CONFRONTO TRA DIVERSE METODOLOGIE DI VALUTAZIONE DEL GRADO DI SWIRL IN UN BRUCIATORE COASSIALE

Relatore: Prof. Aldo COGHE

Tesi di Laurea di:

Mattia CASANOVA
Matr. 702559

Anno Accademico 2010 - 2011
Ringraziamenti
Elenco delle Figure

Figura 2.1 Componenti di velocità in coordinate polari .. 4
Figura 2.2 Distribuzione radiale della velocità assiale tangenziale e radiale all'uscita di un generatore di swirl di tipo ad ingressi assiali e tangenziali ... 7
Figura 2.3 Schematizzazione del campo di moto di un getto a basso grado di swirl ... 8
Figura 2.4 Ricircolazione causata dalla scia provocata da un corpo tozzo[11] 9
Figura 2.5 Campo di moto per getti ad alto numero di swirl 10
Figura 2.6 Schematizzazione di CTRZ e CRZ in un flusso ad alto numero di swirl.......................... ... 11
Figura 2.7 Formazione di zone di ricircolazione in un flusso swirlato confinato .. 11
Figura 2.8 Instabilità di tipo a bolla assialsimmetrica[13] 12
Figura 2.9 Instabilità di tipo a spirale [23] ... 13
Figura 2.10 Tre tipi di generatori di swirl ... 14
Figura 2.11 Distribuzione iniziale di velocità tangenziale per i tre tipi di generatori di swirl .. 14
Figura 2.12 Generatore di swirl di tipo ad ingressi assiali e tangenziali 15
Figura 2.13 Generatore di swirl a blocchi mobili ... 16
Figura 2.14 Efficienza di generazione di swirl in funzione di S per diversi apparati di generazione ... 18
Figura 3.1 Vista in sezione del bruciatore ... 19
Figura 3.2 Schema semplificato del bruciatore .. 20
Figura 3.3 Gruppo di iniezione dell’aria tangenziale .. 21
Figura 3.4 Sezione della zona di efflusso ... 21
Figura 3.5 Impianto di alimentazione .. 24
Figura 3.6 Schema del nebulizzatore sonico .. 26
Figura 4.1 Sistema di riferimento utilizzato .. 27
Figura 4.2 Esempio di profili radiali di velocità assiale e tangenziale: caso 8, \(S_g = 5 \) ... 28
Figura 4.3 Schema del modello a frange di interferenza 34
Figura 4.4 Risoluzione dell'ambiguità direzionale [21] 37
Figura 5.1 Approssimazione dell'integrale attraverso il metodo dei trapezi 46
Figura 5.2 Profili di velocità assiale e tangenziale: caso 3, \(S_g = 5 \) 48
Figura 5.3 Schematizzazione dominio di misura e sistema di riferimento 48
Figura 5.4 Schematizzazione del flusso confinato in camera di combustione con indicazione della quota del volume di misura ... 51
Figura 5.5 Legame \(S_2 \) Swirl geometrico \((S_g) \) .. 52
Figura 5.6 Andamento della portata al variare dell'estremo di integrazione: (a) caso 1 \(S_g = 1.15 \); (b) caso 11 \(S_g = 1.15 \); (c) caso 2 \(S_g = 2.59 \); (d) caso 7 \(S_g = 2.59 \); (e) caso 12 \(S_g = 1.49 \); (f) caso 13 \(S_g = 2.59 \) .. 59
Figura 5.7 Andamento della portata al variare dell’estremità di integrazione: (a) caso 15 \(S_g = 7.2 \); (b) caso 14 \(S_g = 5 \); (c) caso 10 \(S_g = 10.37 \); (d) caso 3 \(S_g = 5 \).

Figura 5.8 Andamento flusso quantità di moto assiale \(G_x/G_{x0} \) al variare dell’estremità di integrazione: (a) caso 1 \(S_g = 1.15 \); (b) caso 11 \(S_g = 1.15 \), (c) caso 2 \(S_g = 2.59 \); (d) caso 7 \(S_g = 2.59 \); (e) caso 12 \(S_g = 1.49 \); (f) caso 13 \(S_g = 2.59 \).

Figura 5.9 Andamento flusso quantità di moto assiale \(G_x/G_{x0} \) al variare dell’estremità di integrazione: (a) caso 15 \(S_g = 7.2 \); (b) caso 14 \(S_g = 5 \), (c) caso 10 \(S_g = 10.37 \); (d) caso 3 \(S_g = 5 \).

Figura 5.10 Andamento flusso quantità di moto tangenziale \(G_\theta/G_{x0} \) al variare dell’estremità di integrazione: (a) caso 1 \(S_g = 1.15 \); (b) caso 11 \(S_g = 1.15 \), (c) caso 2 \(S_g = 2.59 \); (d) caso 7 \(S_g = 2.59 \); (e) caso 12 \(S_g = 1.49 \); (f) caso 13 \(S_g = 2.59 \).

Figura 5.11 Andamento flusso quantità di moto tangenziale \(G_\theta/G_{x0} \) al variare dell’estremità di integrazione: (a) caso 15 \(S_g = 7.2 \); (b) caso 14 \(S_g = 5 \), (c) caso 10 \(S_g = 10.37 \); (d) caso 3 \(S_g = 5 \).

Figura 6.1 Profili radiali di velocità assiale e tangenziale alle quote \(z/D = 0.6 \) e \(z/D = 0.5 \), caso 8, \(S_g = 5 \).

Figura 6.2 Profili radiali di velocità assiale e tangenziale all’uscita del gas gun.

Figura 6.3 Profili radiali di velocità assiale e tangenziale all’uscita del gas gun.

Figura 6.4 Profili radiali di velocità tangenziale

Figura 6.5 Profili radiali delle fluttuazioni di velocità assiale \(\overline{u}/U_m \) per \(Re = 5800 \).

Figura 6.6 Profili radiali delle fluttuazioni di velocità assiale \(\overline{u}/U_m \) per \(Re = 8700 \).

Figura 6.7 Profili radiali delle fluttuazioni di velocità assiale \(\overline{u}/U_m \) per \(Re = 12700 \).

Figura 6.8 Profili radiali delle fluttuazioni di velocità assiale \(\overline{u}/U_m \) per \(Re = 5800 \).

Figura 6.9 Profili radiali delle fluttuazioni di velocità assiale \(\overline{u}/U_m \) per \(Re = 8700 \).

Figura 6.10 Profili radiali delle fluttuazioni di velocità assiale \(\overline{u}/U_m \) per \(Re = 12700 \).

Figura 6.11 Profili radiali delle fluttuazioni di velocità assiale \(\overline{u}/U_m \) per \(Re = 5800 \).

Figura 6.12 Profili radiali delle fluttuazioni di velocità assiale \(\overline{u}/U_m \) per \(Re = 8700 \).

Figura 6.13 Profili radiali delle fluttuazioni di velocità assiale \(\overline{u}/U_m \) per \(Re = 12700 \).
Figura 6.14 Profili radiali di velocità tangenziale \(W/U_m \) per \(Re=8700 \)90
Figura 6.15 Profili radiali di velocità tangenziale \(W/U_m \) per \(Re=12700 \)90
Figura 6.16 Distribuzione radiale delle componenti di velocità tangenziale in un
vortice di Rankine [17] ...91
Figura 6.17 Profili radiali delle fluttuazioni di velocità tangenziale \(\bar{w} / U_m \) per
\(Re=5800 \) ..92
Figura 6.18 Profili radiali delle fluttuazioni di velocità tangenziale \(\bar{w} / U_m \) per
\(Re=12700 \) ..93
Figura 6.19 Profili radiali delle fluttuazioni di velocità tangenziale \(\bar{w} / U_m \) per
\(Re=8700 \) ..94
Figura 6.20 Profili radiali di velocità assiale \(U/U_m \) per \(S_g=5 \) e \(Re=5800, 8700, 12700 \) ...95
Figura 6.21 Profili radiali di velocità assiale \(U/U_m \) per \(S_g=7.2 \) e \(Re=5800, 8700, 12700 \) ...96
Figura 6.22 Profili radiali di velocità assiale \(U/U_m \) per \(S_g=1.037 \) e \(Re=5800, 8700, 12700 \) ...97
Figura 6.23 Profili radiali di velocità tangenziale \(W/U_m \) per \(S_g=5 \) e \(Re=5800, 8700, 12700 \) ...98
Figura 6.24 Profili radiali di velocità tangenziale \(W/U_m \) per \(S_g=7.2 \) e \(Re=5800, 8700, 12700 \) ...99
Figura 6.25 Profili radiali di velocità tangenziale \(W/U_m \) per \(S_g=10.37 \) e
\(Re=5800, 8700, 12700 \) ...100
Figura 6.26 Andamento dell portata normalizzata al variare di \(S_g \) per \(Re=5800, 8700, 12700 \) ...101
Figura 6.27 Andamento di \(S_1 \) al variare di \(S_g \) per \(Re=5800, 8700, 12700 \)102
Figura 6.28 Andamento di \(S_2 \) al variare di \(S_g \) per \(Re=5800, 8700, 12700 \)103
Figura 6.29 Andamento di \(S_3 \) al variare di \(S_g \) per \(Re=5800, 8700, 12700 \)104
Figura 6.30 Andamento di \(S_{2RR}, S_{2A}, S_{2B} \) al variare di \(S_g \) per \(Re=5800 \)105
Figura 6.31 Andamento di \(S_{2RR}, S_{2A}, S_{2B} \) al variare di \(S_g \) per \(Re=8700 \)106
Figura 6.32 31 Andamento di \(S_{2RR}, S_{2A}, S_{2B} \) al variare di \(S_g \) per \(Re=12700 \)107
Figura 6.33 Legame \(S_2 \) \(S_g \) per \(Re=5800, 8700, 12700 \) sul campo \(1< S_g <11 \)108
Figura 6.34 Legame \(S_2 \) \(S_g \) ottenuto escludendo \(S_2(S_g=2.59) \) sul campo \(1< S_g <11 \)
..109
Figura 6.35 Legame \(S_2 \) \(S_g \) per \(Re=5800, 12700 \) sul campo \(1< S_g <18 \)110
Figura 6.36 Legame \(S_2 \) \(S_g \) per \(Re=5800, 8700, 12700 \) sul campo \(1< S_g <18 \); le
curve includono i dati dei lavori di tesi [15] [16] ..111
Figura 6.37 Legame \(S_1 \) \(S_g \) per \(Re=5800, 8700, 12700 \) sul campo \(1< S_g <11 \)112
Figura 6.38 Legame \(S_1 \) \(S_g \) per \(Re=5800, 8700, 12700 \) sul campo \(1< S_g <11 \)
escludendo \(S_1(S_g=2.59) \) ...113
Figura 6.39 Legame \(S_1 \) \(S_g \) per \(Re=5800, 8700, 12700 \) sul campo \(1< S_g <19 \)114
Figura 6.40 Legame \(S_1 \) \(S_g \) per \(Re=5800, 8700, 12700 \) sul campo \(1< S_g <18 \); le
curve includono i dati dei lavori di tesi [15] [16] ..115
Figura 6.41 Legame $S_3 S_g$ per $Re=5800, 8700, 12700$ sul campo $1 < S_g < 11$...

Figura 6.42 Legame $S_3 S_g$ per $Re=5800, 8700, 12700$ sul campo $1 < S_g < 11$
escludendo $S_3(S_g=2.59)$..

Figura 6.43 Legame $S_3 S_g$ per $Re=5800, 8700, 12700$ sul campo $1 < S_g < 19$...

Figura 6.44 Legami $S S_g$ per $S_1 S_2 S_3$ sul campo $1 < S_g < 11$ per $Re=5800, 8700$ e
12700..

Figura 6.45 Legami $S S_g$ per $S_1 S_2 S_3$ sul campo $1 < S_g < 11$ per $Re=5800$ e 12700;
le curve includono i dati dei lavori di tesi [15] [16]..
Elenco delle Tabelle

Tabella 3.1 Caratteristiche geometriche di interesse del bruciatore23
Tabella 5.1 Valori di S_2 ottenuti in [15]..51
Tabella 5.2 Valori di S_2 ricalcolati con la procedura di sez. 5.452
Tabella 5.3 Valori di Re considerati...53
Tabella 5.4 Condizioni analizzate..54
Tabella 5.5 Estremi di integrazione adottati per i casi analizzati57
Tabella 5.6 Valori di portata per il caso 8, $S_g=5$ alle quote $z/D=0.6$ e $z/D=0.5$68
Tabella 5.7 Valori G_x/G_{x0} per il caso 8, $S_g=5$ alle quote $z/D=0.6$ e $z/D=0.5$69
Tabella 5.8 Valori G_x/G_{x0} per le condizioni analizzate..........................70
Tabella 6.1 Valori di densità considerati..73
Tabella 6.2 Velocità medie nominali...76
Tabella 6.3 Errore sulla misura di velocità tangenziale in caso di mancato allineamento ..82
Tabella 6.4 Confronto tra portata nominale e valori di portata calcolati98
Tabella 6.5 Valori di S_1..101
Tabella 6.6 Valori di S_2..103
Tabella 6.7 Valori di S_3..106
Tabella 6.8 Valori di S_1 e S_2 a confronto..108
Tabella 6.9 Valori di S_2 per $1<S_g<11$..112
Tabella 6.10 Valori di S_2 utilizzati per l'interpolazione...............................114
Tabella 6.11 Valori di S_2 ottenuti per $S_g=2.59$..116
Tabella 6.12 Valori di S_2 per $1<S_g<19$..116
Tabella 6.13 Valori di S_2 ottenuti per $S_g=2.59$ per $1<S_g<19$117
Tabella 6.14 Valori di S_2: confronto ..118
Tabella 6.15 Valori di S_1 per $1<S_g<11$..120
Tabella 6.16 Valori di S_1 per $S_g=2.59$..123
Tabella 6.17 Valori di S_1 per $1<S_g<19$..123
Tabella 6.18 Valori di S_1 per $S_g=2.59$ per $1<S_g<19$124
Tabella 6.19 Valori di S_1: confronto ..125
Tabella 6.20 Valori di S_3 per $1<S_g<11$..127
Tabella 6.21 Valori di S_3 per $S_g=2.59$..130
Tabella 6.22 Valori di S_3 per $1<S_g<19$..130
Tabella 6.23 Valore di S_3 per $S_g=2.59$ per $Re=5800$ per $1<S_g<19$131
Sommario

L’attività svolta ha come scopo la calibrazione in regime isotermo di un generatore di swirl utilizzando un sistema ottico di misura LDV (Laser Doppler Velocimetry) a due componenti. Tale tecnica per la sua risoluzione spaziale e temporale e per la sua trascurabile intrusività sul campo di moto risulta la più appropriata per questo tipo di indagine.

L’attività sperimentale è stata svolta su un bruciatore dotato di generatore di swirl di tipo ad ingressi assiali e tangenziali che permette di regolare il grado di swirl attraverso le portate di aria assiale e tangenziale.

In particolare si è concentrata l’attenzione sulla zona primaria del campo di moto eseguendo misure di velocità assiale e tangenziale lungo un diametro del flusso assialsimmetrico uscente dalla bocca del bruciatore. Il grado di swirl è caratterizzabile attraverso un parametro noto come numero di swirl: esiste in letteratura una definizione universale del numero di swirl inteso come rapporto dei flussi di quantità di moto tangenziale ed assiale. A seconda della tecnica sperimentale che si utilizza risulta particolarmente difficile stimare correttamente e accuratamente tutti i contributi. Per questo motivo e allo scopo di stimare il numero di swirl a partire da un numero ridotto di dati si trova in letteratura una definizione di numero di swirl empirico, detto geometrico, che permette, note le caratteristiche geometriche del bruciatore e le portate di aria assiale e tangenziale di stimare tale numero.

Obiettivo della calibrazione è quello di trovare un legame tra le due definizioni di swirl (S_e e S_g).

Allo scopo di calibrare il bruciatore per un ampio campo di portate vengono svolte misure di velocità per diverse condizioni operative corrispondenti a differenti numeri di Reynolds della corrente e differenti numeri di swirl geometrico, parametro direttamente proporzionale alla portata di aria tangenziale. Per ognuna delle condizioni viene calcolato il corrispondente numero di swirl attraverso le più comuni definizioni e utilizzando diverse metodologie di calcolo allo scopo di effettuare un confronto con lavori precedenti e selezionare la procedura più affidabile.

La stima del numero di swirl risulta un’operazione complessa e sensibile a parecchi fattori. In particolare risulta critica la quota alla quale si svolgono le misure di velocità così come la presenza delle pareti che confinano il getto swirlato. Tali fattori rendono difficile la definizione del dominio di calcolo. Dall’analisi dei dati ottenuti per le condizioni analizzate si riesce ad individuare una zona di transizione tra due configurazioni di moto: tale zona risulta di difficile caratterizzazione mediante le misure LDV. L’instabilità caratteristica di questa zona, infatti, rende le misure puntuali di velocità prive di significato. I numeri di swirl di tale zona verranno trattati con particolare attenzione. I numeri di swirl calcolati mostrano le differenze introdotte dalle approssimazioni che li
caratterizzano. Il grado di swirl dei flussi analizzati risulta influenzato dal Re della corrente.

Parole chiave: Numero di Swirl, LDV (Laser Doppler Velocimetry), calibrazione.
Abstract
A two-component fibre-optic laser Doppler velocimeter (LDV) system has been employed to measure the flowfield characteristics of a confined, isothermal strongly swirling flow in a combustor model. Being a non-intrusive method with high spatial and temporal resolution, this technique is most appropriate for this kind of analyses. Measurements of axial and tangential velocity along a diameter of axisymmetric flow were carried out on an axial plus tangential entry swirl generator that allows to adjust degree of swirl by controlling separately axial and tangential flow rate.

The degree of swirl is characterized by a parameter known as swirl number: in the literature there is a universal definition of swirl number defined as the ratio of the axial flux of azimuthal momentum to the axial flux of axial momentum. Depending on the experimental technique used is difficult to measure all terms accurately. For this reason and in order to estimate swirl number using limited data exist an empirical definition of swirl number S_g which allows to estimate the degree of swirl through geometric characteristics of the burner and axial and tangential flow rate.

The aim of this work is to provide relation between swirl number defined as momentum ratio and the geometric swirl number for the swirl generator used. Measurements for different operating conditions corresponding to different Reynolds numbers were carried out in order to calibrate the burner over a wide range of flow rates: for each conditions swirl number was calculated through most common swirl definitions and using different methods in order to make comparisons with previous works and select most reliable procedure.

Swirl number is found to be sensitive to factors such as the axial location at which measurements can be conducted as well as the presence of walls that confine the swirling jet. In particular, in this analysis, difficulties arise in determining computational domain.

The analysis of data obtained clearly shows a transition zone between two different flowfield configurations: this area is difficult to describe through LDV measurements. Peculiar instability of this area makes measurements of velocity meaningless. Swirl numbers of this conditions will be treated with particular attention.

Swirl numbers calculated show differences due to approximations that characterize each method. Swirl number appears to be sensitive to Re number too.

Keywords: Swirl number, LDV (Laser Doppler Velocimetry), calibrate.
Capitolo 1

Introduzione

1.1 Motivazioni

I flussi ad alto numero di Reynolds, elevata intensità di turbolenza, fortemente instazionari con zone di ricircolazione trovano ampia applicazione tecnica e costituiscono tutt’ora un importante campo sperimentale largamente investigato.

I flussi in forte rotazione (swirl) costituiscono un’importante categoria tra questi, in quanto caratterizzano il funzionamento dei separatori a ciclone, dei bruciatori presenti, ad esempio, nelle camere di combustione aeronautiche e delle turbomacchine (turbo-pompe e motori a getto/reaazione). In particolare, nell’ambito della combustione la capacità dei flussi swirlati di creare zone di ricircolazione in prossimità dell’efflusso dell’ugello viene sfruttata allo scopo di stabilizzare la fiamma. Inoltre i flussi swirlati aumentano l’efficienza di reattori chimici e dispositivi di miscelazione attraverso una più rapida diffusione e miscelamento del getto fluido con l’ambiente circostante [4]. I flussi swirlati caratterizzano anche i fenomeni atmosferici oltre che il fenomeno del distacco dei vortici dalle ali dei velivoli (vortex shedding) [1].

L’effetto dello swirl nei flussi è ampiamente documentato in letteratura [1] [3] [4] [5]: esso è caratterizzato attraverso un parametro noto come numero di swirl inteso come rapporto dei flussi della quantità di moto tangenziale e della quantità di moto assiale. Tale definizione fu introdotta per la prima volta da Chigier e Beer [5] e si trova in letteratura in diverse forme a seconda delle approssimazioni e ipotesi che di volta in volta vengono applicate. A seconda della tecnica sperimentale che si utilizza, infatti, risulta difficile misurare correttamente ed accuratamente tutti i contributi. Per questi motivi e per la necessità di esprimere il numero di swirl a partire da un numero ridotto di dati esiste una definizione empirica per caratterizzare i generatori di swirl di tipo ad ingresso assiale e tangenziale della portata. Esso è definito come numero di swirl geometrico e risulta valutabile note le caratteristiche geometriche del bruciatore e le portate di aria immesse. In particolare Claypole propone un legame lineare tra S e S_e [6].

Questo parametro (S_e), tuttavia, risulta di difficile correlazione con il numero di swirl definito come rapporto dei flussi di quantità di moto, per cui è sempre
Capitolo 1

necessario eseguire una calibrazione per ogni particolare sistema di generazione dello swirl.

1.2 Obiettivi

Il presente lavoro si inquadra nella caratterizzazione dettagliata di un bruciatore dotato di generatore di swirl. Obiettivo primario del presente lavoro è la calibrazione del generatore di swirl tramite misure di velocità acquisite attraverso anemometria laser doppler a due componenti lungo un diametro del flusso assialsimmetrico in prossimità dell’efflusso del bruciatore. In particolare si vuole ampliare la conoscenza del legame tra il numero di swirl, rapporto dei flussi di quantità di moto, e lo swirl geometrico su un particolare campo di portate di interesse. Constatata l’esistenza di diverse "versioni" del numero di swirl ci si propone di confrontare tra loro i risultati in termini di numero di swirl e metodologie di calcolo allo scopo di selezionare la procedura più affidabile e ottenere risultati confrontabili con quelli ottenuti in studi precedenti. (per definire vantaggi, svantaggi e analogie di ogni metodo).
Capitolo 2

Flussi swirlati

2.1 Flussi dotati di moto di swirl

Un flusso con moto di swirl è caratterizzato da un moto a spirale ottenuto impartendo alla corrente fluida una componente di velocità tangenziale (azimutale). Lo swirl comporta importanti effetti di grande scala sul campo di moto come testimoniato da numerosi studi in letteratura tra cui l’aumento dell’ampiezza del getto e dell’entrainment (ovvero coinvolgimento nel getto) di aria esterna (per flussi inerti), la dimensione e la forma della fiamma nonché la stabilità e l’intensità di combustione (per flussi in combustione). Questi effetti dipendono dal grado di rotazione della corrente fluida che viene caratterizzato attraverso il numero di swirl S, parametro adimensionale definito come rapporto tra il flusso assiale della componente tangenziale della quantità di moto ed il prodotto del flusso assiale della componente assiale della quantità di moto per il raggio del condotto [1] [3]:

$$S = \frac{G_\theta}{G_x R_b}$$

Dove:

$$G_\theta = \int_0^\infty (\rho U w + \rho \bar{u} w) r^2 dr$$

è il flusso assiale della quantità di moto tangenziale, nel quale sono inclusi anche gli sforzi turbolenti $\bar{u} w$ in direzione $x-\theta$;

$$G_x = \int_0^\infty \left(\rho U^2 + \rho \bar{u}^2 + (p - p_-) \right) dr$$

è il flusso assiale della quantità di moto assiale che include gli sforzi turbolenti normali in direzione x e il termine di pressione; R_b è il raggio di efflusso;
U, V, W sono i valori di velocità espressi in coordinate polari rispettivamente lungo $x, r, e \theta$ con x diretto come l’asse del bruciatore; u', v' e w' sono le rispettive componenti fluttuanti delle velocità.

Figura 2.1 Componenti di velocità in coordinate polari

Tale parametro fu introdotto la prima volta [5] sull’osservazione che in un flusso libero in ambiente stagnante G_x e G_ρ si mantengono costanti pertanto sono quantità invarianti del flusso. G_x e G_ρ possono quindi essere dedotte tramite integrazione delle equazioni di governo di Reynolds sulla coordinata radiale [7].

Applicando l’approssimazione di strato limite1 per un flusso turbolento, incompressibile e stazionario con opportune condizioni al bordo, il flusso in direzione assiale della quantità di moto assiale può essere riscritto (integrando l’equazione della quantità di moto) [8] [3] [1] [9]:

$$ G_x = \int_0^\infty \left(\rho U^2 + \rho u'^2 - \frac{1}{2} (W^2 + w'^2 + v'^2) \right) r dr $$

(2.4)

Spesso, infatti, a causa della difficoltà nel misurare tutti i contributi in maniera corretta ed accurata vengono fatte semplificazioni ed approssimazioni che portano a trascurare, a volte, i termini turbulentì, altre volte il termine di

1 La teoria dello strato limite è stata sviluppata da Ludwig Prandtl per studiare correnti ad alti numeri di Reynolds in cui la velocità è prevalentemente unidirezionale mentre le sue variazioni sono prevalentemente trasversali alla sua stessa direzione. Nella sua forma piú semplice la teoria consiste, in estrema sintesi, in una riduzione delle equazioni di Navier-Stokes per correnti incompressibili stazionarie ottenuta al prezzo di dovere risolvere due problemi distinti e accoppiati fra loro, onde determinare il campo di moto in tutto il dominio del fluido: un problema viscoso (ridotto) nella regione vicina alla parete del corpo, dove gli effetti della viscosità sono importanti a causa della condizione al contorno di velocità nulla, che è chiamato problema interno, e un problema non viscoso nella regione lontana, chiamato problema esterno.
pressione. Pertanto viene considerata accettabile una certa mancanza di conservazione della quantità di moto a valle del flusso.

Naturalmente i flussi dotati di rotazione vengono classificati oltre che dal numero di swirl appena introdotto anche dal numero di Reynolds della corrente:

\[
Re = \frac{U_m D}{\nu} \quad (2.5)
\]

dove:
- \(D=2R \) è la lunghezza caratteristica nel caso di getto libero originato da un condotto circolare (pari al diametro all’efflusso);
- \(\nu \) è la viscosità cinemica del fluido in esame;
- \(U_m \) è la velocità media integrale sulla portata che transita attraverso la sezione considerata.

In un sistema di riferimento cilindrico di coordinate \((x,r,\theta)\) è possibile esprimere il vettore velocità \(u \) nelle sue tre componenti \((U,V,W)\), dove \(U \) rappresenta la componente assiale. In tal caso \(U_m \) si ottiene attraverso una media integrale sulla sezione circolare di raggio \(R \) alla quota \(x \):

\[
U_m = \frac{1}{2\pi R^2} \int_0^{2\pi} \int_0^R u(x,r,\theta)rdrd\theta \quad (2.6)
\]

In questo lavoro la velocità media viene calcolata a partire dalla portata nominale imposta, come verrà specificato più avanti.

2.2 Modello di plug flow

Allo scopo di stimare \(S \) a partire da un numero ridotto di dati e di avere una panoramica generale sulle caratteristiche di un flusso dotato di swirl moderato si introduce il modello di plug flow. In tale modello si suppone che il flusso si comporti come un “cilindro fluido” in rotazione rigida attorno all’asse con velocità angolare \(\Omega \), che trasla lungo l’asse stesso con velocità \(U \). In tale modello sussiste una perfetta simmetria radiale e tutti i profili di velocità si ripetono uguali a se stessi in direzione assiale, dunque le uniche variazioni si hanno lungo la direzione radiale:
Capitolo 2

\[U(r) = U \quad \text{e} \quad W(r) = W_{\text{max}} \frac{r}{R} \] \hspace{1cm} (2.7)

Come per un corpo rigido in rotazione, il profilo di velocità tangenziale vale:

\[W(r) = \Omega r \quad \text{da cui} \quad W_{\text{max}} = \Omega R \] \hspace{1cm} (2.8)

La pressione all’interno del flusso sarà governata dall’equilibrio radiale:

\[\frac{dp}{dr} = \rho \frac{W^2}{r} \] \hspace{1cm} (2.9)

In tale modello, il rapporto tra la massima velocità tangenziale e la massima velocità assiale all’efflusso viene definito parametro di swirl \((G)\) e vale:

\[G = \frac{\Omega R}{U} \] \hspace{1cm} (2.10)

Sostituendo le (2.7) nell’eq. (2.2) e (2.4) ed esplicitando \(\vartheta\), si ottiene:

\[G_\vartheta = \frac{\pi}{2} \rho U W_{\text{max}} R^3 \] \hspace{1cm} (2.11)

\[G_x = \frac{\pi}{2} \rho U^2 R^2 \left[1 - \left(\frac{G}{2}\right)^2 \right] \] \hspace{1cm} (2.12)

da cui è possibile ricavare il valore del numero di swirl, in funzione del solo parametro di swirl:

\[S = \frac{G_\vartheta}{G_x R} = \frac{G/2}{1 - \left(\frac{G}{2}\right)^2} \] \hspace{1cm} (2.13)

In questo modo il numero di informazioni necessarie alla valutazione di \(S\) si riduce alle sole velocità assiali e tangenziali, oltre al raggio della sezione di efflusso.

Questo modello rappresenta una buona stima del comportamento reale solo per bassi valori del numero (e del parametro \(G\)) di swirl. In particolare la relazione (2.13) riportata da [1] vale solo per \(G < 0.4\) ovvero per valori di \(S = 0.2\). Al di sopra di tale limite i profili assiali e tangenziali non rispettano più le ipotesi alla
base di tale modello ed è pertanto necessario applicare correzioni empiriche alla relazione, che si basano sulla misura dei profili di velocità all’efflusso. Ad esempio per gradi di swirl più elevati si osserva (fig. 2.2) come la distribuzione di velocità assiale si discosta molto dal modello plug flow, infatti la maggior parte del flusso lascia la sezione di uscita in corrispondenza dei bordi esterni.

La figura 2.2 mostra i profili radiali di velocità assiale e tangenziale all’uscita (anulare) di un generatore di swirl di tipo ad ingressi assiali e tangenziali. In questo caso la relazione $S=G$ fornisce valori di swirl troppo bassi pertanto spesso si introduce la relazione:

$$S = \frac{G/2}{1-G/2} \quad (2.14)$$

2.3 Effetti dello swirl sul campo di moto

L’intensità degli effetti provocati dal grado di swirl sul campo fluidodinamico è legata a S in maniera non lineare. In letteratura, infatti, si tende a classificare le correnti dotate di moto a spirale in flussi a basso e alto numero di swirl.
2.3.1 Flussi a bassi numeri di swirl
Rientrano in questa categoria quei flussi caratterizzati da un $S < 0.4$, ovvero quelli la cui struttura non viene significativamente modificata dalla velocità di swirl [10]. Essi sono identificati da una struttura regolare in cui la rotazione del getto dà luogo ad un aumento dell’estensione radiale e dell’entrainment di aria esterna, mentre la velocità assiale decade sempre più rapidamente all’aumentare del grado di swirl. In un flusso dotato di moto rotatorio, la conservazione della quantità di moto impone gradienti di pressione necessari a bilanciare le forze centrifughe:

$$\frac{\partial p}{\partial r} = \frac{\rho W^2}{r}$$

(2.15)

A causa di tale gradiente, nel caso di getto libero, l’aumento della pressione nella zona esterna del getto comporta la formazione di una regione di depressione in prossimità dell’asse e di una zona caratterizzata da una pressione maggiore di quella atmosferica ad una certa distanza dall’asse stesso. Le componenti di velocità tangenziale ed assiale si riducono rapidamente spostandosi lungo la coordinata dell’asse a causa della dissipazione viscosa. A causa della riduzione della componente assiale della velocità si avrà un gradiente positivo di pressione lungo la direzione assiale ($\frac{\partial p}{\partial x} > 0$). Tale gradiente di pressione assiale, per i flussi caratterizzati da bassi numeri di swirl, non è abbastanza forte per generare la ricircolazione; il flusso comunque a causa di questo gradiente in direzione assiale tende ad espandersi ed aumentare il gradiente di pressione radiale.

Figura 2.3 Schematizzazione del campo di moto di un getto a basso grado di swirl
È comunque possibile la presenza di zone di ricircolazione anche con bassi gradi di swirl a causa della presenza di ostacoli nel campo di moto che si comportano come corpi tozzi.

![Figura 2.4 Ricircolazione causata dalla scia provocata da un corpo tozzo][11]

Il profilo di velocità tangenziale all’efflusso è caratteristico di un moto rigido, mentre più a valle il nucleo rigido si restringe e la configurazione assume la forma di un vortice di Rankine. Come già detto, il comportamento di tali flussi è ben approssimato dal modello plug flow.

2.3.2 Flussi ad alti numeri di swirl

Tali flussi sono caratterizzati da un numero di swirl $S \geq 0.6$, ovvero maggiore del valore critico. In tale caso i gradienti di pressione assiali e radiali sono più intensi in prossimità dell’efflusso: ciò causa la formazione di una zona di ricircolazione del flusso assiale di forma toroidale nota come CTRZ (Central Toroidal Recirculation Zone) caratterizzata da velocità assiali negative. Nella regione di confine tra la CTRZ e il flusso principale è inoltre presente un’elevata dissipazione viscosa (shear layer) e valori elevati dell’intensità turbolenta [1].
La sua configurazione media consiste in una bolla di ricircolazione toroidale, assialsimmetrica, che si estende anche per $5D$ in direzione assiale.
Tale descrizione è puramente qualitativa, infatti a parità di numero di swirl si possono avere campi di moto differenti a seconda delle caratteristiche geometriche del combustore, del grado di confinamento e della presenza o meno di un getto coassiale a quello in rotazione (che, qualora in possesso di quantità di moto rilevante, allontana la zona di ricircolazione verso valle e riduce l’intensità di ricircolazione).
Le bolle di ricircolazione che si generano in questi tipi di flusso rivestono un ruolo importante dal punto di vista della stabilizzazione della fiamma in processi combustivi, permettendo il miscelamento dei gas combusti con la miscela fresca circostante.
L’utilizzo di alti numeri di swirl nei processi di combustione comporta alcuni vantaggi; i più importanti sono:

- riduzione della lunghezza di fiamma per mezzo del miscelamento provocato dalla turbolenza del campo di moto che permite alla fiamma di stabilizzarsi vicino all’efflusso;
- aumento della stabilità di fiamma dovuta alla CTRZ che trasporta i prodotti di combustione e sostanze altamente reattive (aumento T e specie radicaliche).

Per quanto riguarda i getti ad alto di numero di swirl confinati (come quello oggetto di tale lavoro) è possibile la presenza di un’ulteriore zona di ricircolazione, detta *Corner Recirculation Zone* (CRZ). Tale zona è dovuta al fatto che in una camera chiusa in cui si verifichi una forte ricircolazione, a causa dell’entrainment, l’aria circostante alla zona centrale, sede del CTRZ, viene messa in rotazione a sua volta: il flusso posto nei pressi delle pareti della camera
in prossimità della zona d’efflusso si dirige verso il centro, viceversa ad una certa quota inizia a spostarsi verso l’esterno.

Figura 2.6 Schematizzazione di CTRZ e CRZ in un flusso ad alto numero di swirl

Figura 2.7 Formazione di zone di ricircolazione in un flusso swirlato confinato
2.3.3 Fenomeni di instabilità del getto
Per numeri di swirl \((S>0.6)\) e numeri di Reynolds \((Re>2000)\), comincia a manifestarsi la prima forma di instabilità, una piccola bolla chiusa di ricircolazione sull’asse di simmetria oltre la quale il flusso ritorna in una forma stabile ed a breve distanza collassa e si ripartisce in più forme di vortici: questa è la prima forma di instabilità \((vortex breakdown)\). L’elevata turbolenza del fenomeno sembra anticipare la formazione di una zona di ricircolazione toroidale che si stabilizza solo per elevati \(Re\). Fissato un numero di swirl \(S\) quindi è possibile mantenersi in regime stabile solo sotto un certo valore critico di \(Re\).

Più in generale all’aumentare del numero di swirl (e del numero di \(Re\) della corrente) il flusso raggiunge una condizione critica (spesso contraddistinta dal valore \(S =0.6\) che permette lo sviluppare di instabilità \((vortex breakdown)\). Le modalità con cui l’instabilità si manifesta possono essere diverse. Caratteristica comune alle varie forme di instabilità è la forte decelerazione del getto, unita alla formazione di almeno un punto di ristagno nella corrente, generalmente in corrispondenza dell’asse. Tra i differenti modi di instabilità osservati, quelli ritenuti possibili ai Reynolds elevati tipici dei flussi in aria [12] sono i seguenti:

- una bolla assialsimmetrica e stazionaria;
- una spirale fortemente instazionaria, la cui periodicità è legata al parametro di \(swirl\).

Il modo assialsimmetrico o a bolla del breakdown è caratterizzato da un punto di ristagno sull’asse di rotazione, seguito da un’improvvisa espansione della linea di flusso in mezzeria che poi forma il confine della bolla di ricircolazione. La bolla rimane abbastanza assialsimmetrica per gran parte della sua lunghezza e quasi stazionaria nella sua posizione assiale, ma al suo interno è dominata da moti di bassa frequenza che favoriscono gli scambi di calore tra il flusso a monte e a valle della stessa.

![Figura 2.8 Instabilità di tipo a bolla assialsimmetrica][13]

Il breakdown a spirale è caratterizzato da una forte decelerazione delle linee di flusso in prossimità dell’asse di swirl fino alla creazione di un punto di ristagno e da una brusca deviazione che assume una forma a spirale. Tale instabilità si
trasforma in quella a bolla aumentando S. Progressivamente la spirale si sposta più a valle fino a trasformarsi nella nuova forma. Il breakdown manifesta isteresi: vari sperimentatori hanno individuato per gli stessi Re e S due o più forme di breakdown che possono spontaneamente trasformarsi nell’una o nell’altra configurazione [14].

Un altro fenomeno d’instabilità che caratterizza i flussi con moto di swirl è il Precessing Vortex Core (PVC). Il PVC consiste in una regolare e periodica precessione di una grande struttura vorticosa tridimensionale presente in flussi dotati di moto di swirl attorno all’asse geometrico dell’apparato utilizzato. Indagini analitiche e sperimentali hanno mostrato che il fenomeno del PVC è generalmente associato al vortex breakdown ed alla formazione del CTRZ. Il vortex breakdown è spesso considerato il precursore del PVC. In [24] si dimostra come anche utilizzando differenti fluidi e apparati sperimentali, il PVC si genera solo in seguito al vortex breakdown ed oltre un certo livello critico di Re e S ($Re>20000$). In presenza di PVC l’ipotesi di assialsimmetria che permette di caratterizzare i flussi swirlati tramite due soli parametri adimensionali (S, Re) cade. Occorre tenere conto dell’instazionarietà del campo di moto e quindi considerare la frequenza caratteristica di tale processo.

2.3.4 Sistemi di generazione dello swirl

Lo swirl è generato principalmente in tre modi:

- a. rotazione diretta (condotti rotanti);
- b. particolari palettature (swirler);
- c. ingressi tangenziali rispetto all’asse del bruciatore (ad ingressi assiali e tangenziali).
Figura 2.10 Tre tipi di generatori di swirl

Ogni generatore ha le proprie caratteristiche e in particolare differenti profili di velocità di swirl [17]:

Figura 2.11 Distribuzione iniziale di velocità tangenziale per i tre tipi di generatori di swirl

Il generatore di swirl ad ingressi assiali e tangenziali è l’apparato utilizzato in questo lavoro per generare flussi dotati di componente rotatoria. Tramite tali sistemi è possibile regolare sistematicamente il grado di swirl variando il rapporto tra le portate di aria assiale e tangenziale.
Questi sistemi sono utilizzati prevalentemente a scopi di laboratorio, per studi sperimentali o in sistemi a medio-basso grado di swirl. Questo perché richiedono un’elevata caduta di pressione per indurre un certo grado di swirl.

Claypoole e Syred [6] per il tipo di generatore di swirl in esame proposero una relazione empirica per poter calcolare il grado di swirl a partire da un numero ridotto di dati. Note le caratteristiche geometriche del bruciatore e le portate di aria si ricava il numero di swirl geometrico:

\[
S_g = \frac{\pi \cdot r_b \cdot d_A}{2A_t} \left(\frac{\dot{m}_\theta}{\dot{m}_a + \dot{m}_\theta} \right)^2
\]

Dove:

- \(A_t \) = area totale degli ingressi della portata di aria tangenziale;
- \(r_b \) = raggio del bruciatore;
- \(d_A \) = diametro bruciatore prima del convergente;
- \(\dot{m} \) = portata massica.

Essi misurarono il grado di swirl per 17 differenti condizioni attraverso anemometria laser doppler e in tutti i casi trovarono la relazione lineare:
con una deviazione standard del ±6%. Utilizzando tale calibrazione è possibile dedurre il numero di swirl da misure della portata massica.

Generalmente per bruciatori commerciali sono adottati sistemi a guide (swirler). In essi particolari palettature sono posizionate in modo da imprimere una componente rotatoria al fluido. In particolare, nei generatori di swirl a blocchi mobili è possibile variare l’orientamento delle guide in modo da regolare il grado di swirl da impartire al fluido.

Anche per tali generatori è stata proposta una relazione empirica per stimare il grado di swirl [18]: sotto le ipotesi di profilo assiale di tipo plug flow, u_0, nella regione anulare e di palettatura sottile con inclinazione costante ϕ rispetto alla direzione principale, in modo da impartire al flusso una velocità tangenziale (di swirl) $w_0 = u_0 \tan \phi$ il numero di swirl può essere espresso come:

$$S = \frac{2}{3} \left(1 - \left(\frac{d_2}{d}\right)^3\right) \tan \phi$$

(2.18)

dove:
\[d \] è il diametro dell’ugello;
\[d_h \] è il diametro del mozzo della palettatura.

Nell’ipotesi di \(\frac{d_h}{d} \) molto piccoli, in pratica per generatori di swirl del tipo a palettature senza mozzo, la relazione si riduce a:

\[S = \frac{2}{3} \tan \phi \] \hspace{1cm} (2.19)

ovvero angoli di inclinazione della palettatura di 15, 30, 45, 60, 70 e 80 gradi, per esempio, corrispondono a valori di \(S \) approssimativamente di 0.2, 0.4, 0.7, 1.2, 2.0 e 4.0. [18]

L’efficienza di generazione di swirl, per un dato numero di swirl \(S \), è definita come il rapporto tra l’energia cinetica del flusso di swirl attraverso la gola del bruciatore e la caduta in energia statica di pressione tra sezione di ingresso d’ingresso e gola. La figura 2.14 mostra valori sperimentali di efficienza (\(\varepsilon \)) per diversi numeri di \(S \) e differenti tipi di generatori di swirl.
Si può osservare come il generatore di swirl del tipo utilizzato in questo lavoro (ingressi assiali e tangenziali) è estremamente efficace a bassi S, ma davvero poco efficiente per produrre rotazioni di elevata intensità; di contro il generatore a palettature mobili mostra un’efficienza costante ad elevati numeri di swirl, con un minimo per swirl bassi (solo del 58% a $S=0.4$).
Capitolo 3

Apparato sperimentale

In questo capitolo viene fornita una descrizione dettagliata dell’apparato sperimentale utilizzato nel presente lavoro. L’attenzione è posta sul tipo di bruciatore e sull’impianto di alimentazione utilizzati. Viene descritto brevemente anche il sistema di misura che verrà trattato più approfonditamente nel cap. 4.

3.1 Bruciatore

Il bruciatore utilizzato per l’attività sperimentale è stato progettato nel lavoro di tesi [19]. Tale apparato è un modello di laboratorio in scala di un combustore aria-gas naturale a getto coassiale con generatore di swirl: il flusso di combustibile passa in un condotto centrale (gas gun) e viene iniettato in una corrente d’aria coassiale dotata di moto rotatorio.
Il bruciatore in esame ha la caratteristica di avere un numero di swirl ampiamente regolabile variando il rapporto tra le portate di aria tangenziale e di aria assiale, massimizzando il valore del numero di swirl stesso.

3.1.1 Gruppo di iniezione dell’aria assiale
L’elemento portante di questo blocco è il tubo di acciaio di diametro interno \(\phi \) pari a 80 mm alle cui estremità sono saldate le flange di collegamento agli altri elementi. L’aria è iniettata tramite quattro tubi \((\phi = 6 \text{ mm}) \) equispaziati lungo la circonferenza del condotto principale e posizionati in modo tale che il loro asse corra lungo due diametri opposti del condotto stesso. Gli ingressi dell’aria assiale sono stati disegnati in modo tale che essi abbiano una lunghezza sufficiente per arrivare in prossimità del gas gun in modo che l’impatto dell’aria sul tubo centrale permetta una migliore distribuzione dell’aria su tutta la sezione del bruciatore. Un ulteriore ingresso di aria assiale fornisce la quantità necessaria ad inseminare il flusso per procedere con le misure di anemometria laser doppler. Come vedremo più dettagliatamente in seguito, tale condotto è collegato ad un nebulizzatore sonico. Il flusso d’aria inseminata costituisce parte della portata di aria assiale complessiva. Di conseguenza nell’impostare la portata assiale nominale bisogna tenere conto di questo aspetto.
3.1.2 Gruppo di iniezione dell’aria tangenziale
Il moto di swirl è ottenuto attraverso 8 ingressi, 4 dei quali hanno diametro di 3 mm e sono posti a 38 mm dall’asse geometrico del bruciatore; gli altri 4 fori, (ϕ=4 mm) sono invece posti ad una distanza di 20 mm dall’asse.

Figura 3.3 Gruppo di iniezione dell’aria tangenziale

3.1.3 Convergente
Il condotto principale è caratterizzato nella seconda parte da una riduzione concentrica con lo scopo di rendere più uniforme il flusso all’ugello. Questo elemento porta il flusso d’aria a passare da un diametro ϕ di 80 mm a uno di 36 mm nella parte finale; è lungo 120 mm, compresi il distanziale e le flange per l’ancoraggio alla restante parte della struttura.

Figura 3.4 Sezione della zona di efflusso
3.1.4 Gas gun
Il gas gun è un tubo lungo 400 mm e di diametro interno di 8 mm utilizzato per l'iniezione assiale del combustibile in camera di combustione. Negli ultimi 9 mm il diametro esterno passa linearmente da 15 a 10 mm per avere un minore effetto di scia. Nel presente lavoro di tesi sono state eseguite misure in regime isoterma, per cui il gas gun costituisce un corpo tozzo in quanto dentro ad esso non passa nessun flusso.

3.1.5 Distributore di aria
Questo elemento consiste in un cilindro di un litro circa di volume che garantisce una distribuzione uniforme dell'aria ai quattro ingressi del flusso assiale tramite tubi flessibili che giungono agli agganci rapidi degli ingressi assiali; nella parte inferiore è posto il collegamento col sistema di alimentazione dell'aria compresa.

3.1.6 Camera di combustione
Le misure svolte in questo lavoro sono state realizzate utilizzando una camera di combustione di geometria quasi-cilindrica coperta da una cappa metallica e fornita di quattro accessi ottici. Le finestre sono uguali a due a due; le più grandi permettono una maggiore escursione del traslatore.
Nella tab. 3.1 vengono riportate le caratteristiche geometriche del bruciatore necessarie per calcolare i parametri interessati nell’analisi.

<table>
<thead>
<tr>
<th>Parametri geometrici</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diametro esterno del condotto del gas</td>
<td></td>
</tr>
<tr>
<td>gun prima del convergente (d_{\text{gargun}})</td>
<td>15 mm</td>
</tr>
<tr>
<td>Diametro interno del condotto del gas</td>
<td></td>
</tr>
<tr>
<td>gun (d_{i,\text{gargun}})</td>
<td>8 mm</td>
</tr>
<tr>
<td>Diametro bruciatore all’efflusso</td>
<td></td>
</tr>
<tr>
<td>(d_{\text{bruciatore}})</td>
<td>36 mm</td>
</tr>
<tr>
<td>Diametro bruciatore prima del convergente</td>
<td></td>
</tr>
<tr>
<td>(d_{A})</td>
<td>80 mm</td>
</tr>
<tr>
<td>Diametri tubi dell’aria tangenziale</td>
<td></td>
</tr>
<tr>
<td>(d_{t})</td>
<td>8 mm</td>
</tr>
<tr>
<td>Diametri tubi dell’aria tangenziale</td>
<td></td>
</tr>
<tr>
<td>(d_{tt})</td>
<td>6 mm</td>
</tr>
<tr>
<td>Area totale 4+4 fori iniezione aria</td>
<td></td>
</tr>
<tr>
<td>tangenziale (A_{t})</td>
<td>80 mm²</td>
</tr>
</tbody>
</table>
3.2 Impianto di alimentazione dell’aria compressa

L’aria compressa viene fornita dalla linea del laboratorio ed ha una pressione di 7 bar all'uscita del compressore esterno. All'ingresso dell'impianto di controllo dell'aria è posta una valvola riduttrice di pressione con un manometro, ed a valle si trova un filtro che serve a togliere eventuali polveri o gocce d'olio presenti nell'aria. La pressione dell'aria viene ulteriormente regolata con un secondo riduttore di pressione per portarla alla pressione di calibrazione del misuratore di portata. Dopo questa regolazione il condotto si biforca in due linee. Nella prima linea l'aria passa attraverso un misuratore* e regolatore di portata di tipo termico con fondo scala pari a 500 Nl/min, mentre nella seconda si utilizza un regolatore di portata di fondo scala pari a 1000 Nl/min; a monte e a valle dei misuratori sono posti due manometri. Queste due linee vanno ad alimentare gli ingressi d'aria del bruciatore.

![Figura 3.5 Impianto di alimentazione](image)

3.3 Sistema di misura

Al fine di misurare il campo di velocità nella camera di combustione e nella parte terminale del condotto di ingresso dell'aria, si è utilizzato un sistema di anemometria laser Doppler, la cui teoria di funzionamento è riportata nel capitolo 4.

Il sistema di misura comprende:
- un dispositivo laser a ioni di Argon della Spectra Physics modello 2017;
- la testa del sistema LDV contenente l'ottica di trasmissione e ricezione;

* Entrambi i flussimetri sono di tipo termico BRONKHORST.
• due Burst Spectrum Analyzer (BSA) tipo Dantec 58N21 contenenti i
fotomoltiplicatori, apparati elettronici di ricezione ed elaborazione del
segnale Doppler;
• un oscilloscopio digitale;
• un traslatore a tre assi.
Le descrizione dei componenti specifici del sistema LDV è effettuata nel
capitolo successivo.
La configurazione disponibile presso il Laboratorio di Combustione del
Politecnico di Milano permette la misura contemporanea di due componenti di
velocità (assiale-tangenziale). L'oscilloscopio è stato collegato ai BSA per avere
una verifica diretta, mediante la visualizzazione dei burst, sull’effettivo
funzionamento del sistema.
La testa del sistema LDV è montata su un traslatore che può muovere i suoi tre
bracci lungo gli assi del sistema di riferimento (par. 4.1) con un'accuratezza
inferiore al decimo di millimetro. Questo componenti permette anche di
regolare l'inclinazione della testa del laser. Il traslatore è alimentato da un
dispositivo elettronico esterno che memorizza anche la posizione in cui si trova
ciascuno dei 3 assi. A sua volta l'alimentatore è collegato al computer: ciò
consente di spostare il punto di indagine in modo assolutamente preciso della
lunghezza desiderata.
Un software fornito dalla Dantec permette di controllare il sistema di misura; in
particolare consente:
• la gestione dello spostamento del traslatore lungo gli assi \(x, y\) e \(z\);
• il controllo e la regolazione delle caratteristiche dell'elettronica di
ricezione e misura, tra cui la tensione di eccitazione dei due
fotomoltiplicatori e la larghezza di banda del filtro;
• la gestione delle operazioni di acquisizione, memorizzazione ed
esportazione delle misure;
• la visualizzazione in tempo reale degli istogrammi delle due componenti
di velocità.
Sulla testa del laser è possibile montare vari tipi di unità ottiche composte da
lenti di quarzo con focale differente in base alle esigenze di risoluzione legate
alla grandezza del volume di misura. Maggiore è il volume di misura, più
particelle transitano al suo interno e di conseguenza maggiore è il *data rate*.

3.4 **Sistema di inseminazione**

Il sistema di inseminazione ha lo scopo di nebulizzare l'inseminante ed
introdurre nel getto gocce abbastanza piccole da seguirne fedelmente la
dinamica. L’aria in ingresso al nebulizzatore è accelerata da un piccolo
convergente sopra ad un condotto capillare immerso nell’olio. La diminuzione
di pressione dovuta all’incremento della velocità locale provoca il richiamo dell’olio posto sul fondo attraverso il capillare, causandone la nebulizzazione al contatto con il getto. In serie al nebulizzatore è posto un separatore a ciclone in grado di filtrare dalla corrente inseminata le particelle traccianti di diametro troppo grande. Il sistema di nebulizzazione così assemblato garantisce che le goccioline d’olio introdotte nel getto abbiano un diametro di 1–2 µm, con un tempo caratteristico $\tau_p \approx 10^{-6}$ s, adeguato all’analisi del fenomeno, come vedremo più approfonditamente nel capitolo 4. L’inseminazione del flusso entrante in camera di combustione è effettuata con olio di vaselina.

Figura 3.6 Schema del nebulizzatore sonico
Capitolo 4

Tecniche di misura

In questo capitolo vengono descritti i principali fondamenti teorici della tecnica di misura utilizzata e le procedure adottate per l’acquisizione delle misure.

4.1 Sistema di riferimento

In figura 4.1 sono riportati i 3 assi cartesiani così come impostati sul traslatore utilizzato per muovere la testa del laser. Anche se la geometria del bruciatore è cilindrica ed assialsimmetrica, il flusso fortemente turbolento non è detto che assuma la stessa simmetria. È quindi utile riferirsi ai tre assi cartesiani.

![Figura 4.1 Sistema di riferimento utilizzato](image)

4.2 Centraggio

Per diagrammare i profili di velocità all’interno del bruciatore è fondamentale conoscere la posizione alla quale i fasci laser si incrociano formando il volume di misura. La componente di velocità misurata dal sistema LDV è sempre quella perpendicolare alle frange di interferenza. A tale scopo è necessario verificare preventivamente l’allineamento dei fasci laser.

Per una corretta misura delle velocità tangenziali ed assiali è assolutamente necessario posizionare inizialmente il volume di misura nel centro geometrico dell’ugello del bruciatore. Anche la posizione relativa di traslatore e bruciatore deve essere adeguata in modo tale che spostamenti orizzontali della testa del sistema LDV coincidano con una direzione diametrale della camera. Qualora una delle due condizioni non fosse verificata le misure di velocità tangenziale sarebbero affette da contaminazione della componente radiale. Tale aspetto verrà analizzato più approfonditamente nel capitolo 6.
Capitolo 4

Il centraggio in direzione x del volume di misura, più agevole di quello longitudinale, è stato effettuato preventivamente utilizzando un traguardo con scala millimetrata posto perpendicolarmente alla direzione di provenienza dei fasci laser in corrispondenza del centro dell’ugello verificando la posizione del punto luminoso, ben visibile, che definisce il volume di intersezione. Il centraggio definitivo (lungo x e y) è stato effettuato tramite l’acquisizione di alcuni profili di velocità su diametri perpendicolari al fine di verificare che la posizione dell’asse di simmetria del flusso fosse in corrispondenza dello zero e quindi del centro dell’ugello. Una volta che l’origine coincide con il centro della zona di efflusso il profilo di velocità assiale è simmetrico rispetto l’asse delle ordinate mentre quello tangenziale lo è rispetto l’origine (Figura 4.2).

![Figura 4.2 Esempio di profili radiali di velocità assiale e tangenziale: caso 8, $S_g=5$](image)

4.3 Sistema LDV utilizzato

Il dispositivo laser a ioni di Argon della Spectra Physics modello 2017 viene utilizzato in questo lavoro con alimentazione in modalità corrente ed utilizzando una potenza pari a 1W.

La sorgente di luce monocromatica è stata utilizzata nella configurazione a due fasci luminosi che come, già detto, permette di misurare contemporaneamente due componenti di velocità. In particolare i due fasci utilizzati (verde e blu) hanno lunghezze d’onda rispettivamente di $\lambda=514.5\,nm$ e $\lambda=488\,nm$.

28
Il dispositivo di misura è impiegato inoltre nella configurazione back-scattering, cioè la testa del sistema LDV contiene sia l'ottica di trasmissione che quella di ricezione: questa è connessa con l'unità laser tramite fibre ottiche. Per le indagini effettuate nella camera di combustione, si è utilizzata una lente con focale di 600 mm.

Gli impulsi luminosi diffusi dalle particelle sono portati attraverso le fibre ottiche ai fotomoltiplicatori e da questi alle rispettive unità di controllo a microprocessore (Burst Spectrum Analyzer, BSA) che convertono i segnali Doppler a modulazione di frequenza dapprima in un segnale elettrico e successivamente, attraverso un fattore di calibrazione, in valori di velocità. Il software di controllo consente di impostare i seguenti parametri dei BSA:

- Tensione dei fotomoltiplicatori;
- Larghezza di banda dei filtri (Span);
- Centro banda (Center).

Per quanto riguarda il primo parametro, non esiste un valore ottimale per ogni condizione in esame: questa grandezza è strettamente connessa con il livello di trasparenza delle finestre ottiche e quindi con la loro pulizia, con la quantità di inseminante presente nella zona da indagare e con la potenza del laser. A parte il primo fattore sul quale è possibile agire solo assicurando una costante pulizia, gli altri vanno regolati per tentativi in base alla sensibilità dell’operatore. Come per la potenza della sorgente luminosa, un valore di tensione dei fotomoltiplicatori troppo elevata comporta maggiore rumore introdotto nel sistema, mentre un valore troppo basso non rende il sistema abbastanza sensibile per rilevare i segnali Doppler. A parità di tensione, maggiore è la potenza del laser, maggiore è in generale il data rate e viceversa. Il data rate rappresenta la frequenza con cui giungono in segnali delle particelle che transitano per il volume di misura. Dal software è possibile impostare l’intervallo di velocità misurabile dopo aver definito il valore di riferimento: impostando un range e un valore di riferimento il sistema elettronico prenderà in considerazione la parte del segnale elettrico relativo. Inizialmente la scelta dell’intervallo di velocità misurabile è dettata dalla sensibilità dell’operatore: naturalmente, come vedremo più approfonditamente in seguito, quando ci si aspetta di operare in una zona molto turbolenta il valore da impostare sarà elevato, viceversa se la zona è di bassa intensità turbolenta si può scegliere un valore inferiore. Avviata l’acquisizione, l’adeguatezza delle precedenti impostazioni è verificata attraverso la visualizzazione degli istogrammi delle misure di velocità che il software fornisce in tempo reale. Utilizzare la massima apertura non risulta sempre una scelta adeguata in quanto, a parità di altre condizioni, maggiore è l’apertura maggiore è il livello di rumore nel burst. Questo comportamento va a peggiorare il validation data in quanto il sistema fatica a riconoscere la frequenza Doppler. Il validation data è la percentuale dei segnali campionati (data rate) che viene convalidata dal sistema ai fini statistici. In generale per
quanto riguarda questo valore è opportuno che non scenda mai al di sotto del 50%. Per quanto concerne il *data rate* invece, esso deve essere adeguato alle esigenze delle misure di velocità. In particolare nel nostro lavoro ciò che interessa è che il valore dato dal prodotto tra *data rate* e *validation data* sia massimo.

È possibile migliorare il *data rate* aumentando la quantità di inseminante, tuttavia una concentrazione eccessiva di inseminante può provocare alterazioni del campo di moto oltre a peggiorare la qualità della misura sporcando sensibilmente le finestre ottiche. Altri parametri da impostare sono il *data collection* e il tempo di acquisizione. Il primo rappresenta il numero di misure da effettuare per ogni stazione analizzata; il tempo di acquisizione è l’intervallo temporale dedicato ad ogni intervallo spaziale. All’avvio del programma di controllo e gestione dell’apparato elettronico del sistema LDV viene chiesto di fornire i parametri geometrici del sistema utilizzato ovvero focale della lente, diametro dei fasci laser e la presenza o meno del *beam expander*\(^3\). Il software calcola le dimensioni del volume di misura e la distanza tra le frange con le quali convertire le misure in frequenza in misure di velocità (*calibration factor*).

4.3.1 Inseminante

L’inseminante deve rispondere alle seguenti principali caratteristiche:

- seguire fedelmente il flusso;
- riflettere adeguatamente la luce.

In particolare l’inseminante, per i motivi che vedremo di seguito, deve essere di dimensioni ridotte per poter seguire le fluttuazioni di velocità alle più alte frequenze.

Al fine di determinare il comportamento dinamico di una particella ed in particolare il tempo che essa mediamente impiega per uniformare la propria velocità a quella del fluido, consideriamo l’equazione di moto della particella stessa sotto le seguenti ipotesi:

- le particelle sono sferiche;
- assenza di interazioni tra particelle (distanza tra le particelle > 1000 diametri);
- assenza di forze aerodinamiche;
- velocità relativa tra la particella e il fluido bassa;
- alta concentrazione di particelle nel fluido;

\(^3\) Il *beam expander* consiste in una lente biconcava che tende a far divergere i fasci laser aumentando la distanza tra i fasci con conseguente diminuzione del volume di misura al fine di aumentare la risoluzione spaziale.
la forza che agisce sulla particella è pari alla resistenza di Stokes dovuta alle forze viscose:

\[m \frac{dv}{dt} = F_t \quad (4.1) \]

dove:
m= massa particella;
F_t= forza di trascinamento esercitata dal flusso sulla particella; essa può essere riscritta:

\[F_t = 3\pi\mu D v \quad (4.2) \]

Con \(v_r = (U_f - U_p) \) velocità relativa della particella rispetto al fluido, \(D \) diametro particella e \(\mu \) viscosità dinamica del fluido.
L’equazione di moto risulta:

\[
\frac{dU_p}{dt} = \frac{3\pi\mu D v_r}{\frac{\pi}{6} D^3 \rho_p} = \frac{18\mu(U_f - U_p)}{D^2 \rho_p} \quad (4.3)
\]

Risolvendo tale equazione differenziale del primo ordine si ottiene che la particella segue il campo di moto con una costante di tempo \(\tau \) pari a:

\[\tau_p = \frac{\rho_p D^2}{18\mu} \quad (4.4) \]

Nel presente lavoro, come già accennato, come inseinante del flusso d’aria si è utilizzato olio di vaselina pertanto i valori considerati sono i seguenti:

\(\mu = \) viscosità dinamica dell’aria = \(1.81 \cdot 10^{-5} \) \(Pa \ s \);
\(\rho = \) densità dell’olio = \(853 \) \(kg/m^3 \);
\(D_p \approx 1 \mu m \);
\(\tau_p = 2.62 \mu s \).

Tale tempo è significativo solo se confrontato con i tempi caratteristici della fluidodinamica del fenomeno allo studio.
La capacità della particella di seguire fedelmente il flusso, infatti, è misurabile attraverso il rapporto tra il tempo di rilassamento della particella e il tempo caratteristico delle fluttuazioni turbolente. Tale rapporto prende il nome di
numero di *Stokes*; per una corretta misura del flusso è necessario che il numero di *Stokes* (*Sk*) valga:

\[Sk = \frac{\tau_p}{\tau_u} \ll 1 \quad (4.5) \]

con \(\tau_u = \frac{L_u}{U_0} \) tempo caratteristico dell’ugello, dove con \(L_u \) si indica la dimensione caratteristica dell’ugello (diametro all’efflusso) e con \(U_0 \) la velocità del getto all’efflusso.

Le particelle hanno una risposta di tipo filtro passa basso del primo ordine:

\[\frac{U_p}{U_f} = \frac{1}{\sqrt{1 + \omega^2 \tau_p^2}} \quad (4.6) \]

Da cui è possibile ottenere la frequenza di taglio (*cut-off*):

\[f_c = \frac{1}{2\pi \tau_p} \left(\frac{1}{\left(\frac{U_p}{U_f} \right)^2 - 1} \right) \quad (4.7) \]

La frequenza di taglio esprime il massimo valore di frequenza per il quale le particelle seguono ancora le oscillazioni di velocità. Nel caso si volesse limitare il ritardo cinetico tra fluido e particelle all’1% (\(U_p/U_f = 0.99 \)) la frequenza di taglio risulterebbe pari a:

\[f_c = \frac{0.0227}{\tau_p} \quad (4.8) \]

Assegnata una frequenza di taglio \(f_c \) il diametro delle particelle dovrà essere:

\[d_p < \left[\frac{18\mu}{2\pi \cdot \rho_p f_c} \left(\frac{1}{\left(\frac{U_p}{U_f} \right)^2 - 1} \right) \right]^{\frac{1}{2}} \quad (4.9) \]
4.4 Anemometria Laser Doppler

In questo lavoro si utilizza una tecnica di anemometria laser (LDV, Laser Doppler Velocimetry) per caratterizzare il campo di moto all’interno del bruciatore nelle configurazioni di interesse. Tale tecnica permette di risalire alla velocità istantanea di un flusso tramite la misura delle velocità di particelle traccianti che attraversano un volume di misura definito dall’intersezione di due fasci laser. Se le particelle inseminanti sono in equilibrio col fluido lo strumento in questione rappresenta una valida alternativa a misuratori a sonda e all’anemometria a filo caldo. I principali vantaggi che derivano dal suo utilizzo sono:

- Misura ottica non intrusiva a differenza delle altre tecniche di anemometria che richiedono l’impiego di sonde perturbando inevitabilmente il campo di moto;
- Misura assoluta in quanto non è necessaria la calibrazione (tale tecnica di anemometria ha una risposta lineare alla velocità del fluido);
- Misura multicomponente (fino a 3 componenti di velocità nella configurazione a 3 fasci);
- Alta risoluzione spaziale e temporale (volumi di misura molto contenuti e risposta elettronica veloce).

La tecnica laser Doppler coinvolge numerosi fenomeni fisici tra i quali i più importanti sono la diffusione ottica (scattering) e l’effetto Doppler. In particolare tale tecnica di anemometria si basa sullo scattering di Mie\(^4\) prodotto da una particella inseminante immersa in un flusso e colpita da luce monocromatica. Due raggi uscenti dall’ottica di trasmissione incorporata nella testa del sistema LDV convergono ad una distanza pari alla focale della lente: in tale intersezione si crea un volume di misura la cui forma è ellisoidale. La luce diffusa da una particella, in moto relativo rispetto ad un osservatore ha una frequenza differente da quella del raggio di luce incidente: tale differenza prende il nome di frequenza Doppler e risulta proporzionale ad una componente di velocità del flusso.

\(^4\) Lo scattering è un processo fisico mediante il quale una particella posta sulla traiettoria di un’onda elettromagnetica interagisce con essa e diffonde energia in tutte le direzioni. Le modalità con cui lo scattering si manifesta dipendono dalle dimensioni delle particelle e dalla lunghezza d’onda della radiazione incidente. Si può avere uno scattering elastico se la radiazione diffusa dalla particella ha la stessa \(\lambda\) della radiazione incidente, mentre lo scattering anelastico è caratterizzato da emissione a differenti \(\lambda\). Lo scattering di Mie in particolare si verifica per quelle particelle le cui dimensioni sono confrontabili o più grandi rispetto alla lunghezza d’onda incidente. Se \(D_p \ll \lambda\) si ha scattering di Rayleigh.
Con la tecnica LDV si ha quindi la misura diretta della frequenza, poi convertita in misura di velocità.
Una misura diretta della velocità richiede la determinazione del lasso di tempo necessario (Δt) affinché un oggetto compia una distanza nota (Δs):

$$ u = \frac{\Delta s}{\Delta t} \quad (4.10) $$

La velocità misurata sarà quindi una media spaziale e temporale.
Le tecniche ottiche consentono di risolvere intervalli spaziali dell’ordine della lunghezza d’onda del fascio di luce ($\approx \lambda$), mentre i moderni strumenti elettronici sono in grado di risolvere intervalli temporali molto piccoli (≈ 10 ns). Per misurare la velocità con questi livelli di risoluzione, pertanto, è necessario che l’oggetto di riferimento abbia dimensioni micrometriche (μm).
La tecnica LDV, nella versione di tipo differenziale5 effettua la misura di velocità mediante una sistema di frange di interferenza generato all’incrocio dei due fasci laser.

![Figura 4.3 Schema del modello a frange di interferenza](image)

Quando una particella attraversa il sistema di frange alterne chiaro-scure, l’intensità della luce diffusa risulta modulata a una frequenza pari al rapporto della componente normale della velocità, U_x, e dell’intervallo spaziale tra due frange contigue

$$ \Delta s = \frac{\lambda}{2 \cdot \sin \left(\frac{\theta}{2}\right)} \quad (4.11) $$

la velocità della particella sarà data quindi da:

5 Le tipologie di funzionamento della tecnica LDV più utilizzate sono l’anemometria di tipo differenziale e quella a fascio di riferimento: rispettivamente nella prima il raggio sorgente viene diviso in due fasci focalizzati da una lente in un unico punto (fuoco), mentre nella seconda la frequenza della luce diffusa dalla particella viene confrontata con quella del fascio luminoso di riferimento.
\[U_s = \frac{\lambda \cdot f_D}{2 \cdot \sin\left(\frac{\theta}{2}\right)} \] \hspace{1cm} (4.12)

dove:
\(\lambda \) è la lunghezza d’onda;
\(\theta \) è l’angolo formato dai due fasci laser;
\(f_D \) è la frequenza Doppler.

L’equazione del sistema è algebrica pertanto il sistema di misura risulta essere di ordine zero. [20].

4.4.1 Principio di funzionamento

L’equazione di funzionamento dello strumento viene dedotta a partire dall’effetto Doppler, per cui un fascio di luce\(^6\) emesso da una sorgente fissa viene percepito da una particella \(P \), in moto a velocità \(\vec{U} \), ad una frequenza diversa da quella originale:

\[\omega_p = \omega_i - \vec{k} \cdot \vec{U} \] \hspace{1cm} (4.13)

Dove \(\left| \vec{k} \right| = \frac{2 \cdot \pi}{\lambda} \) è il vettore d’onda nella direzione di propagazione del fascio e \(\omega_p \) e \(\omega_i \) sono le frequenze del fascio emesso dalla sorgente laser e quella percepita dalla particella, rispettivamente. Per poter misurare la frequenza \(\omega_p \) è necessario introdurre un sensore esterno. La particella diffonde la luce laser e la frazione della radiazione diffusa verso un fotorilevatore subisce un secondo effetto Doppler, con segno opposto al primo perché la sorgente (particella) è in moto rispetto al sensore:

\[\omega_s = \omega_p + \vec{k}_s \cdot \vec{U} \] \hspace{1cm} (4.14)

Il fotorilevatore misura così una frequenza \(\omega_s \) diversa da quella emessa dal laser \(\omega_i \); in particolare la differenza tra le due frequenze è detta Doppler shift, \(\omega_D \), e dipende dalla velocità della particella e dalla differenza tra i due vettori d’onda [20]:

\(^6\) L’effetto Doppler è riscontrabile sia con onde sonore che con fonti luminose.
Capitolo 4

\[\omega_d = \omega_s - \omega_i = \frac{4\pi \cdot n}{\lambda_0} \sin \left(\frac{\phi}{2} \right) |\vec{U}| \cos \phi \] \hspace{1cm} (4.15)

Con \(n \) indice di rifrazione relativo del mezzo in cui si esegue la misura e \(\lambda_0 \) la lunghezza d’onda del fascio laser nel vuoto.

Tipicamente la frequenza Doppler è troppo piccola (< 100 Hz) rispetto a quella del fascio laser (≈10^4 Hz) per poter essere risolta con strumenti ottici (spettrometri). Pertanto si ricorre a un processo di eterodina ottica ottenuto sovrapponendo la radiazione diffusa della particella (fascio di misura) con una frazione del fascio laser originale (fascio di riferimento). Questa esigenza ha contribuito all’affermarsi della configurazione differenziale.

Sulla superficie del fotocathodo si sovrappongono le due radiazioni diffuse dalla particella, ciascuna con le frequenze modificate per l’effetto Doppler:

\[\omega_{s1} = \omega_i + (\vec{k}_s - \vec{k}_i) \cdot \vec{U} \] \hspace{1cm} (4.16)
\[\omega_{s2} = \omega_i + (\vec{k}_s - \vec{k}_{i2}) \cdot \vec{U} \] \hspace{1cm} (4.17)

Il ricevitore è sensibile all’intensità della radiazione che è, per definizione, l’integrale, esteso ad un intervallo temporale molto maggiore di un periodo, del quadrato del campo elettrico totale; a sua volta la somma dei campi elettrici delle due radiazioni elettromagnetiche diffuse dalla particella vale:

\[E^2 = (E_{s1} \cos(\omega_{s1}t) + E_{s2} \cos(\omega_{s2}t))^2 \] \hspace{1cm} (4.18)
\[E = E_{s1}^2 \cos^2(\omega_{s1}t) + E_{s2}^2 \cos^2(\omega_{s2}t) + E_{s1} E_{s2} \cos(\omega_{s1} + \omega_{s2}) t + E_{s1} E_{s2} \cos(\omega_{s1} - \omega_{s2}) t \] \hspace{1cm} (4.19)

Dei quattro termini che compaiono nell’equazione (4.19) i primi tre sono caratterizzati da frequenze ottiche troppo elevate e non possono essere risolte dal ricevitore che ne percepisce solo il valore medio. L’ultimo termine, di frequenza differente, è risolvibile dai moderni fotomoltiplicatori e produce una modulazione della tensione d’uscita di cui è possibile misurare la frequenza:

\[\omega_d = \omega_{s1} - \omega_{s2} \] \hspace{1cm} (4.20)

Dove \(\omega_d \) rappresenta la frequenza Doppler della configurazione differenziale. La componente di velocità misurata risulta essere quella normale alla bisettrice dell’angolo formato dai due fasci laser e giace nel loro stesso piano, indipendentemente dalla posizione angolare del fotocathodo [20]. Il volume di misura dell’anemometro di tipo differenziale è definito dalla regione di
sovrapposizione dei due fasci e può essere ridotto aumentando l’angolo di intersezione dei due raggi (θ).

La misura di una grandezza scalare come la frequenza Doppler non permette di conoscere la direzione del vettore velocità. A tale scopo è possibile utilizzare, in luogo di un sistema di riferimento costituito da frange stazionarie, un sistema mobile di frange che scorrono a velocità costante e in direzione nota all’interno del volume di misura fisso nello spazio. A tale scopo è necessario modificare la frequenza di uno dei due fasci di una quantità costante e nota, f_{shift}.

La velocità della particella viene valutata rispetto ad un riferimento mobile e la frequenza misurata viene (convenzionalmente) associata ad una frequenza positiva quando risulta maggiore di f_{shift} e viceversa. La variazione di frequenza è possibile tramite un modulatore acusto-ottico denominato cella di Bragg che separa in due il fascio laser originale.
Capitolo 5

Metodi di analisi ed elaborazione dei dati

Scopo del capitolo è esporre i metodi di calcolo impiegati per caratterizzare il grado di swirl del bruciatore. Per eseguire la calibrazione del generatore di swirl sono state acquisite, tramite tecnica LDV, misure di velocità lungo un diametro del flusso assialsimmetrico uscente dalla bocca del bruciatore. Tale tecnica, come già detto, fornisce misure puntuali della velocità nella regione di misura. È necessario pertanto elaborare tali dati per ricostruire in maniera corretta le quantità utilizzate per definire il numero di swirl S. Le misure dettagliate di velocità permettono di caratterizzare i flussi utilizzando le varie definizioni di swirl disponibili in letteratura che definiscono più o meno correttamente flussi dotati di una componente rotatoria.

5.1 Analisi statistica delle misure LDV

La velocità media U in un punto di misura è fornita dalla formula:

$$ U = \frac{1}{N} \sum_{i=0}^{N-1} \eta_i \cdot u_i \quad (5.1) $$

dove:
- u_i è la velocità i-esima del punto di misura;
- η_i opportuno parametro per pesare il valore di velocità.

Tale media tiene conto del fenomeno del velocity bias: il rateo delle particelle attraverso il volume di misura è determinato dalla corrente fluida nella zona di indagine. Per un determinato tempo di osservazione le particelle più veloci sono campionate più frequentemente di quelle a basse velocità. Infatti il data rate (\dot{N}) è direttamente proporzionale alla velocità tramite:

$$ \dot{N} = \bar{n}_p \cdot U \cdot A_d \quad (5.2) $$

dove:
- \bar{n}_p = concentrazione media delle particelle [m$^{-3}$];
- U = velocità media delle particelle [m/s];
A_d = sezione del volume di misura [m2].

Assumendo π_d e A_d costanti, le particelle più veloci sono campionate in numero maggiore dal sistema di acquisizione causando, quindi, una deformazione della distribuzione della velocità con sovrastima del valore medio. Ciò introduce un errore sistematico (velocity bias) nelle misure di velocità.

Esistono diversi metodi in letteratura per la correzione del velocity bias. Le tecniche transit time [22] sono le più utilizzate e consistono nel pesare le velocità individuali con il tempo di attraversamento del volume di misura della particella. Il valore medio stesso viene quindi corretto attraverso il parametro η_i, che pesa in maniera diversa i valori di velocità:

$$\eta_i = \frac{t_i}{\sum_{j=0}^{N} t_j} \quad (5.3)$$

nella quale t_i rappresenta il tempo di attraversamento del volume di misura da parte della i-esima particella. In questo modo le particelle a velocità più bassa vengono pesate maggiormente. Se non si adottasse tale correzione η_i assumerebbe il valore $1/N$ di una normale media aritmetica.

Tramite le misure LDV siamo in grado di conoscere anche i valori RMS per ogni misura. Il valore RMS (Root Mean Square) delle fluttuazioni di velocità in un flusso turbolento costituisce la misura delle variazioni della singola fluttuazione.7

Utilizzando l’approssimazione di turbolenza isotropa, ovvero il modello per cui le caratteristiche statistiche non presentano alcuna direzione privilegiata, il valore di RMS può essere direttamente utilizzato per determinare l’errore statistico (casuale) della misura.

Ogni valor medio di velocità dei profili misurati è quindi caratterizzato da un proprio identificativo valore di errore casuale. Pertanto i valori di velocità saranno dati da:

$$U(r) = U(r)_{\text{MISURATO}} \pm 2 \cdot \frac{\text{RMS}(r)}{\sqrt{N}} \quad (5.4)$$

con RMS definito come la radice della media dei quadrati dei singoli valori:

7 Per brevità si utilizza l’acronimo RMS per denotare il valore rms delle fluttuazioni di velocità.
Metodi di analisi ed elaborazione dei dati

\[
RMS\left(r\right) = \sqrt{n \cdot \sum_i (u_i(r) - U(r))^2}
\]

(5.5)

dove:

\(U(r)\) rappresenta il valor medio misurato alla stazione \(r\);

\(u_i(r)\) rappresenta il valore i-esimo acquisito alla stazione \(r\).

Si riportano, a titolo d’esempio, i valori delle velocità e dei rispettivi errori per uno dei casi analizzati (caso 1), considerando il numero dei campioni \(N\) pari a 10000:

<table>
<thead>
<tr>
<th>Caso 1</th>
<th>(r/r_b)</th>
<th>Velocità tangenziale media (W) [m/s]</th>
<th>(\pm 2\frac{RMS(r)}{\sqrt{N}})</th>
<th>Velocità assiale media (U) [m/s]</th>
<th>(\pm 2\frac{RMS(r)}{\sqrt{N}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.11</td>
<td>-0.84</td>
<td>0.0084</td>
<td>0.69</td>
<td>0.0076</td>
<td></td>
</tr>
<tr>
<td>-1.06</td>
<td>-0.79</td>
<td>0.0104</td>
<td>0.83</td>
<td>0.0108</td>
<td></td>
</tr>
<tr>
<td>-1.00</td>
<td>-0.86</td>
<td>0.0134</td>
<td>1.41</td>
<td>0.0164</td>
<td></td>
</tr>
<tr>
<td>-0.94</td>
<td>-1.09</td>
<td>0.0158</td>
<td>2.04</td>
<td>0.0218</td>
<td></td>
</tr>
<tr>
<td>-0.89</td>
<td>-1.4</td>
<td>0.017</td>
<td>2.81</td>
<td>0.0224</td>
<td></td>
</tr>
<tr>
<td>-0.83</td>
<td>-1.6</td>
<td>0.0158</td>
<td>3.22</td>
<td>0.0208</td>
<td></td>
</tr>
<tr>
<td>-0.78</td>
<td>-1.8</td>
<td>0.0136</td>
<td>3.59</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>-0.72</td>
<td>-1.81</td>
<td>0.0134</td>
<td>3.7</td>
<td>0.0152</td>
<td></td>
</tr>
<tr>
<td>-0.67</td>
<td>-1.88</td>
<td>0.012</td>
<td>3.84</td>
<td>0.0142</td>
<td></td>
</tr>
<tr>
<td>-0.61</td>
<td>-1.86</td>
<td>0.0118</td>
<td>3.87</td>
<td>0.0132</td>
<td></td>
</tr>
<tr>
<td>-0.56</td>
<td>-1.82</td>
<td>0.012</td>
<td>3.92</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>-0.50</td>
<td>-1.74</td>
<td>0.0126</td>
<td>4.02</td>
<td>0.0122</td>
<td></td>
</tr>
<tr>
<td>-0.44</td>
<td>-1.63</td>
<td>0.0136</td>
<td>4.03</td>
<td>0.0122</td>
<td></td>
</tr>
<tr>
<td>-0.39</td>
<td>-1.5</td>
<td>0.0144</td>
<td>4.08</td>
<td>0.0118</td>
<td></td>
</tr>
<tr>
<td>-0.33</td>
<td>-1.43</td>
<td>0.0148</td>
<td>4.1</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>-0.28</td>
<td>-1.33</td>
<td>0.015</td>
<td>4.02</td>
<td>0.0126</td>
<td></td>
</tr>
<tr>
<td>-0.22</td>
<td>-1.2</td>
<td>0.0156</td>
<td>3.8</td>
<td>0.0148</td>
<td></td>
</tr>
<tr>
<td>-0.17</td>
<td>-1.04</td>
<td>0.0166</td>
<td>3.42</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>-0.11</td>
<td>-1.01</td>
<td>0.0192</td>
<td>2.95</td>
<td>0.0176</td>
<td></td>
</tr>
</tbody>
</table>

Si può concludere che l’errore statistico risulta inferiore al 2% per la velocità tangenziale e all’incirca del 1% per la velocità assiale.
5.2 Stima del numero di swirl

Come già detto esiste una definizione universale del numero di swirl; tuttavia a causa delle difficoltà nel misurare accuratamente tutti i contributi, in letteratura si trovano svariate definizioni semplificate di tale parametro. Ognuna di esse è caratterizzata da particolari ipotesi o approssimazioni e presentano vincoli o limitazioni spesso dovute all’impossibilità di misurare correttamente e accuratamente tutti i contributi. Tale situazione rende difficile il confronto delle caratteristiche di flussi indagati in studi differenti oltre a non permettere l’accurata conoscenza degli effetti delle approssimazioni, ipotesi e vincoli che di volta in volta vengono imposti.

A tale scopo verrà calcolato il numero di swirl utilizzando le più comuni definizioni potendo così effettuare confronti con lavori precedenti e studi presenti in letteratura.

Nel capitolo 2 si è data la definizione del numero di swirl (eq. 5.6) [1] come il rapporto tra il flusso della componente tangenziale della quantità di moto ed il flusso assiale della quantità di moto assiale per il raggio equivalente dell’ugello:

\[S = \frac{G_o}{G_z R_b} \quad (5.6) \]

Utilizzando l’approssimazione di strato limite per un flusso incomprimibile, stazionario, turbolento con opportune condizioni al bordo [1] l’equazione (5.6) può essere riscritta come:

\[S = \frac{2\pi p}{2\pi p} \int_0^r r^2 (U'W + \bar{u'}\bar{w'}) dr \quad (5.7) \]

Nella quale:

\[U = \text{valore medio di velocità assiale;} \]
\[W = \text{valore medio di velocità tangenziale;} \]
\[u' = \text{fluttuazione della velocità assiale;} \]
\[w' = \text{fluttuazione della velocità tangenziale;} \]
\[v' = \text{fluttuazione della velocità radiale;} \]
\[R_b = \text{raggio equivalente dell’ugello (del bruciatore all’efflusso).} \]
Si può osservare come S sia valutabile direttamente noti i profili radiali delle componenti assiali e tangenziali della velocità mediata nel tempo, alla sezione di efflusso. Il numero di swirl, tuttavia, dovrebbe essere costante una volta fissate la geometria del problema e le velocità assiali e tangenziali nel condotto a monte della sezione di efflusso. Allo scopo di stimare S a partire da un numero ridotto di dati [6], come già visto nel capitolo 2, sotto le ipotesi di perfetto miscelamento e assumendo la conservazione dei flussi di quantità di moto il numero di swirl può essere calcolato in maniera soddisfacente dalla geometria del generatore di Swirl e dalla conoscenza delle portate:

$$S_g = \frac{\pi \cdot r_b \cdot d_A}{2A_t} \left(\frac{\dot{m}_a}{\dot{m}_a + \dot{m}_t} \right)^2$$ \hspace{1cm} (5.8)

Tale relazione è l’unica formula empirica che si possa utilizzare per caratterizzare generatori di swirl di tipo ad ingressi assiale e tangenziale dell’aria.

Generalmente per utilizzi commerciali sono adottati sistemi in cui speciali palettature sono posizionate in modo da imprimere una componente rotatoria al fluido. In particolare per i generatori di swirl a blocchi mobili il numero di swirl risulta regolabile attraverso l’orientamento delle guide. Per tali sistemi è possibile legare l’angolo delle palette con il numero di swirl prodotto:

$$S = \frac{2}{3} \left[1 - \left(\frac{d_h}{d} \right)^2 \right] \tan \phi$$ \hspace{1cm} (5.9)

dove:
d è il diametro dell’ugello;
d_h è il diametro del mozzo della palettatura.

Tale relazione si basa sull’approssimazione di profilo di velocità di tipo plug flow nella regione anulare e di una velocità tangenziale impressa alla corrente costante pari a $w = u \tan \phi$.

Queste definizioni empiriche basate su parametri geometrici o grandezze facilmente misurabili, come la portata, sono difficilmente correlabili con la definizione (5.6), per cui è necessario eseguire una calibrazione per ogni particolare sistema di generazione dello swirl.
5.3 Varie definizioni di swirl

Il numero di swirl, come detto, può essere riscritto in diversi modi a seconda delle considerazioni e approssimazioni che si fanno di volta in volta.

\[
S_1 = \frac{2\pi \rho \int_0^R r^2 \left(UW + (u'w') \right) dr}{\frac{2\pi \rho}{\int_0^R \left(U^2 - \frac{1}{2} W^2 + \frac{1}{2} \left(\overline{w'^2} + \overline{v'^2} \right) \right) dr} \times R_b}
\]
(5.10)

Il termine che rappresenta gli sforzi di Reynolds, $\overline{u'w'}$ (eq. 5.10), spesso viene trascurato, per le difficoltà riscontrate nel misurarlo con alcune tecniche sperimentali. In questo caso, come già visto nel cap. 4 si è utilizzata la tecnica LDV per misurare due componenti di velocità utilizzando quindi due canali; ognuno di questi canali è collegato al proprio ricevitore che elabora i segnali e li trasmette al software nativo. Per poter misurare correttamente gli sforzi di Reynolds sarebbe necessario che entrambi i ricevitori effettuassero le misure delle fluttuazioni di velocità assiale e tangenziale nello stesso istante di tempo. Per poter fare ciò si devono impostare i due ricevitori in modalità master e slave di modo che il clock del primo comandi le acquisizioni. Tale approccio non è stato adottato poiché renderebbe il processo di acquisizione lungo e dispendioso. Inoltre in letteratura tale termine viene considerato piccolo comparato ai termini di velocità media. L’entità di tali termini è stata valutata in [2] e risulta effettivamente modesta ($\approx 2\%$). Pertanto in questo lavoro tali termini verranno trascurati per il calcolo del numero di swirl.

Nell’ipotesi di turbolenza isotropa, considerando $\overline{v'^2}$ simile a $\overline{w'^2}$ [4] definiamo il numero di swirl a cui d’ora in poi ci riferiremo come S_1:

\[
S_1 = \frac{2\pi \rho \int_0^R r^2 UW dr}{\frac{2\pi \rho}{\int_0^R \left(U^2 - \frac{1}{2} W^2 + \frac{1}{2} \overline{w'^2} \right) dr} \times R_b}
\]
(5.11)

Si può osservare come tale relazione richiede la misura di due sole componenti di velocità lungo un raggio o un diametro del getto, assunto di tipo assialsimmetrico.

A partire da tale relazione, applicando ulteriori ipotesi giungiamo ad altre definizioni di swirl che ritroviamo in letteratura e in studi precedenti che verranno presi a confronto in tale lavoro.
Spesso a causa dell’impossibilità o difficoltà nel calcolare i termini fluttuanti in maniera accurata si decide di trascurare il termine $u^2 - \frac{1}{2} (w^2 + v^2)$ poiché piccolo in confronto al termine di velocità assiale U^2, definendo un numero di swirl a cui d’ora in poi ci riferiremo come S_2:

$$
S_2 = \frac{2\pi \rho \int_0^R r^2 U W \, dr}{2\pi \rho \int_0^R r \left(U^2 - \frac{1}{2} W^2 \right) \, dr} \times R_b
$$

(5.12)

Un’ulteriore semplificazione consiste nel trascurare il termine $\frac{1}{2} W^2$ che, come già detto, rappresenta l’approssimazione del termine di pressione statica. Trascurando le variazioni di pressione statica si ottiene la formula semplificata di swirl denominata S_3:

$$
S_3 = \frac{2\pi \rho \int_0^R r^2 U W \, dr}{2\pi \rho \int_0^R r U^2 \, dr} \times R_b
$$

(5.13)

Tale definizione venne introdotta da Chigier e Beer [7] sulla base dell’osservazione che il flusso della quantità di moto assiale (G_x) può essere calcolato con buona approssimazione escludendo il termine di pressione.
5.4 Calcolo del numero di swirl

Per calcolare tale parametro non si hanno a disposizione relazioni matematiche che definiscono le velocità in funzione della coordinata radiale, ma solo misurazioni puntuali che ricostruiscono tali profili con una risoluzione discreta di passo deciso dall’utente (e pari per questo lavoro ad 1 mm); l’integrazione numerica per il calcolo dei flussi assiali della componente tangenziale e assiale della quantità di moto viene svolta in ambiente Matlab attraverso il metodo dei trapezii [25]

\[\sum_{i=1}^{N-1} \left[\frac{1}{2} (f_{i+1}) + f_i (r_{i+1} - r_i) \right] \]

(5.14)

Figura 5.1 Approssimazione dell'integrale attraverso il metodo dei trapezii

Per il calcolo del numero di swirl sono state definite delle funzioni di passaggio in base alla definizione di swirl presa in considerazione:

\[f_1(r) = r^2 U(r) W(r) \]

(5.15)

per il calcolo di \(S_1 \):

\[f_2(r) = r \left(U^2(r) - \frac{1}{2} W^2(r) + u' r (r) - w' (r) \right) \]

(5.16)

per il calcolo di \(S_2 \):
Metodi di analisi ed elaborazione dei dati

$$f_3(r) = r \cdot \left(U^2(r) - \frac{1}{2} W^2(r) \right) \quad (5.17)$$

per il calcolo di S_3:

$$f_4(r) = r \cdot \left(U^2(r) \right) \quad (5.18)$$

Su queste è stata applicata la regola dei trapezi, ottenendo le seguenti formule usate nella stima del numero di swirl:

$$S_1 = \frac{\sum_{i=1}^{N-1} \left[\frac{1}{2} \left(f_{1(i+1)} + f_{1(i)} \right) (r_{i+1} - r_i) \right]}{R_b \sum_{i=1}^{N-1} \frac{1}{2} \left[\left(f_{2(i+1)} + f_{2(i)} \right) (r_{i+1} - r_i) \right]} \quad (5.19)$$

$$S_2 = \frac{\sum_{i=1}^{N-1} \left[\frac{1}{2} \left(f_{1(i+1)} + f_{1(i)} \right) (r_{i+1} - r_i) \right]}{R_b \sum_{i=1}^{N-1} \frac{1}{2} \left[\left(f_{3(i+1)} + f_{3(i)} \right) (r_{i+1} - r_i) \right]} \quad (5.20)$$

$$S_3 = \frac{\sum_{i=1}^{N-1} \left[\frac{1}{2} \left(f_{1(i+1)} + f_{1(i)} \right) (r_{i+1} - r_i) \right]}{R_b \sum_{i=1}^{N-1} \frac{1}{2} \left[\left(f_{4(i+1)} + f_{4(i)} \right) (r_{i+1} - r_i) \right]} \quad (5.21)$$

dove r_i è la posizione del punto di misura rispetto al centro del bruciatore. I valori calcolati sono riportati nel capitolo 6.
Come si può notare dalla figura 5.2 che rappresenta per un caso analizzato i profili radiali delle velocità assiali e tangenziali all’efflusso, il profilo della velocità assiale risulta simmetrico rispetto all’asse y (flusso assialsimmetrico), mentre è antisimmetrico per la velocità tangenziale. Per stimare in maniera corretta il numero di swirl si è considerata la metà negativa di tale profilo ribaltata. Il fatto che la velocità tangenziale assuma valori positivi in metà dominio e negativi nell’altro è dovuto semplicemente al sistema di riferimento adottato. Nel nostro sistema di riferimento (cap. 4) la velocità tangenziale è definita negativa nel semi-dominio A (0,-2), positiva nell’altro (fig. 5.3).
Per il calcolo dell’integrale si è proceduto in diversi modi per selezionare la procedura più affidabile e ottenere risultati confrontabili con quelli ottenuti in studi precedenti e quindi definire differenze, analogie, svantaggi e vantaggi di ogni metodo.

Dapprima si è calcolato l’integrale sull’intero dominio, tralasciando l’ipotesi di assialsimmetria e utilizzando tutti i dati ottenuti dall’analisi sperimentale (S_{RR}):

$$S_{2RR} = \frac{\pi \rho \int_{-R}^{R} r^2 U W dr}{\pi \rho \int_{-R}^{R} r \left(U^2 - \frac{1}{2} W^2 \right) dr} \times R_b$$ \hspace{1cm} (5.22)

In un secondo momento si è calcolato lo swirl separatamente sul semidominio A (-2,0) e su B (0,2) mediando i due risultati: tale metodo di calcolo è stato adottato in [15] [16] [26] e risulta pertanto funzionale per un confronto successivo (S_{AB}):

$$S_{2A} = \frac{2\pi \rho \int_{0}^{R} r^2 U W dr}{2\pi \rho \int_{0}^{R} r \left(U^2 - \frac{1}{2} W^2 \right) dr} \times R_b$$ \hspace{1cm} (5.23)

$$S_{2B} = \frac{2\pi \rho \int_{0}^{R} r^2 U W dr}{2\pi \rho \int_{0}^{R} r \left(U^2 - \frac{1}{2} W^2 \right) dr} \times R_b$$ \hspace{1cm} (5.24)

Tuttavia non essendo lo swirl funzione lineare nelle velocità, risulterebbe più corretto calcolare la media delle singole velocità ad ogni stazione (tra -2 e +2) $U(r)$ e $W(r)$, per poi eseguire l’integrale su metà dominio (S_{M}):

$$S_{2M} = \frac{2\pi \rho \int_{0}^{R} r^2 U W dr}{2\pi \rho \int_{0}^{R} r \left(U^2 - \frac{1}{2} W^2 \right) dr} \times R_b$$ \hspace{1cm} (5.25)
Discorso a parte merita la definizione degli estremi di integrazione e del raggio equivalente \(R_h \) che compare a denominatore nella formula dello swirl. In questo lavoro è stato posto pari a 18 mm ovvero pari al raggio interno del bruciatore. È necessario specificare che le misure effettuate per tale lavoro e definite “all’efflusso” in realtà, per problemi di allineamento dei fasci laser, sono state acquisite ad una quota relativa di \(z/D \approx 0.6 \). Per la conservazione della quantità di moto è possibile acquisire i profili di velocità ad una quota diversa da quella dell’efflusso sapendo che essi saranno costanti e pari a quelli calcolati esattamente all’efflusso. Tale ipotesi è stata verificata e verrà discussa in seguito.

Come si evince dalla figura 5.4 le velocità non saranno nulle in corrispondenza della parete del condotto dato che il flusso si apre sempre più salendo in quota (e all’aumentare del numero di swirl come vedremo in seguito). Questo comportamento giustifica il segno della velocità assiale nelle zone esterne del dominio di misura. Per il calcolo del numero di swirl il dominio di integrazione è limitato alle regioni in cui la velocità assiale è positiva con estremi in corrispondenza della coordinata radiale dove essa è nulla. I valori negativi di velocità assiale all’estremità del dominio sono infatti dovuti a possibili ricircoli esterni.

Nei casi investigati in cui la velocità assiale assume valori negativi alle estremità sarà necessario definire degli estremi di integrazione adeguati per stimare in maniera corretta l’entità dello swirl.

Se i valori negativi di velocità assiale alle estremità sono da trattare con cautela, è invece lecito aspettarsi valori negativi di velocità assiale nella zona centrale del flusso, in corrispondenza del gas gun, per effetto della zona di ricircolazione: questo, come vedremo, avviene in quei flussi dotati di una componente di portata tangenziale sufficientemente elevata. È noto\(^8\) che all’incirca fino a 4D nella zona centrale del flusso sarò sempre evidente la zona di ricircolazione, qualora presente; se misurassimo ad una quota \(z/D \) minore sarebbe più facile imbattersi in velocità assiali negative agli estremi del dominio dovute alla scia del gas gun che si comporta come un corpo tozzo.

\(^8\) In [3] Chigier e Chervinsky riportano che le distribuzioni di velocità assiale di flussi con gradi di swirl moderati si mantengono all’incirca simili per 4D; in [27] per un flusso non swirlato fino a 30D.
Figura 5.4 Schematizzazione del flusso confinato in camera di combustione con indicazione della quota del volume di misura.

5.5 Configurazioni analizzate

L’attività sperimentale è stata effettuata utilizzando il bruciatore presente nel Laboratorio di Combustione del Dipartimento di Energia del Politecnico di Milano. Come descritto nel cap. 3 tale bruciatore dispone di un generatore di swirl ad ingressi tangenziali al flusso primario assiale, con portata regolabile. Per indagare un ampio campo di portate si è deciso a priori di utilizzare il legame tra il numero di swirl geometrico e il numero di swirl S_2 ottenuto nel lavoro precedente [15].

In tale lavoro, mantenendosi al valore di portata totale costante pari a 200 Nl/min, sono state esaminate più configurazioni con diverse distribuzioni di portate di aria assiale e tangenziale. I diversi numeri di swirl ottenuti sono riassunti nella tab. 5.1.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>1.54</td>
</tr>
<tr>
<td>200</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>2.1</td>
</tr>
<tr>
<td>200</td>
<td>60</td>
<td>140</td>
<td>14.11</td>
<td>3.19</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>160</td>
<td>18.43</td>
<td>5.44</td>
</tr>
</tbody>
</table>
Disponendo delle misure effettuate in [15], attraverso la procedura esposta nella sezione 5.4 i numeri di swirl per ognuna delle condizioni analizzate sono stati stati ricalcolati utilizzando la definizione S_{2RR} e sono riportati nella tab. 5.2.

<table>
<thead>
<tr>
<th>Portata tot. [NL/min]</th>
<th>Portata assiale [NL/min]</th>
<th>Portata tangenziale [NL/min]</th>
<th>S_g</th>
<th>S_{2RR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>1.75</td>
</tr>
<tr>
<td>200</td>
<td>80</td>
<td>100</td>
<td>10.37</td>
<td>2.27</td>
</tr>
<tr>
<td>200</td>
<td>60</td>
<td>140</td>
<td>14.11</td>
<td>2.99</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>160</td>
<td>18.43</td>
<td>4.59</td>
</tr>
</tbody>
</table>

Da tali dati il legame tra il numero di swirl S_2 e swirl geometrico S_g risulta:

$$S_2 = 0.25 \cdot S_g \quad (5.26)$$

![Figura 5.5 Legame S_2 Swirl geometrico (S_g)](image)

Tale risultato risulta in linea con quanto osservato da Claypole in [6]: in tale lavoro si dimostra che sotto le ipotesi di perfetto miscelamento e assumendo la conservazione della quantità di moto il numero di swirl può essere calcolato in
maniera soddisfacente dalla geometria del generator di Swirl e dalla conoscenza delle portate:

\[
S_g = \frac{\pi r_b \cdot d_A}{2A_t} \left(\frac{\dot{m}_\phi}{\dot{m}_a + \dot{m}_\phi} \right)^2
\] \tag{5.27}

Inoltre esiste un legame lineare tra il numero di swirl \(S_2\) e lo swirl geometrico \(S_g\) pari a:

\[
S_2 = 0.25 \cdot S_g
\] \tag{5.28}

Osservando la figura 5.5 si può osservare come per \(S_g = 0\) il numero di swirl \(S_2\) assuma un valore finito e ciò è evidentemente impossibile; inoltre non siamo in grado di caratterizzare tale legame per valori di swirl bassi (0\(<\)\(S_2\)<1,5) particolarmente utilizzati in molte applicazioni sperimentali. Inoltre in tale zona è compreso anche il valore critico \(S_2 \approx 0.6\) che definisce la zona di transizione [1]. Lo scopo principale di tale lavoro sarà proprio quello di ampliare la conoscenza del legame \(S_2 \cdot S_g\) anche per valori di swirl geometrico più basso (0\(<\)\(S_g\)<6) ovvero su un più ampio campo di portate. Per potere fare ciò si sono scelti a priori tre valori di portata nominale pari a 200, 300 e 440 Nl/min adeguati per caratterizzare in maniera soddisfacente il bruciatore nel campo di interesse. Infatti tale bruciatore difficilmente è alimentato con portate inferiori a 200 Nl/min o superiori ai 440 Nl/min. Tali portate corrispondono ai valori del numero di Reynolds riportati in tab. 5.3.

Tabella 5.3 Valori di Re considerati

<table>
<thead>
<tr>
<th>Portata tot. [Nl/min]</th>
<th>Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>5800</td>
</tr>
<tr>
<td>300</td>
<td>8700</td>
</tr>
<tr>
<td>440</td>
<td>12700</td>
</tr>
</tbody>
</table>
Le condizioni analizzate sono riassunte nella tabella 5.4.

<table>
<thead>
<tr>
<th>Prova</th>
<th>Portata aria assiale [Nl/min]</th>
<th>Portata aria tangenziale [Nl/min]</th>
<th>S_g</th>
<th>S_2^g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>0.29</td>
</tr>
<tr>
<td>Caso 2</td>
<td>140</td>
<td>60</td>
<td>2.59</td>
<td>0.65</td>
</tr>
<tr>
<td>Caso 3</td>
<td>116</td>
<td>84</td>
<td>5</td>
<td>1.27</td>
</tr>
<tr>
<td>Caso 4</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Caso 5</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>2.59</td>
</tr>
<tr>
<td>Caso 6</td>
<td>240</td>
<td>60</td>
<td>1.15</td>
<td>0.29</td>
</tr>
<tr>
<td>Caso 7</td>
<td>210</td>
<td>90</td>
<td>2.59</td>
<td>0.65</td>
</tr>
<tr>
<td>Caso 8</td>
<td>175</td>
<td>125</td>
<td>5</td>
<td>1.27</td>
</tr>
<tr>
<td>Caso 9</td>
<td>150</td>
<td>150</td>
<td>7.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Caso 10</td>
<td>120</td>
<td>180</td>
<td>10.37</td>
<td>2.59</td>
</tr>
<tr>
<td>Caso 11</td>
<td>352</td>
<td>88</td>
<td>1.15</td>
<td>0.29</td>
</tr>
<tr>
<td>Caso 12</td>
<td>340</td>
<td>100</td>
<td>1.49</td>
<td>0.65</td>
</tr>
<tr>
<td>Caso 13</td>
<td>308</td>
<td>132</td>
<td>2.59</td>
<td>1.27</td>
</tr>
<tr>
<td>Caso 14</td>
<td>256</td>
<td>184</td>
<td>5</td>
<td>1.8</td>
</tr>
<tr>
<td>Caso 15</td>
<td>220</td>
<td>220</td>
<td>7.2</td>
<td>2.59</td>
</tr>
</tbody>
</table>

Partendo dalla portata più bassa si è indagata la condizione (caso 4) caratterizzata da 100 Nl/min di portata di aria assiale e 100 Nl/min di aria tangenziale. È stata scelta questa ripartizione di partenza per effettuare un confronto diretto con i dati del lavoro [15] al fine di giudicare la bontà della prova e più in generale l’efficacia dell’apparato sperimentale. Tali valori di portata, noti i parametri geometrici dell’ugello, corrispondono ad un valore di swirl geometrico $S_g = 7.2$. Volendo porre l’attenzione soprattutto nella zona a swirl geometrico più basso, ovvero a cavallo della zona critica $S_2 \approx 0.6$, la seconda prova effettuata è stata quella denominata caso 2 cui corrisponde un valore di swirl geometrico $S_g = 2.59$; utilizzando la correlazione trovata in precedenza si ottiene infatti uno swirl teorico $S_2 = 0.65$. Successivamente sono state svolte le prove denominate caso 1 e caso 5, la prima a cui corrisponde un valore $S_2=0.29$ e l’ultima un $S_2=2.59$. Ultimata questa prova si è deciso di passare al valore di portata di 300 Nl/min effettuando prove a pari numero di swirl S_g, mantenendo quindi una proporzionalità tra le portate assiali e tangenziali. Lo stesso è stato fatto alla portata di 440 Nl/min. Ultimate queste 12 prove e osservando i valori di S_g indagati si è deciso di approfondire l’indagine per numeri di swirl geometrico attorno al valore $S_g=5$. Le ultime tre prove

9 Il valore S_2 viene calcolato preliminarmente utilizzando la correlazione (5.26).
effettuate sono state quindi caso 3, caso 8 e caso 14. Per le prove a portata 440 Nl/min si è deciso di investigare il caso a $S_g=1.49$ anziché $S_g=10.37$, poiché più funzionale all’analisi della zona “critica”.

5.6 Stima della portata mediante i profili di velocità

I profili di velocità (assiale) ottenuti permettono il calcolo della portata volumetrica in uscita dal bruciatore, mediante la (5.29).

\[Q = \int_{0}^{2\pi} \int_{0}^{R} U r d r d \theta \quad (5.29) \]

Dato che i profili sono differenti da un caso all’altro la scelta degli estremi di integrazione è stata valutata di volta in volta a seconda del segno assunto dalla velocità assiale agli estremi.

Anche in questo caso per il calcolo dell’integrale si è adottato il metodo dei trapezi avendo interpolato i dati di velocità ottenuti come vedremo in seguito.

\[Q = \sum_{i=1}^{N-1} 2\pi \left[\frac{1}{2} (U_{(i+1)} r_{i+1} + U_{(i)} r_{i}) (r_{i+1} - r_{i}) \right] \quad (5.30) \]

L’utilità di questa operazione consiste nel verificare la correttezza delle misure di velocità o eventualmente capire se nella procedura di misura adottata ci sono errori sistematici o incongruenze.

È’ interessante confrontare il risultato di questa operazione con la portata d’aria effettivamente introdotta espressa in normal litri al minuto ovvero riferita alle condizioni normali; le misure sono state effettuate a temperatura ambiente (ca. 20°C). Il confronto viene effettuato sulle portate massiche (g/s) avendo moltiplicato le portate volumetriche per le rispettive densità.

L’eccesso di portata rispetto al caso reale è imputabile alla posizione della sezione di misura che, come già visto, non è situato esattamente all’uscita del bruciatore (per evitare l’interferenza dei fasci laser con le superfici del bruciatore e per limiti della strumentazione) e al fenomeno dell’entrainment di aria esterna.
5.7 Scelta degli estremi di integrazione

Per la definizione degli estremi di integrazione si è proceduto di volta in volta a seconda degli andamenti dei profili di velocità ottenuti. Per quei profili che presentano una velocità assiale ovunque positiva (meno che nella zona centrale in corrispondenza del gas gun), essi coincidono con gli estremi del dominio analizzato (-36,36 mm); per quei profili che presentano velocità negative agli estremi, gli integrali nella formula dello swirl saranno limitati ai raggi a cui la velocità assiale è zero. Disponendo di misure discrete e non continue delle velocità si è deciso di effettuare un’interpolazione dei dati di velocità a disposizione al doppio scopo di determinare il raggio dove la velocità si annulla e di aumentare la precisione nell’approssimazione del metodo dei trapezi nelle zone di confine del getto. È opportuno specificare che, a partire dal numero originale di stazioni dove sono effettuate le misure (73), il valore del numero di swirl S risulta “convergere” per un numero di stazioni pari a 730, ovvero per un passo di un decimo di millimetro (0.1 mm).

Per questo motivo si è deciso di interpolare i punti di misura con un’interpolazione lineare ricorsiva fino ad ottenere 730 punti effettivi per eseguire l’integrazione numerica. Nella tabella 5.5 sono riassunti tutti i casi con indicazione degli estremi di integrazione adottati: rispettivamente $-R$ e R indicano gli estremi per il semidominio A (-36,0 mm) e B (0,36 mm).

<table>
<thead>
<tr>
<th>Prova</th>
<th>Portata aria assiale [Nl/min]</th>
<th>Portata aria tangenziale [Nl/min]</th>
<th>S_g</th>
<th>$-R^{10}$ [mm]</th>
<th>R [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>-36</td>
<td>27.6</td>
</tr>
<tr>
<td>Caso 2</td>
<td>140</td>
<td>60</td>
<td>2.59</td>
<td>-36</td>
<td>36</td>
</tr>
<tr>
<td>Caso 3</td>
<td>116</td>
<td>84</td>
<td>5</td>
<td>-36</td>
<td>36</td>
</tr>
<tr>
<td>Caso 4</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>-36</td>
<td>36</td>
</tr>
<tr>
<td>Caso 5</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>-36</td>
<td>34.8</td>
</tr>
<tr>
<td>Caso 6</td>
<td>240</td>
<td>60</td>
<td>1.15</td>
<td>-35</td>
<td>26.8</td>
</tr>
<tr>
<td>Caso 7</td>
<td>210</td>
<td>90</td>
<td>2.59</td>
<td>-36</td>
<td>36</td>
</tr>
<tr>
<td>Caso 8</td>
<td>175</td>
<td>125</td>
<td>5</td>
<td>-36</td>
<td>35.9</td>
</tr>
<tr>
<td>Caso 9</td>
<td>150</td>
<td>150</td>
<td>7</td>
<td>-36</td>
<td>36</td>
</tr>
<tr>
<td>Caso 10</td>
<td>120</td>
<td>180</td>
<td>10.37</td>
<td>-36</td>
<td>27.7</td>
</tr>
<tr>
<td>Caso 11</td>
<td>352</td>
<td>88</td>
<td>1.15</td>
<td>-36</td>
<td>27.3</td>
</tr>
</tbody>
</table>

10 Il passo di interpolazione è stato posto pari ad un decimo di millimetro: 0.1 mm.
Capitolo 5

Caso 12	340	100	1.49	-36	24.2
Caso 13	308	132	2.59	-36	36
Caso 14	256	184	5	-36	36
Caso 15	220	220	7.2	-36	36

5.7.1 Andamento della portata con la coordinata radiale

Come ulteriore verifica della bontà della scelta degli estremi di integrazione si è deciso di analizzare in un primo momento l’andamento della portata integrata su intervalli radiali crescenti: a seconda della condizione in cui ci troviamo si hanno andamenti differenti. I grafici riportati, che si riferiscono ad alcune delle condizioni prese in esame, rappresentano il dominio di integrazione. Si può notare in tutti i casi una buona simmetria nella zona centrale ed una discreta asimmetria dei profili di portata agli estremi dei due semidomini. Più nello specifico osserviamo come nei primi sei casi la portata cresce a partire dall’origine con la coordinata radiale; in particolare per i primi due casi (fig. 5.6a, 5.6b) la portata sembra raggiungere un valore pressoché costante/di saturazione già per $r/r_b = 1.2$. In questi casi la scelta dell’estremo di integrazione cade indistintamente su uno dei raggi in cui la portata raggiunge la saturazione. Comportamento diverso è osservabile per i casi 2, 7, 12 e 13 (fig. 5.6c, 5.6d, 5.3e, 5.6f). Come per i primi due la portata cresce senza, apparentemente, raggiungere un valore costante al raggio esterno. Tali andamenti non ci forniscono adeguate indicazioni sul dominio di integrazione da considerare. Questi casi sono risultati particolarmente delicati e verranno discussi in seguito. Gli ultimi 4 casi (fig. 5.7a, 5.7b, 5.7c, 5.7d) mostrano un comportamento ancora differente. Essi rappresentano condizioni a portata di aria tangenziale maggiore rispetto ai primi: si osserva come la portata, a partire dall’origine, diminuisca per effetto della zona di ricircolazione che si instaura nella zona centrale del bruciatore in corrispondenza del gas gun, poi cresce all’aumentare del raggio e si mantiene abbastanza simmetrica tra i due semidomini. In tutti e quattro i casi tali andamenti non ci forniscono adeguate indicazioni sul dominio di integrazione da considerare poiché la portata apparentemente aumenta senza mai giungere a saturazione. Se si escludono i quattro casi considerati anomali si può osservare come, in presenza di ricircolazione, la portata non giunga mai a saturazione; viceversa quando la portata di aria tangenziale non è sufficiente a instaurare la bolla di ricircolazione, la portata sembra raggiungere un valore di saturazione. Anche questo comportamento verrà chiarito in seguito ed è dovuto al maggiore entrainment di aria esterna a valori di S più elevati.
Metodi di analisi ed elaborazione dei dati

Figura 5.6 Andamento della portata al variare dell’estremo di integrazione: (a) caso 1 $S_g=1.15$; (b) caso 11 $S_g=1.15$, (c) caso 2 $S_g=2.59$; (d) caso 7 $S_g=2.59$; (e) caso 12 $S_g=1.49$; (f) caso 13 $S_g=2.59$
Figura 5.7 Andamento della portata al variare dell’estremo di integrazione: (a) caso 15 $S_g = 7.2$; (b) caso 14 $S_g = 5$; (c) caso 10 $S_g = 10.37$; (d) caso 3 $S_g = 5$
Andamento dei flussi di quantità di moto con la coordinata radiale

Non avendo ottenuto significative indicazioni sulla scelta degli estremi di integrazione da adottare analizzando gli andamenti della portata, si è deciso di investigare separatamente (su entrambi i semidomini) gli andamenti del flusso della quantità di moto assiale (a meno dei termini di fluttuazioni e del termine di pressione)

\[G_v = \pi \rho \int_0^R r U^2 dr \] \hspace{1cm} (5.31)

e di quella tangenziale

\[G_w = \pi \rho \int_0^R U W r^2 dr \] \hspace{1cm} (5.32)

allo scopo di individuare zone di saturazione ben distinte dove poter con sicurezza limitare il calcolo dei contributi degli integrali. Per alcuni dei casi presi in esame si riportano gli andamenti degli integrali (5.31) (5.32) al variare dell’estremo di integrazione. I valori sono normalizzati al valore di riferimento \(G_{b_0} \) definito come

\[G_{b_0} = \pi \rho U_m^2 \frac{R_b^2}{2} \] \hspace{1cm} (5.33)

dove:

\(U_m \) rappresenta la velocità assiale media calcolata dalla portata nominale;

\(R_b \) rappresenta il raggio del bruciatore all’efflusso pari a 18 mm.
Figura 5.8 Andamento flusso quantità di moto assiale G_x/G_{x0} al variare dell’estremo di integrazione: (a) caso 1 $S_g=1.15$; (b) caso 11 $S_g=1.15$, (c) caso 2 $S_g=2.59$; (d) caso 7 $S_g=2.59$; (e) caso 12 $S_g=1.49$; (f) caso 13 $S_g=2.59$
Possiamo notare che nelle zone più esterne i flussi della quantità di moto assiale raggiungono un valore pressoché definito di saturazione anche per quei casi, indagati in precedenza, in cui la portata cresce senza raggiungere un valore costante. Nei grafici i valori dei flussi di quantità di moto sono entrambi normalizzati rispetto al valore di riferimento G_0.

Figura 5.9 Andamento flusso quantità di moto assiale G_x/G_0 al variare dell’estremo di integrazione: (a) caso 15 $S_g=7.2$; (b) caso 14 $S_g=5$, (c) caso 10 $S_g=10.37$; (d) caso 3 $S_g=5$
Minori indicazioni giungono invece dagli andamenti del flusso assiale della quantità di moto tangenziale con la coordinata radiale che assume un andamento molto simile a quello della portata.

Figura 5.10 Andamento flusso quantità di moto tangenziale G_{θ}/G_0 al variare dell’estremo di integrazione: (a) caso 1 $Sg = 1.15$; (b) caso 11 $Sg = 1.15$, (c) caso 2 $Sg = 2.59$; (d) caso 7 $Sg = 2.59$; (e) caso 12 $Sg = 1.49$; (f) caso 13 $Sg = 2.59$
In definitiva si riscontra una discreta difficoltà nel determinare gli estremi di integrazione da adottare nei diversi casi. Ciò è dovuto, probabilmente, alle condizioni in cui si effettuano le misure, ovvero in una camera confinata. Questa situazione comporta che tutta l’aria preesistente nella camera, una volta entrata la portata di fluido dotata di componente rotatoria, viene messa in rotazione a sua volta. Per questo motivo la velocità tangenziale non va mai a zero nel campo radiale coperto dalle nostre misure e quindi non si riesce a coglierne il valore effettivo.

Ciò implica un’intrinsicosa difficoltà nel calcolare il numero di swirl correttamente in una camera chiusa come testimoniato anche in [31]. Il calcolo dell’integrale, infatti, dovrebbe essere arrestato al valore del raggio a cui le velocità si annullano.

È chiaro, d’altra parte, che tale problema non si avrebbe, qualora la portata di aria si espandesse in un ambiente aperto. La scelta adottata in questo lavoro è stata quella di arrestare il dominio di integrazione al valore del raggio per cui si
annulla la componente assiale di velocità e, ove questo non avvenga, di considerare tutto il dominio di misura, dato che comunque la velocità assiale tende a zero.
5.8 Influenza della quota del volume di misura

Come già detto nei paragrafi precedenti, le misure oggetto di tale lavoro denominate “all’efflusso” sono in realtà riferite ad una quota \(z/D \approx 0.6 \) a causa di limiti tecnici dovuti alle strumentazioni utilizzate (in pratica sarebbe stato necessario inclinare la testa dell’ottica). Per la conservazione della quantità di moto è possibile svolgere tali misure ad una quota maggiore e riferirla all’efflusso. Per verificare la validità di tali ipotesi sono state effettuate, per una precisa condizione (caso 8), misure dei profili di velocità a differenti quote, rispettivamente di \(z/D=0.6 \) e \(z/D=0.5 \). Per poter indagare tutto il dominio di misura si è partiti, una volta effettuato l’allineamento dei fasci, da una quota \(z/D=0.6 \) che risultava adeguata per compiere misure non affette da problemi legati all’interferenza o riflessione dei fasci laser sulla superficie del bruciatore. Dalla quota originale a cui sono effettuate tutte le misure (\(z/D=0.6 \)) si è deciso di scendere, tramite il sistema di traversing, alla quota \(z/D=0.5 \). In questo caso per motivi di interferenza del fascio laser con i componenti della camera si è potuto indagare solo parte del semidominio A (0,-36 mm); in particolare sono state acquisite le velocità sulle coordinate radiali -10,-36 mm.

![Figura 5.12 Profili radiali di velocità assiale e tangenziale alle quote z/D=0.6 e z/D=0.5, caso 8, S\(_g\)=5](image)

I profili (fig. 5.12), come lecito aspettarsi, risultano effettivamente diversi tra di loro alle differenti quote: si può notare come entrambi i picchi delle velocità
siano spostati verso il centro per z/D =0.5 e le curve risultino più schiacciate rispetto a quelle alla quota maggiore. Osservando i picchi di velocità massima possiamo notare come all’aumentare della quota la velocità tangenziale decada più rapidamente di quella assiale (12% contro 6%) come ci si aspetta [2].

Per il caso a quota più bassa mancano le misure delle coordinate radiali 0,-10 mm che come detto non è stato possibile acquisire poiché il fascio laser interferiva con la camera di combustione. Dapprima si è proceduto al calcolo della portata per le due condizioni a differenti quote tramite la (5.34).

\[
Q = 2\pi \rho \int\int_{0}^{z_{R}} U r dr d\theta
\]

I valori di portata sono riportati nella tab. 5.6.

<table>
<thead>
<tr>
<th>z/D</th>
<th>Portata di aria Assiale [NI/min]</th>
<th>Portata di aria Tangenziale [NI/min]</th>
<th>Portata tot. nominale [g/s]</th>
<th>Portata Misurata [g/s]</th>
<th>(\Delta) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>175</td>
<td>125</td>
<td>6.47</td>
<td>10.36</td>
<td>60</td>
</tr>
<tr>
<td>0.5</td>
<td>175</td>
<td>125</td>
<td>6.47</td>
<td>9.88</td>
<td>53</td>
</tr>
</tbody>
</table>

È lecito aspettarsi valori di portata più alti a quote più elevate a causa del fenomeno dell’entainment che si verifica nelle zone esterne e fornisce ulteriore portata alla zona primaria per effetto delle circolazioni originate dal moto rotatorio del flusso. Ci sarà quindi un’ulteriore portata di fluido aspirata dalla regione esterna del campo di moto che si somma a quella primaria giustificando le notevoli differenze ottenute nel confronto delle portate.

In un secondo momento si è calcolato il flusso della quantità di moto assiale \(G_s\) nel semidominio A (0,-2) normalizzato al valore \(G_{s_0}\) di riferimento:

\[
\frac{G_s}{G_{s_0}} = \frac{2\pi \rho \int_{0}^{2} r U^2 dr}{2\pi \rho U_m^2 \frac{R_b^2}{2}}
\]

\(^{11}\) Tale quantità viene calcolata all’efflusso nell’ipotesi di profilo di velocità assiale di tipo plug flow.
Per la conservazione della quantità di moto, nell’ipotesi di profilo di velocità assiale di tipo plug flow, tale quantità deve conservarsi alle differenti quote ed assumere un valore costante circa pari a 1 in qualsiasi condizione.

Tabella 5.7 Valori G_x/G_{x0} per il caso 8, $S_w=5$ alle quote $z/D=0.6$ e $z/D=0.5$

<table>
<thead>
<tr>
<th>z/D</th>
<th>Portata di aria Assiale [Nl/min]</th>
<th>Portata di aria Tangenziale [Nl/min]</th>
<th>G_x/G_{x0}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>175</td>
<td>125</td>
<td>1.1</td>
</tr>
<tr>
<td>0.5</td>
<td>175</td>
<td>125</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Si può notare (tab. 5.7) come effettivamente tale rapporto si mantenga costante.

A riprova di tale ipotesi il calcolo di G_x/G_{x0} è stato effettuato per tutti i casi analizzati.

È doveroso precisare che l’ipotesi di profilo di velocità assiale costante (plug flow) è rispettata solo per i casi a basso numero di swirl in cui la velocità assiale assume un andamento pressoché costante. Nella tabella 5.8 sono riportati i valori di tale rapporto espresso dapprima considerando solo la componente di velocità assiale (U^2), poi anche il termine di pressione ($\frac{1}{2}W^2$) ed infine anche i termini fluttuanti (u'^2, w'^2):
Tabella 5.8 Valori G_x/G_0 per le condizioni analizzate

<table>
<thead>
<tr>
<th>Caso</th>
<th>Portata aria assiale [Nl/min]</th>
<th>Portata aria tangenziale [Nl/min]</th>
<th>Rapporto 1 $\frac{2\pi p \int_0^k r U^2 dr}{2\pi p U_m^2 \frac{R_b^2}{2}}$</th>
<th>Rapporto 2 $\frac{2\pi p \int_0^k r(U^2 - \frac{1}{2} W^2) dr}{2\pi p U_m^2 \frac{R_b^2}{2}}$</th>
<th>Rapporto 3 $\frac{2\pi p \int_0^k r(U^2 - \frac{1}{2} W^2 + \frac{1}{2} u^2 - \frac{1}{2} w^2) dr}{2\pi p U_m^2 \frac{R_b^2}{2}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>160</td>
<td>40</td>
<td>0.87</td>
<td>0.69</td>
<td>0.70</td>
</tr>
<tr>
<td>Caso 2</td>
<td>140</td>
<td>60</td>
<td>0.69</td>
<td>0.35</td>
<td>0.44</td>
</tr>
<tr>
<td>Caso 3</td>
<td>116</td>
<td>84</td>
<td>1.08</td>
<td>0.64</td>
<td>0.77</td>
</tr>
<tr>
<td>Caso 4</td>
<td>100</td>
<td>100</td>
<td>1.49</td>
<td>0.91</td>
<td>1.05</td>
</tr>
<tr>
<td>Caso 5</td>
<td>80</td>
<td>120</td>
<td>1.61</td>
<td>0.82</td>
<td>0.99</td>
</tr>
<tr>
<td>Caso 6</td>
<td>240</td>
<td>60</td>
<td>0.83</td>
<td>0.63</td>
<td>0.65</td>
</tr>
<tr>
<td>Caso 7</td>
<td>210</td>
<td>90</td>
<td>0.71</td>
<td>0.35</td>
<td>0.49</td>
</tr>
<tr>
<td>Caso 8</td>
<td>175</td>
<td>125</td>
<td>1.14</td>
<td>0.65</td>
<td>0.76</td>
</tr>
<tr>
<td>Caso 9</td>
<td>150</td>
<td>150</td>
<td>1.3</td>
<td>0.67</td>
<td>0.76</td>
</tr>
<tr>
<td>Caso 10</td>
<td>120</td>
<td>180</td>
<td>1.29</td>
<td>0.54</td>
<td>0.63</td>
</tr>
<tr>
<td>Caso 11</td>
<td>352</td>
<td>88</td>
<td>0.87</td>
<td>0.64</td>
<td>0.65</td>
</tr>
<tr>
<td>Caso 12</td>
<td>340</td>
<td>100</td>
<td>0.83</td>
<td>0.53</td>
<td>0.54</td>
</tr>
<tr>
<td>Caso 13</td>
<td>308</td>
<td>132</td>
<td>0.67</td>
<td>0.3</td>
<td>0.43</td>
</tr>
<tr>
<td>Caso 14</td>
<td>256</td>
<td>184</td>
<td>0.91</td>
<td>0.44</td>
<td>0.53</td>
</tr>
<tr>
<td>Caso 15</td>
<td>220</td>
<td>220</td>
<td>0.99</td>
<td>0.39</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Possiamo notare come nel caso in cui si consideri il solo termine U^2 l’ipotesi di conservazione è ben rispettata per bassi numeri di swirl (profilo di velocità assiale assimilabile ad un profilo di tipo plug flow).

Negli altri casi tale rapporto assume valori maggiori o minori di uno. Se è lecito aspettarsi valori inferiori all’unità a causa della mancata conservazione della quantità di moto, è impossibile che tale rapporto sia maggiore di uno (ovvero che ci sia creazione di quantità di moto). Se invece si osservano i valori del rapporto $\frac{G_x}{G_x_0}$ calcolato considerando dapprima anche il termine di pressione e poi anche le fluttuazioni notiamo come i valori siano tutti inferiori all’unità. Pertanto possiamo affermare che delle tre relazioni, quella che considera solo la velocità assiale (U^2) sia la più imprecisa.

Di contro le altre relazioni mostrano valori anche parecchio inferiori all’unità a dimostrazione di una sensibile mancanza di conservazione della quantità di moto.

Figura 5.13 Valori di G_x/G_{x0} considerando il solo termine U^2
Capitolo 5

Figura 5.14 Valori di G_x/G_{x0} considerando il termine $U^2 - (1/2W^2)$.

Figura 5.15 Valori di G_x/G_{x0} considerando anche i termini fluttuanti.
Capitolo 6

Analisi dati e risultati sperimentali

Nel presente capitolo è descritta l’analisi dei profili di velocità all’efflusso del bruciatore in condizioni di confinamento. L’obiettivo dello studio è caratterizzare, in condizioni isoterme al variare del numero di Reynolds, il grado di swirl del bruciatore all’interno della camera di combustione. Per effettuare una corretta calibrazione è infatti necessario valutare il comportamento del bruciatore su un ampio campo di portate: in particolare sono state misurate le componenti di velocità assiale e tangenziale e i relativi numeri di swirl in funzione delle diverse condizioni operative adottate.

6.1 Condizioni di prova

Per diagrammare i profili di velocità all’interno del bruciatore in maniera corretta è fondamentale conoscere la posizione alla quale i fasci laser si incrociano formando il volume di misura. Come già detto nel capitolo 4, per una corretta misura delle velocità è assolutamente necessario posizionare il volume di misura nel centro geometrico dell’ugello del bruciatore. Anche la posizione relativa di traslatore e bruciatore deve essere adeguata in modo tale che spostamenti orizzontali della testa del sistema LDV coincidano con una direzione diametrale della camera. Qualora non fossero verificate entrambe le condizioni, le misure di velocità tangenziali sarebbero affette da una contaminazione della componente radiale.

Le prove sono state effettuate a pressione atmosferica e ad una temperatura ambiente (T=20°C). In base alla temperatura a cui ci si riferisce, la densità assume valori diversi a seconda che la si calcoli in condizioni normali (c.n.) o alla temperatura ambiente. Disponendo delle portate nominali espresse in Normal litri al minuto si sono considerate le densità riportate nella Tabella 6.1:

<table>
<thead>
<tr>
<th>Temperatura [°C]</th>
<th>(\rho) [kg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.2939</td>
</tr>
<tr>
<td>20</td>
<td>1.2056</td>
</tr>
</tbody>
</table>

Il numero di Reynolds, che permette di caratterizzare il flusso in termini laminari piuttosto che turbolenti, è stato ricavato a partire dalla portata
Capitolo 6

nominale, utilizzando come lunghezza caratteristica il diametro idraulico del condotto:

\[
\text{Re} = \frac{U_m L_c}{V_a} \tag{6.1}
\]

dove:

\[
U_m = \frac{\dot{m}_a}{\rho_a A_{\text{corona}}} = \text{velocità assiale media nominale del flusso di aria coassiale [m/s];}
\]

\[
\dot{m}_a = \text{portata massica del flusso di aria coassiale [kg/s];}
\]

\[
\rho_a = \text{densità dell’aria [kg/m}^3\text{];}
\]

\[
A_{\text{corona}} = \pi \left(\frac{d^2_{\text{bruciatore}}}{4} - \frac{d^2_{\text{gaspon}}}{4} \right) = \text{area corona circolare attraversata dal flusso [m}^2\text{];}
\]

\[
L_c = D_{\text{idraulico}} = \frac{4 A_{\text{corona}}}{P} = \text{diametro idraulico [m];}
\]

\[
P = \pi \cdot d_{\text{bruciatore}} = \text{perimetro bagnato dal flusso [m];}
\]

\[
V_a = 14,35 \left[\frac{m^2}{s} \cdot 10^{-6} \right] = \text{viscosità cinematica dell’aria a temperatura ambiente (20°C)}.
\]
6.2 Profili di velocità e fluttuazioni

Le misure di velocità assiale e tangenziale riportate in questa sezione sono state ottenute tramite tecnica LDV e sono quindi misure puntuali di velocità definite su un vettore di coordinate radiali \(r/r_b = -2, +2 \). L’ampiezza del dominio di misura è stato scelto dopo aver valutato alcuni profili di velocità di prova con raggi di 30, 34 ed infine 36 mm. In quest’ultimo caso le velocità assiali raggiungono una valore all’incirca nullo in corrispondenza degli estremi. Come già detto per stimare correttamente il numero di swirl bisogna estendere il calcolo degli integrali fin dove le velocità assumono valore nullo. Il movimento dell’ottica è possibile tramite un sistema di traversing che ha permesso di percorrere il diametro del bruciatore all’efflusso con un passo prestabilito di 1 mm. Per la determinazione dei profili di velocità, come descritto nel cap. 4, si è impostato un numero massimo di campioni per stazione pari a 10000 (data collection) e in alternativa un tempo massimo di acquisizione per ogni stazione di 50 secondi. Questo ha lo scopo di rendere il processo di acquisizione più rapido e snello. Altri parametri necessari da impostare sul software di controllo per un corretto processo di acquisizione sono i valori di calibration factor, span e center dei filtri di entrambi i ricevitori. Il calibration factor rappresenta la distanza tra le frange di intersezione: tale parametro dipende dalla lente che si utilizza ed è pari in questo caso a 4.356 µm per il fascio di lunghezza d’onda \(\lambda = 488 \) nm e 4.132 per quello a \(\lambda = 514.5 \) nm. Tale parametro permette al ricevitore di ricavare la velocità nota la frequenza (MHz). I valori di span e center rappresentano il centrobanda e l’intervallo di velocità in cui si limita l’acquisizione. Tali valori sono stati impostati per tutte le prove pari a:

- center BSA 1 (velocità assiale) = 0 m/s;
- center BSA 2 (velocità tangenziale) = 4.13 m/s;
- span BSA 1 (velocità assiale) = 34.9 m/s;
- span BSA 2 (velocità tangenziale) = 33.1 m/s.

Si è valutata la possibilità di cambiare i valori di center e span, rispettivamente il primo per la velocità assiale e il secondo per quella tangenziale, per indagare con maggiore accuratezza i casi alla portata maggiore di 440 Nl/min. Tuttavia la scelta dei valori originali si è dimostrata la più adatta.

Per comprendere anche l’andamento del livello di turbolenza, strettamente in relazione con gli errori statistici, sono riportati anche i grafici relativi ai valori RMS.

Le misure sono state effettuate in ambiente confinato con camera metallica in acciaio e accessi ottici in quarzo e cappa di scarico.
In seguito alle misure effettuate disponiamo, per ogni prova, di un file di output contenente le misure discrete di velocità media assiale e tangenziale e delle loro fluttuazioni. Tali misure sono state effettuate lungo la direzione radiale all’uscita del getto in 73 stazioni sul diametro del bruciatore. Per ogni prova disponiamo quindi di un vettore raggio (con passo 1 mm) contenente le coordinate radiali a cui vengono effettuate le misure, un vettore velocità assiale e un vettore velocità tangenziale con le rispettive velocità medie in ogni stazione ed infine due vettori con le rispettive fluttuazioni di velocità. Tali valori sono riportati di seguito. Una residua asimmetria dei due semidomini (raggio positivo e negativo) ci suggerisce di calcolare gli integrali su tutto il dominio. Le condizioni analizzate sono riportate nella tabella 5.4.

Di seguito sono riportati alcuni dei casi analizzati suddivisi per numero di Reynolds della corrente. Le figure 6.1 6.2 6.3 riportano le distribuzioni radiali delle velocità acquisite alla quota $z/D=0.6$ normalizzate rispetto alla velocità assiale media nominale (U_m), ricavabile dalla portata imposta. La posizione radiale è normalizzata rispetto al raggio del bruciatore all’efflusso ($r_b=18$ mm). È doveroso precisare che la velocità media nominale viene ricavata dalla portata imposta considerando come sezione di efflusso l’area della corona circolare data dalla sezione del bruciatore escludendo l’area del gas gun. Le tre velocità medie considerate sono riassunte nella tab. 6.2.

<table>
<thead>
<tr>
<th>Portata totale [Nl/min]</th>
<th>Re</th>
<th>U_m [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>5800</td>
<td>3.96</td>
</tr>
<tr>
<td>300</td>
<td>8700</td>
<td>5.94</td>
</tr>
<tr>
<td>440</td>
<td>12700</td>
<td>8.72</td>
</tr>
</tbody>
</table>

Tali velocità risultano superiori alla velocità che otteniamo facendo una media aritmetica delle velocità puntuali ottenute dall’analisi LDV. Più in particolare si è osservato come a bassi valori di S_g si trova una buona corrispondenza tra la velocità media nominale e quella ottenuta dai dati (LDV). Tale corrispondenza caratterizza anche i valori di portata nominale e quella calcolata tramite integrazione dei profili di velocità. Questo comportamento non risulta più verificato aumentando S_g dato che il getto si apre di più e trascina più aria esterna. Infine bisogna precisare, che nonostante la velocità media misurata risulti inferiore a quella nominale, si ottengono portate superiori a quelle

12 Le velocità sono riferite ad una sezione distante $z/D=0.6$ dall’efflusso dove il getto swirlato è già aperto ed ha trascinato aria esterna (entrainment).
nominali: questo è giustificato dal fatto che alla quota a cui effettuiamo le misure il flusso si è già allargato (per effetto dello swirl) raggiungendo valori nulli ad una distanza radiale pari circa al doppio del raggio del bruciatore. Pertanto i valori di portata che andremo a calcolare in seguito saranno calcolati su una sezione più estesa.

- $Re= 5800$, portata nominale 200 Nl/min:

![Figura 6.1 Profili radiali di velocità assiale e tangenziale $Re=5800$: (a) caso 1 $S_g=1.15$; (b) caso 2 $S_g=2.59$; (c) caso 3 $S_g=5$](image-url)
- $Re= 8700$, portata nominale 300 Nl/min:

Figura 6.2 Profili radiali di velocità assiale e tangenziale $Re=8700$: (a) caso 6 $S_g=1.15$; (b) caso 7 $S_g=2.59$; (c) caso 9 $S_g=7.2$
- $Re = 12700$, portata nominale 440 Nl/min:

Figura 6.3 Profili radiali di velocità assiale e tangenziale $Re=12700$: (a) caso 11 $S_g = 1.15$; (b) caso 12 $S_g = 1.48$; (c) caso 12 $S_g = 2.59$; (d) caso 14 $S_g = 5$; (e) caso 15 $S_g = 7.2$
Si può notare come all’aumentare di S i picchi di velocità si spostino verso l’esterno e i maggiori contributi di velocità sono concentrati per raggi grandi; inoltre risulta che per $S >3$ (fig. 6.1c, 6.2c, 6.3d,e) si instaura la zona di ricircolazione caratterizzata da velocità assiali negative nell’intorno dell’asse del bruciatore.
Viceversa a S più bassi (fig. 6.1a, 6.2a, 6.3a,b) i maggiori contributi di velocità sono concentrati verso il centro della camera cioè per raggi piccoli. Per questi casi ($S=1.15$: caso 1, 6 e 11; $S=1.49$: caso 12), notiamo come la forma dei profili sia molto simile al modello “plug flow”: il profilo di velocità assiale all’efflusso è uniforme, ad eccezione delle estremità dove tende a zero (diminuisce come $1/r$ più a valle), mentre i valori di velocità tangenziale risultano contenuti.
I profili di velocità tangenziale sono riconducibili a quelli di rotazione di corpo rigido nella parte centrale (core region): per i casi a minore S tale zona è molto ristretta e aumenta sempre più al crescere di S.
I picchi di velocità assiale e tangenziale, positivi e negativi, crescono all’aumentare di S.
Inoltre si osserva come per i casi a $S=2.59$ (fig. 6.1b, 6.2b, 6.2c) il profilo di velocità tangenziale assuma l’andamento di un vortice rigido quasi perfetto (casi 2, 7 e 13). I profili della velocità tangenziale per i casi 3 e 14 (fig 6.1c, 6.3d) presentano, rispettivamente, gli andamenti simili ad un vortice rigido spezzato sul centro e un vortice rigido con doppia pendenza.
È interessante notare come per $r/r_b \to 2$ la velocità assiale tenda a zero mentre la velocità tangenziale assuma comunque un valore finito seppur contenuto. Tale aspetto verrà discusso nella sezione successiva.

6.2.1 Contaminazione della velocità tangenziale
Come già anticipato nel capitolo 4, considerata la criticità del corretto posizionamento del volume di misura per la determinazione della componente tangenziale, soprattutto in direzione longitudinale, si è deciso di indagare l’effetto sulle misure di velocità tangenziali di un mancato allineamento.
Osservando i profili di velocità ottenuti (fig. 6.1, 6.2, 6.3), possiamo notare come agli estremi dell’intervallo la velocità assiale tenda asintoticamente a zero, mentre quella tangenziale sembra tendere ad un valore finito.
Tale comportamento può trovare giustificazione proprio nel fatto che per posizioni radiali dell’ordine del raggio del bruciatore la componente di velocità tangenziale misurata sia affetta da parte della velocità radiale.
Da letteratura [2] sappiamo che la velocità radiale è di un’ordine di grandezza inferiore rispetto alla velocità tangenziale (approssimativamente vale un dieci per cento della velocità tangenziale) e che essa cresce all’aumentare del grado di swirl. La presenza di una forte componente tangenziale, infatti, induce un
elevato gradiente radiale di pressione (forze centrifughe) all’efflusso del getto causando un aumento della velocità radiale nel flusso stesso [1].

Prendendo in esame uno dei casi analizzati (caso 1, fig. 6.1a), e considerando i valori di velocità tangenziale a partire da quello massimo in corrispondenza di $r/r_b=1$, siamo in grado di stimare approssimativamente l’entità dell’errore che si commette in caso di mancato allineamento.

Consideriamo un disallineamento max di ±3 mm (valore piuttosto elevato) e supponendo di essere in B1 (fig. 6.4) la velocità misurata sarà la somma di una componente della velocità tangenziale più parte della velocità radiale. È evidente dalla figura 6.4 come per misurare correttamente la velocità tangenziale il volume di misura dovrebbe essere posizionato precisamente in A1.

Considerando per questo caso i valori di velocità tangenziale a partire da $r/r_b=1$, possiamo stimare approssimativamente l’errore che si compierebbe qualora ci fosse disallineamento.

La velocità radiale che conta una misura di velocità tangenziale, a causa del mancato allineamento sarà data da:

$$V_r = 0.1 \cdot \frac{d}{r}W$$

(6.2)

doche:

V_r è la componente di velocità radiale in direzione tangenziale;

W è la rispettiva velocità tangenziale;
Capitolo 6

d: è il disallineamento del fascio laser rispetto al centro geometrico dell’ugello;
r: è la coordinata radiale.

Considerando valori di velocità tangenziale a partire dal massimo, pari a 6.53 m/s per questo caso ottenuto in corrispondenza di $r'/r_b = 1$ e un massimo disallineamento di $d = 3 \text{ mm}$ possiamo approssimare l’errore che si compierebbe sulla misura di velocità tangenziale comprendendo anche parte della velocità radiale:

$$
\varepsilon_\% = \frac{(W - V_r) - W}{W} \times 100 \quad (6.3)
$$

<table>
<thead>
<tr>
<th>r' / r_b</th>
<th>Disallineamento d/r</th>
<th>W [m/s]</th>
<th>V_r [m/s]</th>
<th>$\varepsilon_%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.00</td>
<td>0.083</td>
<td>1.81</td>
<td>0.015</td>
<td>0.83</td>
</tr>
<tr>
<td>-1.94</td>
<td>0.086</td>
<td>1.82</td>
<td>0.016</td>
<td>0.86</td>
</tr>
<tr>
<td>-1.89</td>
<td>0.088</td>
<td>1.86</td>
<td>0.016</td>
<td>0.88</td>
</tr>
<tr>
<td>-1.83</td>
<td>0.091</td>
<td>1.89</td>
<td>0.017</td>
<td>0.91</td>
</tr>
<tr>
<td>-1.78</td>
<td>0.094</td>
<td>1.96</td>
<td>0.018</td>
<td>0.938</td>
</tr>
<tr>
<td>-1.72</td>
<td>0.097</td>
<td>2.02</td>
<td>0.020</td>
<td>0.97</td>
</tr>
<tr>
<td>-1.67</td>
<td>0.100</td>
<td>2.05</td>
<td>0.021</td>
<td>1.00</td>
</tr>
<tr>
<td>-1.61</td>
<td>0.103</td>
<td>2.09</td>
<td>0.022</td>
<td>1.03</td>
</tr>
<tr>
<td>-1.56</td>
<td>0.107</td>
<td>2.18</td>
<td>0.023</td>
<td>1.07</td>
</tr>
<tr>
<td>-1.50</td>
<td>0.111</td>
<td>2.21</td>
<td>0.025</td>
<td>1.11</td>
</tr>
<tr>
<td>-1.44</td>
<td>0.115</td>
<td>2.29</td>
<td>0.026</td>
<td>1.15</td>
</tr>
<tr>
<td>-1.39</td>
<td>0.120</td>
<td>2.29</td>
<td>0.027</td>
<td>1.20</td>
</tr>
<tr>
<td>-1.33</td>
<td>0.125</td>
<td>2.5</td>
<td>0.031</td>
<td>1.25</td>
</tr>
<tr>
<td>-1.28</td>
<td>0.130</td>
<td>2.75</td>
<td>0.036</td>
<td>1.30</td>
</tr>
<tr>
<td>-1.22</td>
<td>0.136</td>
<td>3.18</td>
<td>0.043</td>
<td>1.36</td>
</tr>
<tr>
<td>-1.17</td>
<td>0.143</td>
<td>4.03</td>
<td>0.058</td>
<td>1.43</td>
</tr>
<tr>
<td>-1.11</td>
<td>0.150</td>
<td>5.23</td>
<td>0.078</td>
<td>1.50</td>
</tr>
<tr>
<td>-1.06</td>
<td>0.158</td>
<td>6.25</td>
<td>0.099</td>
<td>1.58</td>
</tr>
<tr>
<td>-1.00</td>
<td>0.167</td>
<td>6.53</td>
<td>0.109</td>
<td>1.67</td>
</tr>
</tbody>
</table>

Diagrammando l’andamento sulla coordinata radiale delle velocità radiali che contaminano la misura di velocità tangenziale nei casi di disallineamento $d = 2$ e 3 mm (fig. 6.5) possiamo notare come l’influenza di tale contributo sia piuttosto modesta e diminuisca con r:
Constatato che un mancato disallineamento, qualora presente, non comporta eccessivi errori soprattutto per raggi grandi, rimane da spiegare perché la velocità tangenziale apparentemente non giunge mai al valore nullo. Questo è probabilmente giustificabile col fatto che il flusso dotato di componente rotatoria una volta entrato nella camera confinata mette in rotazione il flusso già presente. Per quanto allarghiamo gli estremi del dominio pertanto troveremo sempre una componente di velocità tangenziale finita ovunque eccetto che in corrispondenza delle pareti. Pertanto in condizioni di confinamento (in una camera chiusa) il calcolo dello swirl sarà sempre inficiato da tale situazione [31]; questo problema non si porrebbe qualora il flusso si espandesse in un ambiente libero: in tal caso la velocità tangenziale raggiungerebbe sicuramente valore nullo ad un’opportuna coordinata radiale più o meno allo stesso valore del raggio a cui si annulla la componente assiale.
6.3 Misure di velocità assiale

Di seguito (fig. 6.6 6.7 6.8) sono riportati i profili di velocità assiale suddivisi per i diversi valori di Reynolds al variare del numero di swirl \(S_g \) allo scopo di effettuare un confronto immediato tra le varie prove:

Figura 6.6 Profili radiali di velocità assiale \(U/U_m \) per \(Re = 5800 \)
Analisi dati e risultati sperimentali

Figura 6.7 Profili radiali di velocità assiale U/U_m per $Re=8700$

Figura 6.8 Profili radiali di velocità assiale U/U_m per $Re=12700$
Possiamo notare come in prossimità dell’efflusso, nella zona centrale del bruciatore gli andamenti dei profili di velocità assiale siano molto simili e assimilabili ad una parabola centrata sulla mezzeria dell’ugello dell’aria per quei casi caratterizzati da un numero di swirl geometrico \(S_g \geq 5 \) (caso 3, caso 4, caso 5, caso 8, caso 9, caso 10, caso 14 e caso 15) ovvero dotati di una componente tangenziale della portata d’aria superiore al 40% del totale. In particolare sono tutti caratterizzati da una velocità negativa che indica la presenza di ricircolazione dovuta al CTRZ. I profili risultano abbastanza piatti in corrispondenza del centro geometrico della camera, zona caratterizzata dalla presenza del condotto centrale che agisce come un corpo tozzo (fig. 6.9).

![Figura 6.9 Schematizzazione del flusso nei pressi del gas gun](image)

Per distanze radiali maggiori, le velocità assiali iniziano ad aumentare (si va verso lo shear layer tra il getto e il CTRZ) fino a raggiungere il picco più o meno in corrispondenza di una distanza radiale \(r \leq \pm 1.12 r_b \) in corrispondenza quindi del bordo del canale dell’aria. All’aumentare del valore di \(S_g \) tale picco si sposta sempre più verso l’esterno della camera. Oltre il picco si ha un forte gradiente negativo che porta le velocità a valori molto ridotti e prossimi allo zero.

Un comportamento differente si ha per quelle correnti con swirl geometrico \(S_g<5 \) (caso 1, caso 2, caso 6, caso 7, caso 11, caso 12 e caso 13). In particolare per i casi a minor portata tangenziale (caratterizzati da uno swirl geometrico di poco superiore a 1: caso 1, caso 6, caso 11 e caso 12) notiamo come la velocità non assuma mai valori negativi ed è lontanamente riconducibile ad un profilo di tipo “top hat”. I profili caratterizzati da uno swirl geometrico \(S_g=2.59 \) (caso 2, 7, 13) presentano un andamento differente dagli altri con una forma “a calice” con una piccola zona di ricircolazione (velocità negative), tranne che nel caso a Reynolds più basso, seguita da un gradiente circa lineare. Gli andamenti di questi profili a basso numero di swirl geometrico, differenti dagli altri casi, fanno intuire che si sta analizzando una zona di transizione tra due configurazioni di moto. È interessante notare come per \(S_g = 2.59 \) per il caso 2 a Reynolds 5800 non sembra esserci la zona di ricircolazione, mentre già al
Reynolds intermedio e poi decisamente al Reynolds più elevato (casi 7 e 13) il CTRZ sembra definito, anche se di entità inferiore rispetto ai casi con portata tangenziale maggiore.

Naturalmente possiamo notare come le velocità più negative si abbiano per quelle condizioni caratterizzate da valori di S_g più elevati; lo stesso vale per le maggiori velocità positive.

I profili risultano discretamente simmetrici rispetto l’asse della camera di combustione e tendono a stabilizzarsi al crescere di S_g; i principali scostamenti si hanno in corrispondenza dei massimi e ai bordi del flusso: probabilmente per quest’ultimo caso l’asimmetria è da addurre a problemi dovuti all’acquisizione dei campioni in tali zone, per motivi legati alla riflessione o interferenza del fascio laser.

Per quanto riguarda le fluttuazioni turbolente di velocità assiale (fig. 6.10, 6.11, 6.12) esse assumono un andamento simile ai profili di velocità con i massimi valori in corrispondenza delle regioni di massimo gradiente della velocità media. Diminuendo la portata tangenziale si ottengono valori di RMS più irregolari (shear layer). A bassi S_g si nota la presenza di più picchi rispetto ai casi a swirl geometrico maggiore dove i picchi sostanzialmente sono solo in corrispondenza delle velocità massime.

![Figura 6.10 Profili radiali delle fluttuazioni di velocità assiale $\overline{u'}/U_m$ per Re=5800](image)
Capitolo 6

Figura 6.11 Profili radiali delle fluttuazioni di velocità assiale u'/U_m per $Re=8700$

Figura 6.12 Profili radiali delle fluttuazioni di velocità assiale u'/U_m per $Re=12700$
6.4 Misure di velocità tangenziale

Si riportano di seguito (fig. 6.13 6.14 6.15) i profili di velocità tangenziale anch’essi suddivisi per numero di Reynolds:

![Figura 6.13 Profili radiali di velocità tangenziale W/U m per Re=5800](image-url)
Figura 6.14 Profili radiali di velocità tangenziale W/U_m per Re=8700

Figura 6.15 Profili radiali di velocità tangenziale W/U_m per Re=12700
Solitamente in un flusso con moto di swirl il profilo di velocità tangenziale è schematizzabile attraverso un vortice di Rankine [17], il quale soddisfa l’equazione di un vortice forzato nella zona interna del campo di moto e quella di un vortice libero per raggi sufficientemente grandi [1].

![Figura 6.16 Distribuzione radiale delle componenti di velocità tangenziale in un vortice di Rankine [17]](image)

Per il caso di vortice forzato la distribuzione di velocità tangenziale cresce linearmente con il raggio \(W = C_1 \cdot r \), mentre per il vortice libero l’andamento di \(W \) è inversamente proporzionale al raggio \(W = \frac{C_2}{r} \) dove \(C_1 \) e \(C_2 \) sono opportune costanti. Per la configurazione a portata tangenziale minore (caso 1, caso 6, caso 11), la velocità tangenziale nella zona centrale \((r \leq \pm 0.9 \, r_b) \) ha un andamento assimilabile a quello di un vortice forzato. Si può notare come nel caso a Reynolds più elevato tale zona presenti un gradiente più elevato. Sempre per \(Re=12700 \) osserviamo come il caso a swirl geometrico \(S_g = 1.49 \) (caso 12), analizzato esclusivamente per tale Reynolds, presenti un gradiente nella parte centrale (leggermente più ridotta) ancora più elevato.

La condizione a swirl geometrico \(S_g = 2.59 \) (caso 2, 7, 13) assume un andamento differente dagli altri profili: esso cresce più o meno linearmente fino a \(r \leq \pm 0.48 \, r_b \) dal centro dell’ugello rispettando l’approssimazione di vortice forzato. I casi a portate tangenziali maggiori presentano una crescita lineare approssimativamente fino a \(r \leq \pm 0.3 \, r_b \). Oltre il raggio limite in cui vale l’approssimazione di vortice di Rankine, il decadimento del profilo di velocità è approssimabile come \(\frac{1}{r} \).
I gradienti di velocità sono tanto maggiori quanto più è elevato il valore di S_g. Per quanto riguarda le fluttuazioni di velocità tangenziale (fig. 6.17, 6.18, 6.19) le considerazioni sono simili a quelle già fatte per la velocità assiale: notiamo come i profili di RMS diventano più regolari all’aumentare di S_g con andamenti parabolici e due picchi ben distinti; i profili a valori di S_g inferiori (caso 1, 2, 6, 7, 11, 12, 13) invece risultano ben più irregolari. Anche i valori assoluti delle fluttuazioni tangenziali ed assiali risultano quindi paragonabili.

Figura 6.17 Profili radiali delle fluttuazioni di velocità tangenziale \tilde{w}/U_m per $Re=5800$
Analisi dati e risultati sperimentali

Figura 6.18 Profili radiali delle fluttuazioni di velocità tangenziale w'/U_m per $Re=8700$

![Diagramma per Re=8700](image)

Figura 6.19 Profili radiali delle fluttuazioni di velocità tangenziale w'/U_m per $Re=12700$

![Diagramma per Re=12700](image)
6.5 Confronto dei profili di velocità a diversi Reynolds

È interessante confrontare gli stessi profili di velocità a pari swirl geometrico per i differenti numeri di Reynolds della corrente. Di seguito (fig. 6.20, 6.21, 6.22, 6.23, 6.24, 6.25) sono riportati quindi i profili di velocità assiale e tangenziale\(^{13}\) per le condizioni esaminate al variare di \(S_g\) (per \(S_g \geq 5\)):

- **Profili di Velocità Assiale:**

 \[S_g = 5\]

 ![Figura 6.20 Profili radiali di velocità assiale \(U/U_m\) per \(S_g = 5\) e \(Re = 5800, 8700, 12700\)](image)

 Figura 6.20 Profili radiali di velocità assiale \(U/U_m\) per \(S_g = 5\) e \(Re = 5800, 8700, 12700\)

\(^{13}\) Le velocità sono normalizzate rispetto alla velocità assiale media nominale.
Analisi dati e risultati sperimentali

Figura 6.21 Profili radiali di velocità assiale U/U_m per $S_g=7.2$ e $Re=5800, 8700, 12700$

Figura 6.22 Profili radiali di velocità assiale U/U_m per $S_g=10.37$ e $Re=5800, 8700, 12700$
- Profili di Velocità tangenziale

![Image](image.png)

Figura 6.23 Profili radiali di velocità tangenziale W/ U_m per $S_g=5$ e $Re=5800, 8700, 12700$

![Image](image.png)

Figura 6.24 Profili radiali di velocità tangenziale W/ U_m per $S_g=7.2$ e $Re=5800, 8700, 12700$
Salta subito all’occhio come i profili, per S_g fissato, al variare del numero di Re sono quasi coincidenti. Sopra un certo numero di swirl geometrico, pertanto, le caratteristiche dei flussi risultano indipendenti dal numero di Re.

Tale comportamento caratterizza solo i casi a numeri di swirl geometrico elevati ($S_g \geq 5$) ovvero quei profili che presentano ben definita la zona di ricircolazione.
6.6 Calcolo portata

Per verificare la correttezza delle misure di velocità (assiale) nel condotto è stata calcolata la portata che in esso fluisce. Il metodo di calcolo e la discretizzazione spaziale delle misure utilizzati sono illustrati nel cap. 5; nella tabella 6.4 sono riportati i valori ottenuti confrontati con quelli nominali. La portata nominale è espressa in Normal litri al minuto, ovvero riferita alle condizioni normali (pressione ambiente e temperatura di 0°C); la portata di verifica deriva direttamente dalla misure di velocità effettuate in condizioni di pressione ambientale e temperatura ambiente pari a 20°C. Le due portate volumetriche vengono quindi moltiplicate per le rispettive densità per poter effettuare un confronto sulle portate massiche. L’integrazione è stata effettuata su tutto il dominio rispettando gli estremi di integrazione definiti in precedenza (sez. 5.7). La zona centrale di ricircolazione, quando presente, viene tenuta in considerazione.

Il confronto eseguito è solamente qualitativo ed è stato svolto per controllare che i risultati siano dello stesso ordine di grandezza. È naturale aspettarsi scostamenti dai valori nominali a causa della quota (z/D =0.6) a cui effettuiamo le misure e del fenomeno dell’entrainment di aria esterna.

<table>
<thead>
<tr>
<th>Prova</th>
<th>Portata Assiale [Nl/min]</th>
<th>Portata tangenziale [Nl/min]</th>
<th>S_g</th>
<th>Portata totale nominale [Nl/min]</th>
<th>Portata totale nominale [g/s]</th>
<th>Portata calcolata [g/s]</th>
<th>Δ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>200</td>
<td>4.31</td>
<td>5.3</td>
<td>18.7</td>
</tr>
<tr>
<td>Caso 2</td>
<td>140</td>
<td>60</td>
<td>2.59</td>
<td>200</td>
<td>4.31</td>
<td>5.67</td>
<td>23.9</td>
</tr>
<tr>
<td>Caso 3</td>
<td>116</td>
<td>84</td>
<td>5</td>
<td>200</td>
<td>4.31</td>
<td>6.27</td>
<td>31.2</td>
</tr>
<tr>
<td>Caso 4</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>200</td>
<td>4.31</td>
<td>6.75</td>
<td>36.1</td>
</tr>
<tr>
<td>Caso 5</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>200</td>
<td>4.31</td>
<td>7.11</td>
<td>39.4</td>
</tr>
<tr>
<td>Caso 6</td>
<td>240</td>
<td>60</td>
<td>1.15</td>
<td>300</td>
<td>6.47</td>
<td>7.6</td>
<td>14.8</td>
</tr>
<tr>
<td>Caso 7</td>
<td>210</td>
<td>90</td>
<td>2.59</td>
<td>300</td>
<td>6.47</td>
<td>9.04</td>
<td>28.5</td>
</tr>
<tr>
<td>Caso 8</td>
<td>175</td>
<td>125</td>
<td>5</td>
<td>300</td>
<td>6.47</td>
<td>9.4</td>
<td>31.2</td>
</tr>
</tbody>
</table>
Analisi dati e risultati sperimentali

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>150</td>
<td>150</td>
<td>7.2</td>
<td>300</td>
<td>6.47</td>
<td>9.64</td>
</tr>
<tr>
<td>10</td>
<td>120</td>
<td>180</td>
<td>10.368</td>
<td>300</td>
<td>6.47</td>
<td>9.16</td>
</tr>
<tr>
<td>11</td>
<td>352</td>
<td>88</td>
<td>1.15</td>
<td>440</td>
<td>9.49</td>
<td>11.57</td>
</tr>
<tr>
<td>12</td>
<td>340</td>
<td>100</td>
<td>1.49</td>
<td>440</td>
<td>9.49</td>
<td>11.94</td>
</tr>
<tr>
<td>13</td>
<td>308</td>
<td>132</td>
<td>2.59</td>
<td>440</td>
<td>9.49</td>
<td>13.26</td>
</tr>
<tr>
<td>14</td>
<td>256</td>
<td>184</td>
<td>5</td>
<td>440</td>
<td>9.49</td>
<td>12.54</td>
</tr>
<tr>
<td>15</td>
<td>220</td>
<td>220</td>
<td>7.2</td>
<td>440</td>
<td>9.49</td>
<td>12.9</td>
</tr>
</tbody>
</table>

Dai valori trovati si nota uno scostamento notevole delle portate calcolate tramite i profili di velocità rispetto al valore nominale. Tale scostamento cresce all’aumentare del numero di swirl. Come abbiamo notato in precedenza dai profili di velocità, infatti all’aumentare della componente tangenziale, il profilo di velocità assiale cambia e assume valori assoluti maggiori rispetto ai casi con portata tangenziale inferiore. Nel fig. 6.26 si riportano gli andamenti della portata normalizzata rispetto al valore nominale al variare di S_g.
Figura 6.26 Andamento dell’portata normalizzata al variare di S_g per $Re=5800$, 8700, 12700

Questa tendenza è comprensibile e trova riscontro con quanto documentato per getti swirlati in [28]. In tale lavoro si mostra come il moto di swirl induce moti di grande scala in prossimità delle zone di efflusso provocando un sostanziale aumento dell’entrainment di aria circostante. Più in particolare l’entrainment per $S<0.6$ risulta indipendente dal numero di Re; per $S>0.6$, invece, l’entrainment aumenta col Re per l’effetto benefico che svolge il PVC (che induce un moto periodico di grande scala ai bordi del getto in prossimità dell’efflusso) che si manifesta ad alti Reynolds.

L’aumento dell’aria ambiente trascinata dal getto, all’aumentare dello swirl e del numero di Re della corrente, giustifica l’andamento crescente delle portate ricavato dai dati sperimentali.

Dalla fig. 6.26 possiamo notare come a bassi gradi di swirl, $S_g<2$ la portata aumenti sensibilmente al crescere di S_g per tutti e tre i valori di Re. Per $S_g>2$ le portate continuano a crescere ma in misura minore. Dall’andamento delle portate normalizzate possiamo dedurre che per il range di Re indagato l’aumento di entrainment rimanga pressocché costante al variare di S_g.
6.7 Calcolo del numero di swirl

Misurati i profili di velocità assiale e tangenziale è possibile stimare i numeri di swirl nelle differenti condizioni di portata investigate in base a quanto illustrato nella sez. 5.4. Nelle tabelle 6.5, 6.6, 6.7 sono riportati i valori di swirl trovati utilizzando le espressioni illustrate nel capitolo 5. I numeri riportati sono sempre soggetti all’incertezza legata all’impossibilità di effettuare misure in prossimità dell’efflusso.

6.7.1 Calcolo di S_1

Di seguito sono riportati i valori del numero di swirl S_1 come definito nella sezione 5.3:

<table>
<thead>
<tr>
<th>Prova</th>
<th>Portata aria assiale [Nl/min]</th>
<th>Portata aria tangenziale [Nl/min]</th>
<th>S_g</th>
<th>S_{1RR}</th>
<th>S_{1AB}</th>
<th>S_{1M}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>0.45</td>
<td>0.45</td>
<td>0.47</td>
</tr>
<tr>
<td>Caso 2</td>
<td>140</td>
<td>60</td>
<td>2.59</td>
<td>1.33</td>
<td>1.36</td>
<td>1.32</td>
</tr>
<tr>
<td>Caso 3</td>
<td>116</td>
<td>84</td>
<td>5</td>
<td>1.22</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>Caso 4</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>1.20</td>
<td>1.22</td>
<td>1.21</td>
</tr>
<tr>
<td>Caso 5</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>1.65</td>
<td>1.69</td>
<td>1.72</td>
</tr>
<tr>
<td>Caso 6</td>
<td>240</td>
<td>60</td>
<td>1.15</td>
<td>0.52</td>
<td>0.52</td>
<td>0.55</td>
</tr>
<tr>
<td>Caso 7</td>
<td>210</td>
<td>90</td>
<td>2.59</td>
<td>1.38</td>
<td>1.42</td>
<td>1.37</td>
</tr>
<tr>
<td>Caso 8</td>
<td>175</td>
<td>125</td>
<td>5</td>
<td>1.37</td>
<td>1.37</td>
<td>1.37</td>
</tr>
<tr>
<td>Caso 9</td>
<td>150</td>
<td>150</td>
<td>7.2</td>
<td>1.62</td>
<td>1.62</td>
<td>1.56</td>
</tr>
<tr>
<td>Caso 10</td>
<td>120</td>
<td>180</td>
<td>10.37</td>
<td>2.28</td>
<td>2.26</td>
<td>2.05</td>
</tr>
<tr>
<td>Caso 11</td>
<td>352</td>
<td>88</td>
<td>1.15</td>
<td>0.55</td>
<td>0.55</td>
<td>0.58</td>
</tr>
<tr>
<td>Caso 12</td>
<td>340</td>
<td>100</td>
<td>1.49</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>Caso 13</td>
<td>308</td>
<td>132</td>
<td>2.59</td>
<td>1.57</td>
<td>1.66</td>
<td>1.57</td>
</tr>
<tr>
<td>Caso 14</td>
<td>256</td>
<td>184</td>
<td>5</td>
<td>1.72</td>
<td>1.71</td>
<td>1.73</td>
</tr>
<tr>
<td>Caso 15</td>
<td>220</td>
<td>220</td>
<td>7.2</td>
<td>2.13</td>
<td>2.16</td>
<td>2.16</td>
</tr>
</tbody>
</table>

Dove l’indice RR indica l’integrale calcolato su tutto il dominio di misura, troncato agli estremi opportuni, utilizzando tutti i dati disponibili dall’analisi; l’indice AB inidica lo swirl calcolato come media degli swirl calcolati separatamente sui semidomini A(-2,0) e B(0,+2); infine l’indice M indica lo swirl calcolato utilizzando le velocità, $U(\,r\,)$ e $W(\,r\,)$, medie ottenute dalle velocità ad ogni stazione (-r e +r).
In forma grafica:

![Diagram](image)

Figura 6.27 Andamento di S_1 al variare di S_g per $Re=5800, 8700, 12700$

Si può notare (fig. 6.27) come il numero di swirl inizialmente aumenti fino alla condizione caratterizzata da $S_g=2.59$, diminuisce o rimane costante in corrispondenza di $S_g=5$ e poi riprende a crescere fino allo swirl $S_g=10.37$. Naturalmente ci aspettiamo che il numero di swirl aumenti al crescere del numero di swirl geometrico e quindi della portata di aria tangenziale. Questo non avviene per le condizioni a $Re=5800$ e 8700 per le quali, come detto, il valore di S_1 diminuisce in corrispondenza di $S_g=5$. Ciò è probabilmente dovuto al fatto che la condizione a cui corrisponde un $S_g=2.59$ rappresenta una situazione di transizione. Questo aspetto verrà analizzato in seguito.

Analizzando le curve, possiamo notare come gli scostamenti tra i valori calcolati attraverso le diverse formule esposte nel capitolo 5 siano contenuti. Nel prosieguo del lavoro ci riferiremo al solo valore di S_{1RR}.
6.7.2 Calcolo di S_2
Di seguito sono riportati i valori del numero di swirl S_2 come definito nella sezione 5.3:

<table>
<thead>
<tr>
<th>Prova</th>
<th>Portata aria assiale [NL/min]</th>
<th>Portata aria tangenziale [NL/min]</th>
<th>S_g</th>
<th>S_{2RR}</th>
<th>S_{2AB}</th>
<th>S_{2M}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>0.46</td>
<td>0.46</td>
<td>0.48</td>
</tr>
<tr>
<td>Caso 2</td>
<td>140</td>
<td>60</td>
<td>2.59</td>
<td>1.66</td>
<td>1.73</td>
<td>1.64</td>
</tr>
<tr>
<td>Caso 3</td>
<td>116</td>
<td>84</td>
<td>5</td>
<td>1.46</td>
<td>1.48</td>
<td>1.47</td>
</tr>
<tr>
<td>Caso 4</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>1.38</td>
<td>1.40</td>
<td>1.39</td>
</tr>
<tr>
<td>Caso 5</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>2.01</td>
<td>2.07</td>
<td>2.09</td>
</tr>
<tr>
<td>Caso 6</td>
<td>240</td>
<td>60</td>
<td>1.15</td>
<td>0.53</td>
<td>0.53</td>
<td>0.56</td>
</tr>
<tr>
<td>Caso 7</td>
<td>210</td>
<td>90</td>
<td>2.59</td>
<td>1.91</td>
<td>2.03</td>
<td>1.9</td>
</tr>
<tr>
<td>Caso 8</td>
<td>175</td>
<td>125</td>
<td>5</td>
<td>1.61</td>
<td>1.62</td>
<td>1.63</td>
</tr>
<tr>
<td>Caso 9</td>
<td>150</td>
<td>150</td>
<td>7.2</td>
<td>1.86</td>
<td>1.86</td>
<td>1.78</td>
</tr>
<tr>
<td>Caso 10</td>
<td>120</td>
<td>180</td>
<td>10.37</td>
<td>2.65</td>
<td>2.71</td>
<td>2.24</td>
</tr>
<tr>
<td>Caso 11</td>
<td>352</td>
<td>88</td>
<td>1.15</td>
<td>0.56</td>
<td>0.56</td>
<td>0.57</td>
</tr>
<tr>
<td>Caso 12</td>
<td>340</td>
<td>100</td>
<td>1.49</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>Caso 13</td>
<td>308</td>
<td>132</td>
<td>2.59</td>
<td>2.29</td>
<td>2.51</td>
<td>2.28</td>
</tr>
<tr>
<td>Caso 14</td>
<td>256</td>
<td>184</td>
<td>5</td>
<td>2.1</td>
<td>2.09</td>
<td>2.1</td>
</tr>
<tr>
<td>Caso 15</td>
<td>220</td>
<td>220</td>
<td>7.2</td>
<td>2.92</td>
<td>2.94</td>
<td>2.96</td>
</tr>
</tbody>
</table>

Con lo stesso significato dei pedici RR, AB e M visti in precedenza.
Per quanto riguarda il numero di swirl S_2 (fig. 6.28) il comportamento riscontrato in precedenza per S_1 si verifica a tutti i valori di Re analizzati. Pertanto possiamo notare come il grado di swirl diminuisca in corrispondenza di $S_g=5$ (per il caso a $Re=8700$ diminuisce fino a $S_g=7.2$) e poi riprende a crescere. Anche in questo caso non si notano grandi scostamenti tra i valori ottenuti con i diversi metodi di calcolo.

Il numero di swirl S_2 mostra valori più elevati rispetto al precedente (S_1). Questo comportamento può essere giustificato osservando l’espressione di S_2 (6.4):

$$S_2 = \frac{2\pi \rho \int_0^R r^2 U W \, dr}{2\pi \rho \left[\int_0^R r \left(U^2 - \frac{1}{2} W^2 \right) \, dr \right] \times R_b}$$ \hspace{1cm} (6.4)$$

$$S_1 = \frac{2\pi \rho \int_0^R r^2 U W \, dr}{2\pi \rho \left[\int_0^R r \left(U^2 + \frac{1}{2} W^2 - \bar{u}^2 - \bar{w}^2 \right) \, dr \right] \times R_b}$$ \hspace{1cm} (6.5)$$
Al denominatore, a differenza di S_1 (6.5), non compaiono i termini fluttuanti pertanto è possibile dedurne che il valore $\left(\bar{u'}^2 - \bar{w'^2}\right) > 0$14: questo evidentemente determina un valore $S_2 > S_1$. Questa osservazione risulta in accordo con quanto trovato in [2]: in questo lavoro vengono analizzati flussi a moderato $Re (Re \approx 5700)$ per vari gradi di swirl utilizzando un generatore di swirl simile a quello utilizzato in questo lavoro; i valori $\bar{u'}^2$ dedotti dall’analisi sperimentale risultano maggiori dei rispettivi $\bar{w'^2}$ ad una distanza dall’efflusso $z/D = 3$. Inoltre possiamo notare come all’aumentare di S_g, S_2 assuma valori sempre più grandi rispetto a S_1: la spiegazione di questo comportamento è da individuare con il fatto che all’aumentare del grado di swirl lo sforzo tangenziale dovuto all’interazione del getto swirlato con l’aria ambiente diventa maggiore (ciò comporta valori maggiori di fluttuazioni) causando valori sempre più contenuti di S_1 rispetto al valore S_2.

Anche per quanto riguarda il numero S_2 d’ora in poi ci riferiremo al valore S_{2RR}.

14Il termine $\bar{u'}^2$ è maggiore di $\bar{w'^2}$ come è possibile riscontrare dai profili di RMS (sez. 6.3 e 6.4)
6.7.3 Calcolo di S_3

Di seguito sono riportati i valori del numero di swirl S_3 come definito nella sezione 5.3:

<table>
<thead>
<tr>
<th>Prova</th>
<th>Portata aria assiale [Nl/min]</th>
<th>Portata aria tangenziale [Nl/min]</th>
<th>S_g</th>
<th>S_{3RR}</th>
<th>S_{3AB}</th>
<th>S_{3M}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>0.37</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Caso 2</td>
<td>140</td>
<td>60</td>
<td>2.59</td>
<td>0.85</td>
<td>0.8</td>
<td>0.85</td>
</tr>
<tr>
<td>Caso 3</td>
<td>116</td>
<td>84</td>
<td>5</td>
<td>0.87</td>
<td>0.87</td>
<td>0.88</td>
</tr>
<tr>
<td>Caso 4</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>Caso 5</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>1.02</td>
<td>1.03</td>
<td>1.05</td>
</tr>
<tr>
<td>Caso 6</td>
<td>240</td>
<td>60</td>
<td>1.15</td>
<td>0.41</td>
<td>0.4</td>
<td>0.41</td>
</tr>
<tr>
<td>Caso 7</td>
<td>210</td>
<td>90</td>
<td>2.59</td>
<td>0.95</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td>Caso 8</td>
<td>175</td>
<td>125</td>
<td>5</td>
<td>0.91</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td>Caso 9</td>
<td>150</td>
<td>150</td>
<td>7.2</td>
<td>0.96</td>
<td>0.96</td>
<td>0.95</td>
</tr>
<tr>
<td>Caso 10</td>
<td>120</td>
<td>180</td>
<td>10.37</td>
<td>1.12</td>
<td>1.11</td>
<td>1.09</td>
</tr>
<tr>
<td>Caso 11</td>
<td>352</td>
<td>88</td>
<td>1.15</td>
<td>0.41</td>
<td>0.41</td>
<td>0.40</td>
</tr>
<tr>
<td>Caso 12</td>
<td>340</td>
<td>100</td>
<td>1.49</td>
<td>0.54</td>
<td>0.54</td>
<td>0.53</td>
</tr>
<tr>
<td>Caso 13</td>
<td>308</td>
<td>132</td>
<td>2.59</td>
<td>1.01</td>
<td>1.01</td>
<td>1.01</td>
</tr>
<tr>
<td>Caso 14</td>
<td>256</td>
<td>184</td>
<td>5</td>
<td>1.01</td>
<td>1.01</td>
<td>1.01</td>
</tr>
<tr>
<td>Caso 15</td>
<td>220</td>
<td>220</td>
<td>7.2</td>
<td>1.13</td>
<td>1.13</td>
<td>1.14</td>
</tr>
</tbody>
</table>
Per quanto riguarda il valore di S_3 possiamo notare (fig. 6.29) come esso al variare del numero S_g presenti andamenti simili a quelli ottenuti con S_1. In particolare si nota come tramite questa definizione si ottengano valori sensibilmente più bassi con i massimi poco superiori all’unità. Si osserva inoltre anche una certa “saturazione” rispetto ai valori S_1 e S_2 nel campo di valori $3< S_g<6$.

La spiegazione di questo comportamento risiede nell’assenza del termine di pressione al denominatore di $S_3 (\frac{1}{2}W^2)$ a differenza dell’espressione S_2 e S_1.

Evidentemente tale termine $\frac{1}{2}W^2$ assume valori sempre più grandi all’aumentare di S_g e questo determina, per $S_g>3$, un andamento piuttosto costante di S_3 al variare di S_g.

La minore entità di questi valori rispetto a S_2 e S_1 è documentata anche in [2]; in particolare si osserva come per $S_1>0.2$ gli scostamenti tra S_3 e le altre definizioni sono sensibili.

Anche per S_3 non ci sono particolari scostamenti tra i valori calcolati con i vari metodi, pertanto d’ora in poi ci riferiremo sempre al valore S_{3RR}.

Figura 6.29 Andamento di S_3 al variare di S_g per $Re=5800, 8700, 12700$
6.7.4 Confronto tra i numeri di swirl S_1 e S_2

Viene proposto un confronto sui valori ottenuti dall’analisi sperimentale per quanto riguarda i valori del numero di swirl S_1 e S_2 (tabella 6.8):

Definendo $\Delta_s = \frac{S_2 - S_1}{S_2} \cdot 100$:

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>Δ_{SRR} [%]</th>
<th>Δ_{SAB} [%]</th>
<th>Δ_{SM} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>1.15</td>
<td>0.46</td>
<td>0.45</td>
<td>0.47</td>
<td>0.46</td>
</tr>
<tr>
<td>Caso 2</td>
<td>2.59</td>
<td>1.34</td>
<td>1.37</td>
<td>1.32</td>
<td>1.67</td>
</tr>
<tr>
<td>Caso 3</td>
<td>5</td>
<td>1.22</td>
<td>1.24</td>
<td>1.23</td>
<td>1.47</td>
</tr>
<tr>
<td>Caso 4</td>
<td>7.2</td>
<td>1.20</td>
<td>1.22</td>
<td>1.21</td>
<td>1.38</td>
</tr>
<tr>
<td>Caso 5</td>
<td>10.37</td>
<td>1.65</td>
<td>1.69</td>
<td>1.72</td>
<td>2.01</td>
</tr>
<tr>
<td>Caso 6</td>
<td>1.15</td>
<td>0.52</td>
<td>0.52</td>
<td>0.55</td>
<td>0.53</td>
</tr>
<tr>
<td>Caso 7</td>
<td>2.59</td>
<td>1.38</td>
<td>1.42</td>
<td>1.37</td>
<td>1.91</td>
</tr>
<tr>
<td>Caso 8</td>
<td>5</td>
<td>1.37</td>
<td>1.38</td>
<td>1.38</td>
<td>1.61</td>
</tr>
<tr>
<td>Caso 9</td>
<td>7.2</td>
<td>1.62</td>
<td>1.62</td>
<td>1.56</td>
<td>1.87</td>
</tr>
<tr>
<td>Caso 10</td>
<td>10.37</td>
<td>2.28</td>
<td>2.26</td>
<td>2.05</td>
<td>2.66</td>
</tr>
<tr>
<td>Caso 11</td>
<td>1.15</td>
<td>0.55</td>
<td>0.55</td>
<td>0.58</td>
<td>0.56</td>
</tr>
<tr>
<td>Caso 12</td>
<td>1.49</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.85</td>
</tr>
<tr>
<td>Caso 13</td>
<td>2.59</td>
<td>1.57</td>
<td>1.66</td>
<td>1.57</td>
<td>2.29</td>
</tr>
<tr>
<td>Caso 14</td>
<td>5</td>
<td>1.72</td>
<td>1.71</td>
<td>1.72</td>
<td>2.10</td>
</tr>
<tr>
<td>Caso 15</td>
<td>7.2</td>
<td>2.13</td>
<td>2.16</td>
<td>2.16</td>
<td>2.92</td>
</tr>
</tbody>
</table>
Dai valori riportati in tabella 6.8 è possibile notare come i maggiori scostamenti (evidenziati) tra i valori di swirl S_1 e S_2 si hanno in corrispondenza, ancora una volta, di quei valori di S_g che caratterizzano la zona di transizione. Per le restanti condizioni gli scostamenti risultano contenuti per quei casi caratterizzati da un basso S_g, mentre sono più rilevanti ($\approx 20\%$) all’aumentare del numero di swirl. Osservando gli andamenti delle componenti fluttuanti infatti (sez. 6.3 6.4) notiamo come all’aumentare del numero di swirl i valori di tali fluttuazioni diminuiscano meno velocemente agli estremi del dominio rispetto ai casi a basso swirl. Questo perchè, come detto in precedenza, all’aumentare del grado di swirl lo sforzo tangenziale dovuto all’interazione del getto swirlato con l’aria ambiente diventa maggiore. Tali valori compaiono al denominatore della formula S_1 moltiplicati per il raggio: pertanto tali valori, anche se bassi, moltiplicando raggi grandi avranno una discreta influenza ai fini del valore dello swirl. Questo comportamento trova conferme in [2]: in questo lavoro effettuando misure in corrispondenza di $z/D =1/12$ (1 mm) utilizzando un generatore di swirl simile a quello utilizzato nel presente lavoro, i valori $\overline{u'^2}$ risultano simili e pertanto le differenze tra S_1 e S_2 si mantengono contenute ($\approx 3\%$). Si osserva tuttavia come effettuando misure a valle del getto ($z/D=3$) i valori di fluttuazioni $\overline{u'^2}$ diventano maggiori delle rispettive $\overline{w'^2}$ comportando comprensibili variazioni tra i valori S_1 e S_2.

6.7.5 Confronto per il calcolo dello swirl S_2 sul dominio intero e sui due semidomini

Allo scopo di individuare la procedura più affidabile per il calcolo degli integrali che definiscono il numero di swirl, si riportano di seguito (fig. 6.30 6.31 6.32) i confronti tra i calcoli effettuati su tutto il dominio e quelli effettuati sui singoli semidomini. Tale confronto viene effettuato per il numero di swirl S_2.
Capitolo 6

Re=5800

Figura 6.30 Andamento di S_{2RR}, S_{2A}, S_{2B} al variare di S_g per $Re=5800$

Re=8700

Figura 6.31 Andamento di S_{2RR}, S_{2A}, S_{2B} al variare di S_g per $Re=8700$
Analisi dati e risultati sperimentali

Notiamo come il valore calcolato sull’intero dominio cada esattamente tra i due valori calcolati nei due semidomini perché in qualche modo tale valore ne rappresenta una media. Salta subito all’occhio che per le condizioni a swirl geometrico $S_g = 2.59$ i numeri di swirl sulle due metà presentano differenze molto marcate. Tale aspetto viene discusso più approfonditamente in seguito.

6.8 Legame swirl S_2 e swirl geometrico S_g

L’obiettivo principale di tale lavoro è effettuare una calibrazione lineare del bruciatore in esame determinando la correlazione tra il numero di swirl teorico S nelle sue diverse definizioni e il numero di swirl geometrico S_g, parametro empirico che permette la caratterizzazione del getto a partire dalla conoscenza delle portate e delle caratteristiche geometriche del bruciatore.
I valori considerati sono riportati nella tabella 6.9:

<table>
<thead>
<tr>
<th>Prova</th>
<th>Re</th>
<th>Portata aria assiale [Nl/min]</th>
<th>Portata aria tangenziale [Nl/min]</th>
<th>S_g</th>
<th>S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>5800</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>0.46</td>
</tr>
<tr>
<td>Caso 2</td>
<td>5800</td>
<td>140</td>
<td>60</td>
<td>2.59</td>
<td>1.67</td>
</tr>
<tr>
<td>Caso 3</td>
<td>5800</td>
<td>116</td>
<td>84</td>
<td>5</td>
<td>1.47</td>
</tr>
<tr>
<td>Caso 4</td>
<td>5800</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>1.38</td>
</tr>
<tr>
<td>Caso 5</td>
<td>5800</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>2.01</td>
</tr>
<tr>
<td>Caso 6</td>
<td>8700</td>
<td>240</td>
<td>60</td>
<td>1.15</td>
<td>0.53</td>
</tr>
<tr>
<td>Caso 7</td>
<td>8700</td>
<td>210</td>
<td>90</td>
<td>2.59</td>
<td>1.91</td>
</tr>
<tr>
<td>Caso 8</td>
<td>8700</td>
<td>175</td>
<td>125</td>
<td>5</td>
<td>1.61</td>
</tr>
<tr>
<td>Caso 9</td>
<td>8700</td>
<td>150</td>
<td>150</td>
<td>7.2</td>
<td>1.87</td>
</tr>
<tr>
<td>Caso 10</td>
<td>8700</td>
<td>120</td>
<td>180</td>
<td>10.37</td>
<td>2.66</td>
</tr>
<tr>
<td>Caso 11</td>
<td>12700</td>
<td>352</td>
<td>88</td>
<td>1.15</td>
<td>0.56</td>
</tr>
<tr>
<td>Caso 12</td>
<td>12700</td>
<td>340</td>
<td>100</td>
<td>1.49</td>
<td>0.85</td>
</tr>
<tr>
<td>Caso 13</td>
<td>12700</td>
<td>308</td>
<td>132</td>
<td>2.59</td>
<td>2.29</td>
</tr>
<tr>
<td>Caso 14</td>
<td>12700</td>
<td>256</td>
<td>184</td>
<td>5</td>
<td>2.10</td>
</tr>
<tr>
<td>Caso 15</td>
<td>12700</td>
<td>220</td>
<td>220</td>
<td>7.2</td>
<td>2.92</td>
</tr>
</tbody>
</table>
Effettuando un’interpolazione di tutti i valori di swirl S_2 riportati nella tabella 6.9 si ottiene:

![Swirl diagram](image)

Figura 6.33 Legame S_2- S_g per $Re=5800$, 8700, 12700 sul campo $1<S_g<11$

Con le rispettive equazioni delle rette interpolanti:

- **$Re=5800$:**
 \[
 S_2 = 0.115 \cdot S_g + 0.7926 \quad R^2 = 0.5344 \quad (6.6)
 \]

- **$Re=8700$:**
 \[
 S_2 = 0.1753 \cdot S_g + 0.7929 \quad R^2 = 0.705 \quad (6.7)
 \]

- **$Re=12700$:**
 \[
 S_2 = 0.3488 \cdot S_g + 0.5379 \quad R^2 = 0.7717 \quad (6.8)
 \]

Dall’andamento della curva S_2, S_g si nota come per $S_g=0$ S_2 sembrerebbe assumere un valore finito, il che ovviamente non può essere corretto dal punto di vista della fisica del fenomeno.

Particolare attenzione meritano i valori ottenuti in corrispondenza del numero di swirl $S_g=2.59$ (casi 2, 7 e 13). In precedenza, l’analisi dei profili di portata e dei
flussi di quantità di moto (sez. 5.7), suggeriva di considerare tali casi rappresentativi di una condizione di transizione tra due configurazioni di moto. Ovviamente se tali casi rappresentano una condizione di transizione le misure dei profili di velocità ottenuti non sono attendibili. Il campo di moto descritto attraverso misure LDV infatti non è istantaneo: in particolare per l’analisi completa di ogni condizione analizzata in questo lavoro si sono impiegati 30-40 minuti a prova. Qualora fosse presente una condizione di instabilità pertanto le misure effettuate in diversi momenti risulterebbero prive di significato. Basandoci sulla correlazione preliminare estrapolata dai dati di [15] si ottiene, infatti, un numero di swirl $S_2=0.65^{15}$ ovvero pari al numero che rappresenta la condizione di transizione tra il regime senza ricircolazione e quello con ricircolazione. Inoltre basandoci sul lavoro di tesi [26] svolto sullo stesso bruciatore, sappiamo che la zona di transizione in camera di combustione si verifica a partire da 150 Nl/min di portata tangenziale per una portata totale pari a 440 Nl/min. Tale condizione corrisponde approssimativamente a quella da noi calcolata per $S_g=2.59$ (per 440 Nl/min 308 Nl/mi di portata di aria assiale e 132 Nl/min di portata di aria tangenziale). Questo indicazioni ci suggeriscono di ricavare i numeri di swirl per questa condizione tramite interpolazione utilizzando i dati disponibili (tab. 6.10); lo stesso procedimento è seguito anche per i Reynolds (e quindi le portate) più bassi.

I fenomeni di instabilità sono affetti da isteresi, pertanto ci può essere un certo grado di incertezza.

Escludiamo i dati corrisponenti alle condizioni a $S_g=2.59$ per tutte le condizioni e interpoliamo i dati a disposizione.

<table>
<thead>
<tr>
<th>Prova</th>
<th>Re</th>
<th>Portata aria assiale [Nl/min]</th>
<th>Portata aria tangenziale [Nl/min]</th>
<th>S_g</th>
<th>S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>5800</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>0.46</td>
</tr>
<tr>
<td>Caso 2</td>
<td>5800</td>
<td>140</td>
<td>60</td>
<td>2.59</td>
<td>1.67</td>
</tr>
<tr>
<td>Caso 3</td>
<td>5800</td>
<td>116</td>
<td>84</td>
<td>5</td>
<td>1.47</td>
</tr>
<tr>
<td>Caso 4</td>
<td>5800</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>1.38</td>
</tr>
<tr>
<td>Caso 5</td>
<td>5800</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>2.01</td>
</tr>
<tr>
<td>Caso 6</td>
<td>8700</td>
<td>240</td>
<td>60</td>
<td>1.15</td>
<td>0.53</td>
</tr>
<tr>
<td>Caso 7</td>
<td>8700</td>
<td>210</td>
<td>90</td>
<td>2.59</td>
<td>1.94</td>
</tr>
<tr>
<td>Caso 8</td>
<td>8700</td>
<td>175</td>
<td>125</td>
<td>5</td>
<td>1.61</td>
</tr>
<tr>
<td>Caso 9</td>
<td>8700</td>
<td>150</td>
<td>150</td>
<td>7.2</td>
<td>1.87</td>
</tr>
<tr>
<td>Caso 10</td>
<td>8700</td>
<td>120</td>
<td>180</td>
<td>10.37</td>
<td>2.66</td>
</tr>
</tbody>
</table>

15 Valore calcolato dalla correlazione (5.26), sez. 5.5.
Analisi dati e risultati sperimentali

<table>
<thead>
<tr>
<th>Caso</th>
<th>Re</th>
<th>Sg</th>
<th>Swirl</th>
<th>S_2</th>
<th>S_g</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12700</td>
<td>352</td>
<td>88</td>
<td>1.15</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12700</td>
<td>340</td>
<td>100</td>
<td>1.49</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>12700</td>
<td>308</td>
<td>132</td>
<td>2.59</td>
<td>2.29</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>12700</td>
<td>256</td>
<td>184</td>
<td>5</td>
<td>2.10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12700</td>
<td>220</td>
<td>220</td>
<td>7.2</td>
<td>2.92</td>
<td></td>
</tr>
</tbody>
</table>

Figura 6.34 Legame S_2-S_g ottenuto escludendo $S_2(S_g=2.59)$ sul campo $1<S_g<11$

Il legame tra swirl geometrico e swirl S_2 ora risulta:

- **Re=5800:**
 \[S_2 = 0.1579 \cdot S_g + 0.3924 \quad R^2 = 0.9065 \quad (6.9) \]

- **Re=8700:**
 \[S_2 = 0.2245 \cdot S_g + 0.3354 \quad R^2 = 0.9848 \quad (6.10) \]

- **Re=12700:**
 \[S_2 = 0.3775 \cdot S_g + 0.2025 \quad R^2 = 0.9962 \quad (6.11) \]
La correlazione risulta più precisa del caso precedente come si nota dai coefficienti R^2.
I valori di swirl S_2 esclusi dall’interpolazione (zona di transizione) sono riportati nella tabella 6.11:

<table>
<thead>
<tr>
<th>Reynolds</th>
<th>S_g</th>
<th>S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5800</td>
<td>2.59</td>
<td>0.8</td>
</tr>
<tr>
<td>8700</td>
<td>2.59</td>
<td>0.92</td>
</tr>
<tr>
<td>12700</td>
<td>2.59</td>
<td>1.18</td>
</tr>
</tbody>
</table>

Disponendo anche delle misure di velocità effettuate in [15] [16] si è deciso di ampliare i casi a $Re= 5800$ e 12700 considerando anche i dati delle prove del lavoro di tesi [15] [16]; i casi analizzati sono riportati in tab. 6.12.

<table>
<thead>
<tr>
<th>Prova</th>
<th>Re</th>
<th>Portata aria assiale [NI/min]</th>
<th>Portata aria tangenziale [NI/min]</th>
<th>S_g</th>
<th>S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>5800</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>0.46</td>
</tr>
<tr>
<td>Caso 2</td>
<td>5800</td>
<td>240</td>
<td>60</td>
<td>2.59</td>
<td>1.67</td>
</tr>
<tr>
<td>Caso 3</td>
<td>5800</td>
<td>116</td>
<td>84</td>
<td>5</td>
<td>1.47</td>
</tr>
<tr>
<td>Caso 4</td>
<td>5800</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>1.38</td>
</tr>
<tr>
<td>Caso 5</td>
<td>5800</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>2.01</td>
</tr>
<tr>
<td>[15]</td>
<td>5800</td>
<td>60</td>
<td>140</td>
<td>14.11</td>
<td>2.99</td>
</tr>
<tr>
<td>[15]</td>
<td>5800</td>
<td>40</td>
<td>160</td>
<td>18.43</td>
<td>4.58</td>
</tr>
<tr>
<td>Caso 6</td>
<td>8700</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>0.53</td>
</tr>
<tr>
<td>Caso 7</td>
<td>8700</td>
<td>210</td>
<td>60</td>
<td>2.592</td>
<td>1.94</td>
</tr>
<tr>
<td>Caso 8</td>
<td>8700</td>
<td>175</td>
<td>125</td>
<td>5</td>
<td>1.61</td>
</tr>
<tr>
<td>Caso 9</td>
<td>8700</td>
<td>150</td>
<td>150</td>
<td>7.2</td>
<td>1.87</td>
</tr>
<tr>
<td>Caso 10</td>
<td>8700</td>
<td>120</td>
<td>180</td>
<td>10.368</td>
<td>2.66</td>
</tr>
<tr>
<td>Caso 11</td>
<td>12700</td>
<td>352</td>
<td>88</td>
<td>1.152</td>
<td>0.56</td>
</tr>
<tr>
<td>Caso 12</td>
<td>12700</td>
<td>340</td>
<td>100</td>
<td>1.488</td>
<td>0.85</td>
</tr>
<tr>
<td>Caso 13</td>
<td>12700</td>
<td>308</td>
<td>132</td>
<td>2.592</td>
<td>2.29</td>
</tr>
<tr>
<td>Caso 14</td>
<td>12700</td>
<td>256</td>
<td>184</td>
<td>5.04</td>
<td>2.1</td>
</tr>
<tr>
<td>Caso 15</td>
<td>12700</td>
<td>220</td>
<td>220</td>
<td>7.2</td>
<td>2.92</td>
</tr>
<tr>
<td>[16]</td>
<td>12700</td>
<td>240</td>
<td>200</td>
<td>5.95</td>
<td>2.19</td>
</tr>
<tr>
<td>[16]</td>
<td>12700</td>
<td>200</td>
<td>240</td>
<td>8.57</td>
<td>3.86</td>
</tr>
<tr>
<td>[16]</td>
<td>12700</td>
<td>100</td>
<td>340</td>
<td>17.197</td>
<td>6.68</td>
</tr>
</tbody>
</table>
Il legame tra swirl geometrico e swirl S_2 ora risulta:

- **Re=5800:**
 \[
 S_2 = 0.2255 \cdot S_g + 0.0328 \quad R^2 = 0.9496 \quad (6.12)
 \]

- **Re=8700:**
 \[
 S_2 = 0.2245 \cdot S_g + 0.3354 \quad R^2 = 0.9848 \quad (6.13)
 \]

- **Re=12700:**
 \[
 S_2 = 0.3823 \cdot S_g + 0.1919 \quad R^2 = 0.9793 \quad (6.14)
 \]

Tabella 6.13 Valori di S_2 ottenuti per $S_g=2.59$ per $1 < S_g < 18$

<table>
<thead>
<tr>
<th>Reynolds</th>
<th>S_g</th>
<th>S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5800</td>
<td>2.59</td>
<td>0.62</td>
</tr>
<tr>
<td>8700</td>
<td>2.59</td>
<td>0.92</td>
</tr>
<tr>
<td>12700</td>
<td>2.59</td>
<td>1.18</td>
</tr>
</tbody>
</table>
Il valore di S_2 per $Re = 5800$ così calcolato risulta pari al valore critico ($S=0.6$); per Re più alti il valore di transizione sembrerebbe essere differente, indicando un certo effetto di Re.

Riportiamo di seguito un confronto con i lavori di tesi precedenti [15] [16].

<table>
<thead>
<tr>
<th>Prova</th>
<th>Re</th>
<th>Portata aria assiale [NI/min]</th>
<th>Portata aria tangenziale [NI/min]</th>
<th>S_g</th>
<th>S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>5800</td>
<td>160</td>
<td>40</td>
<td>1.152</td>
<td>0.46</td>
</tr>
<tr>
<td>Caso 2</td>
<td>5800</td>
<td>140</td>
<td>60</td>
<td>2.592</td>
<td>1.67</td>
</tr>
<tr>
<td>Caso 3</td>
<td>5800</td>
<td>116</td>
<td>84</td>
<td>5.08</td>
<td>1.47</td>
</tr>
<tr>
<td>Caso 4</td>
<td>5800</td>
<td>106</td>
<td>100</td>
<td>7.2</td>
<td>1.38</td>
</tr>
<tr>
<td>Caso 5</td>
<td>5800</td>
<td>80</td>
<td>120</td>
<td>10.368</td>
<td>2.01</td>
</tr>
<tr>
<td>[15]</td>
<td>5800</td>
<td>80</td>
<td>120</td>
<td>10.368</td>
<td>2.1</td>
</tr>
<tr>
<td>[15]</td>
<td>5800</td>
<td>60</td>
<td>140</td>
<td>14.112</td>
<td>3.19</td>
</tr>
<tr>
<td>[15]</td>
<td>5800</td>
<td>40</td>
<td>160</td>
<td>18.432</td>
<td>5.45</td>
</tr>
<tr>
<td>[16]</td>
<td>5800</td>
<td>80</td>
<td>120</td>
<td>10.368</td>
<td>2.03</td>
</tr>
<tr>
<td>[16]</td>
<td>5800</td>
<td>60</td>
<td>140</td>
<td>14.112</td>
<td>3.04</td>
</tr>
<tr>
<td>[16]</td>
<td>5800</td>
<td>40</td>
<td>160</td>
<td>18.432</td>
<td>5.33</td>
</tr>
<tr>
<td>Caso 6</td>
<td>8700</td>
<td>240</td>
<td>60</td>
<td>1.152</td>
<td>0.53</td>
</tr>
<tr>
<td>[16]</td>
<td>8700</td>
<td>240</td>
<td>60</td>
<td>1.152</td>
<td>0.53</td>
</tr>
<tr>
<td>Caso 7</td>
<td>8700</td>
<td>210</td>
<td>90</td>
<td>2.592</td>
<td>1.04</td>
</tr>
<tr>
<td>Caso 8</td>
<td>8700</td>
<td>175</td>
<td>125</td>
<td>5</td>
<td>1.61</td>
</tr>
<tr>
<td>Caso 9</td>
<td>8700</td>
<td>150</td>
<td>150</td>
<td>7.2</td>
<td>1.87</td>
</tr>
<tr>
<td>Caso 10</td>
<td>8700</td>
<td>120</td>
<td>180</td>
<td>10.368</td>
<td>2.66</td>
</tr>
<tr>
<td>Caso 11</td>
<td>12700</td>
<td>352</td>
<td>88</td>
<td>1.152</td>
<td>0.56</td>
</tr>
<tr>
<td>Caso 12</td>
<td>12700</td>
<td>340</td>
<td>100</td>
<td>1.488</td>
<td>0.85</td>
</tr>
<tr>
<td>Caso 13</td>
<td>12700</td>
<td>308</td>
<td>132</td>
<td>2.592</td>
<td>2.20</td>
</tr>
<tr>
<td>Caso 14</td>
<td>12700</td>
<td>256</td>
<td>184</td>
<td>5.04</td>
<td>2.1</td>
</tr>
<tr>
<td>Caso 15</td>
<td>12700</td>
<td>220</td>
<td>220</td>
<td>7.2</td>
<td>2.92</td>
</tr>
<tr>
<td>[16]</td>
<td>12700</td>
<td>240</td>
<td>200</td>
<td>5.95</td>
<td>2.19</td>
</tr>
<tr>
<td>[16]</td>
<td>12700</td>
<td>200</td>
<td>240</td>
<td>8.57</td>
<td>3.86</td>
</tr>
<tr>
<td>[16]</td>
<td>12700</td>
<td>100</td>
<td>340</td>
<td>17.197</td>
<td>6.68</td>
</tr>
</tbody>
</table>
Trascurando i valori intorno a $S_g = 2.59$ ed interpolando si ottiene:

![Graph showing the relationship between Swirl geometrico S_g and S_2 for Re=5800, 8700, 12700 with $1 < S_g < 18$; the curves include the data of theses [15] [16].](image)

Figura 6.36 Legame $S_2 - S_g$ per $Re=5800, 8700, 12700$ sul campo $1 < S_g < 18$; le curve includono i dati dei lavori di tesi [15] [16]

Dalla figura 6.36 si può notare come le rette ottenute interpolando i valori di questo lavoro e quelli riportati in [16], per i flussi a $Re=12700$, abbiano una pendenza simile: si può notare un discreto cambio di pendenza per la retta ($Re=12700$) ottenuta in questo lavoro, ovvero per bassi valori di S_g ($S_g < 6$). Minori indicazioni giungono dagli andamenti del numero di swirl per la condizione a $Re=5800$: la pendenza della retta di interpolazione ricavata dai dati di questo lavoro risulta inferiore rispetto a quella dedotta in [15] e [16]. Sembra che esistano due tipi di relazioni (rette) per due differenti campi di S_g.

Di seguito sono riportate le equazioni delle rette interpolanti per i casi confrontati:

- **Re=5800:**

 $S_2 = 0.1579 \cdot S_g + 0.3924 \quad R^2 = 0.9065 \quad (6.15)$

 $[15] \quad S_2 = 0.3476 \cdot S_g - 1.2870 \quad R^2 = 0.9513 \quad (6.16)$

 $[16] \quad S_2 = 0.4119 \cdot S_g - 2.4254 \quad R^2 = 0.9688 \quad (6.17)$
Si può notare come in tutti i casi per $S_g=0$ risulti un valore di S diverso da zero.

6.9 Legame swirl S_1 e swirl geometrico S_g

Utilizzando lo stesso procedimento adottato per gli S_2, deduciamo il legame tra il numero di swirl S_1 e S_g. I valori considerati sono riassunti nella tabella 6.15:

<table>
<thead>
<tr>
<th>Prova</th>
<th>Re</th>
<th>Portata aria assiale [Nl/min]</th>
<th>Portata aria tangenziale [Nl/min]</th>
<th>S_g</th>
<th>S_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>5800</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>0.46</td>
</tr>
<tr>
<td>Caso 2</td>
<td>5800</td>
<td>140</td>
<td>60</td>
<td>2.59</td>
<td>1.34</td>
</tr>
<tr>
<td>Caso 3</td>
<td>5800</td>
<td>116</td>
<td>84</td>
<td>5</td>
<td>1.22</td>
</tr>
<tr>
<td>Caso 4</td>
<td>5800</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>1.20</td>
</tr>
<tr>
<td>Caso 5</td>
<td>5800</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>1.65</td>
</tr>
<tr>
<td>Caso 6</td>
<td>8700</td>
<td>240</td>
<td>60</td>
<td>1.15</td>
<td>0.52</td>
</tr>
<tr>
<td>Caso 7</td>
<td>8700</td>
<td>210</td>
<td>90</td>
<td>2.59</td>
<td>1.38</td>
</tr>
<tr>
<td>Caso 8</td>
<td>8700</td>
<td>175</td>
<td>125</td>
<td>5</td>
<td>1.37</td>
</tr>
<tr>
<td>Caso 9</td>
<td>8700</td>
<td>150</td>
<td>150</td>
<td>7.2</td>
<td>1.62</td>
</tr>
<tr>
<td>Caso 10</td>
<td>8700</td>
<td>120</td>
<td>180</td>
<td>10.37</td>
<td>2.28</td>
</tr>
<tr>
<td>Caso 11</td>
<td>12700</td>
<td>352</td>
<td>88</td>
<td>1.15</td>
<td>0.55</td>
</tr>
<tr>
<td>Caso 12</td>
<td>12700</td>
<td>340</td>
<td>100</td>
<td>1.49</td>
<td>0.82</td>
</tr>
<tr>
<td>Caso 13</td>
<td>12700</td>
<td>308</td>
<td>132</td>
<td>2.59</td>
<td>1.57</td>
</tr>
<tr>
<td>Caso 14</td>
<td>12700</td>
<td>256</td>
<td>184</td>
<td>5</td>
<td>1.72</td>
</tr>
<tr>
<td>Caso 15</td>
<td>12700</td>
<td>220</td>
<td>220</td>
<td>7.2</td>
<td>2.13</td>
</tr>
</tbody>
</table>

Interpolando i valori considerati otteniamo il legame tra S_1 e S_g:
Figura 6.37 Legame S_1, S_g per $Re=5800, 8700, 12700$ sul campo $1 < S_g < 11$

- **Re=5800:**
 \[S_1 = 0.092 \cdot S_g + 0.69 \quad R^2 = 0.595 \quad (6.21) \]

- **Re=8700:**
 \[S_1 = 0.1594 \cdot S_g + 0.5952 \quad R^2 = 0.8607 \quad (6.22) \]

- **Re=12700:**
 \[S_1 = 0.2345 \cdot S_g + 0.539 \quad R^2 = 0.8479 \quad (6.23) \]
Escludiamo i valori per $S_g = 2.59$ per le stesse considerazioni fatte in precedenza per S_2:

![Diagram](image)

Figura 6.38 Legame S_1, S_g per $Re=5800, 8700, 12700$ sul campo $1 < S_g < 11$ escludendo $S_1(S_g=2.59)$

- **Re=5800:**

 $$S_1 = 0.1225 \cdot S_g + 0.4 \quad R^2 = 0.923 \quad (6.24)$$

- **Re=8700:**

 $$S_1 = 0.187 \cdot S_g + 0.339 \quad R^2 = 0.991 \quad (6.25)$$

- **Re=12700:**

 $$S_1 = 0.2533 \cdot S_g + 0.363 \quad R^2 = 0.984 \quad (6.26)$$

La correlazione risulta più precisa del caso precedente come si nota dai coefficienti R^2.

I valori di swirl S_1 esclusi dall’interpolazione (zona di transizione) ricalcolati dalla relazione trovata vengono riassunti nella tabella 6.16.
Come già fatto in precedenza, disponendo delle misure di velocità effettuate in [15] e [16] si è deciso di ampliare il caso a $Re=5800$ considerando anche i dati di questi lavori di tesi; i casi analizzati sono elencati nella tab. 6.17.

<table>
<thead>
<tr>
<th>Prova</th>
<th>Re</th>
<th>Portata aria assiale [Nl/min]</th>
<th>Portata aria tangenziale [Nl/min]</th>
<th>S_g</th>
<th>S_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>5800</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>0.46</td>
</tr>
<tr>
<td>Caso 2</td>
<td>5800</td>
<td>140</td>
<td>60</td>
<td>2.59</td>
<td>1.24</td>
</tr>
<tr>
<td>Caso 3</td>
<td>5800</td>
<td>116</td>
<td>84</td>
<td>5</td>
<td>1.22</td>
</tr>
<tr>
<td>Caso 4</td>
<td>5800</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>1.20</td>
</tr>
<tr>
<td>Caso 5</td>
<td>5800</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>1.65</td>
</tr>
<tr>
<td>[15]</td>
<td>5800</td>
<td>60</td>
<td>140</td>
<td>14.11</td>
<td>2.92</td>
</tr>
<tr>
<td>[15]</td>
<td>5800</td>
<td>40</td>
<td>160</td>
<td>18.43</td>
<td>4.43</td>
</tr>
<tr>
<td>Caso 6</td>
<td>8700</td>
<td>240</td>
<td>60</td>
<td>1.15</td>
<td>0.52</td>
</tr>
<tr>
<td>Caso 7</td>
<td>8700</td>
<td>210</td>
<td>90</td>
<td>2.59</td>
<td>1.38</td>
</tr>
<tr>
<td>Caso 8</td>
<td>8700</td>
<td>175</td>
<td>125</td>
<td>5</td>
<td>1.37</td>
</tr>
<tr>
<td>Caso 9</td>
<td>8700</td>
<td>150</td>
<td>150</td>
<td>7.2</td>
<td>1.62</td>
</tr>
<tr>
<td>Caso 10</td>
<td>8700</td>
<td>120</td>
<td>180</td>
<td>10.37</td>
<td>2.28</td>
</tr>
<tr>
<td>Caso 11</td>
<td>12700</td>
<td>352</td>
<td>88</td>
<td>1.15</td>
<td>0.55</td>
</tr>
<tr>
<td>Caso 12</td>
<td>12700</td>
<td>340</td>
<td>100</td>
<td>1.49</td>
<td>0.82</td>
</tr>
<tr>
<td>Caso 13</td>
<td>12700</td>
<td>308</td>
<td>132</td>
<td>2.59</td>
<td>1.57</td>
</tr>
<tr>
<td>Caso 14</td>
<td>12700</td>
<td>256</td>
<td>184</td>
<td>5</td>
<td>1.72</td>
</tr>
<tr>
<td>Caso 15</td>
<td>12700</td>
<td>220</td>
<td>220</td>
<td>7.2</td>
<td>2.13</td>
</tr>
<tr>
<td>[16]</td>
<td>12700</td>
<td>240</td>
<td>200</td>
<td>5.95</td>
<td>2.08</td>
</tr>
<tr>
<td>[16]</td>
<td>12700</td>
<td>200</td>
<td>240</td>
<td>8.57</td>
<td>4.02</td>
</tr>
<tr>
<td>[16]</td>
<td>12700</td>
<td>100</td>
<td>340</td>
<td>17.2</td>
<td>7.22</td>
</tr>
</tbody>
</table>
Il legame tra swirl geometrico e swirl S_1 ora risulta:

- **Re=5800:**

 $$ S_1 = 0.2226 \cdot S_g - 0.1073 \quad R^2 = 0.93 \quad (6.27) $$

- **Re=8700:**

 $$ S_1 = 0.187 \cdot S_g + 0.3391 \quad R^2 = 0.991 \quad (6.28) $$

- **Re=12700:**

 $$ S_1 = 0.4192 \cdot S_g - 0.1414 \quad R^2 = 0.96 \quad (6.29) $$

I valori di swirl S_1 esclusi dall’interpolazione (zona di transizione) ricalcolati dalle relazioni sono elencati nella tab. 6.18.

<table>
<thead>
<tr>
<th>Reynolds</th>
<th>Sg</th>
<th>S_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5800</td>
<td>2.59</td>
<td>0.47</td>
</tr>
<tr>
<td>8700</td>
<td>2.59</td>
<td>0.82</td>
</tr>
<tr>
<td>12700</td>
<td>2.59</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Tabella 6.18 Valori di S_1 per $S_g=2.59$ per $1<S_g<19$

![Diagram](image.png)

Figura 6.39 Legame S_1 S_g per $Re=5800$, 8700, 12700 sul campo $1<S_g<19$

<table>
<thead>
<tr>
<th>Prova</th>
<th>(Re)</th>
<th>Portata aria assiale [Nl/min]</th>
<th>Portata aria tangenziale [Nl/min]</th>
<th>(S_g)</th>
<th>(S_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>5800</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>0.46</td>
</tr>
<tr>
<td>Caso 2</td>
<td>5800</td>
<td>140</td>
<td>60</td>
<td>2.50</td>
<td>1.22</td>
</tr>
<tr>
<td>Caso 3</td>
<td>5800</td>
<td>116</td>
<td>84</td>
<td>5</td>
<td>1.22</td>
</tr>
<tr>
<td>Caso 4</td>
<td>5800</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>1.20</td>
</tr>
<tr>
<td>Caso 5</td>
<td>5800</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>1.65</td>
</tr>
<tr>
<td>[15]</td>
<td>5800</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>1.49</td>
</tr>
<tr>
<td>[15]</td>
<td>5800</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>2.03</td>
</tr>
<tr>
<td>[15]</td>
<td>5800</td>
<td>60</td>
<td>140</td>
<td>14.11</td>
<td>3.05</td>
</tr>
<tr>
<td>[15]</td>
<td>5800</td>
<td>40</td>
<td>160</td>
<td>18.43</td>
<td>5.33</td>
</tr>
<tr>
<td>Caso 6</td>
<td>8700</td>
<td>240</td>
<td>60</td>
<td>1.15</td>
<td>0.52</td>
</tr>
<tr>
<td>Caso 7</td>
<td>8700</td>
<td>240</td>
<td>60</td>
<td>2.50</td>
<td>1.38</td>
</tr>
<tr>
<td>Caso 8</td>
<td>8700</td>
<td>175</td>
<td>125</td>
<td>5</td>
<td>1.37</td>
</tr>
<tr>
<td>Caso 9</td>
<td>8700</td>
<td>150</td>
<td>150</td>
<td>7.2</td>
<td>1.62</td>
</tr>
<tr>
<td>Caso 10</td>
<td>8700</td>
<td>120</td>
<td>180</td>
<td>10.37</td>
<td>2.28</td>
</tr>
<tr>
<td>Caso 11</td>
<td>12700</td>
<td>352</td>
<td>88</td>
<td>1.15</td>
<td>0.55</td>
</tr>
<tr>
<td>Caso 12</td>
<td>12700</td>
<td>340</td>
<td>100</td>
<td>1.49</td>
<td>0.82</td>
</tr>
<tr>
<td>Caso 13</td>
<td>12700</td>
<td>308</td>
<td>132</td>
<td>2.59</td>
<td>1.57</td>
</tr>
<tr>
<td>Caso 14</td>
<td>12700</td>
<td>256</td>
<td>184</td>
<td>5</td>
<td>1.72</td>
</tr>
<tr>
<td>Caso 15</td>
<td>12700</td>
<td>220</td>
<td>220</td>
<td>7.2</td>
<td>2.13</td>
</tr>
<tr>
<td>[16]</td>
<td>12700</td>
<td>240</td>
<td>200</td>
<td>5.95</td>
<td>2.08</td>
</tr>
<tr>
<td>[16]</td>
<td>12700</td>
<td>200</td>
<td>240</td>
<td>8.57</td>
<td>4.02</td>
</tr>
<tr>
<td>[16]</td>
<td>12700</td>
<td>100</td>
<td>340</td>
<td>17.2</td>
<td>7.22</td>
</tr>
</tbody>
</table>
Interpolando i valori si ottiene:

Di seguito sono riportate le equazioni delle rette interpolanti per i casi confrontati:

- **Re=5800:**

 \[S_i = 0.1225 \cdot S_g + 0.4 \quad R^2 = 0.923 \]
 \[\text{[15]} \quad S_i = 0.3402 \cdot S_g - 1.2903 \quad R^2 = 0.9434 \]

- **Re=8700:**

 \[S_i = 0.187 \cdot S_g + 0.339 \quad R^2 = 0.991 \]

- **Re=12700:**

 \[S_i = 0.2533 \cdot S_g + 0.363 \quad R^2 = 0.984 \]
 \[\text{[16]} \quad S_i = 0.4355 \cdot S_g - 0.1644 \quad R^2 = 0.975 \]
Come per il numero di swirl S_2 sembrerebbe che esistano due tipi di rette per due diversi campi di S_g.

6.10 Legame swirl S_3 e swirl geometrico S_g

Utilizzando lo stesso procedimento adottato per gli S_2 e S_1 deduciamo il legame tra il numero di swirl S_3 e S_g. I valori considerati sono riassunti nella tabella 6.20.

Tabella 6.20 Valori di S_3 per $1 < S_g < 11$

<table>
<thead>
<tr>
<th>Prova</th>
<th>Re</th>
<th>Portata aria assiale [Nl/min]</th>
<th>Portata aria tangenziale [Nl/min]</th>
<th>S_g</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>5800</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>0.37</td>
</tr>
<tr>
<td>Caso 2</td>
<td>5800</td>
<td>140</td>
<td>60</td>
<td>2.59</td>
<td>0.85</td>
</tr>
<tr>
<td>Caso 3</td>
<td>5800</td>
<td>116</td>
<td>84</td>
<td>5</td>
<td>0.87</td>
</tr>
<tr>
<td>Caso 4</td>
<td>5800</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>0.85</td>
</tr>
<tr>
<td>Caso 5</td>
<td>5800</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>1.02</td>
</tr>
<tr>
<td>Caso 6</td>
<td>8700</td>
<td>240</td>
<td>60</td>
<td>1.15</td>
<td>0.41</td>
</tr>
<tr>
<td>Caso 7</td>
<td>8700</td>
<td>210</td>
<td>90</td>
<td>2.59</td>
<td>0.95</td>
</tr>
<tr>
<td>Caso 8</td>
<td>8700</td>
<td>175</td>
<td>125</td>
<td>5</td>
<td>0.91</td>
</tr>
<tr>
<td>Caso 9</td>
<td>8700</td>
<td>150</td>
<td>150</td>
<td>7.2</td>
<td>0.96</td>
</tr>
<tr>
<td>Caso 10</td>
<td>8700</td>
<td>120</td>
<td>180</td>
<td>10.37</td>
<td>1.12</td>
</tr>
<tr>
<td>Caso 11</td>
<td>12700</td>
<td>352</td>
<td>88</td>
<td>1.15</td>
<td>0.41</td>
</tr>
<tr>
<td>Caso 12</td>
<td>12700</td>
<td>340</td>
<td>100</td>
<td>1.49</td>
<td>0.54</td>
</tr>
<tr>
<td>Caso 13</td>
<td>12700</td>
<td>308</td>
<td>132</td>
<td>2.59</td>
<td>1.01</td>
</tr>
<tr>
<td>Caso 14</td>
<td>12700</td>
<td>256</td>
<td>184</td>
<td>5</td>
<td>1.01</td>
</tr>
<tr>
<td>Caso 15</td>
<td>12700</td>
<td>220</td>
<td>220</td>
<td>7.2</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Interpolando i valori considerati otteniamo il legame tra S_3 e S_g:
Figura 6.41 Legame $S_3 S_g$ per $Re=5800, 8700, 12700$ sul campo $1 < S_g < 11$

- **Re=5800:**
 \[S_3 = 0.0526 \cdot S_g + 0.515 \quad R^2 = 0.614 \quad (6.35) \]

- **Re=8700:**
 \[S_3 = 0.0578 \cdot S_g + 0.566 \quad R^2 = 0.621 \quad (6.36) \]

- **Re=12700:**
 \[S_3 = 0.1056 \cdot S_g + 0.451 \quad R^2 = 0.711 \quad (6.37) \]
Escludiamo i valori per $S_g=2.592$ e otteniamo:

![Graph showing the relationship between S_3 and S_g for different Re values]

A cui corrispondono le seguenti rette:

- **$Re=5800$:**
 \[S_3 = 0.0673 \cdot S_g + 0.3783 \quad R^2 = 0.8544 \]
 \[(6.38) \]

- **$Re=8700$:**
 \[S_3 = 0.0752 \cdot S_g + 0.404 \quad R^2 = 0.9 \]
 \[(6.39) \]

- **$Re=12700$:**
 \[S_3 = 0.1183 \cdot S_g + 0.333 \quad R^2 = 0.962 \]
 \[(6.40) \]
I valori di swirl S_3 esclusi dall’interpolazione (zona di transizione) sono riportati nella tab. 6.21.

<table>
<thead>
<tr>
<th>Reynolds</th>
<th>S_g</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5800</td>
<td>2.59</td>
<td>0.55</td>
</tr>
<tr>
<td>8700</td>
<td>2.59</td>
<td>0.6</td>
</tr>
<tr>
<td>12700</td>
<td>2.59</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Come già fatto in precedenza, disponendo delle misure di velocità effettuate in [15] si è deciso di ampliare il caso a $Re = 5800$ considerando anche i dati delle prove effettuate in [15]; i casi analizzati sono riassunti nella tab. 6.22.

<table>
<thead>
<tr>
<th>Prova</th>
<th>Re</th>
<th>Portata aria assiale [Nl/min]</th>
<th>Portata aria tangenziale [Nl/min]</th>
<th>S_g</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso 1</td>
<td>5800</td>
<td>160</td>
<td>40</td>
<td>1.15</td>
<td>0.37</td>
</tr>
<tr>
<td>Caso 2</td>
<td>5800</td>
<td>140</td>
<td>60</td>
<td>2.59</td>
<td>0.85</td>
</tr>
<tr>
<td>Caso 3</td>
<td>5800</td>
<td>116</td>
<td>84</td>
<td>5</td>
<td>0.87</td>
</tr>
<tr>
<td>Caso 4</td>
<td>5800</td>
<td>100</td>
<td>100</td>
<td>7.2</td>
<td>0.85</td>
</tr>
<tr>
<td>Caso 5</td>
<td>5800</td>
<td>80</td>
<td>120</td>
<td>10.37</td>
<td>1.02</td>
</tr>
<tr>
<td>[15]</td>
<td>5800</td>
<td>60</td>
<td>140</td>
<td>14.11</td>
<td>1.03</td>
</tr>
<tr>
<td>[15]</td>
<td>5800</td>
<td>40</td>
<td>160</td>
<td>18.43</td>
<td>1.12</td>
</tr>
</tbody>
</table>
Analisi dati e risultati sperimentali

Figura 6.43 Legame \(S_1, S_g \) per \(Re=5800, 8700, 12700 \) sul campo \(1 < S_g < 19 \)

Il legame tra swirl geometrico e swirl \(S_1 \) per il caso a \(Re = 5800 \) ora risulta:

- **Re=5800:**

 \[S_3 = 0.0371 \cdot S_g + 0.528 \quad R^2 = 0.7476 \] \text{(6.41)}

Il valore di swirl \(S_3 \) in corrispondenza di \(S_g = 2.592 \) (zona di transizione) ottenuto è riportato in tab. 6.23:

<table>
<thead>
<tr>
<th>Reynolds</th>
<th>(S_g)</th>
<th>(S_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5800</td>
<td>2.59</td>
<td>0.63</td>
</tr>
</tbody>
</table>
6.11 Confronto dei legami $S_s S_g$ ottenuti ($S_1 S_2 S_3$)

Di seguito è riportato un confronto conclusivo dei legami $S_s S_g$ ottenuti in questo lavoro per tutte le definizioni di swirl utilizzate ($S_1 S_2 S_3$):

![Figure 6.44 Legami $S_s S_g$ per $S_1 S_2 S_3$ sul campo $1 < S_g < 11$ per $Re=5800$, 8700 e 12700](image)

Di seguito sono riportate le rette di interpolazione divise per il Re del flusso e i numeri di swirl corrispondenti alla zona $S_g \approx 2.5$:

- **Re=5800:**

 \[
 \begin{align*}
 S_1 &= 0.1225 \cdot S_g + 0.4 & R^2 &= 0.923 \quad (6.42) \\
 S_1 (S_g = 2.59) &= 0.72 \\
 S_2 &= 0.1579 \cdot S_g + 0.3924 & R^2 &= 0.9065 \quad (6.43) \\
 S_2 (S_g = 2.59) &= 0.8 \\
 S_3 &= 0.0673 \cdot S_g + 0.3783 & R^2 &= 0.8544 \quad (6.44) \\
 S_3 (S_g = 2.59) &= 0.55
 \end{align*}
 \]

- **Re=8700:**

 \[
 \begin{align*}
 S_1 &= 0.187 \cdot S_g + 0.339 & R^2 &= 0.991 \quad (6.45)
 \end{align*}
 \]

Analisi dati e risultati sperimentali

\[S_1 \left(S_g = 2.59 \right) = 0.82 \]
\[S_2 = 0.2245 \cdot S_g + 0.3354 \quad R^2 = 0.985 \quad (6.46) \]
\[S_3 = 0.0752 \cdot S_g + 0.404 \quad R^2 = 0.9 \quad (6.47) \]
\[S_3 \left(S_g = 2.59 \right) = 0.6 \]

- **Re=12700:**

\[S_1 = 0.2533 \cdot S_g + 0.363 \quad R^2 = 0.984 \quad (6.48) \]
\[S_1 \left(S_g = 2.59 \right) = 1.02 \]
\[S_2 = 0.3775 \cdot S_g + 0.2025 \quad R^2 = 0.9962 \quad (6.49) \]
\[S_2 \left(S_g = 2.59 \right) = 1.18 \]
\[S_3 = 0.1183 \cdot S_g + 0.333 \quad R^2 = 0.962 \quad (6.50) \]
\[S_3 \left(S_g = 2.59 \right) = 0.64. \]

Le relazioni ottenute (6.44)-(6.52) mostrano chiaramente le differenze che si ottengono utilizzando le varie definizioni di \(S \) oltre all’influenza del \(Re \) sul valore di \(S \); il coefficiente angolare minore è ottenuto nella condizioni a \(Re=5800 \) considerando la definizione \(S_3 \). Di contro utilizzando la definizione \(S_2 \) per la corrente a \(Re=12700 \) si ottengono i maggiori valori di \(S \) all’aumentare di \(S_g \). Le tre relazioni ottenute per \(S_3 \) mostrano i valori più bassi di \(S \) all’aumentare di \(S_g \).

Osservando i valori di swirl ottenuti tramite le definizioni (sez. 5.3) possiamo notare come i valori \(S_1 \) e \(S_2 \) risentano particolarmente dell’influenza di \(Re \) mostrando valori crescenti nei tre casi considerati con il massimo per \(Re=12700 \) (\(S_1=1.02 \) e \(S_2=1.18 \)). Il valore \(S_3 \) a differenza degli altri mostra escursioni minori attestandosi sempre attorno al valore critico \(S=0.6 \). Questo aspetto è già stato indagato. Inoltre il valore \(S_3 \) per la corrente a \(Re=5800 \) in corrispondenza di \(S_g \approx 2.59 \), risulta in accordo con quanto trovato in [3]. Infine è possibile notare, come già discusso in precedenza, che i valori di \(S_2 \) risultano maggiori del corrispettivo \(S_1 \). Tale tendenza sembrerebbe aumentare al crescere di \(Re \) e quindi dei valori di fluttuazioni di turbolenza.
Capitolo 6

Figura 6.45 Legami \(S_g \) per \(S_1, S_2, S_3 \) sul campo \(1 < S_g < 11 \) per \(Re=5800 \) e \(12700 \); le curve includono i dati dei lavori di tesi [15] [16]

Ampliando il range di \(S_g \) includendo anche i dati del lavoro di tesi [15] per i casi a \(Re =5800 \) e i dati di [16] per \(Re =12700 \) otteniamo:

- **Re=5800:**

 \[S_1 = 0.2226 \cdot S_g - 0.1073 \quad R^2 = 0.93 \quad (6.51) \]

 \[
 S_1 \left(S_g = 2.59 \right) = 0.47
 \]

 \[S_2 = 0.2255 \cdot S_g + 0.0328 \quad R^2 = 0.9496 \quad (6.52) \]

 \[
 S_2 \left(S_g = 2.59 \right) = 0.62
 \]

 \[S_3 = 0.0371 \cdot S_g + 0.528 \quad R^2 = 0.7476 \quad (6.53) \]

 \[
 S_3 \left(S_g = 2.59 \right) = 0.62
 \]

- **Re=12700:**

 \[S_1 = 0.4192 \cdot S_g - 0.1414 \quad R^2 = 0.96 \quad (6.54) \]

 \[
 S_1 \left(S_g = 2.59 \right) = 0.94
 \]
Analisi dati e risultati sperimentali

\[S_2 = 0.3823 \cdot S_g + 0.1919 \quad R^2 = 0.9793 \quad (6.55) \]
\[S_2(S_g = 2.59) = 1.18 \]

\[S_3 = 0.1183 \cdot S_g + 0.333 \quad R^2 = 0.962 \quad (6.56) \]
\[S_3(S_g = 2.59) = 0.64 \]

Possiamo notare le differenti pendenze (6.53)-(6.58) assunte dalle rette riferite alle diverse definizioni di \(S \). Per quanto riguarda il legame \(S_3, S_g \) per \(Re=12700 \) (6.58) essa è limitata al campo di \(S_g \) indagato in questo lavoro non disponendo dei valori \(S_3 \) per \(S_g > 8 \). In particolare i coefficienti delle rette angolari risultano simili a due a due: le rette di interpolazione riferite a \(S_1 \) e \(S_2 \) per il caso a \(Re=12700 \) (6.56), (6.57) mostrano la pendenza maggiore seguite da \(S_1 \) e \(S_2 \) per il caso a \(Re=5800 \) (6.53), (6.54) indicando una discreta influenza di \(Re \) sul valore \(S \). Le due curve \(S_3 \) per \(Re=5800 \) e 12700 (6.55), (6.58) mostrano coefficienti angolari differenti seppure entrambi sensibilmente più bassi rispetto a \(S_1 \) e \(S_2 \). Estendendo il range di \(S_g \) (1\(< S_g < 19 \)), notiamo come il numero \(S_3 \) non ne risenta mantenendosi circa pari al valore critico \(S = 0.6 \) in corrispondenza di \(S_g \approx 2.59 \). I valori \(S_1 \) \(S_2 \) risultano inferiori rispetto a quelli calcolati attraverso le relazioni ottenute solo con i dati di questo lavoro come è possibile anche notare dal valore di \(S \) per \(S_g \approx 2.59 \). Il valore \(S_2 \) per il caso con \(Re \) più basso è pari al rispettivo \(S_3 \) indicando la poca influenza del termine di pressione che caratterizza la definizione \(S_2 \). Al’aumentare di \(Re \) la differenza tra i due valori è sensibile. Il valore \(S_2 \) in corrispondenza di \(S_g \approx 2.59 \), calcolato su un più ampio range di \(S_g \) (1\(< S_g < 19 \)), risulta pari a quello ottenuto in questo lavoro analizzando il campo (1\(< S_g < 11 \)). Anche attraverso queste relazioni i valori di \(S_1 \) risultano inferiori a \(S_2 \) indicando una certa influenza dei termini fluttuanti come già visto in precedenza.
Capitolo 7

Conclusioni

In questo lavoro attraverso la tecnica di velocimetria laser Doppler sono state acquisite misure dettagliate delle componenti di velocità medie e di fluttuazioni turbolente in un flusso assialsimmetrico, confinato e altamente turbolento. L’utilizzo di un generatore di swirl di tipo ad ingresso assiale e tangenziale permette la generazione di flussi swirlati con profili di velocità tangenziale che raggiungono il loro massimo ai bordi del flusso e sono contenuti in prossimità del centro (core) del flusso.

Dall’analisi dei profili di velocità ottenuti (fig. 6.1 6.2 6.3) risultano evidenti le differenze tra i casi a basso numero di swirl e quelli ad alto numero di swirl. In particolare per bassi numeri di swirl geometrico ($S_g<3$) la portata di aria tangenziale introdotta non è abbastanza per generare una zona di ricircolazione (vortex breakdown), che invece risulta ben visibile a partire da $S_g\geq 5$. All’aumentare del numero di swirl ($S_g\geq 5$) i profili tendono a stabilizzarsi. Osservando i profili di RMS (fig. 6.10-6.13, fig. 6.17-6.19) infatti si nota come per $S_g\geq 5$ essi siano ben più regolari rispetto ai casi a swirl più basso ($S_g<3$). Inoltre osservando i profili di velocità assiale e tangenziale al variare di Re per $S_g\geq 5$ (fig. 6.20-6.25) si nota come dopo un certo numero di swirl geometrico, le caratteristiche dei flussi sembrerebbero risultare indipendenti dal numero di Re.

La stima della portata (tab. 6.4) e dei flussi di quantità di moto assiale (tab. 5.8) e tangenziale calcolati dai profili di velocità mostrano un certo grado di incertezza. Questo è dovuto alla difficoltà nell’effettuare le misure in prossimità dell’efflusso e al fatto che il getto swirlato sia di tipo confinato. Come già ampiamente sottolineato, le misure oggetto di tale lavoro sono state effettuate ad una quota $z/D = 0.6$ a cui il flusso si è aperto sempre più avanzando in direzione assiale: la presenza di una forte componente tangenziale, infatti, induce un elevato gradiente radiale di pressione (forze centrifughe) all’efflusso del getto causando un aumento della velocità radiale nel flusso stesso [1]: ciò comporta l’aumento della quantità di aria ambiente coinvolta nel getto all’aumentare del grado di swirl nel flusso (fig. 6.26) come testimoniato in letteratura [28]. Per ottenere risultati attendibili per flussi fortemente swirlati sarebbe pertanto necessario compiere le misure ad una quota assiale il più possibile vicina all’efflusso per limitare l’allargarsi del flusso e quindi il coinvolgimento di aria ambiente.

Ciononostante è stato osservato [30] che i flussi di quantità di moto rimangono costanti a tutte le stazioni assiali, il che dà credibilità ai dati misurati.
Analizzando i profili di portata e dei flussi di quantità di moto assiale e tangenziale al variare dell’estremo di integrazione (fig. 5.6-5.11) si può notare come in presenza della zona di ricircolazione la portata non giunge mai ad un livello di saturazione così come il flusso della quantità di moto tangenziale ($\propto W^2$); tale comportamento non caratterizza invece i flussi della quantità di moto assiale ($\propto U^2$); osservando infatti i profili di velocità ottenuti nei vari casi (fig. 6.1 6.2 6.3) possiamo notare come la velocità assiale tenda a zero verso gli estremi del dominio mentre ciò non avviene per la componente tangenziale della velocità. Tale situazione è dovuta al confinamento del getto swirlato e trova conferme in letteratura in [31] dove si osserva come per un getto swirlato confinato i flussi di quantità di moto assiale e tangenziale non rimangano costanti a causa degli effetti di bordo delle pareti della camera. In generale ciò comporta difficoltà nella stima del numero di swirl per getti confinati e in particolare in tale lavoro la maggiore difficoltà è stata riscontrata nell’individuazione degli estremi del dominio in cui limitare il calcolo del numero di swirl (tab 5.5).

7.1 Influenza delle approssimazioni

Il grado di swirl delle condizioni analizzate è stato caratterizzato attraverso le diverse definizioni del numero di swirl comunemente utilizzate, assieme alle loro ipotesi e semplificazioni. È doveroso precisare che dato che S rappresenta il rapporto di due quantità integrate, due flussi swirlati con distribuzioni di velocità tangenziali completamente differenti possano condividere lo stesso numero S come osservato da Farokhi in [32]. Pertanto l’utilizzo di S per caratterizzare i comportamenti di tutti i flussi swirlati è in qualche modo imperfetto [30]. Le definizioni di swirl utilizzate in questo lavoro dipendono dall’entità delle componenti delle velocità così come dalle condizioni iniziali di velocità, ovvero dal meccanismo di generazione dello swirl. In particolare sono stati calcolati S_1 (5.11), S_2 (5.12) e S_3 (5.13). Il termine che rappresenta gli sforzi di Reynolds ($u\overline{w}$) viene trascurato in questo lavoro in accordo con [2] dove si osserva che tale quantità ha influenza modesta ($\approx 2\%$) sul calcolo di S_1. L’approssimazione di ritenere i termini fluttuanti trascurabili (S_2 (5.12)) ha una discreta influenza sul numero di swirl calcolato. In particolare si evidenzia come il numero di swirl S_2 ottenuto trascurando tali componenti risulti maggiore di S_1. Gli scostamenti (tab. 6.8) sono contenuti per numeri di swirl bassi ($S_g<3$) e diventano considerevoli per numeri di swirl maggiori. Le differenze più ampie si registrano in corrispondenza delle condizioni a $S_g\approx 2.5$. Riguardo le altre condizioni le differenze sono imputabili ai valori RMS che compaiono a denominatore nella formula S_1: osservando i profili delle componenti fluttuanti (fig. 6.10–6.12, 6.17–6.19) si osserva come le fluttuazioni di velocità assiale
siano maggiori di quelle tangenziali in accordo con quanto osservato in [2]. Questo determina che il termine a denominatore della formula (5.11)
\[
\left[u'^2 - \frac{1}{2} (w'^2 + v'^2) \right] > 0
\]
comportando, pertanto, valori di \(S_2 \) maggiori di \(S_1 \). I valori di swirl calcolati con la definizione \(S_3 \) (e quindi con l’ipotesi di profilo di velocità tangenziale di corpo rigido e di profilo di velocità assiale “top-hat”) presentano differenze significative rispetto ad \(S_1 \) e \(S_2 \) (tab. 6.7) persino a bassi numeri di swirl. Ciò è dovuto all’assenza di
\[
- \frac{1}{2} \left(w'^2 + v'^2 \right)
\]
che approssima il termine di pressione nella definizione di swirl. Gli scostamenti di \(S_3 \) rispetto a \(S_1 \) e \(S_2 \) aumentano al crescere di \(S_g \), testimoniando l’aumento del termine di pressione all’aumentare del grado di swirl del flusso.

Analizzando i profili di velocità, gli andamenti della portata e dei flussi di quantità di moto assiale e tangenziale al variare dell’estremo di integrazione per la condizione a \(S_g \approx 2.5 \) si può notare come essi siano differenti sia dalle condizioni a basso numero di swirl (\(S_g \approx 1.5 \)) che di quelle ad alto numero di swirl (\(S_g \geq 5 \)). Con molta probabilità tale condizione rappresenta una situazione di transizione tra due regimi di moto in cui l’ipotesi di stazionarietà alla base delle misure LDV viene a cadere. In quanto condizioni di transizione esse sono caratterizzate da fenomeni di instabilità e i profili di velocità ottenuti dalle misure puntuali LDV perdono di significato.

Pertanto i valori di \(S \) caratteristici di questa condizione (\(S_g \approx 2.5 \)) sono stati ottenuti tramite interpolazione dei dati a disposizione. Possiamo notare come il valore \(S_3 \) si mantenga sempre attorno al valore \(S_3 = 0.6 \) in accordo con quanto trovato in Chigier e Chervinsky [3]. Il valore \(S_1 \) risulta sempre inferiore al corrispettivo \(S_2 \) per tutti i \(Re \) e per i vari campi di \(S_g \) analizzati. Sia \(S_1 \) che \(S_2 \) crescono all’aumentare del \(Re \) assumendo valori distanti dal valore critico \(S_3 = 0.6 \). Il valore maggiore per entrambi si ottiene per la corrente a \(Re = 12700 \) (\(S_1 \approx 1, S_2 \approx 1.2 \)).

I vari metodi di calcolo \(S_{RR} \), \(S_{AB} \), \(S_{M} \) (5.23)-(5.25) utilizzati non sembrano introdurre significative differenze (fig. 6.27-6.29) ai fini della determinazione del numero di swirl (confermando la validità dell’ipotesi di assialsimmetria).

Per quanto riguarda i legami \(S, S_g \) ottenuti (6.44)-(6.58) possiamo notare, oltre alle già accennate differenze tra le varie definizioni di swirl, anche una modesta influenza del \(Re \) sul grado di swirl del flusso. Inoltre si nota come i legami \(S, S_g \) per il campo di \(S_g \) (1< \(S_g < 11 \)) risultano differenti rispetto al campo più ampio (1< \(S_g < 19 \)); questo comportamento porterebbe a pensare all’esistenza di legami \(S, S_g \) differenti per differenti campi di \(S_g \) (fig.6.36 6.40). Per quanto riguarda il legame trovato da Claypole (2.17) si riscontra un buon accordo per quanto riguarda le definizioni \(S_1 \) e \(S_2 \) per il numero di \(Re \) più basso nel campo di \(S_g \) (1< \(S_g < 19 \)) (6.53) (6.54).
Elenco dei simboli

LATINO

A_d sezione del volume di misura
A_i area totale ingressi tangenziali
D diametro
d_A diametro bruciatore prima del convergente
d_h diametro bruciatore all’efflusso
d_{gasgun} diametro esterno del gas gun prima del tratto convergente
$d_{gasgun\,i}$ diametro interno del gas gun
d_b diametro mozzo palettatura
d_t diametro tubi dell’aria tangenziale
d_{t1} diametro tubi dell’aria tangenziale
E intensità del campo elettrico
F forza
f frequenza
fc frequenza critica
G flusso di quantità di moto e parametro di swirl
k numero d’onda
L_c dimensione caratteristica della zona di indagine
m portata massica
n indice di rifrazione
N data rate/numero particelle campionate
$\bar{\pi}_p$ concentrazione media di particelle
N numero dei campioni acquisiti
p pressione
Q portata volumetrica
r coordinata radiale
r_b raggio interno del bruciatore all’efflusso
R_b raggio interno del bruciatore (18 mm) all’efflusso
Re numero di Reynolds della corrente
r_0 raggio del condotto dove viene immessa portata tangenziale prima del convergente
S numero di swirl
Sk numero di Stokes
S_g numero di swirl geometrico
u_i valore i-esimo di velocità acquisito alla stazione r
U velocità assiale ottenuta dalle misure LDV come media delle N velocità u_i acquisite alla stazione r
U_m velocità media
u vettore velocità

V velocità radiale ottenuta dalle misure LDV come media delle \(N \) velocità \(v_i \) acquisite alla stazione \(r \)

\(v_r \) velocità relativa tra le particelle e il flusso

W velocità tangenziale ottenuta dalle misure LDV come media delle \(N \) velocità \(w_i \) acquisite alla stazione \(r \)

GRECO

\(\varepsilon \) efficienza

\(\varepsilon_{\%} \) errore percentuale

\(\theta \) angolo di intersezione dei fasci laser e coordinata tangenziale

\(\lambda \) lunghezza d’onda

\(\mu \) viscosità dinamica

\(v \) viscosità cinemtica

\(\rho \) densità

\(\tau_p \) tempo caratteristico particella

\(\tau_u \) tempo caratteristico ugello

\(\phi \) diametro e inclinazione palettatura

\(\omega \) pulsazione di oscillazione

\(\Omega \) velocità angolare
Bibliografia

laurea in Ingegneria Aerospaziale, Politecnico di Milano, A.A. 2010-2011

[18] D.L. Rhode and D.G. Lilley, “Predictions and measurements of Isothermal Flowfields in Axisymmetric Combustor Geometries”, NASA Contractor Report 174916, Oklahoma State University, Stillwater, Oklahoma

