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Abstract
In this thesis work we demonstrate a simple approach to generate amplified few-optical-
cycles pulses starting from a mode-locked Yb:CALGO femtosecond laser emitting at
1 µm for broadband mid-infrared generation. The initial pulses characterized by a
duration of 70 fs and an average power of 45 mW are amplified by an Yb-based fiber
amplifier and optically compressed by a pair of diffraction gratings. The output pulses
characterized by a duration of 80 fs and an average power of 5 W are then coupled
within a photonic crystal fiber producing 100 nm spectral broadening. If these are
optically compressed and focused in an orientation-patterned gallium phosphide (OP-
GaP) crystal, we can generate by means of intrapulse difference frequency generation
a radiation spanning the mid-infrared range.
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Abstract in lingua italiana
In questo lavoro di tesi dimostriamo un semplice approccio per la generazione di impulsi
amplificati a pochi cicli ottici utili per produrre una radiazione a larga banda nel medio
infrarosso partendo da un mode-locked Yb:CALGO laser che emette ad 1 µm. Gli
impulsi iniziali, caratterizzati da una durata di 70 fs e una potenza media di 45 mW,
sono amplificati da un amplificatore in fibra drogata Itterbio e compressi otticamente
per mezzo di una coppia di reticoli di diffrazione. Gli impulsi in uscita, caratterizzati
da una durata di 80 fs e una potenza media di 5 W, sono poi accoppiati in una fibra
a cristallo fotonico producendo un allargamento spettrale pari a 100 nm. Se questi
sono poi compressi otticamente e focalizzati in un cristallo di fosfuro di gallio a disegno
orientato, possiamo produrre per mezzo di una differenza di frequenza tra le componenti
spettrali degli impulsi una radiazione che si estende nella regione spettrale del medio
infrarosso.
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Introduction
The term "broadband mid-infrared light" refers to a region of the electromagnetic spec-
trum spanning 2-20 µm (500-5000 cm−1) crucial for a large number of applications.
The practical interest of this interval comes from the presence of the fundamental vi-
brational modes of most of the molecules that makes mid-infrared a versatile tool for
spectroscopy in the molecular fingerprint (500-1800 cm−1). The non-invasive and label-
free optical measurements provided are useful in diagnosis of diseases via biomarkers in
human breath [1], contamination control in manufacturing processes [2], detection of
poisonous gasses or explosives [3], environmental monitoring [4], and more [5]. Apart
from spectroscopic applications, broadband mid-infrared radiation represents an ideal
prerequisite for hyperspectral imaging [6], and for time-domain coherent control of vi-
brational dynamic [7][8].
In last two decades, the large number of perspectives in terms of applications produces
an intense research activity on mid-infrared sources. Despite the great effort, covering
this spectral region with conventional laser technologies remains a challenge. Over the
years, many light sources demonstrated to be able to emit in this spectral range: quan-
tum cascade lasers [9], optical parametric oscillators [10], supercontinuum sources [11],
optical parametric amplifiers [12], and sources based on difference frequency generation
(DFG) [13]. However, they faced a lot of technical problems in terms of brightness,
spectrum flatness, repetition rate, robustness, and spectral bandwidth [14]. Among
them the most attractive are the sources based on DFG for various reasons. First of
all, the use of a frequency-conversion nonlinear process allows to adopt as principal
source a mode-locked laser emitting in the near-infrared which is a well-established
technology employed in many fields. Then, difference-frequency generation is simple
and robust and it can produce high average power radiation covering the full fingerprint
region. Mode-locked oscillators combined with DFG allow very precise applications
such as dual-comb spectroscopy [15], time-stretch spectroscopy [16], and field-resolved
spectroscopy [17].
This thesis work deals with the design and the characterization of a system able to
produce amplified few-optical-cycles pulses starting from a mode-locked Yb:CALGO
femtosecond laser emitting at 1 µm for broadband mid-infrared generation. The initial
pulses are characterized by a duration of 70 fs and an average power of 45 mW. In
terms of spectral properties, their spectrum is centred around 1050 nm and it shows a
full width at half maximum of 15 nm. By combining an Ytterbium-base fiber amplifier
and an optical compressor made of a pair of diffraction gratings in double-pass con-
figuration, we produce pulses with a duration of 80 fs and average power of 5 W. For
the generation of broadband mid-infrared radiation, we would exploit the intrapulse
difference-frequency generation (IDFG) which is a particular case of DFG where the
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nonlinear interaction that produces new frequencies happens among the components
within the bandwidth of the starting pulse. As consequence, to produce a broadband
radiation the spectrum must be broadened, and this is done by exploiting the supercon-
tinuum generation in a photonic crystal fiber. If the output pulses are then compressed
by means of a hollow core fiber or a pair of prisms, in relation to the results obtained
we expect to produce pulses characterized by a duration of 12 fs and average power
higher than 2.5 W. By focusing them into an orientation-patterned gallium phosphide
(OP-GaP) we expect to generate a radiation of few milliwatt spanning the mid-infrared
range. This is not the only possible application since amplified few-optical-cycles pulses
can be used also for the generation of the terahertz radiation and of the 4th-harmonic
by simply changing the crystal. This aspect underlines the versatility of our system.
All the passages up to the supercontinuum generation are characterized in terms of
spectrum, average power, pulse duration, and relative intensity noise.
The thesis is structure as following:

1. The first chapter deals with general concepts useful for understanding all the
processes that characterize the system. It opens with a brief description of the
mode-locking techniques followed by an introduction on ytterbium-based solid-
state and fiber laser to understand the general principles behind the master os-
cillator. The chapter proceed describing the types of specialty optical fibers
adopted in our setup and the dispersion added by themselves while the pulses
propagate. It closes with an analysis of the self-phase modulation which is third
order nonlinear process exploited in the supercontinuum generation.

2. The second chapter focused on the setup adopted. It starts with brief description
of the mode-locked Yb:CALGO femtosecond laser followed by a characterization
of it in terms of spectrum, pulse duration, average power, and relative intensity
noise. Then, the scheme and the mathematical models behind the fiber amplifier
are presented. It closes with a section describing how the optical compressor used
in the experiment work.

3. The third chapter presents the characterization of the pulses after the fiber am-
plifier and the optical compressor in terms of spectrum, pulse duration, average
power, and relative intensity noise. This section is followed by a mathematical
description of the supercontinuum generation. It closes with the results of the
spectral broadening and the characterization of the pulse at the output of the
photonic crystal fiber.

4. The fourth chapter starts focusing on the three-wave interaction processes which
constitute the base of the applications involving few-optical-cycles pulses. The
following section compares two different crystals used for the mid-infrared gen-
eration and it contains an estimation of the results that we would have obtained
with our pulses. The chapter closes with a brief description of other two possible
applications which are terahertz and 4th-harmonic generation.

5. The fifth chapter closes the thesis by summarizing the result obtained and by
suggesting possible improvement in future experiments.
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1| Introductory concepts

This chapter presents theoretical contents related to the activities done in this thesis
work. It opens with a briefly introduction on mode-locking principles and techniques
followed by a comparison between solid-state Ytterbium-based oscillators and equiva-
lent fiber lasers. Then, all the types of fibers used in this thesis work are presented. It
closes with the analysis of the dispersive and nonlinear effects affecting the propagation
of ultrashort pulses in a media.

1.1 Lasers emitting at 1 µm
The importance of ultrafast lasers emitting in near infrared region is due to their

application in many scientific and industrial fields, such as sensors, telecommunication,
medicine, and high-resolved spectroscopy [18]. One category of lasers emitting in the
region around 1 µm is constituted by optical oscillators based on Ytterbium-doped
crystals and glasses. However, this is not the unique possibility since there exist also
Yb-doped fiber lasers emitting in that spectral region. The following subchapters go
into the details of both these types of oscillators.

1.1.1 Mode-locking theoretical principles and techniques

The term ultrafast lasers indicates oscillators able to emit optical pulses with a
temporal duration in the domain of the femtoseconds (1 fs = 10−15 s). The generation
of such short pulses in time-domain can be achieved only by means of mode-locking
(ML) techniques. ML is defined as a multimodal regime of operation where laser
modes have a precise relation among their phases. This operative condition is achieved
by introducing a certain modulation that can be externally driven (Active ML) or
generated by nonlinear elements introduced inside the cavity (passive ML) [19]. The
details of the techniques used will be treated later in the text.
Consider a very simple linear cavity made by two plane mirrors separated by a distance
L. The oscillating electric field E(t,z) must satisfy the following boundary conditions:{

E(t, z = 0) = 0

E(t, z = L) = 0
(1.1)

By imposing these, we get a discrete set of frequencies fn allowed to oscillate called
longitudinal modes. The latter are regularly separated by a quantity δf called free
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spectral range:

δf = fn − fn−1 =
1

TR

(1.2)

Here TR is the round-trip time defined as the time needed to a pulse to make a complete
trip within the cavity:

TR =
2L

vg
(1.3)

where vg is the group velocity. This holds in case of optical pulses since, in presence
of waves, vg is substituted by the phase velocity vph = c/n. The frequency of the m-th
mode can be written as:

fm = mfr +
∆ϕCEP

2π
fr (1.4)

In Eq. (1.4), fr is the pulse repetition defined as the inverse of TR while ∆ϕCEP represent
the pulse-to-pulse carrier-envelope phase (CEP) slipping. Both fr and ∆ϕCEP tend to
change over the time due to external noises and so they required to be stabilized.
Consider N oscillating modes all with the same amplitude E0. If we focus for simplicity
on a point near one of the two plane mirrors, the electric field can be written as the
superposition of these N modes:

E(t) =

N/2∑
n=−N/2

E0 sin[2π(f0 + n δf) t + φn(t)] (1.5)

where φn are the amplitude and the phase of the n-th mode while f0 is central frequency
of the laser spectrum. Figure 1.1 shows the time behaviour of the total electric field
squared in case of 31 oscillating modes with same amplitude E0 and with random
phases provided by Svelto in Ref. [20].

Figure 1.1: Time behaviour of the total electric field squared in case of 31 oscillating
modes with same amplitude E0 and with random random phases provided by Svelto
in Ref. [20].
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Now, we can impose a phase relation as required by mode-locking regime. The simplest
case is represented by a linear relation φn = nα such that:

∆φ = φn − φn−1 = α (1.6)

The overall field in ML regime is given by:

E(t) =

N/2∑
n=−N/2

E0 sin

[
2π

(
f0 +

N− 1

2
δf
)
t

]
sin(N δfφ t)

sin(δfφ t)
(1.7)

If we look at the expression of the power got by averaging fast components:

P(t) =
1

2
|E0|2

[
sin(N δfφ t)

sin(δfφ t)

]2
= P0

[
sin(N δfφ t)

sin(δfφ t)

]2
(1.8)

it is possible to retrieve the following three key features of ML regime:

• P(t) has the shape of a pulse train with repetition rate δf = fr =
1
TR

• The peak power Ppeak defined as the maximum of the average power is propor-
tional to N2, Ppeak = N2 P0

• The pulse duration is inversely proportional to the number of modes locked and
so the FWHM ∆tFWHM is approximately equal to inverse of the laser spectrum
∆f = Nδf

Now, we start analysing the most interesting techniques used to achieve mode-locking
regime. As already mentioned, there are two approaches, the active ML and the pas-
sive ML. The former techniques are well-established and exploit an externally driven
modulator that needs to be precisely synchronize with the oscillator cavity. Below is a
list of some of the most widespread and relevant active methods.

• Synchronous pumping [21]. In this technique, mode-locking is achieved by using
a pulsed laser as pump. In this way laser gain increases only when pulses pass
through the active medium.

• Synchronous loss modulation [19]. In this technique an amplitude modulation of
a continuous-wave laser is used to achieve the mode-locking regime. This can be
done by means of either an acusto-optic modulator or an electro-optic modulator.

• Synchronous phase modulation [22]. The key principle is similar to the previous
technique with the difference that here the quantity modulated is the phase. This
can be achieved with an electro-optic modulator.

• Harmonic mode-locking [23]. In this technique the modulator used to achieve
mode-locking is driven by one of the harmonics of the laser cavity frequency.

Since the synchronization between oscillator cavity and externally driven modulator
is not an easy task, sometimes it is preferable to use passive techniques. Apart from
overcoming this problem, the latter ensures also a better performance in terms of
pulse duration achievable. In passive ML techniques, pulses are generated by means of
nonlinear elements. The most widespread and relevant methods are:
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• Mode-locking based on saturable absorbers [24]. A saturable absorber is an optical
element with a transmission that increases with the intensity of light. When a
laser is switched on, it is in continuous-wave regime in which there is no correla-
tion among the phases of the modes. As consequence, the output intensity will
show some random fluctuations that present time-to-time intense spikes caused
by the random interference of modes. When light pass through the saturable
absorber the small fluctuations are killed due to a low transmission while the
intense spikes, representing the pulses, are transmitted. We distinguish among
fast or slow absorber depending on their recovery time.

• Kerr-lens mode-locking (or self-focusing mode-locking) [24] [25] [26]. This tech-
nique exploits a third order nonlinear effect called self-focusing where, depending
on the intensity, light is focused in different manners. Higher is the intensity,
stronger is the focusing effect. So, by introducing in the cavity an iris it is pos-
sible to select high-intensity pulses.

• Nonlinear polarization rotation [24] [27]. This technique is similar to kerr-lens
mode-locking. Indeed, the intensity-dependent polarization rotation can be ex-
ploited to select high-intensity pulses since they rotate more than low-intensity
ones. The selection can be done by introducing in the cavity either birefringent
plates or polarizing beamsplitters.

1.1.2 Solid-State Yb-based lasers

The mode-locking techniques just listed can be used to generate ultrashort pulses
in solid-state lasers. In the latter rare-earth or transition metal ions are introduced
as impurities in host material, generally crystals or glasses. Ytterbium (Yb) is a rare
earth whose electronic structure is 4f 165s25p65d06s2. When an atom is introduced in a
host media, it loses two electrons from 6s and one from 4f. The remaining 15 electrons,
then, reorganize themselves in the different states of 4f shell giving rise to large number
of energy levels [20]. In particular, the characteristic transitions of the Ytterbium ion
Yb3+ interests the 2F5/2→2F7/2 levels [28]. To be precise, the presence of external
electric field causes a split of them into many sub-levels manifolds (Stark effect [29])
shown in Fig. 1.2(a). The Figure 1.2(b) displays the characteristic absorption and
emission cross sections of the Ytterbium ion. The absorption and the emission are
peaked around 976 nm, but they show also secondary peaks centred, respectively,
around 920 nm and 1030 nm. One of the most used scheme, shown in Fig. 1.2(a),
consists in pumping Ytterbium ions at 976 nm and exploiting the emission at 1030 nm.
The choice of hosting material must be done carefully since it influences and determines
a lot of properties of Ytterbium ion such as the radiative lifetime [30]. Generally, Yb-
doped crystals are characterized by broad and smooth emission and absorption spectra
[31] making them suitable for short-pulse generation via mode-locking. Today a large
number of robust, efficient and cost-effective solid-state Yb-based crystal lasers are
available, some examples are Yb:YAG, Yb:KYF, Yb:YLF, and Yb:CaGdAlO4 also
called Yb:CALGO.
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Figure 1.2: (a) Sub-levels interested by absorption at 976 nm and emission at 1030 nm
and (b) absorption and emission spectra of Yb ion.

1.1.3 Yb-based fiber lasers

Fiber lasers exist from the beginning of the history of lasers but only recently be-
come very famous thanks to the development of diode laser able to provide an effective
pump in terms of quality beam and brightness [20] [32]. Differently from solid-state
oscillators, the active medium is the core of the fiber which is generally doped with rare
earth ions. Two interesting configurations are the single-mode fiber laser and double-
clad fiber laser. In the latter the pump is guided by the inner cladding around the
core, as shown in Figure 1.3, while in the former it is guided by the core itself [20].
Double-clad fibers overcomes the problems of alignment that limits the pump power
coupled in conventional single mode fibers [33]. Another advantage of double-clad fiber
is the high damage threshold [33].

Figure 1.3: Scheme of cladding pump.

The low pump absorption of some doped fibers causes the present of a very long
active media characterized by a small effective mode area. As consequence, fiber lasers
suffer from strong nonlinearities that limit duration and output power of ultrashort
pulses. Indeed, the advantage of high amplification bandwidth is nullified by these
effects and by chromatic dispersion. Nonetheless, sub 100 fs pulses can be achieved by
means of passive mode locking technique. One possibility is represented by nonlinear
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polarization rotation which is very effective but also very unstable due to polarization
changes caused by an uncontrolled birefringence and temperature.
The early fiber lasers were based on very inefficient Erbium and Neodymium doped
fibers. A great step was made when Ytterbium-doped fiber started to be used, allowing
to develop oscillators with an optical efficient larger than 90%. This kind of fiber is
characterized by a very broad gain bandwidth and is an extremely attractive media
for generation and amplification of ultrashort pulses [34]. Moreover, Ytterbium has a
better solubility in glass than Erbium and Neodymium [32]. However, the high normal
dispersion of the silica around 1030 nm is quite annoying. This problem affects all the
oscillators based on fiber but, in particular, Yb-doped fiber laser due to the peak of
the emission spectrum around that wavelength. As consequence, these kinds of lasers
need to introduce in the cavity systems able to compensate it in order to achieve very
short pulses. One possibility, also the most diffused, is to use a couple of gratings or
prisms set on a moving stage allowing a fine adjustment of the distance.

Figure 1.4: Example of Yb-based fiber laser proposed by [35]. BS: beamsplitter; ISO:
optical isolator; OG: optical grating; PBS: polarizing beamsplitter; RM: roof mirror;
SMF: single-mode optical fiber.

An example of Yb-based fiber system proposed by [35] is shown in Fig. 1.4. The pump
diode emits at 976 nm, in correspondence of the absorption peak of Ytterbium, with
an average power of 300 mW. A wavelength division multiplexing (WDM), used to
couple light into a ring cavity, is followed by 30-cm long Yb-doped fiber. Then three
wave plates are used to adjust the polarization which is quite delicate as said in the
introduction. The output coupler is a polarizing beamsplitter which reflects part of the
light and transmit the remaining part. The latter enters in an optical isolator allowing
a unidirectional operation and then in a system of gratings pair used to compensate
dispersion accomulated in the cavity.



Chapter 1. Introductory concepts 9

1.2 Specialty optical fibers
The term “specialty optical fibers” indicates classes of waveguides having at least

one special property with respect to the standard fibers. Some examples are those that
are not constituted entirely by glasses showing some air holes (Photonic Crystal Fibers)
or those made of rare earth doped glass (Active fibers). There are many categories,
but this thesis will focus, in the following subsections, only on the types of fibers used
in the setup.

1.2.1 Active optical fibers

Active fibers have been partially mentioned in Subsection 1.1.3. Differently from
passive ones, these fibers have a core made of rare earth doped glass. Specialty optical
waveguides are used in many applications. Other than in lasers and amplifiers, they are
used in medical, industrial, and scientific fields [36]. The key concept is the following:
the pumping light is absorbed by the rare earth ions that reach a metastable level [37]
and the subsequent de-excitation cause an emission of light at higher wavelength. Apart
from the common parameters used to describe waveguides such as numerical aperture,
mode area, and bend losses, here the doping concentration, the effective absorption and
emission, and energy transfer must be kept under control. Indeed, doping concentration
is strictly related to absorption efficiency and to the phenomena of quenching [38]. If
the concentration increases, also the absorption increases. However, after a certain
value the probability of having cluster of ions increases and therefore the quenching.
The energy transfer is important especially in case of codoped active fibers where
instead of using a single type of rare earth for doping, a couple of ions is employed [39].
This method helps to tune the emission wavelength and it increases the efficiency of
absorption. In case of Er:Yb fibers, the pump is absorbed by the Ytterbium which than
use the energy acquired to excite the Erbium [39]. The following steps are identical to
the case of single rare earth doped fiber.

Figure 1.5: Double-clad optical fiber cross section. The blue circle is the core; the
white circle is the inner cladding; the grey circle is the outer cladding.

Active fibers can be single-mode or multimode and sometimes also polarization-maintaining
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(Subsection 1.2.2) or characterized by large mode area (Subsection 1.2.3). There is also
a special variant called double-clad, showed in Figure 1.5, which has, apart from the
inner cladding, also an outer cladding allowing to reach excellent beam quality and
very high output powers [40].

1.2.2 Polarization-maintaining optical fibers

Generally optical fibers with circular core [41] are not affected by the phenomena
of birefringence for which depending on the polarization of light, the refractive index is
different. As consequence, the polarization of the light remains unchanged. However,
the great sensibility of this kind of fibers to temperature, mechanical stress, bending,
and manufacturing defects causes the rise of a small amount of birefringence. The
latter generates a phenomenon called polarization-mode dispersion that will be treated
in detail in Subsection 1.3.2. As consequence, a random cross talking CT among the
two polarization modes in fiber and so an uncontrollable change of the polarization can
be observed [42]:

CT = 10 · log Py

Px

(1.9)

The idea of polarization-maintaining fibers is not to cancel out this effect but to in-
troduce on purpose an uniform birefringence that allows a controllable and non-casual
exchange of power between the two polarization modes.

Figure 1.6: (a) PANDA optical fiber and (b) Bow-tie optical fiber; the blue circles
represent the core while the white and dark grey parts represent regions with a different
birefringence

The strong birefringence can be achieved by introducing in the fiber preform, in oppo-
site position with respect to the core, two cylindrical rods made of borum-doped glasses
[43]. Due to different thermal expansion coefficients, a built-in mechanical stress arises



Chapter 1. Introductory concepts 11

when fiber is cooled down [43]. The cross section shown in Fig. 1.6(a) has the shape
of a panda and for this reason these fibers are called PANDA fibers. Another possibil-
ity is to introduce rods with more complicated shape as shown in Fig. 1.6(b). These
waveguides are called bow-tie fibers. The polarization-maintaining condition can be
achieved also in photonic crystal fibers (Subsection 1.2.4) where the air holes instead
of being symmetric with respect to the core, follow an asymmetrical disposition.
Polarization-maintaining optical fibers are widely used for polarization control in fiber
optic sensors, precision optical instruments, and optical communication systems [44].
However, the particular structure makes the splicing between two fibers very difficult
and causes large propagation losses compared to the standard fibers [43].

1.2.3 Large mode area optical fibers

Some applications require a large effective mode area whose definition is not straight-
forward due to the different shapes of the fiber modes. The mathematical definition
is the integral of the electric field profile E(r) over the full area where the intensity of
mode is not negligible [45]:

Aeff =
(
∫
|E(r)|2 dA)2∫
|E(r)|4 dA

(1.10)

That can be also expressed in terms of intensity profile I(r) [46]:

Aeff =
(
∫
I(r) dA)2∫
I(r)2 dA

(1.11)

The dependence of the electric field from only the radial coordinate comes from the
assumption that field distribution is constant over the time and during the propagation
along the fiber.
The advantages of having a large mode area are reduced nonlinearities and higher
damage threshold. Indeed, the relation between the phase shift introduced by the Kerr
effect and the effective mode area is inversely proportional [43]:

φ =
2π

λ
n2

P

Aeff

L (1.12)

where n2 is the nonlinear coefficient, P the optical power and L the length of the
medium. So having a large Aeff means small phase shift. Despite a large mode area, it
is possible to realize fibers guiding a single or a small number of modes. However, the
propagation is less robust since for reaching this result the refractive index contrast
between core and cladding must be decreased making the waveguide more sensible
to inhomogeneities in composition and to any disturbance [43]. Indeed, the balance
between diffraction and waveguiding that sustains the propagation of a single mode is
worsen due to a weaker diffraction.
Other difficulties regard the production of large mode area active fibers with rare-
earth doped core. As said, these fibers suffer from quenching that can be reduced by
introducing additional dopants in the glass. However, this causes an increment in the
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numerical aperture and so of the core cladding refractive index contrast reducing the
waveguiding capability and the quality of the output beam [43].
Other effects that characterize this family of fibers is the thermal lensing [47]. This
phenomenon affects high power fiber lasers and amplifiers where the heating of the
medium may not be uniform or there may be some mechanical stress that produce a
gradient of the refractive index. This effect is called like that because causes a focusing
effect and as consequence it determines a reduction of the effective mode area nullifying
the advantages of these waveguides.
So large mode area fibers can be used in many applications where nonlinearities are
unwanted or where high powers are used but must be carefully designed to avoid all
the problems listed.

1.2.4 Photonic crystal optical fibers

Photonic Crystals are particular media characterized by periodic modulation of the
dielectric constant, and as consequence of the refractive index, obtained by alternating
it with different materials. In photonic crystal fibers (PCF), light is guided by a periodic
wavelength-scale lattice of microscopic holes in the cladding [48]. The structure of this
kind of waveguides offers many degrees of freedom and, as consequence, many peculiar
applications and properties.

Figure 1.7: Hollow core optical fiber cross section.

We distinguish mainly between two types of photonic crystal fibers depending on the
pattern of the air holes and if the core is filled with silica or is empty. In case of
core filled with air, these fibers, shown in Figure 1.7, are called hollow core and they
belong to the category of photonic bandgap fibers. These kind of waveguide exploit 2D
photonic crystals which show a periodicity of the refractive index along two dimensions.
Therefore, the structure will show a 2D photonic bandgaps which are frequency ranges
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where light propagation is not allowed. Indeed, by properly design the structure it
is possible getting photonic bandgap in correspondence of the wavelength of interest
[43]. In this way, the amplitude of light decays exponentially in the cladding and so it
remains confined in the core.
The other type is characterized by a triangular pattern of the air holes around a fused
silica rod working as core shown in Fig. 1.8. In this last type of PCFs, the guiding
principle is similar to the total internal reflection like the normal fibers. Indeed, the
presence of air holes in cladding determines an effective refractive index lower than the
one of the core.

Figure 1.8: Photonic crystal optical fiber with central silica rod cross section.

The fabrication of these waveguides is very complicated. This can be done with a
method very similar to the one used for normal fibers which is based on a preform
that, in case of PCFs, is got by stacking many pure silica tubes. The protection of the
bundle is achieved by jacketing it with a big tube. Then, the fiber is introduced in the
conventional drawing tower where it is heated to reduce the tension of the waveguide.
Depending on the temperature and the drawing speed selected, it is possible to achieve
structures with different dimensions and space between air holes. To get a structure
like that, the tension must be high enough which means high speed and a temperature
not higher than 2000°C [49]. In Figure 1.9 it is possible to see the formation of the fiber
structure during the drawing phase. Another possibility is represented by extrusion in
which molten glass is forced through a die containing a defined pattern of holes [48].
This technique allows to draw the fibers directly from the bulk and it is mainly used
in case of soft glasses and polymers [43].
In photonic crystal fibers, depending on the parameters of the structure it is possible
to achieve very important properties. One of them regards the dispersion. Indeed, it is
possible to shift the zero group velocity dispersion (GVD) point achieving an anomalous
dispersion where the GVD of pure silica and that of conventional single-mode fibers is
normal. They are useful also for the generation of supercontinuum which is a strong
nonlinear broadening of the spectrum that will be treated in the third chapter.
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Figure 1.9: Prefrom used for the production of PCFs; the red rectangles represent the
heating elements.

1.3 Dispersive effects in fibers

1.3.1 Chromatic Dispersion

The chromatic dispersion is a phenomenon related to the dependence of the media
response from optical frequency. When a pulse propagates within a waveguide made
by a given material, its components experience a different refractive index causing a
propagation velocity different for all of them. The relation between refractive index
and optical frequency is provided by the Sellmeier’s equation:

n2(ω) = 1 +
m∑

n=1

Bj ω
2
j

ω2
j − ω2

(1.13)

where ωj are the resonance frequencies at which the media absorbs the electromagnetic
radiation and Bj is the strength of the j-th resonance [50]. As consequence, the propa-
gation speed of the different components expressed by c/n(ω) is different and so they
will arrive at the end of the waveguide in different moment causing a temporal broad-
ening of the pulse. Mathematically speaking, an early measure of chromatic dispersion
was expressed by the Abbe number Vd:

Vd =
nD − 1

nF − nC

(1.14)

where nD, nF, nC are the refractive index of the Fraunhofer lines which are 486.1 nm (F
line), 589.2 nm (D line) and 656.3 nm (C line). High V number means low dispersion
and viceversa.
The modern way of quantifying chromatic dispersion is based on the Taylor expansion
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of the wavenumber k:

k = k0 +
∂k

∂ω
(ω − ω0) +

1

2

∂2k

∂ω2
(ω − ω0)

2 +
1

6

∂3k

∂ω3
(ω − ω0)

3 + . . . (1.15)

The term k0 is a common phase term whose expression is 2π/λ0 with λ0 central wave-
length. The first order term contains the group velocity defined as:

vg =
∂k

∂ω
(1.16)

which express the propagation speed in a medium of the pulse envelope. The term ∂2k
∂ω2 ,

also indicated as β2, is called group velocity dispersion (GVD), generally expressed in
s2/m. The derivative of GVD with respect to ω is called third order dispersion (TOD)
per unit length k

′′′
= ∂3k

∂ω3 . This parameter is mainly used together with other higher
orders term near the zero-dispersion point of a given material where β2 is nearly zero.
Indeed, at that point seem to be no dispersion but by considering higher order terms
like TOD, the effect is not null.
There are two different regimes of dispersion, the normal or positive dispersion and
the anomalous or negative dispersion. The former is characterized by a positive GVD
and, as consequence, the group velocity decreases by increasing the optical frequency.
In case of a pulse, the high-frequency components (blue-shifted) travel slower than
low-frequency (red-shifted) components [50]. In case instead of an anomalous disper-
sion, the effects are the opposite: β2 is negative, the group velocity increases with the
optical frequency and the blue-shifted components travel faster than red-shifted ones.
This regime is interesting because it can be exploited to balance nonlinear effects in
waveguides generating a solitary pulse that propagates along the fiber. Differently from
others, this kind of pulse maintains the same spectral and temporal shape during the
propagation. To be precise, there exist also high-order solitary pulses that shows a
periodic behaviour. Indeed, their shape changes during propagation but after a certain
distance, the pulse gets again the initial one.
In case of guided modes apart from the contribution given by the material dispersion,
there is another contribution to chromatic dispersion due to the dielectric waveguid-
ing. However, this factor is relatively small except near the zero-dispersion wavelength
where it becomes comparable with the material contribution [50].
In telecommunication field, dispersion is quantified by means of the dispersion param-
eter D expressed in ps/(km nm) and linked to β2 by the following relation:

D = −2πc

λ2
β2 (1.17)

An effect related to chromatic dispersion is the so-called temporal walk-off. This phe-
nomenon affects the nonlinear frequency conversion processes such as sum or difference
frequency generation, optical rectification that need the temporal superposition of op-
tical pulse to be efficient. Indeed, if pulses have a different frequency, they propagate
with different speed and, as consequence, after a certain distance they are no more
overlap.
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1.3.2 Polarization-mode dispersion

In single-mode fiber, as said by the name, light propagate with a unique mode.
To be precise, there are two degenerate modes corresponding to the two orthogonal
polarizations, along x and y directions. This holds in an ideal case when the waveguide
is characterized by a perfect cylindrical symmetry. However, in a real fiber some
variations of the core shape or stress-induced anisotropy break the perfect symmetry
causing a mixing of the polarizations. As consequence, the propagation constants of
the no more degenerate modes are different causing a so-called modal birefringence.
The strength of this effect is measured by [50]:

B =
|βx − βy|

k0
(1.18)

with k0 = 2π/λ0 and βx, βy propagation constants of the two polarizations. The modes
exchange their power in a periodic fashion as they propagate with a period [50]:

Lb =
λ

B
(1.19)

Lb is called beat length that is the distance after which the phase difference accumulated
between the two polarization modes is equal to 2π [42]. This kind of effect is quite
difficult to study since B changes due to the fluctuations of the anisotropic stress and
in the shape of the core. Modal birefringence mainly affects ultrashort pulses causing
a temporal broadening. This can be estimated by measuring the delay ∆T between
the two polarizations:

∆T = L|βx − βy| (1.20)

where L is the length of the fiber. However, as said, the values of the two betas are
not constant. As consequence, it is better considering the root mean square value of
∆T defined as:

σ2
T = <∆T2> = 2(∆

′
lc)

2[exp(−L

lc
) +

L

lc
− 1] (1.21)

Here, ∆T
′ is the intrinsic modal dispersion and lc is the correlation length which is the

distance over which the two polarizations remained correlated [51]. In case of L>0.1
km and lc«L, this expression can be simplified [50]:

σT = Dp

√
L (1.22)

where Dp is the polarization-mode dispersion parameter that has generally values be-
tween 0.1-1 ps/

√
km [50]. The dependence from

√
L make this kind of the effect

relatively small with respect to chromatic dispersion.
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1.4 Third order nonlinear effects

1.4.1 Nonlinear Schrödinger equation

The starting point is represented by the Maxwell equations:

∇ ·D = ρ

∇×E =
∂B

∂t
∇ ·B = 0

∇×H = J +
∂D

∂t

(1.23)

D is called electric displacement and it is defined as:

D = ε0E + P (1.24)

Here, ε0 is the vacuum permittivity, E is the electric field, and P is the polarization
vector. Instead, B is called magnetic induction and it is expressed by:

B = µ0(H +M ) (1.25)

where µ0 is the vacuum permeability, H is the magnetic field, and M is the magneti-
zation vector. The remaining quantities ρ and J are, respectively, the net free charge
density and the conduction current density.
The polarization vector is constituted by a contribution P (l) which is linearly dependent
from the electric field E and under the assumption of isotropic media it is expressed
by:

P (l)(r, t) = ε0

∫
R3

dr
′
∫ +∞

−∞
χ(r, r

′
, t, t

′
)E(r

′
, t

′
) dt

′
(1.26)

and by a nonlinear term that under the further assumption of instantaneous nonlinear
response it is written as:

P (nl) =
∞∑
i>2

ε0χ
(i)Ei (1.27)

with i representing the order. To be precise, the assumption of isotropic media is
unphysical especially for i=2 since χ(2) is different from zero only in materials lacking
symmetry. Nonetheless, in this mathematical proof it will be considered only the third
order avoiding any problem.
By combining the Maxwell equations, what we get is:

∇(∇ ·E)−∇2E = −µ0
∂J

∂t
(∇×M )− µ0

∂J

∂t
− 1

c2
∂2E

∂t2
− µ0

∂2P

∂t2
(1.28)
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Under the following approximations:

1. Non-magnetic materials (M ≃ 0)

2. Absence of free charges (ρ ≃ 0)

3. Homogenous media

4. J ≃ 0

5. Plane wave approximation

the Equation (1.28) becomes:

∂2E

∂z2
− 1

c2
∂2E

∂t2
= µ0

∂2P (l)

∂t2
+ µ0

∂2P (nl)

∂t2
(1.29)

Now, to make the treatment little bit easier we can pass to frequency domain by
applying the Fourier transform in both spatial and temporal domain:

Ft,z

{
E(t, z)

}
= Ê(ω, k) =

∫ +∞

−∞
dt

∫ +∞

−∞
E(z, t)ei(kz−ωt) dz,

Ft,z

{
P (l)(t, z)

}
= P̂ (l)(ω, k) =

∫ +∞

−∞
dt

∫ +∞

−∞
P (l)(z, t)ei(kz−ωt) dz,

Ft,z

{
P (nl)(t, z)

}
= P̂ (nl)(ω, k) =

∫ +∞

−∞
dt

∫ +∞

−∞
P (nl)(z, t)ei(kz−ωt) dz,

(1.30)

(1.31)

(1.32)

obtaining: [
ω2ϵr(ω)

c2
− k(ω)2

]
Ê(ω, k) = −ω2µ0P̂

(nl)(ω, k) (1.33)

The Equation (1.33) is propagation equation in Fourier domain.
In case of envelope approximation in which we consider the pulse as the product of an
envelope and a carrier, the electric field can be written as:

E(z, t) = AR(z, t)cos[ω0t− k0z + φ(z, t)] = R
[
A(z, t)ei(ω0t−k0z)

]
(1.34)

where the appendix R indicates that AR(z,t) is a real function while A(z,t) is a complex
function since it englobes the phase term eiφ(z,t). Also the nonlinear polarization term
can be written in a similar form but since P (nl) is not an electromagnetic wave, the
wavevector here is different from k0 of the electric field and is called kp. The frequency
instead is the same since P (nl) is a source term and must oscillate at same frequency
of the wave, the expression is:

P (nl)(z, t) = BR(z, t)cos[ω0t− kpz + φ(z, t)] = R
[
B(z, t)ei(ω0t−kpz)

]
(1.35)

Before proceeding, we need to make further two assumptions on (1.33). The first
goes under the name of “slowly-varying envelope approximation” for which ω ≃ ω0.
It is called light that because “slowly-varying” means something that does not change
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rapidly and so the value of the frequency is in the neighbourhood of ω0. The second
assumption is neglecting the backward propagation by writing:

ω

c
n(ω) + k(ω) ≃ ω0

c
n(ω0) + k0 = 2k0 (1.36)

The equation (1.33) becomes:[
ω

c
n(ω)− k(ω)

]
Ê(ω, k) = − µ0cω0

2n(ω0)
P̂ (nl)(ω, k) (1.37)

After making the Fourier transform of (1.34) and (1.35) and substituting them into (1.37),
what we get is:[

ω

c
n(ω)− k(ω)

]
Â(ω − ω0, k − k0) = − µ0cω0

2n(ω0)
B̂(ω − ω0, k − k0) (1.38)

The equation got is in Fourier domain, to return in spatial and temporal domain is
necessary applying the anti-transform. Before doing this, k(ω) in Eq. (1.38) is substi-
tuted with its Taylor expansion already seen in Subsection 1.3.1. After the transform,
the resulting equation is:

1

vg

∂A

∂t
+

∂A

∂z
+

+∞∑
n=2

βn(−i)n−1

n!

∂nA

∂tn
= e−i∆kz

[
− µ0cω0

2n(ω0)

]
B (1.39)

with ∆k = kp − k0. Since this chapter is considering third order nonlinear effects, we
can calculate P (3):

P (3) =
ϵ0χ

(3)

8

[
A3ei3(ω0t−k0z) + 3A2ei2(ω0t−k0z)A∗e−i(ω0t−k0z) + cc

]
(1.40)

Now, consider only the term oscillating at the fundamental frequency and compare the
expression obtained with Eq. (1.35):

B =
3ϵ0χ

(3)

4
A|A|2 (1.41)

Simplify Equation (1.39) by considering only second order (n=2) and the degenerate
case ∆k = 0 and then substitute in it (1.41) getting:

1

vg

∂A

∂t
+

∂A

∂z
− i

β2

2

∂2A

∂t2
= −γA|A|2 (1.42)

where γ = 3ω0χ(3)

8cn(ω0)
. We can change the reference frame passing to a co-moving one by

performing the following change of coordinates:
Z = z,

T = t− z

vg

(1.43a)

(1.43b)
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obtaining:
∂A

∂Z
− i

β2

2

∂2A

∂T 2
+ γA|A|2 = 0 (1.44)

The Eq. 1.44 is called “nonlinear Schrödinger equation” (NLSE) since its form is the
same as for the conventional time-dependent Schrödinger equation in quantum me-
chanics, but with a nonlinear potential term [19].
To be precise, the Equation (1.44) does not take into account eventual losses that must
be considered in case of propagation in a medium. To have a more completed equation,
we can introduce a term α

2
A in Eq. (1.44) where α is the linear absorption coefficient:

∂A

∂Z
− i

β2

2

∂2A

∂T 2
+

α

2
A+ γA|A|2 = 0 (1.45)

In phenomenon such as supercontinuum generation, other effects like higher-orders non-
linearities and stimulated Raman scattering should be included in Eq. (1.44) generating
the so-called “generalized nonlinear Schrödinger equation” (GNLSE). This equation will
be matter of the third chapter.

1.4.2 Dispersionless self-phase modulation

The Kerr effect is a nonlinear optical effect which can occur when light propagates
in crystals and glasses. It can be described as a change of the refractive index n caused
by electric field E. Indeed, n is the sum of unperturbed refractive index n0 and a term
containing the optical intensity which is proportional the modulus squared of E:

n = n0 + n2I (1.46)

The parameter n2 is called nonlinear index:

n2 =
3χ(3)

4cϵ0n2
0

(1.47)

An interesting manifestation of this dependence occurs through the self-phase modu-
lation (SPM) which is a phenomenon leading to spectral broadening of optical pulses
[50]. This effect is not the only way to understand optical Kerr effect. Apart from
SPM which works in temporal domain, there is another phenomenon operating in the
spatial domain called self-focusing effect. Indeed, in an optical pulse the intensity is
a function of the radial coordinate r (Fig. 1.10). As consequence, the intensity and so
the refractive index of the tails will be different from the ones of the peak and this
causes a focusing effect.
The mathematical treatment of SPM starts from the nonlinear Schrödinger equation.
To make the case easier, it’s possible, at least at the beginning, neglect the propagation
losses and the dispersion contribution setting β2 to zero:

∂A

∂Z
+ iγA|A|2 = 0 (1.48)
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This assumption has sense, at least initially, if the length of the medium L is much
lower than the dispersion length LD =

T2
0

|β2| where T0 is the pulse duration. Now, assume
that the solution to Equation (1.48) is:

A(Z, T ) = A(0, T )eiφ(Z,T ) (1.49)

and impose the following boundary conditions:{
φ(0, T ) = 0

φ(Z, T ) = −iγZ|A(0, T )|2
(1.50)

After substituting (1.49) in (1.48) and applying the condition expressed by the System
(1.50), the result of (1.48) is:

A(Z, T ) = A(0, T )e−iγ2|A(0,T )|2 (1.51)

Consider again the Equation (1.29) and perform the change of coordinate (1.34), by
inserting (1.51), what we get is:

E(Z, T ) = R
[
A(0, T )eiϕ(Z,T )

]
(1.52)

where:
ϕ(Z, T ) = ω0T +

ω0Z

vg
− k0Z − γZ|A(0, T )|2 (1.53)

The result shows how the envelope remain unchanged during a nonlinear propagation
and the unique effect is the introduction of a phase term ϕ(Z, T ) that depends, by
means of last term of (1.53), from the envelope itself.

Figure 1.10: Radial coordinate of a gaussian pulse as function of intensity

To better understand the effect of self-phase modulation, we can calculate the instan-
taneous frequency:

ω(T ) =
∂ϕ

∂T
= ω0 − γZ

∂|A(0, T )|2

∂T
(1.54)
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From Eq. (1.54) we see that when Z increases and so pulse propagates, the frequency
chirp becomes larger and larger. Figure 1.11 shows the qualitative representation of
this effect.

Figure 1.11: Instantaneous frequency as function of time for two different propagation
lengths (z2 > z1).

Assume a large peak phase shift (ϕmax ≫ 1) indicated with ϕmax since in correspon-
dence of the peak of the pulse, the intensity shows a maximum and so also the phase
shift is maximum. Under this assumption, the characteristics of SPM are:

1. The optical bandwidth depends on maximum excursion of the instantaneous fre-
quency curve and in case of symmetric pulse is defined by [19]:

∆ω = ωmax − ωmin =
±f1ϕmax

∆t
(1.55)

with f1 numerical factor and ∆t pulse duration. If the initial bandwidth is
expressed by [19]:

∆ωin =
f2
∆t

(1.56)

with f2 another numerical factor, the broadening can be estimated by:

∆ωSPM

∆ωin

= 2
∆ωmax

∆ωin

=
2f1
f2

ϕmax (1.57)

In case of a Gaussian pulse, the broadening can be roughly considered to be equal
to the maximum phase shift:

δωSPM

∆ωin

≈ 1.03ϕmax (1.58)
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2. Related to the power spectrum, it is characterized by a modulation shown in
Fig. 1.12. It can be qualitatively described by looking at the interference between
components with different delays. Indeed, consider a frequency ωa (Figure 1.11).
At that value there are two components that can give rise to a constructive or a
destructive interference generating a spectrum like that.

Figure 1.12: Self-phase modulation power spectrum.

The number of peaks and of minima are estimated by:

number of peaks ≈ δϕmax

π
+ 1 (1.59)

number of minima ≈ δϕmax

π
(1.60)

1.4.3 Group velocity dispersion effects

The effect of chromatic dispersion can be considered by assuming in NLSE β2 ̸= 0:

∂A

∂Z
− i

β2

2

∂2A

∂T 2
+ iγA|A|2 = 0 (1.61)

In this case L ≫ LD and L ≫ LNL = 1
γPpeak

where Ppeak is the peak power of the
pulse. These conditions tell us that both the nonlinearities and the dispersion have
an important role. Once again, the losses in (1.61) are neglected. Nonetheless, this
kind of equation needs numerical methods to be solved. One of them is the split-step
Fourier method where the medium considered is divided into slices of thickness ∆z.
The accuracy of solution is inversely proportional to the width of them. In each slice,
the dispersion and the SPM are separated. Indeed, the method considers before the
effects of GVD and then the self-phase modulation as if it is completely concentrated
on the edge of the slice (Figure 1.13). An example of solution is:

A(zk+1, T ) = F−1
{
Â(zk, ω)e

−i
β2ω

2∆z
2

}
· e−iγ∆z|A(zk,T )|2 (1.62)
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where zk and zk+1 are the edges of two generic, consequent slices.

Figure 1.13: Pictorial representation of split-step Fourier method; the medium is di-
vided into slices of thickness ∆z characterized by certain amount of dispersion while
SPM is fully concentrated on the edge of each slice.

The qualitative description of the effects can be made by means of Figure 1.14 that
shows the behaviour in temporal and in frequency domain of a sech pulse when it
propagates in a media under the effects of SPM and GVD. While the spectrum broad-
ens due to nonlinear phenomenon, the dispersion becomes more and more important
causing a temporal broadening. As consequence, the intensity of pulse reduces and the
effects of SPM are less strong. At very long distances, dispersion effects are dominant.
Related to the temporal broadening, in Figure 1.14 is shown how the presence of non-
linear effects generates a flat top. The other phenomenon interests the power spectrum
which presents a reduced modulation since now the contributions of the components
that interfere are unbalanced.

Figure 1.14: Evolution of temporal intensity profiles and power spectra for sech( t
t0
)

input pulse under SPM with normal dispersion [19].
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2| Experimental setup

2.1 Design and alternative versions
The experimental setup is projected to provide few-optical-cycles pulses with high

average power needed to generate a mid-infrared radiation and for other applications
treated in the last chapter. The system shown in Fig. 2.1 starts from sech2-shaped
pulses emitted by Yb:CALGO. These are then coupled into a fiber amplifier by means
of two Ø1” protected gold mirrors. The latter show an average reflectance Rave>96%
in IR range. The light coupled is about 75% and it has a horizontal polarization which
remains unchanged until the exit of the amplifier since it is made of polarization-
maintaining fibers. The output polarization is vertical because the final tip is rotated
by 90 degrees. This choice has the advantage of limiting the losses in the following
compression stage. After the fiber amplifier, there is a lens with a focal length of 25 mm
to collimate the light. A dichroic mirror is used to separate the residual pump from the
amplified signal which is now characterized by pulses with a duration larger than 2 ps
and an average power higher than 5 W. These pulses pass then through the compression
stage constituted by a pair of optical gratings whose reciprocal distance has been
determined by means of simulations and by optimizing the intensity autocorrelation.
Two different configurations for the compression have been tested: one by placing it
before coupling the signal in the fiber amplifier and the other after. In Chapter 3, the
decision of taking it after the amplification stage will be justified.
The compression allows to get pulses with duration of 80 fs and an average power of
5 W. Then a series of 3 Ø0.5” Yb-fs mirrors bring the pulses at input of the photonic
crystal fiber used for the spectral broadening. These mirrors reflect more than 99.5%
in the range of interest and if placed at 45 degrees, they ensure a minimum effect on
the pulse dispersion. Between two of these, an optical isolator is placed in order to
avoid back reflections of light which are quite annoying. Indeed, when light is coupled
in fiber optics, the silica-air interface can generate some reflections which add extra
noise to measurements. However, the introduction of this element into the setup causes
a 20% loss in terms of power which is now slightly higher than 4 W. Once pulses arrive
at the PCF, they are coupled by means of an aspheric lens with a very small focal
length of 3.9 mm that allows to couple more than 60% of the power. The output
pulses can be then optically compressed by a pair of prisms or by a hollow core fiber
and focused into an orientation-patterned gallium phosphide to generate broadband
mid-infrared radiation.
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Figure 2.1: Experimental setup. DG: diffraction gratings; DM: dichroic mirror; FSM:
Yb-fs mirror; GM: gold mirror; ISO: optical isolator; LM: low-GDD mirror; LS: lens;
PCF: photonic crystal fiber.
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2.2 Solid-state Yb:CALGO
This section is centred on the first block of the setup. It opens describing the

operation of the oscillator followed by the characterization of it in terms of average
power, spectrum, pulse duration, and relative intensity noise (RIN).

2.2.1 Setup description

As introduced in Section 2.1, the laser used is an Yb:CALGO femtosecond laser.
Apart from a high thermal conductivity and large emission cross section, this crystal
is characterized by an ultraflat gain [31] and these features make it suitable to produce
ultrashort pulses. The setup of the laser is shown in Fig. 2.2.

Figure 2.2: Yb:CALGO setup. HR: high-reflectivity dielectric mirror; ISO: optical iso-
lator; OC: output coupler; P. fused silica prism; PD: fast photodetector; PZT: piezo-
electric transducer.

The oscillator is pumped with a Bragg-gratings-stabilized diode laser which emits with
an average power of 500 mW centred around 976 nm. The linear x-folded cavity con-
tains an a-cut 2 mm thick crystal characterized by a 5% doping and pumped along
π-polarization [52]. The mode-locking operation is achieved by exploiting a semicon-
ductor saturable absorber mirror (SESAM) with a modulation depth of 3% and non-
saturable loss less than 1%, mounted on a piezoelectric transducer. The output coupler
has a transmission of 1.6% and is fixed on a linear stage used for a fine tuning of the
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pulse repetition and of carrier envelope offset. The prisms in the setup are used for the
GVD management. This laser can produce hyperbolic secant pulses with a duration of
70 fs and an average output power of 45 mW. The repetition rate is fixed at 160 MHz
corresponding to a cavity length of about 94 cm.

2.2.2 Average power and optical spectrum

To characterize the Yb:CALGO laser, we determined its optical spectrum and av-
erage power. Since the aim of the thesis is to produce mid-infrared radiation, the oscil-
lator was already built and so characterized in previous experiments [52]. Nonetheless,
we preferred collecting again some measurements of average power, optical spectrum,
and pulse duration (Subsection 2.2.3) which are relevant to our experiment. For all
measurements, the repetition rate of the laser was kept approximately 160 MHz.
The first quantity measured was the average power. This value is an important indi-
cator for the design of the amplifier. Indeed, to produce mid-infrared radiation, high
power pulses are needed and so depending on the starting value, the length of the
active fiber and the pump current used in the amplifier would change. Average power
is also useful for the calculation of pulse energy Ep and peak power Pp. The former is
simply the average power divided by the pulse repetition rate. Instead, the calculation
of the peak power is not straightforward since it depends on pulse shape. In our case,
for sech2-shaped pulses it is equal to [53]:

Pp ≈ 0.88
Ep

τp
(2.1)

where τp is the pulse duration.
The power measurements were performed by means of an optical power meter with
a sensor placed immediately after the case of the laser. This instrument can reach a
sensitivity of 1 µW but for our purpose 100 µW is enough. In Table 2.1, the results
are presented. We decided to measure the output average power at three different
values of pump current in order to have a larger flexibility for the design of the fiber
amplifier. In the end, among these three values of current, we decided to use 0.65 A.
The reason of this choice is to avoid any q-switched pulse. The latter is characterized
by a long duration and a high average power and as consequence it could compromise
the operation of the system destroying some components. Low current is aimed to
remain in a stable region of operation of the laser avoiding this phenomenon.

Ipump(A) Pout(mW)

0.55 35.7

0.65 42.5
0.75 53.5

Table 2.1: Ipump vs Pout.
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Optical spectrum provides information about the central wavelength and the band-
width of pulses. It was measured by means of AQ6317C optical spectrum analyser.
The light can be coupled either directly in the instrument or in an optical fiber mounted
on three-dimensional slit. In our case, we have adopted the second configuration plac-
ing the system near the exit of the laser case. The measurements were performed
with a resolution of 0.5 nm at the values of current used for the previous analysis. In
Figure 2.3 the three normalized spectra and their comparison are shown. The central
wavelength is about 1050 nm and the full width at half maximum (FWHM) goes from
14.3 nm for 0.55 A to 15.8 nm for 0.75 A. From the comparison in Figure 2.3(d), we
notice that for different pump currents the shape of spectrum does not change. As we
can observe, on the top of all the three spectrum a strange modulation is present. This
phenomenon is called Ethanol effect.

Figure 2.3: Normalized optical spectrum for a pump current of (a) 0.55 A (b) 0.65 A
(c) 0.75 A; (d) comparison among all the three spectra.
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2.2.3 Intensity autocorrelation

There exist several techniques used for temporal characterization of pulses. The
duration can be measured directly in time domain by means of a fast photodiode
or a streak camera. However, the former is exploited only in case of pulses with
duration up to picoseconds. Indeed, at its best, it is able to reach a resolution of 10
ps. Instead, the streak camera can characterize pulses with duration in the order of
tens of femtoseconds making it suitable to our purpose. Nonetheless, the high cost
of this tool forced us to use an alternative technique based on concepts coming from
Michelson interferometer. The latter is not able alone to fully reconstruct an ultrashort
pulse unless we assume that the spectral phase of the pulse ϕ(ω) is constant and the
pulse is transform-limited [19]. For this reason, in order to characterize a femtosecond
ultrashort pulse, we need to introduce a crystal with χ2 ̸= 0 and exploit the second
harmonic generation (SHG) which is a second order nonlinear effect that generates
light at twice the input optical frequency. The configuration used, called non-collinear
second harmonic autocorrelator, is shown in Fig. 2.4.

Figure 2.4: Non-collinear second harmonic autocorrelator. BS: beamsplitter; LS: lens;
PD: photodetector.

The operation principle is quite simple but also effective. A 50% beam splitter produces
a copy of the input pulse which is then delayed by a quantity τ . After following different
paths, the two pulses are focused by means of a lens on a crystal where they interfere.
Here, the second harmonic of the interaction is generated and it is then detected by a
photodiode. This happens only if the crystal satisfies the phase matching condition:

K1 +K2 = KSH (2.2)

where K1, K2, and KSH are the wavevectors of the two pulses and of the second har-
monic. In reality, the interaction of each pulse with crystal produces other two second
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harmonics which are then blocked by an iris. Indeed, this technique is background-
free in the sense that if there is no interaction between the single pulses, no signal is
recorded.
Mathematically speaking, the signal U(τ) detected is an integral since, as mentioned,
the photodiode is not fast enough to detect ultrashort pulses:

U(τ) ∝
∫ +∞

−∞
|ESH(t, τ)|2dt ∝

∫ +∞

−∞
|ASH(t, τ)|2dt (2.3)

where ASH is the envelope of the second harmonic pulse that is constituted by:

ASH(t, τ) ∝ A(t) · A(t− τ) (2.4)

with A(t− τ) envelope of the delayed pulse. But, in Eq. 2.3 there is the modulus
squared of ASH(t, τ) which is:

|ASH(t, τ)|2 ∝ I(t) · I(t− τ) (2.5)

that produces the following expression:

U(τ) ∝
∫ +∞

−∞
I(t) · I(t− τ)dt = CI(τ) (2.6)

called intensity autocorrelation CI(τ). This function has the following three properties:

• It reaches the maximum when τ=0 since in that moment the two pulses are
completely overlapped.

• It is an even function, CI(τ)=CI(−τ).

• By performing the Fourier transform of it, what we get is:

F{CI(τ)} = |̂I(ω)|2 (2.7)

These properties underline the limits of this technique. Indeed, the second feature does
not permit the characterization of an asymmetric pulse. Instead, in the third one the
phase term eiφ̂(ω) is missing and so the spectral phase cannot be reconstructed with
this method. However, in our experiment we consider symmetric pulses and as con-
sequence, the Fourier transform is real and that phase term can be skipped. Finally,
the pulse duration can be retrieved by simply measuring the FWHM of the intensity
autocorrelation and dividing it by a constant that in case of sech2-shaped pulses is
1.54.
The measurements were performed by directly launching the output beam of the oscil-
lator in a commercial autocorrelator based on the working principle described above.
The traces collected, shown in Fig. 2.5, are three and they correspond to the values
of pump current seen in previous subchapter. As we can see here again, the intensity
autocorrelations do not change too much by varying the output power. The curves
were fitted with sech2 function producing the following values of FWHM: 113.2 fs (for
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a current of 0.55 A), 105.9 fs (for a current of 0.65 A), and 103.4 fs (for a current of
0.75 A).

Figure 2.5: Intensity autocorrelation for a pump current of (a) 0.55 A (b) 0.65 A (c)
0.75 A.

The corresponding pulse durations are shown in Table 2.2. As we can notice, these
values are around 70 fs and so they are coherent with the measurements performed in
previous experiments.

Ipump(A) ∆τAC(fs) ∆tp(fs)

0.55 113.2 73.5

0.65 105.9 68.8

0.75 103.4 67.1

Table 2.2: Autocorrelation FWHM ∆τAC and pulse duration ∆tp as function of pump
current Ipump. Since we are dealing with sech2-pulses, ∆tp is got dividing ∆τAC by 1.54.
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2.2.4 Relative intensity noise

Lasers are generally affected by external perturbations which influence their opera-
tion and for this reason it is fundamental to stabilize them. Apart from fluctuations of
the cavity length which brings to a change of the pulse repetition rate, there are as well
some perturbations causing amplitude fluctuations named intensity noise. In case of
solid-state lasers, these perturbations come from different sources: pump fluctuations,
cavity misalignment or degradation of components [20]. This intensity noise is usually
quantified in terms of relative intensity noise (RIN) defined as the ratio between the
mean-square power fluctuation and the average optical power of pulse train squared:

RIN =
⟨δP(t)2⟩
⟨P(t)2⟩

(2.8)

The frequency analysis of RIN can be performed by means of the power spectral density
(PSD) :

SRIN(f ) = F{R(τ)} =

∫ +∞

−∞
R(τ)ei2πωτdτ (2.9)

which is the Fourier transform of a function R(τ) defined as the autocorrelation of the
output power fluctuations divided by the square of the average output power:

R(τ) =
⟨δP(t)δP(t + τ)⟩

⟨P⟩2
(2.10)

The relation between Eq (2.8) and Eq (2.9) is expressed by:

RIN =

∫ fr
2

1
T

SRIN(f )df (2.11)

where T is the measurement time while fr is the repetition rate.
Intensity noise is generally measured with a fast photodiode in which a photocurrent
is generated and converted into a voltage by means, for example, of a resistor. The
fluctuating voltage is then fed into an electronic spectrum analyser getting the PSD
which is expressed in V2⁄Hz or in alternative as logarithmic quantity in dBm⁄Hz. If
this value is then divided by the DC voltage level squared, we get RIN PSD expressed
in Hz−1. It is common to multiply the logarithm in base 10 by 10 in order to express
it in dBc⁄Hz.
Figure 2.6 displays the RIN of the Yb:CALGO laser. The measurements of both
the oscillator and the noise floor were performed at the output of the amplifier with
everything switched off. The reason for this choice is the will to compare all the
traces, included the RIN of amplified signal that will be displayed in Chapter 3, at the
same fixed place. Our measurements were performed from 10 HZ to 80 MHz (Nyquist
frequency). Around 102 Hz, we notice a series of peaks caused by the electronic noise
associated to the pump diode. At higher frequencies these peaks are filtered by the
Ytterbium upper-level lifetime equal to 440 µs [52] which corresponds to a cut-off
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frequency ∼ 2.3 kHz. At 30 kHz we notice a further peak caused by a small modulation
that characterize the mode-locking regime of Yb:CALGO. After this, the RIN of laser
reaches the noise-floor at the level of -130 db/Hz.

Figure 2.6: Relative intensity noise of the Yb:CALGO ultrafast oscillator.

2.3 Yb-based fiber amplifier

2.3.1 Technical description

The first element of the fiber amplifier, shown in Fig. 2.7, is a collimator mounted
on a special slit moving along x and y directions allowing a fine coupling of light into
fiber. The latter is a 75-cm long Liekki Passive-10/125DC-PM that is, as specified by
the model, a polarization-maintaining waveguide with a core diameter of 10 µm and
a cladding diameter of 125 µm. The fiber goes from the collimator to one of the two
inputs of the wavelength domain multiplexing (WDM) which is a technology that allows
the simultaneous transmission of several optical channels at different wavelengths into
a single optical fiber [54]. In our case, WDM is a (1+1)x1 PM combiner where (1+1)x1
means that there is one input dedicated to the signal and one to the pump with a single
output. PM underlines that during the transmission the polarization of light remains
unchanged. The maximum power supported by it is 100 W. Like the first input, the
output is connected to a 75-cm long Liekki Passive-10/125DC-PM. Instead, the second
input, dedicated to the pump, is linked to a fiber with a core diameter of 105 µm and
a cladding diameter of 125 µm.



Chapter 2. Experimental setup 35

The pumping system is constituted by a power supply of TDK Lambda and by a pump
diode (model: K976DA5RN-70.00WN0N-10522B10ENA0). Since the spectrum of the
signal is peaked at 1050 nm, the transition of Ytterbium ions exploited here is the one
with absorption at 976 nm and emission at around 1030 nm. This reason and the need
of high power bring us to adopt a pump diode emitting at 976 nm with a maximum
power of 70 W even if this is more than enough for our purposes. However, working
with such high powers causes problems of overheating. To avoid any damage, the
temperature of diode must be kept under 35 Celsius degrees. In our case we adopted
a passive cooler presenting on the top a copper foil covered by a thermal compound
helping the flow of heat. The temperature is monitored by means of a 10 kΩ thermistor
put on the base of the diode connected to a digital multimeter. A better cooling could
be achieved by means of a Peltier cell put below the base of diode but we did not adopt
it since our cooling system demonstrated to be easier and efficient.
The output passive fiber is then spliced with a 3-meter long Liekki Yb1200-10/125DC-
PM which is the active equivalent of the WDM’s output fiber. The fact that the
dimensions of core and cladding are the same avoids any problem of compatibility
between these two types of fiber. The active waveguide is wrapped around a steel
spool that has the function of cooling it when the pump power is high. Two key
aspects worth to mention are that these fibers are double-clad in order to support high
powers and that the amplifier is characterized by a forward pumping configuration. In
this kind of setup the pump coupled in the inner cladding and the signal coupled in
the core are launched from the same fiber end [33]. The opposite case is represented
by the backward pumping where pump and signal are launched from opposite ends.

Figure 2.7: Fiber amplifier scheme.

The correct length of the active waveguide, which is quite delicate, has been determined
by means of a simulation on MATLAB implementing the mathematical models that
will be matter of following subsection. Another key aspect is that the output tip of
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this 3-meter long fiber is not flat but it has a certain angle in order to avoid back
reflections that would cause damage to components. The output beam is constituted
by the amplified signal and the residual pump that, as already mentioned, are then
separated by means of a dichroic mirror.

2.3.2 Mathematical modelling

The mathematical model presented employs a rate equation formulation [33] in-
cluding a large part of effects that characterize the amplification process such as scat-
tering losses and amplified spontaneous emission (ASE). ASE is the amplification of
the luminescence spontaneously emitted in laser gain medium which is, in case of fiber
amplifiers, an unwanted effect since it limits the gain [29]. Other effects like clustering
and quenching are neglected by considering quite low dopants concentration [55]. Be-
fore writing down the rate equations, let’s define the following parameters: the signal
wavelength λs, the pump power Pp and λp wavelength, and the dopant concentration
N that at first order approximation can be consider as independent from time and
position z along the fiber. The time-dependent rate equations for a double-clad fiber
are:

∂N2(z, t)

∂t
=

(
λpΓpσa(λp

)
hcA

)
Pp(z, t)N1(z, t)−

N2(z, t)

τ
+

−
(

Γs

hcA

)
N2(z, t)

∫
σe(λ)[P

+(z, t, λ) + P−(z, t, λ)]λdλ+

+

(
Γs

hcA

)
N1(z, t)

∫
σa(λ)[P

+(z, t, λ) + P−(z, t, λ)]λdλ

(2.12)

∂N1(z, t)

∂t
= −∂N2(z, t)

∂t
(2.13)

where N1 and N2 are, respectively, the population of the ground state and of the
excited state, τ is the spontaneous decay time, σe and σa are the emission and the
absorption cross sections. Γs and Γp represent the signal and the pump filling factor.
For a double-clad fiber Γp

∼= A/S [33] where A is the area of core cross section and S
is the area of first cladding. P+ and P− are the power densities per unit wavelength
in positive (+) and negative (-) directions whose evolution along the fiber is described
by:

±dP±(z, t, λ)

dz
=Γs[σe(λ)N2(z, t)− σa(λ)N1(z, t)]P

±(z, t, λ)+

+ Γsσe(λ)N2(z, t)P0(λ)− α(λ)P±(z, t, λ)
(2.14)

±
dP±

p (z, t)

dz
=− Γpσa(λp)N1(z, t)P

±
p (z, t)− α(λp)P

±
p (z, t) (2.15)

where α(λ) represents the losses at λ, dP±
p (z,t)

dz
≡ ∂P±

p (z,t)

∂z
± n

c
∂P±

∂t
, and P0 ≡ 2hc2

λ3 As
previously mentioned, the length of active fiber must be carefully defined. Indeed, at
the end of the fiber the pump is low and it is no more able to compensate the scattering
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losses that cause a reduction of the signal [33]. That’s why the fiber must not be too
long. On the other hand, in case of a too short waveguide, the potential of the amplifier
is not fully exploited.

2.4 Optical compression
The chromatic dispersion accumulated by a pulse propagating in a given medium

can be compensated by means of an optical compressor. The most common setup is
the one proposed by Treacy [56] shown in Figure 2.8. It is constituted by two couples
of diffraction gratings or by a single pair followed by a roof mirror. The basic idea of
an optical compressor is to provide an opposite effect compared to the one caused by
the propagation in the medium. In fact, the group delay dispersion (GDD) introduced
by the gratings, which is the product of GVD by the length of the medium, must have
the opposite sign with respect to the one of the medium. In our treatment, we stop at
second order, but to get a better compression especially near the zero-GVD point, it
is also necessary to consider the higher order terms.

Figure 2.8: Optical compressor made of (a) single pair of diffraction gratings followed
by a roof mirror and (b) two pairs of diffraction gratings.

To be effective, the pair of diffraction gratings must be carefully design and the starting
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point is represented by the well-known grating equation [57]:

sin θd = sin θi +
mλ

d
(2.16)

where θd is the diffracted angle, θi is the incident angle, d is the distance between adja-
cent grooves, and m is the diffraction order that usually is equal to -1 [19]. Assuming
that the distance between parallel gratings is Lg, the optical path l of a generic spectral
component is expressed by:

l =
Lg

cos θd
+

Lg

cos θd
cos(θd + θi) (2.17)

Define now the group delay τg = l/c of the component considered and the group delay
dispersion D2c expressed by:

D2c =
∂τg
∂ω

=
∂

∂ω

[
Lg

c · cos θd
+

Lg · cos θi

c
− Lg

c
· sin θi · tan θd

]
(2.18)

In the expression of the group delay we consider as propagation speed c and not c⁄n
because we assume to be in vacuum (n=1). In Eq. (2.18) the derivative with respect
to ω of second term is zero since θi, Lg and c are equal for all the spectral components.
After calculation, what we get is:

D2c =
∂τg
∂ω

=
Lg mλ

c d cos θ2d

∂θd

∂ω
(2.19)

where:

∂θd
∂ω

=

[
1−

(
sinθd +

mλ

d

)2]− 1
2

· m
d

· ∂

∂ω
·
[
2π c

ω

]
= − 2 πmc

dω2cos θd
(2.20)

Now, substitute the 2.20 in 2.19 obtaining:

D2c =
Lg m

2 λ3

2 π d2 cos θ3d
(2.21)

By comparing this equation with the value of GDD accumulated in the propagation of
the medium, it is possible to retrieve the geometrical parameters of the system. Pay
attention that this expression is used in case of a single pair. For a double pair of
gratings, Eq. (2.21) must be multiply by a factor 2.
In our setup for the compression after the amplifier, we use a system based on a single
pair of grating of Wasatch Photonics with incident angle of 24 degree and a density of
800 grooves/mm. They are followed by a low-GDD ultrafst mirror that works as roof
mirror and ensures a minimum effect on pulse dispersion.
The compression can be performed also by means of a pair of prisms. Also in this case,
the most common configurations are two: one with single pair followed by a mirror
(Fig. 2.9(a)) and the other with two pairs of prisms proposed by Fork [58] (Fig. 2.9(b)).
Differently from diffraction gratings, prisms are characterized by very low losses and for
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this reason they are used in laser cavities for dispersion compensation. Indeed, when
they are placed at a particular angle called Brewster’s angle, reflections are significantly
reduced and the following relation holds [19]:

tan ϕ1 = tan ϕ2 = n (2.22)

where n is the prisms refractive index, ϕ1 and ϕ2 are, respectively, the incident and
the emerging angles. On the other hand, prisms add a very low dispersion and this
translates in a big spacing among them since a large quantity of dispersion is accu-
mulated in the material-free space. Mathematically speaking, the treatment is quite
complicated. For this reason, we simply report the result proposed by Weiner [19]:

D2c =
λ3

2πc3

{
4L cos θ

(
dn

dλ

)2

− 2L sin θ

[
d2n

dλ2
+

(
2n− 1

n3

)(
dn

dλ

)2]}
(2.23)

Here, θ is the angle formed by a generic ray with respect to the line, of length L,
connecting the apices of adjacent prisms. One aspect to mention is that Eq. (2.23)
holds for a single pair, in case of four prisms configuration it is necessary to multiply
it by factor 2. In our setup the compensation of the dispersion accumulated in PCF is
done by means of a pair of prims.

Figure 2.9: Optical compressor made of (a) single pair of prisms followed by a roof
mirror and (b) two pairs of prisms.

In an alternative configuration, prisms can be substituted by few centimetres of an
hollow core fiber making the setup more compact. Indeed, one of the possible features
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of HC fiber already mentioned in Chapter 1 is the opposite sign of the GDD in spectral
regions where the normal fibers show a positive value. The blue curve in Figure 2.10
displays the behaviour of the dispersion of a HC-1060 fiber as function of the wave-
length. As we can notice, the value for λ=1050 nm is positive differently from what
would get for a normal fiber.

Figure 2.10: Typical dispersion (blue curve) and attenuation (red curve) from HC-1060
fiber datasheet.

The length needed for compensate dispersion can be easily estimated by comparing
the phase accumulated during the propagation in a generic fiber φf with the one that
would be accumulate in a HC fiber φHC:

φf = −1

2
GVDf zf ω

2 (2.24)

φHC = −1

2
GVDHC zHC ω2 (2.25)

where zf and zHC are the length of the fibers. GVDf and GVDHC can be easily retrieved
from the datasheets.
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3| Experimental results

3.1 Fiber amplifier characterization

3.1.1 Pump characterization

Before splicing all the fibers constituting the amplifier, we performed a characteri-
zation of the pump diode. The first quantity measured was the average output power
as function of the pump current. The datasheet declares a maximum value of 70 W
but, as already said, for our purposes 15 W are enough. As consequence, power mea-
surements were performed up to that point. To do this, we used a power meter with
a sensitivity of 10 mW and a range of 10 W that forced us to employ an attenuation
filter for higher powers. The results are displayed in Figure 3.1.

Figure 3.1: Current vs output average power of pump diode.

However, the real pump power is not the one shown in the figure since when the output
fiber is spliced with the WDM, some losses are introduced. In order to quantify them
we repeated the measurements after the WDM obtaining a value between 5% and 10%
which can be considered satisfactory.
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For what about the threshold current that is the level at which fiber amplifier starts
to work and reaches a steady state condition, it was fixed at 0.85 A. The reason for
this choice stays in the power measurements of the output pulses displayed in Sub-
section 3.1.2, where we noticed no amplification below that value. Furthermore, if we
look at the fluorescence spectra shown in Fig. 3.2, the shape for lower levels of current
is not smooth and clean like the one at 0.85 A. These measurements were performed
after splicing the WDM with the 3-meter long Yb-doped fiber. One important aspect
characterizing all the three spectra is the central wavelength that is not fixed, as we
may expect, at 1030 nm. This shift is caused by the low precision characterizing the
diode. However, this oscillator was the only solution available in laboratory and as
consequence we must accept a small reduction in the efficiency of the system.
The same shift can be noticed in the output optical spectrum of the diode shown in
Fig. 3.3 which, apart from that, has also a bad shape. These characteristics confirm
what we just said. Nonetheless, the results obtained that will be shown later in the text
can be considered satisfactory. Obviously, with a more expensive and precise diode we
would have get a better performance.

Figure 3.2: Fluorescence normalized optical spectra measured at a pump current of (a)
0.80 A, (b) 0.83 A and, (c) 0.85 A. The bad shapes of the spectra (a) and (b) are due
to pump currents below the threshold.
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Figure 3.3: Normalized optical spectrum measured at the output of pump diode.

3.1.2 Output pulses characterization

After characterizing the pump, we proceeded by measuring the average power, the
optical spectrum, and the intensity autocorrelation of the output pulses. Differently
from previous measurements that were performed once at time, here the data were
collected in parallel to speed up the process and to avoid any change in conditions.
The setup adopted is shown in Figure 3.4.

Figure 3.4: Measurements setup. AC: autocorrelator; BS: beamsplitter; DM: dichroic
mirror; GM: gold mirror; LS: lens; PM: power meter; SA: spectrum analyzer.
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We start analysing the average power. The measurements shown in Fig. 3.5 were
performed with a power meter characterized by a sensitivity of 1 mW and by keeping
fixed the pump current of Yb:CALGO to 0.65 A.

Figure 3.5: Pump current vs average power at the output of fiber amplifier.

By exploiting a pump power of 13 W we were able to get an average output power of
5W. Except for thermal and structural limitations of amplifier components, we would
have achieved even higher values since as previously mentioned the pump diode can
reach a maximum power of 70 W. However, we stopped there to avoid damaging the
amplifier. Indeed, the parts in which the fibers are spliced are quite delicate and at
high power the impurities within the waveguide could generate the so-called hot spots
reducing the output values.

Pout (W) ∆τAC (fs) ∆tp (fs)

0.160 3439 2233

1.000 3720 2416

2.000 3605 2341

3.000 3824 2483

Table 3.1: FWHM of intensity autocorrelation and corresponding pulse duration as a
function of the average power at the output of the fiber amplifier.

The measurements of optical spectra shown in Fig. 3.6 were performed for four



Chapter 3. Experimental results 45

different values of pump current (0.85 A, 1.35 A, 2.00 A, 2.76 A) with a sensitivity of
1 nm. As we can notice, all the four spectra are centred around 1050 nm as the ones
of the input pulses. What changes between one measurement and the other is the full
width at half maximum that increases by increasing the pump current. This spectral
broadening seems to be caused by SPM confirmed also by the modulation on top of
the curves characteristic of this effect.
The intensity autocorrelations were taken at the same level of power of the optical
spectra. The measurements were performed at the highest resolution of the autocorre-
lator equal to 10 fs. As we can notice, the curves displayed in Fig. 3.7 are characterized
by a very large FWHM compared to the one saw in Fig. 2.3. This is a consequence
of the chromatic dispersion introduced during the propagation in the fiber amplifier.
Another aspect that can be observed is that the trace in Fig. 3.7(a) is more noisy than
the other three because near the threshold level, as already said, the fiber amplifier
does not work well. The corresponding pulse durations are displayed in Table 3.1. As
we can notice, all the values are higher than 2 ps and they do not change too much by
increasing the pump current.

Figure 3.6: Normalized optical spectra measured at a pump current of (a) 0.85 A, (b)
1.30 A, (c) 2.00 A, and (d) 2.76 A.
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Figure 3.7: Normalized intensity autocorrelations measured at a pump current of (a)
0.85 A, (b) 1.30 A, (c) 2.00 A, and (d) 2.76 A.

3.1.3 Relative intensity noise after amplification

Figure 3.8 compares the RIN of the Yb:CALGO (already analysed in Subsec-
tion 2.2.4) with the ones of the amplified signals (AS). The latter were taken at three
different levels of output power: one near the threshold of the amplifier (0.5 W), one
at half the maximum output power reachable (2.5 W) and the last at the maximum
power (5 W). As we can see, at low frequency the intensity noise of the amplified signal
is higher than the one of the Yb:CALGO alone. Indeed, around 102 Hz there are all
the electronic disturbances coming from the electric network whose frequency is 50 Hz.
Since the fiber amplifier is made of electronic components such as the power supplier
and the pump diode, it adds an extra noise in that region. This is confirmed by the
RIN of the pump which is at the same level of the amplified signals. In Figure 3.8,
the filtering effect performed by the Ytterbium upper level is more visible with respect
to Figure 2.6. Indeed, at higher frequencies the RINs of amplified signals decrease
reaching the level of Yb:CALGO while the intensity noise of the pump remains stable.
At 30 kHz, we see the peak already analysed in Subsection 2.2.4 related to the mode-
locking regime of the laser. One important aspect is the fact that by increasing the
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pump current of the amplifier and so the output power, the RINs are not so much
affected. Indeed, in Figure 3.8 the three amplified signals have almost the same level
of intensity noise. At higher frequencies (>106 Hz) all the RINs, apart from the one of
the pump, fall on the noise floor at -140dB/Hz.

Figure 3.8: Relative intensity noise of Yb:CALGO and amplified signals (AS).

3.2 Pulse characterization after optical
compression

This section will analyse two possible configurations we tested during the experi-
ment. We start with the one we chose in which the compression stage is placed after the
fiber amplifier. One characteristic to mention common to both the setups is that this
stage introduces some losses whose value is between 20% and 25%. So all the values of
average output power shown in Figure 3.5, at the same current, will be slightly lower
after the compression. However, since our goal was to get already compressed pulses
with and average power of 5 W, we increased a little bit the pump current arriving to
3.05 A. As consequence, the real value of average power reached after the amplifier,
taken into account the losses, was 6 W. This last statement must be carefully managed
since the data comes from an estimation and the maximum value measured after the
amplifier is 5 W as shown in Figure 3.5.
The normalized optical spectra shown in Fig. 3.9 were measured at the same current
values of the ones in Figure 3.6 with the same resolution. By comparing these spectra
with the ones after the amplifier, we notice that compression does not affect too much
them. Indeed, the spectra measured at 0.85 A and 1.35 A have practically the same
shape of the equivalent traces in Fig 3.6. Instead, the other two curves are charac-
terized by an asymmetric spectral broadening like ones after the amplifier, but with a
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slightly different shape. For what about the FWHM, the values are almost the same
with a maximum variation of 3 nm.

Figure 3.9: Normalized optical spectrum measured after optical compression at a pump
current of (a) 0.85 A, (b) 1.30 A, (c) 2.00 A, and (d) 2.76 A.

We study now the pulse duration which is the characteristic mainly influenced by the
optical compression. The distance between the two diffraction gratings is the quantity
that must carefully determine in order to fully compensate the dispersion. The starting
point was roughly determined by a mathematical simulation implementing a method
similar to the one mentioned for HC fiber in Section 2.4. Indeed, for the calculation of
the phase introduced by the active fiber, we used the Eq. (2.24). while for the gratings
we applied the Eq. (2.21) to calculate the GDD and then the classical equation of the
phase. The distance obtained is 18 mm. The fine tuning of this value was made by
looking at the trace displays on the digital oscilloscope connected to the autocorrelator.
The best distance is the one that produces the tightest intensity autocorrelation. In
our case, for an average power of 5 W after the compression stage we obtained a dis-
tance of 15.41 mm. With this value, the normalized intensity autocorrelations shown
in Fig. 3.10(b) is characterized by a FWHM of 130 fs corresponding to a pulse duration
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of 81 fs. In Figure 3.10(a) is instead displayed the corresponding normalized optical
spectrum. As we can see, around 1050 nm there are some spikes which indicate the
presence of a lasing effect. Another characteristic that can be noticed is the highly
asymmetric spectral broadening which extend mainly toward low frequency compo-
nents. This could be a consequence of the intrapulse Raman scattering which is an
effect characterizing the propagation of ultrashort pulses in fibers and whose details
are described in Subsection 3.3.1. The effects of this phenomenon were already present
in the spectra shown in Figure 3.9 but they were not so visible like in this spectrum.

Figure 3.10: (a) Normalized optical spectrum for an average output power of 5W and
(b) Normalized intensity autocorrelation for an average output power of 5W.

As said at the beginning of this subsection, this was not the unique possibility to
compensate the dispersion. Indeed, before adopting the configuration described above,
we placed the compression stage before the input of the fiber amplifier. In terms of
average powers, this setup was in line with the other scheme. For what about the
optical spectrum, the one measured here shown in Fig. 3.11(a) is quite asymmetric and
characterized by a strange shape that does not allow us to quantify the FWHM. As
consequence, even if we notice a spectral broadening, we cannot compare quantitively
this curve with the ones in Figure 3.9. This spectrum was taken at a pump current of
1 A with the same resolution of the other measurements (1 nm).
However, what brought us to discard this setup is the measurement of intensity auto-
correlation shown in Fig 3.11(b). Indeed, despite we used different distance between
the diffraction grating, we were not able to reduce the pulse duration below 700 fs. The
best intensity autocorrelation taken has a duration of 1.1 ps which is a value ten times
larger than the one saw in Fig. 3.9. The reason why it was no possible to compress
the pulses is not clear. Probably, it is connected to some distortions introduced by the
compression stage in the optical spectrum causing an anomalous propagation of the
components. However, this cannot be said with certainty since to verify we need the
spectra after the compression.
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Figure 3.11: (a) Normalized optical spectrum and (b) normalized intensity autocor-
relation. Both the measurements were performed after the optical compression stage
placed before fiber amplifier.

3.3 Spectral broadening

3.3.1 Supercontinuum generation

Supercontinuum generation (SCG) or white light generation is a phenomenon caus-
ing a wide spectral broadening that exceed what is normally observed in case of self-
phase modulation. This effect is generated by very intense pulses propagating in liquid,
solid and gasses. Supercontinuum generation can be exploited for many applications in
ultrafast science and technology such as spectrally resolved ultrafast spectroscopy and
realization of octave-spanning spectra to stabilize femtosecond frequency combs [19].
Since we used PCF in our experiment to generate SC, in this chapter we will mainly
focus on the physics of SC in fibers and on the comparison with bulk materials. In
the latter the self-focusing effect plays a key role since, as already said, to obtain a
wide spectral broadening, high powers are needed. Instead, in fibers this effect is not
fundamental since the spatial mode is defined by the waveguide. Indeed, in the super-
continuum generation in PCF, the effects that play a principal role are the SPM and
the dispersion. For what about the latter, bulk materials require condition of strong
normal dispersion which instead is not fundamental for the waveguides. Another char-
acteristic of SCG in fiber is that a very high power is not necessary since the nonlinear
effects can accumulate over long propagation distances. These low intensities reduce
the plasma generation through multiphoton ionization which is a phenomenon causing
an opposite effect with respect the one of self-focusing. It is not clear if this effect
limits or help the SCG to start, what is well-established is that it happens rarely in
fibers. Photonic crystal fibers for SCG are of practical interest due to the low energy
operation and due to a stable beam profile with high spatial coherence [19].
Mathematically, SCG cannot be described by simply the nonlinear Schrödinger equa-
tion saw in Chapter 1. Indeed, Eq. (1.45), apart from be valid in case of pulses with
duration > 1ps, does not consider some effects that influence the propagation of
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ultrashort pulses (< 1ps) and that have a key role in supercontinuum generation.
Among them we find higher-order nonlinearities up to the 9th-10th order, four-wave
mixing, and intrapulse Raman scattering. In the latter, the low-frequency components
are amplified by transferring energy from the high-frequency ones causing a shift of the
optical spectrum toward the low-frequency side as the pulse propagates [50]. For this
reason, it is sometimes referred to as self-frequency shift [59].
Now, we can take into account all these effects in the propagation equation. The start-
ing point is represented by the wave equation (1.29). If we want to consider higher-order
effects, the third-order nonlinear polarization must be expressed by:

P (nl)(r, t) = ε0χ
(3)E(r, t)

∫ t

−∞
R(t− t1)|E(r, t1)|2dt1 (3.1)

where R(t− t1) is the nonlinear response function that is different from zero for times
t1 < t and zero for times t1 > t in order to ensure causality. This function describes
the Raman response and it is defined as the sum of two components, one instantaneous
and one retarded [60][61]:

R(t) = (1− fR)δ(t) + fRhR(t) (3.2)

with fR=0.18 in silica fibers while hR(t) is the experimentally determined Raman cross
section [60]. After following the same procedure described in Subsection 1.4.1, what
we get is [62]:
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called generalized nonlinear Schrodinger equation. In Eq. (3.3) the right hand side
that was not present in (1.42) takes into account, apart from the losses introduced
by the intrapulse Raman scattering, the self-steepening and shock formation at pulse
edge [63][64]. These are other higher-orders effects contributing to the supercontinuum
generation. This equation is also valid in case in which the slowly-vary envelope ap-
proximation is no more effective and it can be used to describe the propagation of few
optical cycles pulses if higher-order dispersive terms are considered [64][65].
In case of pulses with a duration in the order of picoseconds, R(t) is replaced by the
delta function δ(t) since the time scale is much longer than the one of Raman response
function hR(t). Furthermore, for such pulses the shock term and the higher-order
dispersion terms are negligible [50]. By applying these conditions, we return to the
Equation (1.42) treated in Chapter 1.
In the left of Fig. 3.12, we provide the result of a simulation implementing the Equa-
tion (3.3) that shows how the spectrum evolves as the pulse propagates. The fiber
parameters are the same used by J.C.Travers, M.H. Frosz, and J.M. Dudley in Ref.
[66]. Instead, the pulses have characteristics similar to the ones at our disposal. Indeed,
we considered in the simulation an average power of 4 W with a duration of 80 fs. For
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what about the length of the fiber, we chose 15 cm which is the same of the waveg-
uide used in the experiment even if the model is different. Figure 3.12 shown also the
temporal evolution plot from which it is possible to see the effects of the soliton fission
[67][68] that become remarkable after a distance of 2 centimetres. This phenomenon
belongs to the “higher-order nonlinear effects” named above and it causes a splitting
of the higher-order solitons into multiple fundamental solitons. It dominates, together
with Raman scattering and soliton formation, the pulse propagation at wavelengths
longer than the zero-dispersion point in fibers. Conversely, at shorter wavelength pulse
propagation is dominated by four-wave mixing and SPM.

Figure 3.12: Example of spectrogram and temporal evolution plot in a photonic crystal
fiber.

3.3.2 Experimental results

For the supercontinuum generation we adopted 15-cm long photonic crystal fiber
(LMA-PM-10 by Thorlabs). The pulses at our disposal at the input of the fiber are
characterized by a duration of 80 fs and an average power of 4 W. The last data seem
not to be coherent with what we said in Section 3.2 where the power obtained was
5 W. If we return to the scheme in Section 2.1, there is an optical isolator between
the fiber and the compression stage which introduces losses around 20% reducing the
power to 4 W.
The light is coupled directly in the fiber by means of a lens. Choosing the right focal
length is fundamental here since the coupling percentage depends from the dimension
of the beam. To determine this parameter we used a simulation implementing the
following formula:

w1 =
λ · f
π · w0

(3.4)
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where w1 and w0 are respectively the output and the input beam radius while f is
the focal length. In order to determine w0 and other characteristic our beam we
used a camera-based beam profile system. In Fig. 3.13 is shown the result of the
measurement. The curve which represents the beam profile was fitted by means of a
gaussian function obtaining w0 ≈500 µm. Instead, for w1 we considered half the mode
field diameter provided in the datasheet of the photonic crystal fiber which is w1=4.4
µm. By substituting these numbers in the Eq. (3.4), we get f=6.43 mm. The unique
lens available with a focal length in the order of this number was an aspheric one with
f=3.9 mm that allowed us to couple more than the 60% of the input power.

Figure 3.13: Beam profile measurements along X (on the left) and along Y (on the
right).

In Figure 3.14, some measurements of optical spectrum performed after the PCF are
shown. These are displayed in both linear (a) and logarithmic (b) scale. As expected,
by increasing the power coupled in the fiber, the spectrum becomes wider and wider.
In our case we have arrived to 1 W coupled which correspond to 2 W at the input
of the fiber if we consider a coupling percentage of 60%. Already with these values
we get a spectrum with a FWHM larger than 50 nm even if it is difficult to give a
precise number due to the shape of the spectrum. As said in previous subchapter, we
were able to reach a power of 4 W at the input of the fiber. If we consider that the
measurements here were performed at half this value, we aspect to have at least 100 nm
of FWHM with 4 W. The result could be further improved by increasing the coupling
percentage using, for example, a lens with even lower focal length. In alternative, it is
possible to save some centimetres of PCF which means reducing the costs of the system
still obtaining good results. In Figure 3.14, it is possible to recognise the well-known
modulation characteristics of the self-phase modulation. Indeed, especially in the curve
corresponding to 1 W we see the two lateral peaks separated by a small modulation in
the middle.
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Figure 3.14: Spectral broadening for power going from 30 mW to 1 W in (a) linear
scale and (b) logarithm scale.

The relative intensity noise was not measured because, as we will see in Section 3.4, the
impossibility of implementing a suitable characterization technique does not allow a
fine tuning of the optical compressors. As consequence, in absence of well-compressed
pulses we preferred not to perform this measurement. However, we can make some
predictions by means of a comparison with Fig. 3.8. What we expect is a degradation
of the noise at low frequency caused by the modulation instabilities that govern the
higher-order solitons propagation and fission. Also at high frequency there might be a
degradation of white noise floor due to the nonlinear amplification of input pulse shot
noise [69] even if it is expected to be not so dramatic due to the limited length of our
fiber.
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3.4 Pulse compression and characterization after
supercontinuum generation

In this subchapter we will analyse some alternative characterization techniques to
the one described in Chapter 2 and we will make some estimations about the temporal
duration of our pulses after the compression. What we provide are estimations and
not experimental data because the limited budget did not allow us to implement the
scheme we are going to describe.
Our goal is to achieve a pulse duration of 15 fs that if compared with the 80 fs of
the pulses before PCF, it produces a compressor factor F=80/15=5. We assume to be
able to fully compensate the dispersion accumulated in PCF and so that the pulses we
get are transform-limited. Under these conditions, the spectral broadening must be
at least 5.3 larger than the initial spectrum which correspond to a FWHM of 80 nm.
As shown in previous subchapter, already with half the maximum power we get a full
width at half maximum of 50 nm and so we are confident to get a compression factor
larger than 5.3 by fully exploiting the potential of the system. Indeed, assuming at
maximum power a spectrum characterized by a FWHM of 100 nm, this would corre-
spond to F=6.66 and so to pulses with duration of 12 fs.
By means of data provided in the datasheet of the PCF we can estimates both the
distance between the fused silica prisms and the length of the HC fiber needed to com-
pensate the dispersion. The calculations will stop for simplicity at the second order
considering the GVD alone. The PCF has a group velocity dispersion at 1050 nm equal
to 15 fs2/mm that if multiplied by its length (15 cm), it produces a GDD of 2250 fs2.
Considering that HC-1060 fiber, already mentioned in Section 2.4, has a GVD at 1050
nm of about 14.6 fs2/mm, the dispersion accumulated can be compensated with 15.4
cm of hollow core fiber. In alternative we can use a pair of SF14 prisms followed by a
roof mirror (see scheme in Section 2.1). We estimate that with a tip-to-tip separation
of about 12.6 cm we can fully compensate the dispersion.
In terms of average power at the output of the PCF, we estimate to have, at the best,
more than 2.5 W. This value is enough high to allow a good efficiency in the produc-
tion of a broadband mid-infrared pulse and for other applications treated in the next
chapter.
Since we are dealing now with pulses with a duration lower than 20 fs, a characterization
technique more sophisticated than the one shown in Subsection 2.2.3 is needed. This is
represented by frequency-resolved optical gating, also known as FROG which belongs
to the category of self-referencing spectrographic techniques. The latter use spectro-
grams to fully reconstruct pulses in terms of both amplitude and phase differently from
noncollinear SH autocorrelator. Apart from that, this technique shows a high resolu-
tion allowing a characterization of pulses also in the sub femtosecond domain. There
are many types of FROG which exploit different geometries and nonlinear interactions
such as polarization gating, self-diffraction, and second- and third-harmonic generation
[19]. Later we will provide a brief description of them.
Before we can analyse how to retrieve information about the pulse by means of FROG.
We start defining three functions: f(t) which is unknown, the gate function g(t − τ)
which is known and, fgated(t, τ) = f(t) · g(t − τ). The spectrogram S(ω, τ) is defined
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as the modulus squared of the Fourier transform of fgated(t, τ):

S(ω, τ) =
∣∣∣F{

fgated(t, τ)
}∣∣∣2 = ∣∣∣∣∫ +∞

−∞
f(t) · g(t− τ)e−iωtdt

∣∣∣∣2 (3.5)

The idea is to use an iterative procedure to retrieve the function f(t) knowing S(ω, τ)
and g(t − τ). However, this is a general case. For ultrashort pulses the meaning of
these functions is slightly different. Indeed, f(t) represents the electric field E(t) of the
pulse while g(t − τ) = E(t − τ) and for this reason is unknow. Instead, fgated is here
called Esignal and it is equal to:

Esignal(t, τ) = E(t) · E(t− τ) (3.6)

that can be defined as the electric field of a novel pulse generated inside a nonlinear
media by the interaction of at least two replicas of E. As consequence the power spectral
density measured by the spectrometer is equal to:

S(ω, τ) =
∣∣∣F{

Esignal(t, τ)
}∣∣∣2 (3.7)

If now we feed all these quantities in the iterative procedure shown in Fig. 3.15 called
vanilla procedure [70] after a certain number of iterations i, we can retrieve the unknown
electric field. The equation in last box of Fig. 3.15 is obtained by inverting the integral
of Esignal in dτ :∫ +∞

−∞
Esignal(t, τ)dτ =

∫ +∞

−∞
E(t) · E(t− τ)dτ = E(t)

∫ +∞

−∞
E(t− τ)dτ (3.8)

Figure 3.15: Vanilla procedure.
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This is not the unique algorithm available since there exists more robust and complex
procedure such as the so-called principal component generalized projection algorithm
[70][71].
Among the most important types of FROG we find:

• Second-harmonic generation FROG (SHG-FROG) [72][73][70]. The scheme of
this technique is identical to the one saw for the noncollinear SH autocorrelator
shown in Figure 2.4 but with the photodetector substituted by a spectrometer.
Here Esignal is defined as:

Esignal(t, τ) = C · E(t) · E(t− τ) (3.9)

where C is a constant. The advantages of this technique are the simplicity and
the possibility to apply it also in continuous-wave laser. However, it is affected
by time ambiguity in the sense that two pulses characterized by a chirp equal in
modulus but different sign produce the same spectrograph being indistinguish-
able.

• Polarization-gating FROG (PG-FROG) [73][70]. This technique whose scheme is
shown in Fig. 3.16 exploits the Kerr effect. The starting point is represented by
the pulse to characterize and the delayed copy of it, called gating pulse. The for-
mer has a vertical polarization while the latter starts with a vertical polarization
that is then converted into 45 degrees polarization.

Figure 3.16: Polarization-gating FROG scheme.

The two pulses are then focus in a χ(3) media where the phase modulation and
the transient nonlinear birefringence caused by the Kerr effect produce a pulse
with elliptical polarization that is partially transmitted by the second polarizer.
The power spectrum of the transmitted pulse is then measured by a spectrometer.
Here Esignal is equal to a quantity ∆E that represent the transmission function
of the second polarizer and it is defined as:

∆E = C · E(t) · [n2// − n2⊥] · |E(t− τ)|2 (3.10)

where C is a constant while n2// and n2⊥ are respectively the nonlinear index along
the parallel and the orthogonal directions of the transient birefringence. This
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technique solves the problem mentioned in SHG-FROG but the great amount
of glass in the system introduces dispersion making it unsuitable for few optical
cycles pulses.

Figure 3.17: Self-diffraction FROG scheme.

• Self-diffraction FROG (SD-FROG) [74][73][70]. Like the previous technique, it
exploits the interaction between the two pulses and the Kerr effect to produce
a phase grating. These pulses, apart from creating it, are also diffracted by it.
The possible diffraction directions are four as shown in Figure 3.17 and the power
spectrum is measured by placing the spectrometer along one of the two external
directions, 2k2-k1 or 2k1-k2. Consider the latter, Esignal is defined by:

Esignal = E(t) · E(t) · E∗(t− τ) (3.11)

where the complex conjugate is due to the presence of a minus sign in front of
k2.
This technique is suitable for ultrashort pulses due to the small amount of glass.
However, diffracted directions are, in general, not phase matched and so we need
intense pulse to produce both a strong grating and a reasonable diffracted signal.

• Third-harmonic generation FROG (THG-FROG) [70][73]. This technique is sim-
ilar to SHG-FROG but exploits the third-harmonic generation instead of the
second-harmonic. As shown in Fig. 3.18, the possible directions are four, the ex-
ternal two are related to the third harmonic of the single pulses while the internal
ones come from their interaction. The spectrometer is place along one of these
last two directions. If we consider, for example, 2k1+k2, what we get is:

Esignal = E(t) · E(t) · E(t− τ) (3.12)

This technique is mainly exploited in the medium infrared since the third-harmonic
of NIR is in the UV and it is difficult having a detector working in that spectral
region.



Chapter 3. Experimental results 59

Figure 3.18: Third-harmonic generation FROG scheme.

In Fig. 3.19 are shown some examples of measurement provided by Trebino in Ref.
[73]. Despite the problems characterizing it, for our purpose we would have decided to
adopt the SHG-FROG due to its simplicity.

Figure 3.19: Comparison of traces for most common ultrashort pulses measured with
different types of FROG provided by Trebino in Ref. [73].
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4| Few-optical-cycles pulse
applications

4.1 Three-waves interaction processes
The frequency-conversion processes based on second-order nonlinear optic can be

described as the interaction of three pulses/waves [19]. The latter must satisfy the
energy conservation condition ω1 +ω2 = ω3 that in case of pulses represent the central
angular frequency of the spectrum. To get a good efficiency also the phase matching
or momentum conservation should be satisfied: k1 + k2 = k3.
The most common second order nonlinear effects are summarized in Fig. 4.1. Among
them we find:

• Sum frequency generation (SFG) where the interaction of two waves of frequencies
ω1 and ω2 generates a third wave of frequency ω3 = ω2 + ω1.

• Difference frequency generation (DFG) which involves again the interaction of the
same two waves of SFG but generating a third wave of frequency ω3 = ω2 − ω1.

• Second-harmonic generation (SHG) which is a particular case of SFG where the
two input waves have the same frequency.

• Optical parametric amplification (OPA) which is a particular case of DFG where
in presence of strong input wave of frequency ω2, the lower frequency wave ω1 is
amplified.

• Optical rectification (OR) which is a particular case of DFG where ω3
∼= 0.

The electric fields of the three pulses can be written as:

Ei(z, t) =
1

2

[
Ai(z, t)e

i(ωit−kiz) + cc
]

(4.1)

where i=1,2,3. Consider now the expression of the second-order nonlinear polarization
in the form of Eq. (1.27):

P (2)(z, t) =
ε0χ

(2)

4

[
A1(z, t)e

i(ω1t−k1z)+

+ A2(z, t)e
i(ω2t−k2z) + A3(z, t)e

i(ω3t−k3z) + cc
]2 (4.2)
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Since this equation is made of many terms and the procedure is equal for all the three
pulses, consider only the terms oscillating at ω3 = ω2 − ω1 corresponding to field E1:

P (2)
ω1

(z, t) =
ε0χ

(2)

2

[
A3A

∗
2e

i[(ω3−ω2)t−(k3−k2)z] + cc
]2

(4.3)

By comparing this equation with the (1.35) and by substituting the result into (1.39),
what we get is:

∂A1

∂z
+

1

vg(ω1)

∂A1

∂t
= −id1A3A

∗
2e

−i∆kz (4.4)

with ∆k = k3− k2− k1 and d1 =
ω1χ(2)

2n(ω1)c
. Further, in Eq. (4.4) we neglect for simplicity

the dispersion effects assuming βn = 0.

Figure 4.1: Summary scheme of the frequency-conversion nonlinear processes that
can be described as interaction of three pulse/waves. SFG: sum frequency generation;
DFG: difference frequency generation; SHG: second-harmonic generation; OPA: optical
parametric amplification; OR: optical rectification;

Now, consider a new time frame comoving with the third pulse defined by T = t− z
vg(ω3)

.
Since we are dealing with more than one pulse, by passing to this time frame we will
have some shift of the other two due to the different propagation speeds. This aspect
must be considered in the treatment of the various second-order nonlinear processes.
After performing all the calculation also for the other two pulses, what we get is the
following system of equations:

∂A1

∂z
+ δ13

∂A1

∂T
= −id1A3A

∗
2e

−i∆kz

∂A2

∂z
+ δ23

∂A2

∂T
= −id2A3A

∗
1e

−i∆kz

∂A3

∂z
= −id3A1A2e

+i∆kz

(4.5)
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where δ13 and δ23 are the group velocity mismatches expressed by:

δij =

[
1

vg(ωi)
− 1

vg(ωj)

]
(4.6)

At the beginning of this section, we spoke about not only of interaction of pulses. In-
deed, the system can be further simplified by considering waves satisfying the following
relation:

∂Ai

∂T
= 0 (4.7)

where i=1,2,3. This condition tells us that the amplitudes of the three waves are
constant over the time. As consequence, if we look at their temporal evolution at fixed
point in χ(2) media, the values will be always the same. Instead, if we look over the
propagation along z, these will change due to the interaction among the three waves.
The System (4.5) represents the starting point of the descriptions of second-order
nonlinear processes treated in following subsection. A rigorous mathematical treatment
is followed only for SHG, DFG and OPA. The reason why we do not consider SFG is
because the procedure explained in Subsection 4.1.1 is practically identical to the one
of second-harmonic generation with the difference that the two input waves have a
different frequency. Apart from that, we decided to describe accurately only SHG
since one of the applications faced in this chapter is based on it. Differently from
SFG, optical rectification is presented since it is exploited in THz-radiation generation
described in Section 4.3. However, we limit to provide few key concepts of the process
without following a rigorous procedure due to its similarity to DFG.

4.1.1 Second harmonic generation

Second-harmonic generation is a second-order nonlinear process that produces a
wave having twice the frequency of the input one. The mathematical treatment followed
here is the same proposed by A. Weiner in Ref. [19]. It starts considering the case of
a wave of intensity Iω that, as shown by Fig. 4.2, can be split into two waves with the
same frequencies ω = ω1 = ω2 and with amplitudes defined by:

A1 = A2 =
Aω√
2

(4.8)

Here, the factor
√
2 ensures the conservation of the intensity. The second-harmonic

generated by the interaction is a wave of frequency 2ω and amplitude A2ω. By sub-
stituting all of these quantity in the System (4.5) and considering the approximation
expressed by Eq. (4.7), what we get is:

∂Aω

∂z
= −idωA

∗
ωA2ωe

−i∆kz

∂A2ω

∂z
= −id2ω

A2
ω

2
ei∆kz

(4.9)

with ∆k = k2ω − 2kω. This system is not difficult to solve analytically. Nonetheless,
we prefer making a further approximation called non depletion approximation where
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we consider an input wave so strong that the generation of the second harmonic does
not reduce its intensity [Aω(z) ∼ Aω0 ].

Figure 4.2: Simplified scheme describing the second-harmonic generation in a χ(2)

medium. Here the input wave is split into two waves having half its intensity.

Now, integrate the second equation of the system between 0 and z and impose A2ω(0) =
0, obtaining:

A2ω(z) =
id2ωA2

2ω

∆k
ei

∆kz
2 sin

(
∆kz

2

)
(4.10)

If we multiply and divide the Equation (4.10) by z/2 and we make the modulus squared
of the result, we get the corresponding intensity expressed by:

I2ω(z) ∝ d22ωI
2
ω

z4

4
sinc2

(
∆kz

2

)
(4.11)

we notice that the intensity of the second-harmonic wave is proportional to the square
of Iω and of the parameter d which contains χ(2). Further, if we consider the case of a
perfect phase matching ∆k = 0, I2ω is also proportional to the square of z showing a
behaviour depicted in Fig. 4.3 as it propagates. However, this condition is not easy to
achieve since:

∆k = k2ω − 2kω =
ω

c
n(2ω)− 2

ω

c
n(ω) = 0 (4.12)

requires n(2ω) = n(ω). As shown in Fig. 4.4, this cannot be satisfied by simply employ-
ing an isotropic media. For this reason, it is necessary to adopt a birefringent medium.
In the latter, it is possible to exploit the presence of an ordinary and extraordinary
axis to fulfil the phase matching condition and so increase the efficiency of the process.
In order to understand how it works, see Figure 4.5 where the co-called normal (or k)
surfaces are depicted. These curves refer to the case of positive uniaxial crystal where
the refractive index along extraordinary axis ne is larger than the one along ordinary
axis n0. The circle in black represents n0 for a frequency 2ω0 while the blue curve is
expressed by [19]:

1

nb(θ)
=

cos2θ

n0

+
sin2θ

ne

(4.13)

In our case, the surface is calculated by using n0 and ne for a frequency ω0. The
parameter θ represents the incident angle of the input wave.



Chapter 4. Few-optical-cycles pulse applications 64

Figure 4.3: Behaviour of the second-harmonic intensity I2ω as function of the length
of the medium.

From the Figure 4.5, we see that the two curves have four cross points in which the
values of the refractive indexes for ω0 and 2ω0 are the same. So, by properly choosing
the angle θpm of the input wave, we can achieve the following condition:

nb(θpm, ω0) = na(2ω0) = n0(2ω0) (4.14)

obtaining a perfect phase matching. The price to pay is that the second-harmonic and
the fundamental waves will be polarized along orthogonal directions but this is not the
problem if we consider the advantages in terms of efficiency. This argument can be
used to explain why the hypothesis of scalar χ(2) was defined unphysical in Chapter
1. Indeed, if our two fields are Ey = Eω = Eωuy and Ex = E2ω = E2ωux, the
second-order polarization vector is written as:

Px = ε0χ
(2)
xyyE

2
y (4.15)

where the tensorial nature of χ(2) is highlighted. The condition expressed in (4.14)
belongs to type I phase matching which is the most exploited in SHG and where the
second-harmonic is polarized along ordinary axis while the fundamental wave along the
extraordinary axis. However, there exist other two types of phase matching conditions
called type II and type 0 [19]. In the former the fundamental wave is split into two
waves: one polarized along the ordinary axis the other along the extraordinary axis.
The resulting second-harmonic wave will be polarized along ordinary direction. This
type of phase matching can be realized in birefringent materials like the case of Type
I.
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Figure 4.4: Behaviour of the refractive index n as function of ω in a general medium.
As shown the values of n for ω0 and 2ω0 are different.

In type 0, all the three waves are polarized along the ordinary directions. However, dif-
ferently from the other two types, it cannot be achieved in standard birefringent media.
Indeed, in some nonlinear materials, it is possible to change the properties of polar-
ization by applying strong fields with a certain periodic pattern. This process called
periodic pooling generates alternating slices of material with χ(2) > 0 and χ(2) < 0
obtaining the effect depicted by the red curve in Figure 4.6. Each slice has a length
equal to the coherence Lcoh = ∆k/π. The change of the sign of the second-order non-
linear susceptibility converts the destructive interference among the second-harmonic
components into a constructive one. As consequence, the intensity instead of having
an oscillatory behaviour characteristic of the non-phase matched processes described
further in the text, it has the trend displayed by the red curve in Fig. 4.6. The con-
dition achieved is called quasi-phase matching (QPM)[19][75] and it is exploited not
only in SHG but also in the other nonlinear frequency-conversion processes [76]. An
alternative way to the application of strong fields consists in fabricate materials with a
well-defined patterns. An example is represented by the oriented-pattern media which
belongs to the category of the so-called QPM material described in Section 4.2.
Returning to Eq. (4.11), there is also the opposite case where ∆k ̸= 0. The intensity
instead of increasing with z shows some oscillations which are fast if ∆k is large while
are slow if ∆k is small as shown in Figure 4.7. If we would like to exploit the maximum
efficiency of this condition, the crystal must have a length equal to coherence length
which indicates the points at which I2ω shows a maximum.
Now we pass to the case of pulses which is a little bit more complicated. If we con-
sider a single pulse at the input of χ(2) media, each component within the bandwidth
will generate a second-harmonic. However, not all these components will be effectively
transformed. It is necessary introduce the concept of phase matching bandwidth ∆ωpm

that defines the bandwidth within which we can achieve a good phase matching and
the components are effectively transformed into second-harmonics.
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Figure 4.5: Normal or k surfaces for frequencies ω0 (blue curve) and 2ω0 (black curve).
θpm is the angle for which phase matching condition is satisfied.

Consider a component ω = ω0 + ∆ω whose second-harmonic is ωSH = 2ω0 + 2∆ω. If
we impose ∆k0 = k(2ω0)− 2k(ω0) = 0, what we get is:

∆k = k(2ω0 + 2∆ω)− k(ω0 +∆ω) = 2∆ωδ2ω0,ω0 (4.16)

with δ2ω0,ω0 group velocity mismatch defined by Eq. (4.6). As we can notice, it is not
true that if the central components of the spectra are phase matched, the same holds
for all the others. So, only those within ∆ωpm fulfil the condition. The phase matching
bandwidth can be obtained by imposing:

ηSH ≥ 1

2
ηMAX,SGH (4.17)

where ηSH = I2ω/Iω represents the efficiency of the second-harmonic generation. By
making the calculations, what we obtain is:

∆ωpm =
0, 88 · π
L · δ2ω0,ω0

(4.18)

Here, L represents the length of the crystal. The fact that not all the bandwidth is
transformed into a second-harmonic means that the pulse exiting from the medium
will have a smaller BW and generally a longer duration.
In order to get the expression of the envelope of the second-harmonic pulse, we define
a time frame comoving with pulse with central frequency ω0 obtaining:

∂A2ω(T, z)

∂z
+ δ2ω0,ω0

∂A2ω(T, z)

∂T
= −id2ω

A2
ω(T, z)

2
e−i∆kz (4.19)

As we can notice, here A2ω and Aω depend on both T and z since condition 4.7 holds
only for waves. If now we impose T = τ + δ2ω0,ω0z and we assume, for simplicity, that
all components are phase matched, we get:

∂A2ω(τ, z)

∂z
= −id2ω

A2
ω(τ + δ2ω0,ω0z, z)

2
(4.20)
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To further simplify the equation, assume that envelope of fundamental pulse depends
only on time Aω = Aω0 · δ(T ) with Aω0 constant. If now we impose A2ω(τ, z = 0) = 0
and we integrate Eq. (4.20) between 0 and L, what we obtain is:

A2ω(τ, L) =
−id2ωA

2
ω0

2

1

δ2ω0,ω0

R(τ) (4.21)

Here, R(τ) is a function equal to 1 if −L · δ2ω0,ω0 ≤ τ ≤ 0 and 0 everywhere else. If we
go back to the local time frame, the only thing that change are these last conditions.
Indeed, in that case R(T) is 1 if 0 ≤ T ≤ L · δ2ω0,ω0 .

Figure 4.6: Periodic pooled medium. The red line describe the behaviour of the second-
harmonic intensity in case of quasi-phase matching condition.

4.1.2 Difference frequency generation and optical parametric
amplification

Difference frequency generation is a parametric process that starting from two input
waves of frequencies ω2 (also called signal) and ω3 (called pump) produces a new wave
of frequency ω1 = ω3 − ω2 (called idler). Further, in presence of a strong pump this
process causes the amplification of the signal and for this reason it is also called optical
parametric amplification.
The mathematical treatment is equivalent for both processes. As done for SHG, we
follow the procedure proposed by A. Weiner in Ref. [19]. It starts from the case of
perfect phase matching ∆k = 0 and with the non-depletion approximation [A3(z) ∼
A30]. As consequence, we recall only the first two equations of system which are related
to the idler and the signal and under the previous assumptions they become:

∂A1

∂z
= −id1A

∗
2A30

∂A2

∂z
= −id2A

∗
1A30

(4.22)
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Now, differentiate the second equation and substitute ∂A∗
1

∂z
= +id1A2A

∗
30 in it, obtaining:

∂2A2

∂z2
= d1d2|A30|2A2 = Γ2A2 (4.23)

with Γ =

(
d1d2|A30|2

) 1
2

. The Equation 4.23 is well-known and its solution has the

following form:
A2(z) = c1e

Γz + c−Γz
2 (4.24)

If we differentiate it and we impose A1(z = 0) = 0 and A2(z = 0) = A20, it produces:

A2(z) = A20cosh(Γz) (4.25)

which describes the evolution of the signal while it propagates in the medium. In case
of a large gain condition, we can assume Γz ≫ 1 and approximate cosh(Γz) ∼ eΓz/2.
Under these assumptions, the intensity is expressed by:

I2(z) = I20
eΓz

4
(4.26)

Figure 4.7: Behaviour of the second-harmonic intensity as a function of the length of
the medium in case of small (on the left) and large (on the right) phase mismatch.

The Eq. (4.26) allows us to introduce the parametric gain of the system G which gives
indication about the amplification of the signal. If we consider a media of length L, it
is expressed by:

G =
I2(z)

I2(0)
=

eΓz

4
(4.27)
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Now, we can retrieve the intensity of the idler by integrating the first equation of the
System (4.22) between 0 and z and by imposing the boundary conditions previously
mentioned:

I1(z) =
1

2
cε0n(ω1)

d1
d2

|A20|2sinh2(Γz) = I20
ω1

ω2

sinh2(Γz) (4.28)

As we can notice, Eq. (4.28) is linked to the intensity of the signal at z=0. If we
write the Eq. (4.28) and (4.26) in terms of photon fluxes ni = Ii/ℏωi with i=1,2, we
can retrieve an important characteristic of the process. Indeed, by calculating the
difference between n2 and n1, we obtain n20 which is the the number of photons at the
beginning of the crystal. This result tells us that the difference between signal and idler
photons at the output of the crystal is always equal to the number of signal photons
at the input. In case of n20 = 1, we get n2 = 2 and n1 = 1 which means that for each
pump photon we destroy, we produce two new photons: one for the idler and one for
the signal. This last statement described intuitively the amplification characterizing
OPA. A pictorial view of what we just said is shown in Fig. 4.8.

Figure 4.8: Pictorial view of optical parametric amplification. As shown for each pump
photon of energy ℏω3, it generates two photons of energies ℏω2 and ℏω1.

If now we consider ∆k ̸= 0 and we make the same procedure adopted with perfect
phase matching, the Eq. (4.23) becomes:

∂2A2

∂z2
+ i∆k

∂A2

∂z
− Γ2A2 = 0 (4.29)

If we assume that the solution is A2(z) = A20e
gz and we impose the same boundary

conditions saw for ∆k = 0, what we get is:

I2(z) = I20

[
cosh2(γz) +

∆2

4γ2
sinh2(γz)

]
(4.30)

with γ =
[
Γ2− ∆k2

4

] 1
2 . Further, in 4.30 we assume Γ2 ≫ ∆k2

4
. The resulting parametric

gain is expressed by:

G = 1 +
Γ2

γ2
sinh2(γz) (4.31)
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From this equation we can determine the maximum phase mismatch ∆km for which G
is still good. There is not a unique criterion to retrieve this quantity, in our case we
choose the following one:

G(∆km) =
1

2
G(∆k = 0) (4.32)

Under the hypothesis of large gain, already seen in perfect phase matching, and by
imposing γ2 ∼= Γ2, we obtain:

∆km = 2

[
ln(2) · Γ

z

] 1
2

(4.33)

The Eq. (4.33) displays the relationship between ∆k and the length of the medium and
as we can notice, the latter is a limiting factor since higher is z, lower is the value of
∆k for which we still have a good gain.
We can pass now to the case of ultrashort pulses where the generation process is based
on the interaction among the components within the BW. Differently from what we
did with second-harmonic generation, we do not repeat the rigorous mathematical
treatment due to its complexity. We limit to analyse the BW within which we have
an effective process. Assume to have three pulses perfectly phase matched with the
following central wavelengths: ω3, ω20 and, ω10. If these last two frequencies are shifted
of quantity ∆ω such that ω1 = ω10 −∆ω and ω2 = ω20 +∆ω, ∆k becomes:

∆k = k3 −
[
k20 +

∂k

∂ω
∆ω

]
−

[
k10 −

∂k

∂ω
∆ω

]
= δ12∆ω (4.34)

If now we substitute ∆k in (4.34) with ∆km expressed by (4.33) and we multiply by 2
in order to consider the full bandwidth, we get:

∆ωFWHM = 2∆ω =
4

δ12

[
ln(2) · Γ

z

]
(4.35)

Like in SHG, the limiting factors are both the group velocity mismatch and the length
of the crystal.

Figure 4.9: Pulses behaviour when the group velocities of signal and idler are faster
than the pump. The absence of overlap does not allow an effective process.
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The effect of a group velocity mismatch can be described qualitatively by considering
the following three cases:

• Idler and signal are faster than pump which means that the group velocity mis-
matches δ13 and δ23 are both positive.

• Idler and signal are slower than the pump which means that δ13 and δ23 are both
negative.

• Signal is faster than the pump while idler is slower than the pump. As conse-
quence, δ13 is negative and δ23 is positive.

First two cases are equivalent. Figure 4.9 describes the behaviour of the three pulses
when idler and signal are slower than the pump. This shows how the different group
velocities do not allow an effective overlap among them. Under this condition, the dif-
ference frequency generation and the optical parametric amplification are not efficient.
To be precise, the real behaviour of the pulses is more complicated and it is shown in
Figure 4.10 where as we can notice there is a temporal broadening. This can be ex-
plained by considering that, even if the group velocity mismatch is large, there is a very
weak overlap which causes an amplification process. The latter happens continuously
even when the pulse moves away producing the effect described in figure.

Figure 4.10: Real pulses behaviour in case of idler and signal faster than the pump.
The amplification process happens continuosly causing a temporal broadening.

Instead, in third case, the three pulses are overlapped as shown in Fig. 4.11 and this
produces an effective process. We assist to a reshape of the pump caused by the am-
plification of the signal. Further, if the mismatch is not large, signal and idler remain
within the pump pulse limiting the temporal durations.
A way to improve the bandwidth expressed by Eq. (4.35) is to consider the degenerate
case in which ω2 = ω1 and so vg(ω1) = vg(ω2). However, with δ12 = 0 the Equa-
tion (4.35) diverges. This is not true if the development in Eq. (4.34) is not stopped at
the first order but arrive at least to the second one. In this way the equation becomes:

∆k =
1

2

[
β2(ω10) + β2(ω20)

]
∆ω2 (4.36)
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By proceeding like we did before, the phase matching BW is:

∆ωFWHM = 4

[
ln(2)Γ

z

] 1
4 1[
|β2(ω10) + β2(ω20|

] 1
2

(4.37)

From the equation, we can notice that the improvements in phase matching bandwidth
are possible only in case of small GVD.

Figure 4.11: Pulses behaviour in case of idler slower than then pump and signal faster
than the pump. The overlap causes a reshape of the pump and an effective amplification
of the signal.

Up to this point we always consider a collinear case. Now we make a brief description of
the non collinear geometry focusing on interesting phase matching condition. Assume
to have three pulses with the same frequencies mentioned above but now with different
propagation directions as shown in Figure 4.12. In this case the phase matching must
be expressed along x and z. The equations describing it are:{

∆kz = k3cosα− k2 − k1cosΩ

∆kx = k3sinα− k1sinΩ
(4.38)

Now we assume that both ∆kz and ∆kx are equal to zero and the three frequencies are
shifted by ∆ω like in collinear case. By following the same procedure described above,
we arrive to the condition of phase matching expressed by:

vg(ω2)− vg(ω1)cosΩ = 0 (4.39)

The Equation (4.39) tells us that phase matching condition is reached if the projection
of vg(ω1) on z is equal to vg(ω2).

4.1.3 Optical rectification

Optical rectification (OR) is second-order a nonlinear process that generates a DC
or a low frequency polarization component [77] when a laser beam propagates in a
medium. It is sometimes referred to as low difference frequency generation since OR



Chapter 4. Few-optical-cycles pulse applications 73

can be seen as a particular case of DFG where the frequency of the idler is around
zero.
Here the mathematical treatment differs with the respect to the previous nonlinear
processes. We start recalling the second order nonlinear polarization:

P (2)(t) = ε0χ
(2)E(t)2 (4.40)

To make calculations simpler, in Eq. (4.40) we explicit only the time dependence of the
polarization. Consider a field propagating within the medium whose expression is made
of the sum of two components with the same amplitude E0 and different frequencies:

E(t) = E0cos(ω1t) + E0cos(ω2t) (4.41)

In order to be coherent with Eq. (4.40), here we neglect the space dependence of the
electric fields. By substituting (4.41) into (4.40), we get a second-order nonlinear
polarization constituted by the following terms:

P (2)(t) = ε0χ
(2)E

2
0

2

{
2 + cos(2ω1t) + cos(2ω2t)+

+ cos[(ω1 − ω2)t] + cos[(ω1 + ω2)t]
} (4.42)

The first term is the DC polarization to which we referred at the beginning of this
section and this results from the optical rectification of the electric field. The terms
oscillating at 2ω1 and 2ω2 come from the second-harmonic generation of the single fields.
The last two terms are linked, respectively, to the difference frequency generation (or
to OR if the resulting frequency is around zero) and to sum frequency generation.
Optical rectification can originate also from a self-interaction of a femtosecond pulse.
Indeed, in that case, the low frequency component is generated by the interactions of
the frequencies constituting the spectrum.

Figure 4.12: Directions of the pulses wavevectors in non-collinear geometry.
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4.2 Mid-infrared generation
Broadband mid-infrared pulse generation can be obtained by exploiting collinear

intrapulse difference frequency generation (IDFG) in suitable nonlinear crystal. IDFG
is a nonlinear process characterized by simplicity, compactness and reduced jitter [78].
Differently from classical DFG described above, it exploits the interactions among
the components constituting the spectrum of the pulse. The choice of the crystal in
this process is fundamental since it must be both transparent in near-infrared and in
mid-infrared regions. For an input pulse centred around 1 µm there few possibilities
represented by lithium thiogallate (LiGaS2) and orientation-patterned gallium phos-
phide (OP-GAP) [14]. Apart from the transparency, there are other characteristics to
satisfy. Indeed, damage threshold of the crystal must be sufficiently high since pulses
with durations lower than 15 fs which are requires by IDFG increase the possibility of
two photon absorption. On the other hand, having such short pulses, increase a little
bit the interaction length in the crystal. In case of pulses centred around 1 µm with
duration of 15 fs, this length is estimated to be four times lower of the corresponding
pulses centred around 1.5 µm [14]. So, by further reducing the duration, we can miti-
gate a little bit this downsized. This justify why it is important broaden the spectrum
as much as possible and completely compensate the dispersion. Other parameters that
play an important role in the choice of the crystal are the effective nonlinear coefficient
deff and the phase matching properties [79]. As already said, achieving a perfect phase
matching condition is beneficial for the efficiency of the process.
Now, we proceed by comparing OP-GaP and LiGaS2 on the base of the parameters
just listed and of the results obtained in previous experiments. Orientation-patterned
gallium phosphide belongs to the category of quasi-phase matching materials [80]. The
name comes from the fact that in this kind of nonlinear optical material a perfect phase
matching condition is difficult to achieve since they are isotropic. An alternative is rep-
resented by the QPM condition that here is not achieved like in ferro-electric materials
by applying strong fields and modulating second-order optical susceptibility χ(2). In-
deed, they exploit a novel technique that produce crystals characterized by a periodic
pattern of domain orientation from which comes the name “oriented-patterned”. The
first kind of QPM material used in production of mid-infrared radiation was OP-GaAs
[79] which shows an excellent performance in the neighbourhood of 2 µm in terms of
losses and interaction lengths [80]. However, for our purpose we cannot use it due to
the high absorption for wavelength lower than 1.73 µm [80]. An equivalent alternative
but with a broader spectrum is represented by the OP-GaP whose cut-off frequency is
fixed at 800 µm [79]. OP-GaP is characterized by higher band gap with respect to OP-
GaAs mitigating the multi-photon absorption that as said could damage the medium.
It shows a thermal conductivity of 110 W/mk [80] which is three times larger than
OP-GaAs and a quite high nonlinearity (deff=70.6 pm/V [80]). The damage threshold
is higher than 0.8 J/cm2 [14].
LiGaS2 (LGS) is characterized by wurtzite-type structure [81] (see Figure 4.13) show-
ing a high thermal conductivity and high band gap [82]. It is non centrosymmetric and
it belongs to the category of negative biaxial crystals [82]. The birefringence makes
the perfect phase matching condition easily achievable differently from what said for
oriented-patterned materials.
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In our experiment we were not able to reach the mid-infrared generation for two rea-
sons. The first one related to the fact that, as already said in Chapter 3, we had no a
FROG setup to characterize pulses after supercontinuum generation. The second one is
linked to these two crystals which are quite expensive and very difficult to find. In the
following text, we limit to make some estimations about the performance of our system
and to analysis which crystal is the best for our purpose. We refer to two experiments
where these materials were employed: one performed by Nakamura in Ref. [14] while
the other by Pupeza in Ref. [78]. In the latter, they used a LGS crystal solving the
power scalability problems that affect this kind of experiments especially when radi-
ation is centred around 1.5 µm [83]. Indeed, they were able to obtain radiation with
an average power of 103 mW spanning a spectrum from 6.4 µm to 16.4 µm (610-1563
cm−1). However, these data come from input pulses with an average power of 50 W
and with a duration of 19 fs which are quite different from the ones at our disposal.
Despite the good results, we are not able to make a fair estimation since the quantities
that come into play in this process are a lot.

Figure 4.13: Wurtzite-type structure of lithium thiogallate (LiGaS2) [81].

The experiment reported by Nakamura, used instead the OP-GaP. Here, the pulses
at the input of the crystal have similar characteristics to ours. Indeed, their duration
is 12.1 fs and the average power is 3.3 W. With such pulses, they were able to get
a radiation spanning a spectrum between 8.1 µm and 13.1 µm (760-1240 cm−1) and
an average power of 1.2 mW. However, this is not the unique result reported since
they tested two different grating periods. The result just mentioned was obtained with
a period of 27 µm while with 31 µm the radiation generated spans a spectrum from
9.8 µm to 17 µm (590-1020 cm−1). Despite a tighter spectrum and a lower average
power, we would have decided to use this crystal since the similar characteristics of the
pulses ensure us about the result. In our case, with 0.8-mm long OP-GaP crystal we
estimate to have a smaller span since the spectral broadening is half the one obtained
by Nakamura. Rough values could be 9.5-12 µm (830-1050 cm−1) for a gratings period
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of 27 µm and 11.6-15 µm (666-860 cm−1) for 31 µm. These values must be carefully
managed since the quantities into play, as already said, are a lot and everything, also
the pulse duration, comes from rough estimations. For what about the average power,
we estimate to have the same values reported by Nakamura. In terms of setup, after
the crystal a dichroic mirror that is not depicted in Fig. 2.1 is needed to separate the
mid-infrared radiation from the pump pulses. A further long-pass filter can be added
in order to eliminate the near-infrared radiation leaking the dichroic mirror. One key
aspect to analyse is the chromatic dispersion introduced by the crystal that at 1300
nm is quite high (>1300 fs2/mm [14]). This can be compensated by increasing the dis-
tance of the prisms or the length of the hollow core fiber in the compression stage that
precedes the crystal. In this way we provide a negative chirp that is the compensated
by the positive dispersion of the OP-GaP.
Regardless of the choice of the crystal, the broadband mid-infrared radiation gener-
ated can be exploited for spectroscopic application in molecular fingerprint (500-1800
cm−1) [14] allowing the identification of critical information about the structure and
the properties of many molecules. Apart form that, it can be also used in very precises
measurements exploiting the dual-comb spectroscopy.

4.3 Other applications
In this section we list other applications of few-optical-cycle pulses that go beyond

the mid-infrared generation which is the main goal of this thesis work. We make a
brief description of two processes based on the second-order nonlinear processes just
treated: generation of THz-radiation pulses and 4th-harmonic generation.

4.3.1 Generation of THz-radiation pulses

Terahertz spectrum is collocated among the electronics region characterized by ra-
dio, micro- and, millimetre waves and the photonic one constituted by IR, visible, UV
and, X-ray. THz radiation finds a lot of spectroscopic and imaging applications [77].
Recent advancements in research employ it in the detection of single-base pair differ-
ences in femtomolar concentrations of DNA [84], in the observation of the temporal
evolution of exciton formation in semiconductors [85] and, in understanding of carrier
dynamics in high-temperature superconductors [86].
THz radiation can be generated by exploiting the optical rectification of ultrashort
pulses. The materials used are different and classified into three categories: semicon-
ductors, inorganic and organic electrooptic crystals [77]. Among semiconductors we
find gallium arsenide (GaAs), gallium phosphide (GaP), cadmium telluride (CdTe)
and, zinc telluride (ZnTe) [77]. In the category of inorganic crystal we have lithium
niobate (LiNbO3) and lithium tantalate (LiTaO3) which are relative robust and readily
available in large sizes [77]. Among all the categories, organic electrooptic crystals like
DAST (4-dimethylamino-N-methylstilbazolium tosylate) are the ones that provide the
strongest THz signal [77]. In all these media, if we want to achieve a high efficiency,
factors like thickness, crystal orientation, absorption, and dispersion must be properly
chosen. However, also in this case, the principal parameter that has the strongest
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impact is the phase matching. In some materials like GaP and GaAs, a perfect phase
matching condition can be achieved with a collinear scheme. Furthermore, they are
characterized by a quite large phase matching bandwidth. In media like LiNbO3 a
Cherenkov phase matching scheme [87] is required while in other crystals a quasi-phase
matching condition is achieved by a periodic pooling [88]. Generally, the strongest THz
radiation is got with pulses characterized by a very low temporal duration. Indeed,
the radiated electric field is proportional to the second-order derivative of nonlinear
polarization and in case of short pulse, the latter is very strong. Further, by using such
pulses we can obtain very wide bandwidth of terahertz pulses.

4.3.2 Fourth-harmonic generation

Fourth-harmonic generation is a nonlinear frequency conversion process that pro-
duces a radiation with a wavelength four times lower than the pump wavelength. It can
be generated by means of two consequent second-harmonic generations in two different
nonlinear crystals.
To generate visible second-harmonic, it is possible to use mainly five crystals: lithium
tetraborate LiB3O5 (LBO), bismuth borate BiB3O5 (BiBO), periodically poled tita-
nium phosphate (PPKTP) [89], potassium boro oxalate (KBO) [90], and beta barium
borate (BBO) [91]. Generally, the last two materials are not so used due to the lower
performance [89] compared to the other three crystals. Indeed, BBO is mainly adopted
in the second stage when we pass from visible to UV. Among the remaining materials
the most suitable and the most used is the LBO. Even if it is characterized by a low
nonlinear coefficient compared to the other two crystals, LBO has the advantage of a
lower walk-off effect and higher damage threshold.
For the second stage, the most used crystals are the already mentioned BBO and ce-
sium lithium borate (CLBO). It is difficult to determine which is the best for this
frequency conversion. Indeed, BBO seems to be the most indicated due to a high non-
linear coefficient. On the other hand, the low acceptance angle and the large walk-off
[89] require a specific orientation of the crystal. Also CLBO shows good performances
in the process but this is true only if it works at a temperature of -15°C and as conse-
quence the complexity of the system increases.
One drawback characterizing all the processes that deal with strong UV light is the
low lifetime of the crystals used due to the degradation caused by the radiation itself.
Nonetheless, light in this spectral region can be used in laser material processing, for
pumping dye lasers, and in spectroscopic applications for the detection of dangerous
materials [89].
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5| Conclusions and future
developments

In this thesis work we demonstrated a simple approach to generate amplified few-
optical-cycles pulses for broadband mid-infrared generation by combining an Yb-doped
fiber amplifier and the supercontinuum generation in a photonic crystal fiber. The ini-
tial pulses are emitted by a mode-locked Yb:CALGO femtosecond laser and they are
characterized by a duration of 70 fs and an average power of 45 mW. After compensat-
ing the dispersion accumulated in fiber amplifier, we obtained pulses with a duration of
80 fs and an average power of 5 W. These are then focused into a photonic crystal fiber
producing approximately a spectral broadening of 100 nm. If the output pulses are op-
tically compressed and focused into an OP-GaP crystal, they can generate by means of
intrapulse difference frequency generation a radiation spanning the mid-infrared range.
Mid-infrared sources combine broad bandwidth with high spectral resolution and bright-
ness [92] making them suitable to spectroscopic applications in molecular fingerprint
region (500-1800 cm−1). The absorption spectroscopy in this spectral range can be
used to retrieve critical information on material structure for physical, chemical, and
biological sciences [93]. The advantage of using a 1 µm mode-locked laser as master
oscillator is the possibility to achieve alternative applications by simply change the
type of crystal. The most relevant ones are terahertz radiation generation and the
4th-harmonic generation.
Our results can be considered satisfactory since if compared with the ones reported,
for example, by Nakamura in Ref. [14], they are quite similar. On the other hand,
we know the potential of our system and we are confident that future versions could
achieve a better result especially in terms of average power of the radiation generated.
A high efficiency could be obtained by using in the amplifier a pump diode with a
higher precision with respect to one we used. This would mean reaching the same level
of power with a lower pump current. As consequence, the instabilities presented with
high currents could be reduced a little bit making the setup more stable. Also the
spectral broadening could be even larger if the light coupled in photonic crystal fiber
would be increased. This could be done by adopting a lens with even lower focal length
or by increasing the power at the input of the fiber.
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