such as the vertex (Cz), linked-ears, one mastoid (TP10) or
linked-mastoids, ipsilateral or controlateral ear or the tip of the nose [156].
Electrodes placed on the midline are often chosen, since they do not generate
an amplification of the signal in one hemisphere with respect to the other
[168].

Specifically, the referencing procedure consists in acquiring the values of the voltage
recorded from each electrode with respect to a voltage value recorded in another
place (reference electrode). So, even if there is a monopolar montage, it is acquired
anyway a difference in potential [53].
It is needed to underline that the choice of a not relatively neutral reference might
produce a topographic distortion [156]. Indeed, if the electric potential near the
reference electrode is not neutral, the other electrode sites could contaminate the
measurement, provoking a distortion of the temporal dynamic and power spectral
analysis of the EEG recording [104]. However, if the data have been acquired with
a given reference, a re-referencing is suggested to be applied with respect to
another reference channel or channel combination [4].
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Figure 2.6: International 10-20 System: even numbers are referred to electrodes placed on the
right hemisphere, whereas odd numbers to those placed on the left hemisphere. A) Sagittal view of
the scalp; B) Top view of the scalp; C) 2D view of the electrode setup configuration [2].

The Common Average Referencing (CAR) is generally applied to generate
a more ideal electrode reference for EEG recordings. This technique is used to
identify small signal sources in noisy recordings and has the advantage of being
computationally simple [6]. CAR consists in subtracting the average potential
of all the electrodes from each EEG channel, minimizing the contribution of
uncorrelated noise sources [116]. However, it does not protect from the effect of
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volume conduction, differently from the Surface Laplacian.
Volume conduction is an essential phenomenon to register the EEG activity and
consists in the instantaneous propagation of the activity from the sources to the
electrodes [37]. Recording sensors are not in direct contact with the cells generating
the signal, thus this phenomenon is mainly due to the medium that separates the
two [153]. However, it can cause the presence of an undesired high correlation
between electrodes.

The Surface Laplacian spatial filter is a spatial band pass filter used to
estimate the Current Source Density (CSD) at each electrode; after its application,
high spatial frequency activity is preserved, while low spatial frequency activity is
attenuated [53]. Its aim is to attenuate some of the volume conduction artifacts
by transforming the source voltage recorded from the scalp into CSD, measured
in µV/cm2 [89]. Indeed, Laplacian Filter is capable to remove all the tangential
components relative to the scalp, that result from the volume conduction, leaving
only the perpedicular component. Since CSD is sensitive to local sources and
insensitive to distant ones [13], the Laplacian filter is capable of minimizing volume
conduction effects that may affect the results of the connectivity analysis [126].
Thus, Surface Laplacian is a recommended preprocessing step before performing
a connectivity analysis. Moreover, it increases the SNR (Signal to Noise Ratio),
allowing to obtain cleaner data, and improves topographical selectivity [53].

2.3 Brain Connectivity and Graph Theoretical Analysis

Information flow occurs at multiple scales in the brain, from the microscale
among neurons to the macro scale among cortical regions. Magneto- and
Electro-Encephalography (MEG, EEG) and functional Magnetic Resonance
Imaging (fMRI) are some of the methods able to measure the information [187].
How information is processed, sent to, received by or shared between different
brain regions is addressed in the research domain of Brain Connectivity [183].

Brain Connectivity and Network Theory have been widely used to study how
functionally specialized brain areas interact among each other. Complex brain
functions are the result of the connections of different brain regions in networks
[152] and interactions could be described by means of different connectivity
measures and indices based on Graph Theory [143]. Different types of Connectivity
and the Graph Theory will be explained in detail in the following sections.
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2.3.1 Brain Connectivity

Three types of Brain Connectivity can be defined:

• Anatomical (or Structural) Connectivity: physical connections between
neighboring neurons or fiber tracks connecting neuron pools. The connections
can be computed by estimating the brain’s morphological (e.g. gray matter
volume or cortical thickness) correlations in structural Magnetic Resonance
Imaging (MRI) data, or by tracing the white matter projections linking cortical
and sub-cortical regions through diffusion MRI (dMRI) data. [143].

• Functional Connectivity: statistical inter-dependency between two (or
among more than two) brain regions, evaluated in terms of dependence
between time series, acquired on different cerebral sites [44].

• Effective Connectivity: causal (or directed) influence of one brain area over
another one [102].

The characteristics of brain’s connectivity can be described by functional
Segregation and Integration [39] [8]. Segregation identifies locally segregated
processes, involving a cerebral area specialized in a specific task, as perceptual or
motor processing [67]. Greater segregation means that many specialized different
communities exist within a whole network [117]. Integration indicates the ability
of specialized areas to interact among each other [152]. The higher the integration,
the more the whole brain network works closely to process information [117].

The main steps followed to assess functional connectivity can be summarized
in:

1. Computing the connectivity matrices through one of the measures explained
in Section 2.3.1.1;

2. Applying a statistical threshold to eliminate weak and not significant
functional connectivity values. The threshold can be retrieved, for example,
through the Surrogate Method, a procedure useful to rule out dependency
results that are not different to what would be expected by chance;

3. Characterizing the brain networks by using graph theoretical approaches,
analyzed in Section 2.3.2.

There are two approaches to analyze synchronization among different areas, based
on bivariate or multivariate measures. The bivariate or ’pair-wise’ approach
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considers the synchronization of each pair of EEG signals separately, while the
second one takes into account more than two channels when estimating the
interaction between pair of electrodes [85]. A bivariate measure has been chosen
to assess the functional connectivity, since it was the most appropriate choice for
the current application: indeed, pairwise methods allow to better manage a great
number of nodes.

2.3.1.1 Functional Connectivity Metrics

The literature provides a multitude of metrics to compute the Functional
Connectivity [26] and each of these metrics has its own advantages and
disadvantages. An overview of the distinctions between functional measures,
considering a bivariate approach, is shown in Figure 2.7
.

Figure 2.7: Functional Connectivity measures.

A first distinction that could be detected is based on the presence, or absence,
of the direction of the interaction. Undirected Functional Connectivity merely
detects statistical dependence, without any information about the direction of
influence, while the Directed Functional Connectivity indicates a causal influence,
thus providing a direction (cause → effect). Within the first distinction, a second
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subdivision can be made between Linear and Nonlinear measures. In general, these
measures are relative to time or frequency domain and the calculation is either
amplitude or phase-based.

Linear Temporal Correlation is a time domain measure and calculates the
instantaneous linear relationship between two time series based on the amplitudes
of the signals [36]. The Cross-correlation investigates the correlation between two
time series that are shifted in time with respect to each other and this allows
to retrieve the directionality of the interaction based on the time-lag between
the activity [36], differently from the previous measure. The equivalent of the
correlation in the frequency domain is the Magnitude Squared Coherence, which
is the modulus of the Coherency [155]. The Imaginary part of the Coherency is
another undirected functional connectivity measure, which has been used in the
current work for the advantage of being less sensitive to volume conduction artifact.

Another way to analyze the interaction between two time series is to investigate
how their phases are coupled and this can be done through phase synchronization
measures, as Phase Locking Value or Phase Lag Index.

The Mutual Information and the Transfer Entropy are both based on probability
functions and joint probability of the time series, and are considered nonlinear time
domain measures [183]. While the Mutual Information assesses the undirected
nonlinear relations between two signals, the Transfer Entropy indicates the directed
nonlinear relations.

Another functional connectivity measure, exploiting the directionality in the
time domain, is the Granger Index, which is based on the concept of Granger
Causality. This concept expresses the ability to predict the future of one signal
given the past information of another signal [191].

2.3.2 Graph Theoretical Analysis

Thanks to advanced neurophysiological and neuroimaging techniques, the brain
can be mapped as a complex network at the macro-scale level. The concept of the
brain as a complex network is fundamental to understand abnormal brain functions
underlying various neurological disorders.

A Network, represented as a Graph G(N,K), is defined as a set of nodes
N (i.e. electrodes) that represent brain regions interconnected by a set of edges K
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(i.e. functional connectivity edges). The edges, also called links, are the entries
of a NxN Adjacency Matrix, which represents the existence (aij) or strength (wij)
of edges between each pair of nodes (i and j ) in the graph G. If this matrix
is symmetric, the network is Undirected, otherwise it is Directed. In addition,
a network can be classified as Weighted or Unweighted (Binary), depending on
whether the edges are assigned with different strengths (weights) [152]. The
different kinds of graphs are displayed in Figure 2.8.

Figure 2.8: A network can be represented as a binary (A) or weighted (B) undirected graph. The
directions of the causal effects among regions could be represented as arrows (C,D) [65].
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2.3.2.1 Graph Indices

There are different graph theoretic indices, useful to quantify and characterize
different aspects of a complex brain network, and they can be grouped into three
main classes: Centrality, Integration and Segregation indices [73].
According to the different types of graph (binary/weighted, directed/undirected),
there are different variants of the network indices; however, weighted and directed
variants are typycally generalizations of binary undirected variants [152]. All the
reported equations are relative to weighted and undirected graphs, which are those
considered in the actual research.

Centrality Indices, as Degree, Strength or Betweenness Centrality, capture
the relative importance of individual nodes within the network [165].

• Betweenness Centrality of a node i is defined as the fraction of shortest
paths between any pair of nodes that pass through the node i [175] and
quantifies how much a given node is in-between others.

BCi =
1

N(N − 1)

∑
h6=i 6=j

ρhj(i)

ρhj
(2.1)

ρhj is the number of shortest paths between h and j and ρhj(i) is the number
of shortest paths between h and j passing through i.
Equation 2.1 is the same for both binary and weighted networks, provided
that path lengths are computed on respective binary or weighted paths.
Nodes with high Betweenness Centrality are highly connected to other nodes
and work as hubs within the network [165].

• Degree of a node i is computed as the number of links (equivalent to the
number of neighbors) connected to that node and quantifies the node centrality
[165].

Di =
∑
j∈N

aij (2.2)

aij is the link connecting the node i to the node j.

• Strength, the weighted variant of the degree, is defined as the sum of the
weights of the links connected to the node [165].

Sw
i =

∑
j∈N

wij (2.3)
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wij is the weight of the link between the nodes i and j.

Integration indices, such as Shortest Path Length and Global Efficiency, estimate
the brain ability to rapidly combine specialized information of distributed brain
regions and are based on the concept of path [60]. Paths in functional networks
represent sequences of statistical associations between nodes and do not assume an
information flow on anatomical links [152].

• Shortest Path Length is the shortest distance between node i and node j.

SPw
ij =

∑
wuv∈gi↔j

wuv (2.4)

gi ↔ j is the shortest path between the nodes i and j.
The Characteristic Path Length is defined as the average shortest path length
in the network [152].

• Global Efficiency of the network G is the inverse of the average shortest
path length and reflects how closely each node is connected [117].

GEw =
1

n

∑
i∈N

Ei =

∑
j∈N,j 6=i

(SPw
ij )−1

n− 1
(2.5)

Ei is the efficiency of node i and SPij
w is the weighted shortest path length

between nodes i and j.

Segregation indices, such as Clustering Coefficient and Local Efficiency, quantify
the presence of densely interconnected groups of nodes, called clusters or modules
[152].

• Clustering Coefficient of the node i is the fraction of triangles
(characterized by nodes as vertices and edges as sides) around that individual
node and measures the robustness information transmission performance of
the network [165].

Cw
i =

∑
i∈N

2twi
Di(Di − 1)

(2.6)

ti is the number of triangles around a node i and Di is the degree of node
i. High clustering coefficient means that neighbours, to which the node is
connected, are highly connected with each other [165].
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• Local Efficiency of the node i is the global efficiency computed on node
neighborhood [152] and it measures the ability of each node to exchange
information.

LEw
i = GEw(Gi) (2.7)

GE(Gi) is the global efficiency of Gi which is the sub-graph composed of the
neighbors of node i [188].

Figure 2.9: A) The Degree Centrality is the number of node neighbors; B) The Betweenness
Centrality is a measure of the role of a node in acting as a bridge between different clusters; C)
The Clustering Coefficient measures how much neighbors of a node are interconnected; D) The
Characteristic Path Length measures the potential for the transmission of information, determined
as the average Shortest Path Length across all pairs of nodes [65].
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2.4 State of the Art: EEG in ADHD

Electroencephalography-based measures are useful and non-invasive indices of
Central Nervous System (CNS) function and are often used to assess both the
resting-state and task-related dynamic features underlying neurophysiologic aspects
of ADHD [154]. In particular, QEEG measures have been found to be useful as
a clinical tool to diagnose ADHD, improving the accuracy and validity of the
traditional behavioral cognitive tests employed for the diagnosis of the pathology
[73].

As already mentioned in Section 2.2, a common method employed to obtain
interesting information about this pathology is to study the power of the EEG
signal in selected frequency bands, expressed in absolute or relative terms.
Moreover, the ratio between the power in different frequency bands is another
frequently used spectral measure in EEG analysis. Referring to ADHD, the
Theta/Beta Ratio (TBR) is the most commonly employed one [73]: at rest, Theta
oscillations are associated with drowsy and unfocused states, while Beta oscillations
with cortical excitation [105].

According to the findings in literature, ADHD children were found to be
characterized by elevated low frequency activity (absolute and relative Theta [158]
[87] [52], located mainly in Frontal and Central regions, and increased posterior
Delta [122] [52]) during resting state [154]. On the contrary, concentrating on high
frequencies, most of the findings agree on a decrease in Alpha and Beta activities in
ADHD with respect to age-matched control subjects [61] [43], although literature
on the effect of ADHD in these bands is somehow inconsistent [73].

To date, an increased Theta band power and increased TBR have been considered
the most robust and reproducible psychophysiological findings in ADHD [154].
However, elevated Theta power observed in ADHD might be a nonspecific
biomarker of cortical dysfunction, since it is characteristic also of other disorders
[73]. In addition, TBR reliability has not been replicated in several recent studies.
In Arns et al. meta-analysis [17], a great heterogeneity among studies was observed,
suggesting that the overall effects sizes may be an overestimation and that TBR
did not have the reliability to support diagnosis of ADHD [154]. Furthermore,
age and developmental course have been found to influence both Theta power and
TBR more than the presence of ADHD [92].
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Nonetheless, the Spectral Analysis alone has not reached a definitive conclusion
in finding an effective biomarker capable of discriminating the pathology from the
healthy state. As a consequence, this type of analysis has often been coupled with
Connectivity Analysis, focusing the attention more on how efficiently the cortical
areas communicate among each other.
The increasing investigation of brain connectivity analysis in ADHD studies, using
the temporal resolution of EEG, allows to better understand transient changes in
connectivity during cognitive tasks. Indeed, the connectivity retrieved by fMRI
may not fully capture synchronization between faster brain oscillations, typically
of fast-changing processes involving cognitive functions [127]. However, EEG
connectivity metrics might be contaminated by volume conduction artifacts and
most studies on ADHD have been characterized by this limitation, significantly
affecting connectivity differences between the case (ADHD) and control group
[138] [141]. For this reason, further investigation, by applying methods that make
connectivity metrics uncontaminated, has been chosen for the current work.

Previous works applying Functional Connectivity in ADHD [189] [12] have
underlined atypical patterns in brain functional networks involved in executive
control, such as Fronto-Parietal network (also known as the Executive Control
Circuit), attentional processing (Ventral-Attentional network) and resting states,
as the Default-Mode network (DMN) [56] [182]. A reduced inhibition of the
DMN, which is characterized by a higher level of activation during resting state
and a lower one when subjects are engaged in cognitive tasks [38], has been
underlined during attentional tasks in ADHD; at the same time, a hypoactivity
in the task-positive networks (Fronto-Parietal and Ventral-Attentional networks)
[164] has been noticed in ADHDs. One of the most common findings is that, in
Frontal and Parietal areas, ADHD patients show elevated coherence in Theta band
[73] and reduced coherence in Alpha band during the task [22].

Other studies [186] [146] have focused the attention on graph theoretical methods
to understand which aspects of brain connectivity are disrupted in individuals
with ADHD. A particularly studied graph-based index is the Global Efficiency,
even if the results obtained and the interpretations disagree among the different
studies. For example, Furlong et al.[69] suggested that increased Global Efficiency
in ADHD individuals reflect disruption of information transfer across the brain,
affecting cognitive functions; in addition, the study has found that this increase
is associated with elevated ADHD symptoms severity [68]. On the other hand,
decreased Global Efficiency has been detected in other studies [189] [28] and related
to a loss of long-range communication due to structural abnormalities in ADHD.
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To our knowledge, few studies have carried out a discrimination of the ADHD
children from the control ones using Machine Learning techniques and most
of them have focused their attention on the resting state condition [91] [107].
Tenev et al. study [179] is one of the few which considered the task (CPT
and emotional continuous performance test), together with the eyes-open and
eyes-closed conditions, to extract the relevant features for the classification.
However, differently from the actual work, this study was provided with all the
information relative to the different trials (e.g. performance indices, inter stimulus
interval) and the starting dataset was larger. Furthermore, they did not take into
account connectivity measures, but only the spectral ones. Ekhlasi et al. [62]
exploited the brain connectivity for the classification, but, differently from the
present study, they did not take into account the graph metrics as feature vectors,
using instead the vectorized Connectivity Matrices as inputs of an Artificial Neural
Network (ANN). Other studies [136] [134] [170] discriminated the two classes on
the basis of Event Related Potentials (ERP) data and Smith et al. concluded
that ERP information could be of considerable diagnostic utility and might be
implemented in clinical practice as an additional diagnostic tool. Deep Learning
techniques were not only employed for the classification of the pathology against
physiology, but have been also utilized for the discrimination of the different ADHD
subtypes, using both fMRI data [99] and EEG signals [11] during resting state.

In conclusion, most of the studies found in literature has analyzed ADHD
mainly during Resting State condition, while only a few studies have focused their
attention on Spectral and Connectivity analysis related to the task condition.
However, it is important to evaluate a neural network’s ability to change from
a passive to an active condition (cognitive task). Studies based on the active
condition have mainly analyzed the attentional task considering each segment
of the EEG signal without taking into account the temporal dynamics [9] or
investigating ERP [106] [127] evoked after the stimulus administration.
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Chapter 3

Materials and Methods

3.1 Study Design

This section will focus on how the study was conducted, introducing a description
of the study population and the acquisition protocol. Then, the EEG signals
preprocessing will be also briefly described.

3.1.1 Participants

Twenty-eight subjects of age 7 to 17 years were enrolled in the study: 16 subjects
(mean age 12.3, 3 females) affected by ADHD and 12 healthy controls (mean age
11.4, 5 females). Participants selection and data acquisition took place at the
Unità Operativa di Neuropsichiatria dell’Infanzia e dell’Adolescenza dell’Azienda
Socio-Sanitaria Territoriale Ospedali Santi Paolo e Carlo, in Milan.
General good health conditions, established by general and neurological exam, and
the absence of cognitive disability or neurological pathology were required to all
the participants as inclusion criteria. The absence of ADHD diagnosis based on
DSM-IV criteria was needed for controls.
Regarding the exclusion criteria, the participants were not enrolled in the study
if they presented a QI < 80, psychiatric and neurological disability, epilepsy,
epileptiform abnormality in previous EEG exams and psychopharmacological drug
assumption [13].

3.1.2 Protocol

During the experimental protocol, participants were seated in a room and asked to
look at a computer screen, while EEG was performed.
As a first step, a baseline of two minutes with eyes-open, during which the
participant looked at a meaningless figure, was acquired.
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Afterwards, the subject performed a computerized Continuous Performance
Test (CPT), also called the Conners’ “not-X” CPT, during which the letters of
the English alphabet were presented in a randomized order on the screen. During
the task, the participants were instructed to press the left mouse button with their
right index finger as soon as a letter different from X was presented (GO or target
stimulus) and not to press the button when the X appeared on the screen (NoGO
or No-target stimulus).

The CPT is currently the most popular objective cognitive task used to support
a clinical diagnosis of ADHD. This task generally allows to evaluate selective
attention, sustained attention and impulsivity [169].
The participant’s behavioral performance was assessed by the use of task-related
scores, which can be associated to different aspects of attention, such as
inattentiveness, impulsivity, sustained attention and vigilance [90]. A more
detailed description of the Performance Indices will be provided in Section 4.1.

3.1.3 Data acquisition and Preprocessing

A continuous EEG was recorded using 62 surface electrodes, positioned according
to the 10/20 International System, plus two electrodes used for collecting the
Electrooculogram (EOG) signals. The positioning of the electrodes is displayed in
Figure 3.1. In particular, FCz and AFz were the recording reference and the ground
electrodes, respectively. Furthermore, after an appropriate low-pass hardware filter,
EEG recordings were digitalized with a sampling rate equal to 500 Hz.

Figure 3.1: 62 of 64 electrode locations, positioned according to the 10-20 International System.
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For the processing of the EEG signals, the MATLAB-based (The MathWorks, Inc.,
Natick, Massachusetts, United States) open source toolbox EEGLAB was used
[58]. All the pre-processing steps are listed in Figure 3.2.

Figure 3.2: Pre-processing steps performed on the raw EEG signals.

Firstly, a band-pass zero-phase FIR filter between 1 and 70 Hz was applied to
the data in order to remove the low-frequency baseline drift and the noise at
higher frequency, while introducing as little distortion as possible in the band of
primary interest. A Notch filter at 50 Hz was also applied to attenuate the power
line noise. After that, the signals were downsampled at 250 Hz to reduce data
autocorrelation and memory occupation. In order to remove ocular and muscular
artefacts, the Independent Component Analysis (ICA) was performed to separate
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the data into statistically independent and spatially localized sources. Independent
components associated to ocular artifacts (blinks and lateral movements), muscular
noise and other not-brain related sources were visually identified and removed by
an experienced operator. Subsequently, the two EOG electrodes were removed,
together with Tp9, Tp10 and Iz EEG channels, since their signals were very noisy
or the electrodes were not connected.

As a last pre-processing step, a Re-referencing of the EEG traces was performed.
Two kinds of re-referencing methods were considered for application and compared
(Figure 3.3). Firstly, Common Average Referencing (CAR) was applied. Since it
does not protect from the effects of volume conduction, so the activity tends to
be less localized, Laplacian Filtering was performed on the signals, by using an
adaptation of the Current Source Density (CSD) toolbox. Hence, all the analyses
in the current research were conducted on Laplacian-filtered EEG data.

(a) CAR (b) CSD

Figure 3.3: Comparison between Common Average Referencing (CAR) and Current Source
Density (CSD). The illustrated Scalp Maps, relative to the third 1-minute window of CPT,
represent the Alpha Power Spectral Density (PSD) with respect to the baseline, computed as the
median of the ADHD patients.
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3.2 Performance Indices Analysis

This first analysis was conducted in order to check if the Performance Indices alone
were able to discriminate between pathology and physiology.
As mentioned in the previous section, the CPT performance is evaluated through
the scores obtained analyzing different behavioral Performance Indices. Specifically,
the indices considered in the present study are:

• Omission Error (OE): failure to press the key when the critical signal (target)
appears. High omission rates indicate that the subject did not respond to
the target stimuli because of a specific reason, such as difficulty in focusing.
Indeed, OE is considered a measure of inattention [169].

• Commission Error (CE): a response is given when a non-target is shown [21].
Depending on the Hit Response Time (HRT), high commission rates may
indicate either inattention or impulsivity. If high CE scores correspond to
slow reaction times (high HRT), the subject was probably inattentive to the
type of stimulus presented and, therefore, responded at a high non-target
rate. If, on the other hand, high CE scores are combined with fast reaction
times, the subject likely failed to control his impulsivity in responding to
non-targets. In this case, high commission rates would reflect impulsivity
rather than inattention [169].

• CPT Hit Response Time (HRT) : average speed of correct responses; it is
the latency between the target onset and the participant’s response [21]. An
atypically slow HRT may indicate inattention (especially when commission
rates are high). Alternatively, a very fast HRT, when combined with high CE
scores, may indicate impulsiveness.

• CPT HRT Standard Deviation (HRT SD): measure of response speed
consistency. A high HRT SD may be indicative of inattention, suggesting
that the subject was less engaged and that the stimuli were processed less
efficiently during the task [54].

• CPT Variability : takes into account the task variability. High variability
values indicate that subject attention and processing efficiency vary
throughout the test [54].

Since the performance values of two ADHD subjects were missing, these two
participants were excluded from behavioral analysis. All the indices were provided
by the clinical team performing the acquisition as global t-scored values.
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To understand which of these behavioral indices were significant to distinguish the
two groups (i.e ADHD patients and the Controls), a Wilcoxon test for independent
samples was carried out within each group for each performance index.
The Wilcoxon test has been chosen instead of t-test, since the latter hypothesizes
a reasonably normal distribution for the population [19]. From the observation
of the boxplots (Figure 3.4), it can be deduced, indeed, that the assumption of a
normal distribution cannot be done for the current performance indices. The test
is based on a null hypothesis, for which the two groups have the same distribution
with the same median. Rejecting the null hypothesis means that the p-value is
less than the significance level, set to 0.05 in the actual research: a p-value near 0
shows high ability of the feature in discriminating the groups, while when it is close
to 1 indicates high similarity of distributions [12]. It is worth mentioning that only
one value per patient was acquired for each behavioral parameter, corresponding
to the whole CPT (global parameters).

Figure 3.4: Boxplot of Control (blue) and ADHD (red) distributions of Hit Response Time
Standard Deviation (HRT SD). * represents an outlier.
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3.3 EEG analysis

This section deals with the EEG signals analysis methods applied in this work:

• Spectral Analysis

• Functional Connectivity Analysis

3.3.1 Spectral Analysis

In this section all the steps concerning the time-frequency analysis computed on the
signals will be explained. The aim of the analysis was to understand if significant
differences could be observed between ADHD patients and Controls. This type of
analysis is mainly conducted considering the variation of the CPT spectral power
with respect to the resting state period.

3.3.1.1 Power Spectral Density

Firstly, the Power Spectral Density (PSD) was computed through a function based
on Welch’s Periodogram. The Welch’s method is a non-parametric approach used to
estimate the PSD. It can be considered an improvement of the standard Bartlett’s
method, since it is more robust to noise and reduces the variance of the individual
PSD values by applying an explicit tapering window to the signal [190]. This
technique consists in segmenting the time signal into successive blocks, obtaining
the periodogram for each block, and finally averaging the periodograms [171]. The
estimation of the PSD is given by Equation 3.1:

Ŝx(fk) =
1

K

K−1∑
m=0

Pxm,M(fk) (3.1)

where Pxm,M is the periodogram of the m-th block, with m=0:K-1.

In this study, the relative Power Spectral Density was estimated every 10
seconds of the signal, without overlapping. The choice of the segment length (10
seconds) was made taking into account that the CPT duration is quite long, and a
very high temporal resolution was not required in this analysis.
Within the 10-seconds segment the spectrum was computed with Hamming
tapering of 1 second and a chosen overlap of 50% (125 samples of overlap, since
the sampling frequency was 250 Hz), obtaining a frequency resolution of 1 Hz.
The final spectral density was obtained by averaging the 19 periodograms of the
10-seconds segment. In order to get a single power value for each frequency band
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of interest, the integral of the PSD was computed in the subsequent frequency
ranges:

a. Delta: 1-4 Hz

b. Theta: 4-8 Hz

c. Alpha: 8-13 Hz

d. Beta 1 :13-22 Hz

e. Beta 2 : 22-30 Hz

f. Gamma: 30-45 Hz

Figure 3.5: Power Spectral Density [dB/Hz] of EEG recording in function of frequency [Hz] [1].

The normalization of the power is computed within the function in order to reduce
the dependence of the extracted power from the amplitude of the signal itself. This
procedure allows to obtain a more robust comparison between signals coming from
different cortical areas and across subjects [140].
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3.3.1.2 Power variation evaluation

When exploring a cognitive task, it is important to choose an appropriate baseline
to observe the changes in brain activity. Both eyes-closed and eyes-open conditions
are suitable baseline choices, but they show different characteristics of the brain
activities. In the current study, the eyes-open condition was considered as baseline,
since it is more appropriate when dealing with tasks that involve visual processing.
Thus, it is assured that the EEG changes are associated to the task considered [135].
To evaluate the changes in the brain activity during the task with respect to the
baseline, the Percentage Change in the band-specific power value was computed.
The results are interpreted as changes in power relative to the power of the baseline
period, according to the Equation 3.2.

∆P% = 100 ∗
Pactivitytf − Pbaselinef

Pbaselinef

(3.2)

The bar over the baseline indicates the mean across the baseline time points; t and
f are time and frequency indicators [53].
In the present work, the baseline value was subtracted to each 10-seconds power
of CPT. Thus, the percentage variation of the spectral densities, relative to each
frequency band and to each patient, was obtained.

3.3.1.3 Topographical representation: Scalp Maps

Most of the studies on ADHD analyze the CPT (generally lasting few minutes) by
condensing the results in a single value, loosing the temporal information. In the
current study, since the CPT duration was of 14 minutes, it was decided to study
the Spectral Density dynamically, choosing temporal windows of 1 minute each.
The value for each window was obtained by averaging the PSD values of the six
10-seconds segments, mentioned previously. This procedure was conducted for every
participant of the two groups, considering separately the frequency bands mentioned
before, with the aim of detecting some differences among control and ADHD
patients. For a meaningful visualization of the described quantification of the
brain power activations, using the ’topoplot’ EEGLAB function, the topographical
representation of the power on the scalp maps was obtained. An example of the
scalp map is shown in Figure 3.6:
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Figure 3.6: Scalp Map: Patient 07, Control, Beta1 Band. The minimum and the maximum
values of the colorbar were chosen according to the minimum and maximum values of the overall
population (considering both ADHD and control patients), for each frequency band. Indeed, in
order to perform a correct comparison between all subjects, the color scale is recommended to be
equal. The unit of measure is the percentage variation of PSD.

In order to represent and compare the power activations for both the control and
the ADHD group, median scalp maps were obtained. The median was preferred to
the mean since it is more robust to outliers. The computation was done for every
electrode, considering the two groups separately.

3.3.1.4 Cortical Areas-specific Analysis

Another type of analysis conducted concerns the median temporal trend of the
power percentage variation considering 4 different areas, each one divided in the
two hemispheres, in order to investigate the laterality and regionality of the brain
activity. The following areas were thus considered (Figure 3.7):

• Left Frontal : Fp1, F1, F3, F5, F7, AF3, AF7

• Right Frontal : Fp2, F2, F4, F6, F8, AF4, AF8

• Left Parieto-Occipital : P1, P3, P5, P7, PO3, PO7, O1

• Right Parieto-Occipital : P2, P4, P6, P8, PO4, PO8, O2

• Left Temporal : T7, FC5, CP5, C5, FT7, TP7
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• Right Temporal : T8, FC6, CP6, C6, FT8, TP8

• Left Central : C3, FC1, CP1, C1, FC3, CP3

• Right Central : C4, FC2, CP2, C2, FC4, CP4

Figure 3.7: Subdivision of EEG electrodes according to the different brain areas (Frontal,
Temporal, Central and Parieto-Occipital), divided into Right and Left hemispheres.

For each area the median value of ΔP% among the relative electrodes was computed
for each subject. This type of analysis is useful to achieve an easier interpretation
of the results instead of an investigation conducted on the electrodes considered
singularly. Unlike the scalp maps, the temporal trend was visualized in only Alpha,
Beta 1 and Theta bands: indeed, a great number of studies [132] [131] [23] [113]
[172] [130] have noticed high levels of Theta and/or decreased levels of Alpha and
Beta, which might be associated to the ADHD [142]. Moreover, the trend was
displayed considering 10-seconds and not 1-minute windows, because, differently
from the previous one, this type of analysis lends itself better to this temporal
scale, providing more interpretable results. In order to visualize and compare the
temporal trend for the ADHD and control group, the median value among the
patients was computed for the two different groups. In Figure 3.8, the median
temporal trend relative to Theta in the Left Parieto-Occipital region is displayed.
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Figure 3.8: Median Temporal Trend of the Power Spectral Density (PSD) variation with respect
to the baseline in Theta (4-8 Hz) band, in Left Parieto-Occipital Cerebral Region. The interquartile
range is plotted around the median temporal trends relative to the Controls (blue) and ADHDs
(red).

3.3.1.5 Correlation Analysis between EEG and Performance Indices

Based on the results obtained in Section 3.3.1.3, an investigation of the correlation
between EEG-based spectral parameters and performance indices was carried
on. A first correlation was performed between a global EEG index, computed
per subject as the median value of ΔP% along the 13 minutes of the task in
Alpha band in Right and Left Central regions, and global performance indices.
Successively, a second analysis was conducted taking into account the temporal
evolution, correlating each one-minute value of ΔP% with the global performance
indices.

The initial task duration corresponded to 14 minutes, but in this analysis
and in all the subsequent analyses, the last minute was discarded since, at the end
of the acquisition, the patient performance is generally considered not to be so
reliable due to fatigue.
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The decision about the Alpha band and the Central area was made after
having noticed an interesting behavior in the ΔP% of the ADHD group, as it
will be explained in Section 4.2. Both hemispheres were analyzed separately, but
the corresponding electrodes were chosen differently from the previous analysis,
subsequently to the observation of the channels involved in the diversified behavior
between groups:

• Left Central : C3, FC1, CP1, FC5, CP5 C1, FC3, CP3, C5

• Right Central : C4, FC2, CP2, FC6, CP6, C2, FC4, CP4, C6

Before proceeding further with the computation of the correlation, outliers were
removed from both the variables distributions under analysis, through the method
of quartiles. Indeed, one definition of outlier is any data point that lies below the
first quartile and above the third quartile more than 1.5 Interquartile Range (IQR),
which is the difference between the values of the third and first quartiles [163].

Figure 3.9: Representation of First Quartile (Q1), Third Quartile (Q3) and Interquartile Range
(IQR) of a normal distribution [145]

.

Since the numerosity of the population in the two groups was too small to suppose a
normal distribution [133] and normality and linearity of variables are fundamental
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requirements to apply Pearson’s correlation, the Spearman’s correlation was
employed. Spearman’s correlation is a non-parametric method, usually adopted
when the assumption of a bivariate normal distribution is not sustainable [18].
Furthermore, this approach is more robust with respect to outliers than Pearson’s
correlation coefficient [174].

Since the Spectral Analysis alone was not sufficient to find significant biomarkers
capable of discriminating the pathology, a Connectivity Analysis was carried on.

3.3.2 Functional Connectivity Analysis

In this section, the mathematical tools and methods employed for Connectivity
Analysis of the EEG signals will be explained. A brief overview of all the steps
performed in the Connectivity Analysis is presented in Figure 3.10.

Figure 3.10: Connectivity Workflow: the Connectivity Analysis starts from pre-processed data,
from which the Weighted Undirected Adjacency Matrices were obtained through the Imaginary Part
of the Coherency (ImCoh). Subsequently, a thresholding was applied in order to obtain only the
significant connections (p<0.05). From the Graph obtained from the Adjacency Matrix graph-based
measures are derived. A statistical analysis is then performed on these indices to identify the most
significant ones to distinguish the two groups.

A bivariate analysis was performed, analyzing pairs of electrodes separately, and
conducted on the two acquisition phases, i.e. eyes-open resting state and CPT.
The eyes-open condition was considered in order to study the 13 minutes of CPT
variation with respect to a baseline.
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3.3.2.1 Connectivity Measure: Imaginary Part of Coherency

The Imaginary Part of the Coherency (ImCoh) was chosen as Functional
Connectivity measure to estimate magnitude of information flow between the
bivariate EEG signals and to represent a Functional Connectivity Network (FCN)
estimation at the sensors level.
Unlike the real part of the coherency, the imaginary part is insensitive to artifactual
interactions caused by volume conduction [138]. This is due to the fact that ImCoh
is only sensitive to synchronizations of two processes which are time-lagged to each
other [138]: indeed, it captures the non-instantaneous connectivity between brain
activities from EEG channels that are phase-lagged (i.e. delay-based). On the
other hand, volume conduction affects multiple scalp channels with near-zero phase
delays. The result is that, when two signals at the same frequency have identical
phase values, possibly due to volume conduction artifacts, ImCoh is zero [144].

The coherency between two EEG signals, which could be considered a generalization
of the correlation in the frequency domain, is a measure of the linear relationship
between the two at the same frequency [97].
Coherency (Equation 3.3) is defined as the cross-spectrum between the two signals,
divided by the square root of the product of each signal power spectrum at the
same frequency [97].

Cij(f) =
Sij(f)√

Sii(f) ∗ Sjj(f)
(3.3)

If Xi and Xj are the discrete Fourier transforms of the respective time series, the
Cross Spectrum is defined as an average over a sufficiently large number of windows
(K) of the product of the two discrete Fourier transforms [138].

Sij(f) =
1

K

K∑
k=1

Xi,k(f) ∗Xj,k(f) (3.4)

Complex coherency was firstly computed based on Welch’s method, the same
method used for PSD computation, obtaining a value every 10 seconds. The
complex coherency is computed every 1 second within the 10 seconds window and,
unlike to the PSD computation, the overlap was set to zero and Hanning window
was chosen. Then, the absolute value of ImCoh was extracted. In order to obtain
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ImCoh in the specific frequency band, Alpha, Beta1 and Theta, values of ImCoh,
corresponding to frequency bins of that specific band, were averaged.

3.3.2.2 Testing the significance of the connectivity: Surrogation Test

The Surrogation Test with Phase Randomization method [148] was applied in
order to define a statistical threshold for assessing the significance of the coupling
between the time series. This method consists in generating new time series from
the original ones: the amplitudes are maintained while the phase relationship is
destroyed, by randomly shuffling the phase in the frequency domain and then
transforming them back to the time domain [119].
The number of surrogates has been chosen equal to 50. The imaginary part of the
coherency in Alpha, Beta1 and Theta frequency bands was computed for the 50
surrogates, through the same method explained in Section3.3.2.1 and the threshold
was extracted as the percentile corresponding to 95% of significance.

Adjacency matrices were obtained applying the estimated threshold: the
results from the original connectivity values below the threshold were set to
zero, while the others were maintained, resulting in a weighted graph with only
significant connections.
The adjacency matrices 59x59 (where 59 is the number of considered electrodes)
were normalized, in order to make comparable all the values among each other.

For each subject and for the two conditions (baseline and CPT), weighted
adjacency matrices were obtained for each frequency band (Alpha, Beta1 and
Theta).

3.3.2.3 Graph Analysis

The statistical significance of the above connectivity measure was evaluated using
indices based on graph theory. From each adjacency matrix (i.e. graph), computed
every 10 seconds, the following graph-based indices were derived using MATLAB
functions provided in the Brain Connectivity Toolbox (BCT) [152], obtaining a
value of the index every 10 seconds, for each band and for each acquisition phase:

• Measures of centrality : Degree, Strength and Betweenness Centrality;

• Measures of integration: Shortest Path Length and Global Efficiency;

• Measures of segregation: Clustering Coefficient and Local Efficiency;
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To study the information flow between different regions of the brain, the region-wise
analysis was performed, taking into account the main four cerebral areas shown in
Figure 3.11:

• Frontal : Fp1,Fp2, F3, F4, F7, F8, Fz, F1, F2, AF3, AF4, F5, F6, AF7, AF8,
Fpz;

• Central : C3, C4, , Cz, FC1, FC2, CP1, CP2, C1, C2, CPz, FC3, FC4, CP3,
CP4;

• Temporal : T7, T8, FC5, FC6, CP5, CP6, C5, C6, FT7, FT8, TP7, TP8;

• Parieto Occipital : PO7, PO8, POz, Oz, P5, P6, PO3, PO4, P1, P2, Pz, P7,
P8, P3, P4, O1, O2;

Figure 3.11: Subdivision of EEG electrodes according to the different brain areas (Frontal,
Temporal, Central and Parieto-Occipital).

The mentioned indices, except for Global Efficiency, which is a measure of the
overall network, are measures relative to each electrode (i.e. node-based indices).
Thus, in order to obtain a value of the index for area, the median of the values
corresponding to each electrode of the specific area was computed.
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Concerning the Shortest Path Length, since it is represented by a matrix of distances
between all pairs of electrodes, the sub-matrices corresponding to all pairs of
previously mentioned regions were extracted. In order to have a value for each pair,
the sub-matrices median was considered, obtaining a characteristic path length for
each pair of regions.

• Statistical Analysis

To evidence different connectivity patterns during the task between the two groups
(i.e. healthy participants and patients with ADHD), it was deemed appropriate
to subtract the baseline from the indices, as it was already done in the Spectral
Analysis. The baseline was obtained averaging the 6 values of the indices along 1
minute of the resting state and then subtracting it from each 10-second segment
value relative to the task.

A statistical analysis employing Wilcoxon test for independent samples was
then adopted to determine which of the graph-based indices would have been more
useful to discriminate between the two groups. The data entries for the test were
the values of the indices in every 10-second segment of CPT (for a total of 78
segments per patient): this resulted in a vector 1x1248 (78x16) for the ADHD
population and 1x936 (78x12) for the Controls, for every index, band and area
under examination. Before performing the test, outliers, identified as data outside
the 1.5 inter-quartile range, were removed.

Based on the results retrieved from the statistical analysis, only a subset of
connectivity indices (pvalue < 0.05) was selected for a subsequent investigation of
the temporal trend during CPT. This subset was further screened, since some of
the indices did not carry interesting results or provided similar information, like
Clustering Coefficient and Local Efficiency.

The decision to analyze the indices temporal trend was taken since no such
type of ADHD study was found in literature and could probably reveal an
interesting decreasing or increasing trend in the graph measures. It could be
considered a novel approach of applying graph theoretical measures, useful for
investigating the brain activity in the two different groups.

A 1-minute temporal scale was employed and the values per minute were
again obtained through the average of the 10-second values.
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3.4 Machine Learning

In this section, a model for discriminating ADHD and control groups will be
described, exploiting only the information contained in the CPT. Indeed, many
works have tried to discriminate the pathology considering only the resting state,
while almost no one has performed classification using the CPT information. The
aim of merging Graph theoretical and Spectral approaches with Machine Learning
techniques was to provide a further way to investigate the ADHD impairment, as
well as mapping predictions to a single individual case.

The workflow for the Machine Learning-based Classification is illustrated in
Figure 3.12.

Figure 3.12: Machine Learning-based Classification Workflow. The initial features of the dataset
were derived from the Spectral and Connectivity Analyses. The dataset was splitted in Train,
Validation and Test sets and a Standardization was applied to normalize the data. Feature
selection methods (ANOVA, MRMR and PCA) were used to extract the most relevant attributes
and compared. A non-linear classifier was employed for discriminating the two groups (ADHD
and CONTROL).
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For the implementation, Python language has been used and the code has been
written and executed on Colaboratory, a product from Google Research. The
algorithm was applied on the dataset, which has been previously prepared by
standardizing the data and choosing a subset of features in order to reduce
complexity and dimensionality.

3.4.1 Data Preparation

The starting dataset is composed as follows:

1. The Observations are the 10-second segments belonging to CPT, for a total
of 2184 samples.

2. The Features are the variations of Graph Indices and of Power Spectral
Densities with respect to the baseline, for each band (Alpha, Beta 1 and Theta)
and area (Frontal, Central, Temporal and Parieto-Occipital), reaching 93
explanatory variables. As explained previously, the extraction of the features
for each area was done by computing the median of the electrodes’ values of
that specific area.

3. The binary Target (0/1) corresponds to CONTROL and ADHD, respectively.

As can be seen in Figure 3.14, the dataset did not show a great imbalance in the
data, considering the target, indeed it was not deemed necessary to apply any
method to balance it.

Figure 3.13: Counting of Dataset Observations: 936 belonging to Controls (0) and 1248
belonging to ADHD (1).
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Before proceeding with the split in Train, Validation and Test sets, a preliminary
step was to remove the features relative to the Degree Index, since the information
provided was nearly equal to that carried by the variables related to the Strength
Index. The reason to preserve the Strength with respect to the Degree was that
the first one carries the additional information of the weight of the link.

The dataset was then subdivided in three parts (Figure 3.14), maintaining
for each set the original balance in the target class:

• Test Set: 8% of the entire dataset (175 samples) was randomly chosen and
used as Test Set to assess the classification performance when new data are
considered.

• Training Set: 75% of the remaining dataset (1506 samples) was randomly
selected to create the Training Set, whose utility is to train the classifier.

• Validation Set: the other 25% of the data (503 observations) was used as
Validation Set, employed to predict the responses for the observations through
the fitted model [86].

Figure 3.14: Dataset split in Train (69%), Validation (23%) and Test (8%) sets.
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Subsequently, Standardization was performed on the Training, merged with
Validation set, and Test set separately, when using Analysis of Variance and
Maximum Relevance Minimum Redundancy feature selection methods; while,
when adopting Principal Components Analysis, the standardization was executed
on the entire dataset.

Standardization is useful to make the features normally distributed: indeed,
a normal-like distribution (zero-mean and unitary variance) is required to perform
many statistical methods. The Power Transformer standardization was selected
and implemented in Python environment, to make the data more Gaussian-like.
An example of the effect of standardization on the Betweenness Centrality index
in Alpha band and Central area is reported in Figure 3.15.

(a) No Standardization (b) Standardization: Power Transformer

Figure 3.15: Histograms of Clustering Coefficient: Alpha Central.

3.4.1.1 Feature Selection

Feature Selection is an essential step when dealing with a classification problem,
especially in datasets with many features. The aim is to reduce the original
feature set to a smaller one, preserving the relevant information for predicting the
response, while discarding the redundant one [50]. Furthermore, feature selection
methods are useful to speed up the training of the model, lower the complexity
and increase the generalization potential of the classifier [51]. Different methods
have been tried in the present study, that are summarized in Figure 3.16.

48



Figure 3.16: Scheme of the tested Feature Selection Methods.

A first distinction in Feature Selection is between Supervised and Unsupervised
methods: the difference is in the usage of the target variable to select the features.
Indeed, while Unsupervised Methods ignore the target information, Supervised
Methods include the knowledge of the classes in the selection [100].

Filter Methods are a particular type of supervised approaches, which act
independently from the chosen classifier and filter out features using heuristics or
the characteristics of the given data [76].

Analysis of Variance and Maximum Relevance Minimum Redundancy
are two examples of these methods, which have been applied in the current study.
Regarding Unsupervised feature selection, the attention was focused on Principal
Component Analysis.

Indeed, these particular statistical approaches are recommended when dealing
with a starting dataset composed by numerical features and a categorical target
variable, as in this case. It is important to underline that Supervised methods need
to be applied only to the Training dataset, while Unsupervised ones could consider
the whole dataset, since the target information is not taken into account.
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• Analysis of Variance (ANOVA)

ANOVA is a parametric statistical test that demonstrates how strongly a feature
can distinguish a class from another class by a value (p-value), which varies between
0 and 1. To fulfil this goal, an F-statistic, or F-test, is employed to test the equality
of the means of the groups, by comparing variance among groups relative to variance
within groups [103]. The more the variance between the groups, the more they differ
from each other, as can be seen in Figure 3.17. The results of this test are used to see
which features can be removed from the dataset, according to their independence
from the target variable [101].

(a) Not significantly different groups (b) Significantly different groups

Figure 3.17: As the variance between the groups increases, the population distributions differ
from each other [109].

In the current study, an inbuilt Python function namely SelectKBest, which
provides a score for each feature, based on the F-test, was used. The higher the
score, the higher the prediction power of the variable. Considering the variables
in a descending order according to the scores, it was noted that there were many
features characterized by a score around 0 and few ones with a score over 15.
Hence, a threshold of 15 was chosen as a criterion to feature selection, picking only
variables that overcome this score, resulting in 16 features.
Before applying ANOVA, as mentioned before, a data Standardization was
performed in order to obtain Gaussian variables, since Gaussianity is a fundamental
requirement for the F-test.

One drawback of ANOVA is that it does not take into account the presence
of the correlation among variables: this means that two or more variables
could carry redundant information, not improving the prediction. Therefore, a
Correlation Analysis with Pearson’s correlation coefficient was performed after
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having applied ANOVA, with the consequent removal of the redundant variables.
The choice of which features to remove was done according to the score provided
by ANOVA test, dropping out other 2 features.

• Maximum Relevance Minimum Redundancy (MRMR)

The MRMR algorithm is part of a special group of filter-based feature selection
approaches, whose aim is to select highly predictive (relevance), but at the same
time uncorrelated (redundancy) features [149].

Figure 3.18: Minimal-optimal methods, such as the MRMR, aim at identifying a small set of
features that have the maximum possible predictive power, finding a minimal-optimal subset of
attributes [125].

In the current study, a variant of this method, the F-test Correlation Quotient
(FCQ), was chosen, since it is the most suitable for continuous features. Indeed,
the relevance is computed through the F-statistics, while the redundancy by using
the Pearson’s correlation coefficient, as shown in Equation 3.5:

scoreFCQ(fi) =
F (fi, target)
1
|S|

∑
fs∈S

ρ(fs, fi)
(3.5)

ρ(fs,fi) is the Pearson correlation, F(fi, target) is the F-statistic and S the selected
feature set [192].
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Similarly to the ANOVA, this algorithm could be applied thanks to the
normalization procedure. However, in this case it was necessary to set a priori
the number of the desired features, which was initially chosen according to the
ANOVA result and, then, adjusted for several trials. After this procedure, the
optimal number of selected features resulted to be 20.

• Principal Component Analysis (PCA)

The last feature selection algorithm analyzed was Principal Component
Analysis (PCA). Differently from the previous cases, PCA is an unsupervised
method, so it could be applied to the whole dataset, since the target is never
considered to choose the features. This technique performs the dimensionality
reduction of a set of variables by finding linear combinations among the features,
called principal components, that successively have maximum variance for the data,
and then recasting the data along the orthogonal component axes [63].

(a) 2D (b) 3D

Figure 3.19: Representation of Principal Components space [3].

Therefore, the aim is to reduce the number of features of the dataset, while
preserving as much information as possible.

In the present investigation, the first 28 principal components have been
picked, explaining 90% of the total variance, since, from the subsequent ones, the
cumulative percentage of explained variance increase was very small.
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3.4.2 Classification

After selecting the relevant attributes, different classifiers were tested, the data
sets were feed to the classifiers and the models were built.

The final choice fell on the Support Vector Machines (SVM), a non-linear,
non-parametric method for supervised learning, suitable for binary classification.
SVMs can be useful when the data are not regularly distributed or have an
unknown distribution. Moreover, they offer a good generalization when choosing
appropriately the parameters, being robust even if the training dataset has some
bias [20]. SVM is based on a non-probabilistic approach which uses spatial and
geometric properties instead of using the probability distribution of data points for
the discrimination [179]. Indeed, SVMs work by separating the points belonging
to different classes with a hyperplane (decision boundary), or a set of hyperplanes,
having the largest distance to the nearest data point of any class [79].

Figure 3.20: SVM separating hyperplane [5].

Kernel functions (K) are nonlinear functions which are useful when the data
are not linearly separable, because they map the data points to another higher
dimensional space in which these points can be linearly separable [179]. Considering
a higher dimensional space might cause overfitting (poor model generalization),
which indicates that the model achieves a high accuracy with Training Set but no
good performances with unseen examples [77]. Thus, this model would be very
sensitive to noise and even very small changes in data point values may change
the classification results. To overcome this issue, a soft margin is introduced for
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allowing some examples to be misclassified [77].

For this reason, the Regularization Hyperparameter C is introduced to find a
trade-off between misclassification of training examples against simplicity of the
decision boundary. When a high value of C is chosen, the aim is to classify all
the training examples correctly, while low values are used to make the decision
surface smooth. Another important parameter is the Kernel Coefficient γ, which
regulates the influence of a single training example: the larger this value, the lower
the model generalization [72].

To find the most appropriate parameters for the classifier (K, γ and C), a
Gridsearch was implemented in Python, with F1 as score. F1 (Equation 3.6), also
called F-score, is a measure of accuracy that takes into account both Precision
(Equation 3.7) and Recall (Equation 3.8), by doing a harmonic average [75] [173]:

F −measure =
(β2 + 1) ∗ precision ∗ recall
β2 ∗ precision+ recall

(3.6)

precision =
tp

tp+ fp
(3.7)

recall =
tp

tp+ fn
(3.8)

tp are the true positives, fp the false positives and fn the false negatives. When
dealing with a binary classification, a false positive is an error which incorrectly
indicates the presence of a condition or a disease when the disease is not present;
on the contrary, a false negative occurs when the test indicates the absence of
the condition when it is present. A true positive occurs when the model correctly
predict the positive class, while a true negative when the negative class is correctly
predicted [184].

Regarding the values of K, C and γ to put in the Grid Search, they have
been picked according to the most common values used in literature [83]:

• K = ’linear’, ’poly’, ’sigmoid’, ’rbf’

• C = 2-5, 2-3, ..., 215

• γ= 2-15, 2-13, ..., 23
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In addition, to generalize the chosen classifier model to an independent data
set which is different from the one used for training the model [16], a 10-Fold
Cross-Validation was implemented in the Grid Search. Cross-validation is a
technique that splits the training data into n smaller sets: it uses n-1 of the folds
as training data, while the remaining part of the data is used for validating the
resulting model. This procedure is followed for each of the n folds, so that each
of the folds is used exactly once as a testing set. The final estimation of the cross
validation is obtained by averaging the results computed in each iteration. [83].
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Chapter 4

Results and Discussion

4.1 Performance Indices Analysis

As introduced in Chapter 3, the first preliminary step performed in the current
work was the investigation of the selected Performance Indices. The detection of
differences in the distributions of the two populations (ADHD and Controls) was
assessed by conducting the Wilcoxon test for independent samples and analyzing
their relative boxplots, shown in Figure 4.1.

As can be noticed from the boxplots, ADHD children’s scores were characterized
by higher median values in all the measures considered and, except for Omission
Error, by a higher variability with respect to healthy controls. This is coherent with
the literature, since ADHD patients tend to make more Commission and Omission
errors than normal controls and take more time to respond [114]. Nevertheless, the
Wilcoxon test performed on these indices has not highlighted significant differences,
except for the HRT SD, suggesting that these measures were not sufficient to
clearly discriminate the pathology.

A greater HRT SD is believed to reflect inefficient information flow during
the execution of a cognitive task [117], so, variable responses might be due to
inefficient or disrupting information processing. Connectivity patterns of the brain
could be useful to measure the efficiency of this information processing.
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Figure 4.1: Boxplots of Control (blue) and ADHD (red) distributions of Performance Indices:
Omission Error (OE), Commission Error (CE), Hit Response Time (HRT), HRT Standard
Deviation (HRT SD) and CPT Variability; * represents an outlier.
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4.2 EEG Analysis

In this section the results of Spectral and Functional Connectivity analyses will be
shown and commented.

4.2.1 Spectral Analysis

As concerns the scalp maps, the images shown are relative to 1-minute windows,
while the temporal trend considers different brain areas and hemispheres and takes
into account 10-second windows for a better time resolution, as already discussed.
Single subject scalp maps analysis reveals large heterogeneity in EEG spectral
power characteristics within both groups. In order to have a more global vision
of the difference between ADHD and healthy subjects, the median plots of the
two groups, representing ΔP%, are shown in the different frequency bands. In
addition, the median scalp maps of resting state are displayed, as a tool to justify
some results obtained.

• Delta (1-4 Hz)

In median Scalp Maps of ADHD and Control groups, referred to the brain
activity during CPT in the Delta frequency range and displayed in Figure 4.2, two
spots of activation (i.e. synchronization or higher power with respect to the resting
state) are clearly visible in both groups, but more evident in the right Central
hemisphere in the ADHD group. Higher values of Delta power in ADHD group
during task on Centro-Parietal regions were also found in Chen et al. studies [49]
[48]. In the control group the synchronization seems to be located mainly in the
Temporal zone.

Regarding the Fixation, the majority of findings in literature agrees on the presence
of higher power in Delta rhythms in ADHD children with respect to their peers
with typical development. Some of these studies proposed that an increase in Delta
power reflects the maturation lag in ADHD children [23] [123]. Contrasting with
the literature, the median Delta power activity along 1-minute baseline, illustrated
in Figure 4.3, seems more synchronized in Central areas for the Controls but more
spread over the whole scalp in the ADHD group. In fact, a lower activation in the
Controls with respect to the ADHD group is found in Fronto-Temporal area.
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(a) ADHD

(b) CONTROL

Figure 4.2: Median Scalp Maps of ADHDs (a) and Controls (b) in Delta band (1-4 Hz), relative
to each 1-minute window of CPT: the Power Spectral Density percentage variation (PSD %)
with respect to the baseline is displayed. The minimum and the maximum values of the colorbar
were chosen according to the minimum and maximum values of the median of the ADHD and
CONTROL population during CPT.
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(a) ADHD (b) CONTROL

Figure 4.3: Median Scalp Maps of ADHDs (a) and Controls (b) in Delta (1-4 Hz) band, relative
to 1-minute of eyes-open resting state: the Power Spectral Density (PSD) is displayed with a unit
of measure equal to µV/cm2. The minimum and the maximum values of the colorbar were chosen
according to the minimum and maximum values of the median of the ADHD and CONTROL
population during the baseline.

No additional interesting results were found from the higher time resolution display
of temporal trends.
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• Theta (4-8 Hz)

As depicted in Figure 4.4, showing the median Scalp Maps during eyes-open
resting condition in Theta band, ADHD patients are characterized by a higher
Theta power located in the Fronto-Central lobe with respect to the control
group. Abnormally increased Theta power during resting condition is one of the
most robust electroencephalographic anomalies in ADHD, mainly in Frontal brain
regions, and this has been linked to a decrease in attention [81] and to drowsy and
unfocused states [105].

(a) ADHD (b) CONTROL

Figure 4.4: Median Scalp Maps of ADHDs (a) and Controls (b) in Theta band (4-8 Hz), relative
to 1-minute of eyes-open resting state: the Power Spectral Density (PSD) is displayed with a unit
of measure equal to µV/cm2. The minimum and the maximum values of the colorbar were chosen
according to the minimum and maximum values of the median of the ADHD and CONTROL
population during the baseline.

Focusing on CPT, as we can see in Figure 4.5, some differences between ADHD
and control children could be observed. From an overall point of view, the control
group shows a greater sparse Theta ΔP% in some windows. Focusing on the single
windows, in both groups, in window 3, there is an evident increase in Theta power.
In general, an increase in Theta power is appreciated in the Fronto-Parietal area,
as could be observed partly in these results. In Sauseng et al. [159] this increased
Frontal Theta activity was associated with a higher level of cognitive task demand,
as also observed by Gevins et al. [70].
In ADHD scalp map there is a desynchronization of Theta rhythm in the
Parieto-Occipital lobe, not present in the median plot of healthy subjects.

62



(a) ADHD

(b) CONTROL

Figure 4.5: Median Scalp Maps of ADHDs (a) and Controls (b) in Theta band (4-8 Hz), relative
to each 1-minute window of CPT: the Power Spectral Density percentage variation (PSD %)
with respect to the baseline is displayed. The minimum and the maximum values of the colorbar
were chosen according to the minimum and maximum values of the median of the ADHD and
CONTROL population during CPT.
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Notable results in Theta band median Temporal Trend have been found in the
Right and Left Parieto-Occipital zone, as shown in Figure 4.6, where a greater
difference in values could be appreciated in both lobes, with higher values exhibited
by healthy subjects. This is coherent with what shown in the scalp maps, illustrated
in Figure 4.5.

A similar outcome is obtained in the Temporal cerebral regions, in Figure 4.7, where
higher values relative to Controls are shown.
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(a) Right Parieto-Occipital

(b) Left Parieto-Occipital

Figure 4.6: Median Temporal Trend of the Power Spectral Density (PSD) variation with respect
to the baseline in Theta (4-8 Hz) band, in Right (a) and Left (b) Parieto-Occipital area. The
interquartile range is plotted around the median temporal trends relative to the Controls (blue)
and ADHDs (red).
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(a) Right Temporal

(b) Left Temporal

Figure 4.7: Median Temporal Trend of the Power Spectral Density (PSD) variation with respect
to the baseline in Theta (4-8 Hz) band, in Right (a) and Left (b) Temporal area. The interquartile
range is plotted around the median temporal trends relative to the Controls (blue) and ADHDs
(red).
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• Alpha (8-13 Hz)

In Figure 4.8 the median Scalp Maps of CPT in Alpha band are shown. From
this representation it seems that ADHD subjects are characterized by a higher
desynchronization of ΔP%, more evident in the Central area, with respect to
the Controls. Regarding the eyes-open resting state, shown in Figure 4.9, the
baseline of ADHD is characterized by a higher synchronization in Central and
Parieto-Occipital regions; this may indicate that the ADHD participants hardly
suppress Alpha activity during eyes-open baseline compared to Controls. Klimesh
[96] hypothesized that an increased Alpha power during resting state was related
to impaired cognitive performance both in ADHD and control children.

Focusing on different cerebral areas, at least two types of Alpha rhythmicity
can be identified: Posterior (Parieto-Occipital) Alpha rhythms and Sensory-motor
(Central) Alpha rhythms, also called Mu-Rhythms [7].

Posterior Alpha rhythms are recorded over Parieto-Occipital areas and these
rhythms are usually more accentuated (synchronization) when the subject has the
eyes closed, while they are mitigated (desynchronization) in response to visual
stimuli [7]. In the current work, the power of Parieto-Occipital rhythms is higher
in the task condition when compared with the eyes-open condition (reaching at
maximum 20% of PSD variation) for both groups in most of the analyzed 1-minute
windows. In particular, this Parieto-Occipital synchronization is more evident in
the ADHD group.
A possible explanation could be the difficulty for ADHD children in attending to
and processing visual stimuli as efficiently as children without ADHD. In support
of this interpretation, in the study conducted by Lenartowicz et al. [106] it was
observed that the decrease in Alpha is attenuated in tasks involving visual selective
attention, especially in ADHD inattentive type.
However, the role of Parieto-Occipital oscillations and how the different components
of a task (processing of external stimuli, internal elaboration, and task demand)
interact to affect Alpha power are still unclear [118].
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(a) ADHD

(b) CONTROL

Figure 4.8: Median Scalp Maps of ADHDs (a) and Controls (b) in Alpha band (8-13 Hz),
relative to each 1-minute window of CPT: the Power Spectral Density percentage variation (PSD
%) with respect to the baseline is displayed. The minimum and the maximum values of the colorbar
were chosen according to the minimum and maximum values of the median of the ADHD and
CONTROL population during CPT.
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(a) ADHD (b) CONTROL

Figure 4.9: Median Scalp Maps of ADHDs (a) and Controls (b) in Alpha band (8-13 Hz), relative
to 1-minute of eyes-open resting state: the Power Spectral Density (PSD) is displayed with a unit
of measure equal to µV/cm2. The minimum and the maximum values of the colorbar were chosen
according to the minimum and maximum values of the median of the ADHD and CONTROL
population during the baseline.

Mu-Rhythms are a particular type of Alpha waves, localized on the sensory-motor
strip of the cortex (for this reason they are also called sensory-motor Alpha
rhythms). These rhythms can be inhibited by the corresponding hand movement,
while the muscle relaxation enhances them [7].
In the ADHD group, the desynchronization of these rhythms is more evident with
respect to the Controls. Since the task is performed with the right hand, the
suppression of Mu-Rhythms is more accentuated in contralateral (left) hemisphere.
However, two blue spots can be observed in the central area in both hemispheres,
since an ipsilateral desynchronization happens immediately after the controlateral
one [177]. The reason why the lateralization could not be appreciated is due to the
low temporal resolution (1 minute).
Since hyperactivity is one of the ADHD main symptoms, the higher
desynchronization of these rhythms could be interpreted as a higher difficulty in
ADHD children to remain calm during the task. However, this hypothesis could
not be strengthened, due to the lack of the ADHD subtypes (inattentive and
hyperactive).
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Regarding the medianTemporal Trend of the AlphaΔP%, an interesting decrease
during CPT can be seen in the Right Frontal hemisphere, shown in Figure 4.10.
Moreover, the PSD values belonging to healthy subjects are slightly higher than
those of ADHD ones. This difference in PSD values is further more evident in the
Right Central area, as shown in Figure 4.11.

Figure 4.10: Median Temporal Trend of the Power Spectral Density (PSD) variation with respect
to the baseline in Apha (8-13 Hz) band, in Right Frontal area. The interquartile range is plotted
around the median temporal trends relative to the Controls (blue) and ADHDs (red).
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Figure 4.11: Median Temporal Trend of the Power Spectral Density (PSD) variation with respect
to the baseline in Apha (8-13 Hz) band, in Right Central area. The interquartile range is plotted
around the median temporal trends relative to the Controls (blue) and ADHDs (red).

The last interesting result in Alpha band is relative to the Parieto-Occipital regions,
illustrated in Figure 4.12, where, at the beginning of the task, a common ascending
trend for both groups until the 10th window (100 sec) is observed, followed by
a decrease and an assessment of the ΔP%. The peak could be probably due to
the start of the visual stimulus, while the assessment could be interpreted as a
habituation to the task.
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(a) Right Parieto-Occipital

(b) Left Parieto-Occipital

Figure 4.12: Median Temporal Trend of the Power Spectral Density (PSD) variation with respect
to the baseline in Apha (8-13 Hz) band, in Right (a) and Left (b) Parieto-Occipital area. The
interquartile range is plotted around the median temporal trends relative to the Controls (blue)
and ADHDs (red).
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• Beta 1 (13-22 Hz)

In Figure 4.13, representing Beta 1 median Scalp Maps during CPT, a
desynchronization in the central region could be noted for ADHD group, in almost
all the windows. Furthermore, during the baseline condition, as we can see in
Figure 4.14, where Beta 1 baseline activity is reported, Controls show a globally
higher Beta 1 power, as expected [115], with a higher activation on the Occipital
area with respect to ADHDs.

Surprisingly, during the task the control group does not show visible activation, as
expected from the literature [108] [113], but only a slight synchronization (reaching
at maximum 10% of PSD variation) in Frontal area in some of the windows. In
addition, most of the last windows are characterized by a decrease in the Beta 1
power. Since this is an unexpected result, the interpretation on the basis of the
literature is difficult because no previous works, to the best of our knowledge,
have dynamically analyzed sustained attention tasks in a population of children.
A possible naïve interpretation on the basis of our data could be that a loss of
attention occurred for Controls at the end of the task. The fact that during CPT
no synchronization of the Beta 1 power is observed might be due to a low task
difficulty.
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(a) ADHD

(b) CONTROL

Figure 4.13: Median Scalp Maps of ADHDs (a) and Controls (b) in Beta 1 band (13-22 Hz),
relative to each 1-minute window of CPT: the Power Spectral Density percentage variation (PSD
%) with respect to the baseline is displayed. The minimum and the maximum values of the colorbar
were chosen according to the minimum and maximum values of the median of the ADHD and
CONTROL population during CPT.
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(a) ADHD (b) CONTROL

Figure 4.14: Median Scalp Maps of ADHDs (a) and Controls (b) in Beta 1 (13-22 Hz) band,
relative to 1-minute of eyes-open resting state: the Power Spectral Density (PSD) is displayed
with a unit of measure equal to µV/cm2. The minimum and the maximum values of the colorbar
were chosen according to the minimum and maximum values of the median of the ADHD and
CONTROL population during the baseline.

Observing the median Temporal Trend in the Frontal brain area, visualized in
Figure 4.15, higher values of the control group compared with the ADHD one
would be expected, since frontal lobes are supposed to be related to cognitive
functions and a poor activity in this area could underline inability to focus on a
task. On the contrary, either in the right and left frontal region there is no evident
overall difference between the two classes.

Nevertheless, a difference is visible in the Left Parieto-Occipital region, as
shown in Figure 4.16, where the control trend is slightly less negative compared to
ADHD trend.
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(a) Right Frontal

(b) Left Frontal

Figure 4.15: Median Temporal Trend of the Power Spectral Density (PSD) variation with respect
to the baseline in Beta 1 (13-22 Hz) band, in Right (a) and Left (b) Frontal area. The interquartile
range is plotted around the median temporal trends relative to the Controls (blue) and ADHDs
(red).
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Figure 4.16: Median Temporal Trend of the Power Spectral Density (PSD) variation with respect
to the baseline in Beta 1 (13-22 Hz) band, in Left Parieto-Occipital area. The interquartile range
is plotted around the median temporal trends relative to the Controls (blue) and ADHDs (red).
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• Beta 2 (22-30 Hz)

Exploring high Beta oscillations Scalp Maps of CPT, illustrated in Figure 4.17,
a difference between ADHD children and their healthy peers can be observed in
the Occipital area, where the activity seems increased in Controls. No significant
results have been found in literature, since many studies do not split the Beta band
in low and high frequencies, and most of them mainly investigate the low Beta band.

Observing the baseline activity in Figure 4.18, similar activations among the
groups can be noticed, with a slightly higher synchronization in Controls in the
Frontal area.

Since no noteworthy results were gained in the temporal trend analysis, they were
not reported.
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(a) ADHD

(b) CONTROL

Figure 4.17: Median Scalp Maps of ADHDs (a) and Controls (b) in Beta 2 band (22-30 Hz),
relative to each 1-minute window of CPT: the Power Spectral Density percentage variation (PSD
%) with respect to the baseline is displayed. The minimum and the maximum values of the colorbar
were chosen according to the minimum and maximum values of the median of the ADHD and
CONTROL population during CPT.
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(a) ADHD (b) CONTROL

Figure 4.18: Median Scalp Maps of ADHDs (a) and Controls (b) in Beta 2 (22-30 Hz) band,
relative to 1-minute of eyes-open resting state: the Power Spectral Density (PSD) is displayed
with a unit of measure equal to µV/cm2. The minimum and the maximum values of the colorbar
were chosen according to the minimum and maximum values of the median of the ADHD and
CONTROL population during the baseline.
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• Gamma (30-45 Hz)

In Figure 4.19, Gamma median Scalp Maps of Controls during eyes-open condition
show enhanced Gamma in the Fronto-Temporal region compared with the ADHD
group. In Benasich et al. [29], reduced Gamma during eyes-open resting state
and poor cognitive skills, attention and inhibition control were found to be directly
linked. In general, the literature reports that enhanced Gamma activity, which is
associated with greater attention, precedes correct responses in a target detection
task. Thus, if Gamma activity is important in cognitive and attentional processing,
reduced spontaneous Gamma activity in ADHD subjects with respect to control
ones may imply deficits associated with the disorder.

(a) ADHD (b) CONTROL

Figure 4.19: Median Scalp Maps of ADHDs (a) and Controls (b) in Gamma (30-45 Hz) band,
relative to 1-minute of eyes-open resting state: the Power Spectral Density (PSD) is displayed
with a unit of measure equal to µV/cm2. The minimum and the maximum values of the colorbar
were chosen according to the minimum and maximum values of the median of the ADHD and
CONTROL population during the baseline.

Shifting focus to CPT, Figure 4.20 reveals a sparse desynchronization from window
7 to 13, except for window 8, in the control group.
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(a) ADHD

(b) CONTROL

Figure 4.20: Median Scalp Maps of ADHDs (a) and Controls (b) in Gamma band (30-45 Hz),
relative to each 1-minute window of CPT: the Power Spectral Density percentage variation (PSD
%) with respect to the baseline is displayed. The minimum and the maximum values of the colorbar
were chosen according to the minimum and maximum values of the median of the ADHD and
CONTROL population during CPT.
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4.2.1.1 Correlation between EEG and Performance indices

From the scalp maps results, a higher Alpha desynchronization in the motor
cortex of ADHD subjects, shown in Figure 4.8, was underlined, probably due to
hyperactivity. To explore whether the supposed increased motor activity during
cognitive task influenced the subject performance, a median value of ΔP% in
Alpha band in Right and Left Central regions was obtained per subject, in order
to compute the correlation with the performance indices.

As in the previous analyses, both hemispheres were analyzed separately, but
the corresponding electrodes were chosen differently:

• Left Central : C3, FC1, CP1, FC5, CP5 C1, FC3, CP3, C5

• Right Central : C4, FC2, CP2, FC6, CP6, C2, FC4, CP4, C6

The correlation was performed, after having removed the outliers, through the
method mentioned before. No significant correlations were found either in the Right
or Left Central areas for ADHD subjects, differently from what it was expected.
On the contrary, significant correlations were found with the Commission Error
and Hit Response Time for control group, as reported in the Table 4.1.

Alpha ΔP% OE CE HRT HRT SD CPT Var
Right Central 0.070 -0.607 * 0.732 * 0.283 0.278
Left Central 0.225 -0.540 * 0.563 * 0.347 0.251

Table 4.1: Controls Correlation Table of Performance indices and Alpha median ΔP% in Right
and Left Central lobes.
* represents a significant correlation corresponding to a p-value < 0.05. Abbreviations → OE =
Omission Error, CE = Commission Error, HRT = Hit Response Time, HRT SD = Standard
Deviation of Hit Response Time, CPT Var = CPT Variability.

In response to these results, a further analysis was carried on, by correlating the
values of ΔP% relative to each one-minute window (for a total of 13 windows) with
the behavioral indices. This decision was taken in order not to loose the temporal
information, coherently with the previous analyses. The choice to correlate values
relative to each window (Alpha EEG index) with values belonging to the whole
task (performance indices) was obliged, since values of behavioral indices after
every stimulus were not acquired.
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Firstly, boxplots of ADHD and control ΔP%, for all the 13 windows in Right
Central and Left Central regions, were inspected, in order to see if a different
behavior was present in particular windows, with the aim of focusing the attention
more on these windows when performing the correlation. Since the behavior within
groups was mostly constant along the entire duration of CPT, all the windows
were taken into account.

In confirmation of the previous global results, no significant correlations were
found for ADHD subjects, while significant correlations in some windows were
obtained for control group in the same indices mentioned above. The correlation
tables of Control subjects in Right Central and Left Central brain areas are
visualized in Table 4.2 and in Table 4.3, respectively.

Alpha ΔP% OE CE HRT HRT SD CPT Var
Window 1 0.490 -0.530 0.661 * 0.219 0.590
Window 2 -0.243 -0.305 0.574 -0.137 -0.037
Window 3 0.286 -0.133 0.361 0.091 0.397
Window 4 -0.504 -0.425 0.294 -0.119 -0.219
Window 5 -0.131 -0.449 0.473 -0.041 0.114
Window 6 -0.208 -0.442 0.396 -0.087 0.174
Window 7 0.279 -0.312 0.515 0.397 0.224
Window 8 0.162 -0.740 * 0.851 ** 0.333 0.301
Window 9 -0.205 -0.470 0.055 -0.299 -0.109
Window 10 -0.224 -0.384 0.310 -0.043 0.061
Window 11 -0.050 -0.292 0.456 0.463 0.456
Window 12 -0.332 -0.635 * 0.364 0.155 -0.183
Window 13 -0.063 -0.761 * 0.683 * 0.425 0.205

Table 4.2: Controls Correlation Table of Alpha Right Central ΔP% and Performance indices.
* represents a significant correlation corresponding to a p-value < 0.05; ** corresponding to a
p-value < 10-4. Abbreviations → OE = Omission Error, CE = Commission Error, HRT =
Hit Response Time, HRT SD = Standard Deviation of Hit Response Time, CPT Var = CPT
Variability.
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Alpha ΔP% OE CE HRT HRT SD CPT Var
Window 1 0.342 -0.561 0.844 ** 0.215 0.292
Window 2 0.018 -0.460 0.732 * -0.018 0.009
Window 3 0.205 -0.386 0.494 0.123 0.219
Window 4 0.120 -0.340 0.389 0.384 0.429
Window 5 0.134 -0.484 0.487 0.160 0.292
Window 6 0.208 -0.614 * 0.445 0.333 0.324
Window 7 0.081 -0.449 0.389 -0.023 0.027
Window 8 0.286 -0.435 0.606 * 0.416 0.416
Window 9 0.205 -0.475 0.305 -0.122 0.377
Window 10 -0.105 -0.228 0.150 0.018 0.292
Window 11 0.342 -0.311 0.688 * 0.555 0.419
Window 12 -0.071 -0.365 0.200 0.402 0.009
Window 13 0.335 -0.593 * 0.602 * 0.416 0.283

Table 4.3: Controls Correlation Table of Alpha Left Central ΔP% and Performance indices.
* represents a significant correlation corresponding to a p-value < 0.05; ** corresponding to a
p-value < 10-4. Abbreviations → OE = Omission Error, CE = Commission Error, HRT =
Hit Response Time, HRT SD = Standard Deviation of Hit Response Time, CPT Var = CPT
Variability.

A negative correlation with CE and a positive correlation with HRT was noticed
in all the windows in both the correlation tables of Controls. This means that
an increasing in Alpha Central brain activity corresponds to a lower number of
Commission Errors and a higher time spent to give a response. Higher Alpha
values in sensory-motor area could signify that the Controls are more calm and
tend to move less during the task, probably concentrating more and, consequently,
committing less errors. This observation, together with the fact that ADHD
children commit more CE, might reinforce the previous hypothesis that the
desynchronization in Alpha, found in the Central area in ADHD children, could be
due to hyperactivity. In addition, the higher HRT means that the patient spends
more time thinking about the response, not being impulsive. Indeed, impulsiveness
and hyperactivity are often found together in the ADHD-hyperactive type.
Finally, it is important to underline that the correlations resulted significant were
found only in these two performance indices, with more significant windows in the
Left Central lobe.
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4.2.2 Functional Connectivity Analysis

Figure 4.21 shows the median graphs of the entire duration of CPT, calculated in
each band for patients with ADHD and Healthy Controls.

(a) ADHD

(b) CONTROL

Figure 4.21: Median CPT Connectivity Graphs, obtained through ImCoh, of ADHD (top) and
control (below) subjects. Only the statistically significant edges (p-value < 0.05) are shown. The
brighter the link color, the stronger the functional connectivity.

Regarding the Alpha band, in Controls there is an information flow among the
Parieto-Occipital and Central brain regions, while ADHD patients are characterized
by an information flow mostly limited to the only Parieto-Occipital area, indicating
a higher network segregation. Segregation in the Occipital area in ADHD patients
was also observed in Ansari et al. [15]. The dense connections visible in the
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Occipital lobe, for both groups, might be due to the visual task, since the Occipital
lobe is responsible for receiving and integrating visual information, also revealed
by Li et al.’s study [47]. Hence, defects found in the connectivity in this area may
reveal a brain function deficit during visual processing and may be due to a higher
inattention of ADHD group to the visual stimulus [15].

In Theta band, it can be noticed that communication in Controls occurs
among the entire brain, except for the prefrontal region. On the contrary, the
ADHD graph in Theta shows an accentuated communication between nodes of the
Central and Temporal areas, more strongly in the left hemisphere.

This lateralization characterizing the ADHD patients, is also evident in Beta
1, in which functional connectivity patterns are present in the left hemisphere
among all regions, except for the Occipital area. In many studies regarding rest,
simple and complex perfomance task [46] [56] [57], this atypical lateralized brain
activity of ADHD has been observed; in particularly, in Saleh M. H. Mohamed et al.
research [129], it has been found to be linked to self-reported inattention symptoms.

A different situation could be retrieved by analyzing the median graphs of
the two groups during resting state, shown in Figure 4.22. A clear distinction
between the two groups in each band is not visible: in both groups there is no
evident tendency of forming clusters, differently from the CPT.
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(a) ADHD

(b) CONTROL

Figure 4.22: Median Connectivity Graphs during resting state, obtained through ImCoh, of
ADHD (top) and CONTROL (below) subjects. Only the statistically significant edges (p-value <
0.05) are shown. The brighter the link color, the stronger the functional connectivity.
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4.2.2.1 Graph Analysis

Based on the statistical results, as already mentioned in Chapter 3, the significant
graph indices (p<10-4) were further screened, resulting in the measures listed in the
Table 4.4. During the screening phase, it was paid attention to maintain at least
a measure belonging to Centrality, Segregation and Integration indices. In fact,
Segregation and Integration are particularly important since, as already proposed
by Cao et al. [44], individuals with ADHD may have a disrupted balance of them.

The brain regions found of interest for Betweenness Centrality in Beta 1
and Theta, as well as for Local Efficiency and for Shortest Path Length in
Theta, included nodes of the Frontal and Parieto-Occipital regions. Since the
Fronto-Parietal network has been implicated in attentional and executive processes
and it is thought to be impaired in ADHD [60], it is interesting that in these two
areas the indices of the ADHD and healthy subjects show different behaviors, able
to discriminate the two populations.

Indices Alpha Beta 1 Theta

Betweenness
Centrality

Central Frontal Frontal
Parieto-Occipital Central Temporal

Temporal Parieto-Occipital
Local
Efficiency

Frontal Central
Central Parieto-Occipital

Shortest
Path
Length

Central-PO Frontal-PO
Central-Temporal

Global
Efficiency

X X

Table 4.4: Significant Graph Indices resulting from Wilcoxon test. Abbreviation → PO =
Parieto-Occipital.

Changes in the selected graph measures might reveal whether there are particular
connectivity patterns with characteristics which dynamically change during the
task; thus, a temporal trend investigation was conducted on these indices, resulting
in 13 boxplots (one for every minute of CPT) per group. It should be recalled that
the measures displayed are variations with respect to the baseline.
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• Betweenness Centrality

Firstly, the attention will be focused on the Temporal region. In Figure 4.23, the
boxplots and median temporal trends of Betweenness Centrality of the two groups in
Beta 1 and Theta band, are shown. As can be noticed in both bands, ADHD median
trend assumes higher values than controls one, and is characterized by a positive
variation with respect to the baseline, while the control trend is characterized mostly
by a negative variation.
It can be deducted that ADHD patients show an unexpected involvement of this
area during the attentional task, also confirmed by the inspection of the connectivity
graphs (Figure 4.21), where more and stronger connections are visible in this area,
particularly in Beta 1. A similar observation was made by Tamm et al. [178], who
hypothesized that this unusual activation (noticed, in their work, in the left middle
and superior temporal gyri) was due to the fact that children in ADHD group
may tend to adopt verbally mediated strategies for the task (i.e. silently reading
letter to self or silently reminding self-instructions); in their case, this behavior was
observed in 60% of ADHD children compared to 50% in the control group. The
location of such activation is consistent with the role of Temporal area in verbal
working memory [42] and may reflect an attempt to enhance task performance.
Additionally, this region activation may be also associated with visual recognition
of objects [93]. However, further investigation on Left Temporal cortex activation
needs to be conducted.

Regarding the Frontal region, in Beta 1 band, illustrated in Figure 4.24, ADHD
trend assumes higher values than the control one. The two trends do not show any
variation with respect to the baseline in the first 2 minutes; in the following minutes
the ADHD median trend assumes values over 0, while the Controls trend decreases
with respect to the baseline. Differently from Beta 1 Frontal, the Theta Frontal
trend of ADHD (Figure 4.24) is lower than control one and decreases with respect
to the baseline.
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(a) Beta 1

(b) Theta

Figure 4.23: Boxplots and Median Temporal Trends of Betweenness Centrality of Control (blue)
and ADHD (red) group in Temporal cerebral region in Beta 1 (13-22 Hz) and Theta (4-8 Hz) band.
* represents an outlier
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(a) Beta 1

(b) Theta

Figure 4.24: Boxplots and Median Temporal Trends of Betweenness Centrality of Control (blue)
and ADHD (red) group in Frontal cerebral region in Beta 1 (13-22 Hz) and Theta (4-8 Hz) band.
* represents an outlier.
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Shifting the attention on Central and Parieto-Occipital regions, the first area
for Betweenness centrality resulted significant only in Beta 1 (Figure 4.25), while
the second one only in Theta (Figure 4.26).

Figure 4.25, representing the Central area, shows a positive trend of Controls,
opposite to ADHD one, which is characterized by a negative variation with respect
to the baseline.

Figure 4.25: Boxplots and Median Temporal Trends of Betweenness Centrality of control (blue)
and ADHD (red) group in Central cerebral region in Beta 1 band (13-22 Hz). * represents an
outlier.
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Figure 4.26 shows a positive median trend for Controls, higher with respect to the
ADHD one, in Parieto-Occipital region.

Figure 4.26: Boxplots and Median Temporal Trends of Betweenness Centrality of control (blue)
and ADHD (red) group in Parieto-Occipital cerebral region in Theta (4-8 Hz) band. * represents
an outlier.
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• Global Efficiency

The ADHD Global Efficiency median trends in Alpha (Figure 4.27) and Theta
(Figure 4.28) display an opposite behavior, since the Alpha trend is characterized
by higher values belonging to ADHD patients, while the Theta trend shows slightly
lower values than the healthy one.

Figure 4.27: Boxplots and Median Temporal Trends of Global Efficiency of control (blue) and
ADHD (red) group in Alpha (8-13 Hz) band. * represents an outlier.

Focusing on Theta (Figure 4.28), the results suggest that Controls are characterized
by a greater integration of the brain during the task: this same phenomenon
was observed in Machida et al. [117] and it was associated with a more stable
performance, since Global Efficiency in Theta band was significantly associated
with HRT SD. Indeed, the Theta band may play a crucial role in the ability of
the brain to produce stable responses during a task: only in this band, the Global
Efficiency was associated with HRT SD in the study conducted by Machida et
al. Furthermore, the importance of Theta band in cognitive task performance was
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reported in several studies [121][181]. It was also suggested by Sauseng et al. [159]
that long range connectivity in this band might contribute in integrating sensory
information into executive control and coordinating information from different brain
cortical areas during a mental task to produce an output [128]. In conclusion, a
higher integration observed in Theta band may reflect how well the information
flow is integrated before the response [117].

Figure 4.28: Boxplots and Median Temporal Trends of Global Efficiency of control (blue) and
ADHD (red) group in Theta (13-22 Hz) band. * represents an outlier.
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• Local Efficiency

In Figure 4.29, boxplots of Beta 1 Local Efficiency in Frontal region for both groups
are shown and a lower median trend of ADHDs along the 13 one-minute windows can
be noticed. Comparing to the healthy children, ADHDs are characterized by a lower
ability of exchanging information in Frontal region. The same situation has been
noted for Clustering Coefficient in the same band and area. A decreased Clustering
Coefficient in ADHDs indicates that local neighbourhoods are, one average, less
fully interconnected than in typical developing Controls. This is consistent with
a decreased Local Efficiency, since the decrease in number of links in a local
neighbourhood diminishes the network efficiency in that region.

Figure 4.29: Boxplots and Median Temporal Trends of Local Efficiency of control (blue) and
ADHD (red) group in Frontal cerebral region in Beta 1 (13-22 Hz) band. * represents an outlier.
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• Shortest Path Length

As regards the Shortest Path Length in Theta band, the connections linking the
Frontal and the Parieto-Occipital areas, displayed in Figure 4.30, are longer (higher
path lengths) in the ADHD group than in healthy patients; this result suggests that
ADHD children may be characterized by an inefficient information integration [71],
supported also by the results obtained for the Global Efficiency in Theta, that was
found decreased in ADHDs.

Figure 4.30: Boxplots and Median Temporal Trends of Shortest Path Length of control (blue)
and ADHD (red) group between Frontal and Parieto-Occipital cerebral region in Theta (4-8 Hz)
band. * represents an outlier.

On the contrary, always considering Theta band, the paths connecting Central
and Temporal areas are shorter in the ADHD patients with respect to controls
(Figure 4.31), confirming the denser communication between nodes belonging to
these regions noticed in Figure 4.21 and the higher Betweenness Centrality found
in Theta Temporal, shown in Figure 4.23.

98



Figure 4.31: Boxplots and Median Temporal Trends of Shortest Path Length of control (blue)
and ADHD (red) group between Central and Temporal cerebral region in Theta (4-8 Hz) band.
* represents an outlier.
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4.3 Machine Learning

In this section, the features selected by using the three different methods (ANOVA,
MRMR and PCA) and the performances reached by the Support Vector Machine
classifier in distinguishing ADHD and control subjects will be presented.

• ANOVA

As described in Section 3.4.1.1, 16 out of 81 initial features, have been extracted
with ANOVA method. After applying the Pearson’s correlation, whose resulting
matrix is shown in Figure 4.32, other two variables were excluded from the dataset,
since they presented correlation values of 0.98 with other two features.

Figure 4.32: ANOVA Correlation Matrix. Graph Indices → LE: Local Efficiency, BC:
Betweenness Centrality, C: Clustering Coefficient, S: Strength, SP: Shortest Path Length. Cerebral
areas → C: Central, F: Frontal, T: Temporal, PO: Parieto-Occipital.
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Indeed, Local Efficiency in Beta 1 Central (LE Beta1 C) showed a correlation of
0.98 with the Clustering Coefficient in the same band and area (C Beta1 C); the
same situation was observed for the Local Efficiency in Theta Parieto-Occipital
(LE Theta PO) with the corresponding Clustering Coefficient (C Theta PO). This
result could be easily explained by the fact that they are both segregation measures
and, thus, they bring similar information. At the end, Local Efficiency in Theta
Parieto-Occipital (LE Theta PO) and Clustering Coefficient in in Beta 1 Central
(C Beta1 C) have been eliminated since, according to the F-score, they presented
a lower predictive power towards the target than the others.

The final subset of 14 explanatory variables is displayed in Table 4.5.

Features Alpha Beta 1 Theta

Betweenness
Centrality

Frontal Frontal
Central Temporal

Parieto-Occipital
Clustering
Coefficient

Parieto-Occipital

Local
Efficiency

Central

Strength
Frontal

Parieto-Occipital
Shortest
Path
Length

Frontal-PO

ΔP [%]
Central Frontal Temporal

Parieto-Occipital

Table 4.5: Final selected features using ANOVA method.
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The final optimal classifier, obtained from the Grid Search and illustrated in the
Table 4.6, is the one with the parameters that maximize the F1 score. The values
relative to the F-score in the three data sets are also illustrated in Table 4.6.

SVC(C=1, gamma=0.125, kernel=’rbf’)
Train Set Validation Set Test Set
F1: 0.809 F1: 0.804 F1: 0.807

Table 4.6: Final classifier and F1 scores obtained in the three sets adopting ANOVA method.

The Confusion Matrices, obtained from validation and test phases, are displayed in
Figure 4.33.

(a) Validation Set (b) Test Set

Figure 4.33: ANOVA Confusion Matrices: Controls (0) and ADHD (1). The number of True
Negative, False Negative, False Positive and True positive cases are displayed in the first, second,
third and fourth quadrants respectively.
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• MRMR

The same procedure followed for ANOVA was also applied for MRMR technique.
As already said, the difference with ANOVA consists in the fact of choosing a
priori the number of desired features K (20).

Even if MRMR takes into account the redundancy among variables, it was
considered advisable to make a further check on the correlation of the variables, as
shown in Figure 4.34.

Figure 4.34: MRMR Correlation Matrix. Graph Indices → LE: Local Efficiency, BC:
Betweenness Centrality, C: Clustering Coefficient, S: Strength, SP: Shortest Path Length. Cerebral
areas → C: Central, F: Frontal, T: Temporal, PO: Parieto-Occipital.
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Since a great correlation (0.98) emerged between Clustering Coefficient and
Local Efficiency in Beta 1 Central (C Beta1 C and LE Beta1 C) and Theta
Parieto-Occipital (C Theta PO and LE Theta PO), the Clustering Coefficient in
Beta 1 (C Beta1 C) and Local Efficiency in Theta Parieto-Occipital (LE Theta
PO) were removed from the set because of the lower predictive power than the
others (verified by ANOVA).

The 18 final selected attributes are displayed in Table 4.7.

Features Alpha Beta 1 Theta

Betweenness
Centrality

Parieto-Occipital Frontal Frontal
Central Central

Temporal
Parieto-Occipital

Clustering
Coefficient

Frontal Parieto-Occipital

Local
Efficiency

Central

Strength
Frontal

Parieto-Occipital
Shortest
Path
Length

Central-PO Frontal-PO

ΔP [%]
Central Frontal Temporal

Parieto-Occipital

Table 4.7: Final selected features using MRMR method.

As can be noticed, most of the selected features are the same as the ones selected
by ANOVA, except for the Betweenness Centrality, Modularity and Strength. In
particular, BC in Alpha Parieto-Occipital and in Theta Central, and Modularity
in Alpha Temporal were selected by MRMR, but not by ANOVA; on the contrary,
Strength in Theta Parieto-Occipital was chosen only by ANOVA.
It is worth to underline that some of the attributes selected by both methods are
those that showed interesting results in the Spectral and Connectivity analyses, as
the Alpha ΔP% in Central area or the Theta Betweenness Centrality in Temporal
area. In addition, it is positive that Beta 1 ΔP% in Frontal area and the SP
between Frontal and Parieto-Occipital regions were chosen, since they are involved
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in Attentive tasks (Frontal Area) and Visual Processing (Parieto-Occipital).

Finally, the optimal classifier, which is the same as the one chosen by the
GridSearch using the features picked by ANOVA, is reported in the Table 4.8, with
the relative F1 scores.

SVC(C=1, gamma=0.125, kernel=’rbf’)
Train Set Validation Set Test Set
F1: 0.821 F1: 0.816 F1:0.813

Table 4.8: Final classifier and F1 scores obtained in the three sets adopting MRMR method.

Confusion matrices obtained on Validation and Test set are shown in Figure 4.35.

(a) Validation Set (b) Test Set

Figure 4.35: MRMR Confusion Matrices: Controls (0) and ADHD (1). The number of True
Negative, False Negative, False Positive and True positive cases are displayed in the first, second,
third and fourth quadrants respectively.
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• PCA

As mentioned before in Section 3.4.1.1, 28 principal components were considered
out of 81.

The dataset was then subdivided in Train, Validation and Test sets and the
GridSearch was applied to the Train, resulting in the optimal classifier in Table 4.9:

SVC(C=2, gamma=0.03125, kernel=’rbf’)
Train Set Validation Set Test Set
F1: 0.810 F1: 0.808 F1: 0.804

Table 4.9: Final classifier and F1 scores obtained in the three sets adopting PCA method.

With the chosen classifier, the subsequent Confusion Matrices in Figure 4.36 were
obtained:

(a) Validation Set (b) Test Set

Figure 4.36: PCA Confusion Matrices: Controls (0) and ADHD (1). The number of True
Negative, False Negative, False Positive and True positive cases are displayed in the first, second,
third and fourth quadrants respectively.

In conclusion, it can be noticed that the classification performance, for all the
three different models, achieved good results, with no big difference among them.
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However, the best performance was achieved by the model trained on the subset of
features selected by PCA, but the computational time was greater than the one of
the other two methods.
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Chapter 5

Conclusions

The present master thesis work presented an analysis of EEG activity of ADHD
and control children during an attentional task, exploring Spectral characteristics
and the Brain Connectivity, with the aim of discovering potential biomarkers to
distinguish the pathology. A temporal dynamic approach, considering the task
entire duration, was adopted to investigate abnormal brain activity in ADHD
children.

The signal processing, including the data cleaning, filtering, resampling and
artifacts rejection, has not been performed in the current study, but it was already
done in a previous work. On the contrary, the re-referencing procedure through
Laplacian filter, as well as the removal of noisy electrodes, was executed in this
work in order to reduce the remaining artifacts, as the volume conduction effect,
which may affect the connectivity analysis. For the same reason, a functional
connectivity measure insensitive to this artifact, as the ImCoh, was chosen.

Contrasting with the literature and differently from what it was expected,
no particularly interesting findings in the fluctuations of Beta 1 power with respect
to baseline were discovered in the Frontal region. A plausible explanation could
be that higher frequency bands suffer more from the adoption of a continuous
spectral analysis with respect to an event-related analysis. In literature, higher
values of Frontal Beta power have been observed in the control group compared
with the ADHD one [108] [113]. Since Frontal lobes are shown to be related to
cognitive functions, a poor activity in this area could underline inability to focus
on a task. However, interesting differences among groups were noticed in Alpha
power in both hemispheres of Central region, finding two desynchronized spots
in both groups, but more evident in the ADHDs. This higher desynchronization
of Alpha frequencies was interpreted as a greater difficulty of ADHD children
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in remaining calm when performing the task and it may be associated with the
hyperactivity symptom. Results in the correlations of Alpha ΔP% with CE and
HRT (negative and positive respectively) could strengthen the hypothesis that the
calmer is the patient (higher Alpha), the less is the number of Commission Errors
committed and the longer is the time spent thinking about the response, not being
impulsive. However, this hypothesis could not be confirmed due to the absence of
symptomatology (inattentiveness and hyperactivity) of the patients.

Theta band and Temporal area were considered of particular interest, mainly
in the Functional Connectivity and Graph Theory analyses, since ADHD group
showed an unusual behavior in this band and area during the CPT. The major
involvement of the Temporal area in ADHDs was hypothesized to be due to the
adoption of verbally mediated strategies (silently reading letter to self or reminding
self-instructions) employed to improve the performance: this is consistent with the
role of Temporal area in verbal working memory [42].

Focusing the attention on graph-based indices, the Betweenness Centrality
presented higher values in ADHDs in the Temporal area and the paths connecting
the Central region with the Temporal one were shorter than those belonging
to Controls. Regarding Global Efficiency, greater values were found in Theta
band in the control group, suggesting the presence of an elevated integration
of the brain during the task. The relevance of Theta band in cognitive tasks
performance was assessed in several studies, suggesting that a higher integration
may reflect how well the information flow is integrated before the response.
Furthermore, in literature, higher values of Global Efficiency in Theta band
have been associated to more stable results in the performance, deducted from
the significant association of Global Efficiency with the HRT SD [117]. Indeed,
a greater HRT SD is believed to reflect inefficient information flow during the
execution of a cognitive task, so variable responses might be due to inefficient
or disrupting information processing [117]. In support of this hypothesis, in the
present work the HRT SD was the only performance index which showed significant
differences between the two groups, with higher values found in the ADHD subjects.

The most discriminating characteristic found in Frontal region and Beta 1
band in connectivity analysis was the difference in Local Efficiency and Clustering
Coefficient for the two groups: ADHDs are characterized by a decreased Local
Efficiency and Clustering Coefficient, underlying a low ability of exchanging
information within the Frontal region. In addition, ADHDs show longer path
lengths between Frontal and Parieto-Occipital areas with respect of Controls,
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suggesting an inefficient information integration between these two areas.

Even if significant results were not found in Beta 1 band in Frontal region
through the spectral analysis, ANOVA and MRMR selected ΔP% located in this
band and area, together with some graph indices, as features for the classification
model. A positive outcome is that all the features selected by ANOVA method
were also chosen by the MRMR and all of them coincide with the graph indices
resulted significant from the Wilcoxon test; furthermore, most of the selected
features were found in Theta band, coherently with the results of both Spectral
and Connectivity analyses. Finally, the performances in terms of F1 score on the
test set reached results higher than 0.8, regardless of the feature selection method
employed, demonstrating robustness of the algorithm.

One of the main limitations associated to the current research was the lack
of performance data for each given stimulus, such as the participant’s response
and the corresponding reaction time. Indeed, these parameters could have been
used to understand how the brain activity change according to given or not
given responses, allowing an Event-Related Potentials analysis. Other aspects
relative to the dataset that should be taken into account are the limited number of
participants in the study, the large range of participants’ age (7-17 years) and the
lack of clinical identification of ADHD subtypes (inattentive, hyperactive/impulsive
and combination types). Hence, a possible improvement of this analysis could
consist in considering a different dataset, populated with larger groups of ADHD
and matched control subjects and provided of stimulus-related behavioral features.
Furthermore, the classical EEG bands in children could be adapted, since children
show different brain mechanisms and the adoption of the main standard frequency
bands could not provide accurate results [96]. Moreover, a future study could be
an age-related analysis considering clusters of individuals with a more uniform
age range, exploiting their clinical information in order to find differences in brain
activity among the three ADHD subtypes.

It is important to highlight that, even if good performances were reached in
the Machine Learning algorithm, this classification has not a real clinical validity,
since it is performed on more than one temporal window belonging to the same
subject (and consequently correlated among each other), not classifying the single
patient. Hence, the decision of creating the test set with randomically chosen
windows was taken due to the fact that selecting all the windows belonging to a
single subject could have introduced correlations among the data, distorting the
results.
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Since most of the studies on ADHD were conducted analyzing the resting
state or considering the CPT in a non-dynamic way, there have been some
difficulties in finding works similar to the current one in order to make useful
comparisons between the findings and to reach a consistent result.

In conclusion, the search for functional neural correlates of ADHD, and consequently
for potential biomarkers of the disorder, is crucial in the pursuit of its prevention,
early detection and more effective treatment. Combination of the ImCoh and graph
theory methods, together with the dynamic temporal analysis, carried on in the
present study, would be a very useful and novel approach for exploring underlying
mechanisms of the brain and for diagnosing neurologic disorder in the future.
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