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1. Introduction
The application of recommender systems in fash-
ion has proven to be an effective way to im-
prove customer satisfaction, increase sales, and
create a more engaging shopping experience [1].
Fashion is a highly subjective and dynamic do-
main [8], where personal taste and fashion trends
change rapidly [5]. The thesis work started
from a Kaggle Challenge1 proposed by the H&M
brand and aims to explore transaction, customer
and article datasets of H&M and build effec-
tive recommender systems in that fashion do-
main. Overall, it contributes to the growing
body of knowledge on recommender systems in
the fashion industry and provide valuable in-
sights and recommendations for practitioners
and researchers working in this field. In the be-
ginning, we participated as a team composed of
three students supported by a Ph.D. Student.
Past the competition period, I conducted ex-
tensive research on fashion-based recommenders
and focused the work on proposing a novel and
light fashion-based recommender that outper-

1Challenge overview https:
//www.kaggle.com/competitions/
h-and-m-personalized-fashion-recommendations/
overview

forms the state-of-the-art and publicly available
top-scores recommender. We present the state
of the art along with the technologies and popu-
lar techniques used in the fashion domain; than
we analyse the dataset highlighting pattern in
the data that we used to build features and can-
didate generation strategies. Those strategies,
built considering common behaviour in the fast
fashion domain e.g., repurchase and seasonal-
ity, helped to lower the list of possible articles
from which the final model take the recommen-
dation. We describe three different experiments
we conducted, i.e., collaborative filtering models,
heuristics, and two-stage recommender. Than
we presented the final gradient boosting decision
tree algorithm used, i.e., Catboost, along with
the results obtained.

2. Our Approach H&M Com-
petition

In this competition H&M invited to develop
product recommendations based on data from
previous transactions, as well as from customer
and articles meta data. The organizers provided
a dataset composed by transactions, i.e., the ac-
tion of buying an item, from 2018-09-20 to 2020-

09-22, made both in the online and physical

1
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stores. Together with the transactions they pro-
vided the list of all the users and articles along
with their attributes, analysed in the following
sections. The goal of the challenge was to
recommend a list of 12 items to each user in the
dataset. The recommendations are scored using
the MAP@12 with respect to the test week, i.e.,
the first one after the dataset period, which goes
from 2020�09�23 to 2020�09�30. The pub-
lic leaderboard was available during the whole
challenge period and is generated using only the
5% of the total test data. The private leader-
board is generated using the other 95% of the
test data.

2.1. Articles
Article dataset is composed of 25 features, where
14 of them are text features e.g., article id and
product code, the remaining 11 are numerical fea-
tures e.g., garment name and description. There
are 105.542 articles in the dataset.

2.2. Customers
This database contains information about the
customers. It is composed of 7 features: 4 of
them are text features, e.g., postal code, fashion

news frequency, customer id and club member

status, the remaining 3 are numerical features,
e.g., fashion news, active to receive newslet-

ter and age. There are 1.371.980 customers in
the dataset. Fashion news value is missing for
895.050 customers: this means that they are cus-
tomer not registered online but that they use to
buy directly in physical stores. The same apply
for active attribute. There are no missing values
for the postal code of the customer, meaning that
there is the location information available for
each customer. There are a lot of spikes in the
number of transaction during holidays or week-
end but the usual number of transactions made
each day lays in range of 25.000 and 80.000.

2.3. Transactions
This database contains information about the
transactions. It is composed of 5 features, where
2 of them are text features, e.g., customer id and
article id, the remaining 3 are numerical fea-
tures, e.g., date, price and sales channel, i.e.,
in store or online. There are 31.788.324 trans-
actions in the dataset. No transaction contains
missing values.

2.4. Product Sales Seasonality
Apart from some exceptions e.g., accessories and
bags, most of the articles sell well depending
on the season: articles that sell well in late
September represent good candidates to be rec-
ommended for the test week, which corresponds
to the last week of September i.e., from 2020-

09-23 to 2020-09-30. We check the trend of
sales by grouping articles into categories; each
category is identified by the unique combina-
tion of three of the attributes already available
in the article’s dataset, i.e., index group, index,
and product type. Once generated these cate-
gories we plotted for each of them the percentage
of monthly sales with respect to the total sold
amount of the same category during the entire
dataset period of two years. The fig. 1 shows an
example of categories that sell better during the
autumn season.

Figure 1: The categories in the legends are only
some examples, and are generated combining
i.e., index group, index, and product type. Jack-

ets and sweater sells better during the approach-
ing of winter seasons. Then this value decrease,
and is at its lowest during summer.

Gaussian mixture has been used to cluster the
categories into 4 groups that represents different
types of trends in the monthly sales, over the two
years of transactions. Those cluster are not con-
nected to a specific season, they only represents
different trends. Anyway, the categories belong-
ing to the fig. 1, that fall into the cluster type
2, are strictly connected to the autumn/winter
season. In the same way, the categories that fall
into the cluster type 3, are strictly connected to
the sprint/summer season. Categories that be-
long to cluster 0 have not a strong correlation
with a specific season of the year. The cate-
gory divided divided bracelet belongs to the clus-
ter 1. This represent a totally different trend
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Figure 2: Product seasonal type represent the
cluster, between 0 and 3, to which a category
belongs to. Categories that belong to cluster 0
have not a strong correlation with a specific sea-
son of the year. Categories that belong to cluster
2 have a strong correlation with autumn/winter
seasons. Categories that belong to cluster 3
have a strong correlation with spring/summer
seasons.

where there are some months where sales are
equal to zero. This specific category contains
accessories, meaning that articles belonging to
this cluster are independent from seasons and
unavailable during some periods of the year.

2.5. Out of Stock Product
Considering a specific article, if e.g., the sales
before 2019 account for more than 95% of the
total sales, we can assume that the article is no
longer available by the end of 2020 and exclude it
from the list of candidates to be recommended.
The fig. 3 shows an example.

Figure 3: The product, a swimsuit, has not been
sold anymore after august 2019. We can con-
sider it as no longer available in the stock a re-
move it from the list of candidates.

2.6. Repurchase
In the fast fashion industry, repurchase behav-
ior is used as a candidate generation technique
in recommender systems [6]. Fast fashion com-
panies, H&M is an example, offer a wide range of
clothing items that are frequently updated and
replaced with new items, and customers may be
more likely to repurchase items they have al-
ready bought, especially if they are happy with
the fit, quality, and style of the item. These
items can then be recommended to the user
as potential candidates for future purchases.
We analysed this behaviour using the available
transactions to see is customers decided to buy
again the same item, at different level of granu-
larity i.e., same article id, product id or category,
i.e., group of items, e.g., t-shirts, that share some
characteristics.

Figure 4: This plot shows the percentage of user
that, at least one time during the two years, pur-
chased again an item with the same article id

(e.g., a blue t-shirt), product code (e.g., previous
t-shirt of different size or color), and category
(e.g., any t-shirt in the dataset). The category

(see section 2.4) is an attribute generated by
unique combination of index name, index group

name and product group.

The fig. 4 shows the percentage of customers
who repurchased the same item, with exactly
the same article id (e.g., a blue t-shirt), prod-

uct code (e.g., previous t-shirt of different size
or color), and category (e.g., any t-shirt in the
dataset). The results obtained shows that there
is an increase of percentage repurchase if we in-
crease the time window or the granularity. Con-
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sidering the article id 5.1% of the customers re-
purchased the same item within 1 week, 6.2%
within 2 weeks and 6.6% within 3 weeks. In-
stead, considering the product code 6.8% of the
customers repurchased the same item within 1
week, 8.5% within 2 weeks and 9.4% within 3
weeks. Regarding instead the category 10.8% of
the customers repurchased the same item within
1 week, 14.3% within 2 weeks and 16.5% within
3 weeks. This percentage increase let us consider
repurchasing as candidate generation strategy.

3. Experimental methodology
Our dataset is large and complex with a wide
range of attributes and features that need to be
preprocessed and cleaned before being used for
training and evaluation. First of all we handle
missing information in the article and customer
datasets by filling them with a 0, i.e., fashion

news newsletter or NULL, i.e., club member

status and fashion news frequency. For all the
experiments we use random sampling in order
to create 4 different samples, containing differ-
ent percentages of all the available transactions:
0.1%, 1%, 10% and 100%.

3.1. Hyper-Parameter Tuning
We performed Bayesian Optimization using Op-
tuna [2]. Optuna provides a simple and flexible
API to define the search space, setting up the ob-
jective function, and configure the optimization
process. It also supports distributed optimiza-
tion, visualization of the results, and integration
with several machine learning libraries.

3.2. Data Split
We considers only the last 7 weeks of the dataset.
The first 6 are used to tune and trains models;
the reason is that these weeks share the same
context, e.g., weather, products available and
fashion trends, with the test week, i.e., the first
week after the dataset period. The last week of
the dataset is used as validation to validate our
model. Since we have no access to test week, we
validate our models with the validation week be-
fore submitting the recommendations and eval-
uate our solution.

3.3. Collaborative Filtering Recom-
menders

In our baseline experiments, we evaluate the
accuracy of several collaborative filtering mod-
els, including user-based and item-based neigh-
borhood, matrix factorization, graph based,
top popular and hybrid models. We perform
a variety of experiments to establish the ef-
fectiveness of these models, which in previ-
ous research works have shown to be com-
petitive and strong baselines in terms of rec-
ommendations’ quality. The techniques evalu-
ated in this experiment cover a wide variety of
recommenders, ranging from non-personalized
(top-popular items in august 2020 and top-
popular recommenders in September 2020), ma-
trix factorization (PureSVD, ALS), graph-based
(P3 Alpha, RP3 Beta), collaborative filtering
(ItemKNN, User KNN). We also evaluate hy-
brid models making an ensemble of models, i.e.,
top popular, P3Alpha and ItemKNN CF. Rec-
ommenders in this experiments are trained with
the train split of the ICM and URM obtained in
the processing phase. URM is a matrix that rep-
resents the interactions, e.g., transactions (cus-
tomer purchases).

3.4. Heuristics
With heuristics and association rules we exploit
the outcome of the data analysis made in sec-
tion 2.4, e.g., seasonality, out of stock prod-
ucts, repurchase, co-occurrence, among the oth-
ers. This last heuristic represents the idea be-
yond outfits: users buy two or multiple items
together because they compose an outfit recom-
mended by the fashion company itself of because
it has been seen somewhere else online. Several
experiments are inspired to the concept of fast-
fashion [6]. We tested ⇠ 50 models combining
heuristics and associations rules involving con-
sideration on trendy color, new products, ages
and top popular items. We tested different com-
bination of trends to see the variation of accu-
racy and highlights which heuristic the dataset
is biased to.

3.5. Two Stage Recommender
During the last experimental phase we apply the
two stage recommender. These systems gener-
ate recommendations in two phases: first, mul-
tiple nominators select a small set of items from
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a large pool using cheap-to-compute item em-
beddings, i.e., candidate generation strategies
used to down-sample the list of item; then, a
ranker with a richer set of features rearranges
the nominated items and presents them to the
user. We generate candidates, using strategies
listed in the next section, starting from the re-
sults of section 3.4. We than add features listed
in section 3.5.2 to these candidates. For the
model, instead, we make experiments with dif-
ferent GBDT algorithms. One of the goals dur-
ing that phase of experimentation has been to
find heuristics which gave good results and use
them to generate a pool of candidate to associate
to each single user. This has been an important
steps because having a pool of ⇠ 300 candidates
for each user means that the final model has to
select the recommendations from a lower list of
possible items instead of picking them from a
pool of ⇠ 106.000 items for each user. Lower-
ing the pool of candidates from which the model
need to select items to recommends increase the
model accuracy and the effectiveness of the solu-
tions. We tried different GBDT algorithms, e.g.,
LightGBM Ranker and Catboost among the oth-
ers.

3.5.1 Candidate Generation

The goal of candidate generation is to identify
a set of items that are likely to be of interest
to the user in order to lower the pool of arti-
cles from with the final model have to pick up
recommendations. The list of candidate gener-
ation methods allow us to generate a pool of
⇠ 300 items for each user. Once generated,
those candidate pools have been used for
all of our final experiments. The strategies
adopted are: repurchase, Item-to-item CF, pop-

ular items, age based, popularity per department,
same product code and co-occurrence.

3.5.2 Feature engineering

The goal of feature engineering in fashion rec-
ommender systems is to extract the most rele-
vant and informative features from the available
data, in order to enable accurate and personal-
ized recommendations to users. I create more
than 100 features. We filtered out not informa-
tive features for the model and we come up with
the following list of features:

1. User attributes: age.
2. Item attributes: product type number,

product group name, graphical appearance,
color group code, perceived colour value, per-
ceived colour master, department number,
index code, index group number, section

number, garment group number.
3. User featuuhres: mean and standard de-

viation for prices and sales channel id for
all of his transactions.

4. Item features: mean and standard devia-

tion for prices and sales channel id consid-
ering all transactions of that item.

5. User-Item features: are the mean and
standard deviation of the age of all the users
who buy that item.

6. Item freshness features: first day the
item appears a transaction.

7. Item volume features: the number of
times the item appear inside the dataset.

8. User freshness features: first day he
made a transaction.

9. User volume features: the number of
transactions made by the user.

10. User-Item freshness features: the first
time the pair appears in a transaction.

11. User-Item volume features: the number
of times the user-item pair appears inside
the dataset.

12. Item age ranges features: the age range
of people that most likely buy that item.

Using simple features allow to create an effective
and lightweight recommender while fastening
the training time. This has been possible thanks
to the extensive work done on dataset analysis
and on building effective candidate generation
strategies to down-sample the pool of items as-
sociated to each single user of the dataset.

3.6. Resources
To run our experiments we use two cloud com-
puting platforms: Google Colab2 and Amazon
AWS3. Google Colab provides a virtual machine
with 1 or 2 cores CPU, an NVIDIA Tesla K80
or T4 GPU and 27 GB of RAM. For AWS we
used the m6g.16xlarge4. That instance has 64
CPU cores and 256 GB RAM.

2Google Colab https://colab.research.google.
com

3Amazon AWS https://aws.amazon.com
4Amazon EC2 M6g Instances https://aws.amazon.

com/ec2/instance-types/m6/
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4. Results
In the table 1 are listed all the results we got
with the 3 different experimental methodologies,
i.e., collaborative filtering recommenders, heuris-

tics and two-stage recommenders, both for the
private and public leaderboard.
In our strong baseline experiments, we evalu-
ate the accuracy of several collaborative filter-
ing models. The recommenders have low rec-
ommendation accuracy with respect to more
sophisticated and tailored recommenders, e.g.,
the one used by the team obtaining the 1st
place in the competition. Strong baseline mod-
els do not obtain high accuracy in this do-
main, being less competitive than the best solu-
tions of the challenge. Also, a non-personalized
recommender, i.e., top popular items, obtains
higher accuracy than such baselines. ALS is
a strong baseline and obtains the highest accu-
racy of personalized collaborative filtering rec-
ommenders. However, its accuracy is lower
than non-personalized approaches. Top Popu-
lar Items on August/September 2020 measure
whether purchased items in the competition are
most popular during the season. We considered
only August and September because they are
the two months in the same season as the tar-
get purchases. The obtained score is lower than
the one obtained recommending the top popular
items from the entire dataset. These results sug-
gest that the trend of sold items during the test
week is not connected with items sold during the
same season, i.e., summer of 2020. An additional
proof is that the accuracy of Top Popular Items
on August/September 2020 is lower that the ac-
curacy of Top Popular Items on September 2020
by 6%.
With heuristics and association rules we exploit
the outcome of the data analysis of users’ be-
haviors made in section 2, e.g., seasonality, out
of stock products, repurchase, co-occurrence,
among others. Association rules consider how
often two items were sold to the same user
among the two years of available dataset. The
co-occurrence heuristic represents the idea be-
yond outfits and follows the same idea of the as-
sociation rule: users buy two or multiple items
together because they compose an outfit. Sev-
eral recommenders are inspired by the concept of
fast-fashion [6], i.e., recommender selecting only
trendy colors, new products, popularity based

on age, repurchases, and co-occurrences. We
also combine two or more heuristics or associ-
ation rules into a single recommender. This new
recommender selects items that are selected by
each heuristic or association rule. The best rec-
ommender in this experiment obtains a relative
improvement of 60% with respect to the most
accurate personalized collaborative filtering rec-
ommender.
In the last experiment, we design, develop, and
evaluate a two stage recommender. These sys-
tems generate recommendations in two phases:
first, multiple nominators select a small set of
items from the catalog using lightweight item
embeddings, i.e., candidate generation strategies
used to down-sample the list of items. Second, a
GBDT ranker with a richer set of features rear-
ranges the nominated items and presents them
to the user. The GBDT model that gives better
results is Catboost; its accuracy is higher than
all heuristics and association rules by 34 and 42
%. Also, its accuracy is higher than all collabo-
rative filtering recommenders, with a difference
of 41% with respect to top popular 12 items and
114% with respect to ALS. Our most accurate
recommender obtains a score of 0.0298 in the
private leaderboard, meaning it obtains the 10
place in it. For comparison, the best baseline
sits in the 1445 place, the most accurate heuris-
tic sits in the 1260 place, and the most accurate
association rule sits in the 1311 place.
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Table 1: The table presents 4 sections: the first
section contains the score of the first 3 winning
solutions as reference points. We analyse these
3 solutions because they train the same GBDT

model, but present different pipeline’s structure
and innovative techniques, e.g., "Two Tower

MMoE", SWIM transformer and sentence trans-

former, among others. Solutions that ranked at
2nd and 3rd place provide a similar pipeline and
differ from the 1st because of recall methods and
engineered features. The second section contains
the results of the experiments made with tradi-
tional models. The third section contains the
results of the experiments done with heuristics
and association rules. The last section shows the
result of our best two-stage recommenders, i.e.,
GBDT Catboost with YetiRank, GBDT Light-

GBM Ranker.

Algorithm Public Private
First place 0.03716 0.03792
Forth place 0.03544 0.03563
Fifth place 0.03536 0.03553

Top popular 12 items 0.02163 0.02119

Top popular items on September 2020 0.00407 0.00384
Top popular items August/September 2020 0.00383 0.00362

P3Alpha 0.00431 0.00426
RP3 Beta 0.00425 0.00453

ALS 0.01413 0.01406

PureSVD 0.00431 0.00426

Item KNN CF 0.00345 0.00357
Ensemble: Top popular 12 items,

P3Alpha and ItemKNN CF 0.00457 0.00463

Heuristic Trendy color and top popular items 0.00613 0.00642
Heuristic Age, trendy color and top popular items 0.0064 0.00676

Heuristic Top popular new items 0.0064 0.00676
Heuristic Recommend again product bought last 3 weeks 0.01854 0.0185

Heuristic Trending product based
on repurchasing trend 0.02263 0.02291

Association rule Top popular items based on
age and discounted products 0.01478 0.01482

Association rule Top popular items based on age 0.01949 0.01962
Association rule Top popular items from

most popular product category (Trousers, Sweater, Cardigan) 0.01973 0.01992
Association rule Items purchased together 0.02169 0.02159

Two-Stage Recommender with LightGBM 0.0286 0.0279
Two-Stage Recommender with Catboost 0.0303 0.0298

5. Conclusions
This thesis provides a comprehensive overview
of the H&M challenge and presents several solu-
tions to it, the last one ranking among the top
10 in the final leaderboard. The presented so-
lution is a lightweight and scalable model that
requires few resources and training time. The
best recommender takes 15 hours to train on
a 64-core CPU virtual machine using 256 GB
RAM. Despite the limited resources needed, our
final models yielded competitive results. For

future works, we suggest several action items
that can be taken in the future to improve the
score, e.g., increasing resources and testing mod-
els with longer time frames, i.e., to consider as
train period more than 6 weeks. Another future
direction is to build embedding of items’ images
and descriptions to boost the effectiveness of the
model.
The fashion recommender system developed in
this thesis has the potential to enhance the shop-
ping experience for H&M customers by provid-
ing personalized and accurate fashion recom-
mendations. Additionally, the system can help
H&M to increase customer engagement and loy-
alty, as well as boost sales and revenue.
In the fashion area, it is recommended to retrain
the model after some time, as fashion trends
and user preferences can change over time [4, 7].
Not retraining recommenders can lead to a de-
crease in their accuracy in future interactions
with users. In addition, new products may be
added to the inventory, which can affect the rec-
ommendations made by the model. Many fash-
ion companies are actively retraining their rec-
ommender systems to ensure they remain up-
to-date and effective. For example, a Euro-
pean online fashion retailer, updates its recom-
mendation algorithms every two weeks, based
on customer feedback and new data. Similarly,
a US-based online personal styling service up-
dates its algorithms every few weeks to keep up
with changes in customer preferences and fash-
ion trends [3].
One limitation of this thesis is that the third-
party system evaluating each solution does not
simulate an environment when recommenders
are retrained. As participants in the competi-
tion, we do not have access to the entire dataset,
hence it is not possible to reproduce such an
evaluation methodology. Even after the dead-
line it has been not possible to access the entire
dataset and the only way to test our solutions
has been to submit it on the system.
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Abstract
The rise of e-commerce has transformed the retail landscape and has created a wealth
of opportunities for customers and businesses alike. Customers now have access to a
vast array of products and services from the comfort of their own homes. Businesses are
able to reach a wider audience than ever before. However, this abundance of choices can
also lead to information overload and result in a less-than-optimal shopping experience
for customers. To overcome this, companies are constantly looking for ways to improve
the customer experience and to provide personalized recommendations that are tailored
to each individual customer’s preferences, behaviors, and feedback. Recommender sys-
tems analyze past customer behavior and preferences to suggest new products that are
likely to interest them. They have become an essential tool for companies in the e-
commerce industry as they provide a convenient, time-saving, and personalized shopping
experience for customers. By providing customers with relevant and targeted recommen-
dations, recommender systems can increase customer engagement, satisfaction, and sales.
H&M, a leading fashion retailer, has recognized the importance of recommender systems
and proposed a Kaggle Challenge to develop product recommendations based on data
from previous transactions, as well as from customer and product metadata. The main
objective of this Master’s thesis is to propose an effective, scalable, and lightweight rec-
ommender system to enhance customer experience. The findings of this thesis provide
valuable insights into the accuracy and effectiveness of recommender systems to improve
H&M’s online shopping experience. Past the competition period, I conduct extensive re-
search on fashion-based recommenders and focus the work on proposing a novel and light
fashion-based recommender that outperforms the state-of-the-art and publicly available
top-scores recommender. I analyse first the dataset to find patterns in the behavior of
the customers and build new features. The thesis proposes a list of candidate generation
strategies to down-sample the pool of articles to recommend and an effective, fast and
lightweight model to enhance sales.1

Keywords: recommender systems, gradient boosting, Neural Network, Fashion

1Challenge overview here

https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview




Abstract in lingua italiana
L’ascesa dell’e-commerce ha trasformato il commercio al dettaglio, creando opportunità
per clienti e aziende. I clienti hanno ora accesso a una vasta gamma di prodotti e servizi
dal comfort delle proprie case, mentre le aziende raggiungono facilmente un pubblico
più ampio. Tuttavia, il sovraccarico di scelte ed informazioni fornisce un’esperienza di
shopping non ottimale. Per superare questo ostacolo, le aziende cercano costantemente
modi per migliorare l’esperienza del cliente e fornire raccomandazioni personalizzate che
si adattino alle preferenze, ai comportamenti e ai feedback di ognuno. I sistemi di racco-
mandazione analizzano il comportamento e le preferenze dei clienti per suggerire prodotti
che siano di loro interesse. Sono diventati uno strumento essenziale nell’e-commerce,
poiché forniscono un’esperienza di shopping comoda, time-saving e personalizzata. H&M
ha riconosciuto l’importanza dei sistemi di raccomandazione e ha proposto una challenge
Kaggle per sviluppare un sistema di raccomandazione a partire dai dati delle precedenti
transazioni, dei clienti e dei prodotti. L’obiettivo principale di questa tesi è proporre
un sistema di raccomandazione efficace, scalabile e leggero per migliorare l’esperienza
del cliente. I risultati di questa tesi forniscono informazioni preziose sull’accuratezza e
l’efficacia dei sistemi di raccomandazione per migliorare l’esperienza di shopping di H&M.
Dopo la fine della competizione ho condotto un’ampia ricerca sui sistemi di raccoman-
dazione basati sulla moda, proponendo un nuovo ed efficace modello che supera lo stato
dell’arte e i sistemi di raccomandazione attualmnete in uso. Ho analizzato il dataset per
trovare pattern nel comportamento dei clienti e creare così nuovi metadati. La tesi pro-
pone una serie di strategie di generazione di candidati con l’intento di ridurre il pool di
articoli da raccomandare e un modello efficace, veloce e leggero per migliorare l’esperienza
di acquisto.

Parole chiave: sistema di raccomandazione, alberi decisionali, reti neurali, moda
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1| Introduction

Recommendation systems have become an integral part of the e-commerce industry with
their ability to provide personalized recommendations for users based on their previous
interactions with the platform. According to research by Adomavicius and Tuzhilin [1],
the use of recommender systems has been shown to significantly improve customer engage-
ment, satisfaction, and retention. In recent years, the fashion industry has also started
leveraging the power of recommender systems to offer personalized product recommenda-
tions to their customers.

According to a study by Deldjoo et al. [19], the application of recommender systems in
fashion has proven to be an effective way to improve customer satisfaction, increase sales,
and create a more engaging shopping experience. Fashion retailers use these systems
to recommend products that are more likely to resonate with their customers, based on
their past purchases, browsing behavior, and other relevant data. This helps retailers to
increase sales and create a more personalized shopping experience.

Developing effective recommender systems for fashion presents unique challenges [57, 93].
Fashion is a highly subjective and dynamic domain, where personal taste and fashion
trends change rapidly. The fashion industry is also highly visual, and fashion products
often have many different visual attributes, making it more challenging to incorporate
meaningful features generated starting from base attributes used to categorize users and
items inside the internal storage and capture the nuances of customer preferences. Ad-
ditionally, fashion is a highly seasonal industry, with new trends and products being
introduced frequently during each quarter of the year. This means that recommender
systems for fashion need to be constantly updated to remain effective if we want to keep
the same results. There are many variables that change over time and based on the fash-
ion trends that may alter the effectiveness of the prediction, even for the same user, over
time.

Despite these challenges, there has been significant research on developing recommender
systems in the fashion domain [61]. Many researchers have proposed various techniques
and methods to develop effective fashion recommender systems [8, 43, 67, 67, 110]. These



2 1| Introduction

techniques range from traditional collaborative filtering methods to more advanced deep
learning techniques that can incorporate visual features into the recommendation process.

This thesis explores the transactions dataset of H&M and builds effective recommender
systems in the fashion domain. Specifically, this work investigates the challenges of devel-
oping recommender systems for fashion, reviews existing approaches and techniques, and
proposes a novel framework to build an effective fashion recommender system. The pro-
posed framework is evaluated on a real-world dataset, provided by H&M, which contains
two years of transactions, both online and in-store purchasing of fashion clothing.

Overall, this thesis contributes to the growing body of knowledge on recommender systems
in the fashion industry and provides valuable insights and recommendations for practi-
tioners and researchers working in this field. For instance, how to inspect the dataset and
build effective recall methods to reduce the catalog size to a selection of a subset of it.
Or spots trends in the transactions that help to build effective features, both related to
seasons, customers, and item type, among others. By developing effective recommender
systems, fashion retailers can provide a more engaging and personalized shopping experi-
ence, which can help them stay competitive in the fast-paced world of e-commerce.

The thesis work started from a Kaggle Challenge proposed by the H&M brand.1 In
this competition, H&M Group invites researchers and practitioners to develop product
recommendations based on data from previous transactions (clothing purchases), as well
as from customer and product metadata. The available metadata spans from simple
features, such as garment type and customer age, to text data from product descriptions
to image data from garment images.

In the beginning, we participated as a team composed of three students supported by a
Ph.D. Student. Past the competition period, I conducted extensive research on fashion-
based recommenders and focused the work on proposing a novel and light fashion-based
recommender that outperforms the state-of-the-art and publicly available top-scores rec-
ommender.

This thesis is divided into 6 chapters: chapter 2 presents the state of the art, the tech-
nologies, popular techniques, and evaluation of Recommender Systems. It also introduces
the evaluation metric specifically used to evaluate the submission files of the challenge.
Instead chapter 3 presents the H&M competition and it is divided into two parts. First,
we present several analyses of the provided dataset. We highlight patterns in the data we
use to build features and the final model. It also describes a selection of publicly avail-

1Challenge overview https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/

overview

https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview
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able solutions to the competition by top scorers. Chapter 4 introduces the experimental
methodology adopted, both during and after the challenge, with the experiments made.
It presents three different experiments, i.e., collaborative filtering models, heuristics, and
two-stage recommender. It includes a detailed list of the models we built for each exper-
iment, scores obtained, analysis of the accuracy, the list of features, recall methods, and
the final GBDT model used to generate recommendations. Chapter 5 presents the re-
sults obtained from the three experiments. Chapter 6 summarises the main contribution,
resource limitations, and future directions of this work.
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Recommender systems are software tools designed to recommend items to users based
on previous interactions, context, or similarities between items or users. These systems
predict products that the users are most likely to purchase or are interested in. Recom-
menders share the same objective: to recommend related items to users using the system.
Different types of recommenders use distinct data sources to accomplish the thesis goal.
Also, their effectiveness depends on the data they have available, their granularity, at-
tributes, among others.

In this thesis the word user refers to the buyers, both for the online and physical stores and
the word item refers to the articles available to be purchased. The word transaction refers
to the specific type of interaction we have, i.e., a user purchasing an item. Submission
refers to the predictions generated by a model for users in the dataset provided by the
challenge. These predictions are in the form of a ranked list of items that the model
believes the user is most likely to be interested in.

The next sections provide a summary of different types of recommender systems experi-
mented with during the thesis’ work, as shown in the fig. 2.1. They also presents neural
network techniques, e.g., Two tower MMoE, gating network, SWIM transformer, GBDT
algorithms. At the end of the chapter we provide an overview of the evaluation techniques
and of the data processing methods used.

2.1. Non-Personalized Techniques

Non-personalized recommendation models are the simplest type of recommender system,
as they do not take into account the preferences or interests of individual users. These
models can be effective even with limited or no user data and are often used in conjunction
with personalized recommendation models [96]. The most popular are: Top-Popular,
Random, and Best rated.

Random It recommends to the users a random sub-sample of items belonging to the
catalog.
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Figure 2.1: The figure provides an overview of different types of recommender systems.
The four main types of personalized recommender systems included in the figure are col-
laborative filtering, content-based filtering, hybrid recommender systems, session-based,
and context-aware recommender systems.

Top Popular Selects items with the highest number of interactions. It is also called
most popular items.

Best Rated First considered items are the ones with the highest rating.

score(u, i) =

P
u rui

(Ni + C)
(2.1)

Where rui is the rating given by user u to item i (considering non-zero ratings). Ni is the
number of users who have rated item i. C is the shrink term, a constant value.

2.2. Content-Based Filtering

Those algorithms focus on attributes of items, i.e., their content. In the case of ItemKNN
CB, we calculate the similarity between each pair of items, using the ICM as input. The
similarity is calculated using the formula sij =

P
a ia · ja = #common attributes. This
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formula counts the number of common attributes between each item, so the values may
be greater than 1. If we want a value between 0 and 1, we can normalize it with the
norm-2 of the two vectors as shown in eq. (2.2).

sij =

P
a ia · japP

a i
2
a ·

P
a j

2
a + C

=
#common attributesp

#attributes of i ·#attributes of j + C
(2.2)

The similarity computed in this way is called shrunk cosine similarity since it is exactly
the formula to calculate the cosine of the angle between two n-dimensional vectors: the
more they are similar, the higher sij is (and therefore the larger the cosine), the smaller
the angle between them. The shrink term give to the formula the level of trust and is
called support. The shrink term is a hyper-parameter of the recommender system and
needs to be tuned to find the best model. Once we have the similarity between items we
are able to calculate also the estimated ratings of a user for a specific item.

r̃ij =

P
j ruj · sjiP

j sji
(2.3)

It is easy to see that the computation of the estimated ratings is complex in terms of
time and memory. We need to manipulate the formula in order to reduce the effort and
improve the quality of recommendations. We present two techniques to accomplish that
task in section 2.2.1 and section 2.2.2.

Item Content Matrix (ICM) The first possible source of inputs for a recommender
system is represented by the “list” of items with their attributes and organized in a matrix
called Item Content Matrix or ICM, where rows represent items, columns represent
attributes and each cells contain values describing the item-attribute connection. The
value of the cell may be binary, indicating the presence or not of the feature or a real
number, indicating the importance of the attributes describing the item.

2.2.1. k-Nearest Neighbours (kNN)

When building a content-based recommender system, one key step is manipulating the
similarity matrix S to remove outliers and focus on the most relevant items for a given
target item [74]. The k-nearest neighbors (kNN) technique is often used to identify the
k most similar items to the target in each row of the similarity matrix while setting all
other values to 0. This helps to improve the quality of recommendations by filtering out
irrelevant items and focusing on those that are most closely related to the target [105].
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r̃ij =

P
j2kNN(i) ruj · sjiP

j2kNN(i) sji
(2.4)

where k is a hyper-parameter that influences the quality of recommendations and has to
be properly tuned. Indeed, if we choose a value for k that is too small, we will not have
enough data to compute a reliable estimation; on the other hand, if we choose a value that
is too big, we will use data full of noise tainting our recommendations. The right value
must be something in between these two extremes and strongly depends on the dataset
[105].

2.2.2. Improving ICM with non-Binary Weights

When building a content-based recommender system, the item-content matrix (ICM)
can be manipulated to improve the quality of recommendations by assigning weights to
each attribute based on its importance [1]. This allows more important attributes to
contribute more heavily to the computation of similarity and can improve the accuracy of
recommendations. Additionally, the ICM can include non-binary values to capture more
nuanced relationships between items and attributes [88]. This can help to improve the
diversity of recommendations and avoid excess reliance on a subset of attributes.

2.3. Collaborative Filtering

Collaborative filtering is a widely used technique in recommender systems that relies on
the opinions of users to make recommendations [101]. There are two main approaches
to collaborative filtering: user-based and item-based. The user-based approach involves
finding users with similar preferences and recommending items that those users have
rated highly. The item-based approach, on the other hand, involves finding items that
are similar to items the user has rated highly and recommending those similar items [38].

User Rating Matrix (URM) In CF the User Rating Matrix is the main and only
source of input and contains interactions between users and items. Interactions refer to
the recorded instances of user engagement with the items in the system. These inter-
actions can take various forms, depending on the type of item being recommended and
the platform in which the system is deployed. In our case, the interactions represent the
transactions made by a buyer (user) for an article (item). In the URM, rows represent
users, columns represent items, and each cell represents the interaction. We may have
implicit ratings, in which 0 means “no interaction” and 1 means that an interaction
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occurred. This type of rating is useful when we are looking at the behavior of users with-
out directly asking them for a rating or an opinion. In the case of Explicit ratings,
we directly ask the opinion of the user with a value on a defined scale. Not every user
answers and therefore we assume as 0 no information [1].

Many recommender systems use the URM as input data and their goal are to predict
missing values in the URM. However, it may happen that each user interacts only with a
few items, resulting in a very sparse matrix, with a great number of cells with a value of
0 [56].

2.3.1. Memory Based CF

Memory-Based Collaborative Filtering (CF) is a type of recommendation system that
relies on similarities between user preferences to generate recommendations. In Memory-
Based CF, the system creates a matrix of user-item ratings, where each row represents a
user and each column represents an item, i.e., URM.

The system then calculates the similarity between each pair of users based on their ratings
of the same items. To generate recommendations for a user, the system looks at the items
that the user has not rated and finds the users who are most similar to the target user.
The system then recommends items that these similar users have rated highly but the
target user has not yet seen.

Memory-Based CF has some advantages over other recommendation systems. It is easy
to implement and can provide good results with small datasets. However, it can suffer
from the "cold start" problem when there are new users or new items with no ratings yet.
Additionally, it can be computationally expensive for large datasets, and the quality of
recommendations can suffer if there are not enough overlapping ratings between users.

User-Based CF
The basic idea of User-Based CF is to search for users with similar tastes and recommend
to them the items they liked the most [102]. We start computing the similarity between
users using the following suv =

P
i ui · vi = #common items

suv is the value of the similarity, that has a value greater than 1. We can improve our
metric by normalizing it using the norms-2 of the two vectors, in order to obtain a value
between 0 and 1:
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suv =

P
i vi · uipP

i u
2
i ·

P
i v

2
i + C

=
#common opinionsp

#opinions of u ·#opinions of v + C
(2.5)

The similarity computed in this way is called shrunk cosine similarity since it is exactly
the formula to calculate the cosine of the angle between two n-dimensional vectors: the
more they are similar, the higher suv will be (and therefore the larger the cosine), the
smaller the angle between them. The shrink term gives to the generated values the level
of trust.

This matrix is symmetric because we are using the cosine similarity, whose formula is
commutative with respect to the users (suv = svu). Once obtained the similarity matrix
we can use the kNN techniques to make it sparser and obtain all the benefits we explained
in section 2.2.1

To estimate the rating of the user u for item i we can simply compute the weighted mean
of all the known ratings of user u, where the weights are the corresponding similarities:

r̃ui =

P
v2kNN(u) rvi · svuP

v2kNN(u) svu
(2.6)

From the eq. (2.6), the more user u is similar to user v, the more the opinions of user v

will influence the estimated ratings for user u and vice versa. This works only for implicit
ratings since with explicit ratings we have a deeper opinion of users, with more shades. We
can adopt a different strategy to consider the different ways a user can express a rating.
This is called user bias, a phenomenon in which some users are more generous than others
in giving ratings. The trick to overcoming this problem is to normalize the ratings before
computing the similarity, removing from each rating of user u his corresponding bias [9].

bu =

P
v,i2T r

00
ui

NT
(2.7)

r
00
ui is the re-normalization of each rating of the URM, obtained by removing the item

bias from the rating of the URM (r00
ui = r

0
ui � bi). bi, i.e., item bias, is the shrunk average

rating for each item.

bi =

P
u,i2T r

0
ui

NT + C
(2.8)

r
0
ui is the normalization of each rating of the URM, obtained by removing the global bias
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(r0
ui = rui � µ). The eq. (2.9) is the global bias, which is simply the average rating for

all items and users (sum of non-zero ratings over the number of non-zero ratings). In the
equation T indicates the set of non-zero ratings, and NT indicates their number:

µ =

P
u,i2T rui

NT
(2.9)

suv =

P
i(rui � r̃u) · (rvi � r̃v)pP

i(rui � r̃u)2 ·
P

i(rvi � r̃v)2 + C
(2.10)

The eq. (2.10), called Pearson correlation, is the result of this operation on the cosine
similarity. If rui � r̃u is positive, means that user u likes item i more than his average
rating: globally user u likes item i. From the eq. (2.11) is possible to calculate the
similarity used to compute the estimated rating.

r̃ui = r̃u +

P
v2kNN(u)(rvi � r̃v) · svuP

v2kNN(u) svu
(2.11)

Item Based CF
The basic idea of item-based collaborative filtering is to calculate the similarity between
each pair of items considering how many users have the same opinion about them. Starts
by calculating the similarity between each pair of items:

sij =
X

u

rui · ruj = #common opinions =~i ·~j (2.12)

Since this value can be greater than 1, we can normalize it, as previously done with the
user similarity, to get values between 0 and 1. We can do that using, as usual, the shrunk
cosine similarity:

sij =

P
u rui · rujqP

u r
2
ui ·

P
u r

2
uj + C

(2.13)

Once computed the similarity between each pair of items, we put all those values in
a similarity square matrix. This matrix is symmetric because we are using the cosine
similarity, whose formula is commutative with respect to the items (sij = sji � µ). To
compute the estimate of the rating of user u for item i, we compute the weighted mean
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Figure 2.2: First we build the model starting from the URM and ICM, then we calculate
the estimated ratings as a function g of both model and user profile

of all the known ratings of user u, where the weights are the corresponding similarities,
as shown in eq. (2.14). The higher the similarity between item i and j, the more the
opinions about item j will influence the estimated ratings for item i. These concepts are
similar to ones in section 2.3.1, but they are applied on the columns rather than on the
rows.

r̃ui =

P
j2kNN(i) ruj · sjiP

j2kNN(i) sji
(2.14)

Memory-Based vs Model-Based
In this section, we go over a further distinction between different types of recommender
systems, based on the method of implementation and its usage. The process to generate
estimated ratings is composed of two steps as shown in fig. 2.2: in the first one, we build
the model (using the URM in CF techniques or the ICM in CBF), while in the second
one, we use the model alongside the user profile (information about the user’s tastes)
to provide recommendations. The user profile can be seen as a vector of ratings (the
corresponding row in the URM) and it divides recommender systems into two categories.

Memory-Based: these collaborative filtering techniques require that the user profile
belongs to the URM used to build the model [97]. This means that these techniques can
only provide recommendations to "known" users whose opinions have been used during
the model-building process. These methods predict ratings based on users’ neighborhoods,
using the URM in both the construction of the model and the prediction. Memory-based
techniques are easier to implement compared to model-based techniques [37].

Model-Based: techniques of this type do not impose restrictions on where the user profile
has to be taken. This means that model-based techniques can provide recommendations
both to “known” and “unknown” users. This freedom of action is due to how the model
has been built: starting from the items to build the model means that we do not care
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about “known” or “unknown” users because we simply use what we have, without having
to recompute the model every time we add a new user or provide recommendations to him.
In other words, model-based techniques extract information from the dataset to build a
model, without relying on the users’ neighborhood. They are a bit harder to implement,
and they also require a URM that is big enough to extract the model; nevertheless, the
huge advantage is that we can provide recommendations also to “unknown” users, without
having to recompute the model [56].

2.3.2. Machine Learning Approaches

In an ML context, the quality of a recommender system is evaluated through a loss
function, which measures the discrepancy between the predicted ratings and the observed
ones. To increase the precision the predicted ratings need to be as close as possible to
the real ones, which corresponds to both the highest quality and the lowest value of the
loss function. For this reason, minimizing the loss function is equivalent to maximizing
the quality of the system. Therefore, the goal of building a recommender system can be
framed as finding the similarity matrix, i.e., the model that minimizes the error between
the predicted and observed ratings [37].

E(S) = comparison(R, R̃(S)) (2.15)

The eq. (2.15) represents the expected similarity between the real ratings R and the
predicted ratings R̃ for a set of items S. Comparison is the function that measures the
similarity between two sets of ratings. One possible definition of the comparison function
is the cosine similarity between the two vectors, as shown in the eq. (2.16).

E(S) =
R · R̃(S)

|R||R̃(S)|
(2.16)

where · represents the dot product between two vectors, and | · | represents the L2 norm
(Euclidean distance) of a vector. The expected similarity E(S) is a measure of how well
the predicted ratings match the real ratings for the items in the set S. By minimizing
the difference between the real and predicted ratings, we improve the quality of the
recommendations provided by the system.
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SLIM
SLIM [118] stands for Sparse Linear Method, and it is an Item-Based CF technique. Once
defined the model (the item-item similarity) we have to also define the loss function we use.
In the case of SLIM, we use the MSE because it is very intuitive and differentiable [28].

E(S) =
X

u,i2R+

[rui � r̃ui]
2 ,! ||R�RS||2 (2.17)

where r̃ui =
P

j rujsji is the sum of the ratings that user u gave to items j, weighted by
the similarity between item i and j. The loss function E(S) is the norm-2 of the difference
between the URM (R) and the estimated ratings (RS). Using norm-2 means computing
the error over all the non-zero ratings of the starting URM.

In the eq. (2.18) S⇤ is the matrix that, among all other similarity matrices, minimizes the
loss function. Nevertheless, the best solution is for S⇤ = I that, although reduces the loss
function to zero. This is an uninformative solution since it only states that every item is
perfectly similar to itself and to anything else: it is useless but also a perfect example of
the inability to generalize.

S⇤ = min
S

||R�RS||2 = min
S

E(S) (2.18)

To achieve the same results in a machine learning approach, we have to introduce the
concept of regularization. It refers to a set of techniques used to prevent the overfitting
of a model which occurs when a model becomes too complex and starts to fit the noise
or random fluctuations in the training data, rather than the underlying patterns. This
can lead to low accuracy when the model is applied to new data [32]. Regularization
techniques involve adding a penalty term to the objective function that the model is
trying to minimize. This penalty term encourages the model to have smaller weights or
coefficients, which can reduce the complexity of the model and improve its generalization
accuracy. The most common regularization techniques are L1 regularization (also known
as Lasso regularization) and L2 regularization (also known as Ridge regularization) [25].

BPR
The BPR algorithm exploits the Bayesian approach to rank items according to the prefer-
ences of users expressed through implicit ratings maximizing the posterior probability [94].
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P (item i higher in ranking than item j|user u) (2.19)

Implicit ratings are useful to catch raw interactions of users, and their binary form allows
to classify as relevant the items with which the user interacts, marked with a 1. Items
identified as non-relevant are ones the user has never interacted with and are marked
with a 0. In this chapter, relevant items are identified with the letter i while non-relevant
items are with the letter j. It is true that we cannot distinguish between positive and
negative ratings using implicit ratings, but, it is also true that relevant items must be
ranked higher than non-relevant ones [87]. Following this statement, the formula of the
posterior probability can be rewritten as:

P (r̃ui > r̃uj|u) (2.20)

We want to predict the rating of relevant item i for user u(r̃ui) in such a way that its
estimated rating is greater than the estimated rating for non-relevant item j(r̃uj).

One function to estimate the probability that the rating of item i is greater than the one
for item j is the sigmoid function:

↵(x) =
1

1 + e�x
(2.21)

A high value of x corresponds to a value of the probability function ↵(x) that is close to
1. Moreover, we want that the higher the rating of item i is with respect to item j, the
closer to 1 the value of ↵(x) is. Therefore, to maximize the difference between the ratings
of relevant and non-relevant items we refer to the eq. (2.23).

xuij r̃ui > r̃uj (2.22)

↵(x) =
1

1 + e�xuij
(2.23)

where r̃ui is the predicted rating of relevant items for user u, r̃uj is the predicted rating
of non-relevant items for user u and xuij is the pairwise difference between items i and j.
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2.3.3. Matrix Factorization

User Rating Matrix (URM) is a fundamental component of Recommender Systems and is
used in many algorithms, such as Collaborative Filtering (CF) [97]. However, the URM is
typically a large matrix, making it computationally expensive to learn an accurate model
from it. Most techniques used in CF are based on similarities between items or users.
Therefore, we need to extract from the URM something that acts as a counterpart of a
"similarity" between users and items and reduce the number of parameters we need to
learn during the training process. This approach is known as Matrix Factorization [56].

To compute this new type of "similarity" we cannot categorize users and items using the
same attributes as it would result in a conceptual error, similar to adding a string to an
integer value. Instead, we need to introduce something that connects the preferences of
a user to the items that will satisfy their tastes: features or latent factors. Items are
described using features with high values indicating a higher presence of that feature in
describing them, while users express their preferences through features with high values
indicating a higher preference. Therefore, users will like items that contain the features
they prefer the most [56]. Overall, Matrix Factorization allows to the extraction of mean-
ingful information from the URM reducing the number of parameters and leveraging the
relationship between users and items through latent factors.

In the eq. (2.24) x̃uk represents user’s preference, i.e., how much user u likes feature k. ỹik
represents the item’s description, where its value tells us how much feature k describes
item i. The product of these two values represents how much user u likes item i because
of the presence of feature k. However, from a mathematical point of view, features are
only an abstraction made to connect users and items and have nothing to do with real
attributes. To calculate the rating user u would give to item i, we have to iterate this
product over each feature.

r̃ui =
X

k

x̃uk · ỹki (2.24)

Extending this computation to all the possible combinations of user-item, we obtain a
matrix product (see eq. (2.25)), where X is the matrix containing the preferences of all
the users: on the rows, we have users (Nu) while on columns we have features (Nk); its
dimensions are NuxNk. Y is the matrix containing the description of all the items: on
the rows, we have features (Nu) while on columns we have items (Nk); its dimension is
Ni x Nk. R̃ is the matrix of predicted ratings and its dimensions are Ni x Nu.
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R̃ = X · Y (2.25)

Starting from the matrix R̃, to understand how to learn the parameters of the two matrices
X and Y we make use of ML techniques and loss function. One possible approach is using
the MSE as a loss function.

X⇤, Y ⇤ = min
X,Y

||R� R̃||2 + �1 · ||X||2 + �2 · ||Y ||2 (2.26)

Adding the weighted norms of X and Y allows keeping the matrices as sparse as possible,
depending on the weights �j. If they are near zero, we have no regularization and therefore
we do not avoid overfitting. Instead, if they are high, the norms in the loss function will
be dominant and, as a result, we obtain very sparse matrices. Since the URM is a sparse
matrix with many missing values, it is important to decide the assumption to interpret
the meaning of these missing values.

• Missing As Random (MAR): It is assumed that the probability of a user liking
or disliking an item they have not yet rated is equal. This approach, while naive,
works well for estimating actual ratings. The MAR approach is mainly based on
the Norm-2 algorithm [55].

• Missing As Negative (MAN): This approach assumes that a user is more likely
to dislike an item they have not yet rated. It is a more conservative approach that
works well for optimizing precision and recall. MAN is based on the Frobenius Norm
algorithm, which is a modified version of Norm-2 that considers zero elements in
the computation [50].

Alternating Least Squares (ALS)
Matrix Factorization models factorize a large matrix into two smaller matrices, with the
goal of predicting missing values. However, it is not a simple task to factorize a large
matrix into two smaller ones analytically. Alternating Least Squares (ALS) is one such
approach that has been widely used in the literature [56]. The idea behind ALS is to
alternate between fixing one matrix while learning the other, and vice versa. This is
done to avoid the costly process of simultaneously minimizing both matrices. At each
iteration, we minimize two loss functions, one for each matrix, using for example Mean
Squared Error (MSE) as the loss function.

The optimization process starts by initializing the two matrices with random values and
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then we update one matrix while fixing the other. In this way, given the current estimate
of one matrix, we can solve for the other matrix by minimizing the loss function. Once
updated one matrix, we can fix it and update the other matrix. This process of alternating
between fixing one matrix and updating the other continues until convergence. ALS
is particularly suited for large, sparse matrices, which are common in many real-world
recommender systems. Furthermore, ALS is parallelizable, making it possible to scale to
even larger matrices [86]. Despite its simplicity, ALS has been shown to achieve state-of-
the-art effectiveness in many benchmark datasets, and it remains a popular choice in the
literature [16].

Singular Value Decomposition
SVD works by decomposing a matrix into three other matrices, where the middle matrix
contains singular values that represent the most important features of the original matrix
[56]. This factorization method states that a complex matrix A of dimensions M x N can
be decomposed in the following product:

A = U⌃V T (2.27)

where U is the orthogonal matrix of the eigenvectors of the square symmetric matrix AAT

and therefore it has dimensions M x M . V is the orthogonal matrix of the eigenvectors
of the square symmetric matrix ATA and therefore it has dimensions N x N . V T is its
transpose. ⌃ is the matrix of the singular values, i.e., the square root of the eigenvalues,
of the square symmetric matrix AAT (or ATA), since a matrix and its transpose have the
same eigenvalues. Those singular values are placed in the diagonal of ⌃. As the product
suggests, the dimension of ⌃ is M x N . This method has been applied for example to
movie recommendation [77].

Funk SVD
Funk SVD was proposed by Funk [26] and the main idea is to decompose a user-item rating
matrix into two smaller matrices, one representing users and the other representing items.
The factorization is done by minimizing the difference between the original rating matrix
and the product of the two smaller matrices. The objective function is:

min
U,V

X

i,j

(Ri,j �
KX

k=1

Ui,kVj,k)
2 + �(||U ||2 + ||V ||2) (2.28)
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where R is the original rating matrix, U and V are the two smaller matrices, K is the
number of latent factors, and � is a regularization parameter. The optimization problem
can be solved using gradient descent or other optimization algorithms. Once the two
smaller matrices are obtained, the missing ratings are predicted by computing the dot
product of the corresponding user and item vectors. Even with this method, regularization
can be used to mitigate overfitting.

Asymmetric SVD
Funk SVD is Memory Based technique and thus it is required to retrain the model and
tune all the hyper-parameters whenever we have to add a new user. Indeed, adding a new
user means modifying the dimensions of the matrix X, which becomes (Nu + 1) ·Nk. To
find a Model-Based Matrix Factorization technique we can manipulate the users-features
matrix X and find a way to isolate the user profile.

In the eq. (2.29) we approximate the value of xuk as the sum of a user-related rating, ruj,
i.e., the rating of user u for item j weighted by a feature related value, zjk, i.e., how much
feature k is important describing item j.

xuk =
X

j

(ruj · zjk) ,! X = R · Z (2.29)

The proposed approach involves a shift towards a Model-Based approach, where the
rating given by a user to an item is separated from the importance of the feature in
that item. This simplifies the process of adding new users since their preferences can be
easily incorporated into the system. To achieve this, matrix X can be represented as the
product of two new matrices: R, which stores the ratings of users for items, and Z, which
stores the importance of features in those items. For example, in a study by Koren et al.
[56], this approach was used in a Netflix Prize competition to predict user ratings.

2.3.4. Association Rules

Is a technique that helps discover all the relationships between items in the dataset. From
the recommender systems’ point of view, association rules are used to explore the dataset,
in order to estimate the probability that something will happen (a user will interact with
an item), knowing that something else happened in the past (a user interacted with
another item) [69].

For example to calculate the probability that a user like an item i, if he previously liked
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item j (eq. (2.31)), we count the number of times other users liked both items i and j with
respect to the number of times other users liked item j: in case of implicit ratings this
turns into an alternative definition of similarity between items i and j. This similarity is
asymmetric because by inverting i and j, as shown in the eq. (2.30), we obtain a different
probability and thus a different similarity. Adding a shrink term C increase the trust level
and avoid bias.

P (i|j) 6= P (j|i) ,! sji 6= sij (2.30)

P (i|j) = #of appearances of i and j

(#of appearances of j) + C
= sij (2.31)

2.4. Hybrid Recommender Systems

The traditional approaches to building recommender systems have their strengths and
weaknesses. Collaborative Filtering techniques rely on existing ratings and may struggle
to provide recommendations for items with few ratings, leading to cold start issues. On
the other hand, Content-Based techniques are not susceptible to this issue, as they rely
on attributes of items, but they lack the ability to exploit the existing opinions of a
community of users.

Hybrid recommender systems have been developed to overcome these limitations. In this
chapter, we present five types of approaches: Linear Combination, List Combination,
Pipeline, Merging Models, and Co-Training. These techniques combine the strengths of
different recommendation algorithms to provide better recommendations.

Burke [11] provides a comprehensive survey of hybrid recommender systems, while Ado-
mavicius and Tuzhilin [1] presents a general framework for building hybrid recommenda-
tion models. Additionally, Kunaver and Gregoric [59] presents a recent survey of hybrid
recommender systems and their applications in various domains.

2.4.1. Linear Combination

The linear combination comes from the world of linear algebra: it combines the recom-
mendations of two (or more) algorithms through a weighted sum. As shown in the fig. 2.3
the training phases are completely independent. The predictions are computed indepen-
dently, but they use the same user profile as input. Finally, the outputs of each model are
combined to provide a recommendation that considers the points of view of all the models.
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Figure 2.3: In the linear combination technique models are trained independently, then
the outputs are combined to provide the final recommendation.

Therefore, we can highlight two independent chains (one for model A and one for model
B) that merge together only at the end. Those models are used in an “off-the-shelves”
mode, as they allow, without any modification of the structure of their algorithms, a high
level of parallelization in the computation of the single models [74].

Weights provide the level of trust and importance to the models: the higher the weight,
the more relevant in the computation of the final recommendation the corresponding
recommender system is. Therefore, they have to be carefully tuned to obtain an effective
hybrid recommender system. A bad tuning of the hyper-parameters results in a very weak
and ineffective model. On the other hand, good tuning results in a strong and effective
hybrid model.

An example of a possible combination is the one between Context-Based Filtering and
a Collaborative Filtering approach. This is because CF suffers from cold items, but we
have also CBF that can provide a better recommendation for those items. On the other
hand, CBF lacks a way to consider the opinions of a community of users, but this is a task
CF can perfectly perform. There are also some disadvantages that must be considered,
for example, Hyper-parameters strongly depend on the dataset, and they have to be
carefully tuned each time the dataset changes. If the estimated ratings are on different
scales, providing good recommendations would be very difficult: we have to take care of
properly weighing the different components if we want to use this method [74].

2.4.2. List Combination

The list combination technique merges recommendations from two distinct recommender
systems and is particularly well-suited for Top-N recommendations since it aims to com-
bine the most highly-rated items from two ranked lists to create a unique Top-N recom-
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Figure 2.4: How to combine different recommendation lists in circular ways using a round-
robin technique.

mendation list. While the concept behind list combination is simple, the question of how
to merge two lists can be more complicated. There are a variety of techniques that can be
used: one approach uses the round-robin method, in which items are alternately chosen
from the first and second list, as shown in fig. 2.4 which can be easily extended to multiple
lists.

The order in which the lists are merged is predetermined, with a common approach being
to select items first from the list generated by the most successful algorithm and then
from the others. The algorithms used to create the starting lists are left untouched, as
only their outputs are combined to form the final merged list. And, the final list contains
unique elements, they are never repeated.

One advantage of list combination over linear combination is that it eliminates the need
for a bound on the rating scale. Instead, it focuses on the relative rankings of the items,
which is particularly useful when working with algorithms that produce ratings with
vastly different scales. However, there are some trade-offs with this approach. Choosing
the method for building the merged list can be challenging since there is no one-size-fits-all
solution. Furthermore, once the fusion technique is selected, it can be difficult to weigh
the relative importance of the lists provided by each recommendation algorithm [75].



2| State of the Art 23

2.4.3. Pipelining

The first types of hybrid recommender systems discussed earlier, namely linear combina-
tion and list combination, employ a parallel approach. In this approach, each algorithm
can be computed independently without any modification to its structure, and the results
are combined at the end when all algorithms have produced their outputs. However, if
tasks can be completed in parallel, they can also be completed in serial. Instead, in the
pipelining approaches the output of one algorithm is fed as the input of the next algorithm
as shown in the fig. 2.5.

• Algorithm A takes as input a URM or ICM and uses it to build a model.

• Now that we have a first model, we can also make some predictions: therefore, we
take the user profiles from the URM we want to use in algorithm B, and we compute
the matrix of estimated ratings R̃PARTIAL. It is important to use the user profiles
coming from the URM we will use algorithm B because otherwise, we will not be
able to enrich that URM.

• R̃PARTIAL becomes the new input for algorithm B, which uses it to build the model.
It is important to underline that from now on, the main input required by algorithms
is a URM, e.g., we cannot use as a second algorithm the CBF.

• Once the model is trained, it can be used alongside a user profile to make predictions,
obtaining the matrix of estimated ratings R̃FINAL.

One example of a paper discussing this parallel versus serial approach in hybrid recom-
mender systems is [35]. The paper presents a novel approach to building hybrid recom-
mender systems using neural attentive item similarity. In their approach, the authors use
a serial pipeline of algorithms to generate recommendations. The first algorithm gener-
ates an item similarity matrix, which is then used as input by the second algorithm to
generate embedding for each item. These embeddings are then used by the final algorithm
to generate recommendations.

Pipelining is used to enhance the sparsity of the user-item rating matrix which is used by
the final algorithm. By incorporating the outputs of multiple algorithms, pipelining can
generate a more complete URM, providing the final algorithm with more information to
generate better recommendations.
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Figure 2.5: In the pipelining techniques models are trained sequentially; each matrix R is
given as input to train the next model in the pipeline.

Figure 2.6: The final model is a weighted sum of the models we want to merge together;
the merge phase is at the model level.

2.4.4. Merging Models

Merging models is a technique used to merge many recommender system algorithms into a
hybrid: they exploit the same principle used in the linear combination but at the “model”
level [117]. From the fig. 2.6 two models, in order to be merged together, must have
the same structure. This means that an item-item similarity matrix can be merged with
another item-item similarity matrix if they have the same dimensions, but it cannot be
merged with a user-user similarity matrix. As a further example, a CF model cannot be
merged with a Matrix Factorization technique through this hybridization method. This
is because of how the merge is done using the parameter ↵.

SF = ↵ · SA + (1� ↵) · SB (2.32)

where SA and SB require the same dimensions and he hyper-parameter ↵ has to be tuned
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properly to provide the best recommendations possible since it influences the quality and
the goodness of the final model.

2.4.5. Co-Training

So far, we have explored various hybrid techniques such as pipelining, linear combina-
tion, and list combination. These techniques involve chaining or merging models at the
estimation or model level, without changing the core algorithm used to build the model.
However, there is another frontier to explore in hybrid recommender systems, which is
the merge at the training level. This technique, called co-training, involves training mod-
els together and simultaneously, such that any change during the optimization process is
influenced by all the algorithms simultaneously and not separately.

Bella et al. [6] proposes a co-training algorithm for building hybrid recommender systems,
which can be used to leverage the strengths of multiple recommendation algorithms. The
co-training algorithm works by iteratively training multiple recommendation models using
unlabeled data and then using these models to label the data. The labeled data is then
used to retrain the models, and the process is repeated until convergence.

2.5. Other Types of Recommender

2.5.1. Two tower MMoE

"Two tower MMoE" stands for Multi-Modal Multi-Task Output Embedding, a deep
learning architecture for recommendation systems. The architecture consists of two towers
or branches, each one dealing with different modalities of the input data, such as text and
images. The two towers are then combined to produce a final prediction by concatenating
their output embedding and passing them through a shared fully connected layer. The
"multi-task" aspect refers to the ability of the model to perform multiple prediction tasks,
such as rating prediction and item ranking, in a single end-to-end trainable model [78].
In recommender systems, item embedding and user embedding are techniques used to
represent items and users as fixed-length vectors of numbers. These vectors capture the
relationships between items and users in a lower-dimensional space, making it easier to
compare and compute similarities between them.

Item embedding is the process of representing the articles as fixed-length vectors of num-
bers [5] using a trainable neural network. These vectors allow the model to understand the
relationships between different items and make recommendations based on similarities.
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Similarly, the user embedding technique allows the recommender system to understand
users’ interests and make personalized recommendations [119]. Mapping items and users
to embed the recommender system can effectively capture complex relationships between
items and users, and use this information to make more accurate and relevant recommen-
dations [111]. The two embeddings are meshed together using, e.g., the sampled soft-max
technique (see section 2.5.1). If the result is high then it means that the item is a good
match for the user. The next section shows an example of how to combine the "Two
tower", i.e., sampled soft-max, a technique used even in one of the solutions presented
later in section 3.3. The section 2.5.1 presents, instead, the gating network, a model
used to make sure that the "user tower" learn by using different experts for recent active
customers and non active customers.

Sampled Soft-Max
Is a technique used in recommender systems to address the scalability issue in training
deep neural networks with a large number of classes, e.g., items, in a recommendation
system. In a traditional soft-max, the model computes the probability of each item for a
given user by normalizing the dot product of the user and item embedding over the sum of
the dot products for all items. This becomes computationally infeasible when the number
of items is large, as it requires computing the normalization term for every item [64].

softmax(u, i) =
exp(u>i)P

j2Iu exp(u
>j)

(2.33)

where u is the user vector, i is the item vector, Iu is the set of items that the user has
interacted with, and j are the vectors of those items. The numerator of the expression is
the dot product of the user vector and the item vector, while the denominator is the sum
of the dot products of the user vector and the item vectors for all items that the user has
interacted with. The result of the softmax function is a probability distribution over the
items that the user has not interacted with, with each item representing the probability
of the user interacting with that item.

Sampled soft-max, on the other hand, only computes the normalization term for a random
subset of items, called the sample, for each iteration of training. This can significantly
reduce the computational cost of training the model, allowing it to scale to larger datasets.

sampled softmax(u, i) =
exp(u>i)P

j2Su
exp(u>j)

(2.34)
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where u is the user vector, i is the item vector, Su is a randomly sampled subset of
the set of items that the user has interacted with, and j are the vectors of the items in
Su. The numerator of the expression is the dot product of the user vector and the item
vector, while the denominator is the sum of the dot products of the user vector and the
item vectors for all items in the randomly sampled subset Su. The result of the sampled
softmax function is an approximation of the true softmax function, but with a reduced
computational complexity that speeds up the training process for large-scale recommender
systems.

Additionally, it has been shown that training with a sample can still achieve good results,
as the sample provides a good approximation of the true distribution. In recommender
systems, sampled soft-max can be used in various types of models, such as matrix factor-
ization or neural networks, to reduce the computational cost of training while maintaining
the accuracy of the recommendations [114].

Gating Network
A gating network in recommender systems is a type of neural network architecture that
is used to filter and prioritize the items to be recommended to a user[47]. The gating
network learns to assign a weight to each item, indicating the importance of the item
in the recommendation list. The weighted items are then passed to the next layer for
final ranking and selection. The gating network helps to improve the relevance and per-
sonalization of the recommendations by taking into account various factors such as user
behavior, item characteristics, and contextual information.

The gating network is designed to act as a gatekeeper, filtering out irrelevant items and
prioritizing the most relevant ones. This helps to ensure that the recommendations are
highly personalized and relevant to the user’s preferences and needs. The gating network
operates by combining various inputs, such as user history, item metadata, and contextual
information, to create a representation of each item. This representation is then used
to calculate the weight assigned to each item, which determines its importance in the
recommendation list. The weighted items are then passed to the next layer of the network,
where they are ranked and selected for final recommendation[76]. Overall, the gating
network provides a flexible and effective way to incorporate multiple sources of information
into the recommendation process, helping to improve the relevance and accuracy of the
recommendations.
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2.5.2. Two-Stage Recommender

Two-stage recommender systems are scalable and maintainable models [40]. These sys-
tems generate recommendations in two phases: first, multiple nominators select a small
set of items from a large pool using cheap-to-compute item embeddings, i.e., candidate
generation strategies used to down-sample the list of item (see section 2.6.4); then, a
ranker with a richer set of features rearranges the nominated items and presents them to
the user. However, the challenge with this approach is that optimizing the accuracy of
each stage in isolation does not necessarily lead to optimal global accuracy. To address
this issue, Ma et al. [79] proposed a nominator training objective that takes into account
the ranker’s probability of recommending each item. Many of today’s largest online plat-
forms, such as YouTube, LinkedIn, and Pinterest, utilize two-stage recommenders due
to their scalability. These recommenders have proven to be effective in handling large
amounts of data and providing personalized recommendations to users. Thanks to their
ability to scale, these platforms are able to provide relevant content and suggestions to
their users, leading to increased engagement and user satisfaction [41]. In the current
literature the ranker used by a two-stage recommender implement a GBDT algorithm,
described in the following section.

Gradient Boosting Decision Trees
Gradient boosting machines are a family of powerful machine-learning techniques that
have shown considerable success in a wide range of practical applications. They are
highly customizable to the particular needs of the application, like being learned with
respect to different loss functions.

A common task that appears in different machine learning applications is to build a non-
parametric regression or classification model from the data. When designing a model
in domain-specific areas, one strategy is to build a model from theory and adjust its
parameters based on the observed data. Unfortunately, in most real-life situations such
models are not available. The lack of a model can be circumvented if one applies non-
parametric machine learning techniques like neural networks, support vector machines,
or any other algorithm at one’s own discretion, to build a model directly from the data.
These models are built in a supervised manner, which means that the data with the
desired target variables has to be prepared beforehand [33].

The most frequent approach to data-driven modeling is to build only a single strong
predictive model. A different approach would be to build a bucket or an ensemble of
models for some particular learning task. One can consider building a set of “strong”
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models like neural networks, which can be further combined altogether to produce a
better prediction. However, in practice, the ensemble approach relies on combining a large
number of relatively weak models to obtain a stronger ensemble prediction. The most
prominent examples of such machine-learning ensemble techniques are random forests
[10] and neural network ensembles [31], which have found many successful applications in
different domains [68].

Common ensemble techniques like random forests rely on averaging of models in the
ensemble. The family of boosting methods is based on a different, constructive strategy
of ensemble formation. The main idea of boosting is to add new models to the ensemble
sequentially. At each particular iteration, a new weak, base-learner model is trained
with respect to the error of the whole ensemble learned so far. The first prominent
boosting techniques were purely algorithm-driven, which made the detailed analysis of
their properties and performance rather difficult [20]. This led to a number of speculations
as to why these algorithms either outperformed every other method or on the contrary,
were inapplicable due to severe overfitting [17].

To establish a connection with the statistical framework, a gradient-descent-based formu-
lation of boosting methods was derived [24]. This formulation of boosting methods and
the corresponding models were called the gradient boosting machines. This framework
also provided the essential justifications for the model hyper-parameters and established
the methodological base for further gradient-boosting model development.

In gradient boosting machines, or simply, GBMs, the learning procedure consecutively fits
new models to provide a more accurate estimate of the response variable. The principle
idea behind this algorithm is to construct the new base learners to be maximally correlated
with the negative gradient of the loss function, associated with the whole ensemble. The
loss functions applied can be arbitrary, but to give a better intuition, if the error function
is the classic squared-error loss, the learning procedure would result in consecutive error-
fitting. In general, the choice of the loss function is up to the researcher, with both a
rich variety of loss functions derived so far and the possibility of implementing one’s own
task-specific loss.

This high flexibility makes the GBMs highly customizable to any particular data-driven
task. It introduces a lot of freedom into the model design thus making the choice of the
most appropriate loss function a matter of trial and error. However, boosting algorithms
are relatively fast to implement, which allows one to experiment with different model
designs. Moreover, the GBMs have shown considerable success in not only practical
applications but also in various machine-learning and data-mining challenges [7].
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From the viewpoint of neurobotics, ensemble models are a useful practical tool for differ-
ent predictive tasks, as they can consistently provide higher accuracy results compared
to conventional single strong machine learning models [100]. For example, the ensemble
models can efficiently map the EMG and EEG sensor readings to human movement track-
ing and activity recognition. However, these models can also provide valuable insights
into the models of neural formation and memory simulations. Whilst artificial neural
networks have the memory of the learned patterns distributed within the connections
of artificial neurons, in boosted ensembles the base-learners play the role of the memory
medium and are forming the captured patterns sequentially, gradually increasing the level
of pattern detail [125]. Advances in boosted ensembles can find fruitful applications in
the brain simulation domain, as the ensemble formation models can be coupled with the
strategies of network growth. In particular, if the base-learners are considered the nodes of
the network, it will be possible to construct ensembles with various graph properties and
typologies, like small-world networks, which are found in the biological neural networks
[18]. In order to proceed with advanced neurobotics applications of boosted ensemble
models, it is essential to first define the methodology and algorithmic framework for these
models.

2.6. Evaluation and Data Processing

The evaluation of a recommendation model is a crucial aspect of Recommender Systems.
Various metrics are available to measure the quality of recommendations provided by a
particular algorithm, particularly in the context of a top-n recommendation task. This
task involves recommending a specific user an ordered set of items with a limited length.
There is a vast array of evaluation metrics that have been explored in the literature to
assess the recommendation quality of a recommender system quantitatively. However,
due to the multitude of available metrics, there is no universal standard to evaluate all
recommenders. In the proposed challenge, the evaluation is done with MAP@12, analysed
in the next section.

Moreover, data processing is a critical aspect of a Recommender System as it directly
impacts the accuracy and effectiveness of the system. Data must be processed and trans-
formed into a suitable format before it can be used for analysis and modeling. We handle
missing information in the data and use different sampling techniques to down-sample
the pool of items associated to each user to be picked up for the recommendation and
to lower the training data to be used to generate candidates and calculate features to be
used by models.
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2.6.1. Classification Accuracy Metrics

The literature on evaluation methods for Recommender Systems primarily focuses on
assessing the accuracy of models. To do so, classification accuracy metrics are often used
to determine how often an algorithm provides correct recommendations to users. This
evaluation typically involves training a model on a specific dataset and then testing it on
a different, separate dataset. The main objective of a recommender system is to generate
a recommendation list that includes as many items as possible from the evaluation set,
using the information obtained from the training set.

After a model produces a recommendation list for a user, a confusion matrix can be
constructed, as shown in table 2.1, which serves as the basis for calculating Precision,
Recall, and F1 score. These metrics are essential in determining the effectiveness of a
recommender system, and help to assess its ability to generate relevant recommendations
for users.

Table 2.1: Confusion matrix serves as the basis for calculating Precision, Recall, and F1
score.

Recommended Not recommended

Interacted TP - True positive FN - False negative

Not interacted FP - False positive TN - True negative

True positive are items the user u interacted with and have been recommended.

False positive are items the user u has never interacted with and have been recom-
mended.

True negative are items the user u has never interacted with and have not been rec-
ommended.

False negative are items the user u interacted with and have not been recommended.

Precision
Precision is the positive predictive rate. In the case of recommender systems, precision
is the number of correct recommendations, i.e., the ones that are of interest to the user,
divided by the total number of recommendations [89].
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Precision =
# of correct recommendations

# of all recommendations
=

#TP

#TP +#FP
(2.35)

Precision@k or, in other words, precision at cutoff k (P@k), is simply the precision
calculated by considering only the subset of your predictions from rank 1 through k. To
calculate this we take the top k recommendations and find their precision with the ground
truth.

Precision@k =
#TPk

k
(2.36)

where #TPk is the number of recommended and relevant items in the list of length k.

Recall
Recall refers to the fraction of relevant items that are recommended to the user, out of
all the relevant items in the dataset.

Recall =
# of correct recommendations

# of all relevant items
=

#TP

#TP +#FN
(2.37)

A high recall value indicates that the model is effective at identifying and recommending
relevant items to the user, while a low recall value suggests that the model may be
missing out on some relevant items. However, it is important to note that high recall
alone may not be sufficient to evaluate the effectiveness of a Recommender System, and
other metrics such as precision and F1 score should also be considered. A variant of the
recall, extensively used for recommender systems is the recall on a cut-off list of k items
(eq. (2.38)).

Recall@k =
#TPk

# of all relevant items
(2.38)

F1 score
F1 score is the harmonic mean of precision and recall, and provides a balanced assessment
of the model’s performance in terms of both metrics as showed in eq. (2.39).

F1 score = 2
Precision ·Recall

Precision+Recall
(2.39)
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Precision is the fraction of relevant items among the recommended items, and recall is
the fraction of recommended relevant items out of all the relevant items in the dataset. A
high F1 score indicates that the model is effective at both identifying relevant items and
recommending them to the user.

2.6.2. Ranking Metrics

One common tasks for a Recommender System is to provide a list of top-n recommenda-
tions for users. However, simply recommending relevant items to users is not sufficient,
as it is also critical to provide an ordered list in which the most relevant items are ranked
higher. This aspect is crucial for enhancing the user experience and can greatly impact
the degree of user satisfaction while navigating among the recommended items.

To evaluate how well a Recommender System performs in terms of ranking, ranking met-
rics are used. These metrics help in assessing the extent to which a recommender system
approaches the ideal order in which the items should be presented to the users. The
effectiveness of a Recommender System can be determined by measuring how closely the
recommended items match the preferences and interests of the users, and how accurately
the ranking reflects the users’ preferences. The ranking metrics provide important feed-
back on the performance of the Recommender System and can help to improve the overall
user experience.

Mean Average Precision
The work thesis starts from the proposed H&M challenge. We use their systems to eval-
uate recommendations with respect to the test data, which not publicly available. The
ranking metric used for the evaluation is the MAP@k. More specifically the MAP@12,
since we recommend 12 items for each user. Specifically, it is used to measure the effective-
ness of a system that generates a list of recommendations or search results by comparing
the predicted list with a ground truth list of relevant items [81]. It is defined as the mean
of the average precision at k.

AP@k =
1

min(n, k)

min(n,k)X

k=1

P (k)⇥ rel(k) (2.40)

where, Rel(k) is an indicator function equaling 1 if the item at rank k is a relevant
(correct) recommendation, zero otherwise.

Once cut at k items in the list of recommendations, their order does not affect the pre-
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cision at k function but, instead, the average precision at k function, since the average
precision is a cumulative sum of each iteration of precision at k, if the correct predictions
come earlier, its score is counted into the sum more times, resulting in a higher value of
average precision. The Average Precision function penalizes recommendations on later
positions. It rewards relevant recommendations appearing early. To obtain the mean
average precision at k we take the mean of the average precision for all the users.

MAP@k =
1

N

NX

u=1

1

min(n, k)

min(n,k)X

k=1

P@k ⇥ rel(k) (2.41)

where n is the number of recommended elements in the list, k is the number of recommen-
dations we consider to score with the precision function, and N is the number of users.
n can be less or greater than k.

In this thesis we use the MAP@12, to evaluate a list of 12 recommendations and score
them with respect to the test week, which corresponds to the last week of the available
dataset.

2.6.3. Handling Missing Information

Handling missing information is a crucial step when building recommender systems for
fashion [46, 106, 123]. Missing data can lead to biased and inaccurate recommendations
[71, 116, 120]. Therefore, addressing this issue before training the machine learning models
is important. There are various techniques to handle missing data:

• Deletion of values: Removes any entry of the user, item, or any other table of the
dataset that contains missing values. While this method is straightforward, it can
result in significant loss of data and may not be the best option when working with
small datasets [52, 67, 104].

• Mean imputation: Replaces missing values with the mean value of the non-missing
data. This approach is effective and works well when the missing values are ran-
domly distributed [21, 65, 116]. However, it can also introduce bias and distort the
distribution of the data [62].

• Mode imputation: Replaces missing values with the most frequent value in the non-
missing data. This approach is useful when dealing with categorical data, where the
mode represents the most common category [21, 65, 116].

• Regression imputation: Predicts the missing values based on the relationships be-
tween other features. Regression imputation can be more accurate than the previous
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methods, but it requires more complex modeling and may not work well when the
relationships between features are weak [98, 103, 121].

• Multiple imputations: Generates multiple plausible values for each missing value,
and then creates multiple complete datasets that can be used for analysis. Multi-
ple imputations can be more accurate than single imputation methods [29], but it
requires more computational resources and can be more complex to implement [99,
103].

The choice of the method depends on the characteristics of the data and specific goals. By
applying appropriate techniques to handle missing data, we ensure that our recommender
system is making accurate and relevant recommendations to users [53].

2.6.4. Sampling Techniques

Sampling techniques are used in recommender systems to improve the efficiency and
scalability of algorithms. These techniques involve selecting a subset of the data to work
with, rather than using the entire dataset [34]. There are different types of sampling
techniques:

• Random: Selects a random subset of the data. Random sampling is often used when
the dataset is too large to fit into memory or when there are too many users and
items to process in a reasonable amount of time [63, 82].

• Stratified: Selects a subset of the data that is representative of the full dataset with
respect to some characteristic or feature. For example, in a movie recommenda-
tion system, we may use stratified sampling to ensure a balanced representation of
different genres in the data [80].

• Importance sampling is a common technique used in recommender systems to ad-
dress the problem of data sparsity and bias towards popular items [66]. This ap-
proach involves assigning weights to users or items based on their importance or
relevance to the recommendation task. These weights are then used to sample from
the data in a way that prioritizes the most relevant or informative examples [45].

• Adaptive: Dynamically adjusting the sampling strategy based on the effectiveness
of the algorithm, in order to maximize its efficiency [44].

• Down-sampling techniques are used in recommender systems to reduce the size of the
training dataset by randomly removing some of the less active users and less popular
items. The idea behind this technique is to reduce the computational complexity
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of the algorithm and speed up the recommendation process, while still maintaining
the accuracy of the recommendations [107].

Sampling techniques are useful to reduce the computational complexity of recommender
systems, allowing them to process large datasets in a short amount of time. However, it
is important to ensure that the samples are representative of the full dataset and that
the sampling strategy does not introduce biases that could affect the accuracy of the
recommendations. For example, in our case, the precision of the model is calculated with
respect to the last week of the dataset, which corresponds to the last week of September
2020. If we train the model using as samples only the transactions during the winter
seasons, the model will be biased in recommending winter clothes even for the test week,
which falls in the summer season. This generates an ineffective recommendation system.
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3| Our Approach to H&M
Competition

H&M is a very popular Swedish clothing company with headquarters in Stockholm. The
company was established in 1947 and was originally named Hennes. In 1968 they acquired
the hunting and fishing store named Mauritz Widfoss. From this point in time it operated
under the name Hennes&Mauritz or simply H&M. Six years later it had a debut on the
Stockholm Stock Exchange which allowed them soon after in 1976 to open their first shop
outside Sweden in UK, London. In 2000 they entered the US market (see fig. 3.1).1. As
of 2022, it operates shops in 74 countries as in

Recommender Systems are powerful, successful, and widespread applications for a
lot of companies, e.g., H&M. The website of these companies, as soon as an account is
created, starts to recommend products, movies, or songs that the algorithm thinks to
suit you the best. That’s why these systems are precious for business owners. The more
interactions the better it gets. Also, the more users the better it gets. However, because
this is a dynamic environment and both clients and product change it is quite difficult to
tune, manage and maintain these systems [122].

Outline of the competition As mentioned in the chapter 1 the thesis work started
from a Kaggle Challenge proposed by the H&M.2 The organizers provided a dataset
composed by the transactions, i.e., the action of buying an item, from 2018-09-20 to
2020-09-22, which contains transactions made both in the online and physical stores.
Along with the transactions they provided the list of all the users and articles along
with their attributes, analyzed in the following sections. Past the competition period, I
conducted extensive research on fashion-based recommenders and focused the work on
proposing a novel and light fashion-based recommender that outperforms the state-of-
the-art and publicly available top-scores recommender. One important step has been the

1The history of the H&M brand https://en.wikipedia.org/wiki/H%26M

2Challenge overview here

https://en.wikipedia.org/wiki/H%26M
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview
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Figure 3.1: Global map of H&M, the red areas are where physical stores are located, and
the gray areas are where there are no physical stores.

data analysis and the study of the behaviour of users, combining information of items,
users and transactions.

The goal of the challenge was to recommend a list of 12 items to each user in the
dataset. The recommendations are scored using the MAP@12 (see section 2.6.2) with
respect to the test week, i.e., the first one after the dataset period, which goes from
2020� 09� 23 to 2020� 09� 30. The data of the test week is split in order to generate
two leaderboards. The public leaderboard was available during the whole challenge period
and is generated using only the 5% of the total test data. The private leaderboard has
been released after the deadline and is generated using the other 95% of the test data.
The winners of the challenge have been selected considering only the private leaderboard.
In this section, we analyze several winning approaches that scored in the top 10 on the
private leaderboard. 3

3.1. Dataset

In this competition, H&M invites to develop product recommendations based on data
from previous transactions, as well as from customer and article metadata. The available
metadata spans from simple data, e.g., garment type and customer age, to text data
e.g., product descriptions, to image data of each product. 4 There is not a unique best
approach between just investigating a categorical data type algorithm or dive into NLP

3Public leaderboard of the competition here
4The competition’s website and information are available at https://www.kaggle.com/

competitions/h-and-m-personalized-fashion-recommendations/overview/description.

https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/leaderboard
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview/description
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview/description
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and image processing deep learning.

3.1.1. Articles

This database contains information about the articles; Table 3.1 summarizes relevant
statistics of the articles dataset, such as the description of each attribute along with the
unique values for each one of it. As shown in fig. 3.2 it is composed of 25 features, where
14 of them are text features, and the remaining 11 are numerical features. There are
105.542 articles in the dataset.

Figure 3.2: Articles dataset is composed of 25 features, where 14 of them are text features,
and the remaining (11) are numerical features. There are 105.542 articles in the dataset.

Missing values Only one column of the dataset, called detail description, has missing
values. However, the number of missing values is small as only 0.4% from the column is
missing.

Articles images Along with the article’s attributes it has been provided a folder of
images too. Those images are placed in sub-folders starting with the first three digits of
the article id ; what we have found is that a leading zero in the name of the folder does
not correspond to the first digits of the article id and it has to be stripped when looking
for a product in the articles database: e.g., 0108775015 is article id 108775015. However,
as mentioned in the competition description not all articles have an image.

Figure 3.3: These are sample images of some articles picked from the dataset. As we can
see all the images contains the article with a background.
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Figure 3.4: Index group name is correlated with options in the principal menu of the
website.

Index group name attribute In the fig. 3.5 is evident that most of the articles belong
to ladies swear (38%) and baby/children (32%). The smallest amount of articles (3.5%)
belongs to sport group. It is correlated with options in the principal menu present on
the website as shown in fig. 3.4. Each value contains subcategories described by another
attribute: index name.

Figure 3.5: Plot of the index group name. We have a total of 5 different groups, the one
which contains the most of the articles is the ladies wear group that represents more than
32% of the total dataset.

Index name attribute corresponds to subcategories of the index group name (Fig-
ure 3.6). Once again the dominant group is ladies swear (24%) while the second group is
divided (14%) that is, as showed in fig. 3.7 a category for teenagers.

Product group name attribute it’s an even finer category of the index name. Since
this is a sub-category of the index name, that already highlights the gender, this one is
instead independent of the gender, and most of the articles are associated with the general
group of garments in turn divided into upper (41%), lower (18%) and full body (12.5%).
As shown in fig. 3.8 articles like bags, cosmetics, or furniture represent contains a small
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Figure 3.6: Index name represents a subcategory of the group name e.g., different children
sizes, or specific accessories ladies items. Most of the articles belong to ladieswear.

Figure 3.7: Those are some images representative of the divided category. They are mostly
articles for teenagers

number of items with respect to the garment category (less than 0.5%). Over 80% of the
products lies in 4 out of product groups.

Product type attribute contains subcategories of product group. The Table 3.1 shows
we have in total 131 different product types; accessories and shoes have the biggest number
of these subcategories. From the four attributes analyzed until now, the hierarchy is index
group –> index –> group –> type.

Department name attribute There are some index groups e.g., baby/children and
sport that are not indexed by gender. The department name, instead, contains keywords
like ladies/men/girl/boy that help to understand to which gender the article belongs as
shown in the table 3.3.

Observing the index group, index, product type, and department is possible to catch which
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Figure 3.8: The product group name does not give information about the gender and
most of the articles fall into the group of garment in turn divided into upper (41%), lower
(18%) and full body (12.5%). There are some articles in other small categories too, e.g.,
furniture or bags (0.1%).

articles should be worn by a specific age group, gender, and in a specific season. Con-
sidering for example an article with menswear as index group, menswear as index, and
jacket as product type. A customer who buys such an article is with high probability a
man during the winter season. Furthermore, if a customer frequently buys products from
baby sizes 50-98, it probably means that he is a parent of a child.

Color group name is the color classification of the article along with its shades and
intensity. Most of the articles belong to the black and white color group, respectively 23%

and 9.7% of the total. Some articles have a transparent color group, while for others this
information is missing and the corresponding value is marked as unknown.

Perceived color value name is related to human color perception and may depend
on the type of tissue. As shown in fig. 3.10 most of the articles have as value dark (42%).
A small percentage of items, i.e., less than 0.1%, have as perceived color undefined or
unknown. The fig. 3.11 shows some examples of dusty light perceived color. The last one
is misleading since there are two products, one gray and one black, but still, the dusty
light perceived color is predominant.

Perceived color master name is in line with the color group itself but it’s more
generic; it is not related to the concept of light’s intensity but to the association made
between the human perception and a specific color group, as showed in the fig. 3.12.
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Figure 3.9: Color group name attribute is the color classification of the article along with
its shades and intensity. Most of the articles are black or white but there are transparent
articles too.

Graphical appearance name attribute represents the classification of the pattern
showed upon the clothes e.g., random (fig. 3.14), melange (fig. 3.15) and embroidery
(fig. 3.16) among the others. Other examples can be patterns with dots or transparent,
but they are less common than others (less than 0.2%) as shown in fig. 3.13.

Description is associated with each article and contains information regarding the al-
ready analyzed attributes along with the fit of the article. The fig. 3.17 highlights that
are the most common words used to describe the articles. This list of examples shows
which is the mean length of the description and which type of information could contain:

• Jersey top with narrow shoulder straps.

• Micro-fibre T-shirt bra with underwired, molded, lightly padded cups that shape
the bust and provide good support. Narrow adjustable shoulder straps and a narrow
hook-and-eye fastening at the back. Without visible seams for greater comfort.

• Trousers in sweatshirt fabric with an elasticated drawstring waist, side pockets, a
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Figure 3.10: The perception of the color is different from the true one; it may depend on
the type of tissue used and how the article appears under the lights.

back pocket, and ribbed hems. Soft brushed inside.

• Semi-shiny nylon stockings with a wide, reinforced trim at the top. Use a suspender
belt. 20 denier.

• Tights with built-in support to lift the bottom. Black in 30 deniers and light amber
in 15 deniers.

• Two soft bandeau bras in soft jersey with side support and a silicone trim at the
top.

• Opaque matt tights. 200 denier.

• Semi-shiny tights that shape the tummy, thighs, and calves while also encouraging
blood circulation in the legs. Elasticated waist.

• Sweatshirt in soft organic cotton with a press stud on one shoulder (sizes 12-18
months and 18-24 months without a press stud). Brushed inside.
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Figure 3.11: Random Dusty light articles visualized. The perceived color is the light tone
of the absolute color e.g., light gray, light pink, light blue. There are some strange cases,
like the last one, in which we have two articles in just one image, probably they are sold
together, the upper one is light gray, and the other one is dark gray.

Figure 3.12: Perceived color master name is not related to the light perception or the
intensity, but to the association made with a specific color group. Most of the articles are
classified as black (23%), blue (17.5%), or white (12%).
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Table 3.1: This table shows an attribute analysis for the articles table, highlighting the
number of unique values we have for every single column.

Description Unique values

Article Id a unique 9-digit identifier of
the article

105.542

6-digit product code (the first 6 digits of
Article Id

47.224

Name of a product 45.875

Product type number 131

Name of a product type 131

Name of a product group 19

Code of a pattern, namely graphical
appearance

30

Name of a pattern, namely graphical
appearance

30

Code of a color group 50

Name of a color group 50

Perceived color id 8

Perceived color value name 8

Perceived master color id 20

Perceived master color name 20

Department number 299

Department name 299

Index code 10

Index name 10

Index group code 5

Index group name 5

Section number 56

Section name 56

Garment group number 56

Garment group name 56

Detailed description of the article 43.404
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Table 3.2: Subcategories of product group analysis, named also product type. As we can
see each product group contains many subcategories. Accessories contain for example 38
different types of accessories, e.g., bracelets, and rings. Taking into consideration that
there are 131 types plotting a bar chart may be useless.

Product group N. of subcategories

Garment Upper body 15

Underwear 11

Socks & Tights 3

Garment Lower body 5

Accessories 38

Items 5

Nightwear 4

Unknown 1

Underwear/nightwear 2

Shoes 16

Swimwear 6

Garment Full body 6

Cosmetic 2

Interior textile 3

Bags 6

Furniture 1

Garment and Shoe care 6

Fun 1

Stationery 1
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Table 3.3: The index name does not directly show the gender or any other information
about the article, that is instead highlighted in the department name e.g., the gender.

Index name Department name

Baby Sizes 50-98 Baby Girl Jersey Fancy

Baby Boy Woven

Newborn

Other

Sport Ladies Sport

Men Sport

Bottoms Girls

Bottoms Boys

Figure 3.13: Graphical appearance name attribute classifies the pattern showed up on the
clothes e.g., solid, stripe, denim, and jacquard. Other examples can be patterns with dots
or transparent, but they are less common than others (less than 0.2%).
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Figure 3.14: Articles with random patterns have different images printed over them, e.g.,
stars, pets, or random shapes.

Figure 3.15: Articles with melange patterns have in common a mixture of colors e.g., light
gray and dark gray together.

Figure 3.16: Articles with embroidery patter have in common embroideries over them;
the most common type of embroidery is flowers.
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Figure 3.17: The bigger the word, the bigger the number of times that word appears
inside descriptions of articles.
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Figure 3.18: Customers dataset is composed of 7 features: 4 of them are text features,
and the remaining 3 are numerical features. There are 1.371.980 customers in the dataset.

Table 3.4: Attribute analysis for the customer’s table, with the number of unique values
we have for every single column and its description.

Description Unique values

Customer Id is a unique identifier of the
customer

1.371.980

FN 1 or NaN

Active 1 or NaN

Customer member status in a club 3

Fashion news frequency of sending a
communication to the customer

4

Age of the customer Value between 0 and 1

Postal code 352.899

3.1.2. Customers

This database contains information about the customers; Table 3.4 summarizes relevant
statistics of the customer’s dataset, such as the description of each attribute along with
the unique values for each one of it. As shown in fig. 3.18 it is composed of 7 features: 4 of
them are text features, and the remaining 3 are numerical features. There are 1.371.980
customers in the dataset. The table 3.5 analyses the number of missing values for each
attribute. Fashion news value is missing for 895.050 customers: this means that they are
customers not registered online but that they use to buy directly in physical stores. The
same applies to active attribute. There are no missing values for the postal code of the
customer, meaning that there is location information available for each customer.

FN is Fashion News Newsletter, the wish of the user to receive fashion news: 1 means
that the user wants to receive fashion news, NaN or 0, otherwise. Looking at the data, the
number of customers that have transactions made only in physical stores is equal to the
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Table 3.5: Fashion news value is missing for 895.050 customers: this means that they are
customers not registered online but that they use to buy directly in physical stores. The
same applies to active attribute. There are no missing values for the postal code of the
customer, meaning that there is location information available for each customer.

Attribute Missing values

Customer Id 0

FN 895.050

Active 907.576

Club member status 6.062

Fashion news frequency 16.009

Age 15.861

Postal code 0

number of missing values for this attribute. This means that only customers registered
online can accept or refuse to receive fashion news.

Active attribute represents the wish of the user to receive communications. It can have
two values: 1 or NaN. Even in this case, the number of missing values for that attribute is
equal to the number of users that have transactions only on physical stores. This means
that only customers registered online can accept or refuse to receive communications. As
shown in the fig. 3.20 more than 66% of users refused to receive communications or have
a missing value. The percentage of customers that have both FN and active equal to 1

is the same: 33.85%: all the customers that have active have also the FN status.

Club member status is a loyalty program that allows members to earn points and
redeem rewards for their purchases. Customers can join H&M Club by creating an ac-
count on the H&M website and earn points by making purchases, writing reviews, and
participating in other activities. H&M Club also offers exclusive promotions and early
access to sales for its members. As shown in fig. 3.21 most of the customers have an
active membership status (92%) while the 7% of them have the pre-create status. There
is no customer with left club status. The remaining 1% of customers have a missing value,
marked with N/A.

Fashion news frequency is the frequency with which customers want to receive fashion
news. As showed in the fig. 3.22 it contains only 5 different values: NONE (63%), regularly
(34%), N/A (2%), monthly (0.8%) and none (0.2%). Both NONE and None represent
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Figure 3.19: More the 65% of users refused to receive fashion news newsletter. NaN and
0 are part of the remaining 35%.

the refusal to receive fashion news and, to improve data quality, they can be merged. It
can happen as well that when FN is equal to 1, the corresponding value associated with
fashion news frequency is equal to none or N/A.

Figure 3.22: It contains only 5 different values: NONE (63%), regularly (34%), N/A
(2%), monthly (0.8%) and none (0.2%). Most customer refuses to receive fashion news
frequently and few customers decide to receive it regularly or monthly. Both none and
N/A are associated with missing value information.

Customer age is a normalized value representing the age of the customer. As shown
in the fig. 3.23, re-scaling that value in a range between 0 and 100, there are two main age
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Figure 3.20: More than 66% of users refused to receive communications. This plot con-
siders also the missing values we have as non-active.

groups of customers: around 20-30 years old and 45-55 years old. The oldest customer is
99 years old and the mean age is 32 years old.
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Figure 3.21: It has 4 values: the most common value is active (92%), pre-create (7%), left
club and NaN (1%).

Figure 3.23: The distribution shows that there are two main age groups of customers:
around 20-30 years old and 45-55 years old. The oldest customer is 99 years old and the
mean age is 32 years old.

The fig. 3.24 shows that there is a similar trend between active and not active users, despite
their age. This means that there is no correlation between the age of the customer and
the choice to receive or not communicate.



56 3| Our Approach to H&M Competition

Figure 3.24: The peak between active (light blue) and inactive (grey) are almost around
the same ages. That means that the choice trend to be active or not with newsletters
does not depend on age.
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Figure 3.25: Transaction dataset is composed of 5 features, where 2 of them are text
features, and the remaining 3 are numerical features. There are 31.788.324 transactions
in the dataset.

Table 3.6: This table shows an attribute analysis for the transactions dataset

Description

Date of a transaction in format YYYY-MM-DD but provided as a string
Customer identifier of the customer which can be mapped to the customer id column
in the customers table
Article identifier of the product which can be mapped to the article id column in the
articles table

Price paid

Sales channels which can be online or physical

3.1.3. Transactions

This database contains information about the transactions; Table 3.6 summarizes relevant
statistics of the transactions dataset, such as the description of each attribute along with
the unique values for each one of it. As shown in fig. 3.25 it is composed of 5 features,
where 2 of them are text features, and the remaining 3 are numerical features. There
are 31.788.324 transactions in the dataset. No transaction contains missing values. The
sales channel has only two possible values: 1, the online channel, and 2, the physical store
channel.

The transaction table holds all transactions that happened whether returned later or not.
If the same customer has made two subsequent transactions for the same item but of
different sizes or colors it means that the first transaction is not useful or meaningless for
that customer: but this is computationally infeasible.

The fig. 3.26 shows the price distribution considering all the transactions. This value is
normalized and has values between 0 and 1. Since most of the items are sold at a price
lower than 0.1 is possible, as shown in fig. 3.27 to remove those outliers and focus on the
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Figure 3.26: The price value is normalized and comprised between 0 and 1. Most of the
items are sold at a price lower than 0.1

price range that contains most of the transactions. Even if there are some outliers for
the price, as the fig. 3.28, the mean price change in time for the most popular product
groups, i.e., shoes, garment full body, bags, garment lower body, underwear/nightwear do
not change considerably during the two years.

The dataset contains all the transactions from 2018-09-20 to 2020-09-22. We have almost
2 years of transactions, most of them during the Covid pandemic, which can be used to
extract patterns from the dataset on the common behavior of customers during that
period. This also explains why the number of transactions in physical stores is almost
0 during the first months of restriction, caused by a forced closure of stores around the
World.

The fig. 3.29 shows the number of transactions made during each day of the dataset.
There are a lot of spikes due to the weekend or important periods of the year e.g., discount
promotions or holidays. In order to visualize better what is the amount of transactions
made during each month of the dataset, the fig. 3.30 aggregate the transaction by months
using a box plot. This highlight also that the usual number of transactions made each
day lies in the range of 25.000 and 80.000. There are some outliers e.g., spikes during
summertime or holidays and special discount periods and drops during winter.
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Figure 3.27: This plot focuses on the price range that contains most of the transactions,
in order to discard outliers.

Figure 3.29: This is the plot of the number of transactions made during each day of the
dataset. There are a lot of spikes due to the weekend or important periods of the year
e.g., discount promotions or holidays.
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Figure 3.28: There graphs shows the mean price change in time for the most popular prod-
uct groups i.e., shoes, garment full body, bags, garment lower body, underwear/nightwear
do not change considerably during the two years.

Figure 3.30: Box plot of transactions grouped by month. The number of transactions is
very high in both June 2019 and June 2020, when users usually do shopping before going
on holiday.
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The fig. 3.31 shows how many transactions each customer, on average, customers does.
Most of the customers (50% of the total) have done less than 10 transactions during the
2 years of the dataset.

Figure 3.31: Average transactions per user: most of the customers have done less than 10
transactions. These customers are the 50% of all the ones in the dataset.
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Table 3.7: Each category is a unique combination of three article’s attributes, i.e., index
group, index, and product type. These categories have been used to analyze the monthly
sales of each category with respect to the total amount of sold articles belonging to the
same category during the two years of available transactions.

Index group name Index name Product type

Ladieswear Ladieswear Jacket

Divided Divided Jacket

Menswear Menswear Jacket

Divided Divided Sweater

Menswear Menswear Sweater

Ladieswear Ladieswear Sweater

3.2. Extracting Relevant Features

The dataset, as shown in section 3.1, is given along with users and article attributes.
From them, we extracted other relevant features from the data. The aim is to spot
patterns, association rules, and other characteristics of both users and items not available
from the starting dataset. These additional features allowed the final model to increase its
effectiveness, as shown in chapter 4. These analysis has been done to create new additional
features and candidate generation strategies, in addition to the provided dataset.

3.2.1. Product Sales Seasonality

Apart from some exceptions e.g., accessories and bags, most of the articles sell well de-
pending on the season: articles that sell well in late September represent good candidates
to be recommended for the test week, which corresponds to the last week of September
i.e., from 2020-09-23 to 2020-09-30.

We checked the trend of sales by grouping articles into categories; each category is identi-
fied by the unique combination of three of the attributes already available in the article’s
dataset, i.e., index group, index, and product type, analyzed in the section 3.1.1.

Once generated these categories we plotted for each of them the percentage of monthly
sales with respect to the total sold amount of the same category during the entire dataset
period of two years. The table 3.7 shows some of the generated categories, while the
fig. 3.32 show the trends of sales of those categories. The figure highlights the fact that
both jackets and sweater sell better with the approaching of the winter season.
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Figure 3.32: The categories in the legends are only some examples and are generated
combining i.e., index group, index, and product type. Jackets and sweater sells better
during the approaching of winter seasons. Then this value decrease, and is at its lowest
during summer.

The fig. 3.33 shows how different categories of articles have different sales trends. In
the case of shorts, we have a peak during the summer, with a decrease in sales with the
approaching of the winter season. This means that it is possible to associate each category
with the season in which that category sees an increase in sales. Knowing that the test
week falls in September i.e., summer season, it is possible to use that information to make
a first filtering on the list of possible candidates to recommend to the customers during
that week.

Correlation of sales between two items is a measure of how closely the sales of the
two items are related. Correlation is a statistical concept that measures the strength and
direction of the linear relationship between two variables. In the context of sales, if two
items have a positive correlation, it means that when sales of one item increase, sales of
the other item tend to increase as well. On the other hand, if two items have a negative
correlation, it means that when sales of one item increase, sales of the other item tend to
decrease [85]. As Lan and Liu [60] says, to calculate the correlation of sales between two
items, it is needed to gather data on the sales of both items over a period of time and
compute the correlation coefficient. The correlation coefficient can range from �1 to +1,
where a value of �1 indicates a perfectly negative correlation, 0 indicates no correlation,
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Figure 3.33: Considering shorts as product type for different index group and index name,
e.g., ladieswear and menswear, the trend is opposite to the ones in the fig. 3.32. These
categories sell better during the summer seasons and the monthly sales reach their lowest
point during the winter season.

and +1 indicates a perfectly positive correlation.

The fig. 3.32 has been generated applying the Principal Component Analysis to the
monthly sales trend of each category, with respect to the leadieswear leadieswear jacket
category, used as reference for the autumn seasonality trend. Principal Component Anal-
ysis (PCA) is a statistical technique that is often used in data analysis and dimensionality
reduction. PCA is a mathematical method that transforms a set of correlated variables
into a smaller set of uncorrelated variables, called principal components [39]. The purpose
of PCA is to identify the underlying patterns in the data by finding a smaller number of
variables that explain most of the variability in the original data set [83]. The principal
components are linear combinations of the original variables that are ordered by their
ability to explain the variance in the data. PCA can be used to reduce the dimensionality
of a large dataset, making it easier to visualize and analyze. PCA can also be used to
identify important variables that contribute most to the variation in the data. This can
help in developing predictive models or in understanding the underlying structure of the
data.

The fig. 3.32 shows that the category ladieswear ladieswear jacket reaches its peak of sales
during autumn; this means that it can be used as autumn sales indicator. Calculating



3| Our Approach to H&M Competition 65

Figure 3.34: Each point is a product category, the higher the value, the higher the cor-
relation of sales with the autumn season. Since the category ladieswear ladieswear jacket
represents the principal autumn sales indicator it has a value of 1 i.e., high correlation.
A category like ladieswear ladieswear sunglasses instead have instead a very low corre-
lation i.e., blue points, because the sales of sunglasses decrease during autumn and the
approaching winter season.

the correlation between the sales of other categories with ladieswear ladieswear jacket
category is possible to understand if sales of a category are related to the autumn season
or not. As expected, in the 3.34, articles with very low correlation, i.e., that are not
likely to be bought in autumn and represented with the blue circle, are for example t-
shirts, sandals, or shorts. On the other hand, articles like gloves or cardigans, represented
with yellow/orange circles, have a strong correlation with the autumn seasons and, as a
consequence with the ladieswear ladieswear jacket category.

Gaussian mixture has been used to cluster the categories into 4 groups that represent
different types of trends in the monthly sales, over the two years of transactions. Those
clusters are not connected to a specific season, they only represent different trends. Any-
way, the categories belonging to the fig. 3.32, that fall into the cluster type 2, are strictly
connected to the autumn/winter season. In the same way, the categories belonging to
the fig. 3.33, that fall into the cluster type 3, are strictly connected to the sprint/summer
season. Categories that belong to cluster 0 do have not a strong correlation with a specific
season of the year. As shown in fig. 3.36 categories like divided divided belt have a monthly
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Figure 3.35: Product seasonal type represents the cluster, between 0 and 3, to which a
category belongs to. Categories that belong to cluster 0 do have not a strong correlation
with a specific season of the year. Categories that belong to cluster 2 have a strong
correlation with the autumn/winter seasons. Categories that belong to cluster 3 have a
strong correlation with spring/summer seasons.

sales trend uncorrelated with respect to the month. The fig. 3.37 shows instead the trend
for the category divided divided bracelet belonging to the cluster 1. This represents a
totally different trend where there are some months where sales are equal to zero. This
specific category contains accessories, meaning that articles belonging to this cluster are
not only independent from a specific season but that they are not available during the
whole year to be bought from customers.
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Figure 3.36: Example of categories belonging to cluster 0. The sales of these categories
are not connected to the period of the year.

Figure 3.37: Example of categories belonging to cluster 1. There are periods of the year
in which the number of sales of that category is null, meaning that items belonging to
that category are not available during the entire year.
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Figure 3.38: The product with article id 698276001, that corresponds to a swimsuit, has
not been sold anymore after august 2019. We can consider it as no longer available in the
stock a remove it from the list of candidates.

3.2.2. Out of Stock Product

Considering a specific article, if e.g., the sales before 2019 account for more than 95% of
the total sales, we can assume that the article is no longer available by the end of 2020
and exclude it from the list of candidates to be recommended. The fig. 3.38 shows that
the product with article id 698276001, that corresponds to a swimsuit, has not been sold
anymore after August 2019. We can consider it as no longer available in the stock and
remove it from the list of candidates.

3.2.3. Repurchase

In the fast fashion industry, repurchase behavior is used as a candidate generation tech-
nique in recommender systems [73]. Fast fashion companies, H&M is an example, offer a
wide range of clothing items that are frequently updated and replaced with new items, and
customers may be more likely to repurchase items they have already bought, especially if
they are happy with the fit, quality, and style of the item. Using repurchase behavior as
a candidate generation technique helps the recommender system identify items that are
likely to be of interest to the user based on their previous purchase history. These items
can then be recommended to the user as potential candidates for future purchases. We
analyzed this behavior using the available transactions to see if customers decided to buy
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again the same item, at different levels of granularity i.e., same article id, product id or
category (see section 3.2.1).

The fig. 3.39 shows the percentage of customers who repurchased the same item, with
exactly the same article id (e.g., a blue t-shirt), product code (e.g., previous t-shirt of
different size or color), and category (e.g., any t-shirt in the dataset). The results obtained
show that there is an increase in percentage repurchases if we increase the time window
or the granularity. Considering the article id 5.1% of the customers repurchased the same
item within 1 week, 6.2% within 2 weeks, and 6.6% within 3 weeks. Instead, considering
the product code 6.8% of the customers repurchased the same item within 1 week, 8.5%
within 2 weeks, and 9.4% within 3 weeks. Regarding instead the category 10.8% of the
customers repurchased the same item within 1 week, 14.3% within 2 weeks, and 16.5%

within 3 weeks. This percentage increase let us consider repurchasing as a candidate
generation strategy.



70 3| Our Approach to H&M Competition

Figure 3.39: This plot shows the percentage of users that, at least one time during the
two years, purchased again an item with the same article id (e.g., a blue t-shirt), product
code (e.g., previous t-shirt of different size or color), and category (e.g., any t-shirt in
the dataset). The category (see section 3.2.1) is an attribute generated by a unique
combination of index name, index group name and product group. Considering the article
id 5.1% of the customers repurchased the same item within 1 week, 6.2% within 2 weeks,
and 6.6% within 3 weeks. Instead, considering the product code 6.8% of the customers
repurchased the same item within 1 week, 8.5% within 2 weeks, and 9.4% within 3 weeks.
Regarding instead the category 10.8% of the customers repurchased the same item within
1 week, 14.3% within 2 weeks, and 16.5% within 3 weeks. This percentage increase let us
consider repurchasing as a candidate generation strategy.

3.3. Leaderboard Public Solutions

The goal of the challenge was to recommend a list of 12 items to each user in the dataset.
The recommendations are scored using the MAP@12 (see section 2.6.2) with respect to
the test week, i.e., the first one after the dataset period, which goes from 2020� 09� 23



3| Our Approach to H&M Competition 71

to 2020�09�30. The data of the test week is split in order to generate two leaderboards.
The public leaderboard was available during the whole challenge period and is generated
using only the 5% of the total test data. The private leaderboard has been released after
the deadline and is generated using the other 95% of the test data. The winners of the
challenge have been selected considering only the private leaderboard. In this section, we
analyze several winning approaches that scored in the top 10 on the private leaderboard. 5

Overviews
The solutions in this section use the same architecture. Specifically, a two-stage recom-
mender (see section 2.5.2). Briefly, a two-stage recommender is one that is composed of
two modules. The first module can be a composition of recommenders that provides a
curated and reduced list of user-item pairs to the second module. They do this by using
past purchases, users, and item features. The second stage is a gradient-boosting decision
tree model. This model receives the user-item pairs created by the first stage, i.e., candi-
dates, and label them as a positive sample. This model is a classifier; it assigns a score
to each item, and the higher the score the high probability to be of interest to the user if
recommended.

From the analysis of these three solutions what we notice is that the gradient boosting al-
gorithms seen in section 2.5.2 gives very good results for this type of task. All the solutions
use LightGBM (see appendix A.8) as gradient boosting algorithm; this does not mean
that it is overall better with respect to other libraries like Catboost (see appendix A.9)
or XGBoost (see appendix A.7); the best algorithm to use depends on many factors e.g.,
the problem being solved, the size and structure of the data, the computational resources,
the attributes of the data, the engineered features, the tuning of hyper-parameters model
and the evaluation metric, among other factors [2]. Other than that, the accuracy of a
model can greatly depend on the features used as input, e.g., CatBoost has been designed
to handle categorical features more efficiently, i.e., it performs better on datasets with a
large number of categorical variables compared to other algorithms.

We analyse these 3 solutions because they train the same GBDT model, but present
different pipeline’s structure and innovative techniques, e.g., "Two Tower MMoE", SWIM
transformer and sentence transformer, among others. Solutions that ranked at 2nd and
3rd place provide a similar pipeline and differ from the 1st because of recall methods and
engineered features.6

5Public leaderboard of the competition here
62nd place solution here. 3rd place solution here.

https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/leaderboard
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/discussion/324197
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/discussion/324129
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3.3.1. 1st Place

The authors propose a two-stage recommender. The first stage generates a collection of
100 candidate articles for every user. It does this by learning the user’s preferences from
past purchases and applying some heuristics. The authors do not share the specific recall
methods used. The second stage recommender receives the sequence of 100 articles and
labels them as positive interactions. The other articles, instead, are labeled as negative
interactions. 7 Than they attached generated features (see table 3.8) to transactions
passed to the model. These features are called interaction features since they connect
users and items using the transactions made by each user.

In order to tune the GBDT model and classify each article as a negative or positive
sample, since the number of candidates for each user is low (⇠ 100) with respect to
the total number of articles (⇠ 106.000), the authors apply the technique of the down-
sampling (see section 2.6.4), a technique used in recommender systems to balance the
data distribution between positive and negative samples.

Model The best single model they trained is a GBDT, i.e., LightGBM, which gave them
a public score of 0.0367. Then they also made an ensemble of classifiers composed of
several models, i.e., 5 LightGBM and 7 Catboost, which gave them a score of 0.0371 on
the private leaderboard.

3.3.2. 4th Place

The authors propose a two-stage recommender. The first stage generates a sequence of
candidates using 4 recall methods: Item2item CF to spot the relationship between pair of
items, top popular items (see section 2.1), repurchase considering the last 20 purchased
products of each customer and "Two Tower MMoE" (see section 2.5.1), which is able to
generate candidates of arbitrary length for all users. To assign importance score to items
based on each user, considering recent active customers versus non-active customers the
authors used a gating network (see section 2.5.1). The gating network learns to assign a
weight to each item, indicating the importance of the item in the recommendation list.
The weighted items are then passed to the next layer for final ranking and selection.

Model The best single model they present is a GBDT, specifically a LightGBM, which
gives them a score of 0.0349 on the private leaderboard.8

7Outline of the 1st place winning solution here.
84th place solution here.

https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/discussion/324070
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/discussion/324094
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Table 3.8: Featured generated and used for the final ensemble by the authors of the 1st
place solution.

Type Description
Count User-item, user-category of last

week/month/season/same week of last
year/entire dataset and importance of
transaction weighted on the time distance
from the test week

Time First and last days of the transaction, for
every single item

Mean/Max/Min Aggregation based on age, price and sales
channel

Difference/Ratio Difference between age and mean age of
who purchased items, the ratio of one
user’s purchased item count and the
item’s count.

Similarity Collaborative filtering score of item2item,
cosine similarity of item2item
(word2vec), cosine similarity of
user2item

3.3.3. 5th Place

The authors propose a two-stage recommender.9 First, to spot similarities between users
and items they use several types of embedding:

• For article images, they use SWIM transformer to extract the embedding fea-
tures which is a type of recommendation system that utilizes a transformer neu-
ral network architecture to generate recommendations. It is designed to work in
a weakly-supervised setting, meaning it only requires partial user-item interaction
data e.g., implicit feedback, to generate recommendations, and is scalable to large
datasets [72].

• For the article’s description, they concatenated all text values of each article and
then they used sentence transformer to extract the embedding which is a library
that uses transformer-based models to embed sentences into a high-dimensional
vector space [113]. These sentence embeddings can then be used to represent user-
item interactions or item descriptions. The embedding can then be compared using

95th place solution here.

https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/discussion/324098
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a distance metric, e.g., cosine similarity, to generate recommendations by finding
the items with the most similar embedding to the target user or item. Sentence
Transformer can also be fine-tuned on specific domains or languages to better fit
the needs of a particular recommendation task [112].

In the second instance they apply multiple recall strategies to generate the list of candidate
items to associate with each user e.g., customer’s last bought items, user based CF, item
based CF, pair of items bought together and popular items for each bucket. Each bucket
is identified by age or gender.

Model The best single model they trained is a GBDT, i.e., LightGBM Ranker (see
A.8), which gives them a score of 0.0350 on the private leaderboard.
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This chapter describes the steps followed to obtain the final model. It starts analyz-
ing the processing made on the dataset, i.e., hyper-parameter tuning, data sampling,
dataset-splitting, and handling missing information. In the second instance it provides an
overview of several experiments, i.e., experiment with strong baselines, i.e., collaborative
filtering recommenders (see chapter 2), heuristics and, along with the list of chosen can-
didate generation strategies, two-stage recommender (see section 2.5.1). At the end of the
chapter, we show the computational resources, libraries, and programming languages used
to make our experiments and tune the final model. In the first set of experiments, i.e.,
collaborative filter recommenders the goal is to evaluate the accuracy of these models and
establish their effectiveness as trained with our dataset. The experiments conducted with
heuristics make use of the trends seen in section 3.2 to evaluate their effectiveness. The
last set of experiments with the two stages recommender serves to exploit the effective-
ness of a more complex model, i.e., GBDT, along with engineered features and selected
candidate generation strategies.

4.1. Dataset Processing

Our dataset is large and complex with a wide range of attributes and features that need to
be processed and cleaned before being used for training and evaluation. For that reason,
processing has been a critical step in this thesis [42]. The result of these steps is the ICM
(see section 2.2) which stores item-attribute values and URM (see section 2.3), which
stores user-item interactions’ value.

Handling missing information As we have seen in section 3.1.1 we have some missing
information in both article and user dataset. As shown in section 2.6.3 there are different
techniques to handle missing information. We applied the following processing to handle
these missing values for the customer: fashion news newsletter has been filled with 0,
active has been filled with 0, fashion news frequency has been filled with NULL and club
member status has been filled with NULL. Missing description for articles has been filled
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with an empty string.

Sampling techniques As seen in section 2.6.4, sampling techniques are important
during every experimentation phase, for each model or feature we build. Making use of
these sampling techniques allowed us to ease the process of experimentation, lowering also
the resources needed while testing the effectiveness of our features and/or models. We
have used random sampling in order to create 4 different samples, containing different
percentages of all the available transactions: 0.1%, 1%, 10%, and 100%.

4.2. Hyper-Parameter Tuning

Hyper-parameter tuning is the process of selecting the optimal hyper-parameters of a
machine learning algorithm to maximize its accuracy on a specific task or dataset. Hyper-
parameters are set before training a model and control its behavior during training, i.e.,
learning rate, regularization strength, and all the parameters required by the GBDT
algorithm [12].

We performed Bayesian Optimization using Optuna [3]. Bayesian optimization algorithm
uses the Gaussian process regression model as the surrogate model to approximate the
objective function to balance exploration and exploitation in the search space. Optuna
provides a flexible API for defining the search space, and setting up the objective function.
It also supports distributed optimization, visualization of the results, and integration with
several machine learning libraries such as PyTorch, TensorFlow, and Scikit-learn.1 More
specifically, we adopted the step-wise algorithm that tunes important hyper-parameters
sequentially, resulting in a compact search space [92]. A search space refers to the set
of all possible solutions that can be generated by an algorithm to solve a given problem
[4]. A compact search space is a search space that has relatively fewer possible solutions
compared to other search spaces that solve the same problem. [54].

4.3. Data Split

The fig. 4.1 shows how we split the dataset for all of our experiments. We consider only
the last 7 weeks of the dataset. The first 6 are used to train and tune models; the reason
is that these weeks share the same context, e.g., weather, products available, and fashion
trends with the test week, i.e., the first week after the dataset period. The last week of
the dataset is used to validate our model, because it is, considering the period and the

1Scikit-learn https://scikit-learn.org/stable/. PyTorch https://pytorch.org

https://scikit-learn.org/stable/
https://pytorch.org
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Figure 4.1: The red box represents the whole dataset which goes from 2018� 09� 20 to
2020 � 09 � 29. In blue is the discarded dataset. In green is the train split, in yellow is
the validation split, and in gray is the test split. We use as training and validation data
the last 7 weeks of the dataset since they are the most similar to the test week used for
the evaluation.

selling trend, the most similar one to the test week used to evaluate the submission files
of the challenge (see chapter 3). Since we have no access to this test week we validate our
models using the validation week before submitting the recommendations to evaluate our
solution.

4.4. Collaborative Filtering Recommenders

In our baseline experiments, we evaluate the accuracy of several collaborative filtering
models, including user-based and item-based neighborhoods, matrix factorization, graph-
based, top popular items, and hybrid models. We perform a variety of experiments to
establish the effectiveness of these models, which in previous research works have shown
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Figure 4.2: To build strong baseline recommenders we tune the recommender using the
train data, generate recommendations and evaluate them locally. We iterate the phase of
hyper-parameters tuning using the Optuna library. Once tuned the hyper-parameters we
trained the model using both the train and validation data. Then we generate recommen-
dations and submit them to be evaluated using MAP@12 (see eq. (2.41)) on test data for
both private (95% of the test data) and public (5% of the test data) leaderboard.

to be competitive and strong baselines in terms of recommendations’ quality [23]. The
results of this experiment serve as a reference point for more sophisticated models that
are evaluated later in the thesis [23, 49]. By establishing the recommendation’s quality of
strong baseline models we gain a better understanding of the challenge and opportunities
to build effective recommender systems in the fashion domain [51]. This information is
crucial to guide the development of more advanced models that can address these chal-
lenges and provide better recommendations to users. The techniques evaluated in this
experiment cover a wide variety of recommenders, ranging from non-personalized (top-
popular items in August 2020 and top-popular recommenders in September 2020), matrix
factorization (PureSVD, ALS), graph-based (P3 Alpha, RP3 Beta), collaborative filtering
(ItemKNN, User KNN). We also evaluate hybrid models (see section 2.4) making an en-
semble of models, i.e., top popular items, P3Alpha and ItemKNN CF. Recommenders in
this experiment are trained with the train split of the ICM and URM obtained in the pro-
cessing phase. URM is a matrix that represents the interactions, which are transactions in
our specific case, between users and items. Each row in the matrix represents a user, each
column represents an item, and each entry in the matrix represents the user’s transaction
with the item. ICM is a matrix that represents the content attributes of each item. Each
row in the matrix represents an item, each column represents a content attribute, and
each entry in the matrix represents the presence or absence of the attribute for the item
(see section 3.1.1).
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4.5. Heuristics

With heuristics and association rules, we exploit the outcome of the data analysis made
in section 3.2, e.g., seasonality, out-of-stock products, repurchase, co-occurrence, among
others. This last heuristic represents the idea beyond outfits: users buy two or multiple
items together because they compose an outfit recommended by the fashion company
itself or because it has been seen somewhere else online. Several experiments are inspired
by the concept of fast fashion [73]. We made around ⇠ 50 combination of heuristics and
associations rules involving consideration of trendy color, new products, ages, and top
popular items. Some of the experiments conducted and the trend combinations did are:
(i) heuristic with trendy colors and top popular items. (ii) heuristic with age, trendy
color, and top popular items. (iii) heuristic with top popular new items. (iv) heuristic
recommend again product bought last 3 weeks. (v) heuristic on trending product based
on repurchasing trend. (vi) association rule on items purchased together. (vii) association
rule on top popular items based on age and discounted products. (viii) association rule
on top popular items based on age. (ix) association rule on product and on top popular
items from most popular product category, e.g., trousers, sweater and cardigan. Training
different combinations of trends allows analyzing the variation of accuracy and highlights
which heuristic the dataset is biased to.

4.6. Two Stage Recommender

During the last experimental phase, we apply the two-stage recommender (see section 2.5.2).
These systems generate recommendations in two phases: first, multiple nominators se-
lect a small set of items from a large pool using cheap-to-compute item embeddings, i.e.,
candidate generation strategies used to down-sample the list of item (see section 2.6.4);
then, a ranker with a richer set of features rearranges the nominated items and presents
them to the user [40]. We generate candidates, using strategies listed in the next section,
starting from the results of section 4.5. We then add features listed in section 4.6.2 to
these candidates. For the model, instead, we make experiments with different GBDT
algorithms. All the experiments use the same hyper-parameter tuning library presented
in section 4.2 and the same data split of the section 4.3. One of the goals during that
phase of experimentation has been to find heuristics that gave good results and use them
to generate a pool of candidates to associate with every single user. This has been an
important step because having a pool of ⇠ 300 candidates for each user means that the
final model has to select the recommendations from a lower list of possible items instead
of picking them from a pool of ⇠ 106.000 items for each user. Lowering the pool of can-
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Figure 4.3: To build a two-stage recommender we first generate the candidates for each
user using selected candidate generation strategies. These candidates are used, along with
features, to train the GBDT model. Then we generate recommendations and evaluate
them locally. We iterate the phase of hyper-parameters tuning using the Optuna library.
Once tuned the hyper-parameters we train the model using both the train and validation
data. Then we submit recommendations to be evaluated using MAP@12 (see eq. (2.41))
on test data for both private (95% of the test data) and public (5% of the test data)
leaderboards.

didates from which the model needs to select items to recommend increases the model’s
accuracy and the effectiveness of the solutions. We tried different GBDT algorithms, e.g.,
LightGBM Ranker, and Catboost among the others.

4.6.1. Candidate Generation

The goal of candidate generation is to identify a set of items that are likely to be of
interest to the user in order to lower the pool of articles from which the final model have
to pick up recommendations for the user. Starting from the list of heuristics we presented
in the section 4.5, we fine-tuned them and come up with a list of candidate generation
methods, in order to generate a pool of ⇠ 300 items for each user. Once generated,
those candidate pools have been used for all of our final experiments.

Repurchase In the fast fashion industry, repurchase behavior is used as a candidate
generation technique in recommender systems [73]. Fast fashion companies, H&M is
an example, typically offer a wide range of clothing items that are frequently updated
and replaced with new items, and customers may be more likely to repurchase items
they have already bought, especially if they are happy with the fit, quality, and style
of the item. Using repurchase behavior as a candidate generation technique helps the
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recommender system identify items that are likely to be of interest to the user based on
their previous purchase history. These items can then be recommended to the user as
potential candidates for future purchases. The reason why we choose user repurchasing
as a candidate generation strategy is that a considerable percentage of customers used to
repurchase the same item again, as seen in section 3.2.3.

Item-to-item (or item-item) collaborative filtering Item-to-item collaborative fil-
tering is a technique that uses the customer’s purchase history to identify other items
that are similar to the items they have purchased in the past (see section 2.3).

The system creates a user-item matrix where each row corresponds to a customer, and
each column corresponds to an item. The cells in the matrix represent the customer’s
interaction with each item, in our case is there has been a transaction or not. The system
then calculates the similarity between pairs of items using a similarity metric, e.g., cosine
similarity. To generate recommendations, the system identifies the items that the user has
already interacted with and selects the most similar items to these items in the matrix.
These similar items are then recommended to the user as potential candidates for fu-
ture purchases. In the fashion industry, item-to-item collaborative filtering is particularly
effective because fashion items have many attributes that can be used to calculate sim-
ilarities, such as color, style, brand, material, and seasonality[48]. By considering these
attributes, the system can identify items that are similar in terms of their overall look
and feel, as well as more specific features such as sleeve length, neckline, or hemline. For
every single user, 36 items, based on collaborative-filtering techniques have been selected
as possible candidates to recommend.

Top popular items This technique identifies the most popular items that have been
purchased or viewed by many customers and recommends them to new customers or
customers with limited purchase history. Popular items are items that have a high number
of interactions, in our case transactions.

However, the popular item candidate generation technique has limitations, as it may not
provide personalized recommendations that are tailored to the user’s individual tastes
and preferences. In addition, popular items may not be suitable for all users, as users
have different needs, styles, and budgets. Anyway, as seen in section 4.4, non-personalized
techniques give promising results, which is why for each user we associate 60 top popular
items as possible candidates.
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Age based One approach for age-based candidate generation is to use demographic
information about the user, e.g., their age, to identify items that are popular among users
of the same age. For example, if a user is in their twenties, the system may recommend
popular items that are currently trending among users in their twenties too.

Another approach for age-based candidate generation is to use contextual information
about the user, e.g., the user’s purchase history, to identify items that are suitable for
their age and style preferences. For example, if a user has previously purchased items that
are popular among older adults, such as classic blazers or formal wear, the system may
recommend similar items that are popular among that age group. However, age-based
recommendations should be combined with other techniques, e.g., collaborative filtering
and content-based filtering, to generate a diverse set of recommendations that are tailored
to the user’s individual preferences and needs. For each single age value, from 16 to 100,
i.e., the range of user’s age we have in the dataset, we extract the most popular items
bought by users with that age. Then we associate this list of items to the users with that
specific age. With this recall method, we select a list of 12 items.

Popularity per department We rank, for each single department name (see sec-
tion 3.1.1), the list of all the articles based on the number of transactions associated.
Then we generate a list of 6 candidates for each user, taking the most popular items from
the department name from which the user does most of his transactions.

Same product code From section 3.1.1, the product code represents the first 6 digits
of the article id. This means that items with different article id may have the same
product code, i.e., same item but with different colors, patterns, or sizes. For that reason,
it makes sense to extract some candidates starting from the transactions made by the
user with articles with the same product code.

• Generate the item2item collaborative filtering, to extract similarities from items.

• Extract the product code from the transactions made by the user.

• Based on the transactions of the product code of the items bought in the past by
the user and on the item2item similarities we then extract candidates.

Co-occurrence We select pairs of items that occur in the same transactions list for a
specific user. We consider the last 32 weeks for this strategy and then we count, for each
pair of items, how many times they are present in the list of transactions for a specific
user. Then we filter pairs’ count over a threshold, i.e., 150.
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4.6.2. Feature Engineering

To train our models, fashion recommender systems require a set of features that describe
the fashion items and the users’ preferences. Feature engineering is the process of selecting
and transforming the raw data related to fashion items and users’ preferences into a set
of meaningful features that can be used as input to the machine learning algorithm [124].

The process of feature engineering typically involves several steps, including data pro-
cessing, feature selection, and feature transformation. Data processing involves cleaning
and organizing the raw data, such as product descriptions, user preferences, and user-
item interaction data, so that it can be used for feature engineering, as we have seen in
section 4.1.

Feature selection involves choosing the most relevant features from the processed data to
use in the machine learning algorithm. This step is important because including irrelevant
or redundant features can lead to overfitting or a decrease in the model’s accuracy [84].
Feature transformation involves transforming the selected features into a format that
can be used as input to the machine learning algorithm. This might involve scaling the
features to a common range, normalizing them to have zero mean and unit variance,
or encoding categorical features as binary or numerical values. Once the features have
been engineered, they can be used as input to the algorithm. The algorithm then learns
patterns in the data to make predictions about which fashion items a user is likely to be
interested in.

Overall, the goal of feature engineering in fashion recommender systems is to extract the
most relevant and informative features from the available data, in order to enable accurate
and personalized recommendations to users. The success of a fashion recommender system
depends on the quality and relevance of the features that are used as input to the machine
learning algorithm [70]. In our thesis work this step follows the generation of the candidate
pool, since most of the features listed here, and associated to the user, are based on that
pool, which is user specific. I create more than 100 features. Considering that we apply
candidate generation strategies to lower the pool of items associated to each user, we used
very simple features. That features give an high boost in the performance of the model.
We filtered out not informative features for the model and we come up with the following
list of features.

User attributes are taken from the user dataset and, for our final model, we consider
only the user age.
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Item attributes are taken from the article dataset (see 3.1.1). We use the follow-
ing attributes of the dataset as input to the model: product type number, product group
name, graphical appearance, color group code, perceived color value, perceived color mas-
ter, department number, index code, index group number, section number, garment group
number.

User features are generated starting from an aggregation of all the transactions, and
calculating for every single user the mean and the standard deviation for both prices and
sales channel id, i.e., if the user tend to buy in the physical or online store. This is to
understand is the user is more inclined to buy articles in physical stores instead of online
ones or vice versa.

Item features are mean and standard deviation for prices and sales channel id con-
sidering all transactions of that item.

Item-User features are the mean and standard deviation of the age of all the users
who buy that item.

Item freshness features associate with each item the first day the item appears in a
transaction.

Item volume features associate to each item its volume, i.e., the number of times the
item appears inside the dataset.

User freshness features associate with each user the first day he made a transaction.

User volume features associate to each user his volume, i.e., the number of transac-
tions made by the user.

User-Item freshness features associate to each user-item pair the first time the pair
appears in a transaction.

User-Item volume features associate to each user-item pair its volume, i.e., the num-
ber of times the user-item pair appears inside the dataset.

Item age ranges features is the age range of users that most likely buy that item.
We recommend most likely items with age ranges which include the age of the user we
are recommending the item to.
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The same list of features has been used for our final phase of experimentation, for all
the models and gradient-boosting decision tree tested. The features are very simple since
they include, e.g., mean, sum or standard deviation of some attributes, e.g., price and
age, among others. This allows to create an effective and lightweight recommender while
fastening the training time. This has been possible thanks to the extensive work done on
dataset analysis and on building effective candidate generation strategies to down-sample
the pool of items associated to each single user of the dataset.

4.7. Resources

To run our experiments we used two cloud computing platforms: Google Colab and
Amazon AWS.2 3 Overall, this analysis required to fit and evaluate 500 models requiring
a total computational time of 120 hours. Google Colab + is a cloud-based notebook
environment that provides users with access to a virtual machine to run and develop code.
With the plus subscription to Google Colab we had available a virtual machine with 1 or
2 cores CPU, an NVIDIA Tesla K80 or T4 GPU, and 27 GB of RAM. Amazon Web
Services allows launching a virtual machine instance with the needed resources. For
our final experimentation, we used the m6g.16xlarge instance which is a type of AWS
instance that is powered by Graviton2 processors, 64 CPU cores, and 256 GB RAM.4 As
programming language we used python while to make our experiments we used different
libraries, e.g., (i) pandas.5 (ii) numpy.6 (iii) pickle.7 (iv) lightgbm.8 (v) catboost.9

(vi) scikit.10 (vii) pytorch.11

2Google Colab https://colab.research.google.com

3Amazon AWS https://aws.amazon.com

4Amazon EC2 M6g Instances https://aws.amazon.com/ec2/instance-types/m6/
5Pandas https://pandas.pydata.org
6Numpy https://numpy.org

7Pickle https://docs.python.org/3/library/pickle.html

8LightGBM https://lightgbm.readthedocs.io/en/v3.3.2/index.html

9Catboost https://catboost.ai
10scikit https://scikit-learn.org/stable/
11PyTorch https://pytorch.org

https://colab.research.google.com
https://aws.amazon.com
https://aws.amazon.com/ec2/instance-types/m6/
https://pandas.pydata.org
https://numpy.org
https://docs.python.org/3/library/pickle.html
https://lightgbm.readthedocs.io/en/v3.3.2/index.html
https://catboost.ai
https://scikit-learn.org/stable/
https://pytorch.org
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5| Results

In this chapter we analyze the results of our experiments, highlighting some of the callouts
that guided us in the process of finding an effective and scalable model for fashion-based
recommendations. Our most effective solution is described in the last section of the
chapter. This recommender obtains the highest score on the leaderboard. We start
testing collaborative filtering recommenders because several works show they are simple,
effective, and strong baselines in most recommendation scenarios [23, 95, 109]. In a second
experimental phase, we train models using heuristics, association rules, and combinations
of them, to put in place users’ behaviors that we have found during the data analysis,
e.g., out of stock products, co-occurrence, seasonality, and repurchase (see section 3.2).
Lastly, we build a scalable and lightweight two-stage recommender. This recommender
is a GBDT model on top of a candidate generation model, features extracted from the
dataset, and dataset attributes. The choice of a gradient boosting algorithm came from
the study of Jannach, Dietmar et al. [49] in which analyses how the winning solutions of
recent recommender system challenges mostly consist of substantial feature engineering
efforts and the use of gradient boosting or ensemble techniques.

5.1. Collaborative Filtering Recommenders

In our strong baseline experiments, we evaluate the accuracy of several collaborative
filtering models. The techniques evaluated in this experiment cover a wide variety of
recommenders, ranging from non-personalized (top-popular items in August 2020 and
top-popular recommenders in September 2020), matrix factorization (PureSVD, ALS),
graph-based (P3 Alpha, RP3 Beta), collaborative filtering (ItemKNN, User KNN). We
also evaluate hybrid models (see section 2.4) making an ensemble of models, i.e., top
popular items, P3Alpha and ItemKNN CF.

We evaluate recommenders of several types because previous research works have shown
they are competitive however, the best recommender type changes by domain [23, 95, 109].

Recommenders in this experiment are trained with the train split of the ICM (see sec-
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Table 5.1: Accuracy of strong baseline recommenders (see section 4.4). This experiment
was performed as a team during the competition after processing the dataset (see sec-
tion 4.1). We include the results of the bests public solutions of the competition (see
section 3.3), however, their methodology may differ with respect to ours. They are placed
here as reference points. The top popular 12 items model considers the popularity of
items for the whole dataset, while the top popular items in August/September consider
only those months in the year 2020. In bold, we highlight the top-2 recommenders with
the highest accuracy.

Recommender Public Score Private Score

First place 0.03716 0.03792
Fourth place 0.03544 0.03563
Fifth place 0.03536 0.03553

Top popular 12 items 0.02163 0.02119

Top popular items on September 2020 0.00407 0.00384
Top popular items August/September 2020 0.00383 0.00362

P3Alpha [115] 0.00431 0.00426
RP3 Beta [36] 0.00425 0.00453

ALS (see section 2.3.3) 0.01413 0.01406

PureSVD (see section 2.3.3) 0.00431 0.00426

Item KNN CF (section 2.3) 0.00345 0.00357

Ensemble: Top popular 12 items, P3Alpha and
ItemKNN CF

0.00457 0.00463

tion 2.2) and URM (see section 2.3) obtained in the processing phase. URM is a matrix
that represents the interactions, which are transactions in our specific case, between users
and items. Each row in the matrix represents a user, each column represents an item, and
each entry in the matrix represents the user’s transaction with the item. ICM is a matrix
that represents the content attributes of each item. Each row in the matrix represents an
item, each column represents a content attribute, and each entry in the matrix represents
the presence or absence of the attribute for the item (see section 3.1.1).

Table 5.1 shows the recommendation’s accuracy, measured by MAP@12 (see eq. (2.41)),
of the recommenders trained and evaluated in this experiment. The results are shown for
both public and private leaderboards. The public leaderboard was available during the
challenge period and is generated using only the 5% of the total test data. The private
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leaderboard has been released after the deadline and is generated using the remaining
95% of the test data. The winners of the challenge have been selected considering only
the private leaderboard.

The recommenders have low recommendation accuracy with respect to more sophisticated
and tailored recommenders, e.g., the one used by the team obtaining 1st place in the
competition.

In addition to this, the results contrast with the research of Ferrari Dacrema et al. [23].
In particular, strong baseline models in previous work do not obtain high accuracy in this
domain, being less competitive than the best solutions of the challenge (see section 3.3).
Also, a non-personalized recommender, i.e., top popular items, obtains higher accuracy
than such baselines. ALS is a strong baseline [58] and obtains the highest accuracy of
personalized collaborative filtering recommenders. However, its accuracy is lower than
non-personalized approaches.

Regarding other recommenders Top Popular Items on August/September measure
whether purchased items in the competition are most popular during the season. We con-
sidered only August and September because they are the two months in the same season
as the target purchases. The obtained score is lower than the one obtained recommending
the top popular items from the entire dataset. These results suggest that the trend of
sold items during the test week is not connected with items sold during the same season,
i.e., summer of 2020. An additional proof is that the accuracy of Top Popular Items on
August/September 2020 is lower that the accuracy of Top Popular Items on September
2020 by 6%.

Regarding the ensemble recommenders, we perform evaluations of several ensembles con-
taining combinations of recommenders. As Tsai and Hung [108] state, ensemble techniques
have been shown to outperform many single collaborative filtering techniques in the lit-
erature. Despite previous success in competitions, an ensemble in this scenario does not
translate to higher accuracy. In table 5.1 we show the most accurate ensemble: a com-
bination of the top popular 12 items and strong baselines. This recommender has a low
recommendation quality; similar to other strong baselines, meaning that the recommender
does not get favored by the top popular 12 items recommender. These results suggest
that ensembling these baselines does not translate to higher recommendation accuracy.

Due to non-personalized techniques like top popular items obtaining higher accuracy than
more advanced and robust techniques like graph-based (RP3 Beta or P3Alpha), SVD, or
collaborative filtering, then researchers and practitioners must develop different types of
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recommenders to accurately model users’ preference and to increase users’ satisfaction.

5.2. Heuristics

With heuristics and association rules, we exploit the outcome of the data analysis of users’
behaviors made in section 3.2, e.g., seasonality, out-of-stock products, repurchase, co-
occurrence, among others. Association rules consider how often two items were sold to the
same user among the two years of available dataset. During the recommendation phase,
we recommended to the user items on the right side of the association rule in case the item
on the left side was already present in the list of transactions for the specific user. This
happens because in the fashion domains groups of items are usually sold together. The
co-occurrence heuristic represents the idea beyond outfits and follows the same idea of the
association rule: users buy two or multiple items together because they compose an outfit.
Several recommenders are inspired by the concept of fast-fashion [73], i.e., recommender
selecting only trendy colors, new products, popularity based on age, repurchases, and
co-occurrences. We also combine two or more heuristics or association rules into a single
recommender. This new recommender selects items that are selected by each heuristic or
association rule. We evaluate these combinations:(i) heuristic with trendy colors and top
popular items. (ii) heuristic with age, trendy color, and top popular items. (iii) heuristic
with top popular new items. (iv) heuristic to recommend again product bought in the last
3 weeks. (v) heuristic on trending product based on repurchasing trend. (vi) association
rule on items purchased together. (vii) association rule on top popular items based on
age and discounted products. (viii) association rule on top popular items based on age.
(ix) association rule on product and on top popular items from most popular product
category, e.g., trousers, sweater and cardigan.

Table 5.2 shows the accuracy, measured by MAP@12 (see eq. (2.41)), of the recommenders
trained and evaluated in this experiment. The best recommender in this experiment
obtains a relative improvement of 60% with respect to the most accurate personalized
collaborative filtering recommender of the previous section (see table 5.1). Moreover, all
heuristics and association rules obtain higher accuracy than most collaborative filtering
recommenders. 2 heuristics and 4 association rules are more accurate than ALS, the
most accurate collaborative filtering recommender. With respect to the recommend
again product bought last 3 weeks recommender, it is the second most accurate
heuristic; with higher accuracy than all personalized collaborative filter recommenders.
This recommender exploits the fast fashion trend seen in the analysis of users’ behaviors
(see section 3.2.3). In particular, the dataset shows that users tend to buy again the same



5| Results 91

item. In some situations, they buy the exact same item, in others, they buy the item in
different colors or sizes. In the trend of fast fashion, the price is low and some items remain
inside the catalogue for years. Hence, users tend to buy the same item several times in a
short period of time [73]. With respect to the heuristic with top popular items and
trendy color recommender, the result is lower with respect to the top popular items
algorithm. The recommender tells if there is a connection between the probability to sell
a popular item and the trendy color of the summer season. From the score obtained, we
figured out that there is not a strong connection with the trendy color. Heuristic with
age, trendy color, and top popular items tells that even adding to the previous test
the age, the results poorly improved. In any case since the result improved we considered
age as an effective attribute to be used during the recommendation phase. Association
rule on items purchased together is part of the concept of the fast fashion [73]. It gave
better results with respect to the other experiments because we added two considerations:
the number of times pairs of items are bought together and the fact that customers tend
to buy again the same items but of different colors and sizes.

5.3. Two Stage Recommender

In this last experiment, we design, develop, and evaluate a two-stage recommender (see
section 2.5.2). These systems generate recommendations in two phases: first, multiple
nominators select a small set of items from the catalog using lightweight item embed-
dings, i.e., candidate generation strategies used to down-sample the list of items (see
section 2.6.4). Second, a ranker with a richer set of features rearranges the nominated
items and presents them to the user [40]. We generate candidates, using strategies listed
in section 4.6.1, starting from the results of section 4.5, i.e., (i) repurchase. (ii) item2item
collaborative filtering. (iii) top popular item. (iv) age-based. (v) popularity per de-
partment. (vi) same product code. (vii) co-occurrence. We than add features listed in
section 4.6.2 to these candidates. For the ranker, instead, we evaluate two different GBDT
implementations. Table 5.3 shows the best score obtained with LightGBM and Catboost.
Find good candidate generation strategies has been an important step because having
a pool of ⇠ 300 candidates for each user means that the final model has to select the
recommendations from a lower list of possible items instead of picking them from a pool
of ⇠ 106.000 items for each user. Lowering the pool of candidates from which the model
needs to select items to recommend increases the model accuracy and the effectiveness
of the proposed solution. We tried different GBDT algorithms : LightGBM Ranker and
Catboost Yetirank.
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The GBDT model that gives better results is Catboost; its accuracy is higher than
all heuristics and association rules by 34 and 42 %. Also, its accuracy is higher than
all collaborative filtering recommenders, with a difference of 41% with respect to the
top popular 12 items and 114% with respect to ALS. Our most accurate recommender
obtains a score of 0.0298 in the private leaderboard, meaning it obtains 10th place in it.
For comparison, the best baseline sits in the 1445 place, the most accurate heuristic sits
in the 1260 place, and the most accurate association rule sits in the 1311 place.

The model with the highest recommendation accuracy is a Catboost recommender. This
agrees with the studies of Dorogush et al. [22] and Prokhorenkova et al. [91]; they argue
that is expected that Catboost obtains higher accuracy with the same set of features and
datasets than other GBDT implementations. However, this contrasts with the solutions
analyzed in the section 3.3 as they use LightGBM as GBDT algorithm. We remark that
those solutions do not describe the dataset used nor the computational resources used to
train their respective models.

Among the features used to train our models, we use several categorical features: (i) prod-
uct type number. (ii) product group name. (iii) graphical appearance. (iv) color group code.
(v) perceived colour value. (vi) perceived colour master. (vii) department number. (viii) in-
dex code. (ix) index group number. (x) section number. (xi) garment group number. We
generate more than 60 features (see section 4.6.2). The feature importance gives another
important result, i.e., the most important features used by GBDT algorithms to rank the
pool of candidates and make final recommendations are (i) user age. (ii) item-user mean
age that represents the mean ages of users who buy the item. (iii) item ages ranges.
(iv) color group code of the item. (v) garment group number. (vi) product type. (vii) item
volumes. (viii) user-item volume.. The combination of user age and item-user mean age
allows the model to give high scores to items whose associated age is equal to the age of the
user we are recommending the item to. The combination of item volumes and user-item
volume shows instead that if the user bought that item in the past and that the item has
an high sells rate, this means that the probability of the item to be repurchased is high.
The remaining listed features, i.e., product type, garment group number and color group
code of the item show, instead, which are the most important item’s attribute considered
by the model to rank items among the pool of candidates. The fact that the product type
is one of the most important features is related to the high percentage of repurchase of
items by the same user with the same product code, i.e., same item but of different color
and size (see section 3.2.3).
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Table 5.2: Results of experiments done with heuristics and association rules. With heuris-
tics and association rules, we exploit the outcome of the data analysis made in section 3.2,
e.g., seasonality, out-of-stock products, repurchase, co-occurrence, among others. All the
experiments in the tables have been done using the split shoes in fig. 4.1. The scores
are based on the MAP@12 (see eq. (2.41)) applied to the test week for both public and
private leaderboards. In bold we highlight the best scores.

Algorithm definition Public Score Private Score

First place 0.03716 0.03792
Forth place 0.03544 0.03563
Fifth place 0.03536 0.03553

Heuristic Trendy color and top popular
items

0.00613 0.00642

Age, trendy color and top
popular items

0.0064 0.00676

Top popular new items 0.0064 0.00676
Recommend again product
bought last 3 weeks

0.01854 0.0185

Trending product based on
repurchasing trend

0.02263 0.02291

Association rule Top popular items based on age
and discounted products

0.01478 0.01482

Top popular items based on age 0.01949 0.01962
Top popular items from most
popular product category
(Trousers, Sweater, Cardigan)

0.01973 0.01992

Items purchased together 0.02169 0.02159
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Table 5.3: Results of experiments done with the two-stage recommender. The GBDT
model that gives better results is Catboost; as loss function we use YetiRank which
is used in the CatBoost machine learning library to handle ranking problems [30]. From
the results obtained there is one interesting call out to highlight, i.e., with respect to the
solutions analyzed in the section 3.3 that used LightGBM as GBDT algorithm, the model
that gives the highest accuracy on recommendation is a Catboost model. Among the
features used to train our models, we use several categorical features. From the studies of
Dorogush et al. [22] and Prokhorenkova et al. [91] this is an expected result, since Catboost
with respect to other algorithms has higher efficiency and accuracy handling categorical
data giving also better results. All the experiments in the tables have been done using
the split of fig. 4.1. The scores are based on the MAP@12 (see eq. (2.41)) applied to the
test week for both public and private leaderboards. In bold we highlight the best score.

Algorithm definition Public LB Private LB

First place 0.03716 0.03792
Fourth place 0.03544 0.03563
Fifth place 0.03536 0.03553

Two-Stage Recommender with LightGBM 0.0286 0.0279
Two-Stage Recommender with Catboost 0.0303 0.0298
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6| Conclusions and Future
Developments

This thesis provides a comprehensive overview of the H&M challenge and presents several
solutions to it, the last one ranking among the top 10 in the final leaderboard. The
presented solution is a lightweight and scalable model that requires few resources and
training time. As described in section 5.3, the recommender takes 15 hours to train on a
64-core CPU virtual machine using 256 GB RAM.

Overall, in this thesis, we analyze the dataset, including customers, articles, and trans-
actions (see chapter 3), to identify and model users’ behaviors and correlations between
users, missing values, trends, and association rules. As seen in the results, this analysis
yields positive results as recommenders based on these analyses obtain higher accuracy
than strong state-of-the-art baselines in recommender systems.

In the chapter 4 we present the complete list of processing steps, hyper-parameter tuning,
data split, heuristics, candidate generation strategies, and features used to make our
experiments, highlighting used resources. In the result chapter 5, we list the outcomes
of all the experiments. Despite the limited resources needed, our final models yielded
competitive results. For future works, we suggest several action items that can be taken
in the future to improve the score, e.g., increasing resources and testing models with longer
time frames, i.e., to consider as train period more than 6 weeks. Another future direction
is to build embedding of items’ images and descriptions to boost the effectiveness of the
model.

The fashion recommender system developed in this thesis has the potential to enhance the
shopping experience for H&M customers by providing personalized and accurate fashion
recommendations. Additionally, the system can help H&M to increase customer engage-
ment and loyalty, as well as boost sales and revenue.

In the fashion area, it is recommended to retrain the model after some time, as fashion
trends and user preferences can change over time [56, 90]. Not retraining recommenders
can lead to a decrease in their accuracy in future interactions with users. In addition, new
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products may be added to the inventory, which can affect the recommendations made by
the model. Several studies have shown the importance of retraining recommender sys-
tems to maintain their accuracy over time. For example, in a study on the Netflix Prize
dataset, Koren et al. [56] found that models need to be updated regularly to maintain
their accuracy. They stated that "retraining is necessary to compensate for changes in
the rating distribution and to incorporate new users and items". Similarly, in a study on
personalized music recommendation systems, Preston and Erik [90] found that retraining
the model regularly improved its effectiveness over time. They stated that "retraining
a recommender system can improve its recommendations, especially when the user data
changes over time". Many fashion companies are actively retraining their recommender
systems to ensure they remain up-to-date and effective. For example, a European on-
line fashion retailer, updates its recommendation algorithms every two weeks, based on
customer feedback and new data. Similarly, a US-based online personal styling service
updates its algorithms every few weeks to keep up with changes in customer preferences
and fashion trends [27].

One limitation of this thesis is that the third-party system evaluating each solution does
not simulate an environment when recommenders are retrained. As participants in the
competition, we do not have access to the entire dataset, hence it is not possible to
reproduce such an evaluation methodology. Even after the deadline it has been not
possible to access the entire dataset and the only way to test our solutions has been to
submit it on the system.



97

Bibliography
[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE Trans.
Knowl. Data Eng., 17(6):734–749, 2005. doi: 10.1109/TKDE.2005.99. URL https:

//doi.org/10.1109/TKDE.2005.99.

[2] W. Ahmed, K. Muhammad, and F. I. Siddiqui. Predicting calorific value of thar
lignite deposit: A comparison between back-propagation neural networks (bpnn),
gradient boosting trees (gbt), and multiple linear regression (MLR). Appl. Artif.
Intell., 34(14):1124–1136, 2020. doi: 10.1080/08839514.2020.1824091. URL https:

//doi.org/10.1080/08839514.2020.1824091.

[3] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-
generation hyperparameter optimization framework. In A. Teredesai, V. Kumar,
Y. Li, R. Rosales, E. Terzi, and G. Karypis, editors, Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
2019, Anchorage, AK, USA, August 4-8, 2019, pages 2623–2631. ACM, 2019. doi:
10.1145/3292500.3330701. URL https://doi.org/10.1145/3292500.3330701.

[4] J. Aljabri, A. L. Michala, J. Singer, and I. Vourganas. mini-elsa: using machine
learning to improve space efficiency in edge lightweight searchable attribute-based
encryption for industry 4.0. CoRR, abs/2209.10896, 2022. doi: 10.48550/arXiv.
2209.10896. URL https://doi.org/10.48550/arXiv.2209.10896.

[5] G. Behera and N. Nain. Handling data sparsity via item metadata embedding into
deep collaborative recommender system. J. King Saud Univ. Comput. Inf. Sci.,
34(10 Part B):9953–9963, 2022. doi: 10.1016/j.jksuci.2021.12.021. URL https:

//doi.org/10.1016/j.jksuci.2021.12.021.

[6] F. Bella, F. Fumarola, and S. Pizzutilo. Co-training based ensemble for improving
accuracy and coverage of recommender systems. In Proceedings of the 5th ACM
conference on Recommender systems, pages 315–318. ACM, 2010.

[7] A. Bissacco, M. Yang, and S. Soatto. Fast human pose estimation using appearance

https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1080/08839514.2020.1824091
https://doi.org/10.1080/08839514.2020.1824091
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.48550/arXiv.2209.10896
https://doi.org/10.1016/j.jksuci.2021.12.021
https://doi.org/10.1016/j.jksuci.2021.12.021


98 | Bibliography

and motion via multi-dimensional boosting regression. In 2007 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR 2007),
18-23 June 2007, Minneapolis, Minnesota, USA. IEEE Computer Society, 2007.
doi: 10.1109/CVPR.2007.383129. URL https://doi.org/10.1109/CVPR.2007.

383129.

[8] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutierrez. Recommender systems
survey. Knowledge-Based Systems, 46:109–132, 2013.

[9] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive al-
gorithms for collaborative filtering. In Proceedings of the 14th conference on Un-
certainty in artificial intelligence, pages 43–52. Morgan Kaufmann Publishers Inc.,
1998.

[10] L. Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001. doi: 10.1023/A:
1010933404324. URL https://doi.org/10.1023/A:1010933404324.

[11] R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction, 12(4):331–370, 2002.

[12] L. Carminati, G. Lodigiani, P. Maldini, S. Meta, S. Metaj, A. Pisa, A. San-
vito, M. Surricchio, F. B. Pérez Maurera, C. Bernardis, and M. Ferrari Dacrema.
Lightweight and scalable model for tweet engagements predictions in a resource-
constrained environment. In Proceedings of the Recommender Systems Challenge
2021, RecSysChallenge ’21, page 28–33, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450386937. doi: 10.1145/3487572.3487597. URL
https://doi.org/10.1145/3487572.3487597.

[13] B. Cestnik. Estimating probabilities: A crucial task in machine learning. In Pro-
ceedings of the 9th European Conference on Artificial Intelligence, ECAI’90, page
147–149, USA, 1990. Pitman Publishing, Inc.

[14] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, page 785–794, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.2939785. URL
https://doi.org/10.1145/2939672.2939785.

[15] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In B. Kr-
ishnapuram, M. Shah, A. J. Smola, C. C. Aggarwal, D. Shen, and R. Ras-
togi, editors, Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August

https://doi.org/10.1109/CVPR.2007.383129
https://doi.org/10.1109/CVPR.2007.383129
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3487572.3487597
https://doi.org/10.1145/2939672.2939785


| Bibliography 99

13-17, 2016, pages 785–794. ACM, 2016. doi: 10.1145/2939672.2939785. URL
https://doi.org/10.1145/2939672.2939785.

[16] S. Chien, P. Jain, W. Krichene, S. Rendle, S. Song, A. Thakurta, and L. Zhang.
Private alternating least squares: Practical private matrix completion with tighter
rates. In M. Meila and T. Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 1877–1887. PMLR,
2021. URL http://proceedings.mlr.press/v139/chien21a.html.

[17] C. Choudhary, I. Singh, and M. Kumar. SARWAS: deep ensemble learning tech-
niques for sentiment based recommendation system. Expert Syst. Appl., 216:119420,
2023. doi: 10.1016/j.eswa.2022.119420. URL https://doi.org/10.1016/j.eswa.

2022.119420.

[18] de Garis H., I. T., and H. T. Evolutionary robotics, artificial life, and the auton-
omy–intelligence–complexity trilemma. Frontiers in Robotics and AI, 3:18, 2016.

[19] Y. Deldjoo, F. Nazary, A. Ramisa, J. Mcauley, G. Pellegrini, A. Bellogin, and T. D.
Noia. A review of modern fashion recommender systems, 2022.

[20] D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, and B. Yu, edi-
tors. The Boosting Approach to Machine Learning: An Overview, pages 149–171.
Springer New York, New York, NY, 2003. ISBN 978-0-387-21579-2. doi: 10.1007/
978-0-387-21579-2_9. URL https://doi.org/10.1007/978-0-387-21579-2_9.

[21] W. Dong, D. Wang, and Y. Liu. An overview of statistical methods for handling
missing data. Journal of Biopharmaceutical Statistics, 30:430–447, 2020.

[22] A. V. Dorogush, V. Ershov, and A. Gulin. Catboost: gradient boosting with cate-
gorical features support. CoRR, abs/1810.11363, 2018. URL http://arxiv.org/

abs/1810.11363.

[23] M. Ferrari Dacrema, S. Boglio, P. Cremonesi, and D. Jannach. A troubling analysis
of reproducibility and progress in recommender systems research. ACM Trans.
Inf. Syst., 39(2), jan 2021. ISSN 1046-8188. doi: 10.1145/3434185. URL https:

//doi.org/10.1145/3434185.

[24] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997. doi:
10.1006/jcss.1997.1504. URL https://doi.org/10.1006/jcss.1997.1504.

https://doi.org/10.1145/2939672.2939785
http://proceedings.mlr.press/v139/chien21a.html
https://doi.org/10.1016/j.eswa.2022.119420
https://doi.org/10.1016/j.eswa.2022.119420
https://doi.org/10.1007/978-0-387-21579-2_9
http://arxiv.org/abs/1810.11363
http://arxiv.org/abs/1810.11363
https://doi.org/10.1145/3434185
https://doi.org/10.1145/3434185
https://doi.org/10.1006/jcss.1997.1504


100 | Bibliography

[25] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

[26] S. Funk. Netflix update: Try this at home. The ACME Journal, 4(12):1–3, 2006.

[27] C. Giri and Y. Chen. Deep learning for demand forecasting in the fashion and
apparel retail industry. Forecasting, 4(2):565–581, 2022. ISSN 2571-9394. doi:
10.3390/forecast4020031. URL https://www.mdpi.com/2571-9394/4/2/31.

[28] I. J. Goodfellow, Y. Bengio, and A. C. Courville. Deep Learning. Adaptive com-
putation and machine learning. MIT Press, 2016. ISBN 978-0-262-03561-3. URL
http://www.deeplearningbook.org/.

[29] J. W. Graham, A. E. Olchowski, and T. D. Gilreath. How many imputations are re-
ally needed? some practical clarifications of multiple imputation theory. Prevention
Science, 8:206–213, 2007.

[30] A. Gulin, I. Kuralenok, and D. Pavlov. Winning the transfer learning track of
yahoo!’s learning to rank challenge with yetirank. In O. Chapelle, Y. Chang, and
T. Liu, editors, Proceedings of the Yahoo! Learning to Rank Challenge, held at ICML
2010, Haifa, Israel, June 25, 2010, volume 14 of JMLR Proceedings, pages 63–76.
JMLR.org, 2011. URL http://proceedings.mlr.press/v14/gulin11a.html.

[31] L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Trans. Pattern
Anal. Mach. Intell., 12(10):993–1001, 1990. doi: 10.1109/34.58871. URL https:

//doi.org/10.1109/34.58871.

[32] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, 2009.

[33] M. He, M. Thottethodi, and T. N. Vijaykumar. Booster: An accelerator for gradient
boosting decision trees training and inference. In 2022 IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2022, Lyon, France, May 30 - June
3, 2022, pages 1051–1062. IEEE, 2022. doi: 10.1109/IPDPS53621.2022.00106. URL
https://doi.org/10.1109/IPDPS53621.2022.00106.

[34] X. He, L. Liao, H. Zhang, L. Nie, and X. Hu. Fast matrix factorization for online
recommendation with implicit feedback. In Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Information Retrieval,
pages 549–558. ACM, 2016. doi: 10.1145/2911451.2911514.

[35] X. He, L. Liao, H. Zhang, L. Nie, and X. Hu. Nais: Neural attentive item similarity

https://www.mdpi.com/2571-9394/4/2/31
http://www.deeplearningbook.org/
http://proceedings.mlr.press/v14/gulin11a.html
https://doi.org/10.1109/34.58871
https://doi.org/10.1109/34.58871
https://doi.org/10.1109/IPDPS53621.2022.00106


| Bibliography 101

model for recommendation. In Proceedings of the 2018 Conference on Recommender
Systems, pages 35–43. ACM, 2018.

[36] X. He, L. Liao, H. Zhang, L. Nie, and X. Hu. Outer product-based neural collab-
orative filtering. IEEE Transactions on Knowledge and Data Engineering, 30(12):
2259–2272, 2018.

[37] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems (TOIS),
22(1):5–53, 2004.

[38] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collabo-
rative filtering recommender systems. ACM Transactions on Information Systems,
22(1):5–53, 2004.

[39] T. Horváth, R. G. Mantovani, and A. C. P. L. F. de Carvalho. Hyper-parameter
initialization of classification algorithms using dynamic time warping: A perspective
on PCA meta-features. Appl. Soft Comput., 134:109969, 2023. doi: 10.1016/j.asoc.
2022.109969. URL https://doi.org/10.1016/j.asoc.2022.109969.

[40] J. Hron, K. Krauth, M. I. Jordan, and N. Kilbertus. Exploration in two-stage
recommender systems. CoRR, abs/2009.08956, 2020. URL https://arxiv.org/

abs/2009.08956.

[41] J. Hron, K. Krauth, M. I. Jordan, and N. Kilbertus. On component interactions
in two-stage recommender systems. CoRR, abs/2106.14979, 2021. URL https:

//arxiv.org/abs/2106.14979.

[42] Y.-J. Hsu, Y.-W. Liu, Y.-H. Yeh, and H.-H. Lin. Fashion recommendation with
missing data using autoencoder. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 616–622. Association for
Computational Linguistics, 2019. doi: 10.18653/v1/D19-1066.

[43] X. Hu, W. Zhu, and Q. Li. HCRS: A hybrid clothes recommender system based
on user ratings and product features. CoRR, abs/1411.6754, 2014. URL http:

//arxiv.org/abs/1411.6754.

[44] X. Hu, X. He, L. Liao, H. Zhang, and L. Nie. Sampling-based matrix factorization
for recommender systems with implicit feedback. ACM Transactions on Information
Systems (TOIS), 36(4):1–29, 2018. doi: 10.1145/3233700.

[45] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback

https://doi.org/10.1016/j.asoc.2022.109969
https://arxiv.org/abs/2009.08956
https://arxiv.org/abs/2009.08956
https://arxiv.org/abs/2106.14979
https://arxiv.org/abs/2106.14979
http://arxiv.org/abs/1411.6754
http://arxiv.org/abs/1411.6754


102 | Bibliography

datasets. In Proceedings of the Eighth IEEE International Conference on Data
Mining, pages 263–272. IEEE, 2008.

[46] Y. Hu, X. Chen, and Y. Zhang. A hybrid collaborative filtering model with multi-
information sources for fashion recommender systems. IEEE Access, 8:212266–
212277, 2020.

[47] K. Huang, Y. Du, L. Li, J. Shen, and G. Sun. Pairwise-based hierarchical gating
networks for sequential recommendation. In G. Li, H. T. Shen, Y. Yuan, X. Wang,
H. Liu, and X. Zhao, editors, Knowledge Science, Engineering and Management
- 13th International Conference, KSEM 2020, Hangzhou, China, August 28-30,
2020, Proceedings, Part II, volume 12275 of Lecture Notes in Computer Science,
pages 64–75. Springer, 2020. doi: 10.1007/978-3-030-55393-7\_6. URL https:

//doi.org/10.1007/978-3-030-55393-7_6.

[48] T. Ito, I. Nakamura, S. Tanaka, T. Sakai, T. Kato, Y. Fukazawa, and T. Yoshimura.
Deep neural network incorporating CNN and MF for item-based fashion recom-
mendation. In H. Uehara, T. Yamaguchi, and Q. Bai, editors, Knowledge Man-
agement and Acquisition for Intelligent Systems - 17th Pacific Rim Knowledge Ac-
quisition Workshop, PKAW 2020, Yokohama, Japan, January 7-8, 2021, Proceed-
ings, volume 12280 of Lecture Notes in Computer Science, pages 46–57. Springer,
2020. doi: 10.1007/978-3-030-69886-7\_4. URL https://doi.org/10.1007/

978-3-030-69886-7_4.

[49] Jannach, Dietmar, G. de Souza P. Moreira, and E. Oldridge. Why are deep learn-
ing models not consistently winning recommender systems competitions yet? a
position paper. In Proceedings of the Recommender Systems Challenge 2020, Rec-
SysChallenge ’20, page 44–49, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450388351. doi: 10.1145/3415959.3416001. URL
https://doi.org/10.1145/3415959.3416001.

[50] S. Kabbur, X. Ning, and G. Karypis. Fism: Factored item similarity models for top-
n recommender systems. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 659–667, 2013.

[51] B. Kille and A. Lommatzsch. Defining a meaningful baseline for news recom-
mender systems. In Ö. Özgöbek, B. Kille, J. A. Gulla, and A. Lommatzsch,
editors, Proceedings of the 7th International Workshop on News Recommendation
and Analytics in conjunction with 13th ACM Conference on Recommender Sys-
tems, INRA@RecSys 2019, Copenhagen, Denmark, September 20, 2019, volume

https://doi.org/10.1007/978-3-030-55393-7_6
https://doi.org/10.1007/978-3-030-55393-7_6
https://doi.org/10.1007/978-3-030-69886-7_4
https://doi.org/10.1007/978-3-030-69886-7_4
https://doi.org/10.1145/3415959.3416001


| Bibliography 103

2554 of CEUR Workshop Proceedings, pages 24–28. CEUR-WS.org, 2019. URL
https://ceur-ws.org/Vol-2554/paper_04.pdf.

[52] D. Kim, S. Park, and S. Lee. Handling missing data in recommender systems using
feature-aware matrix factorization. Information Sciences, 483:170–183, 2019.

[53] H. Kim, S. Cho, H. Park, J. Hong, and E. Choi. Handling missing data in machine
learning-based fashion recommendation systems. Journal of Fashion Marketing and
Management, 22(1):39–52, 2018. doi: 10.1108/JFMM-05-2017-0048.

[54] C. Koller, G. Kauermann, and X. X. Zhu. Going beyond one-hot encoding in
classification: Can human uncertainty improve model performance? CoRR,
abs/2205.15265, 2022. doi: 10.48550/arXiv.2205.15265. URL https://doi.org/

10.48550/arXiv.2205.15265.

[55] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. ACM SIGKDD Explorations Newsletter, 10(2):4–10, 2008.

[56] Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009. doi: 10.1109/MC.2009.263. URL
https://doi.org/10.1109/MC.2009.263.

[57] A. Kristjánsdóttir. Moving from fashions to a continuous stream of change: teacher
development and IT. In D. Tinsley and D. C. Johnson, editors, Information and
Communications Technologies in School Mathematics, IFIP TC3/WG3.1 Working
Conference on Secondary School Mathematics in the World of Communication Tech-
nology: Learning, Teching, and the Curriculum, 26-31 October 1997, Grenoble,
France, volume 119 of IFIP Conference Proceedings, pages 165–168. Chapman &
Hall, 1997.

[58] R. R. S. R. Kumar, G. A. Rao, and S. Anuradha. Efficient distributed matrix
factorization alternating least squares (EDMFALS) for recommendation systems
using spark. J. Inf. Knowl. Manag., 21(1):2250012:1–2250012:16, 2022. doi: 10.
1142/S0219649222500125. URL https://doi.org/10.1142/S0219649222500125.

[59] M. Kunaver and M. Gregoric. A survey of recommender systems: from traditional
to hybrid. Journal of Information and Organizational Sciences, 41(1), 2017.

[60] K. Lan and Y. Liu. A spatial-statistics based framework of spatial correlation
analysis of retail sales. In International Conference on Computers, Information
Processing and Advanced Education, CIPAE 2022, Ottawa, ON, Canada, August

https://ceur-ws.org/Vol-2554/paper_04.pdf
https://doi.org/10.48550/arXiv.2205.15265
https://doi.org/10.48550/arXiv.2205.15265
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1142/S0219649222500125


104 | Bibliography

26-28, 2022, pages 426–431. IEEE, 2022. doi: 10.1109/CIPAE55637.2022.00095.
URL https://doi.org/10.1109/CIPAE55637.2022.00095.

[61] N. Landia. Building recommender systems for fashion: Industry talk abstract. In
P. Cremonesi, F. Ricci, S. Berkovsky, and A. Tuzhilin, editors, Proceedings of the
Eleventh ACM Conference on Recommender Systems, RecSys 2017, Como, Italy,
August 27-31, 2017, page 343. ACM, 2017. doi: 10.1145/3109859.3109929. URL
https://doi.org/10.1145/3109859.3109929.

[62] S. Lee, S. Lee, Y. Park, and K.-W. Lee. Fashion item recommendation using
deep learning with missing data. In 2019 IEEE International Conference on Big
Data (Big Data), pages 4640–4643. IEEE, 2019. doi: 10.1109/BigData47090.2019.
9006283.

[63] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets, 2nd
Ed. Cambridge University Press, 2014. ISBN 978-1107077232. URL http://www.

mmds.org/.

[64] Y. Lin. Breaking the softmax bottleneck for sequential recommender systems with
dropout and decoupling. CoRR, abs/2110.05409, 2021. URL https://arxiv.org/

abs/2110.05409.

[65] R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data. Wiley, 2nd
edition, 2019.

[66] J. Liu and X. Liu. Unbiased importance sampling-based collaborative filtering.
Neurocomputing, 168:516–527, 2015.

[67] Y. Liu and L. Li. A fashion outfit recommender system based on multi-view and
multi-modal deep learning. Journal of Intelligent Information Systems, 56(3):419–
434, 2021.

[68] Y. Liu, Y. Wang, Y. Li, and G. Wu. Earthquake prediction by RBF neural network
ensemble. In F. Yin, J. Wang, and C. Guo, editors, Advances in Neural Networks -
ISNN 2004, International Symposium on Neural Networks, Dalian, China, August
19-21, 2004, Proceedings, Part II, volume 3174 of Lecture Notes in Computer Sci-
ence, pages 962–969. Springer, 2004. doi: 10.1007/978-3-540-28648-6\_153. URL
https://doi.org/10.1007/978-3-540-28648-6_153.

[69] Y. Liu, Y. Li, and J. Wang. Application of association rules in recommender systems:
A survey. In International Workshop on Data Mining for Business Applications,
pages 219–228. Springer, 2007.

https://doi.org/10.1109/CIPAE55637.2022.00095
https://doi.org/10.1145/3109859.3109929
http://www.mmds.org/
http://www.mmds.org/
https://arxiv.org/abs/2110.05409
https://arxiv.org/abs/2110.05409
https://doi.org/10.1007/978-3-540-28648-6_153


| Bibliography 105

[70] Y. Liu, W. Chen, and W. Chen. Semi-supervised feature engineering for sentiment
analysis. In 2018 International Joint Conference on Neural Networks (IJCNN),
pages 1–7. IEEE, 2018.

[71] Y. Liu, W. Li, Y. Li, Y. Liu, and L. Li. Fashion outfit recommendation based on
multi-source data with convolutional neural network. Information Sciences, 518:
19–33, 2020.

[72] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin trans-
former: Hierarchical vision transformer using shifted windows. In 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada,
October 10-17, 2021, pages 9992–10002. IEEE, 2021. doi: 10.1109/ICCV48922.2021.
00986. URL https://doi.org/10.1109/ICCV48922.2021.00986.

[73] X. Long and J. Nasiry. Sustainability in the fast fashion industry. Manuf. Serv.
Oper. Manag., 24(3):1276–1293, 2022. doi: 10.1287/msom.2021.1054. URL https:

//doi.org/10.1287/msom.2021.1054.

[74] P. Lops, M. De Gemmis, and G. Semeraro. Content-based recommender systems:
State of the art and trends. In Recommender systems handbook, pages 73–105, 2011.

[75] H. Lu, L. Li, A. Swami, and J.-T. Chen. Top-n recommendation via matrix comple-
tion. In Proceedings of the 2012 SIAM International Conference on Data Mining,
pages 721–732. SIAM, 2012.

[76] C. Ma, P. Kang, and X. Liu. Hierarchical gating networks for sequential rec-
ommendation. In A. Teredesai, V. Kumar, Y. Li, R. Rosales, E. Terzi, and
G. Karypis, editors, Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA,
August 4-8, 2019, pages 825–833. ACM, 2019. doi: 10.1145/3292500.3330984. URL
https://doi.org/10.1145/3292500.3330984.

[77] H. Ma, D. Zhou, C. Liu, and M. R. Lyu. Sorec: Social recommendation using
probabilistic matrix factorization. Proceedings of the 17th ACM conference on In-
formation and knowledge management, pages 931–940, 2008.

[78] J. Ma, Z. Zhao, X. Yi, J. Chen, L. Hong, and E. H. Chi. Modeling task rela-
tionships in multi-task learning with multi-gate mixture-of-experts. In Y. Guo and
F. Farooq, editors, Proceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August
19-23, 2018, pages 1930–1939. ACM, 2018. doi: 10.1145/3219819.3220007. URL
https://doi.org/10.1145/3219819.3220007.

https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1287/msom.2021.1054
https://doi.org/10.1287/msom.2021.1054
https://doi.org/10.1145/3292500.3330984
https://doi.org/10.1145/3219819.3220007


106 | Bibliography

[79] J. Ma, Z. Zhao, X. Yi, J. Yang, M. Chen, J. Tang, L. Hong, and E. H. Chi. Off-
policy learning in two-stage recommender systems. In Y. Huang, I. King, T. Liu, and
M. van Steen, editors, WWW ’20: The Web Conference 2020, Taipei, Taiwan, April
20-24, 2020, pages 463–473. ACM / IW3C2, 2020. doi: 10.1145/3366423.3380130.
URL https://doi.org/10.1145/3366423.3380130.

[80] Q. Ma, R. Chen, J. Tang, and Y. Ouyang. Stratified sampling for implicit feedback
and matrix factorization. In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, pages 987–996. ACM, 2018. doi: 10.
1145/3269206.3271715.

[81] C. D. Manning, P. Raghavan, and H. Schutze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

[82] S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough: how
accuracy metrics have hurt recommender systems. In CHI ’06 Extended Abstracts
on Human Factors in Computing Systems, pages 1097–1101. ACM, 2006.

[83] H. Mohanty, S. Champati, B. L. P. Barik, and A. Panda. Cluster quality analysis
based on svd, pca-based k-means and NMF techniques: an online survey data. Int.
J. Reason. based Intell. Syst., 15(1):86–96, 2023. doi: 10.1504/IJRIS.2023.10050583.
URL https://doi.org/10.1504/IJRIS.2023.10050583.

[84] D. Nguyen, N. Nguyen, D. Le, and B. Nguyen. A survey on feature engineering for
machine learning. Expert Systems with Applications, 115:491–521, 2019.

[85] M. Nishi and H. Hayashi. Analyzing the correlation between tweets and sales for
product brands. In T. Matsuo, K. Takamatsu, Y. Ono, and S. Hirokawa, editors,
9th International Congress on Advanced Applied Informatics, IIAI-AAI 2020, Ki-
takyushu, Japan, September 1-15, 2020, pages 481–486. IEEE, 2020. doi: 10.1109/
IIAI-AAI50415.2020.00102. URL https://doi.org/10.1109/IIAI-AAI50415.

2020.00102.

[86] L. Paleti, P. R. Krishna, and J. V. R. Murthy. Approaching the cold-start
problem using community detection based alternating least square factorization
in recommendation systems. Evol. Intell., 14(2):835–849, 2021. doi: 10.1007/
s12065-020-00464-y. URL https://doi.org/10.1007/s12065-020-00464-y.

[87] R. Pan and L. Chen. A survey of collaborative filtering for recommender systems
based on bayesian personalized ranking. IEEE Transactions on Knowledge and Data
Engineering, 30(4):601–615, 2018. doi: 10.1109/TKDE.2018.2795081.

https://doi.org/10.1145/3366423.3380130
https://doi.org/10.1504/IJRIS.2023.10050583
https://doi.org/10.1109/IIAI-AAI50415.2020.00102
https://doi.org/10.1109/IIAI-AAI50415.2020.00102
https://doi.org/10.1007/s12065-020-00464-y


| Bibliography 107

[88] M. J. Pazzani and D. Billsus. Content-based recommendation systems. The adaptive
web, pages 325–341, 2007.

[89] D. M. Powers. Evaluation: from precision, recall and f-measure to roc, informedness,
markedness and correlation. Journal of Machine Learning Technologies, 2(1):37–63,
2011.

[90] M. R. Preston and B. Erik. Hierarchical bayesian modeling of consumer choice with
limited information. Marketing Science, 31(2):321–340, 2012.

[91] L. O. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin. Cat-
boost: unbiased boosting with categorical features. In S. Bengio, H. M. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Conference on Neural In-
formation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 6639–6649, 2018. URL https://proceedings.neurips.cc/paper/

2018/hash/14491b756b3a51daac41c24863285549-Abstract.html.

[92] J. Qu, N. Hiruta, K. Terai, H. Nosato, M. Murakawa, and H. Sakanashi. Enhanced
deep learning for pathology image classification: A knowledge transfer based step-
wise fine-tuning scheme. In A. Tomczyk, A. L. N. Fred, and H. Gamboa, edi-
tors, Proceedings of the 12th International Joint Conference on Biomedical Engi-
neering Systems and Technologies (BIOSTEC 2019) - Volume 2: BIOIMAGING,
Prague, Czech Republic, February 22-24, 2019, pages 92–99. SciTePress, 2019. doi:
10.5220/0007356100920099. URL https://doi.org/10.5220/0007356100920099.

[93] M. Rac, M. Kompan, and M. Bieliková. Preference dynamics and behavioral traits
in fashion domain. In 14th International Workshop on Semantic and Social Media
Adaptation and Personalization, SMAP 2019, Larnaca, Cyprus, June 9-10, 2019,
pages 1–5. IEEE, 2019. doi: 10.1109/SMAP.2019.8864802. URL https://doi.

org/10.1109/SMAP.2019.8864802.

[94] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, pages 452–461. AUAI Press,
2009. doi: 10.5555/1756006.1756067. URL https://dl.acm.org/doi/10.5555/

1756006.1756067.

[95] S. Rendle, W. Krichene, L. Zhang, and Y. Koren. Revisiting the performance of ials
on item recommendation benchmarks. In J. Golbeck, F. M. Harper, V. Murdock,
M. D. Ekstrand, B. Shapira, J. Basilico, K. T. Lundgaard, and E. Oldridge, editors,

https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://doi.org/10.5220/0007356100920099
https://doi.org/10.1109/SMAP.2019.8864802
https://doi.org/10.1109/SMAP.2019.8864802
https://dl.acm.org/doi/10.5555/1756006.1756067
https://dl.acm.org/doi/10.5555/1756006.1756067


108 | Bibliography

RecSys ’22: Sixteenth ACM Conference on Recommender Systems, Seattle, WA,
USA, September 18 - 23, 2022, pages 427–435. ACM, 2022. doi: 10.1145/3523227.
3548486. URL https://doi.org/10.1145/3523227.3548486.

[96] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Recommender
systems. Communications of the ACM, 40(3):56–58, 1997.

[97] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor. An introduction to recommender
systems. In Recommender Systems Handbook, pages 1–35. Springer, 2011.

[98] D. B. Rubin. Inference and missing data. Biometrika, 63:581–592, 1976.

[99] D. B. Rubin. Multiple imputation for nonresponse in surveys. Wiley Series in
Probability and Mathematical Statistics, 1987.

[100] C. S., H. S., Z. W., and W. X. Ensemble methods for time series forecasting: A
survey. Information Fusion, 66:86–109, 2021. doi: https://doi.org/10.48550/arXiv.
2104.11475.

[101] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th International Conference
on World Wide Web, pages 285–295. ACM, 2001.

[102] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th international conference on
World Wide Web, pages 285–295. ACM, 2001.

[103] J. L. Schafer. Multiple imputation: a primer. Statistical Methods in Medical Re-
search, 7:3–15, 1998.

[104] L. Shao, S. Li, and S. Liu. A unified framework for missing data imputation in
collaborative filtering. Information Fusion, 76:213–224, 2022.

[105] U. Shardanand and P. Maes. Social information filtering: algorithms for automating
word of mouth. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 210–217. ACM, 1995.

[106] X. Shen, H. Liu, W. Wang, and M. Jiang. Fashion recommender system based on
improved filling and collaborative filtering. IEEE Access, 9:12090–12101, 2021.

[107] D. Shiung and W. Chin. Designing high-performance green filters using down-
sampling techniques. In 2019 International Symposium on Intelligent Signal Pro-
cessing and Communication Systems, ISPACS 2019, Taipei, Taiwan, December 3-

https://doi.org/10.1145/3523227.3548486


| Bibliography 109

6, 2019, pages 1–2. IEEE, 2019. doi: 10.1109/ISPACS48206.2019.8986383. URL
https://doi.org/10.1109/ISPACS48206.2019.8986383.

[108] C.-F. Tsai and C. Hung. Cluster ensembles in collaborative filtering recommen-
dation. Applied Soft Computing, 12(4):1417–1425, 2012. ISSN 1568-4946. doi:
https://doi.org/10.1016/j.asoc.2011.11.016. URL https://www.sciencedirect.

com/science/article/pii/S1568494611004583.

[109] R. Verachtert, J. Craps, L. Michiels, and B. Goethals. The impact of a pop-
ularity punishing hyperparameter on itemknn recommendation performance. In
J. Kamps, L. Goeuriot, F. Crestani, M. Maistro, H. Joho, B. Davis, C. Gurrin,
U. Kruschwitz, and A. Caputo, editors, Advances in Information Retrieval - 45th
European Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April
2-6, 2023, Proceedings, Part II, volume 13981 of Lecture Notes in Computer Sci-
ence, pages 646–654. Springer, 2023. doi: 10.1007/978-3-031-28238-6\_56. URL
https://doi.org/10.1007/978-3-031-28238-6_56.

[110] L. Wang and X. Ma. A hybrid recommendation algorithm for fashion e-commerce
based on deep learning and collaborative filtering. Journal of Computational Sci-
ence, 57:101492, 2022.

[111] R. Wang, R. Shivanna, D. Z. Cheng, S. Jain, D. Lin, L. Hong, and E. H. Chi. DCN
V2: improved deep & cross network and practical lessons for web-scale learning to
rank systems. In J. Leskovec, M. Grobelnik, M. Najork, J. Tang, and L. Zia, editors,
WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April
19-23, 2021, pages 1785–1797. ACM / IW3C2, 2021. doi: 10.1145/3442381.3450078.
URL https://doi.org/10.1145/3442381.3450078.

[112] W. Wang, G. Chen, H. Wang, Y. Han, and Y. Chen. Multilingual sentence trans-
former as A multilingual word aligner. In Y. Goldberg, Z. Kozareva, and Y. Zhang,
editors, Findings of the Association for Computational Linguistics: EMNLP 2022,
Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages 2952–2963. Asso-
ciation for Computational Linguistics, 2022. URL https://aclanthology.org/

2022.findings-emnlp.215.

[113] W. Wang, G. Chen, H. Wang, Y. Han, and Y. Chen. Multilingual sentence trans-
former as A multilingual word aligner. CoRR, abs/2301.12140, 2023. doi: 10.48550/
arXiv.2301.12140. URL https://doi.org/10.48550/arXiv.2301.12140.

[114] J. Wu, X. Wang, X. Gao, J. Chen, H. Fu, T. Qiu, and X. He. On the effectiveness

https://doi.org/10.1109/ISPACS48206.2019.8986383
https://www.sciencedirect.com/science/article/pii/S1568494611004583
https://www.sciencedirect.com/science/article/pii/S1568494611004583
https://doi.org/10.1007/978-3-031-28238-6_56
https://doi.org/10.1145/3442381.3450078
https://aclanthology.org/2022.findings-emnlp.215
https://aclanthology.org/2022.findings-emnlp.215
https://doi.org/10.48550/arXiv.2301.12140


110 | Bibliography

of sampled softmax loss for item recommendation. CoRR, abs/2201.02327, 2022.
URL https://arxiv.org/abs/2201.02327.

[115] S. Wu, H. Li, Z. Zhang, Z. Wang, and Y. Chen. P3alpha: Large-scale nonlinear
personalized ranking with autoencoder for content-based retrieval. In Proceedings
of the 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 165–174. ACM, 2019.

[116] Z. Yang, X. Peng, and J. Li. Outfit recommendation via attentional graph convo-
lutional network. IEEE Access, 9:51851–51862, 2021.

[117] K. Yehuda, B. Robert, and V. Chris. Collaborative filtering with temporal dynamics.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 447–456. ACM, 2010.

[118] Z. Yuchen, S. Damien, and L. Hongyan. SLIM: Sparse linear methods for top-n
recommender systems. In Proceedings of the 7th ACM Conference on Recommender
Systems, pages 97–104, 2013. doi: 10.1145/2507157.2507163.

[119] K. Zhang, Z. Wang, J. Liang, and X. Zhao. A bayesian matrix factorization model
for dynamic user embedding in recommender system. Frontiers Comput. Sci., 16(5):
165346, 2022. doi: 10.1007/s11704-022-1213-7. URL https://doi.org/10.1007/

s11704-022-1213-7.

[120] W. Zhang, S. Li, and S. Liu. Combining implicit and explicit feedback for fashion
outfit recommendation. Neurocomputing, 484:123–132, 2022.

[121] X. Zhang, L. Wang, and J. Qin. A new regression imputation method for missing
data in categorical variables. Computational Statistics and Data Analysis, 101:1–12,
2016.

[122] Y. Zhang, F. Feng, C. Wang, X. He, M. Wang, Y. Li, and Y. Zhang. How to retrain
recommender system? A sequential meta-learning method. CoRR, abs/2005.13258,
2020. URL https://arxiv.org/abs/2005.13258.

[123] Y. Zhao, S. Chen, Y. Lin, and J. Han. Handling missing information in fashion outfit
recommendation via auxiliary feature-based collaborative filtering. Neurocomputing,
479:66–77, 2022.

[124] A. Zheng and A. Casari. Feature engineering for machine learning: Principles and
techniques. O’Reilly Media, Sebastopol, CA, 2018.

https://arxiv.org/abs/2201.02327
https://doi.org/10.1007/s11704-022-1213-7
https://doi.org/10.1007/s11704-022-1213-7
https://arxiv.org/abs/2005.13258


6| BIBLIOGRAPHY 111

[125] Z.-H. Zhou. Ensemble Methods: Foundations and Algorithms. Chapman and Hal-
l/CRC, 1st edition, 2012. ISBN 1439830037.





113

A| Recommendation Techniques

A.1. Funk SVD

Set Nk to 0; X and Y are empty matrices (please remember that at any time

X isNu xNk andYisNk *Ni)

Loop:

Increment Nk

Add a column to the first matrix, filled with random values Add a row

to the second matrix, filled with random values Apply ALS for the

current value of Nk

Until the process converges (falling below a certain error threshold) or

we reach the desired Nk

A.2. ALS

The two matrices (X and Y) are initialized at random, namely, they are

filled with random values

Loop:

We fix the newest matrix X, and we learn matrix Y (optimizing its loss

function) and store it

We fix the newly obtained matrix Y, and we learn matrix X (optimizing

its loss function) and store it

Until the process converges (X and Y do not vary too much, namely

their variation is comprised in an error threshold)

#immagini fix and learn

A.3. List combination

Order the set of lists from the most performant to the least performant
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one. Loop:

For each list in the ordered set of lists:

Pick the first untaken item

If it is not present in the final list yet:

Add it to the final list

Remove it from the original list

Until the final list has N items

A.4. Rel(k) examples

Example 1:
If gt=[a,b,c,d,e] and pred=[b,c,a,d,e] then for rel@1 we only take the first recom-
mendation from pred, i.e., b and check if it’s relevant, i.e., present in gt. A.1

rel(k) = 1.0 (A.1)

Example 2:
If gt=[a,b,c,d,e] and pred=[f,b,c,d,e] then for rel@1 we only take the first recommen-
dation from pred, i.e., f and check if it’s relevant, i.e., present in gt. A.2

rel(k) = 0.0 (A.2)

Example 3:
If gt=[a,b,c,d,e] and pred=[a,f,e,g,b] then for rel@2 we only take the second recom-
mendation from pred, i.e., f and check if it’s relevant, i.e., present in gt. A.3

rel(k) = 0.0 (A.3)

A.5. Precision@k examples

Example 1:
If gt=[a,b,c,d,e] and pred=[b,c,a,d,e] then for P@1 we only take the first recommen-
dation from pred, i.e., b and find it’s precision with the gt. A.4

P =
|{gt} \ {pred[: 1]}|

|{pred[: 1]}| =
1

1
(A.4)
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Example 2:
If gt=[a,b,c,d,e] and pred=[f,b,c,d,e] then for P@1 we only take the first recommen-
dation from pred, i.e., f and find it’s precision with the gt. A.5

P =
|{gt} \ {pred[: 1]}|

|{pred[: 1]}| =
0

1
(A.5)

Example 3:
If gt=[a,b,c,d,e] and pred=[a,f,e,g,b] then for P@2 we only take the first recommen-
dation from pred, i.e., [a,f ] and find it’s precision with the gt. A.6

P =
|{gt} \ {pred[: 1]}|

|{pred[: 1]}| =
1

2
(A.6)

A.6. Two Tower MMoE

This section provides a graphical overview of the architecture of the Two Tower Multi-
Modal Multi-Task Output Embedding. The fig. A.1 shows a trainable neural network used
to get the essence of all the information of the item that is relevant to recommendation.
The fig. A.2 shows a trainable neural network used to take all the information about
the user and make a fixed-size vector from it. In the end, as fig. A.3 shows, the two
embeddings are meshed together using a sampled softmax (see section 2.5.1). If the value
is high then it means that the item is a good match for the user.

A.7. XGBoost: A Scalable Tree Boosting System

XGBoost is an open-source machine learning system that is scalable for tree boosting.
Its impact has been widely acknowledged in several machine learning and data mining
challenges. One of the most notable competitions is hosted by Kaggle, a machine-learning
competition site. Of the 29 challenge-winning solutions, three were published on Kaggle’s
blog in 2015, and 17 used XGBoost. Out of these solutions, eight solely used XGBoost to
train their models, while most others combined XGBoost with neural nets in ensembles.
In comparison, the second most popular method, deep neural nets, was only used in 11
solutions. XGBoost’s success was further demonstrated in KDDCup 2015, where every
winning team in the top 10 used XGBoost [15]. Additionally, the winning teams reported
that ensemble methods only slightly outperform a well-configured XGBoost [14].

It achieves state-of-the-art performance on a broad range of problems. These winning
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Figure A.1: Item embedding is the process of representing the articles as fixed-length
vectors of numbers [5] to allow the model to understand the relationships between different
items and to make recommendations based on similarities. In this case, the embedding
layer makes use of some of the available attributes e.g., age, article id, and postal code.
This neural network learns to get the essence of all the information of the item that is
relevant to recommendation.

solutions include predicting store sales, classifying high energy physics events, classifying
web text, forecasting customer behavior, detecting motion, predicting ad click-through
rates, classifying malware, categorizing products, predicting hazard risks, and forecasting
dropout rates for massive online courses. Although domain-specific data analysis and
feature engineering are essential components of these solutions, the widespread adoption
of XGBoost as the consensus choice of learners indicates the significance and impact of
tree boosting.

The most critical factor in XGBoost’s success is its scalability across all scenarios. It runs
over ten times faster than existing popular solutions on a single machine and can scale
to billions of examples in memory-limited or distributed settings. XGBoost’s scalability
is due to several important algorithmic and system optimizations, including a novel tree
learning algorithm for handling sparse data, a weighted quantile sketch procedure that
is theoretically justified, and enables the handling of instance weights in approximate
tree learning (see fig. A.4). Parallel and distributed computing make learning faster,
enabling quicker model exploration. More importantly, XGBoost leverages out-of-core
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Figure A.2: User embedding is the process of representing the users as fixed-length vectors
of numbers [119] to allow the model to understand users’ interests and make personalized
recommendations. In this case, the embedding layer makes use of some of the available
attributes e.g., age and user history. This neural network (encoder) learns to take all the
information about the user and make a fixed-size vector from it.

computation, enabling data scientists to process hundreds of millions of examples on a
desktop. Combining these techniques makes an end-to-end system that scales to even
larger data with the least amount of cluster resources, which is even more exciting.

As demonstrated in fig. A.5, decision trees generate a model that predicts the label by
evaluating a tree of true/false feature questions in an if-then-else format. The minimum
number of questions required to assess the probability of making a correct decision is also
estimated. Decision trees can be used for classification to predict a category or regression
to predict a continuous numeric value.

A Gradient Boosting Decision Tree (GBDT) is a decision tree ensemble learning algo-
rithm similar to the random forest, for classification and regression. Ensemble learning
algorithms combine multiple machine learning algorithms to obtain a better model. Both
random forest and GBDT build a model consisting of multiple decision trees. The differ-
ence is in how the trees are built and combined.
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Figure A.3: The two ’towers’/encoders of fig. A.1 and fig. A.2 are joined together. Thus
each pair of users and item pass through these towers to get a fixed-size user embedding
and an item embedding of the same size. Then it computes a sampled softmax (see
section 2.5.1) of these two vectors. If the value is high then it means that the item is a
good match for the user.

Figure A.6: Random forest uses a technique called bagging to build full decision trees in
parallel from random bootstrap samples of the data set. The final prediction is an average
of all of the decision tree predictions.

The concept of "gradient boosting" arises from the notion of improving a single weak
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Figure A.4: An XGBoost model is built giving a labeled features dataset as input. Then
the model is able to predict the label for unseen data. The label can be a score in the
case of the regression model or a class in the case on a classifier

Figure A.5: This is a sample representation of a boosting tree, where at each node, based
on some condition, the model chooses which path to follow, until it reaches a leaf.

model by combining it with several other weak models to form a collectively strong model.
Gradient boosting is an extension of boosting that formalizes the process of additively
generating weak models as a gradient descent algorithm over an objective function. The
goal of gradient boosting is to minimize errors by setting targeted outcomes for the next
model. These outcomes are based on the gradient of the error (thus the name gradient
boosting) with respect to the prediction. Gradient Boosted Decision Trees (GBDTs) it-
eratively train an ensemble of shallow decision trees. Each iteration employs the error
residuals of the previous model to fit the next model. The final prediction is a weighted
sum of all tree predictions. While random forest "bagging" reduces the variance and
overfitting, GBDT "boosting" reduces the bias and under-fitting. XGBoost is a highly
accurate and scalable implementation of gradient boosting that maximizes the computa-
tional power of boosted tree algorithms. It is built to increase machine learning model
accuracy and computational speed. Unlike GBDT, XGBoost builds trees in parallel, uti-
lizing a level-wise strategy that scans across gradient values and utilizes these partial sums



120 A| Recommendation Techniques

to evaluate the quality of splits at every possible split in the training set.1

The list of benefits and attributes of XGBoost is extensive, and includes the following:

• A large and growing list of data scientists globally that are actively contributing to
XGBoost open source development.

• Usage on a wide range of applications, including solving problems in regression,
classification, ranking, and user-defined prediction challenges.

• A library that’s highly portable and currently runs on OS X, Windows, and Linux
platforms.

• Cloud integration that supports AWS, Azure, Yarn clusters, and other ecosystems

• Active production use in multiple organizations across various vertical market areas

• A library that was built from the ground up to be efficient, flexible, and portable

A.8. LightGBM

LightGBM is a gradient boosting framework that uses tree-based learning algorithm.
LightGBM grows tree vertically while other algorithm grows trees horizontally. This
means that trees generated by this algorithm grow leaf-wise A.7 while the ones generated
by other algorithm grow level-wise A.8

Figure A.7: Trees generated by LightGBM grow leaf-wise.

1XGBoost Website https://www.nvidia.com/en-us/glossary/data-science/xgboost/

https://www.nvidia.com/en-us/glossary/data-science/xgboost/
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Figure A.8: Trees generated by other gradient boosting trees algorithm grow level-wise.

LightGBM is prefixed as Light because of its high speed. LightGBM can handle the large
size of data and takes lower memory to run. Another reason why LightGBM is popular
is that it focuses on the accuracy of results. LGBM also supports GPU learning and thus
data scientists are widely using LGBM for data science application development. But it
can also overfit when used with small datasets, that is why the advice is to use it only
with a very large dataset.

Implement a model with LightGBM is easy thanks to the provided API with the library,
what is difficult is tuning the model, since the library has a lot of control parameters, for
example:

• max_depth: It describes the maximum depth of the tree. This parameter is used
to handle model overfitting. Any time you feel that your model is over-fitted, my
first advice is to lower max_depth.

• min_data_in_leaf : It is the minimum number of records a leaf may have. The
default value is 20, the optimum value. It is also used to deal with overfitting

• feature_fraction: Used when your boosting(discussed later) is random forest. 0.8
feature fraction means that LightGBM selects 80% of parameters randomly in each
iteration for building trees.

• bagging_fraction: specifies the fraction of data to be used for each iteration and
is generally used to speed up the training and avoid overfitting.

• early_stopping_round: This parameter can help you speed up your analysis.
The model stops training if one metric of one validation data does not improve in
the last early_stopping_round rounds. This reduces excessive iterations.

• lambda: lambda specifies regularization. The typical value ranges from 0 to 1.

• min_gain_to_split: This parameter describes the minimum gain to make a split.
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It can be used to control the number of useful splits in trees.

• max_cat_group: When the number of categories is large, finding the split point
on it is easily over-fitting. So LightGBM merges them into ‘max_cat_group’ groups
and finds the split points on the group boundaries, default:64

• application: This is the most important parameter and specifies the application
of your model, whether it is a regression problem or a classification problem. Light-
GBM considers the model as a regression model by default.

– regression: for regression

– binary: for binary classification

– multiclass: for multiclass classification problem

• boosting: defines the type of algorithm you want to run, default=gdbt

– gbdt: traditional Gradient Boosting Decision Tree

– rf: random forest

– dart: Dropouts meet Multiple Additive Regression Trees

– goss: Gradient-based One-Side Sampling

• metric: again one of the important parameters as it specifies loss for model building.
Below are few general losses for regression and classification.

– mae: mean absolute error

– mse: mean squared error

– binary_logloss: loss for binary classification

– multi_logloss: loss for multi-classification

A.9. Catboost

Most popular implementations of gradient boosting use decision trees as base predictors.
It is convenient to use decision trees for numerical features, but, in practice, many datasets
include categorical features, which are also important for prediction. A categorical feature
is a feature having a discrete set of values that are not necessarily comparable with
each other (e.g., the user ID or name of a city). The most commonly used practice
for dealing with categorical features in gradient boosting is converting them to numbers
before training.
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Catboost instead is capable of handling those categorical features, without converting
them into numerical features, taking advantage of dealing with them during training as
opposed to processing time. Another advantage of the algorithm is that it uses a new
schema for calculating leaf values when selecting the tree structure, which helps to reduce
overfitting.

It also outperforms the existing state-of-the-art implementations of gradient-boosted de-
cision trees (GBDTs) XGBoost and LightGBM, on a diverse set of popular tasks. 2 3

CatBoost has both CPU and GPU implementations. The GPU implementation allows
for much faster training and is faster than both state-of-the-art open-source GBDT GPU
implementations, XGBoost and LightGBM, on ensembles of similar sizes. The library
also has a fast CPU scoring implementation, which outperforms XGBoost and LightGBM
implementations on ensembles of similar sizes.

Categorical features in Catboost have a discrete set of values called categories which
are not necessarily comparable with each other; thus, such features cannot be used in
binary decision trees directly. A common practice for dealing with categorical features is
converting them to numbers at the processing time, i.e., each category for each example
is substituted with one or several numerical values.

The most widely used technique which is usually applied to low-cardinality categorical
features is one-hot encoding: the original feature is removed and a new binary variable is
added for each category [14]. One-hot encoding can be done during the processing phase
or during training, the latter can be implemented more efficiently in terms of training
time and is implemented in CatBoost.

Another way to deal with categorical features is to compute some statistics using the
label values of the examples. Namely, assume that we are given a dataset of observations
D = (Xi, Yi)i=1..n where Xi = (xi, 1, ..., xi,m) is a vector of m features, some numerical,
some categorical, and Yi 2 R is a label value. One possible way is to substitute the
category with the average label value on the whole train dataset.

We can than substitute Xi,k with the following equation A.7

Pn
j=1[xj,k = xi,k · Yj]Pn

j=1[xj,k = xi,k]
(A.7)

2XGBoost Doc https://xgboost.readthedocs.io/en/stable/

3LightGBM Doc https://lightgbm.readthedocs.io/en/v3.3.2/

https://xgboost.readthedocs.io/en/stable/
https://lightgbm.readthedocs.io/en/v3.3.2/
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The symbol [·] represent the Iverson brackets. 4 In particular it follows that rule: [xj,k =

xi,k] is equal to 1 if xj,k = xi,k, 0 otherwise.

This procedure leads to overfitting. For example, if there is a single example from the
category xi,k in the whole dataset then the new numeric feature value is equal to the label
value on this example. A straightforward way to overcome the problem is to partition the
dataset into two parts and use one part only to calculate the statistics and the second
part to perform training. This reduces overfitting but it also reduces the amount of data
used to train the model and to calculate the statistics.

Catboost uses a more efficient strategy to reduce overfitting using the whole dataset for
training. It performs a random permutation of the dataset and, for each example, it
computes average label value for the example with the same category value placed before
the given one in the permutation.

Let � = (�1, ..., �n) be the permutation, then x�p,k is substituted with the equation A.8

Pp�1
j=1[x�j ,k = x�p,k]Y�j + a · P
Pp�1

j=1[x�j ,k = x�p,k] + a
(A.8)

In the equation, we also add a prior value P and a parameter a > 0, which is the weight
of the prior. Adding prior is a good practice and it helps to reduce the noise obtained
from low-frequency categories [13]. For regression tasks standard technique for calculating
prior is to take the average label value in the dataset. For binary classification tasks, a
prior is usually a prior probability of encountering a positive class. It is also efficient to
use several permutations. However, one can see that a straightforward usage of statistics
computed for several permutations would lead to over-fitting. As we discuss in the next
section, CatBoost uses a novel schema for calculating leaf values which allows using several
permutations without this problem. [22]

4Iverson brackets https://oeis.org/wiki/Iverson_bracket

https://oeis.org/wiki/Iverson_bracket
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List of Symbols

Variable Description

MAP@12 Mean Average Precision at 12

MAP Mean Average Precision

P Positive Predictive Rate

P (k) Precision at k

Rel(k) Relevance at k

rui Rating of user u to item i

C Shrink term

sji Items similarity

KNN k-Nearest Neighbours

CF Collaborative filtering

URM User Rating Matrix

ICM Item Content Matrix

b Bias

MAE Mean Average Error

MSE Mean Square Error

AUC Area Under the Curve

SLIM Sparse Linear Method

MAR Missing as Random

MAN Missing as Negative

ALS Alternating Least Square
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