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1. Introduction
Climate change is one of the biggest challenges
that humanity has to face today and, in order
to keep the global warming below 1.5°C and
limit the environmental damage, reaching net
zero carbon emissions by 2050 is crucial. To ac-
complish this goal and reduce the dependence
on fossil fuels, the adoption of renewable ener-
gies must be intensified, but carbon-free energy
sources are intermittent by nature and hence not
completely reliable. A solution would be the use
of synthetic fuels, or e-fuels, which could act as
storage for excess energy to be released at need.

Oxymethylene ethers (OMEs), a class of
synthetic oxygenated fuels with molecular struc-
ture CH3O[CH2O]nCH3, have been identified as
suitable additives or surrogates for traditional
diesel fuels and are becoming a relevant research
topic. The main reasons for this appeal are:

• their physico-chemical properties are simi-
lar to the ones of diesel fuels;

• their synthesis processes are well estab-
lished;

• their content of oxygen leads to the reduc-
tion of NOx and soot formation.
As a consequence, the interest for the chem-

ical kinetics of the OMEs has been rapidly grow-
ing, and more detailed models are becoming

available. Dimethyl ether (DME, OME0) and
dimethoxymethane (DMM, OME1) are small
enough to allow theoretical calculations for their
rate constants estimation, while for heavier ho-
mologues the mechanisms rely on analogies with
alkanes or smaller ethers, or are based on op-
timizations on experimental datasets. A com-
prehensive mechanism for OME0–4 has been re-
cently developed by Cai et al. [1], adopting the
DMM mechanism by Jacobs et al. [2] as refer-
ence for a reaction-class based methodology, and
subsequently optimizing some pre-exponential
factors to refine the agreement with the experi-
mental data.

The major drawback of adopting a detailed
mechanism to describe the combustion of OMEs
is the high numbers of species and reactions in-
volved, which increase more than linearly with
the fuel chain length. Therefore, detailed kinetic
models cannot be applied to heavy large-scale
simulations without the computational times to
become unsustainable, and reduction techniques
need to be applied. Fortunately the regular
structure and hierarchical nature of OMEs make
them very suitable for a lumped formulation of
their kinetics and, moreover, an eventual down-
stream optimization of the reaction parameters
is easier to perform on a reduced mechanism
than on a full sized one.
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In this Thesis, a kinetic mechanism of the
pyrolysis and oxidation of OME0–4 has been
obtained combining a novel automatic lump-
ing procedure and a data-driven mechanism op-
timization. The intermediate isomers in the
OMEs decomposition paths are grouped to-
gether in order to lump a detailed model built
from state-of-the-art sub-mechanisms available
in literature. The intermediate lumped kinet-
ics is then optimized, minimizing the objective
function that quantifies the differences between
the simulations and the experiments, and the
final mechanism is validated against the other
models and the experimental data.

2. Methodology
2.1. Model construction
The model describing the OME0–4 pyrolysis and
oxidation was assembled applying a hierarchi-
cal and modular procedure, progressively adding
sub-mechanisms to the CRECK kinetic frame-
work, adopted as core. Ethers chemistry was
included starting from a DME low-to-high tem-
perature kinetics, on top of which the DMM
sub-mechanism by Jacobs et al. [2] and the
OME2–4 sub-mechanisms by Cai et al. [1] were
integrated. The final detailed mechanism counts
282 species and 2657 reactions.

2.2. Chemical lumping
The chemical lumping procedure was separately
performed on each OME sub-mechanism, adopt-
ing a Master Equation Lumping (MEL, available
at https://github.com/lpratalimaffei/MEL)
methodology [3] and adjusting it for the pur-
pose of this Thesis. MEL was initially conceived
to simplify the complexity of the output of
multi-well master equation simulations, group-
ing species with similar chemical behaviour and
treating implicitly the reactivity of unstable in-
termediates. The methodology was therefore
adapted and, for the first time, successfully ap-
plied to the chemical lumping of a detailed ki-
netic model. The developed procedure is the
following:

1. once identified the structural isomers, the
pseudospecies that group them are defined;

2. the complete detailed mechanism is divided
into blocks characterized by reactions with
the same global stoichiometry;

3. the equilibrium reactions of the detailed
model are split into forward and backward
ones;

4. zero-dimensional isothermal and isobaric
simulations are performed to evaluate the
compositions of each pseudospecies;

5. the reactions parameters for each block
are calculated and the lumped OME sub-
mechanism is assembled.
The zero-dimensional isothermal and iso-

baric simulations were carried out in order to ac-
count for the intrinsic interconnections between
blocks, and evaluate the Branching Fractions
(BFs) of the isomers in a consistent way. The
chosen temperature interval (T = 500–2000 K)
is wide enough to ensure reliability in most con-
ditions of interest, while Φ = 0.5 was selected
to emphasize low-temperature oxidation kinet-
ics, and P = 20 bar as a good representative
value for the experimental range (P = 1–40 bar).

The average, temperature-dependent BFs
were then calculated from the simulation results.
In particular, BFi of each ith isomer in a pseu-
dospecies was determined according to Equation
(1):

BFi =

∫ tmax

0 Xi(t)dt

tmax
(1)

in which Xi is the ith isomer fraction in the total
isomers pool, defined in Equation (2):

Xi(t) =
xi(t)∑NS
i xi(t)

(2)

where xi is the mole fraction of the ith isomer
and NS the total number of species in the pool.
In Equation (1), tmax is the time of the simula-
tion when the maximum mole fraction of total
isomers is reached, after which it rapidly drops
to zero because of the oxidation ending.

The lumped reaction parameters were calcu-
lated with MEL, treating separately each mech-
anism block. The procedure consists in reduc-
ing an ODE system that describes the evolu-
tion of the initial set of species to an equivalent
lumped system, and is extensively discussed in
[3]. The BFs previously evaluated are used as
initial conditions to solve the initial system and
find the concentration profiles produced by each
pseudospecies.

The only reactions whose lumped param-
eters were evaluated manually were the ones
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yielding more than two products. The lumped
rate constants in these cases were derived as in
Equation (3):

k(T )L→P =
∑
i

BF (T )i · k(T )i→P (3)

where i → P represents the reaction of the ith

isomer to the set of products P , whereas L → P
indicates the lumped reaction. The obtained
values of k(T )L→P were finally fitted in a mod-
ified Arrhenius expression.

2.3. Data-driven optimization
As final step, the lumped model underwent
an optimization procedure in order to improve
the simulations-experiments agreement. The
methodology proposed by Bertolino et al. [4]
was implemented using the OptiSMOKE++ tool-
box and applied for the first time to a lumped
mechanism. The modified Arrhenius parameters
of the rates of the most relevant reaction, iden-
tified via sensitivity analysis, are optimized by
exploiting an evolutionary algorithm. One of the
major advantages of the approach is the possi-
bility to optimize pressure-dependent reactions

(in PLOG format) without losing their phys-
ical consistency. This was particularly useful
for the DMM sub-mechanism, in which various
pressure-dependent rates are present [2].

For each of the selected reactions, an uncer-
tainty factor f = 0.3 was assumed; this was a
conservative choice since it is the lowest value
among those reviewed by Bertolino et al. [4].
The corresponding maximum variation of the
optimized reaction rates is of a factor ∼2 with
respect to their nominal values. For the purpose
of this Thesis, all the considered reactions were
independently optimized, regardless of their re-
action class.

The objective function to minimize is based
on a Curve Matching (CM) index [5] that as-
sesses the differences between the simulations
and the experiments: after converting both into
functional data, the shapes of their curves and
those of their first derivatives are compared us-
ing an extended L2-norm and the Pearson coeffi-
cients. This way, the model-experiments agree-
ment is clearly quantified and the CM indices
can be employed to evaluate the performances
of the mechanisms in the several cases analyzed.

β-scission products

Ṙ

RȮ!

Q̇OOH
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LUMPING OF OME2:
29 à 10 SPECIES

Cyclic ethers+ȮH
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Figure 1: Schematic representation of OME2 kinetics. Green/dashed and red/dotted lines highlight
intermediate species originated respectively by primary and secondary radicals. Lumped isomers are
grouped by blue rectangles.
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3. Results and discussion
3.1. Mechanism lumping
The lumping procedure performed on OME2,
starting from the detailed kinetic mechanism of
Cai et al. [1], is reported in Figure 1 as exam-
ple for the method adopted for all OMEs. All
the species involved in the low-temperature ox-
idation can be identified, already grouped into
pseudospecies: OME2 alkyl (Ṙ), alkoxy (RȮ),
peroxy (RȮ2), hydroperoxy-alkyl (Q̇OOH), and
hydroperoxy-alkyl-peroxy (Ȯ2QOOH) radicals,
hydroperoxides (ROOH), cyclic ethers and keto-
hydroperoxides (OQOOH). The advantage of us-
ing a lumped scheme in terms of number of
species and reactions is clear: not only the ini-
tial 29 isomers have been grouped into 10 pseu-
dospecies, but also the multi-branched chem-
istry is now described by more linear pathways.

Reaction type N. of
blocks

Species
before/
after

lumping

Reactions
before/
after

lumping

H-abstraction 11 3/2 4/2

Ṙ decomposition 1 5/4 8/6

RȮ formation 2 4/2 2/1

Ṙ+O2 1 12/4 24/6

ROOH formation 3 4/2 4/2

RȮ decomposition 1 6/6 5/4

Q̇OOH+O2 1 20/4 15/3

Table 1: OME2 blocks of reactions with the
same global stoichiometry, grouped by reaction
type.

Table 1 summarizes the mechanism blocks
identified for OME2, divided by reaction type.
Within the same reaction type the blocks differ
in the starting reactants, such as the abstractors
in the H-abstraction type. The lumping proce-
dure was performed on each block, according to
the BFs derived from Equation (1).

The overall process resulted in a significant
reduction of the mechanism size in terms of
both reactions and species, as depicted in Fig-
ure 2. Starting from the DME sub-mechanism,
the detailed description of the combustion of the
OME1–4 requires 156 species, while the lumped
formulation only needs 50. The lumped OME1–4
mechanism counts a total of 176 species and
2486 reactions.
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Figure 2: Comparison between detailed
and lumped mechanisms number of species
(black/left) and reactions (grey/right).

3.2. Reactions selection
The selection of the reactions to be optimized
was performed evaluating their local sensitiv-
ity coefficients, normalized with respect to their
maximum, along the whole range of operat-
ing conditions. The coefficients were calculated
from the lumped mechanism for each dataset,
according to the variable of interest.

For the Ignition Delay Time (IDT) zero-
dimensional simulations, the sensitivity analyses
were performed on the ȮH molar fraction, at
the temperature corresponding to the inflection
point of the ignition curve. Three different char-
acteristic times were selected for each tempera-
ture, in order to cover for low-, intermediate-
and high-temperature kinetics. An example for
OME2 can be seen in Figure 3a; the sensitivity
coefficients, shown in Figure 3b, highlight the
promoting role of the OME2 radicals and the
inhibiting effect of the decomposition of OME2

Q̇OOH to the more stable DMM ketones.
Jet Stirred Reactor (JSR) speciation was in-

vestigated via sensitivity analyses carried out on
the fuel concentration at lean (Φ = 0.25), sto-
ichiometric (Φ = 1) and rich (Φ = 2) condi-
tions. For each, three temperatures were chosen,
corresponding to local minimum, maximum and
inflection point after the negative temperature
coefficient region.

Finally, the Laminar Flame Speed (LFS)
controlling reactions were identified with a mass
flow sensitivity analysis at three representa-
tive equivalence ratios: one corresponding to
the maximum burning velocity (Φ ≃ 1.2), one
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(a) ȮH molar fraction profile and selected
characteristic times.
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(b) Normalized sensitivity coefficients to ȮH mass fraction of the 10
most sensitive reactions for the selected times.

Figure 3: ȮH molar fraction profile in a zero-dimensional IDT simulation for OME2 at P = 9 bar and
T = 660 K with characteristic times. Also the 10 most sensitive reactions of the OME2 sub-mechanism
and their normalized sensitivity coefficients are reported.

higher (Φ ≃ 1.6) and one lower (Φ ≃ 0.9).
After the analyses were completed, from

the resulting reactions those belonging to the
DME and C1-C3 sub-mechanisms were excluded.
Since their parameters had not been modified
in the lumping operation, avoiding to optimize
them ensures that the original consistency of
these sub-mechanism is preserved. From the re-
maining reactions, all belonging to the OME1–4
sub-mechanisms, the first ten from each simula-
tion, for a total of 57, were selected to be opti-
mized.

3.3. Mechanism validation
All mechanisms were finally validated against a
wide range of experiments, including IDTs in
STs, speciations in JSRs and Plug Flow Reac-
tors, and LFSs. The capabilities of detailed,
lumped and optimized mechanisms in predicting
OME2–4/air stoichiometric IDTs are compared
in Figure 4 for the data measured by Cai et al.
[1] at P = 10− 20 bar. The detailed model rea-
sonably agrees with the experiments in all cases,
with the best results for OME4. The lumping
process brought about a general increase of the
mechanism reactivity, with a maximum devia-
tion from the detailed model of a factor ∼3;
for this, the predictions of the lumped model
for the reported cases improved for OME2 while
worsened for OME3–4. The optimization of the
lumped model resulted in a significant enhance-
ment of the results for all OMEs: the experi-

mental data are reproduced similarly to, or even
better than, the detailed mechanism.

Average Curve Matching index
Fuel Detailed Lumped Optimized

DMM 0.906 0.894 0.911

OME2 0.893 0.913 0.908

OME3 0.843 0.818 0.848

OME4 0.907 0.823 0.929

OME1–4 0.892 0.881 0.902

Table 2: Average Curve Matching indices of the
adopted mechanisms for each OME.

Table 2 collects the average CM scores [5] of
the mechanisms for each OME, considering the
experimental database available. This index al-
lows to precisely quantify the model-experiment
agreement, providing for each comparison a uni-
vocal score between 0 (complete disagrement)
and 1 (maximum agreement). The optimized
kinetics outperforms in every case the detailed
model and the lumped mechanism, with the only
exception of OME2.

4. Conclusions
In this Thesis a new methodology has been de-
veloped, successfully coupling the lumping of
structural isomers with a data-driven optimiza-
tion procedure, to obtain a reliable reduced ki-
netic model for OME0–4. To build the de-
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Figure 4: IDTs measured in a ST by Cai et al. [1] for OME2–4, together with modeling predictions.

tailed kinetics, the hierarchical approach was ex-
ploited, meaning that each new sub-mechanism
was added to the others in a modular way.

The detailed model was lumped adopting
and adjusting a recent procedure (MEL) [3]
based on the Master Equation, which was ap-
plied on each OME1–4 sub-mechanism sepa-
rately, in line with the hierarchy principle. The
species were grouped into pseudospecies accord-
ing to structural isomerism, greatly reducing
their final number from 282 to 176.

As a final step, an optimization procedure
that exploits evolutionary algorithms [4] was
performed on the lumped mechanism. The op-
timization targets were selected from a large
database of experimental results and, via sensi-
tivity analysis, a total of 57 reactions to optimize
was identified.

All the mechanisms were validated against
84 experimental datasets, covering a wide range
of reactors and operating conditions. The CM
indices [5] quantitatively confirm that the de-
veloped workflow was successful: the optimized
model recovered most of the accuracy lost in the
chemical lumping, while saving 106 species with
respect to the detailed mechanism.

After this first application of the lumping-
optimization coupling on the OME chemistry,
the next step is a more systematic and efficient
modeling of long-chain fuels. Future research
will involve the implementation of methodolo-
gies for hierarchical lumping and optimization
procedures based on reaction classes.
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Abstract

Oxymethylene ethers (OMEs) are a class of oxygenated synthetic fuels, which are re-
cently gaining interest because of their applications as diesel additives. As a matter of
fact, it has been observed that, adopting a proper blend of diesel and OMEs, the soot and
NOx emissions are noticeably reduced while the performances are maintained, without
major modifications to the engines needed. In order to further study the possible future
applications of OMEs in the transportation sector, a kinetic model of their combustion
is necessary. The high number of species included in its oxidation and decomposition
paths, though, makes unfeasible to use a detailed mechanism for demanding tasks, such
as Computational Fluid Dynamics simulations. In this Thesis, a kinetic mechanism de-
scribing the combustion of OMEs has been obtained through a new methodology, and
subsequently optimized to better represent the experimental data available.

An automatic chemical lumping procedure has been developed and successfully ap-
plied to the OME0–4 detailed chemistry, obtained by merging different sub-mechanisms
available in the literature. The approach consists in grouping structural isomers into
pseudospecies, and considering their relative reactivity in order to lump their reaction
paths accordingly. In this way, the number of species only increases linearly with the fuel
chain length, at the cost of minor accuracy losses. The lumped model was then opti-
mized by minimizing the differences between its predictions and the experimental results,
quantitatively expressed by a Curve Matching objective function. The optimization was
performed on the parameters of the modified Arrhenius expressions of the controlling
reactions, identified via sensitivity analyses carried out over the whole range of operat-
ing conditions and reactors. An uncertainty factor of about 2 was accounted for all the
reaction rates optimized.

The described approach proved remarkably effective in treating the OME initial mech-
anism of 282 species, producing a reduced model counting 176 species. Not only the final
kinetics is more compact saving more than 100 species, but behaves similarly to, and
frequently even better than, the detailed model in the majority of the cases studied.
The properties considered are Ignition Delay Times in Shock Tubes, speciations in Jet
Stirred and Plug Flow Reactors, and Laminar Flame Speeds, evaluated in a wide range
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of temperatures, pressures and equivalence ratios. After this first successful result, the
methodology here developed could be applied to heavier fuels, with even higher compu-
tational advantages expected.

Keywords: Oxymethilene ethers, OME, energy carriers, detailed kinetics, chemical
lumping, data-driven optimization.
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Sommario

Gli eteri ossimetilenici (OME) sono una classe di carburanti ossigenati sintetici, che stanno
recentemente guadagnando interesse per via delle loro applicazioni come additivi per il
diesel. È stato infatti osservato che, utilizzando la corretta miscela di diesel e OME,
le emissioni di particolato e NOx vengono notevolmente ridotte mentre le prestazioni ri-
mangono invariate, senza bisogno di modificare eccessivamente il motore. Per studiare
ulteriormente le possibili future applicazioni degli OME nel settore dei trasporti, è nec-
essario un modello cinetico della loro combusione. L’elevato numero di specie coinvolte
nei loro cammini di decomposizione e ossidazione, tuttavia, rende impossibile l’utilizzo di
un meccanismo dettagliato per lavori pesanti, come simulazioni di Fluidodinamica Com-
putazionale. In questa Tesi, attraverso una nuova metodologia, è stato ottenuto un mec-
canismo cinetico che descrive la combustione degli OME, e successivamente ottimizzato
per rappresentare meglio i dati sperimentali disponibili.

Una procedura automatica di lumping chimico è stata sviluppata e applicata con
successo alla chimica dettagliata degli OME0–4, ottenuta unendo diversi sub-meccanismi
disponibili in letteratura. L’approccio consiste nel raggruppare gli isomeri strutturali in
pseudospecie, e considerare la loro reattività relativa per lumpare di conseguenza i loro
percorsi di reazione. In questo modo il numero di specie cresce solo linearmente con
la lunghezza della catena del combustibile, al costo di minori perdite in accuratezza. Il
modello lumpato è stato quindi ottimizzato minimizzando le differenze tra le sue previsioni
e i risultati sperimentali, espresse quantitativamente da una funzione obiettivo Curve
Matching. L’ottimizzazione è stata eseguita sui parametri delle espressioni Arrhenius
modificate delle reazioni controllanti, individuate da analisi di sensitività svolte sull’intero
spettro di condizioni operative e reattori. È stato considerato un fattore di incertezza di
circa 2 per ogni velocità di reazione ottimizzata.

L’approccio descritto si è rivelato particolarmente efficace nel trattare il meccanismo
iniziale OME di 282 specie, producendo un modello ridotto che ne conta 176. Non solo la
cinetica finale è più compatta risparmiando più di 100 specie, ma si comporta in maniera
simile, e spesso anche migliore, del modello dettagliato nella maggioranza dei casi studiati.
Le proprietà considerate sono Tempi di Ignizione in Shock Tubes, speciazioni in reattori
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Jet Stirred e Plug Flow, e Velocità di Fiamma Laminari in un ampio intervallo di tem-
perature, pressioni e rapporti di equivalenza. Dopo questo primo risultato di successo, la
metodologia qui sviluppata potrà essere applicata a carburanti più pesanti, con vantaggi
computazionali attesi ancora maggiori.

Parole chiave: Eteri ossimetilenici, OME, vettori energetici, cinetica dettagliata, lump-
ing chimico, ottimizzazione.
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1| Introduction

Today, climate change is one of the most pressing issues that humanity has to face [1],
as it has recently been reminded by the 2021 United Nations Climate Change Conference
(commonly referred to as COP26). At the conference, which took place in Glasgow
(Scotland) from 31th October to 12th November 2021, it was stressed that every country
should reach net zero carbon emissions by 2050 in order to keep global worming under
1.5°C and limit the environmental damage [2]. Scientific research, together with regulation
policies and changes of individual behaviours, inevitably plays a fundamental role in this
difficult challenge.

Figure 1.1: GHG emissions in Europe in 2017, from transportation and non-transportation
sector by sources [3].

The transportation sector is among the most impactful, not only contributing to
global warming with greenhouse gases (GHGs) emissions (Figure 1.1), but also being a
major source of local pollutants, such as nitrogen oxides (NOx) and particulate (soot)
[3, 4]. In Europe, the transportation sector produces about 23% of GHGs and 46% of
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NOx [5], and the reduction of these emissions is at the moment an important research
topic. The current trend seems to be completely oriented towards electric vehicles which,
despite being a promising long term solution, still present important open problems. For
example, the lithium battery disposal is an issue that needs to be carefully addressed [6],
and the increased load on the electric infrastructures cannot be ignored. Moreover, as
shown in Figure 1.2, about 63% of electricity produced globally in 2019 came from fuel
combustion [7], thus making it an energy source still far from being completely green.

Figure 1.2: Global electricity sources in 2019 [7].

It is then inevitable that for the most part of the 21st century combustion will still
cover an important role both as a direct fuel and as an electricity source (Figure 1.3).
Despite the efforts and impressive results, renewable energy will not be able to cover even
50% of the total demand [7], which is expected to rise also because of the demographic
and economical growth of the new global powers. During this period of transition, it is
crucial to find ways to limit the impact that combustion has on the environment, both
improving the efficiency of Internal Combustion Engines (ICEs) and reducing emissions
with better fuels.

One of the investigated paths is the use of alternative fuels, which, especially in the
transportation sector, would substitute or integrate the traditional ones derived from oil,
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such as gasoline and diesel. The main advantage of these fuels would be reduced emissions,
but it is worth to mention also that some could be synthesized indirectly from the CO2

captured from air, further decreasing their overall carbon impact. Moreover, synthetic
fuels (e-fuels), could act as storage for renewable energy, which is by nature intermittent
and not continuous. It is the case of the fuel class known as oxymethylene ethers (OMEs),
which shows good combustion properties; for this reasons a lot of research is being done
in order to use them in ICEs as diesel surrogates or additives [8].

Figure 1.3: Expected sources of electricity in the first half of the 21st century [9].

1.1. Oxymethilene ethers

OMEs are a class of oxygenated fuels with general structure CH3O[CH2O]nCH3. The
subscript n indicates the number of CH2O groups present and the corresponding molecule
is referred to as OMEn. The simplest is dimethyl ether (DME, OME0) with n = 0, followed
by dimethoxymethane (DMM, OME1) with n = 1, and higher OMEs, as shown in Figure
1.4. They have gained a lot of interest from the scientific community over the past years
for different reasons, such as:

• their physico-chemical properties are similar to the ones of diesel fuels, allowing
them to be burned in standard, or slightly modified, diesel engines [10];

• their synthesis processes are well established and use common and low cost reactants;
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in addition, some routes involve captured CO2 and renewable electricity, increasing
the overall sustainability;

• their content of oxygen leads to NOx and particulate formation reduction, as shown
by several experimental [8, 11, 12] and numerical [13–15] studies.

Figure 1.4: Graphical representation of OME0–5. Carbon is grey, oxygen red and hydrogen
white [16].

The addition of DME in diesel fuel is known to reduce soot and NOx formation [17],
but it also lowers the viscosity, increases the vapor pressure and may reduce solubility
at low temperatures [18, 19]. This would require some modifications to the traditional
diesel engines. DMM also has good potential as additive, but experiments show that
engines still require some adjustments [20]. Higher OMEs (n = 2–5), if the correct blend
is chosen, can be instead added to diesel without modifying the engine infrastructure [21]
and they are hence the main research target.

1.1.1. Properties

Table 1.1 summarizes the key physico-chemical properties of OMEs and conventional
diesel fuel. As already said, DME and DMM cannot be used in current diesel engines as
they are but, because of their lower viscosities and boiling point, they require alterations
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to the fuel supply system. On the other hand, heavier OMEs seem suitable to be used
with the current configuration. Furthermore, contrary to DME, they do not present a
miscibility gap with diesel at temperatures below 0°C [18]. Finally, because of their lower
vapor pressures, they do not need to be stored in pressurized tanks, which makes a great
advantage in terms of handling and safety.

CDF DME DMM OME2 OME3 OME4

Melting point [°C] / -141 -105 -70 -43 -10

Boiling point [°C] 170-390 -25 42 105 156 201

Viscosity (25°C)[mPa s] 2.71 / 0.58 0.64 1.05 1.75

Density liquid (25°C)[kg/L] 0.83 / 0.860 0.960 1.024 1.067

Cetane number [-] 55 55 29 63 70 90

Oxygen content [wt%] / 34.7 42.1 45.3 47.1 48.2

Table 1.1: Properties of conventional diesel fuel (CDF), dimethyl ether (DME),
dymethoxymethane (DMM) and higher OMEs [22].

OMEs with n > 3 have a cetane number between 70 and 100, which makes them
excellent fuels. Also, their high density ensures to reach the desired oxygen content (42-
53 wt%) with a small addition in terms of volume. Since OME2 has a small flash point,
which is important for safety, and heavy OMEs could precipitate and clog filters, the best
compromise would be using OMEs with n = 3–4.

The most interesting property of OMEs, though, is their reduction potential of NOx

[23] and soot formation. This is due to the activated methylene groups next to the
oxygen atoms (-O-CH2-), which form hydroperoxides in the early stages of combustion:
these decompose into ȮH radicals which oxidize and degrade soot precursors [24]. The
presence of polyaromatic hydrocarbons (PAHs) is also known to favor soot formation,
and OMEs, being synthetic fuels, do not contain the PAHs naturally occurring in crude
oil [25]; combustion of pure OME1, for example, shows no soot formation at all [26].
As a downside, high CO emissions are reported [27, 28], which could suggest incomplete
combustion: this would cause a deterioration in engine efficiency and it is a problem that
needs to be properly addressed.
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1.1.2. Synthesis

Figure 1.5 illustrates the two main processes to produce OMEs from methanol. Pathway
A has been studied in detail and optimized [22, 29–31]; the intermediates are in this case
trioxane and DMM, both derived from formaldehyde, which comes from dehydrogenation
of methanol. Also DME can be used instead of DMM to react with trioxane, allowing
a single integrated process [22, 32]. This process results in a higher selectivity of OME
compared to others. Pathway B, using methanol and formaldehyde, takes advantage
of low-cost reactants but it is less consolidated and offers a lower selectivity because of
by-products such as water and glycols.

High Purity Oligomeric Oxymethylene Ethers as Diesel Fuels

Chemie Ingenieur Technik, Volume: 89, Issue: 4, Pages: 486-489, First published: 07 February 2017, DOI: (10.1002/cite.201600158)

Figure 1.5: Block flow diagram of the main synthesis processes for OME [33].

Methanol is traditionally produced in a steam reforming process but, recently, more
sustainable possibilities have opened. Converting biomass-derived synthesis gas is a viable
option [34], but also using captured CO2 with electricity. Those routes are the most
promising in terms of carbon footprint and energy performances and have been studied
in detail, together with a combined hybrid process [35]. DME can be obtained from
methanol too, through a low cost dehydration step [36] or, more conveniently, in a direct
route integrated in the OME synthesis [37].

A whole process from biomass (biological sources, including plants, foods and ani-
mal wastes) to OMEs has been recently proposed [38–40]. These sources are considered
carbon-neutral since the CO2 released using biomass can be absorbed during its lifetime,
creating a closed carbon loop, differently from fossil fuels which release additional carbon
into the atmosphere.
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Another production route for OMEs that guarantees a closed carbon loop is its syn-
thesis with CO2 and renewable hydrogen [41, 42]. In Figure 1.6 two possibilities are
reported. In both cases, methanol is produced via catalytic reduction of carbon diox-
ide with hydrogen. CO2 can be captured from air or produced in bio-gas plants and
H2 ideally comes from water electrolysis through renewable power. In the first pathway
OME1 is obtained from a condensation reaction of methanol and formaldehyde but, since
formaldehyde production involves an oxidation step, this route is red-ox inefficient. The
second pathway, instead, follows a purely reductive route where methanol catalytically
generates the central CH2 unit of the OME [41, 43]. This anhydrous path also prevents
the formation of the many side-products that the use of water inevitably produces. This
means also that separation is not needed, which is a main factor in energy (and hence
carbon) footprint.

Figure 1.6: Two main possible pathways of DMM synthesis from CO2 and hydrogen [44].

All the mentioned processes produce mixtures composed mainly of OME1–5, with
lower amounts of heavier ethers. If the goal is to obtain a single OME with uniform chain
length, additional separation and purification steps are required. This inevitably increases
costs and energy consumption, and for this reason a lot of research is focusing on using
directly as fuel the mixtures with the synthesis composition.

1.2. Kinetic mechanisms

In order to improve engines efficiency and reduce consumptions and emissions, research
on both engines and fuels must be done. It is inevitable that, to accomplish this, great
knowledge of fluid dynamics and kinetics of the combustion process is required. With
the increasing computational power available, the empirical approach has gradually been
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replaced by a more systematic method, based on simulations. This implies that models
are now built upon rational and predictive principles, and not only on the base of the ex-
perimental results. Kinetic parameters, for example, are derived from quantum chemistry
calculations, or applying consolidated rate rules.

As a matter of fact, numerical modeling has defined the last decades of combustion
research, with more and more complex models, whose predictions became more accurate.
The main advantage of numerical simulation is its flexibility, while experiments are ex-
pensive and time consuming. On the other hand, though, a good kinetic mechanism is
necessary to guarantee accurate results that follow the experimental behaviours.

It was in the 1970s that, thanks to the more accessible computational capability,
studies on kinetic mechanisms began emerging, with hydrogen and methane being the
first investigated fuels [45]. The understanding of the detailed chemistry of methane
combustion anticipated further kinetic studies, but it was not until the mid 1990s that
the computers were developed enough to handle detailed models of heavier fuels. The
hierarchical approach has simplified the job greatly: in order to extend an already existing
kinetic model to a new fuel, it is sufficient to add the subset of reactions that, from the
new molecule, lead to the smaller ones, already completely described [46].

One major drawback of this method is that, even with the computational power cur-
rently available, detailed kinetic models in several cases cannot be used in Computational
Fluid Dynamics (CFD) simulations. The limit is indeed imposed by the number of reac-
tions and, especially, species, which increase computational times according to a power
law with exponent between 2 and 3 [47]. This is due to the transport equation that must
be added for each new species, which enlarge the Jacobian matrices required to solve
steady-state or dynamic problems. Obtaining results in an acceptable time is, for this
reason, often impossible with detailed mechanisms, and another approach is required. For
example, the evaluation of the laminar burning velocity of a flame using a one-dimensional
model and adopting a serial solver, would already require some weeks when about 400
species are involved [48]. A viable solution would be a simplification of the model with
the lumping approach, which will be discussed in detail in the next Chapter.

Specifically regarding OMEs, a lot of research has been focused on DME (OME0)
and DMM (OME1). Because of their smaller length, it is possible to estimate the rate
constants of the elementary reaction pathways with more accurate calculations [49–51],
and subsequently implement them in kinetic models [52–54]. For the larger molecules of
the series, the available mechanisms are based on analogies with smaller ethers [55] or
alkanes [56], or obtained optimizing other kinetic models on experimental results [57].
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The majority of mechanisms so far has been using OME3 as the only fuel, for which
a broad range of experimental data are available. This is because, as already stated, it
is considered among the most promising as diesel additives, if mixtures are excluded. A
complete mechanism including all OMEs up to n = 4, though, has been recently developed
by Cai et al. [58]: a reaction class based methodology was combined with the principle
of hierarchy in order to obtain an automatic generation process for the reactions and
their kinetic parameters. The reference for the reaction classes was the OME1 mechanism
by Jacobs et al. [51], schematically represented in Figure 1.7. The agreement with the
experimental data was finally improved with an optimization of the pre-exponential factors
based on reaction rate rules [59].

Figure 1.7: Representation of the low temperature kinetics of OME1 combustion. The
flux analysis is performed at P = 20 bar, under stoichiometric conditions, when the 20%
of the initial concentration of fuel is consumed, at T = 600 K (blue), T = 825 K (black)
and T = 1150 K (red) [51].

Since the number of species increases more than linearly with the chain length of
the OME, a detailed mechanism rapidly reaches an unacceptable number for large CFD
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simulations, and preliminary reduction techniques become essential [60]. Luckily, the reg-
ular structure of OMEs and their intrinsically hierarchical nature allow a simple enough
lumped formulation of their kinetics. There are examples in literature [61] that shows the
good results of the lumping approach in obtaining low and high temperature mechanisms
for long-chain fuel, maintaining a good accuracy. Furthermore, this approach looks par-
ticularly suitable for a systematic downstream optimization of the reaction parameters in
order to improve the agreement with the experimental data. The relatively small size of
the lumped mechanism is, in fact, a big advantage in the optimization procedure, which
can be faster and performed on a wider amount of data: not only Ignition Delay Times
(IDTs) in Shock Tubes (STs) and speciations in Jet Stirred Reactors (JSRs), but also
Laminar Flame Speeds (LFSs) which are more demanding of computational resources.

1.3. Aim and structure of the thesis

The ultimate purpose of this Thesis is to combine the lumping procedure and the subse-
quent mechanism optimization, in order to obtain a smaller comprehensive kinetic scheme
for OME1–4, validated for pyrolysis and combustion in a broad set of conditions. In Chap-
ter 1 an overview of the subject is given, with the current state-of-the-art. Chapter 2
shows the methodology adopted for the construction of the mechanism, starting from
pre-existing ones, and its successive lumping. The focus of Chapter 3 is the optimization
of the lumped mechanism, which is illustrated in detail. All the validations performed
on the mechanisms with the OpenSMOKE++ suite [48] are collected in Chapter 4: sticking
to the hierarchical approach, the mechanism was constantly validated (against both ex-
perimental data and previous mechanisms) for every new OME that was added and after
its lumping. Also the final optimized mechanism was validated once more. Finally, in
Chapter 5 the conclusions are drawn, and some possible future work is discussed.
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the kinetic mechanism

The detailed mechanism for OME0–4 was set up by merging different sub-mechanisms
from the literature, exploiting the hierarchy principle. Each of them was previously built
by applying a reaction class based methodology. The modular approach also allowed
the mechanism behaviour to be validated for each new sub-mechanism added, as it will
be extensively shown in Chapter 4. The lumping procedure was finally performed on the
complete detailed mechanism, resulting in the number of both species and reactions being
greatly reduced. These operations will be discussed in detail in this Chapter.

2.1. Mechanism construction

The building blocks of the final detailed OME0–4 mechanism are shown in Figure 2.1: the
core is a high temperature C1-C3 mechanism from CRECK group [62–64], to which the
ethers chemistry was gradually added.

C1-C3 HT CRECK
DME Burke et al.

DMM Jacobs et al.
OME3 Cai et al.+ OME0-4 detailed

OME2 Cai et al.

OME4 Cai et al.

Sub-mechanismsCore mechanism

Figure 2.1: Structure of the OME kinetic mechanism: DME, DMM and OMEs sub-
mechanisms were added to the core C1-C3 mechanism.

In the CRECK kinetic framework, the H2/O2 and C1-C2 modules had been adopted
according to Metcalfe et al. [65] and improved with the work of Bagheri et al. [62]. On
top of them, the C3 model developed by Burke et al. [66] had been added. The DME low
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and high temperature sub-mechanism was obtained from a work by Burke et al. [67], in
which additional reaction pathways had been implemented [68] (see Figure 2.2) in order
to predict more accurately the behaviour of intermediate species such as formic (HOCHO)
and carbonic (HOCOOH) acids. Also H-abstractions by H, HO2, O(3P) and CH3 were
updated according to studies by Cavallotti et al. [69]. The DMM sub-mechanism was
integrated from Jacobs et al. [51] without major modifications. Heavier OMEs (n = 2–4)
were finally taken into account with the sub-mechanisms proposed by Cai et al. [58],
which, as already mentioned, was generated by an automated process using the DMM
mechanism by Jacobs et al. as reference and subsequently optimized [59]. The final
detailed mechanism included 282 species and 2657 reactions.

Figure 2.2: DME low-, medium- and high-temperature oxidation pathways. Red arrows
highlight routes added to improve the original model [68].
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2.1.1. Species nomenclature

A coherent species nomenclature system was adopted throughout the sub-mechanisms for
clarity. Each species is labeled with its sub-mechanism name, its class and a number to
identify the isomer. For example, alkyl radicals of the DMM are called DMM-R1 and
DMM-R2, hydroperoxydes of the OME2 are OME2-ROOH1 and OME2-ROOH2, and so
on. Their respective lumped pseudospecies, defined in the next Section, maintain the same
name, without the isomer label: DMM-R, OME2-ROOH, and so forth. An exhaustive
list of all pseudospecies is in Appendix A.

2.1.2. Pressure dependence

Both DME and DMM sub-mechanisms involve pressure-dependent reactions for low-
temperature chemistry, which increase their level of complexity. In the kinetic file, these
reactions are modeled in a logarithmic format, known as PLOG [70], which is gradually
replacing the Troe formulation [71] because of its potentially superior accuracy. PLOG
reactions are expressed using multiple sets of Arrhenius parameters, each describing the
temperature dependence at different constant pressures. For a pressure P between Pj

and Pj+1, the kinetic constant k can be obtained through the logarithmic interpolation
in Equation (2.1):

ln k = ln kj + (ln kj+1 − ln kj)
lnP − lnPj

lnPj+1 − lnPj

(2.1)

Higher OMEs chemistry, on the other hand, is not pressure-dependent. This simplifies
their lumping, as will be mentioned in the next Section.

2.1.3. Preliminary modifications

DMM and OME2–4 sub-mechanisms by Jacobs et al. [51] and Cai et al. [58] were slightly
simplified before being adopted for the final OME0−4 mechanism. Specifically, they in-
volved some duplicate reactions, such as DMM-O2QOOH1⇔DMM-OQOOH1+OH and
its heavier homologues. Duplicate reactions are usually adopted to model reactions with
non-Arrhenius behaviour, but in this case they were unnecessary. As a matter of fact,
they were added together and refitted in a three parameters modified Arrhenius form,
shown in Equation (2.2), maintaining a coefficient of determination R2 above 0.99.

k(T ) = AT βe−
Ea
RT (2.2)
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Another modification was the removal of some fast decomposing species by making
them react directly into their decomposition products. This means that if the species
B produced in A⇒B+C subsequently decomposes in B⇒D+E, it can be skipped by as-
suming that A⇒D+E+C. Species removed were CH2OCOOH, CH3OCOOH, CH3OCOO,
OCHOCHO and CH2O2H, all from the DMM sub-mechanism. The mechanism behaviour
was checked to be unaffected, confirming the assumption of instant decomposition.

2.2. Chemical lumping

The chemical lumping procedure has the ultimate purpose to reduce the number of species
and reactions of a model, retaining as much accuracy as possible. In order to do that,
different species are grouped together into single pseudospecies with averaged thermo-
dynamics and transport properties. Subsequently, reaction rates need to be properly
adjusted to take into account the merging of reactants and products. In this Thesis the
lumping process was performed on each OME sub-mechanism individually, again accord-
ing to the hierarchy principle. The more isomers and branchings a mechanism involves,
the greater it is the advantage of its lumping. For this reason DME, not including isomers
and branchings at all, did not need any work; OME4, instead, benefited of the largest
reduction.

For the sake of obtaining an automatic and efficient workflow, a Master Equation
Lumping (MEL, available at https://github.com/lpratalimaffei/MEL) methodology
[72] was exploited; MEL was initially designed to process and simplify multi-well master
equation simulations, but was adapted successfully to the purpose of this Thesis. The
approach, conceived to group together species with similar chemical behaviour and treat
implicitly unstable intermediates reactivity, was extended to work on a complete mech-
anism. For the first time, MEL was applied successfully to the reduction of a detailed
kinetic scheme. The five steps describing the procedure, repeated separately for each
OME sub-mechanism, are the following:

1. all the pseudospecies are defined together with the various isomers they group. The
chosen criterion was structural isomerism, so the classification was straightforward.
Moreover, each pseudospecies maintained in most of the cases the same functional
groups;

2. the complete detailed mechanism is divided into blocks, each characterized by reac-
tions having the same global stoichiometry. For example, the combination reaction
A+B⇒C and its subsequent isomerization C⇒D belong to the same block, contrar-
ily to C+E⇒F, which involves more atoms and is included in a different block;

https://github.com/lpratalimaffei/MEL
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3. the equilibrium reactions of the detailed model are split into forward and backward
ones, according to the thermodynamic equilibrium restrains. This is due to the
fictitious nature of the pseudospecies: they cannot be included into equilibrium
reactions without losing physical meaning;

4. zero-dimensional isothermal and isobaric simulations are performed to evaluate the
compositions of each pseudospecies as function of pressure and temperature. DMM
was the only exception for which the compositions were evaluated directly by MEL,
as it will be remarked later;

5. the reactions parameters for each block are calculated, either manually or with MEL,
and the lumped OME sub-mechanism is assembled.

For the final lumped mechanism to be obtained, these operations were performed on all
four OMEs. Since the process was almost identical for each of them, with some minor
exceptions for DMM, OME2 will be mostly used as example to illustrate the steps. This
is because it is a good trade-off between number of species and mechanism complexity.

2.2.1. Pseudospecies definition

One of the most crucial steps of the lumping procedure is the definition of the various
pseudospecies and the selection of the isomers in their pools. In this Thesis, each pseu-
dospecies includes all the species sharing structural isomerism. Figure 2.3 exemplifies the
lumping process performed on the Cai et al. [58] OME2 sub-mechanism. Green/dashed
and red/dotted lines highlight the intermediate species that, in the detailed mechanism,
are generated starting respectively from the primary and secondary radicals. Blue rect-
angles group the isomers included in the same pseudospecies.

The low temperature kinetics starts with the formation of an alkyl radical (Ṙ), which,
attacked by oxygen, forms a peroxy isomer (RȮ2). This can either react into an hy-
droperoxide (ROOH), an alkoxy radical (RȮ) or isomerize into an hydroperoxy-alkyl
radical (Q̇OOH). ȮH elimination from Q̇OOH leads to cyclic ethers, while a second
O2 addition produces hydroperxy-alkyl-peroxy radicals (Ȯ2QOOH), which can react into
keto-hydroperoxydes (OQOOH). The combustion proceeds with the β-scission products,
which are involved in lower OME kinetics, until the oxidation is complete and mostly
H2O and CO2 remain. Just by looking at Figure 2.3, the advantage of using a lumped
scheme in terms of number of species and reactions is clear: not only the initial 29 isomers
have been grouped into 10 pseudospecies, but also the multi-branched chemistry is now
described by more linear pathways. A complete list of the pseudospecies defined for all
OMEs can be found Appendix A.
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β-scission products

Ṙ

RȮ!

Q̇OOH

O!Ȯ2QOOH

LUMPING OF OME2:
29 à 10 SPECIES

Cyclic ethers+ȮH

OME2

O! RȮ

ROOH

β-scission products

β-scission products

β-scission products

OQOOH+ȮH

β-scission products

Figure 2.3: Schematic representation of OME2 kinetics. Green/dashed and red/dotted
lines highlight intermediate species originated respectively by primary and secondary rad-
icals. Lumped isomers are grouped by blue rectangles.

2.2.2. Blocks separation

Every sub-mechanism needs to be divided into blocks of reactions sharing the same global
stoichiometry, since MEL only handle kinetics respecting this characteristic. Table 2.1
reports, as example, the number of OME2 blocks, classified by reaction type. For each of
them, it is shown the comparison of the number of species and reactions before and after
the lumping procedure. Ṙ+O2 and Q̇OOH+O2, being the largest blocks, benefited the
most from the process.
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Reaction type
N. of
blocks

Species before/after
lumping

Reactions before/after
lumping

H-abstraction 11 3/2 4/2

Ṙ decomposition 1 5/4 8/6

RȮ formation 2 4/2 2/1

Ṙ+O2 1 12/4 24/6

ROOH formation 3 4/2 4/2

RȮ decomposition 1 6/6 5/4

Q̇OOH+O2 1 20/4 15/3

Table 2.1: OME2 blocks of reactions with the same global stoichiometry, grouped by
reaction type.

2.2.3. Equilibrium removal

All equilibrium reactions involving lumped species must be split into forward and back-
ward ones in order to maintain the physical meaning of the system. This is because if
the equilibrium reactions are treated as they are, the resulting lumped equilibrium reac-
tions will not describe correctly the behaviour of the reverse ones. On the other hand,
lumping separately forward and backward reactions guarantees that the behaviour of all
the species is accounted for. OpenSMOKE++ kinetic preprocessor [48] is able to evaluate the
reverse kinetic constant kb for each reaction, from the forward kf and the equilibrium Ke

constants as in Equations (2.3) and (2.4):

kb =
kf

Ke
(2.3)

Ke = e

(
∆S̃0

R
−∆H̃

RT

)(
Patm

RT

)∑NS
i (νbi−νfi )

(2.4)

where NS is the total number of species involved in the reaction, and νf
i and νb

i the stoi-
chiometric coefficients of the ith species in the forward and backward reaction. Reaction
entropy ∆̃S

0
and and reaction enthalpy ∆̃H are evaluated according to Equations (2.5)

and (2.6):

∆S̃0 =

NS∑
i

(
νb
i − νf

i

)
S̃i

0
(2.5)
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∆H̃ =

NS∑
i

(
νb
i − νf

i

)
H̃i (2.6)

in which S̃i
0

and H̃i are the specific entropy and enthalpy of the ith species, expressed
in the thermodynamic properties file. Finally, the resulting backward kinetic constant is
fitted into the three parameters modified Arrhenius form of Equation (2.2).

For the sake of completion, the thermodynamic and transport parameters of the pseu-
dospecies should be an average of the ones of the isomers in their pool, weighted on the
compositions evaluated as detailed in the next Subsection. However, since the lumped
species do not take part into equilibrium reactions and the isomers parameters were sim-
ilar enough, the properties of the most abundant isomer were selected to represent the
pseudospecies. Concerning the transport parameters, they were identical among all the
isomers of the same pseudospecies, and thus did not need any assumptions or modifica-
tions.

2.2.4. Composition selection

In order for the lumping to be accurate, the new reaction parameters must be calculated
taking into account the isomers distribution in each pseudospecies. Using MEL, it is
possible to determine the isomers pool of every pseudospecies, separately for each block
of reactions; this is done performing a series of simulations with the various isomers in
turn as reactants and all the others as products, applying an infinite sink approximation.
Despite this being effective for lumping independent blocks, it presents a big limit when
applied to a whole mechanism: the interactions between different blocks of reactions are
ignored, inevitably losing information about isomers subsequent reactivity.

DMM was the only sub-mechanism which was lumped according to the composition
selection performed by MEL, because the subsequent reactivity of its isomers did not play
a relevant role. Since its mechanism contained pressure-dependent reactions, pressures
of 0.01, 1, 2, 10, 20, 100 and 500 bar were selected for the simulation of reaction blocks
involving them, in a wide temperature range of 500-2000 K. On the other hand, using
isomer compositions calculated by MEL for OME2–4 lumping resulted in very poor models.

In order to account for the intrinsic interconnection among multiple blocks, which are
more significant for heavier OMEs, a different strategy was exploited. OpenSMOKE++ was
adopted to perform zero-dimensional isothermal and isobaric simulations with the OME as
reactant, in the same temperature range of 500-2000 K and using the detailed mechanism.
The pressure chosen for the simulations was 20 bar: since OME2–4 sub-mechanisms did not
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include pressure-dependent reactions, it was considered to be a good representative value
for the experimental range of P = 1–40 bar. Lean conditions (Φ = 0.5) were selected
to better highlight low-temperature combustion kinetics. The averaged, temperature-
dependent branching fractions (BFs) to be imposed in MEL for the parameters evaluation
were then calculated from the simulations results. In particular, BFi of each ith isomer
in a pseudospecies was determined according to Equation (2.7):

BFi =

∫ tmax

0
Xi(t)dt

tmax

(2.7)

in which Xi is the ith isomer fraction in the total isomers pool, defined in Equation (2.8):

Xi(t) =
xi(t)∑NS

i xi(t)
(2.8)

where xi is the mole fraction of the ith isomer and NS the total number of species in
the pool. In Equation (2.7), tmax is the time of the simulation when the maximum mole
fraction of total isomers is reached, after which it rapidly drops to zero because of the
oxidation ending. Figure 2.4 shows, as example, the BFs of the five isomers of the OME2-
QOOH pseudospecies in the low-temperature area.
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Figure 2.4: BFs of the OME2-QOOH pseudospecies in the 500-1000 K temperature range.
The two main isomers (OMEQOOHX5X1 and OMEQOOHX3X1) constitute in this case
about 90% of the total isomers pool, and effects of temperature are minimal.
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2.2.5. Parameters evaluation

Most of the lumped reaction parameters were calculated with MEL, simulating separately
each mechanism block. The procedure was described in detail in a recent work [72],
and will be reported here briefly. To begin with, the set of Ñ pseudospecies is defined,
specifying merged and unmerged species. Then, the ODE system dc/dt = Kc describing
the evolution of the initial set of N species (K is the rate constant matrix in the detailed
model and c the species concentration vector) is reduced to the equivalent lumped system
dc̃/dt = K̃c̃. The system dc/dt = Kc needs to be solved in Ñ sets of simulations: in
each set, one of the Ñ pseudospecies is the reactant, and all the others are the products.
The concentration of the products can only increase in time, because of the infinite sink
approximation applied, resulting in an exponential decay of the reactant. This allows
to approximate the lumped rate constants of the matrix K̃ from a differential fit of
the product concentration profiles produced by each pseudospecies. These concentration
profiles of the lumped system dc̃/dt = K̃c̃ are derived from the ones of the detailed system,
solved using the BFs previously evaluated as initial conditions. Finally, the derived lumped
mechanism is validated comparing its performances in zero-dimensional isothermal and
isobaric simulations against those of the detailed mechanism.

The only reactions whose lumped parameters were evaluated manually were the ones
yielding more than two products. The lumped rate constants in these cases were derived
as in Equation (2.9):

k(T )L→P =
∑
i

BF (T )i · k(T )i→P (2.9)

where i → P represents the reaction of the ith isomer to the set of products P , whereas
L → P indicates the lumped reaction. The obtained values of k(T )L→P were finally fitted
in the modified Arrhenius form already shown in Equation (2.2).

2.2.6. Lumping results

The big advantage of the lumped mechanism over the detailed one, progressively growing
with the chain length, is clearly shown in Figure 2.5. As a matter of fact, both the number
of species and reactions in the lumped mechanism increase only linearly with every new
OME included. Contrarily, the detailed mechanism size grows faster because of the larger
number of structural isomers modeled. The final lumped OME0−4 mechanism counts 176
species and 2486 reactions, saving more than 100 species out of the 282 of the detailed
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model. The usefulness of the lumped kinetics has been qualitatively confirmed by a great
reduction of computational times for heavy simulations. The good accuracy retained will
be confirmed by the validations in Chapter 4.

0 1 2 3 4
OMEn

0

50

100

150

200

250

300

N
um

be
r o

f s
pe

ci
es

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

N
um

be
r o

f r
ea

ct
io

ns

Detailed
Lumped

Figure 2.5: Comparison between detailed and lumped mechanisms number of species
(black/left) and reactions (grey/right). These refer to the size of the whole mechanism,
increasing with every new OME sub-mechanism added. DME does not present any dif-
ference between detailed and lumped mechanism because it could not be reduced any
further.
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mechanism

The lumped OME0–4 mechanism underwent an optimization process to improve its agree-
ment with the experimental measurements available in literature. The methodology pre-
sented by Bertolino et al. [73] was adopted to this purpose, applying it for the first time
to a lumped mechanism using the OptiSMOKE++ toolbox [74]. This approach is based on
an evolutionary algorithm that optimizes the three parameters of the modified Arrhenius
expression. The reactions to be optimized are identified by performing sensitivity analy-
ses on the various cases. In this Chapter, after an overview of the toolbox, the workflow
exploited to obtain the final optimized lumped OME0–4 mechanism will be described.

3.1. OptiSMOKE++

The OptiSMOKE++ toolbox applies heuristic optimization strategies to refine uncertain
kinetic parameters. The optimization targets can be experimental data from several
ideal reactors, including IDTs in Batch reactors (adopted to simulate STs) and Rapid
Compression Machines (RCMs), species concentrations in JSRs and Plug Flow Reactors
(PFRs), and LFSs. The numerical simulations are performed on OpenSMOKE++ [48], while
the DAKOTA toolkit [75] handles the optimization. DAKOTA includes a variety of
optimization algorithms, which can be selected by the user.

Figure 3.1 depicts an overview of the OptiSMOKE++ workflow. After the input file
is read, the code changes the chosen parameters of the kinetic scheme, and checks that
all of them are within the uncertainty bounds, applying a non-linear constraint kmin ≤
k ≤ kmax. If at least one falls outside the bounds, a penalty function is applied and
the simulations are skipped to save computational time, otherwise OpenSMOKE++ runs
the simulations, and the objective function is calculated from the results. At this point,
DAKOTA suggests a new set of parameters, based on the value of the objective function,
and the operation is repeated until at least one of the stopping criteria is reached.
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Figure 3.1: OptiSMOKE++ schematic workflow [74].

3.1.1. Objective function

The solution of an optimization problem is determined based on the evaluation of an
objective function, which models the difference between the current evaluation (Y sim) and
the experimental targets (Y exp), and whose minimum value corresponds to the problem
optimum. One of the most common definitions is the Least Squares, or L2-norm, reported
in Equation (3.1), where the residual is squared for each data point j in each dataset i.
N is the total number of datasets and Ni the number of data points in dataset i.

Obj =
N∑
i

Ni∑
j

(Y exp
i,j − Y sim

i,j )2 (3.1)
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In order to take into account the different uncertainties of each data point, the varying
dimensions of each dataset and the number of datasets, the L2-norm objective function
used by OptiSMOKE++ is adjusted as in Equation (3.2):

Obj =
1

N

N∑
i

1

Ni

Ni∑
j

(
Y exp
i,j − Y sim

i,j

σ(Y exp
i,j )

)2

(3.2)

where σ is the standard deviation. To avoid numerical problems, experimental targets
scattered proportionally to the experimental value itself, such as IDTs, are included in the
objective function through their natural logarithm: Y exp

i,j = ln(yexpi,j ) and Y sim
i,j = ln(ysimi,j ),

where yexpi,j and ysimi,j represent the experimental and simulated value for point j in dataset
i. Without this, the objective function would not be evenly distributed between data
points, and it would be harder to achieve a general improvement [76]. For other targets,
as species concentrations and LFSs, the objective function is derived directly from the
absolute value of the experimental and simulated results: Y exp

i,j = yexpi,j and Y sim
i,j = ysimi,j .

Another possible definition of objective function is based on the Curve Matching (CM)
index [77], first introduced by Bernardi et al. [78]. This approach compares functional
estimations of experiments and models based on splines interpolation, smoothed by a
roughness penalty on the second derivative. Also a cross-validation applied on the first
derivative of the function is adopted [79]. For the CM index to be evaluated, the norm of
a curve h in the L2-space needs to be introduced, as in Equation (3.3):

||h|| =

√∫
D

h(x)2dx (3.3)

The curves of the model m and of the experiments g, belonging to the dataset i are
compared through the Pearson dissimilarity indices reported in Equations (3.4), (3.5),
(3.6) and (3.7):

d0i,L2
=

1

1 + ||m−g||
|D|

∈ (0, 1) (3.4)

d1i,L2
=

1

1 + ||m′−g′||
|D|

∈ (0, 1) (3.5)

d0i,P = 1− 1

2

∥∥∥∥ m

||m||
− g

||g||

∥∥∥∥ ∈ (0, 1) (3.6)
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d0i,P = 1− 1

2

∥∥∥∥ m′

||m′||
− g′

||g′||

∥∥∥∥ ∈ (0, 1) (3.7)

where m′ and g′ are the first derivatives of the curves and D the intersection of their
domains. The overall performance index of the model, with respect to the experimental
dataset i, is computed as in Equation (3.8):

CM i =
d0i,L2

+ d1i,L2
+ d0i,P + d1i,P
4

∈ (0, 1) (3.8)

The more the index approaches 1, the more the two functions are similar, and thus the
model better reproduces the experimental values of set i. The related objective function
is reported in Equation (3.9), where N is again the number of datasets. It is also possible
to introduce a number of bootstrap variations Nb, in which case the expression becomes
the one in Equation (3.10):

Obj =
1

N

N∑
i

(1− CMi) (3.9)

Obj =
1

N

N∑
i

(
1− 1

Nb

Nb∑
j

CMi,j

)
(3.10)

Both L2 and CM objective functions were tested on the DMM sub-mechanism opti-
mization for this Thesis. It was assessed that the optimized mechanism derived with the
CM approach behaved slightly better. The decision was then to adopt the CM objective
function for the optimizations of all sub-mechanisms.

3.1.2. Uncertainty of kinetic parameters

The acceptance limits of the rate constants for each reaction are defined from the uncer-
tainty factor f , as kmin = k0 · 10−f and kmax = k0 · 10f , where k0 is the nominal kinetic
constant before the optimization. On its part, f can be estimated from the spread of the
direct experimental data and theoretical estimation of a specific constant in the literature,
as f = 0.5 · log(kmax/kmin). Specific uncertainty ranges of kinetic parameters A, β and
Ea can also be evaluated from these limits, as previously done by Fürst et al. [80].

OpenSMOKE++ uses the rate constant expression of Equation (3.11) in order to reduce
time expensive calculations.
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k = exp

(
ln(A) + β ln(T )− Ea

RT

)
(3.11)

OptiSMOKE++ employs therefore the same definition, where ln(A), β and Ea/R are the ac-
tive parameters for the optimization. Even third body efficiencies can be used as uncertain
parameters, as well as low and high pressure limits of fall-of reactions [81].

In the present Thesis, an uncertainty factor f = 0.3 was assumed. This was a con-
servative choice since, among all the values reviewed by Bertolino et al. [73], this was
the smallest. The corresponding maximum variation of the optimized rate constant with
respect to its original value is of about a factor 2. Figure 3.2 reports, as example, the
kinetic constant of the reaction R2146, belonging to the DMM sub-mechanism, before
and after optimization. The optimized rate constant falls inside the uncertainty region
for the whole temperature range, respecting the limits imposed by kmin and kmax.
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Figure 3.2: Rate coefficient for reaction R2146 of the OME0–4 mechanism. k0 is the nom-
inal kinetic rate of the lumped mechanism and kopt the optimized one: it is demonstrated
that it falls inside the uncertainty region between kmin and kmax, determined by an un-
certainty coefficient f of 0.3.

3.1.3. PLOG optimization

OptiSMOKE++ allows to optimize pressure dependent reactions in PLOG format retaining
their physical consistency. This could not be done optimizing all their parameters inde-
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pendently, since it could lead to a non-monotonic behaviour without physical meaning.
Moreover the number of parameters to handle for a single reaction rapidly rises if many
pressures are defined. The problem is solved introducing three uniformly distributed ran-
dom variables, listed in Equations (3.12), (3.13) and (3.14): X1, X2 and X3 are used
respectively to correct all A, β and Ea of the reaction simultaneously, so that the same
parameters are modified of the same amount.

X1 ∈ [− ln(10f ),+ ln(10f )] (3.12)

X2 ∈
[
− f

log10(Tmax)
,+

f

log10(Tmax)

]
(3.13)

X3 ∈ [−fTmin ln(10),+fTmin ln(10)] (3.14)

An example is reported in Figure 3.3, where the rate coefficient of the reaction R2146,
from the DMM sub-mechanism, is represented for different temperatures and pressures.
The optimized kinetic constant falls inside the uncertainty region delimited by kmin and
kmax for the whole range of conditions. Despite the weak dependence on P , it is confirmed
that the PLOG reaction maintains its monotonic behaviour even after the optimization,
thanks to the adopted approach.
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Figure 3.3: Rate coefficient for reaction R2146 of the OME0–4 mechanism at different T

and P . k0 is the nominal kinetic rate of the lumped mechanism, and kopt the optimized
one.
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3.2. Optimization methodology

The methodology followed to optimize the lumped mechanism can be described as:

1. selection of the datasets to use as optimization targets, among the whole experi-
mental database;

2. choice of the reactions to optimize for each case and sub-mechanism, based on
sensitivity analyses;

3. division of the datasets into different blocks of optimizations, depending on the
eventual overlap of the sensitive reactions;

4. construction of the final mechanism, merging the optimized reactions from the var-
ious optimizations.

An important preliminary decision to be made was whether to optimize the lumped
mechanism using the experimental values or the detailed mechanism results as targets.
This was a conceptual assumption that would define the purpose of the whole operation:
in the first case the optimized mechanism would better reproduce the experiments, but
in the second would be more similar to the original detailed kinetics, respecting the
philosophy of lumping. In the end, agreement with the experimental values was chosen
for the sake of usefulness: since the initial detailed mechanism presented some modeling
flaws, it was assumed to be better to improve the lumped optimized kinetics.

3.2.1. Optimization targets

The whole database of experimental results for OME0–4 is reported in Chapter 4, and
consists of 84 datasets divided into:

• IDTs in Batch reactors;

• speciations in JSRs and PFRs;

• LFSs in premixed laminar flames.

A selection process was performed to divide the datasets into optimization and validation
targets. The 28 DME datasets were excluded since its already established mechanism
was not involved in the optimization. PFRs results were used in validation for simplicity,
hence only JSRs, LFSs and IDTs were evaluated as optimization targets.
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(a) DMM optimization database. (b) OME2 optimization database.

(c) OME3 optimization database. (d) OME4 optimization database.

Figure 3.4: Experimental data on OMEs combustion adopted as optimization targets, in
terms of temperature, pressure and equivalence ratio.

Among the DMM experiments, IDTs by Jacobs et al. [51] and Gillespie [82] were
the selected optimization targets, covering a wide range of temperatures (T ≃ 700–1800
K), pressures (P = 1–40 bar) and compositions (Φ = 0.5–2). Jacobs dataset at 9 bar
and Gillespie datasets at 3.5 bar were kept for validation, since they covered an operating
conditions space already densely populated. JSR optimization was performed on the
experiments by Vermeire et al. [50] (low and medium temperature, atmospheric pressure
and Φ = 0.25–2). Only DMM mole fractions were used as target, because optimizing on
the concentrations of the intermediate species resulted in decreased overall performances
of the optimized mechanism. Some experimental points above 1000 K had to be ruled out,
for their simulations did not converge in a stationary solution but was oscillating: this
is not a numerical issue, but a physical behaviour experimentally observed [83]. No LFS
experiment was included in the DMM optimization, since the nominal lumped mechanism
already well reproduced the experimental results, as shown in the next Chapter.
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OME2–4 sub-mechanisms were optimized simultaneously, for reasons that will be clar-
ified in the next Section, therefore they will be here discussed together. They were op-
timized on all the IDT experiments by Cai et al. [58], performed at T ≃ 600–1100 K,
P = 10–20 bar and Φ = 0.5–2. Results by Ngugi et al. [84], Fritsche et al. [85] and
Richter et al. [86], covering T = 393–473 K, P = 1–10 bar and Φ = 0.6–2, were selected
as optimization targets for LFS simulations. Two datasets (P = 5 bar and P = 10 bar)
from Fritsche et al. were used for validation only, because they had one data point each
and no reasonable optimization could be carried out.

Figure 3.4 summarizes all the 502 data points from 33 datasets chosen as optimization
targets, represented in a temperature, pressure and equivalence ratio space. The whole
range of experimental conditions was largely covered for the optimizations, so the re-
maining 56 OME1–4 datasets were reserved for the subsequent validation of the optimized
model. For every data entry, it was assumed a relative experimental uncertainty of 20%.

3.2.2. Reactions selection

The selection of the reactions to be optimized was performed evaluating the associated
local sensitivity coefficients, normalized with respect to their maximum, along the whole
range of operating conditions. The first order coefficient of the variable y with respect to
the parameter α is defined in Equation (3.15):

s =
∂y

∂α
(3.15)

The coefficients were calculated using the OpenSMOKE++ suite [48] from the lumped mech-
anism, in a specific way for each dataset according to the variable of interest (IDT, DMM
mole fraction or LFS).

For each IDT zero-dimensional simulation, the sensitivity analyses were performed on
the ȮH molar fraction, at the temperature corresponding to the inflection point of the
ignition curve. Three different characteristic times were selected for each temperature, in
order to cover for low-, intermediate- and high-temperature kinetics. An example of these
times for OME2 can be seen in Figure 3.5a: the considered pressures ranged between 1
and 40 bar, according to the experimental results available. The sensitivity coefficients
from the example, shown in Figure 3.5b, underline the promoting role of the OME2

radicals, produced through H-abstraction by ȮH and HO2 and subsequently consumed
in its recombination with O2 and isomerization to Q̇OOH. The decomposition of OME2

Q̇OOH to the more stable DMM ketones slows down the combustion process instead,
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since it reduces the number of radicals driving the ignition and it competes with the low-
temperature branching pathways eventually leading to the production of ȮH radicals.
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(a) ȮH molar fraction profile and char-
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of the 10 most sensitive reactions for the selected times.

Figure 3.5: ȮH molar fraction profile in a zero-dimensional IDT simulation for OME2 at
P = 9 bar and T = 660 K with characteristic times. Also the 10 most sensitive reactions
of the OME2 sub-mechanism and their normalized sensitivity coefficients are reported.

JSR speciation was investigated with sensitivity analyses carried out on DMM con-
centration at lean (Φ = 0.25), stoichiometric (Φ = 1) and rich (Φ = 2) conditions. For
each, three temperatures were chosen, corresponding to local minimum, maximum and
inflection point after the negative temperature coefficient (NTC) region. Figure 3.6 re-
ports these temperatures for DMM at Φ = 0.25. Atmospheric pressure was the only one
considered, due to the lack of experimental data in different conditions.
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Figure 3.6: Temperatures selected for sensitivity analyses on DMM, in a JSR at Φ = 0.25

and P = 1.07 bar.
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Finally, the LFS controlling reactions were identified with a mass flow sensitivity
analysis at three representative equivalence ratios: one corresponding to the maximum
burning velocity (Φ ≃ 1.2), one higher (Φ ≃ 1.6) and one lower (Φ ≃ 0.9). An example
for OME3 can be seen in Figure 3.7. Temperatures and pressures analyzed for each OME
were the ones relevant for the experimental conditions.
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Figure 3.7: Chosen equivalence ratios for mass flow sensitivity analyses of OME3 LFS, at
P = 1 atm and T = 408 K.

After the analyses were completed, from the resulting reactions those belonging to
the DME and C1-C3 sub-mechanisms were excluded. Since their parameters had not
been modified in the lumping operation, avoiding to optimize them ensures that the
original consistency of these sub-mechanism is preserved. From the remaining reactions,
all belonging to the OME1–4 sub-mechanisms, the first ten from each simulation were
selected to be optimized.

3.2.3. Optimization blocks

Having determined ten sensitive reactions for each simulation, in order to decide how to
proceed with the optimization, a critical study on which reactions were shared among
different simulations was performed. It resulted that all relevant reactions for DMM
simulations did not appear in the OME2–4 analyses, hence its sub-mechanism could be
optimized independently. DMM sensitive reactions for IDTs and JSRs, though, had many
entries in common, therefore both optimizations were carried out together. Its LFSs
were already very good, and only depended on one reaction that hence was decided
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not to be adjusted. OME2–4, on the other hand, shared many important reactions and
their optimization could not be carried out separately. There were not however common
reactions involved in IDTs and LFSs, so the two remained independent.

From this, three separate blocks of reactions, schematized in Figure 3.8, were defined:

• 11 reactions (5 of which in PLOG format) optimized on 8 sets of IDTs and 3 sets
of JSR for DMM;

• 42 reactions optimized on 10 sets of IDTs for OME2–4;

• 4 reactions optimized on 12 sets of LFSs for OME2–4.

The reason for the small number of reactions for the LFSs is the fact that flame propa-
gation is mainly controlled by the C1-C3 core reactions [46], however improvements were
observed nonetheless and it was decided to include them. All the 53 reactions, with their
parameters before and after optimization, can be found in Appendix B; they were finally
updated in the lumped mechanism, obtaining the final optimized kinetics. Its model-
ing predictions are available in the next Chapter, compared to those of the detailed and
lumped models and to the experimental data.

DMM IDT JSR LFS

OME2 IDT / LFS

OME3 IDT / LFS

OME4 IDT / LFS

Figure 3.8: Graphical representation of the 3 optimizations performed: DMM sub-
mechanism on IDTs and JSRs data, and OME2–4 sub-mechanisms on IDTs and LFSs
separately. DMM kinetics was not optimized on LFSs due to already good performances.
JSRs results were not available except for DMM.
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In this Chapter the models results, validated against a wide experimental database, are
collected and organized by fuel and simulation type. DME cases reports only experimen-
tal data and the results from the detailed model, since no lumping and optimization were
performed on the DME sub-mechanism. OME1–4 Sections include a performance com-
parison between detailed, lumped and optimized model instead. For each OME except
DME, a heat map is also reported, comparing the CM indices of the different mechanisms.
In every plot, symbols represent experimental results while lines are for simulations. All
simulations have been carried out in OpenSMOKE++ [48]. IDTs measured in STs have been
simulated in Batch reactors, using the same definition adopted in the corresponding paper.

4.1. DME

Figure 4.1: DME experimental database.
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The experimental database analyzed for DME is the largest available among all OMEs.
It consists of 28 sets of experiments, including IDTs measured in STs [66, 87, 88], LFSs,
[89, 90] and speciations in JSRs [91] and PFRs [92–95]. All data, represented in a three-
dimensional space in Figure 4.1, were used for validation only, since DME sub-mechanism
was not optimized.

4.1.1. Ignition Delay Times

0.6 0.65 0.7 0.75 0.8 0.85 0.9
1000/T [K -1]

10-5

10-4

10-3

10-2

ID
T 

[s
]

 = 1

Cook

P = 1.6 bar
P = 1.8 bar
P = 3.3 bar
P = 5.4 bar
P = 6.6 bar

(a) DME IDTs at Φ = 1 and P = 1.6–6.6 bar.
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(b) DME IDTs at Φ = 0.5–2 and P = 3.3 bar.

Figure 4.2: DME IDTs measured in a ST by Cook et al. [87] and model predictions.
DME is diluted in 99% O2 and Ar.

DME IDTs have been measured in a ST by Cook et al. [87], whose results are reported in
Figure 4.2, for T ≃ 1100–1400, Φ = 0.5–2 and P = 1.6–6.6 bar. The model well represents
the data in the whole range of interest and no major discrepancies are detected. The same
can be said for the results by Tang et al. [88] in Figure 4.4, for T ≃ 1100–1600, Φ = 0.5–2
and P = 1–10 bar, which are perfectly reproduced by the model.
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(c) DME IDTs at Φ = 1 and P = 11–25 bar.
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(d) DME IDTs at Φ = 2 and P = 11–25 bar.

Figure 4.3: DME IDTs measured in a ST by Burke et al. [67] and model predictions.
DME and O2 are diluted in Ar as reported in the paper.

Figure 4.3 collects ST IDTs measured by Burke et al. [66] for T ≃ 650–1400, Φ = 0.3–2
and P = 11–30 bar. It is evident in this case that the DME reactivity is over-estimated
by a maximum factor of about 3 in the NTC area of the low temperature kinetics. The
temperature at which the NTC behaviour begins increases with the equivalence ratio and
the pressure. IDTs decrease for higher pressures because of the higher concentration of
reactants.
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Tang
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Figure 4.4: DME IDTs measured in a ST by Tang et al. [88] and model predictions.
Experiments are conducted at Φ = 1 and P = 1–10 bar. DME and O2 are diluted in
about 95% Ar.

4.1.2. Laminar Flame Speeds

LFSs has been measured at atmospheric pressure in a wide range of temperatures (T =

298–650 K) and equivalence ratios (Φ ≃ 0.7–1.4) by Varghese et al. [89] and Zhao et al.
[90]. The results are plotted together with the model predictions in Figure 4.5.

The kinetic scheme well reproduces the experimental behaviour at low T and Φ, but
presents small over-estimations at Φ > 1.1 for all temperatures. The difference is the
largest for T = 650 K, where it is more than 20 cm/s and interests the whole Φ range.
The LFSs for T = 298 K in Figure 4.5b, on the other hand, are under-estimated: this
could confirm an error trend that follows the temperature, but may also be due to the
different experimental setups of the two authors.
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(a) DME LFSs at T = 400–650 K and P = 1 atm.
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Figure 4.5: DME LFSs measured by Varghese et al. [89] (a) and Zhao et al. [90] (b), and
model predictions. DME is diluted in air.

4.1.3. Plug Flow Reactors

The species concentrations of DME combustion have been investigated in PFRs working
around atmospheric pressure, in a small range of equivalence ratios (Φ = 0.6–1.2) and
temperatures (T ≃ 400–1200). The data collected by Zhang et al. [92], Wang et al. [93],
Herrman et al. [94] and Guo et al. [95] are plotted respectively in Figures 4.6, 4.7, 4.8
and 4.9, together with the DME model predictions.

All the major species, such as DME, H2, H2O, O2, CO and CO2, are reproduced
very well in all the cases, with only minor discrepancies at specific temperatures. Other
species, like CH3OCHO and CH2O, present bigger differences between experiments and
simulations in the whole range of conditions (Figures 4.7h, 4.8g, 4.8h and 4.9g). It must
be considered, though, that the measured uncertainties for those species are also larger.
H2O2 was only measured by Guo et al. (Figure 4.9c) and it is slightly over-predicted by
the simulation.
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(a) DME mole fractions.
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(b) H2 mole fractions.
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(c) H2O mole fractions.
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(d) O2 mole fractions.
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(e) CO mole fractions.
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(f) CO2 mole fractions.
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(h) CH2O mole fractions.
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(i) CH2O2 mole fractions.

Figure 4.6: Species mole fractions of DME combustion measured in a PFR by Zhang et
al. [92] and model predictions. DME and O2 are diluted in 93% Ar. Experiments are
carried out at Φ = 0.8 and P = 0.97 bar.



4| Mechanism validation 41

400 500 600 700 800 900 1000 1100 1200
T [K]

0

1

2

3

4

5

6

x 
[-]

10-3 P = 1 atm,  = 1, CH2O

400 500 600 700 800 900 1000 1100 1200
T [K]

0

0.2

0.4

0.6

0.8

1

1.2

x 
[-]

10-3 P = 1 atm,  = 1, CH3OCHO

400 500 600 700 800 900 1000 1100 1200
T [K]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

x 
[-]

P = 1 atm,  = 1, CO

400 500 600 700 800 900 1000 1100 1200
T [K]

0

0.005

0.01

0.015

0.02

0.025

x 
[-]

P = 1 atm,  = 1, CO2

400 500 600 700 800 900 1000 1100 1200
T [K]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

x 
[-]

P = 1 atm,  = 1, DME

(a) DME mole fractions.
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(b) H2 mole fractions.
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(c) H2O mole fractions.
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(d) O2 mole fractions.
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(e) CO mole fractions.
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(g) CH2O mole fractions.
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(h) CH3OCHO mole fractions.

Figure 4.7: Species mole fractions of DME combustion measured in a PFR by Wang et
al. [93] and model predictions. DME and O2 are diluted in 95% Ar. Experiments are
carried out at Φ = 1 and P = 1 atm.
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(a) DME mole fractions.
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(b) H2 mole fractions.
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(c) H2O mole fractions.
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(d) O2 mole fractions.
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(e) CO mole fractions.
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Figure 4.8: Species mole fractions of DME combustion measured in a PFR by Herrman et
al. [94] and model predictions. DME and O2 are diluted in about 86% Ar. Experiments
are carried out at Φ = 0.8–1.2 and P = 1 atm.
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(a) DME mole fractions.
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(b) H2 mole fractions.
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(c) H2O2 mole fractions.

500 550 600 650 700 750
T [K]

0

1

2

3

4

5

6

7

8

x 
[-]

10-3 P = 1 atm,  = 0.6, CH2O

500 550 600 650 700 750
T [K]

0

0.5

1

1.5

2

2.5

3

x 
[-]

10-3 P = 1 atm,  = 0.6, CH3OCHO

500 550 600 650 700 750
T [K]

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

x 
[-]

P = 1 atm,  = 0.6, CO

500 550 600 650 700 750
T [K]

0

0.5

1

1.5

2

2.5

x 
[-]

10-3 P = 1 atm,  = 0.6, CO2

500 550 600 650 700 750
T [K]

0

0.005

0.01

0.015

0.02

0.025

0.03

x 
[-]

P = 1 atm,  = 0.6, DME

500 550 600 650 700 750
T [K]

0

0.5

1

1.5

2

2.5

3

x 
[-]

10-3 P = 1 atm,  = 0.6, H2

500 550 600 650 700 750
T [K]

0

0.5

1

1.5

2

2.5

3

3.5

4

x 
[-]

10-3 P = 1 atm,  = 0.6, H2O2

500 550 600 650 700 750
T [K]

0

0.02

0.04

0.06

0.08

0.1

0.12

x 
[-]

P = 1 atm,  = 0.6, O2

(d) O2 mole fractions.
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Figure 4.9: Species mole fractions of DME combustion measured in a PFR by Guo et al.
[95] and model predictions. DME and O2 are diluted in 88% He. Experiments are carried
out at Φ = 0.6 and P = 1 atm.
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4.1.4. Jet Stirred Reactors

The concentrations of the DME combustion products and intermediates have also been
measured in a JSR by Moshammer et al. [91] and collected in Figure 4.10. The reactor
operated in a range of T ≃ 500–1000, in lean conditions (Φ = 0.35) and near atmospheric
pressure (P = 0.933 bar), and Ar was adopted as diluent.

DME reactivity is over-predicted for 500 K < T < 700 K (Figure 4.10a), causing
lower O2 (Figure 4.10d) and higher H2O, CO and CO2 concentrations (Figures 4.10b,
4.10e and 4.10f). Also the higher presence of some intermediates, like DME-OQOOH,
CH3OCHO and CH3O2H (Figures 4.10i, 4.10j and 4.10k), confirm the reactivity error.
H2O2 concentration (Figure 4.10c) is again over-predicted, reflecting the PFR results.
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Figure 4.10: Species mole fractions of DME combustion measured in a JSR by Moshammer
et al. [91] and model predictions. DME and O2 are diluted in 78% Ar. Experiments are
carried out at Φ = 0.35 and P = 0.933 bar.
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4.1.5. Conclusions

The DME sub-mechanism adopted from Burke et al. [66], implemented in the mecha-
nism and modified as explained in Chapter 2, well represents the data collected. Only
minor differences are present but, considering that the experimental uncertainties are not
reported, it cannot be concluded that errors in the estimation of the kinetic parameters
are present. On the contrary, the consolidated nature of the mechanism suggests that the
model is reliable. Since DME validation was only performed in order to start the OME1–4

lumping from a solid base, and its kinetics lies outside the scope of this Thesis, it was not
investigated further. For the same reason, the curve matching indices were not evaluated
for DME.

4.2. DMM

Figure 4.11: DMM experimental database.

The experimental database of DMM covers a wide range of operating conditions and it is
schematized in Figure 4.11. It counts 29 datasets, including IDTs in STs [51, 82, 96, 97],
LFSs [82] and speciations in PFRs [98] and JSRs [50]. Among those, 11 experimental
datasets, specified in Chapter 3, were selected as optimization targets, while the remaining
18 served for performance validation only.
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4.2.1. Ignition Delay Times
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(b) DMM IDTs at Φ = 0.5–2 and P = 1 atm.
DMM and O2 are diluted in 99% Ar.
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(c) DMM IDTs at Φ = 0.5–2 and P = 3.5 bar.
DMM and O2 are diluted in 99% Ar.
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(d) DMM IDTs at Φ = 0.5–2 and P = 9 bar.
DMM is diluted in air.

Figure 4.12: DMM IDTs measured in a ST by Jacobs et al. [51] (a) and Gillespie [82] (b),
(c) and (d), and model predictions.

Gillespie [82] collected DMM autoignition data for medium- and high-temperature com-
bustion (T ≃ 750–1800 K) for Φ = 0.5 − 2 and P ≃ 1 − 9 bar. Experiments at higher
pressures (P = 20–40 bar, lower temperatures (T ≃ 700–1200) and stoichiometric con-
ditions were conducted by Jacobs et al. [51]. Datasets from both works are reported in
Figure 4.12.

From the low-pressure results by Gillespie (Figures 4.12b and 4.12c), it appears that
the high-temperature reactivity is over-predicted, predominantly for rich conditions. This
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is common to all three mechanisms, since the lumping process, and consequently the
optimization, mainly affected the low-temperature kinetics. Similarly, also the NTC area
at P = 9 bar (Figure 4.12d) is too reactive, but in this case the error is even increased
in the lumped mechanism and reduced again in the optimized one. This remarks the
impact of lumping in the low- and medium-temperature chemistry, and it is confirmed
by the high-pressure, stoichiometric datasets by Jacobs et al. in Figure 4.12a. The gap
between lumped simulations and experiments is completely closed after the optimization
is performed.
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(a) DMM IDTs at Φ = 0.5–2 and P = 2 atm.
DMM and O2 are diluted in about 95% Ar.
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(b) DMM IDTs at Φ = 0.5–2 and P = 30 bar.
DMM is diluted in air.

Figure 4.13: DMM IDTs measured in a ST by Hu et al. [96] (a) and Herzler et al. [97]
(b), and model predictions.

Figure 4.13 reports the results of the ST experiments performed by Hu et al. [96] and
Herzler et al. [97], respectively at T ≃ 1100–1400 K and P = 2 atm, and T ≃ 600–1400
and P = 30 bar. Both authors investigated lean (Φ = 0.5), stoichiometric (Φ = 1) and
rich (Φ = 2) conditions.

It can be seen from Figure 4.13a that, as already stated, high-temperature reactivity is
not affected by the lumping process, and the already good predictions of the initial model
are retained in the other two. Conversely, the NTC behaviour in Figure 4.13b is enhanced
in the lumped chemistry, and only partially recovers after optimization. Specifically,
the optimized mechanism perfectly reproduces experiments in stoichiometric conditions,
while under- and over-predicts IDTs respectively in rich and lean mixtures. The reason
is that datasets by Herzler et al. were not adopted as optimization targets, hence the
performances only improved indirectly by reconciling the IDTs by Jacobs et al [51].
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4.2.2. Laminar Flame SpeedsDMM LFS Gillespie
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Figure 4.14: DMM LFSs measured by Gillespie [82] and models predictions. DMM is
diluted in air. Experiments are carried out at P = 1 atm and T = 298–358 K.

The only LFS data available for DMM have been measured by Gillespie [82] at atmospheric
pressure at three different temperatures (298 K, 328 K and 358 K), in an equivalence ratio
range of Φ = 0.6–1.8.

The results from the detailed mechanism well reproduce the experiments, only with
a slight over-prediction increasing with temperature, in correspondence to the maximum
velocity at Φ ≃ 1.2. DMM LFS is controlled only by C1-C3 reactions, and for this reason
the lumping process did not modify the model behaviour. Due to the good accordance
between model and experiments, an optimization with this dataset as target was not
necessary. It can be seen that neither the optimization on IDTs and speciations modified
the LFS in a relevant way.
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4.2.3. Plug Flow Reactors
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(a) DMM mole fractions.
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(b) CH3OCHO mole fractions.
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(c) CH2O mole fractions.
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(d) CO mole fractions.
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(f) CH4 mole fractions.

Figure 4.15: Species mole fractions of DMM combustion measured in a PFR by Marrodan
et al. [98] and model predictions. DMM and O2 are diluted in N2 as reported in the paper.
Experiments are carried out at P = 20–60 bar.

Figures 4.15 and 4.16 collect the species concentrations measured in a PFR by Marrodan
et al. [98], respectively at λ = 0.7 and λ = 20. The experiments were carried out in a
range of pressures P = 20–60 bar and temperatures T = 800–1100 K.

The DMM mole fraction is well represented by all three mechanisms, despite its
reactivity being slightly exaggerated. This can be seen especially for high P and λ.
The optimization performed on the JSR speciations has a positive impact also on PFR
results, since the final model is better than the lumped one. CO and CO2 present some
discrepancies, especially at T > 700 K: the over-prediction of CO and the under-prediction
of CO2 suggest an incomplete combustion in the models.

The remaining species (CH3OCHO, CH2O and CH4) were already poorly reproduced
by the detailed model. The lumping process inevitably modified the simulation results,
with no control on these combustion intermediate: it was an inevitable trade off to retain
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accuracy for other relevant species. Since the optimization on the JSR was performed only
on the DMM mole fraction, the final mechanism in some cases improved (CH3OCHO and
CH4) and in others worsened (CH2O) the performances.
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(a) DMM mole fractions.
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(b) CH3OCHO mole fractions.
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(c) CH2O mole fractions.
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(d) CO mole fractions.
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Figure 4.16: Species mole fractions of DMM combustion measured in a PFR by Marrodan
et al. [98] and model predictions. DMM and O2 are diluted in N2 as reported in the paper.
Experiments are carried out at P = 20–60 bar.
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4.2.4. Jet Stirred Reactors
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(b) CH2O mole fractions.
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(c) CH3OCHO mole fractions.
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Figure 4.17: Species mole fractions of DMM combustion measured in a JSR by Vermeire
et al. [50] and model predictions. DMM is diluted in 99% O2 and Ar. Experiments are
carried out at Φ = 0.5–2 and P = 1.07 bar.

Species concentrations measured by Vermeire et al. [50] are reported in Figure 4.17
with their respective simulations. The JSR operated near atmospheric pressure at T =

600–1100 and Φ = 0.5–2. Simulations for Φ = 1 are represented only in the range
T < 1000 K, because no steady-state solution was found for higher temperatures [83].
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Mole fractions of O2, CO and CO2 are very well reproduced by every model, whereas
CH4, C2H4 and C2H6 present minor errors, especially for the lumped and optimized mech-
anisms. Also the DMM data are well predicted, and the small errors of the lumped kinetics
are completely removed in the optimization procedure. Indirect effects of the DMM opti-
mization are evident also on the CH2O and CH3OCHO profiles, whose optimized results
are better than the ones from the lumped model, but still not very accurate. Optimizing
the mechanism using also these intermediates as targets was not an option, since DMM
and other species predictions heavily worsened.

4.2.5. Conclusions

IDT LFS

Figure 4.18: Heat map summarizing the CM indices of DMM IDTs and LFSs.

The heat map in Figure 4.18 collects the CM scores evaluated for IDTs and LFSs of DMM,
organized by author and mechanism, in order to better compare their performances.

LFSs high indices confirm that the detailed kinetics very well reproduce the experi-
mental results. Moreover, neither the lumping nor the optimization procedures had a big
impact on the predictions, since the controlling reactions were not modified.

IDTs predicted by the detailed mechanism are very similar to the experiments at
medium- and high-pressure conditions by Gillespie, Herzler et al. and Hu et al. On the
contrary, the scores are lower for the low-pressure simulations of the data by Gillespie
and Hu et al. This explains why the lumped mechanism, enhancing the low-temperature
reactivity, brought about a general worsening for the former ones and an improvement
for the latter ones. Nonetheless, almost all the indices of the optimized mechanism are
higher than the ones of the detailed kinetics, suggesting that the adopted approach was
succesful.
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4.3. OME2

Figure 4.19: OME2 experimental database.

The experimental database of OME2 consists of 15 datasets, represented in Figure 4.19.
It only includes IDTs measured in STs [58] and LFSs [84, 85, 99], since no speciations are
available in literature yet. 11 of those datasets, listed in Chapter 3, served as optimization
targets, while the remaining four contributed only to the final validation.
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4.3.1. Ignition Delay TimesOME2 IDT Cai
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(a) OME2 IDTs at Φ = 1 and P = 10–20 bar.
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(b) OME2 IDTs at Φ = 0.5–2 and P = 20 bar.

Figure 4.20: OME2 IDTs measured in a ST by Cai et al. [58] and models predictions.
OME2 is diluted in air.

OME2 IDTs were measured by Cai et al. [58] in a ST at T ≃ 650–1100, Φ = 0.5–2
and P = 10–20 bar. The results are collected in Figure 4.20 together with the models
predictions.

The original detailed mechanism over-estimates IDTs in most of the operating condi-
tions of interest, and does not present an NTC effect as strong as the one of the exper-
imental data. The lumping procedure resulted in a general acceleration of the kinetics
and in a more evident NTC, mostly improving the accuracy of the model. This cannot
be said for Φ = 2 and P = 20 bar, where the detailed model already well represented the
experiments, and the lumped mechanism is too fast. The optimization, because of the
already very good results, did not improve them much further.
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4.3.2. Laminar Flame Speeds
LFS Fritsche
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(a) OME2 LFSs at T = 393 K and P = 1–10 bar.
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(b) OME2 LFSs at T = 473 K and P = 1–6 bar.

Figure 4.21: OME2 LFSs measured by Fritsche et al. [85] (a) and Ngugi et al. [84] (b),
and models predictions. OME2 is diluted in air.

OME2 burning velocity was largely investigated by Fritsche et al. [85], Ngugi et al. [84]
and Eckart et al. [99], in the following set of conditions: T = 383–473 K, Φ = 0.6–2 and
P = 1–10 bar.

Figure 4.21 represents the data by Fritsche et al. and Ngugi et al., compared with the
results from the numerical simulations. The detailed model under-estimates the LFSs by
up to 20 cm/s in every case, except for T = 393 K and P = 10 bar, where it predicts the
experimental data more accurately. An evident and unexpected acceleration of the lumped
mechanism can be noticed, leading to an improvement of all the predictions excluding the
10 bar dataset, now over-estimated.

The LFS is controlled mainly by the C1-C3 chemistry: this is the reason why the
lumped kinetics was not expected to change behaviour significantly. However, analyses
of the species profiles in the flame allowed to discover that, even though CH3 predictions
of the lumped mechanism are similar to the ones of the detailed model, a higher mole
fraction of H is produced in the peak, as demonstrated by Figure 4.22. The larger amount
of H in the lumped model (about 20% more) could indeed be responsible for the faster
flame and required further study, since concentrations of small radicals, such as H and
CH3, can affect the burning speed.
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Figure 4.22: Mole fractions of H (a) and CH3 (b), simulated at T = 473 K, Φ = 1 and
P = 1 bar, using the detailed and lumped mechanisms. Only the middle section of the
domain is reported, to highlight differences in the flame peak.

Sensitivity analyses were then performed in the middle section of the flame (x ≃ 1.5

cm) on both H mole fraction and mass flow-rate. The sensitive reactions identified by the
two analyses, reported in Table 4.1, revealed the important role of the decompositions
of the OME2 and DMM alkyl radicals, and of the DMM ketones. These reactions were
involved in the lumping procedure, justifying the differences between the two mechanisms.

Mass flow-rate sensitivity H mole fraction sensitivity

OME2-R⇒CH2O+DMM-R OME2-R⇒CH3+DMM-ket

OME2-R⇒CH3+DMM-ket H+OME2⇒H2+OME2-R

DMM-ket⇒CH3O+CH2OCHO OH+OME2⇒H2O+OME2-R

DMM-ket⇒CH3+OCH2OCHO DMM-R⇒CH2O+CH3OCH2

H+DMM-R⇒DMM DMM-ket⇒CH3+OCH2OCHO

DMM-R⇒CH2O+CH3OCH2 OME2-R⇒CH2O+DMM-R

OH+OME2⇒H2O+OME2-R DMM-ket⇒CH3O+CH2OCHO

Table 4.1: Sensitive reactions for mass flow-rate (left) and H mole fraction (right) in LFS.
Analyses were carried out at T = 473 K, Φ = 1 and P = 1 bar, for x = 1.52 cm. Only the
reactions belonging to the OME1–4 sub-mechanisms are reported, in order of descending
sensitivity coefficient.
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The optimized mechanism, finally, reflects the results of the lumped one, maintaining
its good performances. Also the 10 bar dataset in Figure 4.21b retains its bad predictions
without progress. This was inevitable because any improvement would have been antag-
onistic to the good reproduction of all the other LFSs, as highlighted also by the datasets
by Eckart et al. in Figure 4.23.
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(a) OME2 LFSs at T = 383 K.
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(b) OME2 LFSs at T = 388 K.
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(c) OME2 LFSs at T = 393 K.
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(d) OME2 LFSs at T = 401 K.

Figure 4.23: OME2 LFSs measured by Eckart et al. [99] and models predictions. OME2

is diluted in air. Experiments are carried out at P = 1 bar and T = 383–401 K.
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4.3.3. Conclusions

IDT LFS

Figure 4.24: Heat map summarizing the CM indices of OME2.

Figure 4.24 collects in a heat map all the CM indices that assess the OME2 simulations
performances against the experimental data, allowing a visual comparison between the
models. Both IDTs and LFSs scores confirm what already said by qualitatively illustrating
the plots.

IDTs are generally better reproduced by the lumped model, which hence it is not
improved further with optimization. The Φ = 2 and P = 20 bar case is the only one
affected negatively by the increased lumped reactivity, and then partially recovered with
the final mechanism.

LFSs, similarly, are less accurately predicted by the detailed model than by the lumped
one. Also its optimization, despite being carried out together with the LFSs targets of
OME3 and OME4, lead to further minor improvements. The 10 bar dataset by Fritsche et
al. stands out for its particularly bad indices both for the lumped and optimized model:
this, as already explained, is a direct consequence of its antagonistic nature with respect
to all other datasets. Also two of the Eckart et al. datasets present lower scores, but this
is only due to their very small number of data points (two each), which do not allow a
satisfying estimation of the curve parameters.
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4.4. OME3

Figure 4.25: OME3 experimental database.

The experimental database of OME3 includes IDTs in STs [58] and LFSs [55], while
speciations are still missing from the literature. Among its nine datasets, reported in
Figure 4.25, six have been chosen as optimization targets, while the remaining three were
kept only to validate the models. More details can be found in Chapter 3.
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4.4.1. Ignition Delay Times
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(a) OME3 IDTs at Φ = 1 and P = 10–20 bar.
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(b) OME3 IDTs at Φ = 0.5–2 and P = 20 bar.

Figure 4.26: OME3 IDTs measured in a ST by Cai et al. [58] and models predictions.
OME3 is diluted in air.

Cai et al. [58] collected IDTs results in STs also for OME3, at T ≃ 700–1100 K, Φ =

0.5–2 and P = 20 bar. Figure 4.26 compares these experimental data with the models
predictions.

Contrarily to OME2, the detailed model reasonably reproduces the experiments in the
conditions of interest. For this reason, the acceleration caused by the lumping procedure
lead to a worsening of the behaviours. An exception is the simulation at Φ = 2 and
P = 20 bar, where the increased NTC effect results in a better accordance between model
and data. The optimization process had a big impact on the OME3 IDTs, reducing its
low temperature reactivity and bringing the optimized curve near the original detailed
one.
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4.4.2. Laminar Flame Speeds
OME3 LFS Cai
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(a) OME3 LFSs at T = 408 K and P = 1 atm.
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(b) OME3 LFSs at T = 438 K and P = 1–10 bar.

Figure 4.27: OME3 LFSs measured by Sun et al. [55] (a) and Fritsche et al. [85] (b), and
models predictions. OME3 is diluted in air.

Figure 4.27 reports the models simulation results compared to the LFSs measurements
performed by Sun et al. [55] and Fritsche et al. [85]. Conditions of interest of the studies
are T = 408–438 K, Φ = 0.7–1.6 and P = 1–10 bar.

The detailed mechanism correctly predicts the dataset by Sun et al., only over-
estimating results for rich conditions by less than 5 cm/s. Datasets by Fritsche et al., on
the other hand, are under-predicted for all pressures, with only the P = 3 bar dataset
well reproduced. It must be said, though, that the isolated data available for the higher
pressures make the evaluation less reliable.
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4.4.3. Conclusions

IDT LFS

Figure 4.28: Heat map summarizing the CM indices of OME3.

The CM indices calculated to quantitatively determine the performances of the models
for OME3 are collected in a heat map depicted in Figure 4.28.

It can be seen that IDTs worsened with the acceleration of the kinetics associated with
the lumping process, with the only exception being the simulation at Φ = 2 and P = 20

bar. Nonetheless, the final optimized model recovered most of the original accuracy.

CM indices of LFSs could not be computed for the high pressures datasets of Fritsche
et al., due to the single data points present, and the ones which could be evaluated seem
to perform very bad because of the small amounts of data entries. The scores for the
experiments by Sun et al., instead, well reflect the good behaviours of the models in
reproducing the data. The minor worsening of the optimized model is caused by the
necessary trade-off to reconcile data from different authors into a single optimization.
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4.5. OME4

Figure 4.29: OME4 experimental database.

In Figure 4.29 are schematized the five datasets of the OME4 experimental database.
They consist of IDTs in STs [58] and LFSs [86] since, as for OME2 and OME3, speciations
are not available yet. Because of the small amount of data at hand, all five datasets were
adopted as optimization targets.
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4.5.1. Ignition Delay Times
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Figure 4.30: OME4 IDTs measured in a ST by Cai et al. [58] and models predictions.
OME4 is diluted in air.

The only IDTs available for OME4 are measured in a ST by Cai et al. [58] at T ≃ 750–1050
K, Φ = 1 and P = 10–20 bar. The detailed mechanism well reproduces the experimental
results, consequently, as for OME3, the lumped model is too fast of about a factor 2, and
its NTC behaviour too evident. The optimized kinetics is slightly less reactive than the
original detailed one, but the performance is not affected negatively by this difference.

To analyze the reaction rates modified in the optimization step, the most sensitive
reactions for OME4 at T = 870 K, Φ = 1 and P = 10–20 bar are listed in Figure 4.31.
The sensitivity analyses were performed in the same zero-dimensional reactor at three
different characteristic times, chosen as described in Chapter 3. For each reaction, it
is also reported the ratio between its optimized and nominal lumped rates: all of them
are inside the uncertainty limit of about 2, defined by the adopted uncertainty factor
f = 0.3. RȮ2 and Ȯ2QOOH formations via O2 addition enhance the low temperature
reactivity, henceforth their rates are reduced during the optimization. On the other hand,
β-decomposition rates are increased, since they limit the number of reactive radicals in
the branching path. It can also be noticed that the oxidation of the OME3 Q̇OOH and
alkyl radicals increase the fuel reactivity, confirming that there is a dependence of the
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OME4 chemistry on the kinetics of the smaller ethers. This proves the already mentioned
interconnection between the OME2–4 sub-mechanisms, which needed to be optimized all
together.

t2=5e-5 s t3=8.5e-5 st1=2e-5 s

O2+OME3-QOOH=>OME3-O2QOOH

CH3+OME4=>CH4+OME4-R

OME4-QOOH=>OH+CH2O+C4H9O4CHO

O2+OME3-R=>OME3-RO2

OME4-R=>CH3+C4H9O4CHO

OH+OME4=>H2O+OME4-R

O2+OME4-R=>OME4-RO2

O2+OME4-QOOH=>OME4-O2QOOH

HO2+OME4=>H2O2+OME4-R
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(1.94)
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(0.58)

Figure 4.31: Sensitivity analyses to OH mass fraction in IDTs of OME4. Investigated
conditions are T = 870 K, Φ = 1 and P = 10–20 bar. The three characteristic times have
been selected as reported in Chapter 3. Values in brackets represents the ratio between
optimized and nominal lumped rates.
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4.5.2. Laminar Flame Speeds

OME4 Richter lFS 

0.5 1 1.5 2
 [-]

10

20

30

40

50

60

70

80

90

100

110
LF

S 
[c

m
/s

]
T = 473 K

Detailed
Lumped
Optimized

P = 1 bar
P = 3 bar
P = 6 bar

Figure 4.32: OME4 LFSs measured by Richter et al. [86] and models predictions. OME4

is diluted in air. Experiments are carried out at P = 1–6 bar and T = 473 K.

The LFS measurements available for OME4 have been quantified by Richter et al. [86]
and are plotted in Figure 4.32. The operating conditions of interest are T = 473 K,
Φ = 0.7–2 and P = 1–6 bar.

The detailed model, and the almost identical lumped one, under-estimate the flame
velocity of about 15 cm/s, especially around the maximum value at Φ ≃ 1.2. Even if the
sensitive reactions for LFS are only four, the effect of their optimization can be seen in a
reduction of the gap between experiments and predictions of about 5 cm/s.
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4.5.3. Conclusions

IDT LFS

Figure 4.33: Heat map summarizing the CM indices of OME4.

The CM scores for all five OME4 datasets are summarized in Figure 4.33. The lump-
ing process marginally improved the LFSs predictions by accelerating the fuel burning
velocity, while performances for IDTs were negatively affected by the higher reactivity.
Nevertheless, the optimized model performs better than the initial detailed one in every
case considered. This suggests that the choice of reactions to optimize and experimental
targets was optimal.

The score of the lumped model for IDTs at Φ = 1 and P = 20 bar stands out for
its particularly low value. This is partly due to the smaller amount of data available in
these conditions, which negatively influence the curves comparison. As a matter of fact,
by looking at Figure 4.30 it is clear that the qualitative behaviours of the lumped model
in the two conditions are similar, hence the worsening of the index can be ascribed to the
smaller domain of the experimental data at P = 20 bar.
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In the combustion field, it is common practice to exploit models in order to simulate
experiments, saving time and resources. The importance of detailed kinetics in this con-
text has been progressively acknowledged, and the current available computational power
already allows its implementation in heavy simulations for small fuels. Its limits, though,
become evident when involving more complex molecules: the number of species whose
chemistry must be described rises quickly, and this increases the number of transport
equations to solve. The consequence is the impossibility to use detailed models of these
heavy molecules in demanding tasks, such as CFD applications, without the computa-
tional time to become unsustainable [48]. The research for reduced mechanisms assumes
then a key role in the chemical kinetics, where finding a good trade-off between accuracy
and size of the model is essential.

OMEs are a class of innovative fuels that is gaining the interest of the scientific
community, mainly because of its soot- and NOx-reducing properties as diesel additive
[8, 11, 12]. As a matter of fact, its characteristics makes it suitable to be blended with
diesel without substantially altering its combustion, and allowing it to be adopted even
in current engines, with minor modifications at most [21]. The mechanisms describing
OMEs currently available in literature are detailed, and suffer of the limitations discussed
above: a reduced model is needed to accelerate CFD studies regarding combustion in
engines.

5.1. Results

In this Thesis, a new methodology has been developed, successfully coupling the lumping
of structural isomers with a data-driven optimization procedure, in order to obtain a
reliable reduced kinetic model for OME0–4. To build the detailed kinetics, the hierarchical
approach was exploited, meaning that each new sub-mechanism was added to the others
in a modular way. The core mechanism is the detailed chemistry of C1-C3 [62, 65, 66],
already largely consolidated, on top of which the DME [67, 68], DMM [51] and OME2–4

[58] sub-mechanisms from the literature were included.
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The detailed model was lumped adopting a recent procedure (MEL) [72] based on the
Master Equation. MEL was adapted to work on a macroscopic mechanism and properly
reduce it, and it was then applied on each OME1–4 sub-mechanism separately, in line
with the hierarchy principle. The species were grouped into pseudospecies according to
structural isomerism, greatly reducing their final number from 282 to 176.

As a final step, an optimization procedure that exploits evolutionary algorithms was
performed [73] on the lumped mechanism. The optimization targets were selected from a
large database of experimental results, covering a wide range of operating conditions and
reactors. Through sensitivity analysis, a total of 57 reactions to optimize was identified,
and three blocks of optimizations were defined, as described in Chapter 3.

Table 5.1 quantitatively summarizes the outcomes of the validations of the three
mechanisms against the experimental data. Results are reported for each fuel in terms
of CM scores [77], considering the whole experimental database adopted. These indices
allow an objective evaluation of the agreement between models and experiments, where
1 stands for perfect accordance, and 0 for maximum disagreement. The scores of the
lumped model reveal a general worsening of performances, especially for OME4 and with
the only exception of OME2. Despite this, the final optimized mechanism provides a
higher score for all fuels, even compared to the starting model, confirming that the data-
driven optimization was successful.

Average Curve Matching index
Fuel

Detailed Lumped Optimized

DMM 0.906 0.894 0.911

OME2 0.893 0.913 0.908

OME3 0.843 0.818 0.848

OME4 0.907 0.823 0.929

OME1–4 0.892 0.881 0.902

Table 5.1: Average Curve Matching indices of the adopted mechanisms for each OME.

5.2. Future work

The results obtained from the application of the developed workflow are very satisfying: a
detailed mechanism for OME0–4 has been successfully lumped and subsequently optimized
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to match experimental data in different conditions. Despite this, there is of course still
room for improvement so, to conclude, the major points of possible future works will be
here discussed.

5.2.1. Lumping

The lumping procedure can be performed more consistently with a separate evaluation
of the pseudospecies BFs for each mechanism block. In this Thesis, for each OME a
0-dimensional simulation was carried out with the detailed model (more information can
be found in Chapter 2.3), from which the BFs of the pseudospecies were calculated. If
the simulations were instead performed using a single mechanism block at a time, with
each pseudospecies in turn as reactant, the BFs could be tailored for every block to be
lumped, and the results could improve. An example of this approach can be found in a
work where MEL has been adopted to lump the low-temperature kinetics of n-pentane
[100].

Another improvement to the lumping work would be the adjustment of the thermody-
namic database. Pseudospecies, as already mentioned, are here assumed to maintain the
properties of the most abundant isomer in their pool. This is clearly an approximation,
since their properties should be averaged from those of their isomers, weighted on the
respective BFs. Nevertheless this implementation is not expected to increase the mecha-
nism precision, since all the equilibrium reactions involving the lumped species have been
split into forward and backward ones. Heat transportation only would take benefit, but
the very similar specific heats of the isomers in a pseudospecies would make the difference
irrelevant.

5.2.2. Optimization

The biggest upgrade of the optimization procedure would be the implementation of an
approach based on reaction classes. All reactions have been optimized independently
in the present Thesis, meaning that the parameters of different reactions belonging to
the same class could have been modified in an opposite way, reducing their physical
consistency. A more solid method would treat these reactions together, similarly to how
different pressures of a PLOG reaction are handled. This would guarantee that all the
reactions of a class are optimized coherently, retaining the physical meaning of the various
parameters.

The experimental uncertainties available in literature could be easily included in
OptiSMOKE++ [74] to make the data-driven optimization more consistent. Uncertainties
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are accounted for in the bootstrap variations, and ensure that the parameters are not
forced to change in order to better predict results that are not certain. The predictions
of the model are not expected to improve noticeably with this inclusion, but the overall
reliability of the workflow would undoubtedly benefit it.

5.2.3. Automation

The biggest advancement for the method presented in this Thesis would be an automatic
workflow, that would allow to apply it rapidly to multiple mechanisms, without much
work of the user. The modular approach makes automation not only very interesting, but
also feasible. The steps of a possible algorithm are briefly reported here:

1. the pseudospecies are defined by the user, for example by structural isomerism, and
the species pools are automatically identified;

2. the mechanism is automatically divided into blocks with the same global stoichiom-
etry, for each one the BFs are calculated and the equilibrium reactions are split into
forward and backward ones;

3. with the evaluated BFs each block is lumped separately, and the thermodynamic
and transport properties of the pseudospecies are averaged from the ones of their
isomers;

4. the user provides experimental datasets to adopt either as optimization targets and
for validation;

5. suitable sensitivity analyses are performed on the lumped mechanism for the various
datasets, and the reactions to be optimized are automatically selected;

6. the optimizations are carried out and the optimized mechanism is produced;

7. the optimized model is validated against all the datasets provided, and CM scores
are calculated to assess the performances.

If a completely automated workflow were to be developed, the amount of time saved
would be considerable and the applications numerous. For example, the same mecha-
nism could be lumped and optimized in several different ways in parallel, and the best
ranking resulting model picked out. Also heavier fuels models, where the computational
advantages are expected to be even greater, could be lumped much more quickly. It is
undeniable that an automatic consolidated methodology would accelerate the combustion
research, by making the development of reduced kinetics faster.
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Pseudospecies
CHEMKIN name

Isomers description
Isomers N. in
Pseudospecies

DMM Dimetoxymethane (OME1) 1
DMM-R DMM alkyl radicals 2
DMM-RO2 DMM peroxy radicals 2
DMM-ROOH DMM hydroperoxides 2
DMM-RO DMM alkoxy radicals 2
DMM-ket DMM ketones 2
DMM-ketR DMM ketone radicals 4
DMM-cycleth DMM cyclic ethers 2
DMM-QOOH DMM hydroperoxy-alkyl radicals 3
DMM-O2QOOH DMM hydroperoxy-alkyl-peroxy radicals 3
DMM-OQOOH DMM keto-hydroperoxide 3
CH3OCOOH DME carboxylic acid 1
DMM-R2OOH DMM dihydroperoxyl-alkyl radicals 2
DMM-ketRO DMM keto-alkoxy radicals 2
DMM-cyclethOOH DMM hydroperoxy cyclic ether 2
CH2OCHO DME ketone radical 1
OME2 Oxymethilene ether 2 1
OME2-R OME2 alkyl radicals 2
OME2-RO2 OME2 peroxy radicals 2
OME2-RO OME2 alkoxy radicals 2
OME2-QOOH OME2 hydroperoxy-alkyl radicals 5
OME2-ROOH OME2 hydroperoxides 2
OME2-cycleth OME2 cyclic ethers 3
OME2-O2QOOH OME2 hydroperoxy-alkyl-peroxy radicals 5
OME2-OQOOH OME2 keto-hydroperoxide 5
CH3OCH2OCOO DMM keto-alkoxy radical 1
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Pseudospecies
CHEMKIN name

Isomers description
Isomers N. in
Pseudospecies

OME3 Oxymethilene ether 3 1
OME3-R OME3 alkyl radicals 3
OME3-RO2 OME3 peroxy radicals 3
OME3-RO OME3 alkoxy radicals 3
OME3-QOOH OME3 hydroperoxy-alkyl radicals 7
OME3-ROOH OME3 hydroperoxides 3
OME3-cycleth OME3 cyclic ethers 5
OME3-O2QOOH OME3 hydroperoxy-alkyl-peroxy radicals 7
OME3-OQOOH OME3 keto-hydroperoxide 7
OME2-ketRO OME2 keto-alkoxy radicals 2
CH3OCH2OCH2OCHO OME2 ketone 1
OME2-ketR OME2 ketone radicals 2
OME4 Oxymethilene ether 4 1
OME4-R OME4 alkyl radicals 3
OME4-RO2 OME4 peroxy radicals 3
OME4-RO OME4 alkoxy radicals 3
OME4-QOOH OME4 hydroperoxy-alkyl radicals 9
OME4-ROOH OME4 hydroperoxides 3
OME4-cycleth OME4 cyclic ethers 5
OME4-O2QOOH OME4 hydroperoxy-alkyl-peroxy radicals 9
OME4-OQOOH OME4 keto-hydroperoxide 9
OME3-ketRO OME3 keto-alkoxy radicals 2
OME3-ketR OME3 ketone radicals 2
C4H9O4CHO OME3 ketone 1
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Listed parameters refer to the modified Arrhenius equation k = AT βe−
Ea
RT . Units are cm,

cal, mol, K. For each reaction, the former set of parameters is the nominal one from the
lumped mechanism, the latter is the optimized one.

Reaction A β Ea

HO2+DMM⇒H2O+DMM-R
3.690E-02 3.480 11741
1.987E-02 3.496 11463

H+DMM⇒H2+DMM-R
1.300E+03 2.440 4826
2.594E+03 2.489 4920

OH+DMM⇒H2O+DMM-R
8.520E-01 3.210 -1861
6.732E-01 3.182 -1673

HO2+DMM-RO2⇒O2+DMM-ROOH
1.520E-02 2.100 -11473
1.100E-02 2.020 -11410

2DMM-RO2⇒O2+2DMM-RO
1.547E+20 -4.500 0
1.299E+20 -4.459 -238

DMM-RO⇒CH2O+CH3OCH2O
1.050E+19 -1.740 17622
1.254E+19 -1.791 17769

DMM-RO⇒H+DMM-ket
3.230E+13 0.010 26133
4.089E+13 -0.003 25868

DMM-ket⇒CH3+OCH2OCHO
9.680E-21 10.370 55182
1.048E-20 10.480 55122

DMM-ket⇒CH3O+CH2OCHO
1.240E+72 -15.550 120140
1.131E+72 -15.661 120194

DMM-OQOOH⇒OH+DMM-ketRO
1.970E+16 0.000 41997
1.083E+16 -0.005 41772

O2+OME2⇒HO2+OME2-R
5.350E+04 2.080 40249
6.403E+04 2.118 40517

HO2+OME2⇒H2O2+OME2-R
4.790E-01 3.380 11703
4.594E-01 3.327 11658
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Reaction A β Ea

OH+OME2⇒H2O+OME2-R
2.910E-01 3.330 -2003
2.497E-01 3.367 -1724

OME2-R⇒CH2O+DMM-R
2.670E+35 -6.830 33770
1.338E+35 -6.802 33868

OME2-R⇒CH3+DMM-ket
3.190E+15 -1.820 11633
2.157E+15 -1.823 11714

O2+OME2-R⇒OME2-RO2
2.570E+19 -3.210 3620
1.775E+19 -3.203 3422

OME2-RO2⇒OME2-QOOH
6.260E+06 1.300 12840
4.641E+06 1.332 12839

OME2-QOOH⇒OME2-RO2
1.560E+11 -0.450 1062
1.418E+11 -0.472 1154

OME2-QOOH⇒OH+OME2-cycleth
5.360E+13 -0.630 16588
3.194E+13 -0.633 16524

OME2-QOOH⇒OH+CH2O+DMM-ket
2.289E+12 0.144 19398
2.139E+12 0.156 19529

OME2-QOOH⇒OH+2CH3OCHO
1.678E+08 0.897 16081
1.883E+08 0.900 15856

O2+OME2-QOOH⇒OME2-O2QOOH
4.320E+14 -1.730 2184
2.934E+14 -1.732 1772

OME2-O2QOOH⇒OH+OME2-OQOOH
3.610E+09 0.700 18147
2.672E+09 0.698 18158

HO2+OME3⇒H2O2+OME3-R
9.690E-01 3.330 11704
1.077E+00 3.251 11664

OH+OME3⇒H2O+OME3-R
5.200E-01 3.270 -1926
3.068E-01 3.257 -1702

OME3-R⇒CH3+CH3OCH2OCH2OCHO
1.570E-05 3.900 553
1.214E-05 3.905 515

OME3-R⇒CH2O+OME2-R
4.310E+34 -6.640 33112
4.637E+34 -6.628 33219

OME3-R⇒CH3OCH2+DMM-ket
1.400E+41 -8.580 39092
7.017E+40 -8.600 38946

O2+OME3-R⇒OME3-RO2
6.250E+19 -3.280 4089
5.560E+19 -3.266 4163
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Reaction A β Ea

OME3-RO2⇒OME3-QOOH
1.080E+07 1.270 13092
1.713E+07 1.215 13063

OME3-QOOH⇒OME3-RO2
1.900E+06 0.950 -1670
2.220E+06 0.961 -1941

OME3-QOOH⇒OH+OME3-cycleth
2.130E+12 -0.240 15688
1.810E+12 -0.241 16100

OME3-QOOH⇒OH+CH2O+CH3OCH2OCH2OCHO
2.443E+09 0.918 17392
2.688E+09 0.848 17391

OME3-QOOH⇒OH+CH3OCHO+DMM-ket
1.076E+12 0.147 20149
1.285E+12 0.121 20230

O2+OME3-QOOH⇒OME3-O2QOOH
2.140E+16 -2.120 3792
2.113E+16 -2.186 3734

O2+OME4⇒HO2+OME4-R
1.430E+05 2.040 40293
1.420E+05 2.052 40413

HO2+OME4⇒H2O2+OME4-R
1.570E+00 3.290 11710
1.063E+00 3.253 11897

CH3O2+OME4⇒CH3O2H+OME4-R
2.440E-02 3.580 11887
1.950E-02 3.581 11613

CH3+OME4⇒CH4+OME4-R
7.340E-01 3.270 7840
1.170E+00 3.264 8155

OH+OME4⇒H2O+OME4-R
8.220E-01 3.220 -1870
8.081E-01 3.184 -1525

OME4-R⇒CH3OCH2+CH3OCH2OCH2OCHO
1.270E+41 -8.620 38058
1.230E+41 -8.561 38469

OME4-R⇒DMM-R+DMM-ket
1.270E+41 -8.620 38058
2.534E+41 -8.590 37978

OME4-R⇒CH3+C4H9O4CHO
2.610E-07 4.450 -51
2.812E-07 4.446 -135

OME4-R⇒CH2O+OME3-R
1.160E+34 -6.470 32929
1.155E+34 -6.497 32811

O2+OME4-R⇒OME4-RO2
1.790E+20 -3.410 4254
1.482E+20 -3.367 4665

OME4-RO2⇒O2+OME4-R
8.830E+26 -3.930 39822
4.937E+26 -3.923 39916
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Reaction A β Ea

OME4-RO2⇒OME4-QOOH
3.710E+07 1.100 13195
3.492E+07 1.188 13184

OME4-QOOH⇒OME4-RO2
5.720E+10 -0.440 23
9.760E+10 -0.417 -219

OME4-QOOH⇒OH+OME4-cycleth
5.980E+14 -0.970 16804
6.575E+14 -0.959 16988

OME4-QOOH⇒OH+2DMM-ket
1.799E+20 -2.385 24028
1.439E+20 -2.364 23957

OME4-QOOH⇒OH+CH2O+C4H9O4CHO
5.881E+09 0.777 17538
7.745E+09 0.841 17595

O2+OME4-QOOH⇒OME4-O2QOOH
9.290E+12 -1.130 2191
8.790E+12 -1.116 2264

DMM-RO2⇒DMM-QOOH

0.01 atm
3.98E+02 2.630 15520
4.79E+02 2.680 15431

1 atm
9.37E+09 0.620 20432
1.13E+10 0.670 20344

2 atm
4.87E+02 2.700 16379
5.86E+02 2.750 16290

10 atm
9.68E-01 3.470 14751
1.16E+00 3.520 14662

20 atm
3.49E-01 3.590 14461
4.20E-01 3.640 14372

100 atm
9.74E-03 4.000 13274
1.17E-02 4.050 13185

500 atm
9.12E-02 3.700 13539
1.10E-01 3.750 13450

DMM-QOOH⇒DMM-RO2

0.01 atm
1.32E+23 -3.760 13271
1.15E+23 -3.740 13369

1 atm
1.09E+23 -3.740 13200
9.53E+22 -3.720 13299

2 atm
1.48E+23 -3.780 13252
1.29E+23 -3.760 13350

10 atm
3.05E+23 -3.880 13325
2.67E+23 -3.860 13423
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Reaction A β Ea

DMM-QOOH⇒DMM-RO2

20 atm
7.79E+23 -4.000 13491
6.81E+23 -3.980 13590

100 atm
3.19E+24 -4.200 13668
2.79E+24 -4.180 13766

500 atm
4.80E+24 -4.270 13660
4.20E+24 -4.250 13758

O2+DMM-QOOH⇒DMM-O2QOOH

0.01 atm
1.93E+27 -5.560 1138
9.67E+26 -5.570 967

1 atm
6.66E+30 -5.770 8549
3.34E+30 -5.780 8377

2 atm
3.73E+23 -3.560 5543
1.87E+23 -3.570 5372

10 atm
4.83E+12 -0.320 430
2.42E+12 -0.330 258

20 atm
4.79E+12 -0.320 428
2.40E+12 -0.330 256

100 atm
4.71E+12 -0.320 426
2.36E+12 -0.330 255

DMM-QOOH⇒OH+CH2O+CH3OCHO

0.01 atm
5.73E+17 -1.810 18601
8.65E+17 -1.740 18692

1 atm
2.84E+18 -2.020 18933
4.28E+18 -1.950 19024

2 atm
3.98E+16 -1.480 17955
6.00E+16 -1.410 18047

10 atm
3.69E+21 -2.910 20605
5.57E+21 -2.840 20696

20 atm
3.69E+22 -3.190 21168
5.57E+22 -3.120 21260

100 atm
2.08E+21 -2.840 20481
3.14E+21 -2.770 20572

500 atm
2.63E+21 -2.870 20538
3.97E+21 -2.800 20629
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Reaction A β Ea

DMM-QOOH⇒OH+DMM-cycleth

0.01 atm
6.60E+26 -4.190 27216
4.86E+26 -4.170 27087

1 atm
1.98E+26 -4.040 26932
1.46E+26 -4.020 26804

2 atm
6.15E+26 -4.180 27190
4.53E+26 -4.160 27062

10 atm
7.26E+23 -3.340 25605
5.35E+23 -3.320 25477

20 atm
7.89E+24 -3.640 26136
5.81E+24 -3.620 26008

100 atm
2.37E+24 -3.500 25816
1.75E+24 -3.480 25687

500 atm
4.56E+23 -3.300 25404
3.36E+23 -3.280 25275
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