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Abstract

Among the various possible methods for treating moving domains in Computational
Fluid Dynamics (CFD) studies, the Moving Reference Frame (MRF) and Arbitrary
Lagrangian Eulerian (ALE) approaches are being extensively studied, developed
and tested in Typhon, a three dimensional unstructured cell-centered �nite volume
parallel CFD solver written in Fortran(90/95) and freely available on the Source-
Forge open source web portal. Even if the selected and developed versions are
among the basic and simplest availables, signi�cant functionality improvements to
the solver are achieved without invasive changes to the original code and causing a
minimal computational burdening. The evalued test cases show positive correspon-
dence to the known exact solutions, a part from expected surmountable anomalies
that appear using particular numerical schemes. A considerable degree of freedom
is also left for further developments.





Chapter 1

Introduction

1.1 The analysis of unsteady �uid �ows around moving

bodies and boundaries

The present work is aimed at extending the features of an existing computa-
tional �uid-dynamics solver (Typhon) to the solution of �uid �ows in unsteady
geometric domains, thus basically around moving bodies and boundaries. Top-
ics of noticeable and recent interest such as the study on the trails of single or
contra-rotating propellers and fans, the secondary �ows inside turbomachines, the
aeroelastic �utter phenomena of wings, rotorcraft blades or even buildings and
chimneys are all examples requiring moving domain capabilities inside the �uid-
dynamics solvers.
Despite the study of unsteady �ows has always been of primary importance since
the dawn of computational �uid-dynamics, the analysis of the �ows around mov-
ing bodies and boundaries grew a noticeable spread only later on: even if several
theoretical results for the analytical solutions have been already available since pre-
war studies, the lack of an adequate scienti�c background on numerical approaches
and moreover the limited computational speeds available have always been crit-
ical issues to overcome. Other potential issues were the the need of unsteady
boundary conditions, for which adequate support by the numerical solver had to
be developed, and even transient initial conditions, for which further preliminary
calculations were necessary, thus improving the criticity of computational powers
available.
Nowadays, methods for the treatment of moving domains are more and more com-
monly available both in commercial and academic solvers and so the study of �uid
�ows around or inside moving domains is �nally widespread both in the research
�eld and in the development and design �elds. The support for unsteady geome-
tries is therefore a more and more compelling requirement for the vast majority
of both specialized and non-specialized solvers, and a noticeable interest is also
gathered around the look for a best possible approach in terms of computational
quickness, �exibility, robustness, reliability and overall simplicity.
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4 CHAPTER 1. INTRODUCTION

1.2 Structure of the work

In the present introductory Chapter (1), we present the main approaches for
treating moving domains in Computational Fluid-Dynamics solvers, some of their
prominent advantages and drawbacks, the reasons behind the choices of Moving
Reference Frame and Arbitrary Lagrangian-Eulerian methods as subjects of the
this work, the global organization of the work and its objectives.

In Chapter 2 we present more in depth the Moving Reference Frame approach,
its analytical derivations, its implementations and validations in Typhon.

In Chapter 3 we present more in depth the Arbitrary Lagrangian-Eulerian ap-
proach, its analytical derivations, its implementations and its validations in Ty-
phon.

In Chapter 4 we present and comment the parameters and results of an anal-
ysis campaign on a NACA 0012 airfoil �utter, which serves as a prominent com-
parison case between Moving Reference Frame and Arbitrary Lagrangian-Eulerian
approaches, and the experimental results.

Lastly, Chapter 5 is focused on the overall conclusions of the work.

1.3 Overview of the presently available numerical strate-

gies

Considering all the possible variations, the number of proposed numerical meth-
ods to account for the domain movement available in the literature is noticeable.
By restricting the search around some topical tasks, among which are the study of
rotating propeller blades, turbomachines channels and wings in �utter, the possible
numerical approaches are the following:

• a pure Lagrangian solver, with body movement achieved thanks to the assign-
ment of strict boundary conditions. The theoretical literature behind is vast,
and other main advantages are that the domain deformations and movement
are inborn features and so is also the study of "free surface" problems. The
drawbacks are the constant need for untangling, remeshing and remapping of
the �uid �eld, even for steady domains, the extensive source code rewriting
that would be needed due to the Eulerian typology of Typhon, the delicate
and complex cell centered �nite volume formulation and the degradation on
the shape of the bodies/boundaries after several iterations;

• a Moving Reference Frame rigidly �xed on the moving body, for which the
solver must correctly handle the additional non-inertial forces. The critical
advantages are the very simple theoretical formulation, the minimal source
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code interventions needed and the complete absence of mesh updates and
remeshing steps. Among the drawbacks we must consider that only rigid
movements can be achieved (at least in the presently selected and devel-
oped version of MRF), that the whole domain is moving so mutual relative
movements are only available as boundary conditions, that the additional
contributes are in the form of source terms, thus potentially introducing ad-
ditional errors, and that the analysis input and outputs must be de�ned in
the relative reference system, so transformation routines will be needed;

• an Arbitrary Lagrangian-Eulerian approach, that enables free mesh move-
ment thanks to the introduction of additional �ux terms in the solver to ac-
count for it. It statedly combines the advantages of Eulerian and Lagrangian
approaches while attempting at minimizing their drawbacks. It is therefore
credited as ideal for �uid-body interaction studies, but depending on the for-
mulation can manifest great versatility and �exibility and can also neglect
remeshing in selected cases. Recognized disadvantages are the vastness of the
family of methods laying behind the same name, the usefulness of remeshing
and remapping capabilities to prevent degraded performances and solution
qualities, and the complexity of free surface modeling, contrary to the pure
Lagrangian methods;

• an over-set grid method, such as "Chimera", that allows domain movement
thanks to the relative movement of the grids, but requiring an intensive
solver's sourcecode rewriting and a more complex preliminary treatment of
the analysis cases, thus falling beyond the frames of the present work.

Among the discussed possible choices, the Moving Reference Frame and Arbi-
trary Lagrangian-Eulerian approaches have been selected, developed, validated and
tested since they statedly o�ered the best features increase while being integrally
compatible with the original solver's source code. As we'll promptly explain later
on, limited versions of the Moving Reference Frame and Arbitrary Lagrangian-
Eulerian extensions have been chosen and developed in the present work. More
precisely, only a rigid non-inertial Moving Reference Frame has been adopted,
avoiding the theoretical and practical complexity of a non-rigid frame, which could
grant only limited further funcionality improvements. Concerning the Arbitrary
Lagrangian-Eulerian extension, no remeshing and remapping capabilities have been
introduced, thus restricting the �eld to small body deformations and movements,
which are considered nonetheless signi�cant funcionality improvements, yet remain-
ing perfectly �t for further developments and extensions which could include any
possible remeshing method.

1.4 Objectives and organization of the work

The objectives of the present work, ordered as the original planning, are:
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• the review of the original Typhon source code;

• the analytical derivation of a Moving Reference Frame approach which com-
bines versatility and feasibility;

• the development of the previously derived Moving Reference Frame approach
inside Typhon's source code;

• the validation of the Moving Reference Frame module thanks to trivial test
cases, for which an exact solution is well known;

• the analytical derivation of an Arbitrary Lagrangian-Eulerian approach, again
combining versatility and feasibility;

• the development of the previously derived Arbitrary Lagrangian-Eulerian ap-
proach inside Typhon's source code;

• the validation of the Arbitrary Lagrangian-Eulerian approach thanks to triv-
ial test cases, for which an exact solution is well known;

• an analysis campaign of �utter cases, for which both Moving Reference Frame
and Arbitrary Lagrangian-Eulerian solutions are possible and experimental
results are available, thus providing an overall comparison of the methods.



Part I

Theory and developments
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Chapter 2

The Moving Reference Frame

approach

2.1 Preliminary considerations

As previously stated in the general introduction, a very basic method providing
a reliable way to account for moving geometries in the computational domain is
known as the "Moving Reference Frame" approach, for which we actually move the
whole study in a non-inertial relative reference system. Even if not mathematically
complex, the Moving Reference Frame approach can already provide a signi�cant
functionality improvement to the CFD solver, since it enables a thorough study of
�uid �ows around bodies or boundaries in rigid motion, the latter being a three-
dimensional accelerating or oscillating rotation or translation, while avoiding mesh
deformations issues completely.

2.1.1 The non-inertial MRF for moving geometries

A consistent CFD study of rotating or oscillating bodies such as propellers
and �utter studies for airfoils or �nite three dimensional rigid wings can be easily
performed by simply introducing the rigid motion as a parameter for the analysis
of the �xed mesh containing the aforesaid body/boundary. The solver will in fact
work in a relative observer's perspective, evaluating the �uid �eld in a single mesh
representing a �xed domain, thus around �xed bodies and boundaries; those latter,
thanks to the introduction of the non-inertial terms in the solver's equations, will
actually correspond to moving geometries in the inertial perspective. The only
signi�cant limitation of the MRF for moving geometries is that a single global
rigid law of motion must be inferred for all the bodies in the domain, that are
actually rigid boundaries in the mesh. Some improvements may be obtained by
using an expanded set of source terms for the �uid dynamics equations, including
expansion/contraction terms that may account for some relative motion between
the rigid boundaries, but the mathematical complexity of the MRF parameters
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will raise quickly for very little practical advantage, so other methods may be more
pro�tably used instead.

2.1.2 The non-inertial MRF for large translational velocities

The Moving Reference Frame approach counts another less manifest feature: a
very large global component in �uid motion, like in "Hubble �ows" and among high
Mach number problems generally, is usually source of signi�cant numerical errors in
a traditional inertial reference frame study. The ratio between the thermal energy
and the kinetic energy is in fact extremely small due to the superimposed global
motion, so the numerical solution in a �oating point environment will manifest
large errors on the thermal energy and thus on the pressure �eld, compromis-
ing the quality of velocity and density solutions too. In the Moving Reference
Frame approach, the global motion is completely detracted from the numerical
computation, so that even very little local variations can be observed and precisely
calculated. This aspect puts the Moving Reference Frame approach in maximum
consideration for astrophysical and plasma nuclear magneto �uid-dynamics stud-
ies: rotating, expanding or contracting �uid �ows in accelerating volumes, rotating
ducts, collapsing stellar cores and pyrotechnic or supernovae explosions, or even
in Inertial Con�nement Fusion (ICF) problems can be successfully studied in a
consistent, precise and much simpler way [1].

The aforesaid feature correspond, on the other hand, to another minor disad-
vantage for the MRF analysis of moving bodies: big domains will easily grow large
�ctitious advective components even for slow angular velocities, thus degrading the
quality of the real solution in the absolute reference frame.

2.1.3 Basic concepts and setbacks of the MRF approach

In a Moving Reference Frame analysis, a full reference frame transformation
is actually done and not a simple coordinate transformation like in Moving Mesh
methods (among which the Arbitrary Lagrangian Eulerian can be included): both
the solver inputs, the variables and the outputs becomes integrally relative, and not
just in the sense they are functions of a new relative coordinate system, like in the
Moving Mesh approaches. While conceptually more complicated, the development
setbacks are pretty straightforward: developing a Moving Reference Frame exten-
sion to the solver will initially consist, as we will discuss further on, in the simple
introduction of the non-inertial terms, such as �ctitious forces and expansion/con-
traction e�ects, in the original Euler/Navier-Stokes equations. As already stated
previously, by adopting this basic technique alone any mesh update is actually
neglected, at least at the beginning: mathematical and development complexities
and computational time will then be noticeably lower than in other methods. On
the other hand, if analysis input parameters and output requirements are in the
absolute reference frame, which is a very typical case, the development of trans-
formations from/to the solver's now relative reference system will be needed. This
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section will aim at the determination and explanation of the additional terms, the
developments aspects in Typhon and at the review of the �nal results obtained by
analyzing very simple cases for which a theoretical solution is known, thus provid-
ing a validation.
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2.2 Governing equations

2.2.1 Derivation of the Navier-Stokes equations in a non-inertial
reference frame

Considering a material point P seen from both an inertial frame "1" and a
non-inertial frame "2", and accounting for both the translation and the rotation of
frame "2", the following kynematical relations can be obtained:

r1P (t) = r12(t) + r2P (t) ⇒ r1P (t) = r12(t) + ‖r2P ‖r̂2P

⇒ d

dt
⇒ u1P = u12 + u2P + ω × r2P

⇒ d

dt
⇒ u̇1P = u̇12 + u̇2P + 2ω × u2P + ω × ω × r2P + ω̇ × r2P

(2.1)

It is then convenient to rename the variables as follows:

u1P = u

u2P = ũ

u12 = v

The material acceleration in a non-inertial reference frame can then be written as
follows:

˙̃u = u̇− v̇ − 2ω × ũ− ω × ω × r̃ − ω̇ × r̃ (2.2)

where:
v̇ is the frame "2" linear acceleration.
2ω × ũ is the "Coriolis acceleration".
ω × ω × r̃ is the "centrifugal acceleration".
ω̇ × r̃ is due to the frame "2" angular acceleration.

The additional �ctitious forces that account for both the translation and the
rotation of the non-inertial frame will then be:

−ρ̃v̇ − 2ρ̃ω × ũ− ρ̃ω × ω × r̃ − ρ̃ω̇ × r̃ (2.3)

that is, four negative contributes in the right hand side of the momentum equation.

By simply scalar multiplication for the velocity vector, the aforesaid additional
momentum terms give birth, in turn, to subsequent energy terms:

−ρ̃ũ · v̇ − 2ρ̃ũ · (ω × ũ)− ρ̃ũ · (ω × ω × r̃)− ρ̃ũ · (ω̇ × r̃) (2.4)
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Original system of Navier-Stokes equations

The original system of Navier-Stokes equations adopted for the whole work
takes the form: 

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇P + ρb+∇ · σ

∂ρe

∂t
+∇ · (u(ρe+ P )) = ∇ · (k∇T + u : σ)

(2.5)

The system of Euler equations will not be explicitly described since it can
always be considered a sub-case of the Navier-Stokes system and all the subsequent
analytical achievements are valid in both the cases.

Navier-Stokes equations in a non-inertial reference frame

By introducing the formerly deferred additional non-inertial terms in both the
momentum and the energy equations, the original system of Navier-Stokes equa-
tions becomes:

∂ρ̃

∂t
+ ∇̃ · (ρ̃ũ) = 0;

∂ρ̃ũ

∂t
+ ∇̃ · (ρ̃ũ⊗ ũ) = − ∇̃P̃ + ρ̃b̃+ ∇̃ · σ̃

− ρ̃ω × (ω × r̃) ⇐ centrifugal

− 2ω × ρ̃ũ ⇐ Coriolis

− ρ̃ω̇ × r̃ ⇐ unsteadiness (rotational)

− ρ̃v̇ ⇐ translational inertia

∂ρ̃ẽ

∂t
+ ∇̃ · (ũ(ρ̃ẽ+ P̃ )) = ρ̃ũ · b̃+ ∇̃ · (k∇̃T̃ + ũ : σ̃)

− ρ̃ũ · (ω × (ω × r̃))
− 2ρ̃ũ · (ω × ũ)
− ρ̃ũ · (ω̇ × r̃)
− ρ̃ũ · v̇

(2.6)
Before adopting the �nite approximation form, a compulsory passage is the
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following integral formulation:

∫
V

∂ρ̃

∂t
dV +

∮
S
(ρ̃ũ) · n̂dS = 0;

∫
V

∂ρ̃ũ

∂t
dV +

∮
S
(ρ̃ũ⊗ ũ) · n̂dS =

∫
V
ρ̃b̃dV +

∮
S
(σ̃ − P̃I) · n̂dS

−
∫
V
ρ̃ω × (ω × r̃)dV − 2

∫
V
ω × ρ̃ũdV

−
∫
V
ρ̃ω̇ × r̃dV −

∫
V
ρ̃v̇dV

∫
V

∂ρ̃ẽ

∂t
dV +

∮
S
(ũ(ρ̃ẽ+ P̃ )) · n̂dS =

∫
V
ρ̃ũ · b̃dV +

∮
S
(k∇̃T̃ + ũ : σ̃) · n̂dS

−
∫
V
ρ̃ũ · (ω × (ω × r̃))dV −

∫
V
ρ̃ũ · v̇dV

−
∫
V
ρ̃ũ · (ω̇ × r̃)dV − 2

∫
V
ρ̃ũ · (ω × ũ)dV

(2.7)
for which we took advantage of the well known Gauss' Divergence Theorem

(cfr. appendix).

2.2.2 Finite approximation of the non-inertial MRF terms

In order to derive the development formulation for the Typhon solver, the last
compulsory passage is the �nite approximation of the MRF source terms. Inside
the solver, all the geometric and calculation parameters and the �uid-dynamical
unknowns ρ̃, ρ̃ũ and ρ̃ẽ exist in their discrete values (arrays and matrices) only.
High order extrapolation is not feasible at this point, and would seriously compro-
mise the generality of the approach. A strong approximation is then introduced
here: even if most of the parameters and variables, such as ρ̃, ρ̃ũ, ρ̃ẽ and r̃, man-
ifest a dependence on the spatial position and thus on the radius, which would
be perceptible even inside each single cell, the discrete form we adopt for the vol-
ume integrals for each cell will completely neglect the trend within the cells. This
decision leads to the following discrete formulations:

−
∫
V
ρ̃ω × (ω × r̃)dV −→ −mcellω × (ω × r̃cell)

− 2

∫
V
ω × ρ̃ũdV −→ − 2Vcellω × (ρ̃ũ)cell

−
∫
V
ρ̃(ω̇ × r̃)dV −→ −mcell(ω̇ × r̃cell)

−
∫
V
ρ̃v̇dV −→ −mcellv̇

(2.8)
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where the integrals are basically computed as
∫
V ρ̃dV = mcell, so ρ̃(r̃, t) '

ρ̃cell(t) etc. It shall be noted, nonetheless, that Typhon's cell center, where every
cell quantity is located, is actually a "volumetric barycenter", so this approxima-
tion error is slightly lower than if it was a simple algebraic average of the vertex
positions.

2.2.3 Kinematics

By adopting relative dynamics, we have just discovered the appearance of new
terms which are function of either the velocity or the acceleration, and yet even in
the successive developments of transformation routines we'll realistically observe
the contemporary presence of velocity and acceleration vectors. This fact alone
has very important setbacks: as well known, angular acceleration vector is the �rst
time derivative of the angular velocity vector, so the �rst one is completely known
as soon as the second is. A single time derivation step links the two, but from the
development point of view this isn't so trivial: computers don't have an inborn
derivation capability. They can be "taught" derivation in two possible way:

• �nite numerical derivation

• symbolic analytical derivation

Both of them are widely and successfully undertaken, but hide some drawbacks:
the numerical derivation forcefully gives rise to computational errors that depend
on the derivation algorithm, on the step and on the to-be-derived function but
can't be fully overcome, whereas the symbolic analytical derivation requires a very
extensive development, even if an already available mathematical library is going
to be used, and this would fall seriously beyond the goals of the proposed work.
Two remaining choices were left:

• the end user's supply of both the velocity and acceleration symbolic relations
as analysis input parameters

• providing a limited set of kinematical cases for which the symbolic relations
for both position, velocity and acceleration are hard-coded in their exact form

The �rst choice is �aw-vulnerable since no veri�cation is performed on the cor-
rectness and coherence of the input functions, so problems di�cult to discover and
unexpected results may appear. The second choice was therefore pursued, also
because it perfectly �tted the goals of the proposed work.

Since the �utter study was the original �nal objective of the whole work, sepa-
rate and combined angular and translational oscillations were introduced. Constant
angular rotation and linear translational acceleration were also included since they
both provided for valuable results validation and for useful common study cases.
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Constant translational acceleration

The linear translation case is pretty straightforward: the moving reference
frame is undergoing a single constant acceleration vector that will develop its initial
velocity vector. There's no dependence from the initial position, that is therefore
omitted. We then obtain the well known uniformly accelerated motion:

s(t) = v0t +
1

2
at2;

ṡ(t) = v0 + at;

s̈(t) = a;

(2.9)

The only active MRF source terms will be ρ̃v̇ in the momentum equation and
its corresponding one in the energy equation.

Constant rotation

A constant initial angular velocity is the only free parameter for the constant
rotational speed case. As before, there's no dependence from the initial position.

ϑ(t) = ωt;

ϑ̇(t) = ω;

ϑ̈(t) = 0;

(2.10)

The only active MRF source terms will be ρ̃ω × ω × r̃ and 2ρ̃ω × ũ, that is,
centrifugal and Coriolis forces in the momentum equation and their corresponding
ones in the energy equation.

Oscillating translation

The translational oscillation case incorporates also the constant acceleration
and initial velocity vectors. Again, there's no dependence from the initial position.
The equations are as follows:

s = v0t +
1

2
at2 + Atrns sin

(
2π

Ttrns
t+ ϕtrns

)
ξ̂;

ṡ = v0 + at + Atrns
2π

Ttrns
cos

(
2π

Ttrns
t+ ϕtrns

)
ξ̂;

s̈ = a − Atrns
4π2

T 2
trns

sin

(
2π

Ttrns
t+ ϕtrns

)
ξ̂;

(2.11)

The free parameters are then the already met v0 and a, the oscillation amplitude
Atrns, period Ttrns, phase ϕtrns and direction ξ̂.
Despite the complexity of the law of motion, the only MRF source term active is
ρ̃v̇ in the momentum equation and its corresponding one in the energy equation,
like in the constant translational acceleration case.
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Oscillating rotation

The rotational oscillation case includes the constant rotation case too. As usual,
there's no dependence from the initial position. The equations are then:

ϑ = ωt + Arot sin

(
2π

Trot
t+ ϕrot

)
ζ̂;

ϑ̇ = ω + Arot
2π

Trot
cos

(
2π

Trot
t+ ϕrot

)
ζ̂;

ϑ̈ = − Arot
4π2

T 2
rot

sin

(
2π

Trot
t+ ϕrot

)
ζ̂;

(2.12)

The free parameters are then the already met ω, the oscillation amplitude Arot,
period Trot, phase ϕrot and axis ζ̂.
The active MRF source terms will be all the rotational ones, that is ρ̃ω × ω × r̃,
2ρ̃ω × ũ and ρ̃ω̇ × r̃ and their corresponding ones in the energy equation.

Combined oscillation

The combined oscillation case includes both the translational and the rotational
oscillations superimposed, thus retaining their original kynematical relations.
The free parameters are then ω, v0, a, Arot, Atrns, Trot, Ttrns, ϕrot, ϕtrns, ζ̂ and
ξ̂.
All the derived MRF source terms will be active and this case will then be the
heaviest, computationally speaking.
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2.3 Implementations in Typhon

Several di�erent steps had to be addressed during the development phase:

• creation of an "MRF" data container, to hold all the new parameters and
any data useful along the calculation;

• recognition and assignment of the new MRF parameters from the analysis
input �les;

• introduction of the source terms in the solver's �uid dynamics equations;

• development of transformation routines to elaborate the input data for the
source terms.

2.3.1 The MRF data structure

A FORTRAN structure, passed as an input/output argument for the solver
routines, was considered the best choice, a part from being the standard solution
in the whole Typhon sourcecode, and was therefore adopted. The mnu_mrf
structure, de�ned in "CFDTOOLS/Mesh/MESHMRF.f90" contains thus all
the useful and pertinent parameters and data, avoiding the proliferation of orphan
variables in the subroutines. Particularly, it contains:

• the string "name";

• the integer parameters "type", "input" and "output", for the choice of the
kynematical model and of the absolute/relative reference frame of the pa-
rameters respectively;

• the three-dimensional vectors "velocity" and "acceleration", for the constant
linear acceleration and the oscillating translation cases;

• the three-dimensional vectors "center" and "rot_axis" and the scalar "omega",
for the constant rotation and the oscillating rotation cases;

• the three-dimensional vector "trn_dir" and the scalars "trn_period", "trn_ampl"
and "trn_phi" for the oscillating translation;

• the scalars "rot_period", "rot_ampl" and "rot_phi" for the oscillating ro-
tation case.

2.3.2 MRF Input parameters reading and processing

In Typhon, all the analysis parameters are gathered in a text �le called "main.rpm"
or eventually in children parameter �les linked from it, in the analysis folder.
Each category is normally associated with a "BLOCK", so a "BLOCK:MRF" was
promptly created to contain all the MRF parameters. The source �le "def_mrf.f90"
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contained in "SOURCE/PARAM" provides parsing and some preliminary com-
putation on the analysis parameters. An example of main.rpm MRF section is as
follow:

BLOCK :MRF

NAME =oscillating_airfoil

TY PE =COMBINED_OSCILLATION

INPUT =ABSOLUTE

OUTPUT =RELATIV E

CENTER =(0., 0., 0.)

AXIS =(0., 0.,−1.)
CENTER_ACCELERATION =(0., 0., 0.)

CENTER_V ELOCITY =(0., 0., 0.)

OMEGA_RPM =0.

ROT_AMPL =0.420001336

ROT_PERIOD =0.245700245

ROT_PHI =0.

TRANS_AMPL =0.005334

TRANS_PERIOD =0.245700245

TRANS_DIR =(0., 1., 0.)

TRANS_PHI =− 3.0805

ENDBLOCK
(2.13)

Both scalars and three-dimensional vectors are present, but no symbolic relation
of time or space can be inserted: by introducing the limited set of kynematical
relations, this degree of freedom has been forcefully eliminated.

2.3.3 MRF Source terms

In Typhon, all the right hand side contributes to the Euler / Navier-Stokes
equations are gathered in the �eld of "residuals", which includes separate mass and
energy scalar residuals and momentum vector residuals. This �eld is reset to zero
at the beginning of each computational iteration, and successively grows thanks
to the contributes of both source terms and �ux terms. The previously derived
�nite approximations of the Moving Reference Frame souce terms are already in
the right form to be added to the residuals �eld, and this task is being done by
the "calc_source_mrf(umesh, field, mrf , curtime)" subroutine, located in the
"calc_source_mrf.f90" source �le inside the "SOURCE/EQNS" folder.
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2.3.4 Transformation routines for the MRF

Leaving the end users free to choose whether to provide absolute or relative
initial and boundary conditions and whether obtain absolute or relative outputs,
required the creation of several transformation subroutines, that silently process
the available data every time it is needed. The subroutines "mrfvel_abs2rel(mrf ,
time, pos, velocity)", "mrfvel_rel2abs(mrf , time, pos, velocity)" and "mrfpos_rel2abs(mrf ,
time, vertex)" provide respectively velocity transformation from absolute to rel-
ative reference frames, velocity transformation from relative to absolute reference
frames and positions transformation from relative to absolute reference frames; they
are all located in the "MESHMRF.f90" source �le inside the "CFDTOOLS/Mesh"
folder.
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2.4 Validation cases and results

This section is aimed at testing and validating the robust and reliable behavior
of the previously derived additional non-inertial source terms. For all the follow-
ing analyses, the time integration step is automatically calculated by Typhon as
the smallest one which can grant global stability on the whole domain comply-
ing with the Courant-Friedrichs-Levy condition on the smallest cell with a unary
CFL parameter. Whenever laminar viscous Navier-Stokes calculations are pursued,
gaseous air in standard conditions is the adopted �uid.

It shall furtherly be noted that since the solver behavior with di�erent size
meshes, spatial schemes (numerical �uxes) and time-marching schemes was not
mastered at this point, a vast analysis campaign, counting almost all possible
combinations, was pursued. This level of detail will not be reached in the ALE
validation and �utter analysis, since the present MRF results are valid in all cases,
so only the best combinations will be retained.

2.4.1 The accelerating/decelerating rectangles and cuboids

The �rst trivial test case established is aimed at checking the correct operativity
of the translational �ctitious force term. The mesh used are a 2D rectangle, mea-
suring 1 x 0.1 meters - 100 x 10 cells, and a 3D rectangular cuboid (parallelepiped),
measuring 2 x 3 x 8 meters - 6 x 9 x 24 cells.

Figure 2.1: The 2D rectangle mesh

Figure 2.2: The 3D rectangular cuboid mesh

Di�erent tests have been conducted, either starting from a null frame velocity
and accelerating, or starting from a uniform arbitrary velocity and decelerating.
The initial condition is always a uniform �eld at rest in the whole domain, so
that steadiness of the theoretical solution is assured. An "extrapolation" condi-
tion is chosen for the in�ow and out�ow boundary, so that the solver would not
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force the solution along the time span, thus leaving to �oat freely according to
the MRF source term. Both "symmetry" (slipping walls) and "extrapolation" side
boundaries conditions are investigated, the latter being interesting for checking the
development of spurious non-axial velocity components. All the possible combi-
nations of spatial numerical �uxes and time integration methods both for viscous
(Navier-Stokes) and inviscid (Euler) analysis are considered too. The correctness
of the results is so high that no comparison table is provided: after a one-second
time span simulation, the spurious non-axial velocity components and the residual
error on the axial velocity are always ten or more orders of magnitude smaller than
the characteristic quantities. The resulting �gures below can be considered the
worst-case and are then included only for the sake of clarity.

2D rectangle

Figure 2.3: 2D rectangle - Vx
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Figure 2.4: 2D rectangle - Vy

Figure 2.5: 2D rectangle - P
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3d rectangular cuboid

Figure 2.6: 3D rectangular cuboid - Vx

Figure 2.7: 3D rectangular cuboid - Vy
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Figure 2.8: 3D rectangular cuboid - Vz

Figure 2.9: 3D rectangular cuboid - P

Small inhomogeneities in the input meshes, which are manifest in an ADFviewer
investigation, can be ascribed among the possible responsibles of the residual errors.
As a conclusion of this test campaign, the translational inertia term is highly
robust and reliable, showing no dependence on time integration algorithm, spatial
numerical �ux, mesh size and re�nement, and very little dependence on the analysis
time span.
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2.4.2 The steady circular annulus

The most exhaustive test campaign is bound to the evaluation of the correct
behavior of Coriolis and centrifugal forces. The constant rotation case is selected,
and thus the study has to make use of an axisymmetric domain: several 2D circular
annulus are adopted, an internal radius of one meter and an external radius of 10
meters were selected for the principal test campaign, but di�erent scalings have
also been investigated. Di�erent meshing patterns (triangles, quadrangles) and
parameters (12, 24 and 64 circle-wise partitions, 3, 4, 8, 12, 24, 30 and 32 radial
partitions) are considered.

Figure 2.10: 24x24 2D circular annulus mesh

Figure 2.11: 64x32 2D circular annulus mesh

A steady exact solution is again the starting crucial point for detecting anomalies
in the operativity of the source terms: a �uid at rest in the absolute frame is again
assumed, so the initial conditions are chosen accordingly. A constantly rotating
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reference frame with several possible angular speeds is selected, its rotation center
and axis coincident with the domain ones ensure steadiness. The calculated solution
is left freely �oating along the timespan, again thanks to slipping walls (symmetry)
boundary conditions, which don't force in the exact solution. The following time
trend of velocity magnitude and pressure are examples of the calculation results
which will be used as input for the following post-processing campaign.

Figure 2.12: Velocity magnitudes for an HLLE with MUSCL analysis of a 24x24
circular annulus

Figure 2.13: Pressures for an HLLE with MUSCL analysis of a 24x24 circular
annulus

The maximum and minimum velocity magnitudes in the domain could detect two
typical phenomena involved in the numerical analysis, that are source of errors
which have to be discerned from source terms operativity errors. The �rst is the
numerical dissipation and is characterized by the overall reduction of both the
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maximum and the minimum velocity magnitudes in the domain. The second is the
numerical di�usion and is characterized by the the velocities and pressures getting
closer to the domain averages, so it is manifest each time the minimum velocity
magnitude is increasing towards the maximum magnitude. The inviscid analysis
campaign provided the following trends:

2D 24x24 circular annulus

Figure 2.14: Maximum velocity trends in a 24x24 circular annulus
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Figure 2.15: Minimum velocity trends in a 24x24 circular annulus

Figure 2.16: Pressure drops in a 24x24 circular annulus
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2D 64x32 circular annulus

Figure 2.17: Maximum velocity trends in a 64x32 circular annulus

Figure 2.18: Minimum velocity trends in a 64x32 circular annulus
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Figure 2.19: Pressure drops in a 64x32 circular annulus

Interestingly, in some cases both the numerical dissipation and numerical di�usion
are signi�cant and working against each other to steer the Minimum velocity in
opposite directions [�gure 2.18]. From the inviscid analysis above it can already be
deduced that AUSMM and HLLC numerical schemes with MUSCL higher order
extrapolations give very robust results, even for extremely long time-spans (not
shown). Viscous analysis campaign is then pursued with di�erent scaling of the
already introduced meshes. The results are averaged and organized in tables.
Three di�erent kind of errors are provided. The �rst one is a ratio between the lost
velocity and the initial velocity magnitudes. The second one is a ratio between the
accumulated pressure and the original pressure and shows how much of the lost
velocity was actually transformed in an average pressure increase in the domain:
if this increase is signi�cant, then we are not facing dissipation, but instead an
incorrect behavior of the MRF source terms, since the trend is restoring "inertial"
conditions; low �gures indicate instead that a strong numerical dissipation, which
source terms are not supposed to face, is present, thus exonerating the MRF source
terms. The third one is a ratio between the calculated "delta" pressure along the
radius and the one corresponding to the exact solution if the �uid is rotating
together with the reference frame, which is of course the wrong case: this indicator
is somehow halfway before the aforesaid two, since it depends on the dissipation
e�ects, but still a bit less than the velocity magnitude. The target, in order to
validate the MRF source terms, is having all the three errors, and the second one
particularly, reasonably low, below the ten percent threshold at worst. The results
are split between the �rst-order analysis campaign and the MUSCL higher order
analysis, since they are markedly di�erent.
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Mesh Numerical Higher | vend−v0
v0

| | pend−p0
p0

| | ∆pmrf

∆pinertial
|

geometry �ux order [%] [%] [%]

tri (delanuay) EFM - 73.39 12.39 57.54
tri (delanuay) AUSMM - 60.42 8.01 38.87
tri (delanuay) HLLC - 49.72 8.38 26.94
tri (patch) EFM - 75.31 9.96 57.51
tri (patch) AUSMM - 59.53 6.17 33.51
tri (patch) HLLC - 53.20 6.04 25.46
12x03 EFM - 78.68 17.17 37.05
12x03 AUSMM - 84.48 8.97 65.74
12x03 HLLC - 58.13 10.91 19.96
12x04 EFM - 81.23 15.22 45.27
12x04 AUSMM - 86.92 9.45 71.97
12x04 HLLC - 61.03 9.99 24.74
12x08 EFM - 87.88 11.91 62.59
12x08 AUSMM - 89.28 8.98 68.58
12x08 HLLC - 67.79 8.32 36.24
12x12 EFM - 91.36 11.57 70.61
12x12 AUSMM - 88.61 8.93 68.28
12x12 HLLC - 71.43 8.11 42.59
12x24 EFM - 95.59 11.42 80.50
12x24 AUSMM - 86.62 8.92 68.35
12x24 HLLC - 76.74 8.10 51.97
24x24 EFM - 90.18 10.94 78.01
24x24 AUSMM - 76.58 7.73 56.52
24x24 HLLC - 68.48 7.28 43.87

24x24 (lin) EFM - 82.87 10.77 54.24
24x24 (lin) AUSMM - 81.72 7.99 58.28
24x24 (lin) HLLC - 62.60 7.22 34.71

24x30 EFM - 85.19 10.47 59.16
24x30 AUSMM - 79.67 7.93 57.85
24x30 HLLC - 63.79 7.18 36.89
64x32 EFM - 67.37 8.48 38.25
64x32 AUSMM - 56.02 5.39 30.70
64x32 HLLC - 47.89 5.20 21.25

Among the �rst order viscous results, even the �nest meshes, together with the
best spatial numerical �uxes, manifest large errors, although the second kind is
always reasonably smaller. The trend is nonetheless positive, since all the errors
decrease with the improving mesh complexity, but these results are still too scarce
for a validation.
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Mesh Numerical Higher | vend−v0
v0

| | pend−p0
p0

| | ∆pmrf

∆pinertial
|

geometry �ux order [%] [%] [%]

tri (delanuay) EFM MUSCL 86.07 16.82 30.31
tri (delanuay) AUSMM MUSCL 36.55 18.95 43.09
tri (delanuay) HLLC MUSCL 56.79 19.87 35.40
tri (patch) EFM MUSCL 30.36 7.10 17.50
tri (patch) AUSMM MUSCL 19.11 5.75 20.34
tri (patch) HLLC MUSCL 11.40 5.99 18.18
12x03 EFM MUSCL 61.71 7.19 26.50
12x03 AUSMM MUSCL 15.73 2.88 17.29
12x03 HLLC MUSCL 10.90 2.74 11.40
12x04 EFM MUSCL 60.39 5.65 23.74
12x04 AUSMM MUSCL 20.22 2.75 16.11
12x04 HLLC MUSCL 10.70 2.28 11.99
12x08 EFM MUSCL 27.75 1.91 13.34
12x08 AUSMM MUSCL 9.69 1.51 14.66
12x08 HLLC MUSCL 6.81 1.29 12.23
12x12 EFM MUSCL 16.56 1.31 12.63
12x12 AUSMM MUSCL 5.82 1.38 14.28
12x12 HLLC MUSCL 6.38 1.18 11.99
12x24 EFM MUSCL 5.89 1.27 12.90
12x24 AUSMM MUSCL 3.11 1.38 14.19
12x24 HLLC MUSCL 4.22 1.25 12.61
24x24 EFM MUSCL 28.18 0.44 4.38
24x24 AUSMM MUSCL 1.14 0.40 4.52
24x24 HLLC MUSCL 0.71 0.38 3.92

24x24 (lin) EFM MUSCL 28.47 1.37 7.15
24x24 (lin) AUSMM MUSCL 2.72 0.67 5.03
24x24 (lin) HLLC MUSCL 1.37 0.56 3.74

24x30 EFM MUSCL 24.21 1.23 6.64
24x30 AUSMM MUSCL 2.59 0.65 4.85
24x30 HLLC MUSCL 1.46 0.53 3.69
64x32 EFM MUSCL 29.79 0.49 3.77
64x32 AUSMM MUSCL 0.32 0.09 0.93
64x32 HLLC MUSCL 0.12 0.08 0.80

The MUSCL higher order intra-cell extrapolation is responsible of a signi�cant
improvement in the quality of the results: excluding the very dissipative EFM
numerical scheme, we can deduce that starting from a 24x24 mesh de�nition all
the errors for AUSMM and HLLC analysis are signi�cantly below the ten percent
threshold. The errors in the 64x32 2D circular annulus are even three orders of
magnitude smaller than the characteristic quantities. These results, together with
the corresponding inviscid ones, can then prove the correct operativity of the cen-
trifugal and Coriolis source terms: even a markedly coarse mesh, with cell edges
lengthing up to 37.5 centimeters, is able to provide excellent results, provided a
MUSCL higher order extrapolation is available. Signi�cantly �ner meshes, at least
twice as detailed, make possible abandoning the MUSCL higher order extrapola-
tion, retaining comparable results quality.
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2.4.3 The oscillating circular annulus

The last test campaign on the Moving Reference Frame developments is aimed
at investigating the correct operativity of the remaining additional source term:
the angular acceleration inertia ρ̃ω̇ × r̃. The studied domains are still the previ-
ously introduced circular annulae. A �uid at rest in the absolute frame is again
selected, assuring absolute steadiness of the theoretical solution, the initial condi-
tions have been depicted accordingly. Symmetry boundary conditions are again
the best choice to avoid forcing the exact solution, thus leaving the results �oating
freely along the timespan. Inviscid and viscous cases and several oscillation periods
and amplitudes are being investigated, but the results are always superimposables.
The following plots are thus a few examples of the post-processing output.

Figure 2.20: Maximum velocity trends in an oscillating 24x24 circular annulus
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Figure 2.21: Minimum velocity trends in an oscillating 24x24 circular annulus

Figure 2.22: Maximum velocity trends in an oscillating 24x24 circular annulus
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Figure 2.23: Minimum velocity trends in an oscillating 24x24 circular annulus

The steadiness of the oscillations, both in term of amplitude and period, is the
aim of this test campaign. Steadiness of the period is always robustly achieved
even for extremely long lasting analyses and coarse meshes, and can be explained
since the periodicity of the oscillation is forced by the previously introduced MRF
kynematics, which are symmetrical around the zero and thus leave no margin for
a change of frequency or de-biasing of the solution. The only anomaly detected is
the slight phase anticipation present in HLLE and EFM analyses, mostly around
the peaks: it can be ascribed among the e�ects of higher numerical viscosity that
characterize these spatial �uxes. The steadiness of the oscillations amplitude, in-
stead, is never completely reached in the �rst one or two complete periods, both on
the outer border (maximum velocity) and on the inner border (minimum velocity)
of the domain. This anomaly can be seen as the second-order counterpart of the
�rst-order unsteadiness already met in the constant rotation test campaigns: the
velocity magnitude is su�ering numerical dissipation and di�usion and thus evolves
along the time, compromising the periodicity of the initial rotational oscillations.
Results are nonetheless very precise even for the coarse meshes shown, provided
an HLLC or AUSMM spatial �ux with MUSCL higher order extrapolation are
adopted. The operativity of the angular acceleration inertia source term has thus
been proved robust and reliable.
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2.5 Conclusions

The introduced, developed and tested Moving Reference Frame approach has
shown excellent feasibility if compared to the extremely small source code and
computational burdening. The detected sources of error can be traced to the strong
�nite approximation of the theoretical source terms and the signi�cant numerical
dissipation and di�usion of some spatial numerical schemes. The mesh re�nement
requirements are nonetheless absolutely in line with the solver's original ones, and
the freedom of choices on all the calculation methods and parameters is untouched.
Initial and Boundary conditions can be both provided in the absolute or the relative
reference frames and thus don't require further pre-processing by the user. The
limited set of kynematical cases prevents parameters �aws and is already capable
of handling the most common real cases of rigid moving bodies or boundaries, and
can be still expanded at wish.





Chapter 3

The Arbitrary Lagrangian

Eulerian approach

3.1 Preliminary considerations

The basic idea of detaching from both the classical Eulerian and Lagrangian
approaches can be traced back to the late 1960s, but took quite a considerable time
to spread, be rigorously theorized and widely studied. The primal objective of the
later called Arbitrary Lagrangian Eulerian approach was to combine the advantages
of both the original approaches, while minimizing their drawbacks, thus aiming at
becoming the new standard for �uid-dynamical codes.

3.1.1 Eulerian solvers advantages and drawbacks

The most common �uid-dynamics codes are still Eulerian-based and will likely
remain so. The reasons are quite straightforward: the Eulerian algorythms are
the most stable, e�cient, fast and robust way to solve �xed domains even in pres-
ence of severe unsteadynesses, non-linearities and even several coupled problems.
Large distortions of the continuum motion can be handled easily, provided that
an adequate mesh resolution is considered, which is often the main issue. Eule-
rian dynamics by themselves are on the contrary completely unable to account for
mesh movement and thus have the very strong limitation of being applicable only
to �xed domains, with �xed boundaries.

3.1.2 Lagrangian solvers advantages and drawbacks

Lagrangian solvers were instead widely used for solid mechanics, for which
they grew comparable stability, e�ciency, quickness and robustness. Their �uid-
dynamical counterparts were a very promising way to extend the numerical solvers
scope beyond the �xed domains: their cells following the continuum motion were
naturally able to account for free surfaces modeling and, with a minimal e�orts,
could also handle moving bodies and boundaries modeling, going well beyond the

39
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�xed domains frontier. Despite these powerful and promising features, they quickly
proved to require an extremely complex implementation to the �uid-dynamical
codes: contrary to the solid mechanics, particles of �uid don't have �xed linkings
with their neighbours and thus travel freely in the domain. A �nite representation
of the domain is then naturally subject to large distorsions for which no theoretical
solution exist: no matter how �ne the mesh is, the cells will always overlap and
tangle, growing the well known "hourglass" cells issue. A very frequent remeshing,
which in turn require remapping, is needed so the solver's e�ciency and speed are
severely compromised. By going further down in the details, di�culties arise also
for the vertex advancement scheme, since vertex movement must be deducted by
interpolation in cell-centered solvers and this is often source of additional errors
depending on the considered problem, so a plethora of di�erent solutions were pro-
posed. Another major concern is the potential worsening of both �xed and moving
rigid boundaries along medium and long simulations: rigid walls can be modeled
only as boundary conditions, and thus there is no warranty on their resolution and
shape after several iterations, so the remeshing algorythm will probably have to
care of that too.

3.1.3 Arbitrary Lagrangian Eulerian features

We have just seen that simplicity, stability, robustness, e�ciency and quick-
ness are the most sought after advantages of the Eulerian solvers, whereas domain
movements, deformations and free surfaces modeling are the topical features of
the Lagrangian codes. Both �ow movement through the mesh and mesh move-
ment must then be allowed, so in Arbitrary Lagrangian Eulerian frames the cells
will neither stay still in their absolute position nor fully inconditionally follow the
�uid in its most perverse dynamics. A considerable degree of freedom is still left:
various mesh movement criteria, relying both on geometric considerations and on
�ow considerations, have been developed and proved succesful. If the domain de-
formations are not severe, remeshing can be completely neglected. ALE is also
naturally suited for �uid-body interaction studies, since it enables a transition be-
tween the Eulerian frame of the asympthotic �uid and the purely Lagrangian �uid
mechanics computation inside the body. Versatility and �exibility can be then con-
sidered further unexpected major advantages of the Arbitrary Lagrangian Eulerian
approach. All these strong advantages don't come free: the complexity of ALE im-
plementation, even if smaller than the purely Lagrangian one, is still considerable.
Di�culties arise, in particular, both in the vertex movement criteria itself and in
how the additional �ux terms will account for it. The mesh update algorythm is
also closely a�ected by the time integration method used by the solver, since all
the calculated quantities must be coherent with it. The behavior of the additional
term will depend also on whether a higher order interpolation will be used by the
solver or not.
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3.2 Governing equations

For the development of Arbitrary Lagrangian Eulerian extensions inside Ty-
phon, the [2] analytical treatment has been strictly followed. ALE contributes are
thus derived as additional �ux terms in the system of Euler equations, for the in-
viscid case. These analytical results are however directly extendable to the viscous
Navier-Stokes equations.

3.2.1 Derivation of the �uid dynamics equations

The Lagrangian point of view

By adopting a Lagrangian perspective, we deal with just two reference systems:
X = material coordinates, bound to the moving material particles;
x = spatial coordinates, made of �xed spatial (immaterial) points.

Considering any law of motion of the kind

x = x(X, t), t = t

(in which the same physical time is measured in both systems) we can introduce
the "mapping", that is an application

ϕ : RX −→ Rx

(X, t) 7−→ (x, t) = ϕ(X, t)

which allows us to constantly relate the motion of the material particles (and so of
the moving reference system) to the �xed spatial frame. The Jacobian matrix of
the foresaid mapping will then be:

∂(x, t)

∂(X, t)
=
∂ϕ(X, t)

∂(X, t)
=


 ∂x

∂X

 ...
v
...

. . .0T . . . 1

 (3.1)

where we introduced the material particles speed

v(X, t) =
∂x

∂t

∣∣∣∣
X

(3.2)

In order to ensure that the mapping will always be reversible [..], we'll have to
verify that

det

(
∂x

∂X

)
> 0

(then the Jacobian will be surely non-singular and ϕ−1 will exist de�ned).



42CHAPTER 3. THE ARBITRARY LAGRANGIAN EULERIAN APPROACH

The ALE point of view

In the Arbitrary Lagrangian Eulerian perspective we have to introduce a third
coordinate system:
X = material coordinates, bound to the moving material particles;
χ = "reference grid" coordinates, bound to the computational mesh;
x = spatial coordinates, made of �xed spatial (immaterial) points.

His place between the former two is intentional, because normally this reference
frame should fall somewhere halfway between the non-moving spatial frame and
the ever-moving material frame. Since the reference systems are now three, there
will be two additional mappings:

(χ, t) 7−→ φ(χ, t) = (x, t)

(X, t) 7−→ ψ−1(X, t) = (χ, t)

with the following Jacobians:

∂(x, t)

∂(χ, t)
=
∂φ(χ, t)

∂(χ, t)
=


 ∂x

∂χ

 ...
v̂
...

. . .0T . . . 1

 (3.3a)

∂(χ, t)

∂(X, t)
=
∂ψ−1(X, t)

∂(X, t)
=


 ∂χ

∂X

 ...
w
...

. . .0T . . . 1

 (3.3b)

where we introduced the following speeds:

v̂(χ, t) =
∂x

∂t

∣∣∣∣
χ

= absolute speed of the mesh. (3.4a)

w(X, t) =
∂χ

∂t

∣∣∣∣
X

= particles speed relative to the mesh "in the mesh' perspective"

(3.4b)

The correct composition would be:

v = v̂ +
∂x

∂χ
w

Thus, for the following steps, it is wise to de�ne another speed:

c = v − v̂ =
∂x

∂χ
w (3.5)

c is the convective speed of the particles relative to the mesh, meseaured in the
�xed reference frame.
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The fundamental ALE relation

As a �rst step, we start working on gradients of generic functions in the various
coordinate systems. Hence, the gradient of

f∗∗(X, t) = f∗(χ, t) = f∗(ψ−1(X, t), t) = f∗ · ψ−1 (3.6)

will be
∂f∗∗

∂(X, t)
=

∂f∗

∂(χ, t)
· ∂ψ

−1

∂(X, t)
(3.7)

Expliciting the single terms:

{
∂f∗∗

∂X

∂f∗∗

∂t

}
=

{
∂f∗

∂χ

∂f∗

∂t

}
 ∂χ

∂X

 ...
w
...

. . .0T . . . 1

 (3.8)

that is equal to the following system:

⇒


∂f∗∗

∂X
=
∂f∗

∂χ

∂χ

∂X

∂f∗∗

∂t
=
∂f∗

∂t
+
∂f∗

∂χ
w

(
w =

∂χ

∂t

∣∣∣∣
X

)
(3.9)

Since, as previously stated,

c = v − v̂ =
∂x

∂χ
w

it is �nally possible to write:

⇒ ∂f∗∗

∂t

∣∣∣∣
X

=
∂f∗

∂t
+
∂f∗

∂χ
w =

∂f∗

∂t
+
∂f∗

∂x
c =

∂f∗

∂t

∣∣∣∣
χ

+∇f · c (3.10)

This is a fundamental relation for the ALE develpment, since it allows the expres-
sion of the time-dependant terms of the conservation laws in the new arbitrarily
moving mesh reference system.

3.2.2 ALE formulation of the di�erential Euler equations

The common di�erential form of the Euler equations is:

dρ

dt
=
∂ρ

∂t

∣∣∣∣
x

+ v ·∇ρ = −ρ∇ · v

ρ
dv

dt
= ρ

(
∂v

∂t

∣∣∣∣
x

+ (v ·∇)v

)
= ∇ · σ + ρb

ρ
dE

dt
= ρ

(
∂E

∂t

∣∣∣∣
x

+ v ·∇E

)
= ∇ · (σ · v) + v · ρb

(3.11)
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By using the previously derived relation (3.10), we can easily derive the ALE
formulation of the Euler equations, in di�erential form:

∂ρ

∂t

∣∣∣∣
χ

+ c ·∇ρ = −ρ∇ · v

ρ

(
∂v

∂t

∣∣∣∣
χ

+ (c ·∇)v

)
= ∇ · σ + ρb

ρ

(
∂E

∂t

∣∣∣∣
χ

+ c ·∇E

)
= ∇ · (σ · v) + v · ρb

(3.12)

also known as "quasi-Eulerian form", and eventually the internal energy balance:

ρ
de

dt
= σ : ∇Sv ⇒ ρ

(
∂e

∂t

∣∣∣∣
χ

+ c ·∇e

)
= σ : ∇Sv (3.13)

(where ∇Sv = 1
2(∇v +∇Tv))

Thanks to the same relations, deduction of the accelerations is also possible.

a =
∂v

∂t

∣∣∣∣
X

⇒ a =
∂v

∂t

∣∣∣∣
χ

+ c
∂v

∂x
(3.14)

ALE formulation of the integral Euler equations

The simplest way to develop the integral Euler equations in ALE formulation
is by using Reynolds' transport and Green's theorems.

The Green's theorem states that:∮
δΩ
F · ndS =

∫
Ω
∇ · F dV (3.15)

whereas the Reynold's transport theorem is:

∂

∂t

∣∣∣∣
χ

∫
Vt

f(x, t)dV =

∫
Vt

∂f(x, t)

∂t

∣∣∣∣
x

dV +

∫
St

f(x, t)v̂ · ndS (3.16)

By rewriting the Reynold's transport theorem for the quantities (ρ, ρv, ρE) we
get 

∂

∂t

∣∣∣∣
χ

∫
Vt

ρdV =

∫
Vt

∂ρ

∂t

∣∣∣∣
x

dV +

∫
St

ρv̂ · ndS

∂

∂t

∣∣∣∣
χ

∫
Vt

ρvdV =

∫
Vt

∂ρv

∂t

∣∣∣∣
x

dV +

∫
St

ρvv̂ · ndS

∂

∂t

∣∣∣∣
χ

∫
Vt

ρEdV =

∫
Vt

∂ρE

∂t

∣∣∣∣
x

dV +

∫
St

ρEv̂ · ndS

(3.17)

Then, by substituting the �rst term of the right hand side with (3.11) we can
shortly obtain:
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∂

∂t

∣∣∣∣
χ

∫
Vt

ρdV +

∫
St

ρc · ndS = 0

∂

∂t

∣∣∣∣
χ

∫
Vt

ρvdV +

∫
St

ρvc · ndS =

∫
Vt

(∇ · σ + ρb)dV

∂

∂t

∣∣∣∣
χ

∫
Vt

ρEdV +

∫
St

ρEc · ndS =

∫
Vt

(
v · ρb+∇ · (σ · v)

)
dV

(3.18)
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3.3 Implementations in Typhon

The tasks which had to be accomplished are:

• creation of the "ALE" data container, to hold all the new input parameters
and any data useful along the calculation;

• recognition and assignment of the new ALE parameters from the analysis
input �les;

• introduction of the �ux terms in the solver's �uid dynamics equations;

• development of the mesh update algorythm.

3.3.1 The ALE data structure

Similarly to the MRF case, a FORTRAN structure proved to be the optimal
choice. The "mnu_ale", de�ned in "SOURCE/PARAM/MENU_ALE.f90"
has been thus designed with the following members:

• the string "name";

• the integer parameter "type" for the mesh movement criteria or algorythm;

• the symbolic relations "movement_x", "movement_y" ,"movement_z" and
"movement_θ", for the mesh movement;

• the string "moving_body", for the "BODY " mesh movement algorythm;

• the integer "idboco_body", which will correspond to the previously described
moving body;

• the three-dimensional vector "body_center", which will be calculated from
the moving body nodes;

• the reals "body_maxradius" and "closest_boundary" and the allocatable
real array "weight" which are internal parameters for the body mesh move-
ment algorythm;

• the allocatable three-dimensional vector arrays "original_vertex", "old_facecentres"
and "face_velocity", needed for the time dependent parameters in the �ux
termes.

3.3.2 ALE input parameters reading and processing

Similarly to the MRF case, a new "BLOCK : ALE" has been introduced
in the main.rpm analysis input parameters �le, to include all the possible ALE
inputs. The parsing of that block was handled by the subroutine contained in the
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PARAM/def_ale.f90 source �le, which also accounted for preliminary treatment
of the parameters. An example of the main.rpm ALE section is as follow:

BLOCK : ALE

NAME =oscillating_airfoil

TY PE =BODY

MOV ING_BODY =CRV S

BODY_CENTRE =(0., 0., 0.)

BODY_MOV EMENT_X =0.

BODY_MOV EMENT_Y =0.008128 ∗ SIN(27.8344874 ∗ T − 3.0892)

BODY_MOV EMENT_Z =0.

BODY_MOV EMENT_THETA =− 0.001047198

− 0.026005 ∗ SIN(27.8344874 ∗ T )
ENDBLOCK

(3.19)

3.3.3 ALE �ux terms

As previously described in the MRF section, all the right hand sides contributes
in the Navier-Stokes equations, be they sources or �uxes, are evaluated as residuals
of each analysis iteration, that are initialized at zero each time. For the ALE �ux
terms, this task is being done by the "calc_flux_ale(defsolver, nflux, ista,
umesh, cg_l, cg_r, QL, QR, flux, calc_jac, jacL, jacR)" subroutine, located
in the "calc_flux_ale.f90" source �le inside the "SOURCE/EQNS" folder. As
manifest from the subroutine parameters, the higher order extrapolation of the
�uid-dynamics state on the cell faces is used if available. The Jacobian of the �ux
is also used if provided, but was considered beyond the scopes of the present work
and thus postponed.

3.3.4 The mesh update algorythms

Among the various possible mesh movement solutions available, which are also
widely undertaken, two of the simplest have been developed since they perfectly
�t the scopes of the present work. The �rst and most straight-forward is the
"GLOBAL" movement, for which the �nal user must provide continuous symbolic
relations of space and time for the three independent components of the mesh move-
ment function inside the main.rpm parameter �le. The heaviest burden is left on
the �nal user's shoulders, but the degree of freedom granted by this approach is con-
siderable. The ale_meshupdate( umesh,defsolver,gradcond_computed,curtime,dt)
subroutine, located in theMESHALE.f90 source �le inside the SOURCE/MGRID
folder handles the evaluation of the space and time symbols for each vertex and
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each time step, successively ful�lls the actual mesh movement, calls geometric sub-
routines to recalculate face areas and centers, cell volumes and centers and �nally
calculates the resulting faces velocities, that are later used by the �ux terms.
An example of a main.rpm ALE parameters block with the GLOBAL movement,
extensively using the step() function, is as follow:

BLOCK : ALE

NAME =moving_mesh

TY PE =GLOBAL

MESH_MOV EMENT_X =0.

MESH_MOV EMENT_Y =0.3 ∗ SIN(31.4159 ∗ T ) ∗ (1− Y ) ∗ (STEP (X)∗
∗ STEP (1−X) ∗X + STEP (X − 1.001))

MESH_MOV EMENT_Z =0.

ENDBLOCK
(3.20)

The second solution available is the "BODY " movement, for which an interpo-
lation between a user-selected moving body and the remaining �xed boundaries is
assumed. The previously introduced ale_meshupdate() subroutine does, orderly

• allocates and assigns the original vertexes and old face centers and allocates
face velocities vector;

• �nds the user inputted moving body among the mesh boundaries and stores
its boundary faces indexes;

• calculates the body_center, the body_maxradius and the closest_boundary
by cycling on all the body vertexes and the remaining boundaries vertexes;

• calculate the "weight" on each mesh non-boundary vertex for the interpola-
tion, comparing the distance from the body center with the max radius and
the closest boundary;

• evaluates the space and time symbols for the four continuous symbolic rela-
tions of X,Y, Z, θ body movement;

• ful�lls the actual mesh movement;

• calls the geometric subroutines to recalculate face areas and centers, cell
volumes and centers;

• calculates the resulting faces velocities.
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3.4 Validation cases and results

In order to check the correct behavior of ALE �ux terms, tests for both the
"static" e�ects and the "dynamic" ones have been pursued. The principal dif-
ference among the two kinds is that in the �rst case the mesh movement is slow
compared to the �ow velocities studied, so the �ow tends to evolve like a series
of "snapshots" and the mesh movement itself doesn't cause noticeable variations
on the solutions; in the second case, the mesh movement speed is comparable to
the �uid �ow ones and thus, thanks to the introduction of the correct wall velocity
boundary condition, has a direct and noticeable in�uence on the �ow �eld results.
A two-dimensional contracting/expanding piston domain was included in the dy-
namic validation cases, but had to be successively discarded since cell dimensions
and time step requirements for a stable solutions were too strict for a useful test
campaign, yet the trends were promising. The two-dimensional �utter presented
in the next section is thus the only dynamic validation case described, whereas a
supersonic �ow inside a two-dimensional oscillating duct (wedge geometry) provide
for the static validation case.

As already mentioned in the MRF validation cases introduction, this time a
single combination will be evalued for the computational enquiry, taking bene�t
of the best possible combination of numerical �uxes (spatial schemes) and time-
marching schemes. The previous results of the MRF validational campaign are, in
fact, still perfectly valid.
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3.4.1 Supersonic �ow inside an oscillating two-dimensional duct

Theory

Figure 3.1: 2d wedge shock solution in concave attitude

Figure 3.2: 2d wedge expansion solution in convex attitude

A supersonic �ow entering a two-dimensional duct with variable geometry in time
undergoes either oblique shocks or an expansion fan. Theoretical results are avail-
able thanks to the oblique shock and Prandtl-Meyer relations, so a validation case
for ALE is promptly available.

Figure 3.3: 2d wedge mesh in a concave attitude

Figure 3.4: 2d wedge mesh in a convex attitude
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Numerical treatment

Figure 3.5: Parameters

The position of the oblique shock/expansion fan position on the roof (upper
boundary) Xshock(t)/Xfan(t) was object of the study: theoretical oblique shock/-
expansion fan solutions are available and described below and can be very easily
compared to the numerical results. Those latter have been gathered from the cal-
culation outputs by considering two di�erent ways to locate the shock: for the
�rst one, the shock is where the maximum drop of �uid-dynamics state solutions is
found, whereas for the second one, the shock is positioned where the �ow solutions
di�er the most from the original asympthotic conditions. The arithmetical aver-
aging between these two de�nitions provided smoother and more precise results,
since mesh coarseness prevented a good curve to be deduced from either of them.
Wedge height Hwedge(t) data has been also gathered from the results, since needed
for the analytical solution.
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Analytical oblique shock treatment

Figure 3.6: Oblique shock characteristic parameters (courtesy of wikipedia.org)

The theoretical solution of the oblique shock is quite straightforward: �rst of all,
we know that

γ = 1.4,

M1 = 3.0 and

θ(t) = atan (Hwedge(t))

and that δ = 1 corresponds to the weak shock solution, which is the sought one.

We can thus evaluate

λ(t) =

√
(M2

1 − 1)2 − 3(1 +
γ − 1

2
M2

1 )(1 +
γ + 1

2
M2

1 )tan
2θ(t) (3.21)

and

χ(t) =
(M2

1 − 1)3 − 9(1 + γ−1
2 M2

1 )(1 +
γ−1

2 M2
1 + γ+1

4 M4
1 )tan

2θ(t)

λ3(t)
(3.22)

and �nally derive xshock(t) from:

1/xshock(t) = tanβ(t) =
M2

1 − 1 + 2λ(t)cos(4πδ+acosχ(t)
3 )

3(1 + γ−1
2 M2

1 )tanθ(t)
(3.23)
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Analytical expansion fan treatment

Figure 3.7: Prandtl-Meyer expansion fan characteristic parameters (courtesy of
wikipedia.org)

For the expansion fan, the Prandtl-Meyer theory is promptly available. With the
same foresaid datas, we start calculating

ν1(M1) =

√
γ + 1

γ − 1
· atan

√
γ − 1

γ + 1
(M2

1 − 1)− atan
√
M2

1 − 1 (3.24)

and then, since

ν2(M2) = θ + ν1(M1) (3.25)

we implicitly solve the following relation to obtain M2:

ν2(M2) =

√
γ + 1

γ − 1
· atan

√
γ − 1

γ + 1
(M2

2 − 1)− atan
√
M2

2 − 1 (3.26)

Now, since

µ1 = asin
1

M1

µ2 = asin
1

M2

(3.27)

we may �nally desume:

1/xfan = tanβ = tan
µ1 + µ2 + θ

2
(3.28)
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Results comparison

Figure 3.8: 2d Oscillating wedge results

By understanding that the expansion fan position was not easily identi�ed at very
small negative θ angles and by allowing some jagging/aliasing of the numerical
results due to the foresaid coarseness of the mesh, the numerical and analytical re-
sults do perfectly correspond. This noticeable result warrants the correct behavior
of the solver in completely di�erent transient geometries.
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3.5 Conclusions

Even if not as powerful as many of the Arbitrary Lagrangian-Eulerian exten-
sions available in the literature and in the present day CFD solvers, which also allow
remeshing and remapping for signi�cant domain movements, our developed and
tested ALE extension has shown excellent feasibility with only moderate source-
code interventions and computational burdening. Again caution must be put when
choosing the spatial numerical scheme, but to a lesser extent compared to the MRF
case. The limitations of the ALE extension itself are less strict than the solver
ones. The only further requirement is thus the adoption of an adequate mesh that
will tolerate the given movement without macroscopic degradation, and providing
enough distance between the moving body and the remaining boundaries in case
the "BODY " mesh movement interpolation algorythm is going to be used.
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Chapter 4

The two-dimensional airfoil �utter

4.1 Two degrees of freedom �utter

The extensive test campaign on a NACA0012 rectangular wing �utter available
in [6] is the framework for the �nal validation and comparison between the Moving
Reference Frame analysis, the Arbitrary Lagrangian Eulerian study and the pub-
lished experimental results.

As already mentioned in the MRF and ALE validation cases introduction, again
a single combination will be evalued for the computational enquiry, taking bene�t
of the best possible combination of numerical �uxes (spatial schemes) and time-
marching schemes. The previous results of the MRF validational campaign are, in
fact, still perfectly valid.

4.1.1 Case de�nition

According to the NASA paper [6, tab. 5], air�ows at several di�erent Machs
are investigated. For each of them, a dynamic pressure, a density, a mean angle of
attack, a natural �utter frequency, magnitudes and phases of angle of attack and
vertical position oscillations are published and given to the solver's MRF and ALE
extensions. The exact choices, in details, are:

• a two-dimensional mesh of quadrangulars with an external shape of a rounded
diamond is assumed: the diamond grants certainty on the in�ow and out�ow
conditions during MRF calculations. The mesh is displayed down below;

• Euler dynamics are always assumed;

• the spatial numerical scheme is always HLLC with MUSCL higher order
extrapolation, since they proved to be the best combination overall;

• the time marching scheme is a simple Forward Euler, for the sake of compu-
tational speed;
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• the time step was chosen according to the Typhon'sGLOBAL_STABILITY
criterium, for which a CFL of 1 is evaluated on every domain cell and the
strictest time step is then assumed;

• a steady calculation to a convergence of 10−5 is run beforehand, to provide
for high quality initial conditions for the unsteady alalyses;

• two full periods of the �utter oscillations are always calculated and the second
one is the sole investigated, to exclude eventual initial trasient phenomena;

• the boundary conditions adopted, coherently with the inviscid Euler analyses,
are SYMMETRY (slipping wall) on the airfoil, SUBSONIC_INLET on
the in�ow and SUBSONIC_OUTLET on the out�ow;

• three di�erent Mach numbers have been particularly studied: 0.3 , 0.51 ,
0.82;

• the numeric results are then gathered in terms of pressure coe�cients (cP )
over the airfoil surface;

• the numerical and experimental pressure coe�cients cP can �nally be trans-
lated into lifting coe�cients cL which can be compared.
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Figure 4.1: 2d mesh used for the MRF and ALE �utter calculations
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Figure 4.2: NACA0012 airfoil detail of the 2d mesh used for the MRF and ALE
�utter calculations

4.1.2 Numerical treatment

For a compressible �ow, the pressure coe�cient cP is de�ned as:

cP =
2

γM2
inf

(
p

pinf
− 1

)
(4.1)

now since Minf , γ and pinf are all known analysis input values, the pressure
�eld p is the only unknown that has to be retrieved from the analysis results.

For the construction of the cL − α chart, the sole missing relation is

cL =

∫ 1

0
(cPL

(x)− cPU
(x)) dx (4.2)

that is, the integral along the adimensionalised chord of the di�erence between
the pressure coe�cient on the lower surface and the pressure coe�cient on the
upper surface. This relation is of course useful for both the experimental and the
numerical data, provided that data �tting (interpolation) is previously made.
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4.1.3 Results

The gathered numerical and experimental results are being plotted in the same
charts, to compare the magnitudes and trends.

Figure 4.3: cL−α charts of experimental, MRF and ALE results for the NACA0012
�utter at Mach=0.3

Figure 4.4: cL−α charts of experimental, MRF and ALE results for the NACA0012
�utter at Mach=0.51



64 CHAPTER 4. THE TWO-DIMENSIONAL AIRFOIL FLUTTER

Figure 4.5: cL−α charts of experimental, MRF and ALE results for the NACA0012
�utter at Mach=0.82

4.2 Conclusions

The plotted results manifest good coherence in the orders of magnitude among
experimental and numerical results and, excluding the fact that the MRF calcu-
lation at Mach=0.82 has been wrongly made with null average angle of attack,
manifest also exceptional correspondence between ALE and MRF solutions. The
noticeable di�erence in the trends and shapes between experimental and numerical
results can be explained �rstly by the fact that the numerical analysis has been done
on a two-dimensional airfoil, whereas the real phenomenum is three-dimensional
(and this fact is manifest alone by comparing the di�erent experimental results be-
tween 60% and 95% wingspan), and possibly because, due to the mesh coarseness,
Euler inviscid dynamics have been preferred to the Navier-Stokes viscous ones,
and slipping wall boundary condition has been preferred to the non-slipping one.
Slight errors in the input case parameters both due to experimental errors or to
the conversions to the international metric system may also have played a role,
since very little variations on magnitude and frequency of the oscillations can dras-
tically change the �utter phenomenum. The di�erences are considered nonetheless
reasonable, since they also fall in-between the experimental extreme values.



Chapter 5

Overall conclusions

All the original objectives presented in the introduction could be reasonably
achieved: Moving Reference Frame and Arbitrary Lagrangian-Eulerian extensions
to the Typhon �nite-volume cell-centered CFD solver have been mathematically
derived, developed, extensively tested and successfully compared.

The results manifest signi�cant coherence among the two and are perfectly com-
parable with the experimental results available. Numerical errors are markedly low
even in the Moving Reference Frame cases, which, as stated, is working via source-
terms, theorically and traditionally more a�ected by errors.

The end users don't have new signi�cant restrictions for the use of the new
moving geometries extensions apart from the original solver's ones. The additional
case de�nitions follow the original Typhon traditions and require only the basic
necessary parameters. The computational times are only sligthly greater for the
ALE case, whereas are almost unchanged for the MRF case: this little di�erence
is due to the mesh movement algorythm, which is nonetheless one of the simplest
available.

Countless further improvements are worth and possible, since each approach
holds a plethora of additional features, but they fall beyond the scope of the present
work, which nontheless established the basis for all and every of them.
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