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Abstract

DETECTION of anomalies and faults is a key element for long-term
robot autonomy, because, together with subsequent diagnosis and
recovery, it allows to reach the required levels of robustness and

persistency. A fault which is not promptly detected and addressed, in fact,
may result in the robot damaging itself or, even worse, in harming surround-
ing people. In this thesis, multiple approaches for detecting anomalous
behaviors in autonomous robots starting from data collected during their
routine operations are proposed. The main idea is to model the nominal
(expected) behavior of a robot and to evaluate how far the observed behav-
ior is from the nominal one. The first approach we propose uses Hidden
Markov Models (HMMs) to learn the robot’s behavior under normal cir-
cumstances and detects anomalies by computing variants of the Hellinger
distance between the distribution of observations made in a sliding win-
dow and the corresponding nominal emission probability distribution (on-
line anomaly detection), or between two HMMs representing nominal and
observed behaviors (offline anomaly detection). We then present a data
augmentation and retraining technique based on adversarial learning for
improving anomaly detection performance of our HMM-based approach
when few nominal examples are available. In particular, we first define
a methodology for generating adversarial examples for anomaly detectors
based on HMMs; then, we present a data augmentation and retraining tech-
nique using these adversarial examples to improve anomaly detection per-
formance and robustness to adversarial attacks. The second approach we
introduce is a new deep learning-based minimally supervised method which



employs a new Variational Auto-Encoder (VAE) architecture and a new in-
cremental training method that, unlike most existing approaches, requires
only very few labeled nominal executions to be trained. Also in this case we
present both an online and an offline technique. We then propose an adapta-
tion of the VAE-based approach to allow individual robots in a multi-robot
systems to detect anomalies in one another. Particular attention is devoted
to ensuring that the proposed methods can be easily applicable in different
practical settings. Accordingly, all the approaches proposed in this thesis
are designed not to make any limiting assumption on how anomalies look
like and to work with small amounts of (labeled) training examples. We
show how the methods proposed in this thesis positively compare against
state-of-the-art anomaly detectors commonly used in robotics in a variety
of application domains involving different robotic platforms required to op-
erate for long periods of time without interruption.



Summary

IL rilevamento di anomalie e guasti e’ un elemento chiave per fare in
modo che i sistemi robotici possano operare in autonomia per lunghi
periodi di tempo, in quanto, insieme alla successiva diagnosi (capire la

natura dell’anomalia) e al ripristino ad uno stato pre-anomalo, cio’ con-
sente di raggiungere i livelli di robustezza e persistenza desiderati. Un
guasto che non viene tempestivamente rilevato e risolto, infatti, puo’ com-
portare il danneggiamento del robot o, peggio ancora, minacciare la si-
curezza di eventuali persone circostanti. In questa tesi vengono proposti
diversi approcci per rilevare comportamenti anomali in robot autonomi a
partire dai dati raccolti durante le loro operazioni di routine. L’idea princi-
pale e’ quella di modellare il comportamento nominale (atteso) di un robot
e poi valutare quanto il comportamento osservato a runtime sia lontano da
quello appreso. Il primo approccio proposto utilizza gli Hidden Markov
Model (HMM) per apprendere il comportamento del robot in circostanze
di funzionamento normale e rileva eventuali anomalie calcolando una vari-
ante della distanza di Hellinger tra la distribuzione delle osservazioni fatte
in una finestra scorrevole e la corrispondente distribuzione di probabilita’
di emissione dell’HMM (anomaly detection online) o tra due HMM che
rappresentano i comportamenti nominali e osservati (anomaly detection of-
fline). Viene poi presentata una tecnica di data augmentation e riaddestra-
mento basata sul concetto di adversarial learning che ha il fine di miglio-
rare le prestazioni di rilevamento delle anomalie dell’approccio basato su
HMM in condizioni di scarsita’ di dati nominali. In particolare, viene
definita una metodologia per la generazione di esempi adversarial apposi-



tamente per algoritmi di anomaly detection basati su HMM. Viene inoltre
introdotta una procedura per utilizzare tali esempi adversarial per il riad-
destramento dell’HMM e mostrato come cio’ conduca a un miglioramento
nelle prestazioni di rilevamento delle anomalie. Il secondo approccio che
che viene introdotto e’ un nuovo metodo di deep learning a “supervisione
minima” che impiega una nuova architettura di Variational Auto-Encoder
(VAE) e un nuovo metodo di addestramento incrementale che, a differenza
della maggior parte degli approcci esistenti, richiede una quantita’ min-
ima di esecuzioni nominali durante l’addestramento. Anche in questo caso,
viene proposta sia una tecnica online che una offline per il rilevamento
delle anomalie. Come ulteriore contributo, viene presentato un adattamento
dell’approccio basato su VAE per consentire a singoli robot in un sistema
multi-robot di tipo swarm di rilevare anomalie l’uno nell’altro. Partico-
lare attenzione e’ dedicata a garantire che i metodi proposti possano essere
facilmente applicabili in diversi contesti pratici. Di conseguenza, tutti gli
approcci proposti in questa tesi sono progettati per non fare alcuna ipotesi
limitante sull’aspetto delle anomalie considerate e sono predisposti per fun-
zionare con piccole quantita’ di esempi nominali. Attraverso un’estesa se-
rie di esperimenti, viene mostrato come i metodi proposti in questa tesi
siano competitivi rispetto ad altri metodi per l’anomaly detection in sistemi
robotici. Tali esperimenti coinvolgono molteplici scenari in cui e’ richiesto
che i robot dislocati siano in grado di operare per lunghi periodi di tempo
senza interruzioni.
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CHAPTER1
Introduction

1.1 Overview

Autonomous robots are increasingly becoming part of human everyday life.
Recent reports1 by the International Federation of Robotics describe sales
value of professional service robots increased by 37% to 11.2 billion USD
worldwide in 2019. For the same year, sales value of personal and domestic
service robots (vacuuming and floor cleaning robots, lawn-mowing robots
or entertainment robots) has increased up 20% to 5.7 billion USD world-
wide. A similar increase has been registered also for assistance robots for
elderly or disabled persons, for which the estimated sales value increased
by 17% to 91 million USD in 2019. The insurgence of the COVID-19
pandemic has since further boosted the market causing, in addition to the
already existing surge, a high demand for robotic disinfection solutions,
robotic logistics solutions in factories and warehouses, and robots for home
delivery.

From driverless cars to assistive robots for elderly people, these sys-
tems are leaving the factories and entering unconstrained scenarios with
close interaction with humans. Complex and dynamic environments are

1https://ifr.org/ifr-press-releases/news/service-robots-record-sales-worldwide-up-32
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Chapter 1. Introduction

characterized by large degrees of uncertainty and pose big challenges to
robot designers. One of the key competences required to newly conceived
robots is to reliably operate over long periods of time under changing and
unpredictable environmental conditions, which is referred to as long-term
autonomy (LTA) [95].

Exhibiting LTA means that robots are persistent, robust, and able to
adapt to changes in their operational environments. As these sophisticated
machines are susceptible to different types of faults, fault detection (iden-
tifying when a fault has occurred), fault diagnosis (pinpointing the type of
fault and its location) and recovery (enacting the right actions required to
revert to a non-anomalous state) approaches are a fundamental ingredient
of LTA in order to promptly identify anomalies and recover a robot system
in time for continuing its operations.

In this thesis we focus on fault detection and propose new methods that
learn a model of the nominal (expected) behavior of a robot from data (i.e.,
sensor logs) and detect faults by evaluating how far the observed behavior
is from the nominal one.

Fault detection can be performed at different levels of abstraction, in our
case we are interested in identifying anomalies not at the component-level,
but in the overall behavior of a system. Although component-level fault de-
tection may be suitable when industrial robots (e.g. robotic arms) are con-
sidered, as they operate in controlled and very predictable environments,
when we consider autonomous mobile robots deployed in complex and dy-
namic environments, fault detection can no longer be just the identification
of which one of the n components constituting a robot stopped working
properly. In fact, an anomalous behavior may be the consequence not only
of a component’s fault, but also the result of the robot’s inability to effec-
tively interact with the environment, people nearby, or even other robots.
In this thesis we are not interested in detecting anomalies or faults just on
the individual components of a robot, but rather in discovering anomalous
behaviors in a broader sense, regardless of the cause. As a consequence,
the term anomaly is preferred over the term fault, as it is more general and
better reflects the broad spectrum of deviating behaviors we are interested
to detect. In fact, unexpected behaviors displayed by a robot may happen
that do not necessarily encompass failures and are nevertheless interesting
to be detected.

Beyond considering a broad range of possible anomalies, one of the
most important aspects of anomaly detection in robotic systems that we
address in this thesis is the practical applicability of such methods. A
key enabler of learning-based anomaly detection systems in real world set-

2



1.2. Contributions

tings is undoubtedly the design of techniques that do not require prohibitive
amounts of training data to be employed. In this thesis, a lot of attention
is devoted to developing methods suitable to be operated also in cases in
which data are scarce. All the approaches proposed in this thesis are in fact
designed to work with small amounts of (labeled) training examples. Even
when we consider deep learning-based approaches, which are notoriously
data-hungry, we devise training solutions that minimize the need of labeled
examples.

1.2 Contributions

The contributions of this thesis revolve around the development of new
approaches for the detection of anomalous behaviors displayed by robotic
systems.

A new HMM-based Anomaly Detector

We propose an approach for detecting anomalous behaviors in autonomous
robots starting from data collected during their routine operations. The
main idea is to model the nominal (expected) behavior of a robot system
using Hidden Markov Models (HMMs) and to evaluate how far the ob-
served behavior is from the nominal one using variants of the Hellinger
distance adopted for our purposes. We present a method for online anomaly
detection that computes the Hellinger distance between the probability dis-
tribution of observations made in a sliding window and the corresponding
nominal emission probability distribution. We also present a method for
offline anomaly detection that computes a variant of the Hellinger distance
between two HMMs representing nominal and observed behaviors. The use
of the Hellinger distance positively impacts on both detection performance
and interpretability of detected anomalies, as shown by results of experi-
ments performed in two real-world application domains. This contribution
has been published in [8].

A new Data Augmentation Procedure for HMM-based Anomaly Detection

We also present a data augmentation and retraining technique based on ad-
versarial learning for the HMM-based method just mentioned. In partic-
ular, we first define a methodology for generating adversarial examples,
then, we present a data augmentation and retraining technique which uses
these adversarial examples to improve the anomaly detection performance
of the HMM-based method. We evaluate the adversarial data augmenta-

3



Chapter 1. Introduction

tion and retraining technique on several datasets showing that our method
achieves statistically significant performance improvements and enhances
the robustness to adversarial attacks.

A new VAE-based Anomaly Detector

We contribute a new Variational AutoEncoder (VAE) architecture able to
model very long multivariate sensor logs exploiting a new incremental train-
ing method, which induces a progress-based latent space that can be used
to detect anomalies both at runtime and offline. While most existing ap-
proaches are trained in a semi-supervised fashion and require big batches
of nominal observations, our method is trained using unlabeled observa-
tions of a robot performing a task, containing both nominal and anomalous
executions. Only a very little amount (even just one) of labeled nominal
executions is then required to partition the learned latent space into nom-
inal and anomalous regions. Experimental results show that our method
outperforms state-of-the-art anomaly detectors commonly used in robotics
both in terms of false positive rate and alert delay. This contribution has
been published in [7].

A new Anomaly Detector for Robot Swarms

We also show that a variant of the VAE-based method can be employed to
detect anomalies in swarms of robots. We adapt our method for being used
by robots in a swarm to detect anomalies in one another. We perform exper-
iments considering four different swarm tasks and show how the detection
performance of our method is on par with other state of the art anomaly
detectors for swarm systems.

1.3 Applications

We apply the proposed methods in several application domains, in which
autonomous mobile robots perform tasks requiring LTA. Specifically, we
consider:

• An Autonomous Surface Vessel (ASV) performing a water monitoring
task. The water drone is called Platypus and has been developed in the
context of the INTCATCH Project [28–30], which aims at developing
new paradigms for water monitoring in rivers and lakes by harmoniz-
ing a range of innovative tools into a single efficient and user-friendly
model.

4



1.4. Organization of the Thesis

• An assistive robot called Giraff-X, developed as part of the MOVE-
CARE Project [106], for supporting the independence of elderly peo-
ple living alone at home. This socially assistive autonomous mobile
robot moves in domestic environments, which represent a typical con-
text for LTA. The goal of the robot is to provide notifications to the
elder and interact with him/her for stimulation by suggesting activi-
ties that aim to counteract physical and cognitive decline, as well as
isolation.

• A human-sized robot called SCITOS-G5 performing a patrolling task
in a small office as part of the STRANDS Project [66].

• A fixed-wing Unmanned Aerial Vehicle (UAV) performing autonomous
flight [83].

• A robotic swarm performing four different swarm behaviors which we
simulate using the ARGoS simulator [134] and e-puck robots [113].
The behaviors we consider are: dispersion, aggregation, homing, and
flocking.

Please note the experiments performed in this thesis have not been im-
plemented on the actual robotic platforms just described, but on datasets
produced by them.

Additionally, we consider two other applications which, unlike the ones
just introduced, are outside of the robotics domain. We consider them as
they are well-known benchmarks for anomaly detection in real systems:

• The Tennessee-Eastman industrial chemical process [97, 99].

• The Secure Water Treatment (SWaT) testbed [51, 110], a scaled ver-
sion of an industrial water treatment plant.

1.4 Organization of the Thesis

We organize the remainder of this thesis as follows. We present the related
work relevant to anomaly detection in robotics in Chapter 2. After a general
introduction to anomaly detection in general, a quick overview of anomaly
detection on time series is presented. The core of the chapter is the analysis
of anomaly detection techniques applied in the robotics domain. We start
by presenting methods designed for single-robot systems and classify them
according to several dimensions of analysis. We then shift our focus to
multi-robot and swarm robotics approaches.

5
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Chapter 3 contains the presentation of a novel method for detecting
anomalous behaviors of robotic systems both online (i.e., while robots are
operating) and offline. HMMs are used to model the behavior of robots,
while, the Hellinger distance [67] (a distance between probability distribu-
tions) is used to compute the dissimilarity between the observed behavior
and the nominal one. We show the advantage (i.e., more informative and
easier to threshold) of using such a distance measure w.r.t. other standard
measures by performing experiments on two robot systems operating in
real-world settings requiring LTA.

Then, Chapter 4 presents a data augmentation procedure for augment-
ing the training dataset of the HMM-based anomaly detector presented in
Chapter 3. The proposed data augmentation is based on the concept of
adversarial attacks, i.e., examples which, although being very similar (in-
distinguishable) to nominal ones, are misclassified (i.e., in our case, de-
tected as anomalous). If explicitly included in the training set of nominal
examples, these adversarial samples generally lead to a performance im-
provement, especially if the training dataset is small. After reviewing the
relevant literature on adversarial attacks and data augmentation, we pro-
pose an algorithm able to generate adversarial examples for an anomaly
detector based on HMMs and working with multivariate time series. We
propose an algorithm for data augmentation and retraining based on ad-
versarial examples and show how our technique improves the performance
of the anomaly detector on four different datasets (two of which involving
robot systems operating in real-world settings requiring LTA).

In Chapter 5 we present a novel learning paradigm, which we call min-
imal supervision. In particular, after introducing a new VAE architecture
able to model very long multivariate sensor logs of a robot performing a
task, and a new incremental method for training VAEs, we show how, dif-
ferently from most approaches for anomaly detection in robotics, it is pos-
sible to train our VAE with unlabeled observations, then only few (even just
one) labeled nominal executions are required to partition the learned latent
space into nominal and anomalous regions. Both online and offline pro-
cedures are presented and tested by performing experiments on three robot
systems operating in real-world settings requiring LTA. Lastly, we show the
influence that different learning approaches have on the shape of the learned
VAE latent space and the consequences that this has on the detectability of
anomalies.

Chapter 6 extends Chapter 5 by presenting and adaptation of the pro-
posed VAE architecture to detect anomalies in swarms of robots. An exten-
sive experimental campaign is performed by testing different combinations

6
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of faults and tasks.
Finally, Chapter 7 summarizes this work, its main results, and proposes

some directions of future work.
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CHAPTER2
Related Work

In this chapter, after an initial general introduction to anomaly detection, a
comprehensive analysis of anomaly detection approaches applied to single-
and multi-robot systems is presented. Anomaly detection methods not ap-
plied specifically to the robotic domain are intentionally left out for the sake
of providing a clear and concise picture of the state of the art of anomaly
detection in robotic systems. Moreover, being anomaly detection a very ac-
tive research field with contributions from several areas, they would simply
be too many. Obviously, some of the approaches available in the literature
and outside of the domain of robotics are still relevant to this thesis as they
are based on some of the principles and tools (algorithms) exploited also
by the methods proposed in this thesis. These related works (e.g., HMM-
based and autoencoder-based anomaly detectors) will be discussed in the
next chapters and thoroughly compared to the ones proposed in this thesis.

2.1 An Introduction to Anomaly Detection

Anomaly detection [19, 32, 33, 122, 144] is the task of finding patterns in
data that do not conform to the expected behavior. In the scientific liter-
ature, these unorthodox patterns are referred to in different ways, among

9



Chapter 2. Related Work

which anomalies and outliers are certainly the most common ones; less
frequent alternatives are: discordant observations, exceptions, aberrations,
surprises, peculiarities, contaminants or faults depending on the specific
application domain.

Anomaly detection has been a field of interest both within academia and
industry for a very long time, suffice to say that the first works in this direc-
tion date back to as early as the late XIX Century [45]. The importance of
anomaly detection is rooted in the fact that detected anomalies can lead to
significant and often critical insight that can be exploited in a wide variety
of application areas. The impact that this actionable information provided
by anomaly detection methods can have is often quite substantial, rang-
ing from cost savings (e.g., when energy waste is detected from electricity
consumption time series [23]) up to even saving lives (e.g., when cancer
is early detected form medical imaging [47]). The application domains in
which anomaly detection has been applied to over the years are very varied
and include credit card or insurance fraud [137], healthcare [47], cyber-
physical systems [52], surveillance [118], intrusion detection in computer
networks [3] and many others [19, 32, 33, 122, 144]. Some methods have
also been developed specifically for the robotic domain [85] (more on this
in Sections 2.2 and 2.3).

From a technological standpoint, many different methods and algorithms
have been proposed to address anomaly detection tasks. Depending on
the data modality on which they work, different approaches need generally
to be adopted, examples of modalities are: structured i.i.d. tabular data,
videos, images, text, graphs, etc. Some anomaly detectors that work simul-
taneously on multiple modalities have been proposed [128], these generally
extract meaningful features from each modality independently and then
fuse them together to perform anomaly detection as a downstream task.
Although these multimodal methods have a big potential in robotics (as a
robot generally senses and collects multimodal information), the modality
which is of most interest to this thesis is temporal data, also referred to as
time series, as the focus is on detecting anomalies in the robot itself (by an-
alyzing its sensor streams) rather than in its surroundings. It should also be
noted that the majority of anomaly detectors in robotics rely on time series
data.

Time Series Anomaly Detection

A time series consists in a sequence of observations that have been recorded
in an orderly fashion and which are correlated in time [59]. Approaches to
detect anomalies in time series can be broadly categorized according to:
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(i) the nature of the input data and; (ii) the type of treatment that is done
to such data. The former refers to the type of input data that the detec-
tion method is able to deal with (i.e., a univariate or a multivariate time
series) [19]. Univariate time series are ordered sequences of real-valued
observations, while multivariate time series can be thought as ordered sets
of k-dimensional vectors, where k is the number of observations available
at each timestamp. Regarding the kind of processing that can be applied to
the input, univariate or multivariate detection methods can be distinguished.
A univariate detection method considers only a single time-dependent di-
mension, whereas a multivariate detection method is able to deal with more
than one dimension at the same time. Note that a detection method may be
univariate even if the input series is multivariate, since an individual anal-
ysis could be performed separately on each dimension without considering
the dependencies that may exist among them. It should also be noted how
multivariate approaches represent a more powerful tool as they can model
also the fact that each variable could depend not only on its past values but
also on the other variables (both at the current time instant as well as in
the past). In this thesis we are mainly interested in multivariate approaches
as generally a robot has access to multiple proprioceptor sensor streams.
Among the fully multivariate methods, HMMs [136] and deep learning-
based methods [32, 122, 144] (especially autoencoders [70, 90] paired with
recurrent architectures such as LTSMs [72] and GRUs [40]) are the most
common choices.

2.2 Anomaly Detection in Single-Robot Systems

When it comes to the domain of robotics, and real systems in general,
anomalies are more commonly referred to as faults [85]. However, as said
in the introductory chapter, in this thesis the term anomaly is preferred as
it is more general and inclusive as it better reflects the broad range of de-
viating behaviors we are interested to detect. In fact, uncommon behaviors
displayed by a robot may happen that do not necessarily encompass failures
and are nevertheless interesting to be detected.

While the field of anomaly detection has been very active for more than
a century, the study of anomaly detection techniques specifically tailored to
autonomous robotics is relatively new [85, 133, 172].

Robots are complex systems consisting of physical (hardware) and vir-
tual (software) components capable of varying degrees of autonomy that
operate in diverse and dynamic physical environments, some examples are
industrial manipulators, warehouse AMRs, Mars rovers, satellites, and un-
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manned aerial and underwater vehicles. Unfortunately, like any physical
system, these sophisticated and often expensive machines are susceptible
to various types of failures [151]. It is important to detect and react to
these faults as they have the potential to affect the robot’s efficiency, cause
failures, or even jeopardize the safety of the robot or its surroundings [42].

Model-based vs. Knowledge-based vs. Data-driven

Anomaly detectors applied to robots, and real systems in general, can be
divided into three main categories depending on the kind of representation
medium used: model-based, knowledge-based, and data-driven [85].

Model-based approaches [75] require explicit analytical models (i.e.,
mathematical equations or logic formulas) of robotic components and there-
fore need expert knowledge to be built. Domain experts are generally ex-
pected to inject vast amounts of domain knowledge in these models as
the nominal behavior of each component in the robotic system and the
interaction between them need to be specified and modeled analytically.
Once the correct behavior of each component has been modeled, these ap-
proaches detect anomalies by comparing the expected output to the ob-
served one [140]. The biggest barrier to the adoption of model-based meth-
ods is generally the cost deriving from needing domain experts for con-
structing such analytical models [133], which, when the robotic domain
is considered, is exacerbated even more as these models need to take into
account the dynamic context of the robots, i.e., the environment and the
task at hand, as well as the robot’s complexity. Examples of model-based
approaches in robotics are [1] and [73]. Some attention to the topic of
detecting anomalies in robotic systems has also been devoted by the for-
mal methods community. Formal verification is the application of formal
methods to the verification of systems. When used in robotics, formal veri-
fication methods tend to be less fit w.r.t. when used for checking traditional
software systems, in fact, robotic systems are generally not developed with
verification in mind, which can often complicate the later employment of
formal verification on such algorithms and systems. Robot controller soft-
ware, unlike traditional software programs, usually consist of several inter-
acting modules that can be grouped into two categories: high-level mod-
ules, taking discrete decisions and planning to achieves complex tasks, and
low-level modules, usually governing controllers and actuators. Using ex-
haustive techniques, such as model checking (i.e., providing a proof of cor-
rectness that the software obeys its requirements), on such software in a
monolithic way is generally impossible due to the intractable state space.
Non-exhaustive techniques, such as runtime verification, are generally bet-
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ter alternatives to model checking in robotics. Runtime verification is the
area of formal methods that studies the dynamic analysis of execution traces
against formal specifications. Typically, the two main activities in runtime
verification efforts are the process of creating monitors from specifications,
and the algorithms for the evaluation of traces against the generated mon-
itors. Despite the use of formal verification methods in robotics is still
limited, some notable example exist [41, 50, 74, 105, 146, 162].

Knowledge-based approaches typically associate each known fault to a
detection rule which is triggered when the specific behavior is observed.
They idea behind knowledge-based approaches is to mimic the behavior
of a human expert by associating symptoms with diagnoses. The obvi-
ous drawback is that this kind of approaches are not suitable for the de-
tection of previously unknown anomalies. The two most common families
of methods belonging to this category are causal models [37] and expert
systems [129].

Data-driven approaches are instead based on (usually probabilistic) de-
scriptions of behaviors or faults that are automatically learnt from previ-
ous observations of the system. Their advantage is that they do not need
any explicit prior knowledge of the system and of the faults. Online data-
driven methods are mostly used for autonomous robots, which compare
the system’s behavior in real-time, generally in the form of sensor streams,
to previously-learnt probabilistic representations to statistically differenti-
ate potential faults from normal behavior. Some approaches use statisti-
cal filtering such as Kalman and particle filters [2, 44, 158]. Some works
(e.g., [38]) propose supervised machine learning approaches [18] and fault
injection to classify data produced in real-time by a robot. In [81, 87],
the authors introduce an online multivariate data-driven fault detection ap-
proach which uses the Mahalanobis-distance to compare correlated streams
of data with previously observed data. In [53], a self-awareness approach is
proposed which builds a probabilistic model on the basis of the whole dis-
crete event-based data interchange inside the robot. In [65], self-organizing
maps and probabilistic graphical models are used. In [92] the authors try to
explicitly model environmental dynamics in the context of localization and
navigation with the aim of long-term mobile robot autonomy by means of
a spectral model which allows to represent the probability of observing a
given environment state by combination of harmonic functions whose pa-
rameters relate to that of the hidden processes that cause the environment
variations. Other works (e.g., [126] and [128]) train HMMs using multi-
modal sensory signals for detecting anomalies in assistive robots. Recently,
deep learning models [54, 101] have been used to re-address many spatio-
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temporal modeling tasks providing improvements over the state-of-the-art
methods. Recent examples of works adopting deep neural networks for on-
line anomaly detection in robot systems are [119, 127, 150], which employ
various kinds of autoencoders.

Supervised vs. Unsupervised vs. Semi-Supervised Learning

Another dimension of analysis, mainly pertaining data-driven approaches,
of interest is the kind of supervision which these methods need during train-
ing. This is something very important to analyze as it is has a considerable
impact on the practical applicability of the resulting approaches. Depend-
ing on the extent to which labeled instances are available, anomaly de-
tection techniques can operate in either supervised, unsupervised or semi-
supervised mode [33].

Supervised methods (e.g., [38]) need fully labeled data for training (i.e.,
the training dataset must consist of examples all of which labeled as either
nominal or anomalous) and generally build predictive models for normal vs.
anomaly classes. It should be noted that obtaining labeled data that is accu-
rate as well as representative of all types of behaviors is often prohibitively
expensive, in fact, labeling is often done manually by a human expert and
hence substantial effort is required to obtain the labeled training dataset.
Moreover, there exist domains in which obtaining a sufficient amount of
anomalously labeled training example is just not possible. Think for ex-
ample of safety critical systems or satellites, which are designed to ensure
exceptional levels of availability and fault tolerance, for these systems, even
if we were in possession of sensor logs and were willing to face the eco-
nomic burden of having a human label them, it would be highly likely that
such logs would not contain anomalous examples at all (as they would en-
compass catastrophic events), which would make the training set unsuitable
for supervised anomaly detection as both nominal and anomalous samples
are required. Another related and well-known issue of supervised methods
for anomaly detection is that, even when labeled anomalous examples are
present in the training dataset, these are likely to be far fewer compared
to the normal instances. This results in an imbalanced dataset, which, in
turn, makes training harder (although several methods have ben proposed
to tackle the problem of imbalanced class distributions [34, 102, 139], this
is a problem still not yet fully overcome). One of the advantages of super-
vised methods is that, provided that separate labels are available for dif-
ferent anomaly types, they can simultaneously perform anomaly detection
and diagnosis (i.e., they can recognize that something anomalous is hap-
pening and also the nature of it). Unfortunately, this comes at the cost of
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being able to only model anomalies similar to those already in the training
set as these models assume to already know all possible kinds (i.e., classes)
of anomalies that will ever occur with the consequence of not being able
to detect previously unseen anomaly types. To overcome issues related
to scarcity of anomalous examples, a number of techniques have been pro-
posed that inject artificial anomalies into a normal dataset [38,78], however,
it is not always straightforward to inject realistic faults and the incapability
to recognize previously unknown anomaly types still persist. Besides these
issues, supervised anomaly approaches, when applicable, deliver good re-
sults as the anomaly detection problem reduces to building standard pre-
dictive models [18], for which a great body of research is available. For
all of these reasons, recent developments in robotics tend to shift towards
unsupervised and especially semi-supervised learning paradigms.

Unsupervised methods (e.g., [87]) do not require a labeled training set
and are thus most widely applicable. These methods make the implicit
assumption that anomalous instances are far more rarely occurring than
nominal ones in test data. Another limiting assumption of unsupervised ap-
proaches is that anomalous examples are sufficiently different from nominal
ones. If these assumptions are not true then the detection performance of
such techniques quickly deteriorates due to high false alarm rates.

Semi-supervised methods (e.g., [8, 126–128]) are those that require la-
bels for the nominal class only (which makes them more widely applicable
than supervised techniques) and are motivated by the fact that, generally,
obtaining a labeled set of anomalous data instances that covers all possible
type of anomalous behavior is more difficult than getting labels for normal
behavior. In needing only nominal samples to be trained, semi-supervised
approaches take the best from supervised and unsupervised approaches
while retaining very few of their downsides. Since they learn a model for
the nominal behavior only, they (i) do not make any assumption on how
anomalies look like and are hence capable of detecting also previously un-
seen anomalies; (ii) are able to relax the assumption on the rarity of anoma-
lies of unsupervised methods. It is worth noting that most semi-supervised
techniques can be adapted to operate in unsupervised mode by using an un-
labeled training set (i.e., it may contain both nominal and anomalous exam-
ples without any label). Such adaptation, however, assumes (as for natively
unsupervised methods), that the test data contains very few anomalies and
that the model learned during training is robust to these few anomalies.
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2.3 Anomaly Detection in Multi-Robot Systems

A multi-robot system consists of multiple robots working together as a
unique system by interacting among themselves in order to achieve a com-
mon goal within a physical environment. In a way, a multi-robot system
can be viewed as a unique distributed robotic system that senses, thinks,
and acts, just like a single-robot system, however, each one of these pro-
cesses becomes distributed and significantly more complex in multi-robot
systems than in a single robotic system.

In general, in a multi-robot system, each robot senses its surroundings
and forms an individual local belief. Local beliefs are then (partially) trans-
mitted to the global scope that processes them to form a global belief
(global belief generation). A global representation of knowledge is what
allows the multi-robot system to make intelligent decisions, such as global
planning. After a global plan is selected, individual tasks are allocated (via
communication) to each robot. Then, each robot applies local planning to
select the steps necessary to successfully complete its assigned task and
checks that those actions are not in conflict with those selected by the other
robots. Once an agreement is reached, each individual robot executes its
local plan. As robots perform their actions, they inevitably affect the envi-
ronment, which is again sensed and the process repeats. In a multi-robot
system, in addition to the same faults that could affect a single robot, each
of these local and global activities might be subject to different faults, and,
in turn, could disrupt the entire system.

Very few works have been proposed that tackle the detection of anoma-
lies and faults specifically in multi-robot systems, a survey can be found
in [86] . The purpose of these works is however rather distant from the one
of this thesis as they propose ad hoc techniques to detect coordination and
planning-related faults, while we are interested in agnostically observing a
system’s sensor streams and detect anomalies of whichever type.

For these reasons, in this thesis, we restrict our focus to a subfield of
multi-robot systems, namely, swarm robotics, where global belief genera-
tion, global planning, task allocation and task coordination are generally
not performed.

2.3.1 Anomaly Detection in Robotic Swarms

A swarm robotics system [21,58] is a system consisting of multiple intelli-
gent robots that individually possess low intelligence/capabilities (they can
process data by themselves but they can only execute simple behaviors) but
that through local interconnection (exchange of messages, usually in broad-
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cast, with nearby robots) and swarm intelligence [20, 84] are together able
to create emergent behaviors that can be rather complex. It is important
to stress that these complex emergent behaviors are achieved without any
centralized control.

Although, due to the usually large numbers of robots composing a swarm,
these systems are considered to be inherently fault-tolerant, it has been
proved that a swarm robotics system’s work can be slowed down or even
blocked due to one or more faulty robots [164]. It is hence necessary to
implement some mechanism to avoid these situations by early detecting
faults and promptly responding to them. Some works have been presented
that tackle the problem of anomaly detection specifically on swarms of
robots [111].

In addition to the dimensions of analysis already identified for single-
robot systems, for swarms it is possible to identify some more.

Endogenous vs. Exogenous Fault Detection

A first distinction concerns the subject of the anomaly detection w.r.t. the
entity that performs it. In this regard, three alternatives can be identified:
endogenous, exogenous, and multi-layered.

Endogenous anomalous detection (e.g., [98]) enables a robot to detect
the presence of anomalies in itself by means of single-robot methods (see
Section 2.2). One downside of this paradigm is that catastrophic faults, such
as a malfunctioning power source or issues with the onboard computational
hardware, usually cannot be detected endogenously as they render the robot
completely non-operational.

In multi-robot systems, robots also have the opportunity to detect the
presence of faults in one another. This is commonly referred to as exoge-
nous anomaly detection (e.g., [39, 153–156]). Exogenous anomaly detec-
tion has the potential to detect any type of fault, including catastrophic
faults.

Lastly, multi-layered anomaly detection is when robots are able to ex-
hibit both endogenous anomaly detection and exogenous anomaly detection
(e.g., [26]).

Homogeneous vs. Heterogeneous Swarms

Anomaly detection approaches in swarm robotics can also be categorized
according to the type of swarm considered: homogeneous swarms are those
in which all the robots in the system execute the same task [39, 98, 155],
while, in heterogeneous swarms, different robots executing different tasks
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(they may also be different from an hardware perspective) can be found
[153, 154, 156].

Centralized vs. Distributed Anomaly Detection

Finally, anomaly detection methods can be categorized according to the ar-
chitecture employed by the robots to exchange information and according
to where the anomaly detection algorithm is run. In centralized architec-
tures, anomaly detection is performed by only one node, often external to
the swarm [61–63, 88, 89]. Distributed architectures are those in which the
same algorithm is run on each node of the swarm [39, 98, 153–156].

2.4 Concluding Remarks

We wrap up our analysis of the related works by highlighting the main
differences between the approaches proposed in this thesis and the ones
described in this chapter.

For what regards the two anomaly detectors for single robots contributed
by this thesis, the data-driven paradigm has been adopted for both of them.
The rationale behind such choice is the desideratum to be freed from heav-
ily reliance on domain expertise, something which is further reflected by
the use of semi-supervised training techniques. We, in fact, consider semi-
supervision as the best trade-off between the severe need for labeled train-
ing samples of supervised methods (and hence depending yet again on a
domain expert), and the often unacceptable shortcomings of fully unsuper-
vised ones. What differentiate our proposed approaches from other data-
driven semi-supervied ones is the striving to minimize the need for nom-
inal executions required during the training of such models. Differences
between the proposed methods and similar ones from a model perspective
will be discussed in the next chapters.

For what regards anomaly detection in robotic swarms, we conform to
the majority of the other existing works and present an exogenous anomaly
detector for homogeneous swarms by means of a distributed (data-driven)
architecture. What differentiate our approach from the others is the auto-
matic feature extraction enabled by the use of our VAE architecture.
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CHAPTER3
An HMM-based Anomaly Detector for

Single-Robot Systems

The work contained in this chapter has been published in the proceedings
of the International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS) 2020 [8].

3.1 Introduction

In this chapter, a novel method based on Hidden Markov Models (HMMs)
for detecting anomalies in single-robot systems is presented. HMMs [136]
have been successfully used for learning robot behaviors, especially in the
context of Learning from Demonstration (LfD) for manipulators and hu-
manoid robots [6, 17]. An HMM is a statistical model in which the system
being modeled is assumed to be a Markov process with unobservable (hid-
den) states, each characterized by an emission distribution governing the
probability of producing any of the observable system outputs and a transi-
tion distribution indicating which are the likely next states. Because of their
robustness to spatiotemporal variations of sequential data, HMMs are also
commonly used for encoding and abstracting noisy time series [27,29,31].
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We advocate that HMMs can provide good representations also of robot
behaviors in LTA contexts, where similar sequences of actions (tasks) are
typically repeated multiple times. Representing robot behaviors in these
domains is still wildly unexplored because of the difficulty to predict the
diverse situations in which the robot may have to deal with.

This chapter proposes a new method for detecting anomalous behaviors
of robotic systems involved in complex LTA scenarios, both online, while
robots are operating, and offline, after robots have completed a run of their
tasks. The behavior of robots is modeled using HMMs and, originally, the
Hellinger distance [67] is used to compute (i) the dissimilarity between the
probability distribution of subsequences of observations in a sliding win-
dow and the emission probability of related HMM hidden states (online
approach) and (ii) the distance between pairs of HMMs representing nom-
inal and observed behaviors (offline approach). The advantage of using
such a distance measure instead of standard measures (such as the likeli-
hood of observation subsequences for online approaches) is twofold: first,
the Hellinger distance is bounded and thus lends itself to simpler interpre-
tation and thresholding; second, it is less noisy and hence more informative
and discriminative.

Experiments on two robot systems operating in real-world settings show
that the proposed online and offline approaches outperform standard fault
detection methods. The online approach allows to discover both trajectory
and speed anomalies of aquatic drones performing water monitoring. In
the same application, the offline approach significantly discriminates reg-
ular and anomalous behaviors observed in different runs of the same task.
Anomalous execution traces are also detected in a long-term deployment of
a socially assistive mobile robot supporting independence of elderly people
living alone at home.

The main original contribution of this work is the novel application of
two theoretical tools, HMMs and Hellinger distance, to autonomous robots
and LTA. Specifically, we contribute:

• A new online anomaly detection algorithm based on HMMs and Hellinger
distance.

• A new offline anomaly detection algorithm based on a bounded dis-
tance between HMMs derived from the Hellinger distance. This dis-
tance abstracts the comparison between two behaviors from the level
of observations to the level of learned HMMs, providing interpretabil-
ity and diagnostic capabilities.

• An extensive experimental campaign on real robots involved in two
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applications requiring LTA.

3.2 Hidden Markov Models

We use HMMs [136] as a probabilistic model for the system that gener-
ated a given multivariate time series O. An HMM is a statistical model in
which the system being modeled is assumed to be a Markov process with
K hidden states. The mathematical notation λ = {π,A,B} is used to
represent an HMM, where π = {πi}Ki=1 is the set of initial state probabili-
ties,A = {aij}Ki,j=1 is the set of state transition probabilities (i.e., aij is the
probability to move from state i to state j), andB = {bi(o)}Ki=1 is the set of
the probability distributions over observations in each state (emission prob-
abilities). In our setting, we assume a multivariate Gaussian distribution for
the emission probabilities, which means that B = {N (µi,Σi)}Ki=1, where
µi and Σi are the mean and the covariance matrix for state i, respectively.
Theory of HMMs provides algorithms to solve three important problems:

• Compute the probability (i.e., likelihood) that an observed (sub)sequence
O is represented by an HMM, e.g., using the Forward algorithm [12].

• Find the parameters of an HMM, λ, to maximize the fit (likelihood) to
an observed sequenceO, e.g., using the Baum-Welch algorithm [13].

• Compute the optimal HMM state sequence (known as Viterbi path)
that best explains a given observed (sub)sequence O, e.g., using the
Viterbi algorithm [49].

The optimal number of hidden states and the covariance type can be
found by minimizing the Bayesian Information Criterion (BIC), which finds
the optimal trade-off between maximizing the likelihood of the training data
w.r.t. the model learned and minimizing the number of parameters required
(i.e., the number of hidden states) [18].

HMM-Based Fault Detection

HMMs have been often used for anomaly detection. Most of the works in
the literature train HMMs with data recorded during non-anomalous exe-
cutions (i.e., semi-supervised learning) and use one of the following two
approaches for detecting anomalies: (i) compute the likelihood of current
observations and classify them as anomalous if the likelihood is lower than
a threshold, (ii) compute the probability of the underlying Markov chain
and compare it with a fixed threshold [56, 117, 161, 168].
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The works that most resemble ours are [126] and [128], in which HMMs
are trained using multimodal sensory signals for detecting anomalies in as-
sistive robots. At run time, the trained HMMs provide likelihood scores for
data inside a window, which are compared to an adaptive detection thresh-
old to identify anomalies. One of the innovative aspects of the work pre-
sented in this chapter is that we substitute the likelihood estimation with
the computation of a more informative and interpretable measure, and also
provide a new offline methodology for detecting long-term shifts from the
nominal behavior. Another similar work, but with a different application
focus, is [143], in which anomalies represent credit card frauds and are
identified by directly comparing HMMs fit at consecutive periods rather
than comparing acceptance probabilities (i.e., likelihoods). Our approach
is different in the fact that, instead of just comparing the emission proba-
bilities of the states of two HMMs, we propose a new single-value metric
representing the overall dissimilarity between two HMMs.

3.3 The Proposed Method

In this section, our formulation of the problem of detecting anomalies in
single-robot systems is defined, the proposed online and offline anomaly
detection methods are presented.

3.3.1 Problem Definition

We represent by O = {o1, ...,on} a d-dimensional time series composed
of n observations, where ot is a d-dimensional vector representing the
multivariate (multi-valued) observation at time t. The nominal behavior
of a robot system is then represented as ON = {oN1 , ...,oNnN} and the
observed behavior of the same system along some time period as OO =
{oO1 , ...,oOnO}.

If we consider OO as a (possibly infinite) data stream, online anomaly
detection at time t is the task of classifying the portion of the stream in-
cluded in a sliding window (up to t) as anomalous or non-anomalous wrt
ON .

Given a finite batch of observationsOO, offline anomaly detection is the
task of classifying the behavior displayed by the system in OO as anoma-
lous or non-anomalous wrtON .

We assume the availability of ON and, for this reason, our approach
belongs to the semi-supervised family. This choice is motivated by the
fact that, in robotics, the availability of nominal observations for repetitive
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tasks, which are the kind of tasks on which we focus, is quite common,
since it is often plausible to make ad hoc executions in nominal conditions.

3.3.2 Mathematical Background

The Hellinger distance [67], used in both our online and offline anomaly
detection methods described below, is a [0, 1]-bounded metric that quanti-
fies the similarity between two probability density functions f(x) and g(x).
It is computed as follows:

H2(f, g) =
1

2

∫ (√
f(x)−

√
g(x)

)2

dx. (3.1)

For the case of two multivariate Gaussian distributions f(x) ∼ N (µ1,Σ1)
and g(x) ∼ N (µ2,Σ2), the Hellinger distance can be computed in closed
form as:
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(3.2)

3.3.3 Online Anomaly Detection

The nominal behavior of the robot system is modeled as an HMM λN that is
trained from ON using the Baum-Welch algorithm. The number of hidden
states and the covariance type are selected by minimizing the BIC. Online
anomaly detection at time step t is performed by means of a sliding window
Wt = {oOt−w+1, ...,o

O
t } of length w which includes the last w observations.

For each window Wt, a score is computed and, when the score exceeds a
predefined threshold τ , the behavior is considered anomalous. The score
is the Hellinger distance between the estimated distribution of the observa-
tions corresponding to the state ŝt occurring most frequently in the Viterbi
path St = {st−w+1, ..., st} of window Wt and the emission probability of
the same state in λN .

The detailed procedure for online anomaly detection is in Algorithm 1.
The algorithm starts by fitting the nominal HMM λN with the number of
hidden states suggested by the BIC score (lines 1-2). After having specified
the desired window length w (line 3) and threshold τ (line 4), the algorithm
waits until w observations are collected (line 5) and then starts the online
procedure (lines 6-17). The online procedure computes the Viterbi path of
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Algorithm 1: Online anomaly detection
1 K ← number of hidden states
2 λN ← Baum-Welch(ON , K)
3 w ← window size
4 τ ← threshold
5 t← w
6 repeat
7 Wt ← {oOt−w+1, ...,o

O
t }

8 St ← Viterbi(λN ,Wt)
9 ŝt ← most frequent state in St

10 X ← {oOj ∈Wt : sj = ŝt}
11 µ← E[X]

12 Σ← E[(X −µ)(X −µ)T ]

13 if H2(bNŝt ,N (µ,Σ)) > τ then
14 echo warning
15 end
16 t = t+ 1

17 until new data keep coming

the multivariate time series inside the window (line 8). For the state ŝt
occurring most frequently in the Viterbi path (line 9) a multivariate Gaus-
sian distribution N (µ,Σ) is fit through maximum likelihood with the data
inside the window (lines 10-12). Then the Hellinger distance is computed
(using equation (3.2)) between N (µ,Σ) and the emission probability of
state ŝt in λN (line 13). If the distance is larger than τ , then a warning is
reported (line 14).

3.3.4 Offline Anomaly Detection

Offline anomaly detection is performed by learning two different HMMs,
λN and λO, and computing the distance between them in order to discover
if (and how) the behavior of a robot system has changed over time.

To this end, we first need to learn λN and λO fromON andOO, respec-
tively, with the Baum-Welch algorithm. We constrain the two models to
have the same number of hidden states (i.e., the number of states of λN ),
which is reasonable since we assume the overall behavior of the robot sys-
tem we model is the same.

Given the model parameters of two HMMs, defining an appropriate sim-
ilarity measure between the two models is not straightforward. Most of the
works in the literature employ the Kullback-Leiber (KL) divergence [94]
as a distance measure between two HMMs [80]. Given two probability
density functions f(x) and g(x), the KL divergence can be computed as:
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DKL(f, g) =

∫
f(x) log

f(x)

g(x)
dx. (3.3)

The KL divergence has a closed-form expression for many probabil-
ity distributions, including Gaussians and, more generally, the exponen-
tial family. For more complex distributions, such as mixture models and
HMMs, the integral involves the logarithm of sums of component densi-
ties, and no simple closed-form expression exists. As a consequence, the
KL divergence between HMMs can only be approximated via Monte Carlo
sampling [80] or through variational approximation [68]. In this work we
are interested in computing the Hellinger distance between HMMs instead
of the KL divergence, since, as seen before, it is a bounded measure that
can provide interpretability to the anomaly detection model. Furthermore,
to the best of our knowledge, no work in the literature has attempted to
compute the Hellinger distance between HMMs.

We start the derivation of our Hellinger-based distance between HMMs
(for offline anomaly detection) observing that although no closed-form so-
lution exists for the KL divergence between two HMMs, some upper bounds
have been proposed which can be computed in closed form. One such
bound is proposed by [171] for left-to-right HMMs (a more constrained
version of HMMs in which state transitions are allowed only from lower
indexed states to higher indexed ones):
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K∑
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l1i

[ contribution
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ii
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(3.4)

whereDKL (b1
i , b

2
i ) is the KL divergence between the emission probabilities

of state i in the two models and represents how the emission probabilities
differ, log (a1ii/a2ii) is the log-likelihood ratio of the transition probabilities,
representing how much the two transition matrices differ, and li = 1/(1− aii)
approximates the expected duration of state i. The second half of equation
(3.4) makes the distance symmetric.

The problem with equation (3.4) is that all of its components are un-
bounded, resulting in an overall unbounded measure very difficult to inter-
pret and threshold in practical applications. Moreover, the contribution of
the emission probabilities and that of the transition matrices can grow with
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different orders of magnitude, making it even more difficult to intuitively
interpret the overall distance.

We take inspiration from equation (3.4) maintaining the idea of the two
contributions and propose a new bounded (with values in [0, 1]) approxi-
mation of the distance between two HMMs which is based on the Hellinger
distance and on the long-term probabilities of a Markov chain:

D(λ1, λ2) ≈
K∑
i=1

{
l1i

1

2

[ contribution of
emission probabilities︷ ︸︸ ︷
H2
(
b1
i , b
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+

+
1√
2

√√√√ K∑
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(√
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ij −

√
a2
ij

)2

︸ ︷︷ ︸
contribution of transition matrices

]}
,

(3.5)

where H2(b1
i , b

2
i ) is the Hellinger distance between the emission probabil-

ities of state i in the two models (i.e., the contribution to the distance of
the emission probabilities for state i) and the sum under the square root is
the Hellinger distance between the rows of state i in the transition matri-
ces of the two models (i.e., the contribution to the distance of the transition
matrices for state i).

We drop the term corresponding to the second half of equation (3.4),
which would make the distance symmetric, since we are only interested in
how λO is dissimilar from λN and not vice-versa.

Computing the contribution of the transition matrices as in equation (3.5)
instead of as in equation (3.4) has the advantage of taking into account the
difference between the transition probabilities to all the states, while the
log-likelihood ratio in equation (3.4) considers only the transition probabil-
ities on the main diagonal that correspond to transitions to the same state.

In equation (3.5), l1i is computed as the long term probability of remain-
ing in state i1 wrt the transition matrix A1. Let A be a regular transition
matrix (i.e., such that some power of A has all positive entries) with states
{1, 2, ..., K}, long-term probabilities l = {l1, l2, ..., lK} are the unique so-
lution to: {

lj =
∑K

k=1 lkakj, j = 1, 2, ..., K∑K
i=1 li = 1

Long-term probabilities have two advantages over their approximations
used in equation (3.4): (i) they are a better proxy of the time spent in each
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Algorithm 2: Offline anomaly detection
1 K ← number of hidden states
2 λN ← Baum-Welch(ON , K)
3 λO ← Baum-Welch(OO , K)
4 τ ← threshold
5 lN ← long-term probabilities ofAN

6 Hungarian(BN ,BO)

7 if D(λN , λO) > τ then
8 echo warning
9 end

state, since their theoretical interpretation is exactly that, the long-run pro-
portion of time spent in each state, and (ii) they add up to 1, making equa-
tion (3.5) a weighted average.

To compute equation (3.5), we perform a bijective matching between
states of λN and states of λO using the Hungarian algorithm [93] and con-
sidering the Hellinger distance between each pair of states, namely, the
distance between the emission probability distributions of those states.

In practice, for diagnostic purposes, equation (3.5) can be unrolled and
its components can be inspected separately. In particular, for each state,
the two contributions can be inspected and, depending on the value of l1i
the impact of state i on the overall distance can be identified. This could
greatly help in the diagnostic process to identify the precise reason(s) why
two behaviors are dissimilar and to possibly recover to a non-anomalous
behavior.

Beyond interpretability, one of the main strengths of our offline ap-
proach is that it is not negatively affected by differences in the lengths of the
sequencesON andOO (as the standard likelihood) or by possible misalign-
ments in such sequences, since it abstracts the comparison of behaviors to
the level of learned HMMs.

The detailed procedure for offline anomaly detection is reported in Al-
gorithm 2, which starts by fitting the nominal HMM λN with the number
of hidden states suggested by the BIC score (lines 1-2). Then the observed
HMM λO is learned with the same number of hidden states as λN (line 3)
and the detection threshold τ is selected (line 4). Long-term probabilities of
the nominal model are computed with equation 3.3.4 (line 5). Then, after
having matched the states in the two models with the Hungarian algorithm
(line 6), the distance between λN and λO is computed with equation (3.5).
If such distance is larger than τ , a warning is issued (lines 7-9).
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(a) Day 1 (b) Day 2 (c) Day 11

Figure 3.1: Water drone trajectories

3.4 Experimental Results

In this section we present the results obtained by applying the proposed
approach to detect anomalies of two robots operating in real-world LTA
scenarios.

3.4.1 Water Monitoring Robot

The first robot operates in the context of the INTCATCH Project1, a H2020
EU project aiming to develop a new paradigm for water monitoring in river
and lakes by harmonizing a range of innovative tools into a single efficient
and user-friendly model. A dataset (see Figure 3.1) has been gathered that
contains 11 runs of a predefined path traveled by a Platypus drone (see Fig-
ure 3.2) on Lake Garda (Italy). The dataset consists of 76213 observations,
collected at 1Hz frequency, of the following variables concerning the robot
state: heading (i.e., compass direction), speed, acceleration, power signals
to the left and right propellers, latitude, and longitude. A domain expert
has certified the readings of the first day (see Figure 3.1(a)) as representing
the nominal behavior and we use them to train an HMM. The BIC score
suggests an optimal number of states K=3 intuitively corresponding to:

• going upward, line segment A-B in Figure 3.3(a);

• going downward, line segment C-D in Figure 3.3(a);
1http://www.intcatch.eu
2http://senseplatypus.com/
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Figure 3.2: Platypus2 Lutra boat usedin the context of the INTCATCH project, about 1 m
long and 0.5 m wide.

A

B C

D A A

B C

D A
(a)

A

B C

D A A

B C

D A
(b)

Figure 3.3: Nominal (a) and anomalous (b) behaviors

• going right, line segments B-C and D-A in Figure 3.3(a).

The domain expert also classified the runs from day 2 to day 10 as non-
anomalous (Figure 3.1 just reports the trajectory of day 2) and the run of day
11 as anomalous (as it can be clearly seen from the corresponding trajectory
in Figure 3.1, which we use for testing. Figure 3.3 schematically shows
the difference between the regular (days 1-10) and the anomalous (day 11)
behaviors.

Online anomaly detection

We compare our technique to two standard approaches (e.g., used in [126,
161, 168]): the negative log-likelihood with respect to the nominal HMM,
and the negative of the logarithm of the probability of the Viterbi path. The
former one (which for brevity will be referred to as likelihood) is computed
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Figure 3.4: Online anomaly detection day 2 (w=50)

with the Forward algorithm as the negative of the logarithm of P (Wt|λN).
The latter is obtained by computing the Viterbi path ofWt with the Viterbi
algorithm and then by taking the negative of the logarithm of the multipli-
cation of the transition probabilities between the states in the Viterbi path.

The window size w must be set to a value between a minimum, which
allows to robustly estimate a multivariate Gaussian distribution from data
inside the window, and a maximum, which depends on the dynamics of the
analyzed behavior (if w is too large, anomalies relative to short behaviors
could be missed). After some empirical tests, we selected a window size of
50 samples.

In Figure 3.4, our anomaly measure (in red) and the likelihood (in blue)
for the second day are depicted. As expected, our measure maintains al-
ways a very low value while the likelihood seems to be high during the
downward segments, which visually appear to be regular. As we will see, a
negative log-likelihood of 1000 is not very high (when compared to the val-
ues reached in the eleventh day), anyway, being the likelihood unbounded,
it would be hard to decide a priori that such a value of likelihood does not
reflect an anomaly.

Figure 3.5 reports the anomaly scores for the eleventh day, the anoma-
lous one. The following remarks can be made:

• During the first upward segment 1© an anomaly occurs, due to the fact
that the speed of the robot is much higher than that observed during
the nominal upward behavior. Our technique empasizes this anomaly
(which is not evident from the trajectories of Figure 3.1) better than
the likelihood.
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Figure 3.5: Online anomaly detection day 11 (w=50)

Figure 3.6: ROC curves day 11

• Our anomaly score better reflects the anomalies present in the down-
ward segments. Indeed, our approach correctly assigns an higher
Hellinger distance to the first half of the C-D segment 2© (when the
drone moves away from the optimal trajectory) and assigns a lower
value to the second half 3© (when the drone gets back on track), while
the negative log-likelihood reaches a plateau and does not decrease
during the second half. In this sense, we can say that our approach is
more expressive in capturing and representing anomalies.

• The second spike in the C-D segment 4© is correctly identified by
both techniques and is due to an anomalous increase in the speed of
the robot.

Figure 3.6 shows the ROC curves as τ is varied for the three methods
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considered. Our method outperforms the others, improving the area under
the curve (AUC) of the standard approach based on the likelihood by 6%.
We omit the plots of the negative logarithm of the Viterbi path in Figures
3.4 and 3.5 since it does not detect anomalies as good as the other two
approaches (as evidenced also by the lower AUC in Figure 3.6).

Besides reflecting anomalies more expressively, another advantage of
the technique we propose is the ease with which it is possible to set a thresh-
old due to its bounded nature.

If diagonal covariance matrices for the emission probabilities are used,
the computational complexity of our online algorithm is linear in the num-
ber of dimensions and in the window length, while it is quadratic in the
number of hidden states (i.e., the same as the two baseline methods we
consider). For each window, the anomaly score can be computed in ap-
proximately 5 ms in our case study (using a commercial laptop), making
our method suitable for online purposes.

Offline anomaly detection

We consider the observations of the first day as representing the nominal
behavior and we use them to fit an HMM λ1. We then fit ten more HMMs,
one for each of the remaining days, called λ2 to λ11, respectively. We then
compute the distance between each HMM and λ1. Table 3.1 reports the dis-
tance between λ1 and λ2 (which serves as a representative for days from 2
to 10, i.e., non-anomalous days) and between λ1 and λ11. The results show
a much bigger distance for the eleventh day, highlighting the presence of
an anomaly, mainly caused by the downward state, which contributes 87%
of D(λ1, λ11). The contribution of the downward state can be, in turn,
further decomposed by inspecting the two contributions of equation (3.5)
separately. By looking at the contribution of the transition matrices, an
higher self-transition probability suggests a lower velocity. By looking at
H2(b1

downward, b
11
downward), the contribution of the emissions probabilities, we can

notice a lower mean for the velocity, confirming that the downwards seg-
ments are traversed slower than in the nominal case, and also an higher
variance for the heading, which suggests that during the downward state
the water drone does not manage to maintain rectilinear motion. This is
an example of how the distance can be interpreted for diagnostic purposes.
Note that expecting a very high distance between λ1 and λ11 (i.e., close
to 1) would be incorrect, since only one of the three states corresponds to
anomalous behavior. In fact, the overall coverage task can be considered as
partially accomplished even in presence of anomalies.

A rule of thumb to set the detection threshold τ is to choose the value of
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Models State Distance Total

D(λ1, λ2)
upward 0,0048

0.0112downward 0,0052
right 0,0012

D(λ1, λ11)
upward 0,0063

0.2424downward 0.2103
right 0.0258

Table 3.1: Offline anomaly detection

the average distance between two nominal behaviors plus x times the stan-
dard deviation. For instance, x = 3 provides a good statistical confidence
that the observed behavior is not nominal. In our experiments, the behavior
of day 11 is considered anomalous since its distance from the nominal be-
havior of day 1 is significantly far away from the distribution of distances
between day 1 and days 2 to 10. The z-score of day 11 with respect to this
distribution is 69.08 (i.e., much greater than the standard threshold of 3).
The p-value is < 0.0001.

3.4.2 Socially Assistive Robot

The second set of experiments is performed on data collected during the
testing phase of the MoveCare project [106], a H2020 EU project devel-
oping an innovative, multi-actor platform centered around an autonomous
robot for supporting the independence of elderly people living alone at
home. The socially assistive autonomous mobile robot is called Giraff-X
(Figure 3.7) and moves in domestic environments, which represent a typi-
cal context for LTA [107]. The goal of the robot is to provide notifications
to the user. For doing so, the robot searches, identifies, and approaches
the elder, and interact with him/her for stimulation by suggesting activities
that aim to counteract physical and cognitive decline, as well as isolation.
To localize the person, the robot starts from its charging base and visits in
sequence three different rooms (living room, bedroom, and bathroom) of
the test house until the elder is found. When the elder is found, the robot
approaches him/her following a path suitable for Human-Robot-Interaction
(HRI). After the notification is provided to the user, the robot autonomously
returns back to its charging base [116]. When idle, the robot stays at its
charging base.

Data are collected in a 9-day experiment simulating the same number of
interventions performed in a month of use of this social assistive robot, thus
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Figure 3.7: Giraff-X socially assistive robot, developed for the MoveCare project [107]

Figure 3.8: Runs of Giraff robot

performing multiple interventions per day for assessing LTA [107]. The
dataset contains 149 runs, each one composed of a sequence of observations
collected at 1 Hz and including: heading, speed, acceleration, position w.r.t.
the x-axis, and position w.r.t. the y-axis (see Figure 3.8, different runs are
depicted in different colors).

Out of the 149 runs, 4 are labeled as anomalous by a domain expert
(denoted as A1, A2, A3, and A4 in Figure 3.8). Runs A1, A3, and A4
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Figure 3.9: D(λN , λOt) for runs of the Giraff robot

represent anomalous behaviors due to departures from the expected tra-
jectories, while run A2 constitutes an anomaly since the robot moves at a
higher speed than the nominal one. More precisely, anomalies in runs A1
and A3 are due to the fact that the robot identified the user at a different
location than expected, and had to modify its path in order to find a suitable
location for HRI. In run A4, after performing HRI, the robot placed itself
in a position too close to furniture and got stuck there.

In this dataset a run is assessed as anomalous by considering it as a
whole, thus we present only results about offline anomaly detection. A
ROC curve computed online, as in Section 3.4.1, would require knowledge
of which observations are actually anomalous within an overall anoma-
lous run. Since we do not have such information, we cannot apply online
anomaly detection in this case.

For each task of reaching one of the three rooms, an HMM λN is trained
with a single run labeled as non-anomalous by the expert and considered
as representing the nominal behavior. The remaining runs are tested for
anomaly using our offline method. For each test run, an HMM λOt is trained
and compared with the nominal one for the task of reaching the same room.
Results are shown in Figure 3.9. Our approach successfully identifies all
four anomalies while reporting a low distance for all the other (correct)
runs. Note that, although computing the negative log-likelihood of each
whole run w.r.t. its nominal HMM could result in a plot similar to that
of Figure 3.9 (yet unbounded on the y-axis), it would not be theoretically
sound since each run consists of a different number of observations and,
being the likelihood sensitive to trace length, the scores obtained would not
actually be comparable.
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3.5 Concluding Remarks

Unlike other works in the literature, we show that even a single run is
enough for learning the nominal behavior, making the semi-supervised set-
ting effectively applicable in practical real-world scenarios. Note that, in
the context of LTA, a small initial supervision effort by a domain expert
may be acceptable, given that the robots will operate autonomously for a
long time.

In our experiments, we show that a constant detection threshold τ is
enough and that the bounded nature of our anomaly scores gives a semantic
meaning to such threshold. A suitable threshold τ should be chosen de-
pending on the specific application, for example to minimize false alarms
(e.g., when human verification is very costly) or to be sure to detect all
anomalies while permitting some false alarms (e.g., when the robot could
harm people). Although for the online approach it is easy to give a semantic
interpretation to the selected threshold, for the offline approach one should
choose the threshold trying to answer the question “How much am I will-
ing to let the observed behavior be different from the nominal one and still
consider it as non-anomalous?”. For example, consider a case with K = 3
(equally important) states and two behaviors that overlap perfectly except
for one state, in which they are completely different. In this case, the offline
anomaly score is approximately 1/3 and, if the application requires that an
anomaly is detected when the behaviors are different in at least one state,
the threshold τ should be set to a value less than 1/3.
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CHAPTER4
Data Augmentation for HMM-based

Anomaly Detection

The work contained in this chapter has been done in conjunction with
colleagues from the University of Verona (Castellini, A., Masillo, F., &
Farinelli, A.) and my advisor Amigoni, F. My personal contribution in-
volved: ideation and design of the method (together with the other authors),
mathematical derivation of the gradients, experiments on the two datasets
involving robots (i.e., INTCATCH and ALFA). The work contained in this
chapter has been submitted to the journal of Artificial Intelligence (AIJ)
and is currently under review.

4.1 Introduction

In the previous chapter, an online approach has been presented for detecting
anomalous behaviors of robot systems involved in complex LTA scenarios.
The methodology uses HMMs to model the nominal (expected) behaviour
of the robot and the Hellinger distance (H2) [67] to evaluate the dissimi-
larity between the probability distribution of subsequences of observations
(i.e., multivariate sensor time series) in a sliding window and the emis-
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sion probability of related HMM hidden states. It has been shown that
the advantage of using such a distance measure instead of standard mea-
sures (e.g., the likelihood of observation subsequences) is twofold: first, the
Hellinger distance is bounded and thus it lends itself to simpler interpreta-
tion and thresholding; second, it is less noisy, hence more informative and
discriminative. For simplicity, in the following we refer to this algorithm
as HMM-Hellinger-based Anomaly Detector (HHAD). In this chapter, an
adversarial data augmentation and retraining technique for HHAD (called
HHAD-AUG in the following) is presented.

Data augmentation is frequently used to improve generalizability in im-
age classifiers [148]. In our context, it is motivated by the lack of anoma-
lously labeled examples and the noise that generally characterizes data in
robotic and real systems in general. Both issues can be mitigated by the ex-
ploration and characterization of the feature space nearby (nominal) train-
ing samples (i.e., the nominal region of our anomaly detector). Follow-
ing the recent and promising research field of adversarial example genera-
tion and adversarial attack generation for machine learning models [55], we
ground our data augmentation method on adversarial examples, which, in
our case, are perturbed time series [60,76,82,120]. More precisely, we per-
turb nominal examples in the training set to become adversarial using two
algorithms we propose, one based on the Hellinger distance (which we call
H-ADV), and a second one based on the HMM likelihood (called L-ADV).
The main goal of the adversarial data augmentation is to improve the per-
formance of HHAD when limited amounts of training data are available,
however, we show that the augmentation procedure we propose achieves
performance improvements also with models trained on larger datasets.

What differentiates our approach for generating adversarial examples
from the approaches in the literature is that these approaches are mainly
targeted to deep neural networks for image classification. Very recently, an
approach has been proposed to perform adversarial attacks on (univariate)
time series classifiers based on neural networks [82], but no method exists
that is specifically targeted to HMM-based models. Our method employs
the same definition of adversarial attacks for time series used in [82] but it
generates adversarial examples specifically designed for HMM-based clas-
sifiers. Finally, the proposed method focuses on a specific type of clas-
sification problem, namely, anomaly detection, which we address in its
semi-supervised formulation, while the classification tasks considered by
the other works are generally supervised. In summary, there are three main
differences between the approach for adversarial example generation pre-
sented here and those available in the literature, namely, (i) the procedure is
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based on HMMs and Hellinger distance instead of on neural networks, (ii)
the samples we consider are (slices of) multivariate time series instead of
images, (iii) our target model is an anomaly detector instead of a standard
classifier.

As it will be better explained in the next sections, in order to compute
adversarial samples, the gradient of the anomaly score need to be com-
puted and maximized. Since the anomaly score used by HHAD (i.e., the
Hellinger distance between the distribution of observed samples and the
distribution of related HMM emission models), is hard to express in closed
form as, involving the computation of the maximally frequent state in the
observation window, requires to invert the Viterbi problem, we consider
also a second anomaly score: the HMM likelihood. Although the HMM
likelihood is only a proxy of the anomaly score used by HHAD, its gra-
dient is easier to express. We mathematically derive the gradients of both
anomaly scores, and present a procedure to use them to augment the train-
ing dataset, which, according to our extensive experiments lead to a sig-
nificant improvement in the detection performance of HHAD in terms of
F1-score, especially when very few observations are available.

We evaluate the data augmentation and retraining technique on four
public datasets, three of which are recognized real-world benchmarks for
anomaly detection in robotic and cyber-physical systems. The first dataset
is generated by the Tennessee-Eastman industrial chemical process [97,99],
where the control system is tested for cyber-attacks [5]; the second dataset
comes from the Secure Water Treatment (SWaT) testbed [51,110], a scaled
version of an industrial water treatment plant also tested for cyber-attacks
[5]; the third dataset is the Air Lab Fault and Anomaly (ALFA) dataset [83],
a recent benchmark generated by real Unmanned Aerial Vehicles (UAVs);
finally, the fourth dataset, used also in the previous chapter, contains mul-
tivariate sensor signals collected by aquatic drones involved in water mon-
itoring and developed in the INTCATCH Horizon 2020 project [30]. For
each dataset we first generate an anomaly detector using HHAD and then
try to improve its performance using the proposed data augmentation and
retraining method HHAD-AUG.

The experimental evaluation of the proposed approach confirms that
(i) H-ADV and L-ADV can generate meaningful adversarial examples for
HHAD and (ii) HHAD-AUG can employ these new samples to improve
the performance of HHAD. Regarding the first point, we are able to gener-
ate adversarial examples for all datasets evaluated. These examples are
guaranteed to have small distance from the original nominal examples,
according to the definition of adversarial example for time series given
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in [82]. For instance, in the dataset based on the industrial chemical process
(where anomalies correspond to cyber-attacks), the approach based on the
Hellinger distance generates adversarial examples (i.e., multivariate time
series) with maximum L2 distance of 0.803 from their original examples.
This corresponds to an average distance on each point of 0.002, an imper-
ceptible amount with respect to the average range of the time series which is
about 9.994, considering that all time series have been standardized. This
tiny perturbation would lead the new adversarial example (which is still
very probably a nominal sample) to be misclassified by the detector, how-
ever, by adding it to the training set we are able to prevent cases like this
one to be wrongly classified as anomalous. The only assumption underly-
ing our approach is that the actual nominal region in the feature space is
homogeneous, which means that that, starting from a nominal point, if we
move just slightly, we should reach another nominal point. This assumption
is plausible in practice.

In summary, the main contributions of this work to the state-of-the-art
are listed in the following:

• We propose an algorithm able to generate adversarial examples for an
anomaly detector based on HMMs and working with multivariate time
series.

• We propose an algorithm for data augmentation and retraining based
on adversarial examples which improves the performance of the anomaly
detector.

• We evaluate, obtaining good results, both adversarial generation and
data augmentation on four datasets1 of multivariate sensory signals
acquired from autonomous robots and industrial cyber-physical sys-
tems, namely, Tennessee Eastman [97], SWaT [110], ALFA [83] and
INTCATCH [30].

4.2 Related Work

Three main research topics are related to the work presented in this chap-
ter. The first one is anomaly detection for autonomous robots (which has
already been covered in Chapter 2), the second one is adversarial exam-
ple generation, and the third one is data augmentation. In the following,
we analyze the state-of-the-art of the last two topics separately and high-

1We remark that the reason behind the choice of not using the MoveCare dataset for these experiments is it
being composed of a rather conspicuous amount of runs already, and hence not fit for the scope.
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light the differences between our approach and the most similar ones in the
literature.

Adversarial Example Generation

Adversarial examples on classification models are investigated in [16] and
the analysis is specialized to neural networks for image classification in
[152] where the authors noticed that “imperceptible non-random pertur-
bations applied to a test image can change the network prediction”. An
optimization procedure called box-constrained Limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm (L-BFGS) is proposed in [152] to com-
pute adversarial perturbations of images given network parameters. To
overcome some time-complexity issues of this method, another approach
called Fast Gradient Sign Method (FGSM) has been proposed [55]. It pro-
duces sub-optimal adversarial examples, in terms of distance from the orig-
inal sample, but being very fast it has quickly become popular and has in-
spired other approaches. Two examples are Deepfool [114] and the Carlini-
Wagner method [25], that use iterative procedures based on local lineariza-
tion of the classifier function. The approaches described so far require
full knowledge of the classifier parameters and are hence said white-box.
When such information is not available, black-box methods are generally
used [124]. They first query the classifier and collect responses, then use
this data to generate a neural network-based approximation of the classi-
fier, and finally generate perturbations using this approximated classifier
relying on adversarial example transferability [125]. A theoretical frame-
work for analyzing the robustness of classifiers to adversarial perturbations
is proposed in [48]. Adversarial training has been used as a regularization
method for supervised and semi-supervised learning of neural networks
in [112]. A method for generating universal adversarial perturbations is
presented in [115]. Complete reviews on adversarial attack methods are
proposed in [121, 166].

The differences between our method for adversarial example generation
and those mentioned so far are that we focus on a one-class classification
problem (i.e., semi-supervised anomaly detection), our classifier is based
on HMMs and Hellinger distance, and our samples are multivariate time
series. To the best of our knowledge the current literature does not provide
any method for adversarial example generation in this setting. The only
attack specifically targeted to HMMs which resembles adversarial attacks
is that presented in [24], which is applied to speech recognition systems.
However, the examples (audio voice commands) generated by the attacker
in that case cannot be defined as adversarial, since they are required to
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be recognizable by the speech recognition system and not recognizable by
humans, hence they can be very different from original examples, while
adversarial examples are defined as perturbed examples very similar (i.e.,
close) to the original ones. Furthermore, unlike black-box methods, our
method does not need to generate neural network approximations of the
detector, which would require prior knowledge about the complexity of the
classification problem (to set the network architecture) and large amounts
of data for training.

Methodologies for generating adversarial attacks on time series are pro-
posed in [60, 76, 82, 120]. A strategy based on Adversarial Transformation
Networks (ATNs) [10] is used in [76, 82] to generate adversarial attacks
on a target classifier of time series via a student model trained using stan-
dard model distillation techniques [22, 71]. The target classifier can be a
fully convolutional neural network or a 1-nearest neighbor classifier with
Dynamic Time Warping. The ATN takes as input a time series x and its
gradient with respect to the softmax scaled logits of the target class pre-
dicted by the attacked classifier, and returns a perturbed time series x′ that
represents a possible adversarial sample. If the classifier being attacked is
unknown (i.e., black-box attack) or it is 1-nearest neighbor with Dynamic
Time Warping (i.e., white box attack on a non derivable classifier) then the
gradient cannot be computed. In these cases the attack is performed on the
student model which, is a neural network that imitates the classifier and it
is derivable. In [60] ATNs are extended with autoencoders to attack multi-
variate time series classification models.

In our work we consider the same definition of adversarial attacks used
in [60, 76, 82] but the approach we propose is different both from the point
of view of the objective and that of the method. We propose a data augmen-
tation technique based on adversarial samples for improving HMM-based
anomaly detectors that work on multivariate time series, while [82] and [60]
propose new methodologies for generating adversarial attacks on time se-
ries. We derive the gradient of the specific loss function (i.e., in our case
the anomaly score) of the anomaly detector, hence, our method generates
adversarial examples directly on the detector, rather than on a neural net-
work that tries to mimic it. Also the taks is different, in our case, it is an
anomaly detector trained using only nominal samples, while in [82] sam-
ples of all classes are considered to be available both in the training phase
and in the adversarial attack generation phase. The generation of adversar-
ial attacks has been studied also in the context of Natural Language Pro-
cessing [3, 79], where classification models are sometimes similar to those
used for time series classification. However, to the best of our knowledge
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all the methodologies proposed so far work on deep learning models.

Data Augmentation

Data augmentation is an established practice in image recognition with neu-
ral networks, where several methods are available for enhancing the size
and quality of datasets used to train classification models. Competition-
winning image classifiers such as AlexNet use data augmentation methods
to achieve those high performances. In [148] data augmentation methods
are partitioned according to the following categories: geometric transfor-
mations, color space augmentations, kernel filters, mixing images, random
erasing, feature space augmentation, adversarial training, generative adver-
sarial networks, neural style transfer, and meta-learning. Our work would
be considered as adversarial training. The main goal of data augmentation,
both for images and other data types, is to prevent class imbalance and
model overfitting due to data limitations, by adding synthetic samples to
the available datasets [9, 35, 148, 165].

Time series data augmentation is, instead, not an established practice.
The majority of state-of-the-art approaches for time series classification do
not use data augmentation, and the first surveys on these techniques have
been published only very recently [77, 163]. In [77] four families of time
series data augmentation methods are described, among them we can find
transformation-based methods, pattern mixing, generative models, and de-
composition methods. We notice that methods related to adversarial train-
ing are still not considered in the literature of time series data augmentation.
Most data augmentation techniques for time series [77, 100, 145, 157, 163]
are instead based on random transformations, such as, addition of random
noise, slicing, cropping, scaling, random warping in the time dimension,
and frequency warping.

Adversarial data augmentation, also called adversarial training [96], is
the process of augmenting a dataset using adversarial examples (a.k.a. ad-
versarial attacks) to achieve two main goals, namely, making classifiers
more robust to adversarial attacks and reducing their test error on clean in-
puts. This practice has been very recently applied to image classifiers [148],
where adversarial data augmentation has been used to improve generaliza-
tion to unseen domains. In [160] an iterative procedure is proposed to aug-
ment datasets with examples from a fictitious target domain that is hard
under the current model. Adversarial examples are added to the training set
at each iteration, allowing the classifier to better generalize to populations
different from the training distribution in settings where data from the target
distribution are inaccessible. In [149] a good performance under adversarial
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input perturbations is guaranteed by considering in the learning optimiza-
tion problem a Lagrangian penalty of perturbing the data distribution in
a Wasserstein ball. The proposed training procedure augments model pa-
rameter updates with worst-case perturbations of training data. In [170] a
novel regularization term for adversarial data augmentation in deep neural
networks for image classification is proposed. This methodology encour-
ages perturbing the underlying data source distribution to enlarge predictive
uncertainty of the current model, so that the generated “hard” adversar-
ial perturbations can improve the model robustness during training. The
methodology extends [160] and reduces to it when the maximum-entropy
term is discarded. These approaches show that adversarial training can be
an effective data ingredient [148].

Our method applies these principles to a specific one-class classification
problem (i.e., anomaly detection), for time series data instead of images.
Adversarial data augmentation is applied to the specific HMM-based de-
tector presented in [8]. We notice also that the adversarial-based strategy
that we use to generate synthetic samples makes our methodology deeply
different from traditional time series augmentation methods, since we do
not need prior knowledge about the application to generate data transfor-
mations. Finally, we observe that our strategy allows to improve detec-
tion performance on both the original test set and the adversarial attacks
generated from the same test set (see Section 4.5), hence improving both
detection performance and robustness to adversarial attacks.

4.3 Background and Notation

We first informally define the problem addressed in this work, then the
main strategies for adversarial example generation and data augmentation
are finally presented.

4.3.1 Problem Definition

Given an online HMM-based anomaly detector HHAD [8], trained on a
dataset of nominal multivariate time series, our goal is to improve the per-
formance of the detector by augmenting its training set with adversarial
examples. Moreover, we aim at improving the robustness of the detector to
adversarial attacks.
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4.3.2 Adversarial Example Generation

Adversarial examples have been defined in the context of image classifica-
tion as misclassified examples that are only slightly different from correctly
classified examples drawn from the same data distribution [55]. In other
words, in problems with well-separated classes, the classifier is expected
to assign the same class to an example x and a slightly perturbed example
x̃ = x + η, where the perturbation η is small enough to be not perceived
as an actual change of x. Common instances of adversarial examples are
those of images generated by slightly perturbing an original image show-
ing an object. These adversarial images clearly display (to human percep-
tion) the same object of the original image but they are misclassified by the
classifier. Some well known examples of these images can be found, for
instance, in [55]. In the context of time series data, the ground truth of a
sample cannot be provided by human perception, hence it must be known
in advance to evaluate the perturbed samples. Adversarial examples are
then defined as slight perturbations of original samples that produce a mis-
classification with respect to the ground truth. Since the ground truth is
not available for all samples, we use the definition of [60, 76, 82], namely,
the label predicted by the classifier is assumed to be the ground truth and
adversarial samples are defined as samples whose predicted class label is
different from the predicted ground truth label.

A formal definition of (minimal)2 adversarial perturbation for an ob-
ject x is provided in [114] as the minimal perturbation η that is suffi-
cient to change the label ŷ = f(x) estimated by a classifier f : Rq →
{1, . . . , k}, q ∈ N for sample x. The Lp distance of such a minimal pertur-
bation is therefore:

∆(x; f)
.
= min

η
‖η‖p subject to f(x+ η) 6= f(x). (4.1)

This definition requires a distance metric Lp = ‖·‖p to quantify the similar-
ity of the adversarial example to the original one. The most used distances
are L0, which measures the number of coordinates changed by the pertur-
bation, L2, the standard Euclidean distance between the original and the
perturbed sample, and L∞, which measures the maximum change among
all coordinates [25]. Different Lp distances have a different impact on (i)
the classification of the perturbed sample made by the classifier, (ii) the true
class of the perturbed sample, which corresponds to human perception for
images and to the ground truth class for other kinds of samples in general.

2In [114] this is called adversarial perturbation but we call it minimal because adversarial examples can also
be affected by a non-minimal perturbation.

45



Chapter 4. Data Augmentation for HMM-based Anomaly Detection

No distance metric is a perfect measure of similarity in the ground truth3

and the usage of a distance metric that closely approximates the ground
truth similarity is fundamental to generate good adversarial examples.

The robustness of a classifier f is then defined as ρ(f) = Ex∆(x; f).
Namely, it is the average norm of the minimal perturbations required to
change the estimated labels of all samples, given a specific classifier f and a
specific set of samples. Similar definitions are also provided in [48], where
a complete theoretical framework is proposed for analyzing the robustness
of classifiers to adversarial perturbations. The best adversarial perturbation
is defined in [48] as the point at minimal distance between x and the deci-
sion boundary of the classifier. Some bounds are defined on the robustness
of classifiers. They depend on a distinguishability measure that captures
the difficulty of the classification task [48].

The subtle cause of the existence of adversarial examples is described
in [55]. Namely, the adversarial perturbation η is small in all its elements
(Goodfellow et al. refer to the infinity norm in their work, i.e., ‖η‖∞ < ε,
where ε is a small real number that limits the perturbation size) but it pro-
duces a strong effect on the classifier prediction if all these elements con-
tribute concordantly to move towards the closest point of the model de-
cision boundary. In [152] authors define adversarial examples as “low-
probability (high-dimensional) pockets in the manifold represented by the
deep neural classifier, which are hard to efficiently find by simply randomly
sampling the input around a given example”. The effect of adversarial per-
turbation is in fact maximized in high dimensional problems where a large
number of infinitesimal (hence invisible) changes performed to a sample
(e.g., an image) can add up producing a very large change on the output.
The direction of these changes is however hard to find in practice and dif-
ferent methods have been proposed depending on the assumptions made on
the type of model, the availability of model parameters and other elements
of the problem.

The first technique for generating adversarial examples on deep neu-
ral networks has been proposed in [152]. It uses an optimization proce-
dure called box-constrained Limited-memory Broyden-Fletcher-Goldfarb-
Shanno algorithm (L-BFGS), to solve the problem of finding the closest
image to x classified with a specific label l by f , which is formally defined

3In [25], authors refer to human perceptual similarity but this concept can be extended to the similarity in the
ground truth when compared examples are not images.
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as:

minimize ‖η‖2 (4.2a)
subject to f(x+ η) = l, (4.2b)

x+ η ∈ [0, 1]q. (4.2c)

The label of the adversarial example is explicit, hence this method is said
to be targeted. Since this is a hard problem, an approximated solution has
been computed by repeatedly solving the following minimization problem:

minimize c‖η‖2 + lossf (x+ η, l) (4.3a)
subject to x+ η ∈ [0, 1]q, (4.3b)

with different constants c > 0, where lossf : Rq × {1, . . . , k} → R+ is
the loss function associated to the classifier f , such as the cross-entropy.
Notice that minimizing the loss function for the example x+ η and label l
is equivalent to find a perturbation η where the example x+η has actually
label l.

To overcome the time-complexity issue of this method the Fast Gradient
Sign Method (FGSM) is proposed in [55] which is untargeted (i.e., it does
not allow to specify the target label) and optimized for the L∞ distance
metric. This method does not produce maximally close adversarial exam-
ples but it is faster than L-BFGS. Given an example x, FGSM searches for
an adversarial x′ such that

x′ = x+ ε · sign(∇xlossf (x, y)), (4.4)

where ∇x is the gradient over x. According to this method, given the pa-
rameters θ of the classifier f , an example x, its original class y in the
training set, and the cost function used to train the classifier lossf , an ad-
versarial example is obtained by linearizing the loss function around the
current value of θ and moving (in Rq) in the direction that maximises the
loss of f considering x′ with the original label y. The method can be made
targeted by using a perturbation −ε · sign(∇xlossf (x, l)) with l being the
target label. Time complexity can be improved by efficiently computing the
gradient using backpropagation. Other popular methods proposed more re-
cently are Deepfool [114] and Carlini-Wagner [25]. They usually manage
to generate adversarial examples that are more similar to original examples
than those of methods described so far. The reader can refer to the original
papers for a detailed description.
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Finally, black-box adversarial attacks [124] assume adversarial example
transferrability [125]. They need to first generate a neural network approx-
imation of the classifier under investigation and then they generate adver-
sarial examples on this model using standard methods for neural networks.
The main contribution of these methods is in the strategy they use to ap-
proximate the original classifier by a neural network. This process can be
time consuming and it needs an initial dataset with samples for all classes in
the problem, which is hardly applicable in anomaly detection since anoma-
lies are usually not available in advance. The quality of the initial dataset
can affect the quality of the approximation and therefore of the adversarial
examples. A taxonomy of adversarial examples for deep neural network
classifiers is found in [123].

4.3.3 Data Augmentation

The data augmentation problem consists in extending a dataset by adding
new samples with the aim to improve the performance of a model trained
on such dataset. Standard approaches for time series data augmentation
have been already analyzed in Section 4.2. As, usually, new samples are
generated from the original ones, the problem can be formalized as the gen-
eration from original samples x of perturbed samples x+ η that maximize
the performance of model f . In the following we describe two baseline
methods for time series data augmentation [77] that we use in Section 4.5
to compare the performance of our method. We selected these methods as
baselines because they are general approaches that do not introduce spe-
cific domain knowledge, similarly to our adversarial example generation
method.

Random Data Augmentation Strategy (R-AUG)

An i.i.d. random noise is added to every time point xji of the time series x,
where i is the time instant and j the signal (i.e., sensor). The random noise
is sampled from a uniform distribution which is parametrized such that a
maximum perturbation ε is obtained for each point.

Drift Data Augmentation Strategy (D-AUG)

This method drifts the time series x gradually such that a more realistic per-
turbation is produced. The augmenter drifts the values of x from original
ones randomly and smoothly as the time increments. The extent of drifting
is controlled by the maximal drift and the number of drifted points, which
we set so that a maximum perturbation of ε is obtained.
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4.4 The Proposed Method

In this section we first present our two approaches for adversarial example
generation on HHAD. The first approach is based on a loss function that
uses the Hellinger distance and the second on a loss function that uses the
HMM likelihood. Please notice that in this context we sometimes refer to
anomaly scores as loss functions in order to be compliant with the related
literature. Subsequently, we introduce the methodology for adversarial data
augmentation and retraining.

4.4.1 Adversarial Example Generation

Our approach for adversarial example generation is outlined in Figure 4.1
and formalized in Algorithm 3 (for the Hellinger-based loss) and Algorithm
4 (for the Likelihood-based loss). As shown in Figure 4.1, the main idea
is to take a sample x (i.e., a multivariate time series) from the complete
time series O, and to pass it to the adversarial example generator (Alg. 3
or Alg. 4, respectively called H-ADV and L-ADV in the following) which
uses some elements of HHAD (i.e., λN and τ ) to generate the perturbation
x+η. This perturbation is called adversarial if it actually changes the class
of x, as done in the literature [60, 76, 82]. Algorithm 3 describes H-ADV,
the procedure based on a loss function which uses the Hellinger distance.
It receives five inputs, namely, (i) a nominal example4, i.e., a slice of a mul-
tivariate time series x = 〈x1, . . . ,xw〉 ∈ Rd×w, where w is the length of
the time series slice and xt = [x1

t , . . . , x
d
t ], t ∈ {1, . . . , w} is a multivariate

observation representing x at time t, (ii) the nominal HMM λN used by
HHAD, (iii) a parameter ε ∈ R+ representing the maximum perturbation
size for each element of x, (iv) the number of steps c ∈ N in which the
interval ε is divided, (v) the threshold τ for the Hellinger distance used by
HHAD. The algorithm returns an example x′ = x + η ∈ Rd×w close to
x (i.e., inside the hypercube with side 2ε centered in x) and perturbed in a
direction which facilitates the change of class, i.e., f(x′) 6= f(x). HHAD
is a function f : Rd×w → {0, 1}, where 0 is the class for nominal behaviors
and 1 that for anomalous behaviors. Notice that the goal of adversarial ex-
ample generation here is not to fool the detector for generating a damage,
but to augment the training set, which is assumed to contain only nominal
samples. For this reason, we do not consider adversarial examples gener-
ated from anomalous points, although this kind of samples could be even
more harmful if used against an anomaly detector.

4The algorithm assumes x to be a sample of the training set which we want to augment, hence x is nominal.
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Figure 4.1: Overview of the adversarial generation process.

Given the example x, whose class is assumed to be 0 (i.e., nominal
sample), Algorithm 3 first computes the direction of the perturbation as the
sign of the maximum loss increment sign(∇xH2(bNŝt ,N (µ,Σ))) (lines 1-
7), following the strategy of FGSM (see Equation 4.4). The classifier f is
HHAD, hence it combines the application of the Viterbi algorithm and the
threshold on the Hellinger distance between the data distribution in x and
the distribution of the HMM emission model, to determine the class of the
example. The loss function has a complex form in this case because it de-
pends on the maximally frequent state in x. The gradient of this function
can be expressed in closed form only given the maximally frequent state
ŝt (see details Section 3). The main obstacle is related to the computation
of the inverse-Viterbi problem, which is NP-complete [147]. Intuitively,
it is very complex to identify the point x′ of maximum increase of the
loss function in the ε-neighbourhood of x because the reference emission
modelN (µ,Σ) in that neighbourhood can change if the most frequent hid-
den state ŝt changes. To overcome this issue, we compute the gradient in
x and assume it does not change in a small ε

c
-neighbourhood of x. Hence,

we move in this neighbourhood following the direction of the gradient in
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Algorithm 3: Adversarial example generation based on Hellinger (H-ADV)
Input: x ∈ Rd×w ← original nominal example

λN ← nominal HMM used by HHAD
ε← maximum perturbation size
c ∈ N← number of sampling steps per state
τ ∈ [0, 1]← threshold for the Hellinger distance used by HHAD

Output: x′ ∈ Rd×w: perturbed example
1 St ← Viterbi(λN ,x)
2 ŝt = most frequent state in x
3 X ← {xj ∈ x : sj = ŝt}
4 µ← E[X]

5 Σ← E[(X −µ)(X −µ)T ]

6 g = sign(∇xH
2(bNŝt ,N (µ,Σ)) // gradient of the Hellinger in x

7 hmax = H2(bNŝt ,N (µ,Σ)) // Hellinger distance of x
8 x′ = x
9 repeat

10 continue=False
11 x′ = x′ + ε

c
· g // x update

12 S′t ← Viterbi(λN ,x′)
13 ŝ′t most frequent state for S′t
14 X ′ ← {xj ∈ x′ : sj = ŝ′t}
15 µ′ ← E[X ′]

16 Σ′ ← E[(X ′ −µ′)(X ′ −µ′)T ]

17 h′ = H2(bNŝ′t
,N (µ′,Σ′))

18 if h′ > hmax then
19 hmax = h′ // max Hellinger update
20 continue=True
21 end
22 if ŝt 6= ŝ′t then
23 // New most frequent state
24 g = sign(∇x′H

2(bNŝ′t
,N (µ′,Σ′)) // gradient update

25 ŝt = ŝ′t
26 end
27 until (‖x′ − x‖1 ≥ d · ε) ∨ (continue==False) ∨ (hmax > τ)
28 return x′

x and then we iterate this procedure from the new point x′ reached from
x (lines 9-27). Namely, in x′ we re-compute the gradient of the loss in x′

and we move according to it. The algorithm in this way adapts the gra-
dient of the loss function to the reference emission model that can change
inside the ε-hypercube with side 2ε centered in x. This process is iterated
until the border of the hypercube is reached, or the Hellinger distance of
the perturbed example starts to decrease, or the Hellinger distance exceeds
the threshold τ (i.e., the perturbed example x′ is classified as anomalous).
Notice that not all the perturbed examples change their class and we call
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adversarial only the perturbed examples that change their class5.
Figure 4.2 provides a graphical overview of the strategy implemented by

Algorithm 3. The algorithm computes the final perturbed x′ by iteratively
performing two macro-steps. First, it moves in the direction of the gradi-
ent of the loss function. Second, if the reference emission model changes
in the path, then it recomputes the gradient based on the new emission
model. The point is perturbed until it reaches the border of the hypercube
or the decision boundary of the anomaly detector (i.e., a point in which
the sample is classified as an anomaly). In the picture the most frequent
state in example x is ŝt = 1, hence the first perturbation is computed ac-
cording to gradient ∇xH2(bNŝt=1,N (µ,Σ)), that uses the emission model
of the first hidden state as a reference. Then, a change of the most fre-
quent state to ŝt = 2 occurs in x(1), hence, the gradient is there recomputed
according to the parameters of the emission model of that state, namely,
∇xH2(bNŝt=2,N (µ(1),Σ(1))) where µ(1) and Σ(1) are computed in x(1), and
that gradient is followed from x(1) until the most frequent state changes
again in x(2) to ŝt = 3. Again, the gradient is recomputed according to
the emission model of state ŝt = 3 and it is followed until the decision
boundary is reached in x(3). This point represents the final perturbation of
x, which is an adversarial example since x′ is classified as anomalous.

The second algorithm for adversarial example generation that we pro-
pose is applied to the standard detector HHAD but it generates adversarial
examples following the gradient of the likelihood of the sample x instead
of the Hellinger distance. The algorithm for adversarial example genera-
tion is called L-ADV and formalized in Algorithm 4. Its main goal is to
simplify the computation of the gradient of the loss function with respect
to the case of the Hellinger distance. With the likelihood, in fact, the loss
does not depend on the maximally frequent state in the window, but it can
be computed using the standard forward algorithm [12]. This time the al-
gorithm for adversarial generation is not iterative, because the computation
of the gradient of the likelihood is time consuming. Given an observation
x, first it computes the sign of the gradient of the likelihood of the sample
given the nominal HMM (line 1), namely sign(∇xP (x, λN)) (see details
Section 3). Then it moves the sample in the direction of the gradient for a
step ε in each dimension (line 2). The algorithm returns the perturbed sam-
ple x′. Notice that the perturbed example x′ is an adversarial example only
if the Hellinger distance between its maximally frequent observations in x′

and the emission model of the maximally frequent state in x′ is larger than
5Since original examples from the training set are nominal the change of class makes adversarial examples

anomalous.
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Figure 4.2: Iterative gradient ascent strategy performed by the adversarial generation
algorithm H-ADV.

threshold τ , namely, only if HHAD classifies x′ as anomalous according to
its parameters λN and τ .

Algorithm 4: Adversarial example generation based on likelihood (L-ADV)
Input: x ∈ Rd×w ← original nominal example

λN ← nominal HMM
ε← maximum perturbation size

Output: x′ ∈ Rd×w: perturbed example
1 g = sign(∇xP (x, λN )) // gradient of the likelihood in x
2 x′ = x− ε · g // x update
3 return x′

The time complexity of Algorithm 3 is O(c · (wK2 + wd)), where
O(wK2) is the computational cost of the Viterbi algorithm and O(wd) is
the cost of performing the gradient (cost O(1)) on each dimension and time
step of the window. The time complexity of Algorithm 4 is O(K2w2d).
Being the gradient on the HMM likelihood not computable in closed form
its time complexity isO(wK2), which is considerably higher than the com-
plexity of the computation of the gradient of the Hellinger distance, which
is O(1). As a consequence, the computational complexity of Algorithm 4
is quadratic in the window length, which results in a considerable increase
of the running time (i.e., it is ≈ 400 times slower than Algorithm 3). For-
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tunately, Algorithm 4 is quite parallizable, in fact, after re-implementing it
in Cython we managed to achieve a running time similar to that of Algo-
rithm 3.

In the following we provide the formulas of the gradients for the two
loss functions used so far, namely, the Hellinger distance between the dis-
tribution of the observations related to the most frequent state in x and the
emission model of the most frequent state (used in lines 6 and 24 in Algo-
rithm 3), and the likelihood of x given the parameters of the nominal HMM
λN (used in line 1 of Algorithm 4).

Loss Function Based on Hellinger Distance

We consider as a loss function to be maximized by the adversarial gen-
eration algorithm H-ADV the Hellinger distance between the probability
distribution of the emission model of the maximally frequent state in x,
called p1(x) ∼ N (µ1,Σ1) in the following, and the probability distribu-
tion of the observations corresponding to the maximally frequent state in
x, called p2(x) in the following. Notice that example x was called Wt

in Chapter 3. The Hellinger distance is computed by Equation 3.2 where
p1(x) ∼ N (µ1,Σ1) is the probability distribution of the emission model
and p2(x) ∼ N (µ2,Σ2) is the probability distribution of the example x.
We consider the multivariate case with diagonal covariance matrix, namely:

µ1 =
[
µ1

1 · · · µd1
]
µ2 =

[
µ1

2 · · · µd2
]

(4.5)

Σ1 =

(σ11
1 )2 0

. . .
0 (σdd1 )2

 Σ2 =

(σ11
2 )2 0

. . .
0 (σdd2 )2

 . (4.6)

Substituting these four terms into Equation 3.2, the equation can be rewrit-
ten as:
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We then compute the gradient of Equation 4.7 with respect to each single
element xit of the example x and obtain the following formula:

∇xi
∗
t∗
H2 = −ζ

∗ − ι∗

β
· κ+ ν · κ · ξ

∗

ψ∗
(4.8)

54



4.4. The Proposed Method

where the seven terms ζ∗, ι∗, β, κ, ν, ξ∗, and ψ∗ are expanded in the follow-
ing equations (terms with superscript ∗ depend on xi∗t∗):
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The gradient of Equation 4.8 is used by H-ADV (Algorithm 3 lines 6
and 24) to iteratively compute the direction of the perturbations. As ex-
plained above, the class is always y = 0 (i.e., nominal sample) because
the training set considers only nominal samples. Moreover, although not
explicitly specified, the loss function depends on the emission model bNŝt
of the most frequent state in the current example, which is represented by
f(x) ∼ N (µ1,Σ1) in the equations above.
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Loss Function Based on Likelihood

Given an example x, the probability to observe it given the nominal HMM
λN can be computed by the forward algorithm [136] as:

P (x|λN) =
K∑
i=1

αw(i), (4.18)

where w is the dimension of the window used by HHAD and
αt(j) = P (〈x1, . . . ,xw〉, qt = sj | λN )

=

K∑
i=1

αt−1(i)aijbj(xt) 1 ≤ j ≤ K, 2 ≤ t ≤ w,
(4.19)

α1(j) = πjbj(x1) 1 ≤ j ≤ K, (4.20)
in which K is the number of hidden states in λN , aij is the probability to
switch from state si to state sj given the transition matrix A, bj(ot) is the
probability to get observation ot from state sj at time instant t, and πj is the
probability to have initial state sj .

We then compute the gradient of P (x|λN) in two cases, namely, when
the covariance matrix Σ is diagonal (as we did for the loss function based
on the Hellinger distance in Equation 4.8) and when it is full6. In the first
case the observation probability becomes:
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1
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d
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exp
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2
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(4.21)

and, consequently, the gradient can be computed as:

∇xi
∗
t∗
P (x|λN) =

K∑
i=1

αw(i), (4.22)

where w is the dimension of the window used by HHAD and

αt(j) =
K∑
i=1

αt−1(i)aijbj(xt) 1 ≤ j ≤ K, 2 ≤ t ≤ w, t 6= t∗ (4.23)

6The case with full covariance matrix is not available for the loss function based on the Hellinger distance
because in that case the gradient is computed for each window, at runtime, and the computation of the determinant
present in the formula of the Hellinger distance would be computationally too expansive with full covariance
matrices.
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In the second case (full covariance matrix) we instead define the inverse
of the covariance matrix for the j-th emission model as:

Σ−1
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(s11
j )2 . . . (s1d

j )2

... . . . ...
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 (4.27)

and the observation probability becomes:
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therefore the gradient of the likelihood P (x|λN) can be computed using
Equations 4.22 and 4.23, but substituting Equation 4.24 (used when t = t∗)
by:
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The gradient of Equation 4.22 is used by L-ADV (Algorithm 4 line 1) to
compute the direction of the perturbations. In this case the gradient does not
depend on the maximally frequent state ŝ′, as it happens with the Hellinger-
based loss, hence the gradient is computed only once in Algorithm 4 instead
of using an iterative strategy.

4.4.2 Data Augmentation and Retraining

The procedures H-ADV and L-ADV for generating adversarial examples
are here integrated in a technique for data augmentation and retraining
called HHAD-AUG. Algorithm 5 formalizes the proposed approach. The
algorithm aims at improving the performance of HHAD and its robustness
to adversarial attacks. The inputs are the nominal time series O used to
train HMM λN , the original HMM λN (having K hidden states), the win-
dows size w, the loss function lossf (x, y) (i.e., based on Hellinger distance
or likelihood), the threshold τ for the Hellinger distance, the set Y of train-
ing labels, the maximum perturbation size ε, the number of intervals c in
which ε is split during adversarial generation, and the number of times m
that adversarial examples are generated on the training set. The outputs are
instead the augmented training set of nominal samples Ŵ , the augmented
nominal HMM λ̂N (trained on Ŵ ), and the augmented threshold τ̂ learned
from λ̂N andW .

The augmented dataset Ŵ is first initialized to the set of examples in the
training set generated by sampling the complete time seriesO with a sliding
window of length w (line 2). Similarly, the augmented nominal HMM is
initialized to the original nominal HMM (line 3) and the augmented thresh-
old to the original threshold (line 4). Then the augmentation loop is iter-
ated m times (as, since the HMM and the threshold are updated at each
iteration, there is the possibility of discovering new adversarial examples at
each new iteration). The steps of this loop are described in the following.
For each training example Wt = 〈ot−w+1, . . . ,ot〉 in the training set W
(line 7) a perturbed example W ′

t is generated using algorithm H-AUG or
L-AUG (lines 9 and 11) depending on the loss function lossf (x, y) chosen
for adversarial generation. The perturbed exampleW ′

t is added to the aug-
mented set Ŵ only if it is classified as an anomaly by HHAD (lines 13 and
15). When all examples in the training set have been perturbed the nominal
HMM is retrained using the augmented dataset Ŵ (line 18). The thresh-
old is then updated, if its value is increased, to the value of the maximum
Hellinger distance computed using the augmented HMM on examples in
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Algorithm 5: Adversarial data augmentation and retraining (HHAD-AUG)
Input: O ← nominal d-dimensional time series (training set)

λN ← Baum-Welch(O, K)
K ← number of hidden states
w ← window size
lossf (x, y)← loss function
τ ← threshold
Y ← set of training set labels
ε← maximum perturbation size
c ∈ N← number of sampling steps for state
m ∈ N← number of iterations

Output: Ŵ augmented set of nominal samples
λ̂N augmented nominal HMM
τ̂ augmented threshold

1 W = {〈ot−w+1, . . . ,ot〉 | t = w, . . . , n} // original training set
2 Ŵ =W // initialization of the augmented dataset
3 λ̂N = λN // initialization of the augmented HMM
4 τ̂ = τ // initialization of the augmented threshold
5 foreach i = 1, . . . ,m do
6 foreach t = w, . . . , n do
7 Wt = 〈ot−w+1, . . . ,ot〉 // select sample from training set
8 if (lossf == H2(·, ·)) then
9 W ′

t = H-ADV(Wt, λ̂
N , ε, Y (t),K,H2(·, ·), c)

10 else
11 W ′

t = L-ADV(Wt, λ̂
N , ε, Y (t),K, llf (·), c)

12 end
13 y = HHAD(W ′

t ,K, λ̂
N , w, τ̂)

14 if (y==1) then
15 Ŵ = Ŵ ∪W ′

t // add adversarialW ′
t to augmented dataset Ŵ

16 end
17 end
18 λ̂N = Baum-Welch(Ŵ ,K) // retrain HMM λN with augmented data
19 τ ′ = maximum value of H2 or llf for samples inW computed using λ̂N

20 if (τ ′ > τ̂ ) then
21 τ̂ = τ ′ // update threshold τ
22 end
23 end
24 return Ŵ , λ̂N , τ̂

the original dataset W (lines 19-22). Again, we observe that adversarial
examples are added to the augmented dataset of nominal behaviours only
if they have been classified as anomalies by HHAD. This is the main idea
of our approach, and it is based on the fact that the adversarial examples
are very close to the original nominal examples, hence we consider them as
misclassified by the original detector. Finally, we observe that in line 7 we
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consider only samples Wt from the training set in all m iterations, hence
adversarial examples are not not considered as original examples to gener-
ate other adversarial examples. This guarantees that the decision boundary
is not moved away from the training examples indefinitely.

The process of adversarial example generation, HMM retraining, and
threshold update, is iterated m times (lines 5-23) using only the exam-
ples in the original training set O as seeds for generating new adversar-
ial examples. Our experiments, presented in Section 4.5, show that the
updated HMM λ̂N and threshold τ̂ provide an actual performance improve-
ment in terms of anomaly detection accuracy and other measures discussed
in the next section. Empirical tests also show that this improvement is
mainly achieved in the first three iteration of the data augmentation pro-
cess, hence we use m = 3. The computational complexity of Algorithm 5
is O(m · (|O| − w) ·ADV ), where ADV is the computational complexity
of the algorithm used for generating adversarial examples, namely, H-ADV
or L-ADV.

4.5 Results

We first describe the experimental setting and then analyze the results of
our data augmentation technique comparing them against those obtained
by baseline methods. Results are displayed for four application domains
related to robotic and cyber-physical systems. We present results for each
domain, focusing on the performance improvement achieved by the aug-
mented detectors on different training set sizes. Furthermore, for some
domains we also provide details about the mechanisms that generate the
performance improvement. In particular, we show that the adversarial ex-
amples we generate are very similar to the original examples (to recall the
image parallel, they are usually indistinguishable) and they have a specific
direction of perturbation that causes performance improvement. In fact,
perturbations of the same intensity but performed using one of the baseline
methods (not adversarial) do not achieve any performance improvement.
In the Tennessee Eastman domain, we also investigate the change of the
anomaly score and threshold parameter produced by the augmented train-
ing set.

4.5.1 Experimental Setting

Given a specific application domain and a related dataset D containing
multiple time series for a process of interest (in which each time series has
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been standardized), we assume to have a nominal HMM λN with K hid-
den states (chosen by the Bayesian Information Criterion BIC [64]) and
trained on a training set O which is part of dataset D. Another part of
D, called T (i.e., test set) in the following, is used to evaluate the perfor-
mance of the anomaly detection and the data augmentation and retraining
algorithms. We also assume a specific window size w and a threshold τ
learned on O as described in [8]. With these three elements, namely, λN ,
w, and τ , a complete instance of the original anomaly detector HHAD is
available. Notice that, when the number of variables in the dataset is high,
feature selection or dimensionality reduction could be necessary to obtain
good performance from the original anomaly detector. Here, we assume
the properties of the original anomaly detector (e.g., windows size and in-
put variables) as predefined and unchangeable, since we focus only on data
augmentation for improving the performance of the detector.

The goal of our experiments is to evaluate the performance improve-
ment achieved by the anomaly detector on the test set T when we update
the HMM λN and threshold τ using the data augmentation and retraining
method HHAD-AUG. In particular, we compare the F1-score of the aug-
mented anomaly detector with that of the original detector on test set T .
Some dimensions of analysis are particularly interesting to evaluate the ca-
pabilities of HHAD-AUG in different situations. The first dimension is the
loss function used to generate adversarial examples (i.e., Hellinger distance
or likelihood). The second dimension is the size of training set |O|, which
is important because it shows the potential of the proposed approach on dif-
ferent amounts of training data. Table 4.1 summarizes the parameters of all
experiments described in the following subsections. The parameters com-
mon to all application domains are here listed. The first one is the number
of repetitions #rep of each test on different training sets of the same dimen-
sion, which is set to 30. In other words, given a training set size |O| we
recompute the performance improvement 30 times, and each time we train
the HMM λN and the threshold τ on different (random) training sets hav-
ing size |O|. The second parameter in common among all domains is the
maximum perturbation size (for each dimension) ε, which is always set to
0.05. The last parameter in common is the number of iterations m in the
data augmentation and retraining procedure HHAD-AUG, which is always
set to 3.

The code is developed in Python. Baum-Welch, Viterbi, and other al-
gorithms for training and inference on HMMs are based on hmmlearn
library7. For baseline data augmentation algorithms we use the tsaug

7https://hmmlearn.readthedocs.io/en/latest/
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Domain
Par. TE SWaT ALFA INTCATCH

|O| 250,500,750, 2500,5000, 250,500,750, 250,500,750,
1000,1250,1500 10000,20000 1000,1250,1500 1000,1250,1500

#rep 30 30 30 30
|T | 3201 449.919 1068 6619
d 4 PCs 2 PCs 3 PCs 4 PCs
K [2,15] [2,25] [2,20] [2,15]
w 100 50 100 100
ε 0.05 0.05 0.05 0.05
m 3 3 3 3

Table 4.1: Summary of experimental parameters used in all application domains.

library8, a Python package for time series augmentation. In particular,
function AddNoise() is used to generate random augmented samples for
R-AUG. Function Drift() is instead used to generate drift-based aug-
mented samples. Cython9 [15] allows a considerable time improvement
on algorithm L-ADV. SciKitLearn10 [130] is used for data scaling and
PCA. Experiments are run on a laptop with Intel Core i5 processor - 2.30
GHz x 4 cores, RAM 16 GB and operating system macOS 11.1. Perform-
ing 3 iterations of data augmentation on a training set of 1500 points and 4
variables takes on average 45.06 seconds using H-AUG and 44.11 seconds
using L-AUG.

4.5.2 Performance Measures

Anomaly detection performance (algorithm HHAD) is evaluated by F1-
score on a test set which is kept separated from the training set used to
learn λN and τ . The formula for this score is:

F1 =
2TP

2TP + FP + FN
(4.31)

where TP are true positives, TN are true negatives, FP are false positives,
and FN are false negatives [18]. We consider positive the nominal sam-
ples and negative the anomalous samples. Hence, true positives are nom-
inal samples correctly classified by HHAD, true negatives are anomalous
samples correctly detected by HHAD, and false positive (negatives) are
anomalous (nominal) samples that are wrongly classified by the detector.
The value of the F1-score must be maximized.

8https://tsaug.readthedocs.io/en/stable/
9https://cython.org/

10https://scikit-learn.org/stable/
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Adversarial example generation (algorithms H-ADV and L-ADV) is in-
stead evaluated by two measures. The minimum/average/maximum dis-
tance between the original examples and the adversarial examples is com-
puted using norm L2 and should be kept as small as possible to ensure a
close similarity between original and adversarial examples. The percent
success rate (SR%) is computed as the percentage of perturbed samples
that are actually misclassified by HHAD. This measure should be kept as
small as possible. Both distance and success rate depend on parameter ε
and can be computed on the training set and on the test set. Larger values
for ε allow more distant (i.e., dissimilar) adversarial examples and, conse-
quently, an increased success rate. These measures do not provide absolute
performance values, hence they are more suitable for comparing different
methods on specific dataset/settings than for evaluating the absolute perfor-
mance of the algorithm.

Data augmentation and retraining (algorithm HHAD-AUG) is evaluated
by two measures. First, we compute the improvement of F1-score gen-
erated on HHAD by data augmentation and retraining. In particular, we
measure the difference between the F1-score after and before data aug-
mentation and retraining on the test set. To test the statistical significance
of this difference we apply algorithm HHAD-AUG to several training sets
containing different samples and having different size (see results in the
next sections) and then use Student’s t-test for testing the null hypothesis
that the average performance on test sets are significantly improved. The
second performance measure aims at evaluating the improvement of ro-
bustness to adversarial attacks introduced by HHAD-AUG. We measure it
as the difference in percent success rate SR% between original and aug-
mented HHAD (see results in the next sections).

4.5.3 Domain D1: Tennessee-Eastman Industrial Chemical Process
(TE)

Domain and dataset description. This domain is represented by a synthetic
model of a real industrial chemical process realized for evaluating process
control strategies [43]. The process produces two liquid products from four
gaseous reactants, in addition to a byproduct and an inert, making a total
of eight chemical components. This domain has recently become popu-
lar in the Industrial Control System (ICS) security community because it
allows to test attack and defence approaches on a realistic (although simu-
lated) environment. We used the dataset provided by [5] which employs the
simulator proposed in [43] in the open-source Damn Vulnerable Chemical
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Process (DVCP-TE) Simulink implementation11. The simulator is oriented
towards security research and features support for performing attacks on
both sensor and actuator signals. The control strategy used to keep the
process stability is that presented in [97]. The dataset generated in [5] con-
tains integrity attacks on both sensors and actuators. In particular, there are
stealth attacks designed to slowly degrade the performance of the process
and direct damage attacks which aim at damaging the physical equipment,
driving the process to unsafe operating conditions (e.g., high temperature
or pressure).

We use a dataset related to the stealth attack named SA1. The dataset has
41 variables and 4801 observations. A label is available for each sample,
namely, 0 for nominal observations and 1 for anomalous observations. The
training set is generated taking a slice of sequential nominal observations
of length |O| ∈ {250, 500, 750, 1000, 1250, 1500} (see Table 4.1). The test
set is a sequence containing |T | = 3201 observations, of which 2400 are
nominal and 801 anomalous. In particular, the training sets are selected
in the interval between time steps 0 and 1599, and the test set in the in-
terval between time steps 1600 and time step 4801. For each training set
size, we generate 30 training sets (sampling the original dataset in different
positions) and then we compute average performance and related standard
deviations on the performance observed in the test set.

Experimental parameters. For each training set, we reduce the dimensional-
ity to the first 4 principal components (using PCA). The number of hidden
states K of the nominal HMM λN is then selected by BIC in the interval
[2, 15]. Diagonal covariance matrix is used. The window length is w = 100
and the maximum perturbation size is ε = 0.05. The number of iterations
of the data augmentation and retraining procedure ism = 3 (see Table 4.1).

Results. Figure 4.3 shows the main results. The x-axis represents the train-
ing set size |O| and the y-axis represents the F1-score. The blue solid line is
the original detector HHAD with related 95%-confidence interval (shaded
area). Dashed lines with other colors represent different data augmenta-
tion strategies, namely, orange is H-AUG, green is L-AUG, red is R-AUG
and purple is D-AUG. The average performance improvement achieved by
HHAD-AUG with Hellinger-based loss, called H-AUG, is statistically sig-
nificant for all training set dimensions. We compute, in particular, the F1-
score of the augmented anomaly detector (i.e., HHAD with λ̂N and τ̂ ) and
show that it is higher than that of the original detector (i.e., HHAD with

11https://github.com/satejnik/DVCP-TE
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λN and τ ). HHAD-AUG with loglikelihood-based loss, called L-AUG,
provides a statistically significant improvement only for |O| = 750 and
|O| = 1500. A motivation for this is reported in the next paragraph. In-
terestingly, HHAD augmented by baseline methods R-AUG and D-AUG
does not achieve any significant performance improvement. Overall these
results show that the proposed adversarial-based strategy for augmenting
the training set is effective in this application domain.

Figure 4.3: Average F1-score for the original detector HHAD and augmented detectors
H-AUG, L-AUG, R-AUG, D-AUG on different training set sizes of Tennessee-Eastman
dataset. Average values are computed over 30 datasets, for each dataset size.

Table 4.2 provides a quantitative evaluation of the performance improve-
ment achieved by each data augmentation method with respect to the orig-
inal detector HHAD. The first row shows the average F1-score µF1 and
related standard deviation σF1 of the HHAD, where both statistics are com-
puted over the 30 repeats performed for each training set size. Then, for
each data augmentation algorithm we show in the white row the average
F1-score and standard deviation, and in the gray row the difference of av-
erage F1-score ∆F1 (i.e., augmented detector minus original detector) and
the p-value of the Student’s t-test (p-val) for the difference in the average
F1-scores. We consider performance improvements to be statistically sig-
nificant only if the p-value is less than 0.05, which corresponds to a confi-
dence higher than 95% that the improvement is not null. These values are
highlighted in bold in the table. We note that the improvement of H-AUG
is larger with small training sets and it decreases as the training set size
increases, hence the methodology could be used in applications with small
amounts of data to improve the detection performance. For instance, the
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F1-score of the augmented detector H-AUG trained with 500 samples is
equivalent to the F1-score of the original detector HHAD trained with 1000
samples.

Training set dimension |O| (Tennessee Eastman)
Detector Measure 250 500 750 1000 1250 1500
HHAD µF1 0.151 0.554 0.786 0.842 0.931 0.955

σF1 0.177 0.184 0.146 0.096 0.043 0.028
H-AUG µF1 0.452 0.844 0.947 0.957 0.979 0.99

σF1 0.244 0.158 0.066 0.051 0.021 0.009
∆F1 0.301 0.290 0.161 0.115 0.048 0.035
p-val 9.8e-6 1.5e-8 2.3e-6 4.9e-6 8.6e-7 1.1e-6

L-AUG µF1 0.156 0.600 0.858 0.879 0.933 0.978
σF1 0.163 0.177 0.116 0.088 0.045 0.023
∆F1 0.005 0.046 0.077 0.037 0.003 0.023
p-val 0.676 0.051 0.012 0.019 0.440 3.4e-4

R-AUG µF1 0.196 0.607 0.784 0.848 0.928 0.956
σF1 0.206 0.204 0.146 0.098 0.036 0.026
∆F1 0.045 0.053 -0.002 0.006 -0.002 0.001
p-val 0.199 0.239 0.952 0.794 0.834 0.693

D-AUG µF1 0.217 0.613 0.769 0.844 0.938 0.954
σF1 0.251 0.211 0.173 0.092 0.046 0.030
∆F1 0.066 0.059 -0.017 0.002 0.007 -0.001
p-val 0.153 0.260 0.643 0.935 0.460 0.982

Table 4.2: Average F1-scores of the original anomaly detector HHAD and the augmented
detectors H-AUG, L-AUG, R-AUG, and D-AUG on different training set sizes in the
Tennessee-Eastman domain. Averages are computed over 30 datasets, for each dataset
size. Average F1-score improvements ∆ with respect to HHAD are also displayed with
p-values for testing their statistical significance. Statistically significant performance
improvements (having p-values < 0.05) are highlighted in bold.

The role of adversarial examples in data augmentation and retraining. To inves-
tigate the role of adversarial examples in data augmentation and retraining,
we first observe that, on average, 1.12% of the adversarial attacks gener-
ated by H-AUG and 0.15% of adversarial attacks generated by L-AUG are
successful, namely, they managed to change the classification of HHAD, in
each run of the algorithms. This corresponds to an average of 7.63 adver-
sarial examples added to the training set by H-AUG and 1.31 by L-AUG
(these values are averaged over different training sizes). The F1-score im-
provement of H-AUG with |O| = 500, for instance, is obtained using only
6.05 adversarial attacks on average (over 30 repetitions on different train-
ing sets). The small performance improvement of L-AUG on TE is instead
probably due to the too low success rate in generating adversarial examples.
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The distribution of the L2 distance between the original training data and
the related adversarial examples generated by H-AUG in our experiments
is displayed in Figure 4.4. The minimum, median, and maximum L2 dis-
tances from the original training data to the adversarial examples generated
by H-AUG in our experiments are, respectively, 0.054, 0.476, and 0.803.
Figure 4.5 shows the (four dimensional) time series of original (blue) and
adversarial (red) examples for the attack having maximum distance. The
difference between the two examples is clearly minimal.

Figure 4.4: Distribution of the L2 distance between the original training data and the
related adversarial examples generated by H-AUG on the Tennessee Eastman dataset.

Analysis of the mechanisms that generate the performance improvement. As a
final inspection about the mechanisms that generate the performance im-
provement, we show in Figure 4.6 the Hellinger distance values on the
test set (blue line) and the threshold τ (dashed black line) before and af-
ter data augmentation performed by H-AUG on the Tennessee Eastman
dataset. These values are important because they describe the relationship
between the test set samples and the decision boundary of the anomaly de-
tector. Notice that all points in the white area on the left are nominal and
all points in the red area on the right are anomalies. What we observe is
that the data augmentation and retraining procedure slightly increases the
threshold τ and, more importantly, it decreases and makes more stable the
anomaly score (i.e., Hellinger distance) of the nominal values which are
always below the threshold after the augmentation, except for a single false
positive right before the start of the anomalous interval (see Figure 4.6.b)
while many false positives were present before the augmentation (Figure
4.6.a). The stabilization and decrease of the anomaly score is due to the
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Figure 4.5: Four-dimensional time series of the training sample (blue) and the related ad-
versarial example (orange) for the attack having maximum distance in the experiments
performed on the Tennessee-Eastman dataset.

update of the parameters of the HMM. It clearly produces a performance
improvement because all the points above the threshold in the white area
are false positives (i.e., classified as anomalies even if they are nominal).

Table 4.3 shows the improvement of the robustness to adversarial at-
tacks introduced by HHAD-AUG. The first three rows (after the heading)
focus on the approach based on H-ADV and the second three rows on the
approach based on L-ADV. We measure in particular the differences in the
percent success rate ∆SR% of the detector before and after data augmenta-
tion and retraining, as explained in the end of Section 4.5.2. For both types
of data augmentation, this difference is negative for all dataset sizes except
|O| = 250. The negative difference means that the percentage of success-
ful adversarial attacks after augmentation and retraining is less than that
before augmentation and retraining. The reduction is higher for H-AUG,
with a maximum decrease of 8.6% than for L-AUG, which has a maximum
decrease of 1.2%. Notice that these percentages are related to the dimen-
sion of the training set.

4.5.4 Domain D2: Secure Water Treatment Testbed (SWaT)

Domain and dataset description. SWaT is a scaled down version of a real-
world industrial water treatment plant producing 18.92 liters per minute of

68



4.5. Results

0 500 1000 1500 2000 2500 3000
0.0

0.2

0.4

0.6

0.8

1.0
H^

2
Before augmentation

HHAD
threshold

(a) Before augmentation

0 500 1000 1500 2000 2500 3000
0.0

0.2

0.4

0.6

0.8

1.0

H^
2

After augmentation
H-AUG
threshold

(b) After augmentation

Figure 4.6: Effect of the augmentation. a) Hellinger distance anomaly score before data
augmentation performed by H-AUG; b) Hellinger distance anomaly score after data
augmentation. The red areas represent parts of the test set containing anomalies.

Training set dimension |O| (Tennessee Eastman)
Detector Attack Measure 250 500 750 1000 1250 1500
HHAD H-ADV SR% 3.2% 11.2% 10.8% 13.1% 9.1% 5.5%
H-AUG H-ADV SR% 7.9% 7.7% 4.1% 4.5% 2.3% 1.5%

∆SR% 4.7% -3.5% -6.7% -8.6% -6.9% -3.9%
HHAD L-ADV SR% 0.7% 4.34% 6.25% 6.05% 5.0% 3.62%
L-AUG L-ADV SR% 0.8% 4.32% 5.0% 5.9% 4.6% 2.6%

∆SR% 0.11 -0.02 -1.2% -0.1% -0.4% -1.0%

Table 4.3: Average success rate SR% of adversarial attacks H-ADV and L-ADV on the
test set of the Tennessee-Eastman domain for detectors HHAD (original), H-AUG
(augmented with Hellinger-based loss), and L-AUG (augmented with likelihood-based
loss). Averages are computed over 30 datasets, for each dataset size. The average
improvement ∆SR% with respect to HHAD is also displayed.

water filtered via membrane-based ultrafiltration and reverse osmosis units
[110]. This plant allowed data collection under two behavioural modes:
normal and attacked. SWaT was run non-stop from its empty state to fully
operational state for a total of 11 days. During this period, the first seven
days the system operated normally i.e. without any attacks or faults. Dur-
ing the remaining days, some cyber and physical attacks were launched on
SWaT while data collection continued. The dataset [51] was released to
support research in the design of secure Cyber Physical Systems (CPS) in
the context of modern ICS. Collected data corresponds to 51 sensor and
actuator signals. During the data collection, the SWaT testbed undergoes
41 different attacks, five of them with no physical impact [5].

The dataset that we use has 51 variables and 495000 time steps ac-
quired with sampling interval of 1 second. A label (i.e., 0 for nominal data
and 1 for anomalous data) is available for each observation. The training
set is generated taking slices of sequential nominal observations of length

69



Chapter 4. Data Augmentation for HMM-based Anomaly Detection

|O| ∈ {2500, 5000, 10000, 20000} (see also Table 4.1). The test set is a
time series containing |T | = 449919 observations, of which 395298 are
nominal and 54621 anomalous. In particular, the training sets are selected
in the interval between time steps 2500 and 492500, while the test set is
used in its completeness. For each training set size we generate 30 train-
ing sets (sampling the original dataset in different positions) and then we
compute average performance and related standard deviations on the test
set.

Experimental parameters. Given a specific training set, the dimensionality is
reduced by selecting the first 2 principal components computed by standard
PCA. The number of hidden states K of the nominal HMM λN is then
selected by BIC in the interval [2, 25]. Diagonal covariance matrix is used.
The window length is w = 50. The maximum perturbation size is ε = 0.05.
The number of iterations of the data augmentation and retraining procedure
is m = 3 (see Table 4.1).

Results. The average performance improvement achieved by both H-AUG
and L-AUG with respect to HHAD is statistically significant for all training
set sizes, as graphically shown in Figure 4.7. Table 4.4 provides quantitative
details about the improvement. Baseline augmented detectors R-AUG and
D-AUG in this case manage to improve the average F1-score only for the
smaller dataset (having 2500 samples) but the improvement (i.e., 0.032) is
smaller than that achieved by H-AUG (i.e., 0.048) and L-AUG (i.e., 0.063).
Moreover, for larger training set sizes the two baseline methods achieve
negative or null improvement, while the proposed methods always get sig-
nificant improvement. The improvement stays almost constant (between
6% and 3%) as the training set size increases, showing that the F1-score
can still increase even when new data are added to an already large training
set. Also in this case the gain is relevant, since the F1-score obtained by the
detector augmented with H-ADV on 5000 samples (about 0.89) is larger
than the F1-score obtained by the original detector HHAD using 20000
samples, inducing a saving of about 15000 samples.

In this dataset the percentage of successful attacks is on average 1.59%
for H-AUG and 0.58% for L-AUG (the average is computed on training
sets of different sizes). These correspond to an average of 87.06 adversarial
examples added to the training set by H-AUG and 33.31 by L-AUG. We
notice that these numbers are much larger than those of the Tennessee-
Eastman dataset because the training set sizes are also larger.

Table 4.5 shows the improvement of the robustness to adversarial attacks
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Figure 4.7: Average F1-score for the original detector HHAD and augmented detectors
H-AUG, L-AUG, R-AUG, D-AUG on different training set sizes in the SWaT dataset.
Averages are computed over 30 datasets, for each dataset size.

introduced by HHAD-AUG. For both data augmentation types H-AUG and
L-AUG, the difference ∆SR% between percentage success rate before and
after the augmentation is negative for all dataset sizes, meaning that the
percentage of successful adversarial attacks after augmentation and retrain-
ing is less than that before augmentation and retraining. The reduction is
slightly higher for H-AUG, with a maximum decrease of 6.6%, than for
L-AUG, which has a maximum decrease of 5.1%.

4.5.5 Domain D3: UAV Fault and Anomaly Detection (ALFA)

Domain and dataset description. This dataset12 presents several fault types in
control surfaces of a fixed-wing Unmanned Aerial Vehicle (UAV) for use
in Fault Detection and Isolation (FDI) and Anomaly Detection (AD) re-
search [83]. The dataset includes processed data for 47 autonomous flights
with 23 sudden full engine failure scenarios and 24 scenarios for seven
other types of sudden control surface (actuator) faults, with a total of 66
minutes of flight in normal conditions and 13 minutes of post-fault flight
time. The ground truth of the time and type of faults is provided in each
scenario to enable the evaluation of new methods using the dataset. The
platform used for collecting the dataset is a custom modification of the
Carbon Z T-28 model plane. The plane has 2 meters of wingspan, a single
electric engine in the front, ailerons, flaperons, an elevator, and a rudder.

12http://theairlab.org/alfa-dataset
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Training set dimension |O| (SWaT)
Detector Measure 2500 5000 10000 20000
HHAD µF1 0.801 0.849 0.863 0.883

σF1 0.054 0.030 0.024 0.028
H-AUG µF1 0.849 0.887 0.892 0.911

σF1 0.029 0.015 0.019 0.017
∆F1 0.048 0.038 0.029 0.028
p-val 7.2e-06 9.7e-09 1.8e-07 6.3e-07

L-AUG µF1 0.864 0.892 0.902 0.914
σF1 0.027 0.031 0.017 0.015
∆F1 0.063 0.043 0.039 0.031
p-val 5.1e-06 6.0e-09 9.4e-09 9.7e-08

R-AUG µF1 0.833 0.837 0.843 0.885
σF1 0.023 0.016 0.014 0.009
∆F1 0.032 -0.012 -0.020 0.002
p-val 0.009 0.061 7.6e-04 0.674

D-AUG µF1 0.830 0.836 0.846 0.883
σF1 0.028 0.015 0.016 0.009
∆F1 0.029 -0.013 -0.016 2e-4
p-val 0.011 0.031 0.004 0.975

Table 4.4: Average F1-scores of the original anomaly detector HHAD and the augmented
detectors H-AUG, L-AUG, R-AUG, and D-AUG on different training set sizes in the
SWaT dataset. Averages are computed over 30 datasets, for each dataset size. Aver-
age F1-score improvements ∆ with respect to HHAD are also displayed with p-values
for testing their statistical significance. Statistically significant performance improve-
ments (having p-values < 0.05) are highlighted in bold.

Training set dimension |O| (SWaT)
Detector Attack Measure 2500 5000 10000 20000
HHAD H-ADV SR% 13.2% 10.1% 7.6% 6.2%
H-AUG H-ADV SR% 6.5% 4.8% 7.8% 2.4%

∆SR% -6.6% -5.3% -2.9% -3.8%
HHAD L-ADV SR% 9.3% 8.1% 7.0% 5.2%
L-AUG L-ADV SR% 4.1% 3.7% 4.0% 2.7%

∆SR% -5.1% -4.4% -3.1% -2.6%

Table 4.5: Average success rate SR% of adversarial attacks H-ADV and L-ADV on the
test set of the SWaT domain for detectors HHAD (original), H-AUG (augmented with
Hellinger-based loss), and L-AUG (augmented with likelihood-based loss). Averages
are computed over 30 datasets, for each dataset size. The average improvement ∆SR%

with respect to HHAD is also displayed.

The aircraft is equipped with a Holybro PX4 2.4.6 autopilot, a Pitot Tube,
a GPS module, an Nvidia Jetson TX2 onboard computer and a radio for
communication with the ground station. The onboard computer uses Robot
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Operating System (ROS) Kinetic Kame on Linux Ubuntu 16.04 (Xenial)
to read the flight and state information from the Pixhawk using MAVROS
package (the MAVLink node for ROS).

The part of the dataset that we use is related to the run “carbonZ 2018-
07-30-16-29-45 engine failure with emr traj”. It has 19 variables and 2668
time steps acquired with sampling frequency of approximately 20 Hz. A la-
bel (i.e., 0 for nominal sample and 1 for anomalous sample) is available for
each observation. The training set is generated taking a slice of sequen-
tial nominal observations length |O| ∈ {250, 500, 750, 1000, 1250, 1500}
(see also Table 4.1). The test set is a time series containing |T | = 1068
observations, of which 718 are nominal and 350 anomalous. In particular,
the training sets are selected in the interval between time steps 0 and 1599,
and the test set in the interval between time steps 1600 and 2668. For each
training set size we generate 30 training set (sampling the original dataset in
different positions) and then we compute average performance with related
standard deviations and distributions.

Experimental parameters. The dimensionality is reduced by selecting the
first 3 principal components computed by standard PCA (see Table 4.1).
The number of hidden states K of the nominal HMM λN is then selected
by BIC in the interval [2, 20]. Diagonal covariance matrix is used. The win-
dow length is w = 100. The maximum perturbation size is set to ε = 0.05.
The number of iterations of the data augmentation and retraining procedure
is set to m = 3.

Results. The average performance improvement achieved by H-AUG with
respect to HHAD on the ALFA domain is statistically significant for all
training set dimensions. Figure 4.8 graphically shows these results and
Table 4.6 provides all average performance values with improvement and
p-values. L-AUG has on average better F1-score than HHAD and the dif-
ference is statistically significant for all training set dimensions except for
|O| = 250, however the magnitude of the improvement is less than that
achieved by H-AUG. Baseline methods R-AUG and D-AUG do not achieve
any significant performance improvement except for a small improvement
obtained by D-AUG on |O| = 1500. In this case the larger improvement
is achieved by H-AUG on small and medium-size datasets, with a maxi-
mum improvement of the F1-score of 0.313 for |O| = 500. Out of the four,
this is certainly the most difficult dataset containing complex behaviours
of real intelligent system, in fact, anomalies are often not recognizable at
human inspection. Nevertheless, H-AUG manages to strongly improve the
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anomaly detection performance, reaching F1-score up to 0.909 with the
larger training sets considered in our analysis.

Figure 4.8: Average F1-score for the original detector HHAD and augmented detectors
H-AUG, L-AUG, R-AUG, D-AUG on different training set sizes in the ALFA dataset.
Averages are computed over 30 datasets, for each dataset size.

Table 4.7 shows the improvement of the robustness to adversarial at-
tacks introduced by HHAD-AUG. The augmentation based on H-AUG has
negative difference ∆SR% between percentage success rate before and after
the augmentation for all dataset sizes, while in L-AUG this difference is
negative (or null) for all dataset sizes except |O| = 1500. Therefore the
detector improves its robustness to adversarial attacks in almost all cases.
The reduction is higher for H-AUG and larger training sets, with a max-
imum decrease of 7.8% with |O| = 1000. The maximum reduction for
L-AUG is reached also on |O| = 1000 with a decrease of 2.3%.

4.5.6 Domain D4: Water Monitoring with ASV (INTCATCH)

Domain and dataset description. This dataset is the one used also in the previ-
ous chapter collected as part of INTCATCH Project13 [28–30]. The dataset
consists of observations, collected at 1 Hz frequency, of the following vari-
ables concerning the robot state: heading (i.e., compass direction), speed,
acceleration, power signals to the left and right propellers, latitude, and lon-
gitude. Two runs, one completely nominal, used for training, and another
partially anomalous, used for testing, are available. The runs have 9 vari-
ables, 5739 train samples and 6620 test samples acquired with sampling

13https://www.intcatch.eu
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Training set dimension |O| (ALFA)
Detector Measure 250 500 750 1000 1250 1500
HHAD µF1 0.049 0.300 0.670 0.804 0.877 0.847

σF1 0.106 0.217 0.169 0.079 0.060 0.065
H-AUG µF1 0.207 0.613 0.820 0.886 0.900 0.909

σF1 0.283 0.274 0.080 0.039 0.027 0.027
∆F1 0.158 0.313 0.150 0.082 0.024 0.061
p-val 0.001 1.9e-06 2.6e-04 6.5e-06 0.044 2.4e-05

L-AUG µF1 0.074 0.397 0.743 0.849 0.901 0.881
σF1 0.146 0.278 0.156 0.069 0.052 0.059
∆F1 0.025 0.097 0.073 0.045 0.024 0.033
p-val 0.051 0.024 0.038 8.5e-4 0.020 0.004

R-AUG µF1 0.077 0.285 0.716 0.790 0.860 0.865
σF1 0.134 0.255 0.138 0.081 0.065 0.075
∆F1 0.028 -0.016 0.046 -0.014 -0.017 0.018
p-val 0.316 0.694 0.286 0.547 0.108 0.171

D-AUG µF1 0.090 0.281 0.704 0.814 0.873 0.884
σF1 0.142 0.237 0.180 0.091 0.052 0.051
∆F1 0.041 -0.019 0.034 0.011 -0.004 0.037
p-val 0.173 0.608 0.391 0.567 0.727 0.002

Table 4.6: Average F1-scores of the original anomaly detector HHAD and the augmented
detectors H-AUG, L-AUG, R-AUG, and D-AUG on different training set sizes in the
ALFA dataset. Averages are computed over 30 datasets, for each dataset size. Aver-
age F1-score improvements ∆ with respect to HHAD are also displayed with p-values
for testing their statistical significance. Statistically significant performance improve-
ments (having p-values < 0.05) are highlighted in bold.

Training set dimension |O| (ALFA)
Detector Attack Measure 250 500 750 1000 1250 1500
HHAD H-ADV SR% 0.6% 4.1% 7.9% 9.2% 5.5% 7.6%
H-AUG H-ADV SR% 0.1% 3.9% 4.0% 1.4% 2.4% 1.6%

∆SR% -0.5% -0.2% -3.9% -7.8% -3.0% -6.0%
HHAD L-ADV SR% 0.6% 6.5% 8.4% 7.4% 6.7% 4.8%
L-AUG L-ADV SR% 0.6% 6.2% 6.5% 5.0% 5.6% 5.1%

∆SR% 0.0% -0.3% -2.00% -2.3% -1.1% 0.3%

Table 4.7: Average success rate SR% of adversarial attacks H-ADV and L-ADV on the
test set of the ALFA domain for detectors HHAD (original), H-AUG (augmented with
Hellinger-based loss), and L-AUG (augmented with likelihood-based loss). Averages
are computed over 30 datasets, for each dataset size. The average improvement ∆SR%

with respect to HHAD is also displayed.

frequency of 1 Hz. A label (i.e., 0=nominal, 1=anomaly) is available for
each observation. The training set is generated taking a slice of sequential
nominal observations length |O| ∈ {250, 500, 750, 1000, 1250, 1500} (see
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also Table 4.1). The test set is a time series containing |T | = 6620 obser-
vations, of which 3783 are nominal and 2837 anomalous. For each training
set size we generate 30 training set (sampling the original dataset in dif-
ferent positions) and then we compute average performance with related
standard deviations and distributions.

Experimental parameters. The dimensionality is reduced by selecting the
first 4 principal components computed by standard PCA. The number of
hidden states K of the nominal HMM λN is then selected by BIC in the
interval [2, 15]. Diagonal covariance matrix is used. The window length is
w = 100. The maximum perturbation size is set to ε = 0.05 (see Table
4.1).

Results. The average performance improvement of H-AUG with respect to
HHAD is statistically significant for training set sizes of 250, 500, and 750
samples, while it is negligible for sizes of 1000, 1250, and 1500 samples, as
shown in Figure 4.9. L-AUG has instead statistically significant improve-
ment for training set sizes of 500 and 750, and negligible improvement for
the other sizes. The figure shows that the performance stops growing at
|O| = 1000, where the F1-score reaches a plateau of about 0.820 (see also
Table 4.8). A possible motivation for this is that the signals provided to
the detector intrinsically contain only a part of the information needed to
perform anomaly detection. In this case it would be impossible to get a
performance improvement. The plateau of the performance improvement
after |O| = 1000 should be ascribed to the fact that the task is repetitive.
In particular, the water drone performs 6 cycles (from bottom to top and
back) to cover the monitoring area, see also [8]. One of these cycles lasts
approximately 950 time instants, hence training sizes larger than that value
gather almost no new information. The baseline methods for data augmen-
tation and retraining, i.e., R-AUG and D-AUG, have performance similar
to HHAD for all dataset sizes.

Table 4.9 shows the improvement of the robustness to adversarial at-
tacks introduced by HHAD-AUG. Values of ∆SR% are negative for almost
all combinations of augmentation method and training set size, also in this
case. H-AUG reaches a maximum reduction of successful attacks of 4.7%
with |O| = 750, while L-AUG reaches its best improvement on the robust-
ness to adversarial attacks on |O| = 1000 with a reduction of 0.7%. The
reduction is higher for H-AUG and medium size training sets.
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Figure 4.9: Average F1-score for the original detector HHADand augmented detectors H-
AUG, L-AUG, R-AUG, D-AUG on different training set sizes in the INTCATCH dataset.
Averages are computed over 30 datasets, for each dataset size.

4.6 Concluding Remarks

Detection of anomalous behaviors in intelligent systems, such as autonomous
robotic and cyber-physical systems, requires tools able to represent their
nominal behaviors and discover patterns that do not satisfy them in sensor
traces. HMMs are a viable and established tool for abstracting dynamical
behaviors contained in multivariate time series. The methodology of ad-
versarial data augmentation presented in this work allows to improve the
detection performance of such tools without using any prior knowledge
about the form of the nominal time series, as traditional data augmenta-
tion methods require. For each domain we analyzed, our method showed a
statistically significant performance improvement while standard data aug-
mentation methods based on random perturbation showed no performance
improvement, proving that our strategy to generate adversarial examples is
the cause of the improvement.

Despite their simplicity, HMMs have proven to be a powerful and capa-
ble tool that can be successfully employed in many practical applications.
However, when robotic tasks become very complex, there may be the need
of an even more powerful formalism. As a consequence, the rest of this the-
sis is devoted to develop anomaly detectors based on a different underlying
model: variational autoencoders.
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Training set dimension |O| (INTCATCH)
Detector Measure 250 500 750 1000 1250 1500
HHAD µF1 0.025 0.261 0.597 0.822 0.828 0.845

σF1 0.040 0.196 0.136 0.057 0.048 0.034
H-AUG µF1 0.129 0.512 0.739 0.822 0.822 0.827

σF1 0.134 0.163 0.088 0.049 0.041 0.048
∆F1 0.105 0.251 0.142 2.0e-4 -0.006 -0.018
p-val 5.3e-05 2.1e-09 2.9e-08 0.983 0.547 0.080

L-AUG µF1 0.039 0.439 0.705 0.833 0.836 0.829
σF1 0.062 0.212 0.115 0.051 0.044 0.036
∆F1 0.014 0.178 0.107 0.012 0.007 -0.016
p-val 0.178 5.5e-05 2.5e-05 0.247 0.379 0.047

R-AUG µF1 0.026 0.241 0.565 0.812 0.822 0.850
σF1 0.059 0.180 0.154 0.060 0.066 0.044
∆F1 0.001 -0.020 -0.032 -0.010 -0.007 0.005
p-val 0.899 0.371 0.014 0.133 0.522 0.528

D-AUG µF1 0.043 0.217 0.580 0.803 0.821 0.845
σF1 0.0845 0.180 0.162 0.056 0.062 0.044
∆F1 0.019 -0.043 -0.017 -0.019 -0.007 0.0
p-val 0.194 0.018 0.165 0.011 0.469 1.0

Table 4.8: Average F1-scores of the original anomaly detector HHAD and the augmented
detectors H-AUG, L-AUG, R-AUG, and D-AUG on different training set sizes in the
INTCATCH dataset. Averages are computed over 30 datasets, for each dataset size.
Average F1-score improvements ∆ with respect to HHAD are also displayed with p-
values for testing their statistical significance. Statistically significant performance
improvements (having p-values <0.05) are highlighted in bold.

Training set dimension |O| (INTCATCH)
Detector Attack Measure 250 500 750 1000 1250 1500
HHAD H-ADV SR% 0,8% 5,7% 7,6% 6,4% 6,0% 3,1%
H-AUG H-ADV SR% 1,1% 1,9% 2,9% 2,2% 2,2% 1,9%

∆SR% 0,4% -3,8% -4,7% -4,2% -3,9% -1,2%
HHAD L-ADV SR% 0,2% 2,0% 2,6% 2,3% 2,1% 1,5%
L-AUG L-ADV SR% 0,2% 1,9% 2,0% 1,6% 1,8% 1,6%

∆SR% 0,0% -0,1% -0,6% -0,7% -0,3% 0,1%

Table 4.9: Average success rate SR% of adversarial attacks H-ADV and L-ADV on the test
set of the INTCATCH domain for detectors HHAD (original), H-AUG (augmented with
Hellinger-based loss), and L-AUG (augmented with likelihood-based loss). Averages
are computed over 30 datasets, for each dataset size. The average improvement ∆SR%

with respect to HHAD is also displayed.
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CHAPTER5
A VAE-based Anomaly Detector for

Single-Robot Systems

Part of the work contained in this chapter has been published in IEEE
Robotics and Automation Letters (RA-L) [7].

5.1 Introduction

Different data-driven methods for detecting anomalies in robot systems
have been proposed, most of them being semi-supervised and requiring big
batches (especially the deep learning-based ones) of observations labeled
as nominal by human experts for their training (see Section 5.2.1).

In this chapter, a new deep learning-based minimally supervised method
for detecting anomalies in autonomous robots is proposed. In particular,
we propose a new VAE (Variational Auto-Encoder) [90] architecture able
to model very long multivariate sensor logs of a robot performing a task.
We also introduce a new incremental method for training VAEs, which in-
duces a progress-based latent space that can be used to detect anomalies
both online (at runtime) and offline. An original feature of our approach
is that, differently from most approaches for anomaly detection in robotics,

79
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it is trained with unlabeled observations, possibly including both nominal
and anomalous executions. Only few (even just one) labeled nominal exe-
cutions are then required to partition the learned latent space into nominal
and anomalous regions. This minimal supervision provides a big advantage
over semi-supervised approaches in practical settings, where collecting sev-
eral nominal runs of a robot performing a task could be hard. This is true
especially when using deep learning-based algorithms which notoriously
demand big datasets to be trained effectively.

As the proposed method is trained with unlabeled data (i.e., like in un-
supervised learning), but needs at least one execution labeled as nominal in
order to detect anomalies, we call it minimally supervised.

Similarly to semi-supervised approaches, our method does not assume
anomalies to be rarely occurring (like unsupervised approaches) or already
known in advance (like supervised approaches). Another interesting fea-
ture of the proposed approach is that, similarly to supervised approaches,
and provided that very few anomalously labeled examples are provided (at
least one for each known anomaly type), it not only can detect that some-
thing wrong is happening, but can also discern between different anomaly
types (i.e., diagnosis), still without assuming that every future anomaly will
belong to one of the already known types (more on this later).

Experimental results on datasets collected from real robots show that
our method outperforms state-of-the-art methods for anomaly detection in
robots both in terms of false positive rate and alert delay.

This chapter thus presents a novel application of VAEs to anomaly de-
tection in autonomous robots and provides the following main original con-
tributions:

• A new VAE architecture and a new training method, which induce a
progress-based latent space that is suitable to detect anomalies (Sec-
tions 5.3.3 and 5.3.4).

• A new online and a new offline anomaly detection algorithms that
require as little as one execution labeled as nominal (Sections 5.3.5
and 5.3.6).

• An experimental evaluation on datasets collected from real robots in-
volved in three applications requiring LTA (Section 5.4).

5.2 Background on Deep Autoencoders

Recently, deep learning models have been employed to re-address several
spatio-temporal modeling tasks, including those relative to anomaly detec-
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tion in robotics, providing significant improvements over classical state-of-
the-art methods. We first introduce some background on these techniques
and then survey the literature most relevant for our contribution.

Autoencoders (AEs) [70] are particular kinds of artificial neural net-
works which are trained to reconstruct their input, in a self-supervised man-
ner. An AE is composed of an encoder network and a decoder network.
The encoder takes as input the training data x ∈ Rd, where d is the di-
mension of the data, and compresses these data into a latent space z ∈ Rh,
where h is the dimension of the encoding, usually h < d. Then, the de-
coder tries to map back the latent internal representation z to the original
input space x̂ ∈ Rd, through reconstruction. The encoder structure can be
considered as a bottleneck, in which data pass and are compressed to ex-
tract a meaningful encoded representation. The decoder does the opposite.
The two networks are characterized by fφ, the encoding function, and fθ,
the decoding function, where fφ : Rd → Rh and fθ : Rh → Rd. Finding
weights (parameters) φ and θ for the two functions can be done by back-
propagation, minimizing the loss function LAE (x, x̂) = ‖ x− x̂ ‖2, called
reconstruction error, given input x and model output x̂.

Variational Autoencoders (VAEs) [90] differ from plain AEs in the fact
that they assume the existence of a probabilistic model parametrized by the
latent variable z ∈ Rh that generates the observed input values x ∈ Rd.
Being z latent (i.e., hidden), we can infer its characteristics by computing
the posterior p(z|x) = p(x|z)p(z)

p(x)
; unfortunately, computing the marginal-

ization p(x) =
∫
p(x|z)p(z)dz at the denominator is intractable when z is

high-dimensional. Variational inference can be used to overcome this issue
by approximating p(z|x) with a distribution q(z|x) which is tractable and
by minimizing their KL-divergence DKL(q(z|x) ‖ p(z|x)) to ensure that
q(z|x) is similar to p(z|x). By replacing p(z|x) in DKL(q(z|x) ‖ p(z|x))

with p(x,z)
p(x)

, the minimization problem becomes equivalent to the maximiza-
tion of Eq(z|x)[log p(x|z)]−DKL(q(z|x) ‖ p(z)), where the first term repre-
sents the reconstruction likelihood (analogous to the reconstruction error in
AEs), while the second term ensures that the learned distribution q(z|x) is
similar to the true prior distribution p(z) (with the effect of regularizing the
latent variable z). The distributions q(z|x) and p(z|x) can be parametrized
by means of two artificial neural networks which can be considered as en-
coder (with weights φ), and decoder (with weights θ), respectively. Finding
weights parameters φ and θ can be done by backpropagation, minimizing
the loss function LVAE (x) = DKL(qφ(z|x) ‖ pθ(z))−Eqφ(z|x)(log pθ(x|z)),
which represents the variational lower bound of the data x according to the
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Jensen’s inequality (see [90] for full details). The posterior qφ(z|x) is usu-
ally assumed to be normally distributed with parameters N (µz,Σz), while
a common choice for the prior distribution pθ(z) is an isotropic normal dis-
tribution N (0, I).

5.2.1 AEs and VAEs for Anomaly Detection

The main idea behind the current use of AEs for anomaly detection is to
train them only on nominal data so that they will not be able to accurately
reconstruct anomalous behaviors (that the AEs have never seen), which
will thus produce high reconstruction errors. AEs have been widely used
for anomaly detection on time series, and more rarely on data coming from
robots. For example, authors of [109] propose an LSTM (Long Short-Term
Memory) based encoder decoder (EncDec-AD) that learns to reconstruct
nominal time series and thereafter uses reconstruction error of observed
samples to detect anomalies. Similarly, [169] proposes a Multi-Scale Con-
volutional Recurrent Encoder-Decoder (MSCRED) to perform anomaly de-
tection and diagnosis in multivariate time series data. One significant ex-
ample of application of AEs to detect anomalies in robots is [119], where
the authors propose to convert sensor logs into images and then use a con-
volutional AE to detect anomalous behaviors resulting from cyber-security
attacks.

After the introduction of VAEs, a lot of interest has developed around
this new framework due to the continuity of its latent space and to its ability
of producing probabilistic anomaly scores (see below) which are in general
more powerful than AEs’ reconstruction error. In [127], the authors propose
an LSTM-VAE-based detector using a reconstruction-based anomaly score
and a state-based threshold to detect anomalies for robot-assisted feeding,
while authors of [150] apply the STORN model [14] to anomaly detection
by introducing a trending prior on the latent representation. The AE/VAE-
based approaches described so far use some variants of the reconstruction
error as anomaly score. However, after its adoption in [4], the reconstruc-
tion probability Eqφ(z|x)[log pθ(x|z)] has become a more popular anomaly
score than the reconstruction error. In this case, for each sample from the
encoder, the probabilistic decoder outputs the mean and variance parame-
ters of the reconstruction instead of the reconstructed value itself. Then,
the reconstruction probability is calculated using the output parameters of
the encoder, given the original input as a sample. For instance, in [36], a
sliding-window convolutional variational autoencoder (SWCVAE) is pro-
posed, which can perform real-time anomaly detection on multivariate time
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series acquired from an industrial robot. Another example of the use of the
reconstruction probability is in [131], which presents a variational recurrent
autoencoder with attention.

All the above approaches, and many others, are trained on nominal data
in a semi-supervised fashion. However, some AE/VAE-based approaches
trained in an unsupervised fashion exist, such as [167], which proposes
an unsupervised anomaly detection algorithm based on a VAE to detect
anomalies on web servers usage time series. Also in this case, detection ex-
ploits the reconstruction probability. Another interesting approach has been
proposed in [132], whose model is trained in a fully unsupervised fashion
and applied to univariate healthcare time series in which anomalies are de-
tected directly in the latent space by computing the Wasserstein distance
between a test sample latent representation and other encoded samples in
the test set.

Our method employs VAEs but differs from semi-supervised approaches
in requiring only minimal supervision, and from unsupervised ones in mod-
elling multivariate time series and not assuming rarity of anomalies.

5.3 The Proposed Method

5.3.1 Problem Definition

We represent byO = {o1, ...,on} a d-dimensional time series composed of
n observations of a robot system performing a task, where each observation
ot is a d-dimensional vector representing the multivariate (multi-valued)
observation of the robot at (discrete) time step t. Typically, ot is extracted
from sensors logs of the robot. We assume to know at least one nomi-
nal execution ON = {oN1 , ...,oNnN} corresponding to the robot correctly
performing its task. If the robot can display k different types of nominal
behaviors when performing its task, we assume the availability of at least
a nominal execution ON for each of them. The observed behavior of the
same robot along some time period is denoted byOO = {oO1 , ...,oOnO}. In-
formally, we consider an observed run OO to be anomalous if there exists
a time step tA ≤ nO from which on OO starts to differ from one of the
nominal executions {ON}. The details on the way in which an observation
is classified as anomalous are discussed in Sections 5.3.5 and 5.3.6.

If we consider OO as a (possibly infinite) data stream, online anomaly
detection at time step t is the task of classifying the portion of the stream
up to t as anomalous or non-anomalous w.r.t. {ON}.

Given a finite time series of observationsOO, offline anomaly detection
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(a) (b)

Figure 5.1: Schematic representation of water drone nominal (a) and anomalous (b) be-
haviors, as they appear in the original data.

is the task of classifying the whole behavior displayed by the robot in OO

as anomalous or non-anomalous w.r.t. {ON}.

5.3.2 Running Example

As a running example we consider a synthetic dataset derived from that
used in Chapter 3 and collected from a water drone (called Platypus) while
performing a coverage task (Fig. 5.1a) on a lake to collect water sam-
ples [30]. Starting from some real runs, we generate 340 runs in which
the following variables are recorded at each time step (1 Hz): heading,
speed, acceleration, power signals to the left and right propellers, latitude,
and longitude. From the anomalies observed in the real data (see 3.4.1),
which present a recurring curve leaning to the left in the descending traits
(Fig. 5.1b), we incorporated in our simulated dataset 8 possibles nuances
of similar anomalies (Fig. 5.2).

5.3.3 Network Architecture

We present a new VAE architecture (Fig. 5.3) in which we replace the
typical feed-forward layers with 1D-convolutional (Conv-1D) and Bidirec-
tional LSTM (Bi-LSTM) layers, which are better suited to represent the
temporal dependency of multivariate time series collected from robots’ sen-
sors. Moreover, the use of Conv-1D and Bi-LSTM layers allows our net-
work to model very long runs.

Before being passed to the network for training, runs in the training
set are standardized, then a Gaussian noise nσ is added to each non-padded
value of the runs in the training setXtrain (see next section for a detailed ex-
planation) in order to perform training using the denoising principle [159].
The noise variance σ is set to 1. The noise-corrupted input X̃train is passed
to stacked pairs of Conv-1D and MaxPooling layers, then a Bi-LSTM takes
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(a) UR-DL (b) UR (c) UR-DR

(d) DL (e) Nominal (f) DR

(g) UL-DL (h) UL (i) UL-DR

Figure 5.2: Simulated trajectories of a water drone. The nominal behavior of the robot
is in the center (e): the robot starts from the bottom and goes up and down moving
rigthward. (a) depicts the behavior of leaning to the right in the upward segments and
to the left in the downward ones (UR-DL), (b) the behavior of leaning to the right in the
upward segments (UR), (c) the behavior of leaning to the right in both the upward and
the downward segments (UR-DR), (d) the behavior of leaning to the left in the down-
ward segments (DL), (f) the behavior of leaning to the right in the downward segments
(DR), (g) the behavior of leaning to the left in both the upward and the downward seg-
ments (UL-DL), (h) the behavior of leaning to the left in the upward segments (UL),
(i) the behavior of leaning to the left in the upward segments and to the right in the
downward ones (UL-DR).

the output of the previous levels of convolution and returns the concatenated
final states [

−→
hf ,
←−
hb ] (i.e., the contexts in both directions). This concatena-

tion is passed to 2 fully connected layers zmean and zlog−var , which learn
the parameters µz and σ2

z of the approximate posterior distribution qφ(z|x),
where φ is the matrix of the encoder’s weights. These last two layers, to-
gether with the next one, represent the core of our VAE, in which a sample
is extracted from a multivariate Gaussian distributionN (µz, σ

2
zI) by means

of the reparametrization trick z = µz + σz · ε, where ε∼N (0, 1), resulting
in the value of the latent variable z of the layer zsampled , that will be used by
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Figure 5.3: Incr-VAE architecture.

the decoder to reconstruct the input. The decoder network is composed of
an initial fully-connected layer which reshapes zsampled in order to be com-
patible with the following layers. This is passed to the decoder Bi-LSTM
that computes, for each time step of its input, a new value based on its con-
text. Then, these sequences are passed to the stacked levels of Conv-1D and
upsampling layers which expand the number of time steps of the sequences
to match the original length while reconstructing their values. The final
output of the last upsampling layer is used to compute the loss function
LVAE (see Section 5.2) to update the network weights by backpropagation.
According to the denoising criterion, the network is trained to output the
reconstruction Xrec , as an approximation of the original non-corrupted in-
put Xtrain . From now on, we will refer to our VAE architecture described
above as Incr-VAE.

5.3.4 Incremental Training

Instead of training Incr-VAE on runs corresponding to complete task exe-
cutions performed by the robot or on windowed slices of such executions,
as it would be the norm, we originally build a training dataset that includes
also incomplete task executions in an incremental manner. The detailed
procedure is reported in Algorithm 6. Given a batch Ω of B unlabeled
task executions and chosen an increment τ , we represent by Xtrain the (ini-
tially empty) training set (line 1). Each multivariate time series O in Ω is
inserted in Xtrain (lines 2-10) at different stages of completion by progres-
sively including τ additional time instants (lines 3-4). Incomplete runs are
zero-padded in oder to have the same length of complete ones (lines 5-7).
Complete runs are also added to Xtrain (line 11). In our experiments, we
use τ = 10 and a maximum length of T = 500 (shorter complete runs are
zero-padded).
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Algorithm 6: Incremental Training
Input: Ω = {O1, ...,OB}, increment τ
Output: Xtrain

1 Xtrain ← { }
2 forallO = [o1, ...,oT ] ∈ Ω do
3 for i = 1, ..., bT/τc do
4 Xtmp ← {o1, ...,oi∗τ}
5 for j = (i ∗ τ) + 1, ..., T do
6 append(Xtmp , 0) . zero-padding
7 end
8 Xtrain ← Xtrain ∪Xtmp

9 end
10 end
11 Xtrain ← Xtrain ∪Ω

When using our incremental training approach based on the augmented
training set Xtrain , the VAE induces a progress-based latent space, where
runs at different levels of completion are encoded in different regions of
the space. Fig. 5.4 shows the first 3 principal components of the latent
space of our running example extracted using Principal Component Analy-
sis (PCA) [18]. We use the same PCA projection also for the following fig-
ures. In the rightmost part of Fig. 5.4 it can be noted how incomplete runs
containing just the first few observations are all represented in the same spot
of the latent space as they are all indistinguishable from each other. Then,
as anomalous executions start to deviate from the expected rectilinear paths
(Fig. 5.2), three different bundles start to emerge, which represent the be-
haviors showing the same attitude in the first upward segment (e.g., UL,
UL-DR, and UL-DL all lean towards left). When the water drone reaches
the beginning of the first downward segment, the three bundles split and
become nine as at this point all the different behaviors are distinct. Please
note that in Fig. 5.4 (and in the following figures) the different behaviors
have been depicted using different colors just for visualization clarity: the
data used for training are unlabeled. From the figure, it appears clearly how
our method leads to a structured latent space in which different behaviors
are well separated.

As a consequence of the fact that our method induces a latent space
which encodes both incomplete and complete executions, the same network
trained only once can be used for both online and offline anomaly detec-
tion. Moreover, as a consequence of the fact that the incremental training
involves some data augmentation, fewer runs are needed for training (as
few as 6 runs, in our experiments) w.r.t. training VAEs in the standard way.

87



Chapter 5. A VAE-based Anomaly Detector for Single-Robot Systems

Figure 5.4: Water monitoring robot latent space (t = τ on the right in the background,
completed runs at t = T in the foreground).

5.3.5 Online Anomaly Detection

Assuming an Incr-VAE trained as illustrated above and the availability of
at least one nominal execution for each of the k different types of nomi-
nal behaviors for the robot performing its task, online anomaly detection
is performed by partitioning the latent space into nominal and anomalous
regions according to the provided nominal executions {ON} and by test-
ing, at runtime, to which region a new incoming partial run belongs to.
Note that our method detects anomalies in the latent space, differently of
other methods based on AEs and VAEs (e.g., [109, 119, 127]) that detect
anomalies thresholding the reconstruction error or probability.

Given XN , obtained by applying Algorithm 6 to {ON}, the latent space
segmentation (Algorithm 7) is performed offline (after training) using the
DBSCAN algorithm [46], a density-based clustering algorithm that relies
on the assumption that clusters are contiguous regions of high point density,
separated from other clusters by regions of low point density. Clustering
(line 8) is performed on each “slice” (line 2) of the latent space zsampled (i.e.,
on each set of points corresponding to runs with the same progress (line
5)) with the addition of the encodings of the nominal executions {ON},
zero-padded in order to represent the same level task completion (line 6-7).
Clusters containing points belonging to nominal executions are considered
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(a) t = 10 (b) t = 30 (c) t = 80 (d) t = 200 (e) t = 500

Figure 5.5: Water monitoring robot latent space evolution (non-transparent encodings
represent the slice to which the clustering refers to).

Algorithm 7: Latent Space Segmentation
Input: increment τ , training set Xtrain , XN (output of Algorithm 1 on {ON}), VAE encoder

fφ
Output: RN

1 RN ← { } . nominal region
2 for i = 1, ..., bT/τc do
3 X

(i)
train ← x ∈ Xtrain | progress = i ∗ τ

4 X(i)N ← x ∈ XN | progress = i ∗ τ
5 Z

(i)
train ← fφ(X

(i)
train)

6 Z(i)N ← fφ(X(i)N )

7 Z(i) ← Z
(i)
train ∪ Z(i)N

8 C(i) ← DBSCAN (Z(i))

9 forall c ∈ C(i) do
10 if (Z(i)N ∩ c) 6= ∅ then
11 RN ← RN ∪ c
12 end
13 end
14 end

nominal regions (lines 10-11), while clusters not containing points from nom-
inal executions, outliers, and the rest of the latent space are considered as
anomalous regions. Fig. 5.5 shows how clusters evolve at different slices
for the water monitoring robot running example.

At runtime (Algorithm 8), an incoming incomplete run O that needs to
be tested for abnormality is firstly standardized (w.r.t. the mean and stan-
dard deviation used for the standardization of the training set) and zero-
padded (line 1-2), then it is encoded into its latent representation ẑ (line 5).
The cosine similarity between ẑ and the encodings of all the runs in the
same slice is computed and if ẑ is within a distance of ε (i.e., DBSCAN’s
threshold on the maximum distance between two samples for being consid-
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Algorithm 8: Online Anomaly Detection
Input: increment τ , nominal region RN , test runO ← [o1, ...,ot], threshold ε, VAE encoder

fφ
Output: flag ∈ {0, 1}

1 for j = t+ 1, ..., T do
2 append(O, 0) . zero-padding
3 end
4 flag ← True . anomaly flag
5 ẑ ← fφ(O)
6 if t%τ = 0 then
7 i← t/τ

8 forall z ∈ Z(i) do
9 if Cosine(ẑ, z) ≤ ε ∧ z ∈ RN then

10 flag ← False
11 end
12 end
13 else
14 forall i ∈ {bt/τc, dt/τe} do
15 forall z ∈ Z(i) do
16 if Cosine(ẑ, z) ≤ ε ∧ z ∈ RN then
17 flag ← False
18 end
19 end
20 end
21 end

ered as neighbors of each other, ε = 0.5 is the default value we use in our
experiments) from an encoding belonging to a nominal region, the partial
run is considered nominal, while an anomaly is detected otherwise (lines
9-11). For test runs whose progress is not a multiple of τ (line 6), the cosine
similarity is computed w.r.t. the two slices immediately preceding and fol-
lowing (lines 14-20). In our experiments, we use training datasets containing
few hundreds of executions, hence we perform linear search at runtime; for
larger datasets it may be worth considering nearest neighbor search algo-
rithms with sub-linear time complexity, such as space partitioning (e.g., the
K-D trees) or Locality-Sensitive Hashing (LSH) [138].

5.3.6 Offline Anomaly Detection

Assuming the availability of an Incr-VAE trained as discussed in Sections
5.3.3 and 5.3.4, offline anomaly detection is obtained by performing DB-
SCAN on the last slice (the one containing the encodings of complete exe-
cutions) of the latent space with the addition of the encodings of the nom-
inal executions and the encoding ẑ of the run under scrutiny. As the DB-
SCAN algorithm either assigns each point to a cluster or treats it as an
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outlier, in case ẑ belongs to a cluster containing the encoding of a nominal
run, the behavior will be considered nominal, anomalous otherwise. In case
a domain expert provides also runs labeled as anomalous and ẑ belongs to a
cluster containing one such anomalous run, it will also be possible to spec-
ify the nature of the anomaly. Outliers are considered as generic anomalies.

5.4 Experimental Results

In this section we present the results obtained by detecting anomalies in
three different datasets collected from real robots.

We use two common metrics in the field of anomaly detection, namely,
alert delay and false positive rate. Given an anomaly occurring at time step
tA, the alert delay dA is computed as dA = t− tA where t ≥ tA is the time
step at which the occurrence of the anomaly is detected by a method. Given
the set W containing the time steps at which a method reports an anomaly,
the false positive rate (FPR) is computed as the fraction of the time steps
preceding the actual occurring of an anomaly which have been identified as
anomalous FPR = |t∈W, t<tA|

tA
. The use of just the FPR without the TPR

(i.e., percentage of actual anomalies detected) is meaningful since the case
in which one could obtain a FPR = 0 by always saying that everything is
nominal is prevented from the fact that in that case the alert delay would
result to be substantially increased.

We compare our system against a baseline, three other methods pro-
posed in the literature for online anomaly detection in robotics, and the one
proposed in the previous chapters:

• A one-class support vector machine (OSVM) trained with a sliding
window size w = 10.

• HHAD, the HMM-based anomaly detector presented in Chapter 3.
HMM parameters are chosen minimizing the BIC score, the window
size is set to 10 and the 3σ-rule is used to select the detection thresh-
old. We do not use the data-augmented version as, as shown in the pre-
vious chapter, for both robotic datasets (i.e., INTCATCH and ALFA),
when the complete available dataset is used, the performance improve-
ment provided by the data augmentation procedure is negligible.

• ENC-DEC AD [109], the first work that proposed to employ LSTM-
based AEs for anomaly detection on time series. ENC-DEC AD learns
to reconstruct nominal time series and then uses the reconstruction er-
ror on unseen executions to detect anomalies. We optimize the detec-
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tion threshold τ by maximizing Fβ (a function of precision and recall),
as suggested by the authors of the method.

• Conv-AE [119], based on transforming system logs into images, which
are then used to train a convolutional (2D) AE. As for ENC-DEC AD,
the reconstruction error on unseen executions is used to detect anoma-
lies. We optimize the sensitivity parameter z for each dataset accord-
ing to authors’ suggestions (i.e., z ∈ [0, 3]).

• LSTM-VAE [127], a state-of-the-art LSTM-based VAE with a varying
state-based threshold obtained by employing a progress-based prior
and a support vector regressor (SVR) for threshold prediction. We
optimize the sensitivity parameter c for each dataset.

While our method is trained in a minimally supervised fashion (i.e.,
knowing the nominal label for k executions, where k is the number of dif-
ferent types of nominal behaviors), all four competitors are trained in a
semi-supervised fashion (i.e., assuming that all training data are nominal)
on the same datasets. Given a dataset, training our method takes some min-
utes on a commercial laptop, while online and offline detection of anoma-
lies takes few milliseconds.

5.4.1 Water Monitoring Robot Dataset

This is the same dataset introduced in the running example. Our Incr-VAE
network is trained using the Adam optimizer with one level of convolution
in the encoder and decoder, h = 20 as latent dimension, 10 filters for the
convolution, and 10 as convolution window. A single nominal run is used
to partition the latent space.

5.4.2 Patrolling Robot Dataset

This publicly available1 dataset has been collected within the scope of the
STRANDS2 project [66], where an autonomous robot called SCITOS-G5
performs a patrolling task in a small office every 5 minutes. A complete
description of the data collection process is provided in [91]. We consider a
total of 463 different executions sub-sampled at 1 Hz. We restrict the set of
available sensors to those that are intuitively useful for anomaly detection,
namely, robot location (x and y) and robot and camera headings. After a
visual inspection of the logs, only one type of nominal behavior (k = 1)

1https://lcas.lincoln.ac.uk/nextcloud/shared/datasets/
2http://strands.acin.tuwien.ac.at/
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Figure 5.6: Patrolling robot latent space (t = τ in the background, completed runs at
t = T in the foreground). Nominal runs in blue, anomalies in red.

has been assumed and a subset of the runs have been manually labeled as
anomalous in order to be used for testing. Examples of anomalies are de-
viations from the predefined path and incorrect uses of the RGB-D camera
when checking for the presence of intruders. The latent space of our VAE
induced by this dataset is shown in Fig. 5.6. Anomalies (in red) are clearly
detached from the central nominal bundle (in blue). The network is trained
using the Adam optimizer with 2 levels of convolution on both encoder and
decoder, 10 as number of filters and window of convolution, h = 20 as
latent dimension. A single nominal run is used to partition the latent space.

5.4.3 Assistive Robot Dataset

The third dataset has been collected within the same project [108] of the
one in Section 3.4.2. The dataset contains 238 runs, each one composed
of a sequence of observations collected at 1 Hz including: heading, speed,
acceleration, position w.r.t. the x-axis, and position w.r.t. the y-axis. The
dataset presents k = 4 different types of nominal behaviors (corresponding
to reaching one of four different rooms) for each of which a domain expert
provided a single nominal run. Out of the 238 runs, 12 have been classified
by a domain expert as anomalies which are used for testing and correspond
to the robot not being able to return back to its charging station because it
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Figure 5.7: Assistive robot latent space (t = τ on the right, completed runs at t = T on
the left).

remains stuck in forniture, the robot departing from its nominal trajectory,
or the robot moving too fast. We use the same network hyperparameters as
in the patrolling robot dataset. The latent space induced by this dataset is
in Fig. 5.7. As said, a single nominal run for each one of the k = 4 types
of nominal behaviors is used to partition the latent space.

We do not consider the ALFA dataset in these experiments, as, being
composed of flights each with a different trajectory, it would not be a good
fit to the technique proposed in this chapter, which is designed to model
repetitive tasks.

5.4.4 Results

Alert delays and FPRs are reported in Table 5.1 and Table 5.2, respectively.
Our method provides the best performance across all datasets despite using
just 1 labeled nominal execution for the first two datasets and 4 for the third
one.

As highlighted also in [127], the higher alert delay and FPR of ENC-
DEC AD have to be attributed to the fact that sometimes the reconstruction
error is high also in nominal situations. In fact, depending on the stage of
the execution, the reconstruction quality may vary. An example is when
spikes (i.e., impulses to make the boat turn) appear on the currents to the
motors in the time series of the first dataset, which result in high anomaly
scores also in nominal runs. Thanks to its varying state-based threshold,
LSTM-VAE is able to overcome the above issue after we set a tolerance

94



5.4. Experimental Results

Platypus SCITOS-G5 Assistive robot
OSVM 1.375 (2.18) 60.5 (65.19) 5.0 (7.07)

HHAD 3.48 (2.11) 8.38 (2.18) 46.17 (58.91)
ENC-DEC AD 19.23 (11.60) 10.66 (13.42) 6.83 (6.47)

Conv-AE 6.22 (5.16) 3.40 (3.65) 6.42 (7.48)
LSTM-VAE 3.68 (2.25) 4.88 (6.33) 5.42 (6.81)

Incr-VAE 0.5 (2.18) 3.13 (5.56) 3.34 (4.71)

Table 5.1: Alert delay results.

Platypus SCITOS-G5 Assistive robot
OSVM 0.123 (0.200) 0.180 (0.204) 0.130 (0.130)
HHAD 0.019 (0.053) 0.169 (0.120) 0.073 (0.103)

ENC-DEC AD 0.107 (0.151) 0.142 (0.245) 0.200 (0.200)
Conv-AE 0.049 (0.086) 0.109 (0.058) 0.170 (0.100)

LSTM-VAE 0.0 (0.0) 0.191 (0.197) 0.084 (0.119)

Incr-VAE 0.0 (0.0) 0.065 (0.115) 0.007 (0.009)

Table 5.2: FPR results.

value to be added to the state-based threshold of the model to avoid the
incorrect detection of the spikes, even though this comes at the cost of a
slight worsening of the alert delay. Comparing the two AE-based methods,
Conv-AE always outperforms ENC-DEC AD, probably due to the use of
convolution, that is more stable and easier to train than recurrent layers.
We also note that the VAE-based methods outperform the AE-based ones,
as also pointed out in [127]. The high alert delay for HHAD in the third
dataset has to be ascribed to its inability to detect anomalies on the veloc-
ity of the robot due to the Markov assumption. To enable HHAD to detect
also such anomalies, velocity should be explicitly modeled as an additional
dimension of the multivariate time series as done in [8]. OSVM’s higher
FPR and bad performance in general on the second dataset result from its
inability to represent the portion of time series inside the window as an ac-
tual sequence instead of as a feature vector without any time dependence.
Moreover, it is difficult to adjust OSVM’s threshold after training as it co-
incides with the SVM decision boundary.

We finally remark that our method reaches an accuracy of 100% when
performing offline anomaly detection on the three datasets.

5.4.5 Latent Space Analysis

As said, instead of training Incr-VAE on runs corresponding to complete
task executions performed by the robot or on windowed slices of such ex-
ecutions, as it usually happens, we originally build a training dataset that
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includes also incomplete task executions in an incremental manner. Here,
we investigate how the latent space would be learnt in the two usual cases
just mentioned for the water monitoring robot dataset. We include in our
comparison also the latent space induced by LTSM-VAE, the other method
based on a variational autoencoder we consider in our experimental as-
sessement. As a reference, the latent space of Incr-VAE when trained in the
incremental way is reported in Fig. 5.4.

Complete Executions

Fig. 5.8 depicts the latent space resulting from training Incr-VAE on com-
plete executions only. As it can be seen, our architecture manages to en-
code very long sequences in a meaningful way (i.e., nominal runs and each
anomaly are clearly separated). Note that, as one would expect, this ar-
rangement coincides also with the last slice of Fig. 5.5 (i.e., the one encod-
ing complete executions). Looking at Fig. 5.8 it can be noted a very inter-
esting feature: not only each anomaly type has its own “cluster” clearly de-
tached from the others, but they are arranged in a meaningful and intuitive
way. Take for example UL and DL, if we start from the nominal area (in the
center) and proceed along a line passing between UL and DL, we reach the
area of latent space in which UL-DL is located, i.e., the anomalous behav-
ior affected by both UL and DL anomalies (note that this desired feature is
true also when Incr-VAE is trained in the incremental way). One drawback
of training on complete runs is that in this case the online anomaly detec-
tion problem reduces to the offline one, as complete executions are required
to be provided as input to the Incr-VAE. Another drawback is that, accord-
ing to our experiments, in this way Incr-VAE is harder to train (almost five
times more epochs compared to incremental training).

Sliding Window

When trained using a sliding window, the latent space of Incr-VAE is not
structured as in Fig. 5.4, where there is a clear concept of beginning and end
of a run. Our method, when trained incrementally, can tell if a partial run
is nominal or anomalous up to a given point; when using sliding windows,
it would tell only if a specific window is anomalous. For example, Fig. 5.9
depicts the latent space when Incr-VAE is trained using a sliding window of
10 time-steps. Some structure is still present (as reflected by the groupings
of the colors), but most of the interpretability is lost. The temporal progres-
sion is also lost and consecutive instances of the same sub-task (e.g., the
first and the second ascending traits in Fig. 5.1a) are now encoded in the
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Figure 5.8: Incr-VAE latent space when trained on complete runs.

Figure 5.9: Incr-VAE latent space when trained using a sliding window.

same spot. Moreover, our incrementally-trained method can do both on-
line and offline anomaly detection with a single network trained only once.
When training using sliding windows, offline anomaly detection could not
be performed.

LSTM-VAE

Fig. 5.10 depicts the latent space of LSTM-VAE when trained only with
nominal executions of the water drone. Fig. 5.10a represents the encodings
of the training set (i.e., only nominal runs). In order to make LSTM-VAE’s
latent space comparable to the other ones, Fig. 5.10b shows the encod-
ings of the training set and of some anomalous runs, in different colors (the
model is trained on nominal runs only, then, after training, some anoma-
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(a) (b)

Figure 5.10: LSTM-VAE latent space.

lous runs have been passed through the encoder). As it can be seen, some
structure is present, which is enough for the model to learn good recon-
structions and, as a consequence, detect correctly most of the anomalies (as
our experimental results show). However, the latent space of LSTM-VAE
is less separable, not very interpretable, and a progress-based structure is
not present.

Latent Space Interpolation

One of the most important features of VAEs is the smoothness and continu-
ity of their latent spaces, which means that, for example, by interpolating
points between two encoded values that represent two different runsO1 and
O2, and generating new runs using the decoder, the in-between generated
runs will change smoothly fromO1 toO2. In Fig. 5.11 it is shown the case
in which starting from the embedding (i.e., latent representation) of a nom-
inal run for the water monitoring robot dataset, and interpolating towards
the embedding of an anomalous one (DL), the reconstructed runs becomes
incrementally more anomalous. This feature could be used to generate pos-
sible anomalies that could affect a robot system, in order to develop con-
tingency strategies before the anomalies actually occur. Moreover, latent
space interpolation could be useful to explain observed anomalies. Both
directions are left as future work.

98



5.4. Experimental Results

(a) Start (b) 2nd step (c) 3rd step

(d) 4th step (e) 5th step (f) 6the step

(g) 7th step (h) 8th step (i) end

Figure 5.11: Interpolation (reconstructions in blue, input runs in orange).
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CHAPTER6
Detecting Anomalies in Robot Swarms

6.1 Introduction

In this chapter, an adaptation of the method presented in the previous one
to detect anomalies in robot swarms is presented.

Although some centralized approaches to detect anomalies in swarms of
robots have been proposed, when these systems are operating in real-world
scenarios, and especially outdoor, it is usually not possible to depend on
external observation infrastructures to identify faults in a centralized man-
ner. As a consequence, the only viable solution is to have the robots of the
swarm execute anomaly-detection software onboard and look for anomalies
either on themselves (i.e., endogenous anomaly detection), on one another
(i.e., exogenous anomaly detection), or both (i.e., multi-layered anomaly
detection). In order for our method to be general and suitable to be em-
ployed in a broad range of situation, the work presented in this chapter
commits to the decentralized architecture. Moreover, since the capabili-
ties of our VAE-based method of being suitable to be used by robots for
detecting anomalies in themselves have already been demonstrated in the
previous chapter, here just exogenous anomaly detection will be consid-
ered. This choice is also motivated by the fact that most of the approaches
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(e.g., [39,153–156]) proposed in the literature of swarm robotics’ anomaly
detection belong to the decentralized and exogenous paradigms.

We perform our experiments using the ARGoS simulator [134] and the
e-puck swarm robot platform [113]. Four homogeneous swarm behaviors
are considered: dispersion, aggregation, homing and flocking.

We compare our method against an immune system-inspired approach
[154] that needs significant manual tuning and show how we are able to
achieve a similar detection accuracy while adopting a completely automatic
and end-to-end approach. The work in [154], in fact, relies on the extrac-
tion of several heavily hand-engineered features and the careful setting of
a considerable amount of parameters in order to achieve optimal function-
ing. Please note that, although working in simulation would allow also for
completely supervised learning paradigms to be adopted (as anomalies can
be simulated with ease), we prefer a semi-supervised one with the aim of
making our method more general and, especially, more easily applicabile
in real-world settings.

6.2 The Proposed Method

An online semi-supervised method based on a sliding window approach
is proposed, which allows robots to detect, at runtime, anomalies in the
behavior of other nearby robots which lie within their field of view.

Problem Formulation

Given a swarmR of robots ri, i = 1, .., |R|, we frame the problem of online
anomaly detection at time t in terms of each robot ri of the swarm collect-
ing information on nearby robots rj ∈ R, observable from ri (i.e., such that
each robot rj is located within sensing range of ri), and then expressing
a vote on each observed robot nominality by means of an online anomaly
detector (it is the same for all robots) previously trained on nominal execu-
tions.

As for the other methods presented in this thesis, we assume the avail-
ability of nominal training data and, for this reason, our approach belongs
to the semi-supervised family. This choice is motivated by the fact that we
use simulated data for our experiments, however, as already motivated in
previous chapters, it is usually plausible to assume the availability of some
nominal executions also when real robots are considered.
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Sensor Data Processing

Given a swarm R of robots ri, i = 1, .., |R|, at each control cycle t, a robot
ri receives range dij and bearing φij observations from each robot rj in line
of sight and within a 1 m radius from ri. Such information about range and
bearing are then processed to build multivariate time series windows to be
used for detecting anomalies in each observed robot.

The window employed by robot ri for performing anomaly detection on
robot rj at time t contains, for each one of the w time instant of the window,
the following information:

• Observed range dij: the range of observed robot rj from robot ri at
time t, dij ∈ [0, 1] m.

• dij’s first derivative: as all control cycles have the same length, this
corresponds to the difference of dij-s at consecutive time instants.

• Observed bearing φij: the bearing of observed robot rj from robot ri
at time t, φij ∈ [0, 360] degrees.

• φij’s first derivative: as for the range, as all control cycles have the
same length, this corresponds to the difference of φij-s at consecutive
time instants.

• Distance traveled by rj in the last w control cycles (computed using
using a forward kinematics model of a two-wheeled nonholonomic
differential-drive mobile robot).

Time series widows of w = 100 (i.e., 10 s) are considered.
A remark needs to be made regarding the choice of using a range-and-

bearing sensor board to perform the exogenous observation. Although it
may be perceived as a limiting factor on the effective practical applicability
of the proposed method, it must be noted that range and bearing extension
boards represent baseline sensors and are available for many swarm robot
platforms, including Khepera III [135], eye-bot [141], foot-bot [142] and
e-puck [57].

Online Anomaly Detection

A nominal model for each one of the homogeneous behaviors is learned by
training the VAE architecture proposed in the previous chapter (see Section
5.3.3) on windows of width w extracted from nominal executions. We use
fφ and fθ to refer to the encoder and decoder networks, respectively.
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Online anomaly detection at time t is performed by computing the re-
construction error on the current window Wt = {oOt−w+1, ...,o

O
t }. When

the reconstruction error exceeds a predefined threshold τ , i.e.,∣∣Wt − fθ
(
fφ(Wt)

)∣∣ > τ,

the behavior of the observed robot rj is considered anomalous. The thresh-
old τ is set using the 3-σ rule.

Please note that, in this scenario, the incremental training procedure pro-
posed in the previous chapter cannot be adopted as tasks are less structured
and repetitive, but, most importantly, because given two robots ri and rj ,
there is no guarantee that they will remain in line of sight for the whole
duration of the experiment (in fact, they most likely will not be). Thus,
a sliding window approach and the reconstruction error as anomaly score
need to be employed.

6.3 Experimental Results

6.3.1 Experimental Setting

A similar experimental setting to the one proposed in [154] is adopted.

Simulator and Robots

We use ARGoS1 [134], a physics-based, multi-engine multi-robot simu-
lator designed to realistically reproduce complex experiments involving
large swarms of (possibly heterogeneous) robots. Thanks to its modular
and open-source approach, we have been able to easily modify its source
code in order to implement the necessary simulations. We employ a robot
swarm composed of 20 e-puck robots2 [113] (see Fig. 6.1) that move inside
a square arena of 3 by 3 m. The e-puck robot has a diameter of 7.5 cm, an
inter-wheel distance of 5.3 cm, a maximum speed of 10 cm/s, and a con-
trol cycle of length 0.1 s. Each e-puck robot hosts onboard eight infrared
proximity sensors (used for obstacle avoidance) and two actuators which
control the robots speed and direction. Each robot is also equipped with a
range and bearing extension board [57], which enables a robot to estimate
the relative location and orientation of neighboring robots.

1https://www.argos-sim.info/
2http://www.e-puck.org/
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Figure 6.1: e-puck robot (image credits: http://www.e-puck.org/).

Swarm Behaviors

The following homogeneous swarm behaviors (i.e., all the robots in the
swarm execute the same task) are considered:

• Dispersion: robots move in the opposite direction of the center of
mass of their neighbors. In real-world settings, this could translate to
the task of maximizing the sensor coverage of an area while preserv-
ing the connectivity within the swarm. Dispersion of robotic swarms
appears to be applicable and useful in missions such as planetary ex-
ploration, hurricane surveillance, or nuclear decontamination, where
the robots with maximal coverage collect samples from the unknown
surface, detect the victims, or collect nuclear waste, respectively.

• Aggregation: robots move towards the center of mass of surrounding
neighbors, but disperse away if too close to their neighbors to avoid
collisions. This allows individuals of the swarm to get spatially close
to each other for further interaction.

• Homing: robots move towards a single pre-specified stationary beacon
that serves as a landmark, and move away if too close to the landmark
or to other robots. The position of the beacon for homing is selected
at random in the arena at the start of the experiment. The homing
behavior is an essential part of more complex swarm behaviors such
as foraging.
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• Flocking: cohesive and ordered motion of a group of individuals in
a common direction. Robots continually adjust their velocity to that
of neighboring robots, where the velocity of the neighboring robots
is estimated over a time-window. The flocking robots aggregate to-
wards and disperse from neighbors, if they are too far away or close
by, respectively. One of the most common applications of flocking
behaviors in real-world scenarios is the control of UAVs.

Faults

We use ARGoS to inject faults directly in the sensors and actuators of the
e-puck robots. As a consequence, the resulting anomalous behavior of the
robots correspond to the actions performed by their controllers, which are
either provided with corrupted inputs from faulty sensors, or whose com-
mands to actuators are not executed correctly by the underlying hardware.
The following anomalies affecting wheels actuators and proximity sensors
are considered:

• BACT: both wheels are prevented from rotating. This fault can refer to
one of two real-world scenarios: robot malfunction, or robot’s wheel
rim worn out. In ARGoS, it is simulated by setting the wheels speed
to to 0 cm/s when the fault occurs.

• RACT: the right wheel is prevented from rotating. In ARGoS, it is
simulated by setting the right wheel speed to to 0 cm/s when the fault
occurs.

• LACT: the left wheel is prevented from rotating. In ARGoS, it is simu-
lated by setting the left wheel speed to to 0 cm/s when the fault occurs.

• PMIN: proximity sensors return the smallest possible value. This fault
may mirror a disconnected proximity sensor in real scenarios.

• PMAX: proximity sensors return the largest possible value. Real sit-
uations of this kind are, for example, obstructions or dirty proximity
sensors.

• PRND: a random value for the proximity sensors is uniformly sam-
pled between the minimum and the maximum. A partially dislodged
proximity sensor could produce faults of this kind.

Please note that, although the faults just introduced represent component-
level anomalies, we do not make use of any sensory information directly
observing such components, nor are we interested in detecting them at the
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component level. We are instead interested in detecting the consequences
that such faults have on the general behavior of individual robots, e.g., a
BACT fault resulting in a motionless robot, or a LACT fault resulting in the
robot spinning on itself.

Experiments Execution

Experiments are performed with a swarm of 20 robots. For collecting the
training dataset, 10 nominal executions (i.e., all 20 robots behave nomi-
nally) have been collected for each homogeneous behavior (i.e., either ag-
gregation, dispersion, flocking, or homing). For testing, 19 of the 20 robots
perform one of the nominal behaviors, while, the remaining one, performs
one of the faulty behaviors, PMIN, PMAX, PRND, LACT, RACT, and
BACT (the faulty robot is anomalous for the whole duration of the run).
20 different executions are performed for each of the 24 combinations of 4
normal and 6 faulty behaviors. Each experiment lasts 6,000 control cycles
(corresponding to 600 s).

6.3.2 Results

We compare our approach against the method proposed in [154], where the
authors propose an immune system-inspired anomaly detector based on the
crossregulation model (CRM). The CRM [103] describes the dynamics of
effector T-cell populations and regulatory T-cell populations during interac-
tions with antigen presenting cells. Their method (which, for brevity, will
be referred to as CRM-based from now on), is composed of the following
three phases:

1. Robots observe and characterize the behavior of their neighbors over
a period of time, and, for each robot in their field of view they esti-
mate the corresponding features. A total of six features are computed:
the first two encode the observed robot’s immediate environment, two
other features capture the observed robot’s actions, and, lastly, two
features are used to describe the observed robot’s response to events.
Once collected, features are then shared with nearby robots to consol-
idate them (i.e., majority voting).

2. Every robot classifies the observed and consolidated features as nor-
mal/abnormal according to the CRM (which is run onboard).

3. The robots form voting coalitions to consolidate (i.e., majority voting)
their individual-level decisions on the detected anomalies.
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Figure 6.2: Comparison of detection performance for the dispersion behavior.

Results of the experiments are shown in Fig. 6.2, Fig. 6.3, Fig. 6.4
and Fig. 6.5, the F1-score is used for quantifying the goodness of the two
approaches on the different combinations of behavior/fault. It can be noted
how our method achieves a detection performance comparable to the one
proposed in [154]. The poorer detection performance for the PMIN fault
should be ascribed to the fact that normal behaving robots compensate for
the faulty one. Although a comparable detection performance is achieved,
it must be noted that our method does so while requiring much less injec-
tion of domain knowledge both for what regards feature engineering and
model parametrization. In particular, our methods learns to automatically
extract meaningful features from multivariate time series windows, while
the features employed in [154] are heavily hand-engineered and have a spe-
cific meaning w.r.t. the domain under study. Moreover, the CRM-based
model in [154] requires a total number of 17 parameters to be set, while
our method requires to set only the number of convolutional layers, the
number of filters and window of convolution and the latent dimension.

6.4 Concluding Remarks

In this chapter, we have presented an exogenous fault detection method
with the aim of better investigating the exogenous capabilities of our ap-
proach (as the endogenous ones for single-robot systems had already been
tested in the previous chapter). An interesting direction of future research
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Figure 6.3: Comparison of detection performance for the aggregation behavior.
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Figure 6.4: Comparison of detection performance for the homing behavior.
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Figure 6.5: Comparison of detection performance for the flocking behavior.

is to extend the proposed solution to account also for endogenous anomaly
detection and achieve a multi-layered perspective.
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Conclusion

As robots are less and less relegated in factories and are becoming a rele-
vant part of humans’ everyday life, anomaly detection techniques become
increasingly important. Since these sophisticated machines are susceptible
to different types of faults, detecting anomalies is needed not only to allow
these systems to reliably operate for long periods of time, but also to make
sure that otherwise undetected faults would not result in the robot damaging
itself, or harming surrounding people.

To address the above issues, we have presented some new approaches
for detecting various kinds of anomalies both in single- and multi-robot
systems operating in different real scenarios requiring LTA.

We have presented a novel approach based on HMMs and Hellinger dis-
tance for online and offline anomaly detection, and showed how it improves
over traditional methods both in detection performance and in interpretabil-
ity of the results. Unlike other works in the literature, we show that even
a single run is enough for learning the nominal behavior, making the semi-
supervised setting effectively applicable in practical real-world scenarios.
We have also proved how the methodology of adversarial data augmenta-
tion presented allows to improve the detection performance of HMM-based
anomaly detectors without using any prior knowledge about the appearance
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of the nominal time series, as traditional data augmentation methods re-
quire. The adversarial examples we generate are multivariate time series
very close to the original ones but we empirically prove that they produce
a performance improvement when used to augment the dataset with which
the detector is trained. Furthermore, the same examples improve also the
robustness of the detector to adversarial attacks in different domains.

We have then presented a new approach based on VAEs for detecting,
both online and offline, anomalies in the behavior of autonomous robots.
Our method outperforms other methods that have been recently proposed
for anomaly detection in robotics and does so by requiring significantly
less labeled data. We have shown how just even a single labeled nomi-
nal execution is sufficient for our method to partition a latent space (previ-
ously learned in an unsupervised fashion) in a meaningful way for detecting
anomalies. We have also shown how a variant of the proposed VAE archi-
tecture can be used by individual robots in a swarm to detect anomalies in
one another. Experiments on four different swarm behaviors showed that
our method achieves a detection performance comparable to a state-of-the-
art approach for anomaly detection in robotic swarms.

Although widely applicable in many different scenarios, as shown by
our extensive experiments, several factors should be taken into consider-
ation when choosing which one of the methods proposed in this thesis to
adopt in a particular situation.

Data availability certainly plays a big role; in fact, even though all the
methods proposed require very few (even just one) nominal executions to
be trained, the VAE-based approach requires also a certain amount of unla-
beled executions in order to be able to structure its latent space.

Another important aspect to consider is the effort for retraining; in fact,
if retraining directly onboard is envisaged, depending on the available com-
puting power of the robot considered, the non-data-augmented HMM-based
anomaly detector may be more suited than the others as it requires signifi-
cantly less computation for training.

Another thing to take into consideration is the different nominality se-
mantics adopted by the various models; in fact, nominality at time t for the
HMM-based approach means that the observations inside that specific win-
dow are overall nominal, while the VAE-based approach considers nominal
a specific time instant t only if all observation from t = 0 up to time t are
nominal.

If very complex robotic tasks are considered, the VAE-based method
should be favoured.
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7.1 Future Work

One of the biggest limitations of this thesis is certainly not having had
the opportunity of implementing the proposed anomaly detectors on real
robots. In fact, despite it being in the plans, it has not been possible to do
so due to the travel restrictions imposed by the COVID-19 pandemic. A
promising way of incorporating our proposed methods into the decision-
making mechanism of a real robot could be to rely on methods belonging
to the very recent research field of competence-aware systems [11], a new
paradigm that allows autonomous robots to operate at varying levels of au-
tonomy.

What follows is a list of additional directions of future work specifically
for each one of the methods proposed.

Future work for the HMM-based approach includes employing more
advanced versions of HMMs able to represent more complex behaviors
as well as developing new distances between such models. Specifically,
HMMs with Gaussian Mixture emission probabilities (GM-HMM) and a
variation of the Maximum Mean Discrepancy (MMD) would allow to over-
come the assumption on the same number of hidden states for the HMMs
representing nominal and observed behavior. Regarding the data augmenta-
tion procedure, future work will concentrate on three main extension to the
proposed methodology. The first one concerns the introduction of specific
time series distance measures in the strategy for adversarial example gen-
eration. The second one is to investigate whether adversarial examples ob-
tained with our method provide an increase in performance also when used
to augment the training set of other anomaly detectors, such as AEs and
one-class support vector machines. The third direction of future work fo-
cuses on the application of adversarial data augmentation to active anomaly
detection, i.e., when a system is actively looking for possible anomalies in
order to detect them more precisely and in advance.

Future work for the VAE-based approach includes employing a Gaus-
sian mixture prior on z to better represent different types of nominal be-
haviors. Another interesting future direction is employing β-VAEs [69], as
their ability of inducing a disentangled z could lead to an even more intu-
itive and interpretable latent space. When considering multi-robot systems,
future work will focus on investigating strategies for sharing observed fea-
tures among nearby robots. One promising way of achieving such goal is
represented by Graph Neural Networks (GNNs) [104].
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Chapter 7. Conclusion

The contributions of this thesis constitute a step towards the longer-term
goal of granting robots LTA capabilities. In the future, we will keep devel-
oping better and better anomaly detection solutions that will help achieving
the harmonious coexistence of humans and autonomous robots.
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[65] Kai Häussermann, Oliver Zweigle, and Paul Levi. A novel framework for anomaly detection
of robot behaviors. J Intell Robot Syst, 77(2):361–375, 2015.

[66] Nick Hawes, Christopher Burbridge, et al. The STRANDS project: Long-term autonomy in
everyday environments. IEEE RAM, 24(3):146–156, 2017.

[67] Ernst Hellinger. Neue begründung der theorie quadratischer formen von unendlichvielen
veränderlichen. Journal für die reine und angewandte Mathematik, 136:210–271, 1909.

[68] John Hershey, Peder Olsen, and Steven Rennie. Variational Kullback-Leibler divergence for
hidden Markov models. In Proc. ASRU, pages 323–328, 2007.

[69] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual con-
cepts with a constrained variational framework. In Proc. ICLR, pages 1–22, 2017.

[70] Geoffrey Hinton and Ruslan Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, 2006.

[71] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. arXiv:1503.02531, pages 1–9, 2015.

118



Bibliography

[72] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, 1997.

[73] Tesheng Hsiao and Mao-Chiao Weng. A hierarchical multiple-model approach for detection
and isolation of robotic actuator faults. Robot Auton Syst, 60(2):154–166, 2012.

[74] Jeff Huang, Cansu Erdogan, Yi Zhang, Brandon Moore, Qingzhou Luo, Aravind Sundaresan,
and Grigore Rosu. Rosrv: Runtime verification for robots. In Proc. RV, pages 247–254, 2014.

[75] Rolf Isermann. Model-based fault-detection and diagnosis – status and applications. Annu
Rev Control, 29(1):71–85, 2005.

[76] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-
Alain Muller. Adversarial attacks on deep neural networks for time series classification. In
Proc. IJCNN, pages 1–8, 2019.

[77] Brian Kenji Iwana and Seiichi Uchida. An empirical survey of data augmentation for time
series classification with neural networks. Plos one, 16(7):1–32, 2021.

[78] Saurabh Jha, Subho Banerjee, Timothy Tsai, Siva KS Hari, Michael B Sullivan, Zbigniew T
Kalbarczyk, Stephen W Keckler, and Ravishankar K Iyer. Ml-based fault injection for au-
tonomous vehicles: A case for bayesian fault injection. In Proc. DSN, pages 112–124, 2019.

[79] Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension sys-
tems. In Proc. EMNLP, pages 2021–2031, 2017.

[80] Biing-Hwang Juang and Lawrence Rabiner. A probabilistic distance measure for hidden
Markov models. AT&T Tech J, 64(2):391–408, 1985.

[81] Mateusz Kalisch. Fault detection method using context-based approach. In Advanced and
Intelligent Computations in Diagnosis and Control, pages 383–395. 2016.

[82] Fazle Karim, Somshubra Majumdar, and Houshang Darabi. Adversarial attacks on time se-
ries. IEEE PAMI, pages 3309–3320, 2020.

[83] Azarakhsh Keipour, Mohammadreza Mousaei, and Sebastian Scherer. ALFA: A Dataset for
UAV Fault and Anomaly Detection. Int J Rob Res, 0(0):1–6, 2020.

[84] James Kennedy. Swarm intelligence. In Handbook of nature-inspired and innovative com-
puting, pages 187–219. Springer, 2006.

[85] Eliahu Khalastchi and Meir Kalech. On fault detection and diagnosis in robotic systems.
ACM Comput Surv, 51(1):1–24, 2018.

[86] Eliahu Khalastchi and Meir Kalech. Fault detection and diagnosis in multi-robot systems: a
survey. Sensors, 19(18):4019, 2019.

[87] Eliahu Khalastchi, Meir Kalech, Gal Kaminka, and Raz Lin. Online data-driven anomaly
detection in autonomous robots. Knowl Inf Syst, 43(3):657–688, 2015.

[88] Belkacem Khaldi, Fouzi Harrou, Foudil Cherif, and Ying Sun. Monitoring a robot swarm
using a data-driven fault detection approach. Robot Auton Syst, 97:193–203, 2017.

[89] Belkacem Khaldi, Fouzi Harrou, Ying Sun, and Foudil Cherif. A measurement-based fault
detection approach applied to monitor robots swarm. In Proc. ICSC, pages 21–26, 2017.

[90] Diederik Kingma and Max Welling. Auto-encoding variational Bayes. In Proc. ICLR, pages
1–14, 2014.
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Urban Fietzek, and Dana Kulić. Data augmentation of wearable sensor data for parkinson’s
disease monitoring using convolutional neural networks. In Proc. ICMI, pages 216–220,
2017.

[158] Vandi Verma, Geoff Gordon, Reid Simmons, and Sebastian Thrun. Real-time fault diagnosis
[robot fault diagnosis]. IEEE RAM, 11(2):56–66, 2004.

[159] Pascal Vincent, Hugo Larochelle, Y. Bengio, and Pierre Manzagol. Extracting and composing
robust features with denoising autoencoders. In Proc. ICML, pages 1096–1103, 2008.

[160] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Sil-
vio Savarese. Generalizing to unseen domains via adversarial data augmentation. In Proc.
NIPS, pages 5334–5344, 2018.

[161] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting intrusions using
system calls: Alternative data models. In Proc. SSP, pages 133–145, 1999.

[162] Matt Webster, Clare Dixon, Michael Fisher, Maha Salem, Joe Saunders, Kheng Lee Koay,
Kerstin Dautenhahn, and Joan Saez-Pons. Toward reliable autonomous robotic assistants
through formal verification: A case study. IEEE Trans. Hum.-Mach. Syst., 46(2):186–196,
2015.

[163] Qingsong Wen, Liang Sun, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan Xu. Time
series data augmentation for deep learning: A survey. arXiv:2002.12478, pages 1–10, 2020.

123



Bibliography

[164] Alan FT Winfield, Jin Sa, Mari-Carmen Fernández-Gago, Clare Dixon, and Michael Fisher.
On formal specification of emergent behaviours in swarm robotic systems. Int. J. Adv. Robot.
Syst., 2(4):39, 2005.

[165] Sebastien C Wong, Adam Gatt, Victor Stamatescu, and Mark D McDonnell. Understanding
data augmentation for classification: when to warp? In Proc. DICTA, pages 1–6, 2016.

[166] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil K. Jain.
Adversarial attacks and defenses in images, graphs and text: A review. arXiv:1909.08072,
pages 1–12, 2019.

[167] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, You-
jian Zhao, Dan Pei, Yang Feng, Jie Chen, Zhaogang Wang, and Honglin Qiao. Unsupervised
anomaly detection via variational auto-encoder for seasonal KPIs in web applications. In
Proc. WWW, pages 187–196, 2018.

[168] Nong Ye. A Markov chain model of temporal behavior for anomaly detection. In Proc.
IA@IEEE SMC, pages 171–174, 2000.

[169] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei Cheng,
Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V Chawla. A deep neural network for
unsupervised anomaly detection and diagnosis in multivariate time series data. In Proc. AAAI,
pages 1409–1416, 2019.

[170] Long Zhao, Ting Liu, Xi Peng, and Dimitris Metaxas. Maximum-entropy adversarial data
augmentation for improved generalization and robustness. arXiv:2010.08001, pages 1–10,
2020.

[171] Yong Zhao, Chengsuo Zhang, Frank Soong, Min Chu, and Xi Xiao. Measuring attribute
dissimilarity with HMM KL-divergence for speech synthesis. In Proc. SSW, pages 206–210,
2007.

[172] Duan Zhuo-Hua, CAI Zi-xing, and YU Jin-xia. Fault diagnosis and fault tolerant control
for wheeled mobile robots under unknown environments: A survey. In Proc. ICRA, pages
3428–3433, 2005.

124


	Introduction
	Overview
	Contributions
	Applications
	Organization of the Thesis

	Related Work
	An Introduction to Anomaly Detection
	Anomaly Detection in Single-Robot Systems
	Anomaly Detection in Multi-Robot Systems
	Anomaly Detection in Robotic Swarms

	Concluding Remarks

	An HMM-based Anomaly Detector for Single-Robot Systems
	Introduction
	Hidden Markov Models
	The Proposed Method
	Problem Definition
	Mathematical Background
	Online Anomaly Detection
	Offline Anomaly Detection

	Experimental Results
	Water Monitoring Robot
	Socially Assistive Robot

	Concluding Remarks

	Data Augmentation for HMM-based Anomaly Detection
	Introduction
	Related Work
	Background and Notation
	Problem Definition
	Adversarial Example Generation
	Data Augmentation

	The Proposed Method
	Adversarial Example Generation
	Data Augmentation and Retraining

	Results
	Experimental Setting
	Performance Measures
	Domain D1: Tennessee-Eastman Industrial Chemical Process (TE)
	Domain D2: Secure Water Treatment Testbed (SWaT)
	Domain D3: UAV Fault and Anomaly Detection (ALFA)
	Domain D4: Water Monitoring with ASV (INTCATCH)

	Concluding Remarks

	A VAE-based Anomaly Detector for Single-Robot Systems
	Introduction
	Background on Deep Autoencoders
	AEs and VAEs for Anomaly Detection

	The Proposed Method
	Problem Definition
	Running Example
	Network Architecture
	Incremental Training
	Online Anomaly Detection
	Offline Anomaly Detection

	Experimental Results
	Water Monitoring Robot Dataset
	Patrolling Robot Dataset
	Assistive Robot Dataset
	Results
	Latent Space Analysis


	Detecting Anomalies in Robot Swarms
	Introduction
	The Proposed Method
	Experimental Results
	Experimental Setting
	Results

	Concluding Remarks

	Conclusion
	Future Work

	Bibliography

