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Abstract 

 

The electro-thermal characterization of Li-Ion batteries is today a 

forefront topic, due to the recent interest in Electric Vehicles (EVs), Plug-in 

Electric Vehicles (PHEVs) and Hybrid Electric Vehicles (HEVs).  

In order to control and manage these devices, suitable models are needed. For 

control-oriented applications, the electro-thermal behavior of a battery is 

typically modeled using an equivalent circuit analogy approach. This leads to 

phenomenological models that capture the essential steady-state and dynamic 

behavior of the system (typically voltage as a function of a current input), 

relying on a set of calibration parameters. The model parameters, such as the 

open-circuit voltage, battery capacity and internal resistance, are typically 

scheduled with respect to the temperature, which is regarded as static input to 

the model. 

The assumption commonly made in this case is to consider the 

temperature uniform throughout the whole system. However, in a real case a 

battery cell presents an internal temperature distribution, due to its thermal 

resistance and the internal heat generation. Although these phenomena are 

often overlooked in these simplified models, they may be quite relevant for safety 

and aging related issues. Therefore, for applications related to battery 

management systems design and optimization, or for the thermal management of 

such components, it is necessary to provide information on the battery internal 

temperature. 

In this thesis, a general modeling methodology that accounts for the 

internal temperature dynamics is proposed to predict the temperature 

distribution within a prismatic battery cell, accounting for different operating 

conditions. Unlike most control-oriented models, based on identification 

techniques, the proposed modeling approach is physically based, relying on the 

fundamental equations for heat diffusion and convection. This ensures 

consistency with the system behavior, and relies on a set of physical parameters 

that can be easily obtained from the open literature or from experimental tests. 

Various models have been developed, considering different cooling solutions 

commonly available for battery packs for motive applications. First, a general 

model is developed starting from the formulation of 1D unsteady heat diffusion 

problem that accounts for different boundary conditions. Then, the 1D model 

structure developed is extended to a 1+1D scheme in order to account for the 

variability of the boundary conditions. A spatial discretization is operated along 

the second direction to account for the evolution of the boundary conditions. 

Within each cell lump, the internal temperature profile is determined by solving 

the unsteady heat diffusion equation with internal heat generation and the 

proper boundary conditions. The proposed modeling approach allows for a 
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complete mapping of a Li-Ion battery cell temperature with respect to both time 

and space. At the same time, the solution scheme adopted leads to an algorithm 

that is sufficiently simple and computationally efficient. The 1+1D modeling 

approach developed allow for an easy and rapid comparison of different cooling 

systems. 

The modeling methodology developed is applied to a pouch-style Li-Ion 

battery cell and an experimental setup is developed ad hoc to characterize the 

thermal behavior of a Li-Ion battery cell. The experimental results are used to 

calibrate the model. A 1+1D model of a cooling air system is developed and 

then validated though a comparison with an advanced finite element simulator. 

The model developed is general and characterized by a flexible structure, 

which allows one easily select cooling parameters, such as cooling air velocity, 

air temperature, air duct geometry, etc., and compare the effects of different 

cooling systems. The consistency with the FEM solution, the simple structure, and the 
computational efficiency make the model an ideal candidate for simulation of battery 
packs, performance estimation, design of cooling systems, and optimization of thermal 
management systems. 

 

 

 

Key words: Energy storage systems, Li-Ion battery, Thermal characterization, 

Battery modeling. 
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Sommario 

 

I temi del risparmio energetico e dell’eco-sostenibilità sono al giorno 

d’oggi in primo piano per lo sviluppo della società. 

Nel settore dei trasporti su ruota, i veicoli ibridi (HEV/PHEV) sono la soluzione 

seguita dai grandi costruttori per far fronte al problema. A tutt’oggi, il maggior 

ostacolo alla diffusione di questi veicoli resta lo stoccaggio dell’energia. Le 

batterie agli ioni di litio (Li-Ion), data la loro grande potenza ed energia 

specifica. sono la prima scelta come sistema di stoccaggio dell’energia a bordo 

di tali veicoli. Tali dispositivi, d’altro canto richiedono un sistema di gestione e 

controllo dedicato.  

In questo lavoro di tesi viene affrontato il tema della modellazione 

termica di batterie agli ioni di litio. I modelli volti al controllo e alla gestione 

delle batterie approssimano normalmente il funzionamento di tali dispositivi 

attraverso l’uso di circuiti elettrici equivalenti. I parametri di tali circuiti, quali 

tensione a circuito aperto, resistenza interna e capacità della batteria, vengono 

tabulati in funzione dello stato di carica (SoC) e della temperatura. 

La maggior parte dei modelli volti al controllo delle batterie ipotizzano che il 

sistema sia a temperature uniforme. Tuttavia la resistenza termica della batteria 

e il calore generato internamente fanno si che si generi una distribuzione 

instazionaria tridimensionale di temperatura all’interno della batteria stessa. 

Da questo l’esigenza di sviluppare modelli termici più dettagliati, che siano in 

grado di predire la distribuzione di temperatura all’interno di una batteria 

senza d’altro canto diventare eccessivamente inefficienti dal punto di vista del 

tempo di calcolo e della memoria richiesti. In questa tesi viene sviluppata una 

metodologia di modellazione per predire la distribuzione di temperatura in una 

batteria agli ioni di litio, in presenza di generazione interna di calore e 

considerando diverse condizioni di funzionamento. L’approccio seguito si basa 

solo su principi fisici e non su tecniche d’identificazione sperimentale 

normalmente usate per caratterizzare tali modelli.  

In primo luogo è presentata una revisione dell’attuale stato dell’arte. 

Partendo dalla caratterizzazione elettrica sono definiti e descritti modelli 

“fondamentali” e “fenomenologici”. Particolare rilievo è dato ai modelli volti 

al controllo e alla gestione delle batterie agli ioni di litio (control-oriented 

models). Un ampio esame delle tecniche e degli approcci di modellazione della 

parte termica è fornito nella seconda parte del Capitolo 2. Questa parte è divisa 

in tre sottosezioni, rispettivamente caratterizzazione termica di una singola 

cella, caratterizzazione termica di un pacco di batterie e sistemi di gestione 

termica delle batterie. 

Il Capitolo 3 presenta l’approccio seguito in questa tesi per modellare la 

dinamica termica di una batteria agli ioni di litio. Dato che tale approccio 
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fonda su principi fisici, è proposta una revisione dei concetti di bilancio 

energetico e delle equazioni di base di trasmissione del calore. 

Nel Capitolo 4 viene sviluppata la metodologia di modellazione. In 

primo luogo è stato risolto un problema monodimensionale. L’equazione della 

diffusione del calore è risolta applicando il metodo delle trasformate integrali, 

ottenendo una soluzione in grado di predire la distribuzione interna di 

temperatura con qualsiasi condizione al contorno. In particolare sono 

presentati due casi di particolare interesse: condizioni al contorno di 

convezione e condizioni di temperatura di parete imposta. 

Il primo modello simula il comportamento della batteria quando 

raffreddata con un flusso d’aria mentre il secondo riproduce le condizioni a cui 

è sottoposta la batteria durante i test di identificazione dei parametri interni. In 

questi test la batteria viene posta in mezzo a due celle di Peltier che impongono 

una temperatura di parete al sistema.I due modelli 1D sono poi estesi seguendo 

un approccio 1+1D in modo da tenere in considerazione la variabilità delle 

condizioni al contorno nella seconda direzione spaziale. 

Il sistema viene discretizzato in questa direzione ed in ogni blocco il modello 1D 

è utilizzato per predire la distribuzione di temperatura. Questo consente di 

ottenere una distribuzione bi-dimensionale della temperatura, mantenendo una 

struttura semplice e un’elevata efficienza computazionale. Il modello 1+1D con 

temperatura imposta simula il comportamento di un “cooling bar system”. I 

modelli sviluppati consentono una rapida comparazione tra i due sistemi di 

raffreddamento e la metodologia può trovare applicazioni nel settore del design 

e dell’ottimizzazione di sistemi di raffreddamento e gestione termica di pacchi di 

batterie. 

Nel Capitolo 5 la metodologia sviluppata viene applicata per modellare 

un modulo agli ioni di litio prodotto da EiG. Come primo approccio i parametri 

termici della batteria richiesti dal modello sono calcolati a partire da dati 

disponibili in letteratura. 

Un setup sperimentale ad hoc ed un laboratorio sono stati allestiti per effettuare 

la caratterizzazione termica di batterie. La conduttività termica della cella 

prima calcolata, è stata misurata sperimentalmente in modo da calibrare il 

modello sviluppato. 

I risultati del modello sono stati comparati con simulazioni effettuate 

con un noto software basato sul metodo delle differenze finite. Alla fine del 

lavoro, il modello 1+1D è stato calibrato e validato tramite tale comparazione. 

I risultati ottenuti sono sufficientemente accurati da poter affermare che la 

metodologia sviluppata è adeguata allo scopo per il quale è stata implementata. 

La sua semplice struttura e l’efficienza computazionale rendono il modello 

proposto un candidato ideale per la simulazione del comportamento termico di 

pacchi di batterie, per il design di sistemi di raffreddamento o sistemi di 

gestione termica. Possibili applicazioni dell’approccio presentato possono 
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essere trovati nel settore dell’analisi e comparazione di diverse tecnologie di 

raffreddamento delle batterie. 
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CHAPTER 1 

 

1.  Introduction 

The modern society relies completely on the fossil fuels - natural gas, 

coal and oil - for its energetic needs. Their reserves are however limited and the 

environmental concern is nowadays haunting the society. 

The utilization of energy in a sustainable way is the only pursuable solution to 

cope with these problems. On a short-medium time frame the energy systems 

are experiencing an increasing of their electrification, in order to reduce fuel 

consumption and emissions. 

Thus, the conversion and storage of energy is becoming a necessary step for the 

global efficiency of the energy generation and utilization process. The most used 

devices to store energy are, nowadays, electro-chemical batteries. They 

interconvert chemical and electrical energy and are widely used in all sectors of 

industry (automotive, aerospace, medical, military, etc.) and in consumer 

oriented applications (e.g., appliances, laptop computers or any electronic 

device). 

In order to maintain competitiveness, automakers have to improve powertrain 

performance and reduce pollutant emissions. In particular, stricter emission 

standards are spurring new interest in batteries for electric-vehicle applications. 

Lithium-based batteries are attractive as energy storage systems in 

hybrid and electric vehicles due to their high theoretical energy densities. 

Furthermore, they are less toxic than nickel cadmium or lead acid cells, and their 

disposal poses fewer environmental problems. 

Figure 1.1 shows a Ragone
1
 plot for various electro-chemical systems, which 

reveals that, at one extreme, energy can be stored into, or extracted from, 

capacitors in milliseconds, making them ideal devices for example to exploit 

regenerative braking energy in Electric Vehicles (EVs) applications. 

At the other end, fuel cells have a very poor dynamic performance requiring 

more time to convert and deliver energy. This limits their application in 

automotive applications where they are often used in conjunction with batteries 

                                                 
1
 A Ragone plot, like the ones depicted in Figure 1.1 and 3, is a double chart used for 

performance comparison of various energy storing devices. On such a chart the values of energy 

density [𝑊 𝑘𝑔 ] are plotted versus power density [𝑊 𝑘𝑔 ]. Both axes are logarithmic, which 

allows comparing performance of very different devices (for example extremely high, and 

extremely low power). 

Conceptually, the vertical axis describes how much energy is available, while the horizontal axis 

shows how quickly that energy can be delivered. The sloping lines on the Ragone plots indicate 

the relative time to get the charge in or out of the device. 
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or capacitors to overcome this problem. Lithium based batteries are somewhere 

in between and provide a reasonable compromise between the two. 

 

 
Figure 1.1. Ragone plot of various electro-chemical conversion systems [1]. 

A lithium ion (Li-Ion) battery is a type of rechargeable battery where 

lithium ions move from the anode (negative pole) to cathode (positive pole) 

during discharge and from the cathode to the anode during the charge process. 

Figure 1.2 reports a sketch of the chemistry of a Li-Ion cell. 

 

 
Figure 1.2. Li-Ion electro-chemical or elementary cell, [1]. 

Different types of Li-Ion batteries use different chemistries and present different 

performance, cost, and safety characteristics. 
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These electric storage devices, first proposed by M.S. Whittingham in the 70‟s, 

now represent a substantial part of the fast growing battery market [2]. They 

achieved this predominant role because Li-Ion storage systems present the best 

specific energy and power densities among the chemical storage systems, as 

shown in Figure 1.3. 

Li-Ion batteries are rapidly becoming the technology of choice for the 

next generation of Electric Vehicles, Battery Electric Vehicles, Plug-In Hybrid 

and Hybrid Electric Vehicles (EVs/BEVs/PHEVs/HEVs). The automotive 

industry is increasingly committed to electrified vehicles to providing 

sustainable mobility in the next decade. Li-Ion battery, so far, is the technology 

that best fits for the need of these vehicles, due to their large specific energy 

density and specific power, making these cells ideally suited for high rate-of-

discharge applications such as acceleration of electric vehicles (see Figure 1.3). 

 

 
Figure 1.3. Ragone plot of energy-storage devices for automotive applications, [3]. 

Right now, the major obstacle to an increased market share of HEVs and mass-

produced commercialization of PHEVs is the battery, and in particular its cost, 

reliability and safety. To this end, great effort is being devoted to address the 

safety, performance and aging
2
 issues of Li-Ion batteries [4]. 

To achieve the required reduction in fossil fuel consumption, a significant 

percentage of the world automobile fleet of 1 billion vehicles will be electrified 

in the coming decade [5]. Ultimately all production, currently 52 Million 

vehicles per year (according to the International Organization of Motor Vehicle 

                                                 
2
 A Li-Ion battery is subjected to two different kinds of aging. One is driven by thermal effects 

the other is by current loads and cycling. 
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Manufacturers), will be replaced with highly electrified vehicles: PHEVs and 

BEVs [6]. To this extend, great interest is devoted to improve the performance 

of such vehicles and their components. In particular, a lot of emphasis and 

efforts been dedicated to the development of new battery technologies over the 

last decade. 

1.1  Motivation and objectives of the thesis 

Since the performance, life and reliability of Li-Ion batteries are quite 

dependent on the operating temperature, great interest has been devoted to study 

cooling solutions and control algorithms for thermal management. 

Detailed studies of the temperature distribution within Li-Ion battery cells 

during charging and discharging conditions have been proposed by several 

authors (see [7], [8], [9], [10]). Most of these studies are conducted utilizing 

FEM (Finite Element Method) thermal simulators, often coupled with detailed 

models that characterize the electrochemical reactions and transport phenomena 

that take place inside a battery.  

Such simulators are extremely useful to gain understanding on how the 

temperature distribution affects the performance of a battery cell. Moreover, 

they also provide important information for cell modeling and design; for 

instance they can help identifying hot spots. On the other hands, such tools are 

too complex to be applied to studies oriented to the characterization of the 

electro-thermal performance of modules and packs, or to the design of battery 

cooling systems and control algorithms. 

This thesis presents a computationally efficient modeling approach to 

characterize the internal temperature distribution within a Li-Ion battery cell. 

This would serve as a tool to design models characterizing the thermal behavior 

of Li-Ion battery cells to be used in the area of performance and thermal 

management studies for battery pack cooling systems. 

To meet these objectives, the model must be both sufficiently simple to be 

executed almost in real-time, and accurate enough to provide a reasonably 

estimation of thermal dynamics inside the cell.  

Computationally efficient models that can provide a reasonable estimate of the 

cell thermal field, with limited calibration effort, can be useful tools for battery 

pack designers and integrators. 

The modeling methodology presented in this thesis is based on the unsteady heat 

diffusion equation, for which an analytical solution is obtained through the 

integral transform method proposed by Ozisik, [11]. 

First of all, a general one-dimensional thermal model is developed to predict the 

temperature distribution inside a prismatic Li-Ion battery cell under different 

boundary and initial conditions. 
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Second, a specific case with convective boundary conditions is studied with the 

objective of characterizing a cell cooled by a forced air flow. 

To characterize the effects of the cooling system on the temperature distribution 

within the cell, the one-dimensional solution is then extended to a 1+1D
3
 model 

that accounts for the variability of the boundary conditions in the flow direction. 

Then a 1D model with imposed boundary conditions is developed to predict the 

temperature distribution within a Li-Ion battery cell during the typical electrical 

characterization experiment, where two Peltier junctions are used to keep the 

temperature of the cell walls at imposed values. Finally, the latter case study is 

extended to a 1+1D model in order to characterize the behavior of a cooling bar 

system. 

The inputs needed by the model, namely the heat generation rate and the thermal 

parameters, will be presented. Finally, an ad hoc experimental set-up to measure 

the thermal parameters of the studied Li-Ion battery cell will be developed.  

The calibration and validation of the model will be presented, adopting a 

detailed 2D FEM simulator as a benchmark.  

1.2 Structure of the thesis 

The thesis is organized as follows. In the second chapter a literature 

review of the state of art of Li-Ion battery modeling is presented, with particular 

focus on the thermal characterization aspects. 

Chapter 3 presents the approach to model the thermal dynamics of a Li-Ion 

battery and the basic physical principles needed to implement a thermal model. 

In Chapter 4 the modeling methodology to predict the internal temperature 

distribution in a prismatic Li-Ion battery cell is developed. First, a general 1D 

modeling approach is described and then it is extended to a 1+1D approach. 

In Chapter 5 the modeling technique developed is first experimentally 

calibrated, and then validated thought a comparison with a finite element (FEM) 

software. 

 

 
 

                                                 
3
 A 1+1D approach is an approximated method to model a 2D problem. It consists in solving the 

mono-dimensional (x-direction) associated problem, which presents an easier mathematical 

solution. Then, by performing a spatial discretization in the second direction (y-direction), it is 

possible to capture the trend along this direction. In this case, a battery cell is discretized along 

the y direction into a certain number N of lumps. The 1D solution in x-direction is applied in 

each lump along the y-direction, thus obtaining a solution varying with respect to both x and y. 

The solution results in a simple mathematical formulation and is much more computationally 

efficient than the 2D solution. 
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CHAPTER 2 

 
2. Review of the state of art for Li-Ion 

battery modeling 

Li-Ion batteries are becoming the dominant battery technology, in 

particular for high power systems. However, they must be used properly to 

prevent accelerated aging, decreasing of performance or damages. 

Therefore, there is a fundamental need for a battery management system (BMS) 

capable of assessing and controlling the state of charge (SoC
4
) and state of 

health (SoH
5
) of a battery pack (see [12] or [13] for a discussion on BMS). 

These two parameters (SoC and SoH) allow the vehicle energy management 

system (EMS) and the battery management system (BMS) to determine the 

optimal operating strategy so that fuel consumption is minimized and battery 

pack longevity maximized. 

SoC and SoH are difficult quantities to estimate because direct measurements 

are either unreliable or impossible [14]. For example, SoC can be measured via 

current integration, but noise in the electrical current measurement can cause the 

estimate to deviate from the true value. SoH is often assessed in terms of 

capacity or power fading, both of which are measurable in a laboratory 

environment, but are almost impossible to estimate during vehicle operations. 

Many algorithms have been proposed in the literature to face this problem [15], 

[16]. They range from data correlation methods such as artificial neural 

networks [17] and fuzzy logic systems [18] to model based approaches such as 

Kalman filtering [19] and sliding mode observers [20]. Model-based approaches 

                                                 
4
 The SoC is defined as the capacity still available in a battery cell. It is normally expressed as a 

percentage of the rated capacity of a new cell and a 0% SoC means empty battery while a 100% 

SoC means fully charged battery. 

Knowing the amount of energy left in a battery compared with the energy it had when it was 

fully charged  gives the user an indication of how much longer a battery will be able to supply a 

load before it needs recharging. Several methods of estimating the SoC of a battery are used: 

SoC from specific gravity measurement, voltage based estimation methods, internal impedance 

or current based estimations. 
5
 The SoH is an indication of the point which has been reached in the life cycle of the battery. 

SoH is an estimation rather than a measurement. It reflects the general condition of a battery and 

its ability to deliver the specified performance compared with a new battery, taking into account 

such factors as charge acceptance, internal resistance, voltage, and self-discharge [1]. 

Knowledge of the SoH can be used to make prognosis or diagnosis and plan replacements [4]. 

This is essentially a monitoring function tracking the long term changes in the battery. 
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are attractive since they provide good result requiring a small effort for the 

calibration [21].  

However, in order to take advantage of model-based approaches, it is necessary 

to define models of the behavior of the battery. In doing so, it is critical to 

balance the accuracy with the complexity and computational time 

This chapter presents a literature review on different approaches to Li-

Ion battery modeling. First, a review of the electrical characterization techniques 

will be presented. Then fundamental and phenomenological models will be 

defined and explained. Finally, an extensive review of the thermal 

characterization modeling and thermal management systems will be presented. 

The open literature consists of many papers providing analysis of lithium-based 

batteries. Perhaps the most comprehensive reference books on the subject are [1] 

and [22]. 

With the increase of computational power and the need to analyze the problems 

in a more detailed way, modeling approaches are becoming more and more 

important. Many ways to model electrochemical energy storage systems exist: 

normally they are classified as fundamental or phenomenological. 

The former can be defined as First Principles Models, as they attempt at 

representing a system starting from its physical foundations. Alternatively, 

phenomenological models refer to models that provide a representation of the 

input/output relationships of a system without investigating the fundamental 

physics. 

In particular, this study focuses on control oriented models which are low-order 

dynamic models (linear or quasi-linear) used to design control algorithms. Such 

models, because of the need for simple structure and low computation effort, are 

mostly phenomenological. 
 

2.1  Electrical characterization 

The first step in the development of a battery model is to perform an 

electrical characterization of the system. 

The typical lithium elementary cell is made up of a metal negative electrode 

(anode), an electrolyte which serves as an ionic path between electrodes, a 

positive electrode (cathode), such as Mn204, and a polymeric separator. 

Figure 2.1 shows a typical Li-Ion elementary cell under the discharge process. 

Note that during the charge the lithium ions and the electrons move in the 

opposite direction, namely from cathode (positive pole) to anode (negative 

pole). 
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Figure 2.1. Electrons and Li-ion movement during discharge, [1]. 

In this thesis the term elementary or electro-chemical cell will be used to denote 

the sandwich anode-electrolyte-cathode shown in Figure 2.1. A battery cell is 

composed by a number of elementary cells in series and is a device which is 

able to supply an electrical load, like the one in Figure 2.2. 

 

 
Figure 2.2. Li-Ion battery cell, [23]. 

A battery module consists of the union of two or more cells electrically 

connected, while, as shown in Figure 2.3, a battery pack is the union of two or 

more battery modules. 

 

 
Figure 2.3. Example of battery pack composed by four modules, [24]. 
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Regarding an elementary cell, a highly reactive material is desired for 

the negative electrode to give a higher cell potential, and hence a higher 

theoretical energy density. Unfortunately, the more reactive the electrode 

material the more likely it reacts irreversibly with the electrolyte. The high 

reactivity of lithium metal is a significant problem for lithium based batteries. 

To avoid this problem, lithium battery systems feature a protective film that 

forms on the electrode surface. 

Alternatively, the lithium metal negative electrode can be replaced with a 

lithium alloy or compound. These materials stabilize the lithium, but also reduce 

the energy density of the cell since the added material is not used in the 

operation of the system. 

Rechargeable batteries for electric-vehicle applications require long cycle life; 

500 to 1000 cycles are desired before the capacity falls below 80% of its initial 

value. For this to be possible, the electrochemical reactions must be highly 

reversible. Some of the most reversible electrodes operate through insertion 

reactions. 

The lithium ion dual insertion systems exhibit the largest theoretical specific 

energy densities for lithium-based systems, although the energy necessarily is 

reduced from corresponding systems utilizing solid lithium anodes, as shown in 

Figure 2.4, proposed by [25]. 

The latter systems, however, present instability problems and they are not 

commercially available. 

 

 
Figure 2.4. Comparison of Ragone plots for the dual ion insertion and solid lithium electrode 

systems. The systems are identical except for the negative electrode. The solid lithium at full charge 

has four times the capacity required according to the stoichiometry, [25]. 

The attainable power is also large, making dual insertion cells ideally suited for 

high rate-of-discharge applications such as acceleration of electric vehicles. 
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To model the electro-chemical behavior of a battery cell, essentially two 

different approaches have been proposed in literature: 

 

 Fundamental, or particle-based distributed, models: 

These models account for particle movement and chemical reactions 

using PDEs. They are rather accurate but on the other hand numerically 

intensive to solve and computationally consuming. 

 

 Phenomenological models: 

These models, instead of investigating the fundamental physics, provide 

a representation of the input/output relationship of the system, often 

adopting a lumped-parameters framework. This is a way of simplifying 

the behavior of spatially distributed systems into a topology consisting of 

discrete entities that approximate the behavior of the distributed system 

under certain assumptions. These models present less complexity and 

mathematically they are cast into ordinary differential equations (ODEs), 

simple to solve and suitable for real-time simulation. On the other hand, 

these models are not able to achieve comparable accuracy to 

fundamental models. 

 

In this section, a review of the electro-chemical modeling techniques for Li-Ion 

battery cells is presented. 

 

2.2.1 Fundamental models 

The word “fundamental” refers to models that describe the behavior of a 

battery cell starting from its physical foundations principles. 

The literature on fundamental models is quite extensive, see [26] for a review of 

the work proposed in the last 20 years. The first approach to model Li-Ion with 

two composite electrodes and a separator was developed by Fuller, Doyle and 

Newman at the University of California, Berkeley in the first half of the 90‟s. 

[25], [27]. A literature review of this topic revealed that most modern models 

are derived from that original work which is considered a milestone for the 

argument. 

In their original works, [25] and [27], Fuller et al. modeled the 

galvanostatic charge and discharge of a dual lithium ion insertion cell, shown in 

Figure 2.5.  



Chapter 2 
 

12 

 

 
Figure 2.5. Dual-insertion cell sandwich consisting of composite negative and positive electrodes and 

separator, [25] . 

Transport in the electrolyte is described with concentrated solution theory and 

the insertion of lithium into and out of the active electrode material has been 

simulated using a superposition approach, greatly simplifying the numerical 

calculations. Given its importance, a specific review of this model will be 

presented below. 

The model is general and can be used to simulate any cell utilizing two 

composite electrodes composed of a mixture of active insertion material, 

electrolyte, and inert conducting material. In particular, the diffusion in the solid 

material will be assessed since it is considered to be a strong limitation in some 

cells. The concentrated solution theory with variable physical properties allows 

one to deal rigorously with the transport phenomena. Following this approach, 

the driving force for mass transfer is the gradient in electrochemical potential 

given by: 

𝑐𝑖∇𝜇𝑖 =  𝐾𝑖𝑗 (𝑣𝑗 − 𝑣𝑖)𝑗≠𝑖     (2.1) 

 

where c is the concentration of species [mol/l], µ is the electrochemical potential 

of species [J/mol], v is the velocity of the species [m/s] and K is the frictional 

coefficient describing the interaction between species i and j [Js/m
5
]. 

The total current flux I is uniform and flows through either the insertion material 

phase (i1) or the electrolyte phase (i2). Since the current in the two phases is 

conserved, it can be stated that: 
 

𝐼 = 𝑖1 + 𝑖2     (2.2) 

 

The current flowing in the matrix is governed by Ohm's law: 

 

𝑖1 = −𝜍∇𝛷1     (2.3) 
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where σ is the conductivity of the solid matrix [S/cm
2
] and Φ represents the 

electric potential [V]. 

On the other hand, the variation of potential in the electrolyte can be written as: 
 

𝑖2 = −𝑘∇𝛷2 +
𝑘𝑅𝑇

𝐹
 1 +

𝜕𝑙𝑛 𝑓𝐴

𝜕𝑙𝑛𝑐
 (1 − 𝑡+

0 )∇𝑙𝑛𝑐   (2.4) 

 

where k is the reaction rate constant, c is the concentration of electrolyte, 

[mol/dm
3
], fA is the activity coefficient of salt, T is the temperature, F and R are 

the Faraday‟s and universal gas constants, respectively, and Φ2 has been 

measured with a lithium reference electrode in solution. 

According to the authors, a material balance on the electrolyte gives: 

 

𝜖
𝜕𝑐

𝜕𝑡
= ∇ 𝜖𝐷∇𝑐 −

𝑖2∇𝑡+
0

𝑧+𝑣+𝐹
+

𝑎𝑗𝑛 (1−𝑡+
0 )

𝑣+
           (2.5) 

 

where 𝜖 is the volume fraction of the electrolyte, D is the diffusion coefficient 

[cm/s], z is the capacity ratio between positive to negative electrode and jn is the 

pore-wall flux across interface [mol/m
2
 s]. 

 

𝑗𝑛 = −𝐷𝑆
𝜕𝑐𝑠

𝜕𝑟
  𝑎𝑡 𝑟 = 𝑅𝑠    (2.6) 

 

The boundary conditions for such equations can be derived from the condition 

that the flux density of each ionic species must be zero at the ends of the cell. In 

that point it is possible to infer also that the current flows only in the solid 

matrix (i2 = 0). 

As the diffusion coefficient of the inserted lithium ions has been here assumed 

to be constant, this is a linear problem and it can be solved by the method of 

superposition. In brief, the flux at the surface of the insertion particles can be 

calculated from the prior surface concentrations and a series of coefficients 

which are calculated separately. 

The open-circuit potential of insertion materials varies with the amount of 

lithium inserted and is expressed by a general function of concentration in the 

particle: 

 

𝑈 = 𝑈𝜃 − 𝑈𝑟𝑒𝑓
𝜃 + 𝐹(𝑐𝑠)    (2.7) 

 

where U is the open circuit potential, cs represents the concentration of lithium 

in the solid particle phase and the function F(cs) can vary widely depending on 

the insertion chemistry of the material. 

When developing this model, one must consider that universally 

accepted values of the lithium ion transference number and salt diffusion 

coefficient do not exist in the literature. In their works (see [25], [27]) the 
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authors proposed some results that allow for a better comprehension of the 

problem. 

According to [28], there is a strict connection between the reversible open 

circuit voltage of a cell and its maximum efficiency. The operating voltage of a 

battery cell can also be very easily related to its efficiency. 

Figure 2.6 shows the cell potential as a function of utilization of positive 

electrode material for galvanostatic charge and discharge for the 

carbon/manganese dioxide cell. 

 

 
Figure 2.6. Cell potential vs. state of discharge for the manganese dioxide/carbon system analized in 

[25] at various discharge rates. The dashed line is the open-circuit potential of the cell.. 

The term y represents the stoichiometry of the positive electrode and it has been 

here used to measure the state of charge (SoC). 

The voltage drops result from three major irreversibilities, [28]: 
 

1. Activation losses. These are caused by the slowness of the reactions 

taking place on the surface of the electrodes. A proportion of the voltage 

generated is lost in driving the chemical reaction that transfers the 

electrons to or from the electrode. This voltage drop results to be highly 

non-linear. 

 

2. Ohmic losses. This voltage drop is the straightforward resistance to the 

flow of electrons through the material of the electrodes and the various 

interconnections, as well as the resistance to the flow of ions through the 

electrolyte. This voltage drop is essentially proportional to current 

density, and so linear. 
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3. Mass transport or concentration losses. These result from the change in 

concentration of the reactants at the surface of the electrodes. Because 

the reduction in concentration is the result of a failure to transport 

sufficient reactant to the electrode surface, this type of loss is also often 

called mass transport loss. 
 

For Li-Ion batteries, the abrupt drop in cell potential at the higher discharge 

rates is caused by concentration polarization. At high current densities, the cell 

potential is lower irrespective of concentration polarization and, thus, it is 

apparent that the material utilization is limited at higher discharge rates.  

An important factor in optimizing the performance of the cell is full utilization 

of the active material. For a specified battery performance the cell potential 

should fall below its cutoff value only after nearly all the active material is 

consumed. 

This result requires an understanding of the transport limitations in each phase 

of the composite electrodes, as these lead to non-uniform reaction distributions. 

The importance of diffusion in the solid electrode material can be assessed using 

the dimensionless parameter Ss: 

 

𝑆𝑠 =
𝑅𝑠

2𝐼

𝐷𝑠𝑛𝐹 1−𝜖−𝜖𝑓 ,+ (𝑐𝑡−𝑐𝑠
0)𝛿+

    (2.8) 

 

which is the ratio of the diffusion time in either electrode to the discharge time 

for the positive electrode. For Ss << 1, diffusion in the solid phase can be 

neglected. According to the authors, it is possible to use Ss to predict the radius 

of the particles for which severe diffusion limitations exist in the solid phase for 

this system. 

An analogous parameter relates the time constant for transport of the electrolyte 

to the time of the discharge: 

 

𝑆𝑒 =
𝐿2𝐼

𝐷𝑛𝐹 1−𝜖−𝜖𝑓 ,+ (𝑐𝑡−𝑐𝑠
0)𝛿+

    (2.9) 

 

The time for transport in the electrolyte may be small in comparison to the 

discharge time which results in a quasi-steady-state concentration profile. 

Transport limitations in the electrolyte phase are the main factor limiting the 

performance of this cell at high discharge rates. 

The mechanism of failure is the depletion of the electrolyte in the solution 

phase, which leads to a large concentration over-potential. This result is less of a 

problem with larger values of the salt diffusion coefficient, the initial salt 

concentration, or the lithium ion transference number. 

At higher discharge rates, the concentration in the solution phase can be driven 

to zero well before 100% utilization has been attained, leading therefore to 
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incomplete utilization of the active material. As this is the major cause of the 

end of discharge, it suggests that increasing the electrolyte concentration would 

improve the performance of the system at high rates of discharge. 

The advantages in terms of the increased concentration in the depth of the 

porous electrode generally outweigh the increase in ohmic drop. 

The maximum concentration attained by the system can be checked using the 

current model to ensure that a solubility limit is not surpassed. It should be 

mentioned that this model does not account for salt precipitation, but this is an 

undesirable situation that should be avoided in practice. 

An analysis of the current distribution in these systems shows the importance of 

the rate of change of the open-circuit potential of the insertion material with the 

state of charge. 

 

 
Figure 2.7. Cell potential vs. state of discharge for the manganese dioxide/carbon system with the 

initial electrolyte concentration as a parameter. The dashed line is the open-circuit potential of the 

cell. The discharge rate is I = 5.0 mA/cm2 [25]. 

The great emphasis given to the model presented in [25] and [27] is due 

to the fact that this work is very useful to understand the main limitations that 

have to be faced to improve the performance of Li-Ion batteries. 

The work of Fuller, Doyle and Newman was extended by Ramadass et al. [29] 

to account for the decay in capacity of the cell with cycle number. Further 

extensions to this model were made by Sikha et al. [30] to include the change in 

the porosity of the electrode material as a function of time. 

In all these models, the concentration of lithium within the solid phase was 

either calculated using the superposition principle [11] or solved for rigorously, 

using a pseudo second dimension along the radius of the particle. Since the 

concentration of lithium at the particle surface is the only variable of interest, 

this methodology is cumbersome and time consuming. 
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A very good approximation of the concentration profile within the solid phase 

was presented independently by Wang et al. [31] and Subramanian et al. [32] 

based on the integral approach outlined by Ozisik [11]. In this second approach, 

the concentration profile within the solid particle is approximated by a second 

degree polynomial whose coefficients are expressed in terms of the average 

concentration of lithium inside the particle and the concentration at the surface. 

Thus, the need to solve for the concentration profile within the solid phase is 

eliminated. 

Fundamental models allow understanding completely the physics beyond 

a Li-Ion battery cell and they can be used to compare or calibrate other models 

that neglect the physical diffusion problems. 

 

2.2.2 Phenomenological models 

The word “phenomenological” refers to models that provide a 

representation of the input/output relationship of a system without investigating 

the fundamental physics. These models are in contrast with the fundamental 

models analyzed before, which describe the behavior of a battery cell starting 

from its physical foundations principles. 

Among phenomenological models, control oriented models (COM) are low-

order dynamic models (linear or quasi-linear) that are used to design control 

algorithms. 

Examples of phenomenological models are the equivalent circuit models. 

Quoting [16], the equivalent circuit model has a simple structure but can capture 

sufficient dynamics under both temperature and SoC variation, thus making it 

applicable for use with real-time model-based estimation algorithms in 

automotive applications. 

Equivalent circuits are often used to model the electrical part of batteries. They 

consist of a series of Randle
6
 circuits, as shown in Figure 2.8. By piecing 

together multiple RC circuits, one is essentially providing a piecewise constant 

approximation of the frequency response amplitude. 

 

                                                 
6
 In electrochemical studies Randle circuits are often used. They consist of an active 

electrolyte resistance R in series with the parallel combination of the double-layer 

capacitance and an impedance of a Faradaic reaction. 
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Figure 2.8. Sketch of an nth order equivalent circuit to model the electrical dynamic of a battery, [16]. 

In [33] a first-order equivalent circuit model with parameters scheduled 

on SoC and temperature is presented. The first order model captures the 

dominant transient processes that are neglected by a zero-order model, while 

avoiding the computational and calibration complexity of higher-order circuits. 

Figure 2.9 depicts the electrical equivalent circuit. The simple first-order model 

is able to adequately compute the voltage-current relationship of the battery over 

a wide range of operating conditions due to the SoC and temperature scheduling 

of the open circuit voltage E0, internal resistances R and R0, and capacitance C0 

 

 

Figure 2.9. First-order equivalent circuit model of battery electrical dynamics, from [33]. 

 

The electrical model equations, obtained using Kirchoff‟s current law, are 

reported in equations (2.10) and (2.11). 

 

𝑉 
𝑐 = −

1

𝑅0𝐶0
𝑉𝑐 +

1

𝐶0
𝐼    (2.10) 

 

𝑉 = 𝐸0 − 𝐼𝑅 − 𝑉𝑐     (2.11) 

 

The input to the electrical modeling circuit is the current, I, and the output is the 

battery terminal voltage V. Note that, in this model, the total pack voltage is 

obtained by scaling a single cell voltage by the number of cells. 
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The SoC dynamics are determined through Equation (2.12).  

 
𝑑𝑆𝑜𝐶

𝑑𝑡
= −

𝐼(𝑡)

𝐶𝑛
    (2.12) 

 

where I is assumed to be positive during the discharge and Cn is the nominal 

capacity
7
 of the pack. 

Realistically, the internal resistance, open circuit voltage, and capacity of 

batteries are influenced by a number of factors, including SoC, temperature, and 

current direction. The parameters of the equivalent circuit model describing the 

electrical dynamics must approximate this dependency. This has been 

accomplished successfully throughout the open literature. For example, Figure 

2.10, from [16] shows the temperature-SoC-resistance relationship for cells 

similar to those modeled in this work. 

 
 

 
Figure 2.10. Internal resistance as function of temperature and SoC, [16]. 

If a battery is excited and then allowed to relax for long periods of time, 

the rested terminal voltage at the same SoC varies depending on the type, 

duration, and strength of the previous excitation. This phenomenon is typically 

characterized by a very slow dynamics, which is not captured by the Randle 

circuits. Because a simple equivalent circuit cannot capture such effects directly, 

a hysteresis voltage element is appended (Vh). 

In [16], a second order equivalent circuit is used and an additional hysteresis 

term is considered. The dynamic equation that describes the voltage across the 

i
th

 RC circuit is given by: 

 

                                                 
7
 The nominal capacity of a battery is defined as the amount of Ah that can be drawn from the 

battery at 1C-rate discharge at room temperature. 
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𝑑𝑉𝑖

𝑑𝑡
=

1

𝑅𝑖𝐶𝑖
𝑉𝑖 +

1

𝐶
𝐼    (2.13) 

 

where i=1,2. 

The total voltage can then be expressed as the sum of all the voltage 

components: 

 

𝑉𝑏𝑎𝑡𝑡 = 𝑉𝑂𝐶 − 𝑅𝑂𝐼 −  𝑉𝑖 + 𝑉
2
𝑖=1    (2.14) 

 

The model structure presented in [16], and extended to battery packs in [34], is 

intuitive and the identification procedure provided is systematic; providing thus 

a method for generating accurate yet simple equivalent circuit models for 

batteries under conditions of varying temperatures. 

The dynamic pack behavior can be approximated by a scaled-up model 

of a single cell, hence implying that all cells are the same. This approximation is 

well depicted in [34] even though its assumption fails on multiple grounds due 

to small manufacturing differences, unavoidable thermal gradients and different 

degradation due to aging in each cell. 

In [34] a lumped parameter, distributed battery pack dynamic model was 

introduced. It allows for the simulation of the electrical dynamics of all the cells 

in an arbitrarily configured series-parallel pack similar to those used in 

automotive applications. 

A low-order equivalent circuit has been chosen to model the electrical part of 

the battery, as: 

 

𝑉𝐶 𝑡 = 𝑒−𝛽𝑇𝑉𝐶 𝑡0 +
𝛾𝑖  𝑡 

𝛽
(1 − 𝑒−𝛽𝑇 )  (2.15) 

 

where   𝛽 =
1

𝑅𝐶
 and 𝛾 =

1

𝐶
 

 

To simulate the pack model, two assumptions are necessary: the current input is 

constant over the simulation time interval and the SoC does not change during 

the simulation time itself. 

In order to obtain meaningful data from simulation of the battery pack, it is 

necessary to enforce variability between cells. This variability may be caused by 

manufacturing differences, aging, or other conditions. 

A simulation tool has been developed to perform Monte Carlo simulations on 

typical automotive current profiles. 
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Figure 2.11. Average SoC ratio divergence. [34]. 

Figure 2.11 shows the distribution of the different SoC ratios of each of the 

different batteries in the battery pack over 100 simulations where each R0 

parameter of each cell is perturbed per simulation run. As expected, the 

distribution appears to be normal and the SoC ratio scale is small, since the 

value represents the amount of SoC deviation per second. 

Equivalent circuit models are inherently simple and fit for real time 

implementation. On the other hand they are phenomenological models and thus 

require some simplifications. This leads to an accuracy which is lower than 

fundamental models. 

In automotive applications, control-oriented models are used by the 

management system to optimize the performance of the vehicle and of its 

components. Control-oriented models of batteries are composed, as shown in 

Figure 2.12, by two sub-systems: 
 

 The electrical model 

 The thermal model 

 

 
Figure 2.12. Example of control-oriented model for batteries. 
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The electrical part of the battery is normally modeled through an equivalent 

circuit with parameters (as the internal resistance and the open circuit voltage) 

scheduled with respect to SoC and temperature. 

The SoC is computed with a current based estimation, according to: 

 

SoC(t) = SoC0 −  
𝜂  𝐼(𝑡)

𝐶𝑛
 𝑑𝑡

𝑡

𝑡=0
             (2.16) 

 

where Cn is the nominal capacity of the cell, SoC0 is the initial state of charge 

and η is the Coulombic efficiency of the cell, here supposed to be equal to 1 

(according to [35]). 

The performance of batteries strictly depends on the internal temperature 

field [12], thus the electrical model is coupled with a lumped
8
  thermal model. In 

this model the battery is assumed to be a lumped body (see Section 3.1.3 for a 

review of the topic) cooled by convection with a known heat transfer coefficient 

h. The model predicts the uniform temperature of the battery starting from the 

ambient temperature 𝑇∞  and solving the general heat balance. 

 
𝑑𝑇

𝑑𝑡
=

𝑄 −𝐴(𝑇−𝑇∞ )

𝑚  𝑐
             (2.17) 

 

where  𝑄 = 𝑅𝐼2 +  𝑅𝑖𝐼𝑖
2𝑁

𝑛=1   is the heat generated inside the battery, in [W]. 

The battery dynamic is modeled through an equivalent circuit of order N and the 

subscript i, referred to the current and the resistance, indicates that those 

quantities are referred to the i
th

 Randle circuit. m is the mass, and c is the 

specific thermal capacity of the entire system [J kg K ]. 

Once the temperature and SoC have been calculated, the model computes the 

open circuit voltage, the internal resistance and the capacity and resistance of the 

Randle circuits. These parameters are normally scheduled as function of 

temperature and SoC using different algebraic functions for charge and 

discharge processes. 

The model is simple and suitable for control-oriented and on-board 

implementation. From an electric point of view the accuracy is sufficiently high, 

as reported in [21]. From a thermal point of view, however, the model is fairly 

inaccurate since the temperature distribution within the battery cell has been 

completely disregarded. 

Since the performance, SoH, and optimization of battery module and cells are 

mainly affected by the operating temperature it is a crucial point to improve this 

aspect of these simplified models. 
 

                                                 
8
 In a lumped system the temperature distribution is spatially uniform at any instant during the 

transient heat transfer process, [44]. 
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Very accurate models of both electro-chemistry and heat diffusion inside 

a battery are performed with finite element software, like ANSYS
®
 or 

COMSOL
®

 However, these software applications are so memory and time 

consuming that there is no possibility for any on-board or real-time application. 

In this thesis a modeling approach to account for the temperature dynamic inside 

a Li-Ion battery cell, suitable with a control-oriented approach, will be 

developed. 

 

2.2 Thermal characterization 

The topic of thermal characterization and modeling of Li-Ion batteries is 

a fairly new research area which has attracted the attention of both industry and 

academia in the last decade. In 1995 John Newman and Caroline Pals published 

two fundamental journal papers on the topic: the first is related to the thermal 

modeling of a single Li-Ion battery cell, [8], and the second represents an 

extension to a cell stack, [9]. Later on a refining of the single cell modeling has 

been proposed by the same authors in [36]. 

In their work, [37], Bernardi et al. presented a general energy balance for battery 

systems on which most subsequent model relies. A few years later, Pesaran et al. 

presented a work on the thermal performance of EVs and HEVs battery cells 

and packs [24], developed at NREL
9
. The same authors proposed some 

extension to that original work from the battery management system point of 

view [7], [38],[12]. 

In 2004 Chen et al. proposed a remarkable work on the optimal approach to 

simplify the thermal model of a Li-Ion battery [10]. 

As regard the thermal behavior of battery packs, important results were obtained 

by Lee et al. [39] and Innui et al [40]. The latter, in 2006, proposed an 

interesting comparison between prismatic and cylindrical battery cells. 

From the thermal management point of view, a complete work was proposed in 

2009 by Kuper et al. [41]. 

The papers reviewed are organized into three categories: 
 

 Single cell thermal model; 

 Whole pack thermal models; 

 Battery thermal management systems. 
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2.3.1  Single cell thermal models 

In their first work [8], Newman and Pals presented an extension of the 

work proposed in 1993 by Fuller and Doyle, [27], to introduce an energy 

balance for a battery cell. In the previous models, a uniform temperature was 

assumed throughout the cell, although the temperature was allowed to vary with 

time. In this work a 1D thermal model has been introduced. 

Thermal modeling is particularly important for Li-Ion batteries because the heat 

produced during charge and discharge may cause either irreversible side 

reactions or damage and even melting of the solid lithium. This is a primary 

safety concern for the battery manufacturer. 

The energy balance used in [8], and first introduced by [37], is given by: 

 

𝑄 = 𝐼  𝑉𝑜𝑐 − 𝑉 − 𝑇
𝜕𝑉𝑜𝑐

𝜕𝑇
 = 𝑐𝑜𝑛𝑣  𝑇 − 𝑇∞ + 𝑚𝑐𝑐𝑝

𝑑𝑇

𝑑𝑡
       (2.18) 

 

where mc is the cell mass per unit area [g/cm
2
]. The term I(Voc - V) is the heat 

produced due to cell polarization, and the term -IT(𝜕Voc/ 𝜕T) is due to the 

reversible entropy change in the cell. 

Isothermal modeling is important because it helps one understanding the 

operation of the battery at different temperatures. 

 

 
Figure 2.13. Cell potential as a function of utilization and time for isothermal discharge of the cell at 

I = 1.1 mA/cm2 for several temperatures, from [8]. 

In the isothermal calculations it is assumed that all the heat generated in the cell 

is transferred out of the system without considering the details of how it is done. 

Figure 2.13 shows the cell potential as a function of utilization and time for 

isothermal discharge. The dashed line is the open-circuit potential of the cell. 

The figure shows also how the cell performance is affected by the temperature 

of operation. At higher temperatures, the cell potential is higher for a given 
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value of active material utilization. The cell also utilizes more of the active 

material at higher temperatures. 
 

 
Figure 2.14. Heat-generation rate as a function of utilization and time for isothermal discharge of the 

cell at I = 1.1 mA/cm2. [8]. 

The heat-generation rate as a function of time and utilization is given in Figure 

2.14 for the same simulations. This figure demonstrates that the heat generation 

rate is much larger for lower temperatures than it is for higher temperatures. 

This result may also be seen by examining the cell-potential behavior: The heat 

generation rate is equal to the product of the current density and the difference 

between the open-circuit potential and the cell potential. At lower temperatures, 

the conductivity is lower, and the larger Ohmic drop leads to larger heat 

generation rates. 

For design purposes, it is useful to examine the temperature dependence of the 

energy and average power densities that the system can provide. 
 

 
Figure 2.15. Specific energy and average specific power of the cell as functions of temperature for 

isothermal, galvanostatic discharge at I = 1.1 mA/cm2 , [8]. 



Chapter 2 
 

26 

 

At lower temperatures, from 80° to 100 °C, the specific energy increases 

steadily as the cell attains a higher utilization with increasing temperature. 

Then, at temperatures from 100 °C to 120°C, the energy density continues to 

rise, but at a slower pace, as the cell is reaching nearly 100% utilization. Above 

120°C the specific energy begins to level off to its theoretical value. 

In this paper, adiabatic discharge behaviors are also presented: adiabatic 

modeling is important because it simulates the consequences of no heat removal, 

for example, if the temperature control system fails. 

In [8] it is also anticipated that the one-cell model can be used to analyze 

the behavior of a cell stack under heat-transfer conditions by defining an 

appropriate per-cell heat-transfer coefficient for each cell in the cell stack. 

The authors consider 1D heat transport in the direction perpendicular to cell 

layers. This assumption is valid when transport in the direction parallel to cell 

layers can be neglected, such as when the cell stacks are very thin, or when the 

ends of the stack perpendicular to cell layers are insulated. 

To use the one-cell model for cell-stack calculations, the per-cell heat transfer 

coefficient hs must be related to the convective heat transfer coefficient. 

 
1

𝑠
=

1

2𝑘𝑐𝑒𝑙𝑙 𝑙𝑐𝑒𝑙𝑙
  

𝐿

2
 

2

− 𝑥2 +
𝐿

2𝑐𝑜𝑛𝑣 𝑙𝑐𝑒𝑙𝑙
   (2.19) 

 

Now that the per-cell heat transfer coefficient has been related to the convective 

heat-transfer coefficient, the temperature and discharge behavior for each cell in 

the cell stack can be calculated from known values of the convective heat-

transfer coefficient and from cell properties. 

The one-cell model proposed by Newman and Pals could be used to estimate the 

temperature and discharge behavior of the battery when the cell-stack 

temperature gradient can be neglected. 

The results presented show that an increasing of the per-cell heat transfer 

coefficient causes the cell potential and temperature to decrease. This behavior 

is expected because as the heat transfer coefficient increases, more heat is 

transferred out of the cell stack to the surroundings causing the cell temperature 

to decrease. This lower temperature causes the cell potential to decrease, as was 

seen in isothermal discharges. 

The per-cell heat generation rate increases as the temperature of the cell 

decreases, due to the increase in over potentials in the cell. 

Concluding, the simulations showed that the cell potential, along with the 

active-material utilization at the cutoff potential, increases with increasing 

temperature. Following the cell-potential behavior, it was seen that the heat-

generation rate of the cell decreases with increasing temperature. 
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Figure 2.16. Cell potential as a function of time 

and utilization for galvanastatic discharges at     

I = 1.1 mA/cm2, from [8]. 

 
Figure 2.17. Heat-generation rate as a function 

of utilization and time for galvanastatic 

discharges at I = 1.1 mA/cm2, from [8]. 

In the paper the per-cell heat-transfer coefficient was defined for each cell in the 

cell stack. Simulations were presented for discharge behavior for various values 

of the per-cell heat transfer coefficient. The simulations presented for the per-

cell heat transfer coefficient can also be used if the temperature gradient in the 

cell stack is negligible according to the accuracy requirements of the 

calculations. 

Later on, in [36], Newman et al. presented a general review of the 

several key aspects that must be considered in modeling the behavior of Li-ion 

batteries. The electrodes are generally porous, and therefore the distribution of 

the reaction through the depth of the electrode must be considered. The active 

material is an insertion compound, in which the chemical potential and other 

thermodynamic properties may vary continuously with inserted lithium 

concentration, and solid-state diffusion of lithium through the active material 

must be considered. 

Finally, in most batteries, the electrolyte is a concentrated, non-ideal solution, 

and mass transport across the electrolyte has a significant effect on battery 

performance. The basic modeling framework consists of porous electrode 

theory, concentrated solution theory, Ohm‟s law, kinetic relationships, and 

charge and material balances. 

Porous electrode theory treats the porous electrode as a superposition of active 

material, electrolyte, and filler, with each phase having its own volume fraction 

Concentrated solution theory provides the relationship between driving forces 

and mass flux. 

A charge balance is also needed to keep track of how much current has passed 

from the electrode into the electrolyte. Ohm‟s law describes the potential drop 

across the electrode and also in the electrolyte. 
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Finally, the Butler–Volmer equation generally is used to relate the rate of 

electrochemical reaction to the difference in potential between the electrode and 

solution. 

A big deal in modeling batteries is that the dependent variables of concentration, 

potential, reaction rate and current density each appear in more than one 

governing equation, and therefore the coupled governing equations must be 

solved simultaneously. 

In addition, material properties often vary considerably with concentration. 

Thus, battery simulation requires a numerical technique, such as the finite-

difference technique BAND suggested by the authors, that can solve multiple 

coupled, nonlinear differential equations. 

The flux of one species is inherently coupled to the fluxes of all other species 

present, as set forth in the Stefan–Maxwell equations: 

 

𝑐𝑖∇𝜇𝑖 −  
𝑐𝑖𝑐𝑗

𝑐𝑇𝐷𝑖𝑗
𝑗 (𝑣𝑗 − 𝑣𝑖)   (2.20) 

 

where ci is concentrations, Dij the diffusion coefficients, v the velocity, i and j 

the species indices, and CT is the total molar concentration. With the Onsager 

reciprocal relations, these principles yield n(n-1)/2 transport properties, where n 

is the number of species in solution. 

In the second part of the paper, the authors present three analyses of mass-

transport-related effects in Li-ion batteries. 

The first section demonstrates how a continuous side reaction could cause error 

in measurements of the transference number. The second section discusses the 

heat effect associated with the formation and relaxation of concentration 

gradients. The third section presents the results of molecular dynamics 

simulations which give insight into the decrease in conductivity with increasing 

salt concentration in liquid carbonate electrolytes. 

Measurement of the transference number in polymer electrolytes is difficult 

because the polymer electrolytes are opaque and poorly conductive. The 

galvanostatic polarization technique has been previously developed by the 

authors to provide a simple yet rigorous method of obtaining transference 

numbers in non-ideal polymeric electrolytes. 

The concentration gradients formed during the passage of current are also 

associated with heat effects. The heat is released (or possibly even absorbed) 

during relaxation after the current is turned off. An equal and opposite amount 

of heat is absorbed (or possibly released) during formation of the concentration 

gradients while current is flowing. 

This heat of relaxation is termed heat of mixing; an energy balance which 

includes the heat effects of heat of mixing looks like: 
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𝑄 = 𝐼  𝑉 − 𝑈𝑎𝑣𝑔 + 𝑇
𝜕𝑈𝑎𝑣𝑔

𝜕𝑇
 + 𝑐𝑝

𝑑𝑇

𝑑𝑡
+   (𝐻 𝑖 − 𝐻 𝑖

𝑎𝑣𝑔
)𝑖

𝜕𝑐𝑖

𝜕𝑡
𝑑𝜈    (2.21) 

 

where 𝑄  is the rate of heat exchange with the surroundings [W], I the current 

(assumed positive on discharge), V the cell potential, U the open-circuit 

potential, the superscript „avg‟ means evaluated at the volume-average 

concentration (e.g. 𝑈𝑎𝑣𝑔  is the potential to which the cell would relax if the 

current were interrupted), T the temperature, Cp the heat capacity, 𝐻 𝑖  the partial 

molar enthalpy of species i, and c is concentration 

It is important to notice that if the partial molar enthalpies are constant with 

composition, then the heat of mixing term is zero. In addition, heat of mixing 

can be endothermic or exothermic, depending on how 𝐻 𝑖  varies with 

composition. 

This work states that the heat released during relaxation is much smaller than the 

resistive and entropic heat. For cells properly designed to mitigate concentration 

over-potential, heat of mixing will be negligible. 

2.3.2 Battery pack thermal models 

The thermal characterization of a whole battery pack is even more 

important because, when small batteries are scaled up, the internal heat 

generation becomes large, leading to the temperature rise and the occurrence of 

an uneven temperature distribution in the battery. 

According to [24], battery pack performance in an automotive application 

directly affects the all-electric (zero-emission) range, power for acceleration, 

fuel economy, and charge acceptance during energy recovery from regenerative 

braking. Thus any parameter that affects the battery pack must be optimized. 

The battery operating temperature range changes depending on the 

electrochemical couple used. Generally, higher temperatures improve the 

battery's performance because of increased electrochemical reaction rates. 

However, the battery's lifetime decreases because elevated temperatures increase 

corrosion promoting the aging of the battery. 

Predicting temperature profiles is important to design a thermal management 

system for the battery, as well as predict how the temperature variation in the 

battery affects its performance. 

In [24], an overview of heat generation in battery modules is presented. 

As stated before, heat is generated within a cell by two effects: entropy change 

from electrochemical reactions and Joule‟s effect caused by current flux. 

At practical EV and HEV rates, the first term (reversible entropy change) is 

usually small compared to the second one (Ohmic and other irreversible effects). 

Thus, the heat is generated and released from the cell during both charge and 

discharge. 
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As heat is generated in a module, it is either removed/rejected to the surrounding 

area, accumulated in the module, or both. It is also possible that if the 

surrounding area is at a higher temperature than the module, heat will be 

transferred into it. An overall energy balance on a battery module leads to: 

 

𝑄 − 𝑏𝐴𝑏𝑠 𝑇𝑏𝑠 − 𝑇𝑓 − 𝜍휀𝐹𝑏𝑠𝐴𝑏𝑠 𝑇𝑏𝑠
4 − 𝑇𝑓

4 = 𝑚𝑏𝑐𝑏  
𝑑𝑇𝑏𝑎𝑡𝑡

𝑑𝑡
  (2.22) 

where:  

hb = Convective heat transfer coefficient between battery surface and its 

surrounding fluid [𝑊 𝑚2𝐾 ]; 

Abs = Battery surface area exposed to the surrounding; 

𝑇𝑏𝑠= Temperature of the battery surface; 

σ = Stefan-Boltzman constant (5.67·10
-8

 [W m2K4 ]); 

ε = Battery surface emissivity; 

Fbs = Shape factor between the battery and its surroundings ; 

cb = Weighted-average module heat capacity [J kgK ]. 

 

The radiative term (the third one) is usually small compared to the convective 

term (second one) if temperatures are below 100 °C, so it is disregarded for 

common battery applications. 

In Equation (2.22), an average battery temperature has been considered. 

However, in reality, a three-dimensional temperature distribution exists in the 

module. A commercial finite element analysis software has been used by the 

authors to solve for temperature distribution in HEV modules. 

The overall energy balance can be used to obtain the temperature distribution in 

a pack of modules. For example, if a certain amount of a fluid is passed around a 

module, the fluid temperature change can be obtained from overall energy 

balance for the module: 

 

𝑏𝐴𝑏𝑠 𝑇𝑏𝑠 − 𝑇𝑓 = 𝑚 𝑓𝑐𝑓(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛 )fluid           (2.23) 

 

The overall temperature change in the fluid can be obtained from the overall 

energy balance: 
 

𝑁  𝑄 − 𝑚𝑏𝑐𝑏
𝑑𝑇𝑏𝑎𝑡𝑡

𝑑𝑡
 =  𝑚 𝑓𝑐𝑓 𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛  − 𝑚 𝑓𝑐𝑓(

𝑑𝑇𝑓

𝑑𝑡
) pack      (2.24) 

 

where N is the number of modules in the path of 𝑚𝑓 . 

The second terms on each side of the equation are thermal inertia of the module 

and the fluid, respectively, and could be ignored for short-term transient and 

steady state cases. 

To obtain thermal performance in modules and packs, the author proposes to use 

finite element analysis, to solve the two-dimensional or three-dimensional 
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transient or steady state heat conduction equation for a set of modules at the 

beginning of the pack.  

If the interest is limited to the average battery temperature, conduction can be 

ignored, assuming a single temperature for the modules. It is possible taking 

advantage of symmetry to solve for the minimum number of modules or even 

sections of a module to reduce computational efforts. 

Using an iterative process, the energy balance between the module surface 

temperature and its surroundings has been used to find the overall temperature 

change in the fluid. Temperature distribution in any module in the pack could be 

obtained by using the superposition principle and overall energy balance. 

For the analysis, the authors used a prismatic, valve-regulated, lead-acid battery 

module. 

 

 
Figure 2.18. Sketch of the battery module analyzed in [24] and 2D temperature distribution. 

 

In this analysis, an air flow cools a series of 10 battery modules, as depicted in 

Figure 2.19. The air temperature rises by 1.3 °C as it passes by each module, 

resulting in a variation of 13 °C between the inlet and the outlet. 

 

 
Figure 2.19. Steady-state 2-D temperature distribution in battery pack cooled by an air flow, [24]. 
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There is also a variation of about 4.5 °C within each battery module. Although 

this cooling arrangement is not ideal, it is much better than placing the pack in a 

closed box, as shown in Figure 2.20. 
 

 
Figure 2.20. Steady-state 2-D temperature distribution in an enclosed battery pack, [24] 

 

Obtaining thermal images of a battery module or a pack is a useful way to obtain 

information on temperature variation and compare that with analytical results. It 

is more productive and less intrusive than installing many temperature sensors 

on the walls of the battery. 

At the NREL both IR photography and liquid crystal thermography are used. 

The battery pack performance, and thus the performance of an EV or HEV, is 

affected by its operating temperature and the degree of temperature gradient in 

the pack. Thermal issues are of more concern in an HEV pack because of higher 

power and more aggressive charge/discharge profile. 

Using finite element analysis software, temperature distributions in a 

hypothetical module and pack is obtained. Even with reasonable air flow rates, 

the temperature in the pack can vary significantly; a pack with no air flow can 

reach unacceptably high temperature levels. 

NREL analysis indicated that adding ventilation holes improved the thermal 

performance of an HEV battery module. IR and LC thermography were used to 

obtain thermal images of an HEV module and a simulated HEV pack. 

Newman et al., in the second part of their work, [9], proposed a model 

that uses heat generation rates calculated from isothermal discharges of the one-

cell model presented in Part I to calculate temperature profiles in cell stacks. 

This allow taking into account that cells on the outside of the stack operate at a 

lower temperature than cells on the inside of the stack, due to conductive heat-

transfer limitations of the system. 

In this model, again, the heat is assumed to be transferred only in the direction 

perpendicular to cell layers. Due to geometric consideration the temperature 

behavior of the full cell stacks is assumed to be symmetric. 
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Figure 2.21. Schematic diagram of one-half of a cell stack studied in [9]. 

The energy generation in cell j, 𝑄 
j, may be calculated from the one-cell model 

given previously, but this requires running the previous one-cell program for 

each cell, which means a large amount of computer time required. To reduce the 

computer time needed to solve the temperature profiles, the authors introduced a 

simplified heat generation rate calculation: 

 

 For cell 1: 

 
𝑚𝑐𝑝

∆𝑡
 𝑇1

𝑛𝑒𝑤 − 𝑇1
𝑜𝑙𝑑  =

𝑘

𝑙
 𝑇1

𝑛𝑒𝑤 − 𝑇2
𝑛𝑒𝑤  + 𝑄 

1   (2.25) 

 

 For cells 2 to n-1: 

 
𝑚𝑐𝑝

∆𝑡
 𝑇𝑗

𝑛𝑒𝑤 − 𝑇𝑗
𝑜𝑙𝑑  =

𝑘

𝑙
 𝑇𝑗 +1

𝑛𝑒𝑤 − 2𝑇𝑗
𝑛𝑒𝑤 + 𝑇𝑗−1

𝑛𝑒𝑤  + 𝑄 
𝑗  (2.26) 

 

 For cell n (the last one): 

 
𝑚𝑐𝑝

∆𝑡
 𝑇𝑛

𝑛𝑒𝑤 − 𝑇𝑛
𝑜𝑙𝑑  =

𝑘

𝑙
 𝑇𝑛−1

𝑛𝑒𝑤 − 𝑇𝑛
𝑛𝑒𝑤  + 𝑄 

𝑛 − (𝑇𝑛 − 𝑇∞)  (2.27) 

 

To simplify the calculations, the heat-generation rate as a function of time and 

temperature for isothermal discharge as calculated by the previous one-cell 

model are considered to give an accurate approximation to the heat-generation 

rate as a function of time and position for non-isothermal discharge (𝑄 
𝑗 ). 

This means that a cell that discharges non-isothermally to a particular 

temperature and state of charge presents the same heat generation rate (as well 

as other discharge characteristics) as a cell discharged isothermally at that 

temperature to the same state of charge. 
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Various experiments showed that the estimated heat generation rates and 

corresponding temperatures are most accurate for higher heat transfer 

coefficients where the cell temperature remains nearly constant. 

In this work, the temperature behavior of the battery is considered as a function 

of the stack thickness, heat transfer coefficient, and discharge rate. All 

simulations were made for a nominal 3 h discharge rate, 1.1 mA/cm
2
, using 90 

°C for the initial cell temperature and 89 °C for the ambient air temperature. 

The figure below shows that as the cell stack thickness increases, its overall 

temperature increases, and the cell temperature profile gets steeper. The 

temperature profiles are considered at the end of discharge. 

 

 
Figure 2.22. Temperature profiles at the end of discharge for cell stacks of several widths for 

galvanostatic discharge at 1.1 mA/cm2, [9]. 

For early times, the temperature has not risen much, and there is little 

temperature variation in the cell stack. As the discharge proceeds, however, the 

temperature variation increases. 

For the 576 cells stack, at the end of discharge, the temperature at the center 

reaches 117 °C while the temperature at the outer face reaches only 104 °C. 

As it can be noticed in Figure 2.23, the heat-generation-rate profile is relatively 

flat at the beginning of discharge. As the discharge proceeds, the heat-generation 

rate decreases through most of the cell stack, but a gradient develops. At the end 

of discharge, the cells at the outer face of the stack are generating heat at over 

twice the rate of the cells at the center of the stack. 
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Figure 2.23. Temperature and heat-generation rate, of a single cell and for a 576 cells stack, as 

functions of time for various heat-transfer conditions, [9]. 

For automotive purpose a 144 cells stack has been chosen. There is a 

cooling channel every two cells stacks and the battery pack consists of 16 

stacks. 

 

 
Figure 2.24. Temperature profiles as a function of time for the proposed electric vehicle battery 

design, [9]. 

For the cells in the middle of the cell stack, the models show good agreement for 

both heat generation rate and temperature. The models predict a center 

temperature of 108 °C at the end of discharge, with a variation between models 

of less than 0.5 °C. 
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The models disagree more strongly on both temperature and heat generation rate 

for the outer face of the cell stack (102.5 °C versus 105 °C). 

The difference between the cell-stack and the one-cell calculations for the 

temperature of the cell at the outer face of the stack can be explained by 

examining differences in the development and use of the models. 

The cells in the cell-stack model vary in both temperature and heat generation 

rate from their neighboring cells, and therefore a temperature gradient is 

established in the stack. The one-cell model, considers one cell with a uniform 

temperature and heat generation rate with heat transfer from the cell calculated 

using an averaged value of the per-cell heat transfer coefficient based on the 

position of the cell in the cell stack. 

For the one-cell model, the time constant for heat transfer to the surroundings is 

a relatively large number, while for the cell-stack model it‟s a relatively small 

number. 

This means that in the cell-stack model, the cell at x = L/2 transports more heat 

to the surroundings earlier in discharge and does not appreciably heat up until 

the temperature profile in the cell stack is developed and the outer cell can 

receive heat from the internal cells. Thus the outer cell temperature calculated 

by the cell-stack model rises more slowly and reaches a lower value than its 

corresponding temperature calculated by the one-cell model. 

For a single cell, or for a cell stack with a negligible temperature gradient, 

differences between calculated heat generation rates and temperatures from the 

one-cell model and the cell-stack model are due to the heat-generation rate 

approximation. 

From examination of a heat generation rate profile, it was concluded in [9], that 

heat was generated at lower rates in higher temperature areas of the stack, and at 

higher rates in lower temperature areas of the stack. This type of non-uniform 

heat generation rate tends to flatten the temperature profile of the cell stack. 

Because of the methods in which the models were developed, the one-cell model 

is more accurate than the cell-stack model for calculating temperatures in cell 

stacks with negligible temperature gradients, and the cell-stack model is more 

accurate for calculating temperature profiles in stacks with appreciable 

temperature gradients. 

Y. Inui et al. presented, in [40], a comparison analysis: two-dimensional 

simulation for cylindrical battery and three-dimensional simulation for prismatic 

battery. The former is done because the cylindrical shape is most popular for the 

commercially available small size batteries while the latter choice is due to the 

fact that prismatic battery cells have an advantage in comparison with 

cylindrical ones when combining them in modules. 
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Figure 2.25. Schematic diagram of cylindrical 

Li-Ion secondary battery and analytical region, 

[40]. 

 
Figure 2.26. Schematic diagram of prismatic Li-

Ion secondary battery and analytical region, 

[40]. 

The following equations can be used to calculate the transient response of the 

temperature distribution in the cylindrical battery: 
 

 Power generation region: 

 

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
 𝜆𝑟𝑟

𝜕𝑇

𝜕𝑟
 +

𝜕

𝜕𝑧
 𝜆𝑧

𝜕𝑇

𝜕𝑧
 + 𝑞          (2.28) 

 

 
𝑑𝑠

𝑑𝑡
= −

𝑖

𝑐𝑖
     (2.29) 

 

𝑖 =
𝐸0−𝐸

𝑟𝑖
     (2.30) 

 

𝐼 =  2𝜋𝑟𝑖𝑑𝑟𝑑𝑧
𝑠

    (2.31) 

 

 Case and cavity: 

 

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
 𝜆𝑟𝑟

𝜕𝑇

𝜕𝑟
 +

𝜕

𝜕𝑧
 𝜆𝑧

𝜕𝑇

𝜕𝑧
    (2.32) 

 

Where s is the local state of charge, E is the terminal voltage, I is the discharge 

current, ρ is the mass density, c is the specific heat, λ is the thermal conductivity, 

ci is the capacity per unit volume of the power generation region, S is the power 

generation region on the r–z plane and the subscripts r and z denote the values 

along the radial and axial-directions, respectively. 

In this model the battery is assumed to be cooled by natural convection. This 

heat flux is employed as the boundary condition on the battery surface required 

for calculation of the temperature distribution. 

Numerical simulations of the transient responses of the temperature distribution 

in the battery are performed for 0.9 A (0.5 C) and 1.8 A (1.0 C) constant current 
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discharges. The authors confirmed that the simulation results of the transient 

temperature and voltage variations coincide very well with the experimental 

results for both the 0.9 A and 1.8 A constant current discharge, as shown in 

Figure 2.27 
 

 
Figure 2.27. Experimentally and numerically obtained transient temperature and voltage variations of 

cylindrical battery for 0.9 A constant current discharge, [40]. 

Figure 2.28 shows the temperature distribution in a cylindrical battery at the end 

of a 1.8A (1 C) constant current discharge. 

 

 
 
 
 
 

 
 

 

In the case of prismatic batteries a 3D simulation code is needed to compute the 

temperature distribution. To calculate the transient response of the temperature 

distribution in the prismatic battery, Equation (2.28) must be replaced with: 

 

Figure 2.28. Numerically obtained temperature distribution in cylindrical battery at end of 1.8 A 

constant current discharge, [40]. 
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Similar to the two-dimensional code, the three-dimensional code calculates the 

transient response of the temperature distribution in the battery along with the 

transient responses of the current distribution, state of charge distribution and 

terminal voltage for given discharge current by solving the above equations 

simultaneously. 

The temperature rise during the discharge becomes different depending upon the 

cross sectional shape even under the condition of the same battery volume and 

capacity. Selecting a prismatic battery with laminated cross section (pouch-style 

battery, i.e. 137.6 mm x 8.6 mm x 68.8 mm), has a remarkable effect on 

suppression of the temperature rise in comparison with a battery with the square 

cross section, (i.e. 68.8 mm x 17.2 mm x 68.8 mm). 

This result is considered to be caused by the difference in the surface area. The 

cooling effect by the ambient air is proportional to the surface area, and batteries 

with laminated cross section have the largest surface area. 

 

 
 

 

 

 

According to the authors, the effect of the lamination on the suppression of the 

temperature unevenness is, however, unexpectedly small, and some other 

measure is considered to be needed to suppress this unevenness. These results 

are very informative to determine the cross sectional shape of large size 

batteries. 

At Argonne National Laboratory, J. Lee et al. developed a three-

dimensional thermal modeling of electric vehicles batteries, [39]. Once the cell 

design specification, the thermal properties, and the electrical performance 

characteristics of a battery system are given, the battery temperature distribution 

can be predicted by the model for different operating and ambient conditions. 
 

Figure 2.29. Numerically obtained temperature distribution for laminated  prismatic battery at end 

of 9.0 A constant current discharge, [40]. 
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Figure 2.30. Inputs to battery thermal model, according to [39]. 

Generally, the temperature rise will be higher, and the temperature gradients will 

be larger, for a collection of cells in comparison with a single cell. The thermal 

behavior of individual cells and modules in the battery pack is also affected by 

the asymmetrical boundary conditions imposed by the packaging requirements 

of the vehicle. 

In this work, each cell is divided into two regions, namely the core region and 

the boundary region. The equation describing the temperature distribution in the 

core region is:  
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=
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𝑑𝑇

𝑑𝑥
 (2.34) 

 

where the convective velocity U is assumed to exist only in the x-direction and 

represents the average motion of a composite mass, which is equivalent to the 

actual movement of the electrolyte. In most cases, such a movement is caused 

by the change of electrode porosity as electrochemical reactions occur. 

Here, for simplicity, 𝑞  is written as: 𝑞 =
𝐼

𝑊𝑒
[𝑉 +

∆𝐻0

𝑛𝐹
+

∆𝑐𝑝

𝑛𝐹
(𝑇 − 𝑇𝑟𝑒𝑓 )] 

where T is the temperature at the surface of the core region, We is the thickness 

of a composite element. ∆𝐻0 is considered to be negative for exothermic 

reactions and I < 0 for discharge. 

However, the requirement of knowing I and V a priori imposes a limitation on 

the predictive power of the model. The heat generation rate cannot be calculated 

without knowledge of the variations of I and V during cell operation. 

Theoretically, I, V, and T are dependent upon one another, therefore, 

determining I and V without knowing T results difficult.  

The boundary region denotes the cell case and the electrolyte surrounding the 

core region. In terms of heat transfer, the boundary region separates the core 

region from the outside environment and thus imposes an additional barrier to 

heat dissipation. However, the electrolyte in this region absorbs heat generated 

in the core region and thus serves as a heat sink. 



Review of the state of art of Li-Ion battery modeling 

41 

 

−𝑘𝑛
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4 − 𝑇∞
4 + 𝜌𝑏𝑐𝑝 ,𝑏𝐻𝑏

𝜕𝑇𝑏

𝜕𝑡
− 𝜌𝑐𝑝𝑇𝑈𝑥       (2.35) 

 

where Ts is the temperature at the external cell surface, Hb is the thickness of the 

boundary region and the fourth right-hand side term accounts for the variation of 

mass in the boundary region. Equation (2.35 )can be used for all three directions 

(n = x, y, or z). Here Ts is considered to be: 

 

𝑇𝑠 = 𝑐𝑏𝑇 +  1 − 𝑐𝑏 𝑇∞    𝑤𝑒𝑟𝑒  𝑐𝑏 =  1 +
𝐻𝑙

𝜆𝑙
+

𝐻𝑐

𝜆𝑐
 

−1

  (2.36) 

 

where Hl, and kl are the thickness and thermal conductivity of liquid electrolyte, 

and Hc and kc are the same for the cell case material. 

One needs to use different coefficients for boundaries in different spatial 

directions when the heat transfer coefficient (h) and the amount of electrolyte in 

the boundary region are not identical in each direction. 

In the paper a dimensionless analysis is proposed in order to obtain generalized 

characteristics of thermal behavior and reduce the number of parameters. 

At high rates of discharge, the thermal resistance and capacitance imposed by 

the cell case and the surrounding electrolyte become relevant. However, their 

effects diminish as the size of the cell increases, due to the reduction of external 

surface area per unit volume. 

In addition, the internal thermal conductivity becomes more important in larger 

cells. In most cases, the effects of radiation on total heat loss are small (~10% of 

convection), except at low discharge rates (C/3 or less) under natural 

convection. Results for a lead-acid battery are presented in the paper and are 

shown in Figure 2.31. 

 

 
Figure 2.31. Calculated temperature distribution at mid-height cross section of three-module lead-

acid battery after 2h of charge at 3h rate under natural convection cooling, [39]. 
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Figure 2.31 shows that the average temperature of the battery increased from 25 

°C to approximately 33°C after 2 hours of charging at a 3C rate. The flat 

temperature profile at the center of each module indicates that the internal 

thermal resistance is relatively small compared with that at the boundaries.  

The result also shows that a higher temperature exists near the surface area 

where modules face one another. 

Application of the thermal model to various batteries indicated that excessive 

temperature rise will occur in a closely packed 330 Ah module of five cells. 

Forced air convection is not effective for cooling the module. 

To provide sufficient capacity, a large-scale Li-Ion battery generally consists of 

many individual cells that are connected in parallel. Given the results shown 

in[39], it is evident that this configuration inherently increases the thermal 

resistance of a battery, so thermal management becomes critical for operation. 

Generally, when modeling battery modules and packs some simplified strategies 

are adopted to avoid computing an unacceptable amount of calculations. It is 

possible to neglect the radiative heat transfer on the boundaries, take the 

layered-structure of the cells as the homogeneous materials, transfer the 

container to be a part of the boundary equations, or degrading a three-

dimensional system to a 2D or 1D model. 

In [10], Chen et al. developed a detailed thermal model to verify the correctness 

of the assumptions and to determine the optimal approach to simplify the 

thermal model of a battery. 
 

 
 

Figure 2.32. Schematic representation of a 

typical lithium-ion battery, [10]. 
 

Figure 2.33. Schematic diagram of a typical lithium-

ion unit cell, [10]. 

 

Inside the battery conduction is the main heat transfer mechanism and the 

transient heat conduction equation is: 
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where ρ, Cp, k and 𝑞  are the density, heat capacity, thermal conductivity and 

heat-generation rate per unit volume, respectively. 

At the boundary, both convection and radiation must be considered and they 

expressed as: 

𝑄𝑟 = 휀𝜍 𝑇𝑠
4 − 𝑇∞

4 

𝑄𝑐 = 𝑐(𝑇𝑠 − 𝑇∞)
         (2.38) 

 

Note that Tsurface may vary with location and hc may be a function of both 

location and temperature. In case of forced convection the convective heat 

transfer coefficient can be determined as 𝑐 = 𝑓2 
𝑉

𝐿
  where f2, V and L are a 

temperature-dependent coefficient, the velocity of the airflow, and the 

characteristic length of the surface, respectively. 

In addition, the heat-generation rate of a lithium-ion battery during operation 

needs to be determined. The authors adopted the equation derived by Bernardi 

[37]: 

 

𝑞 =
𝐼

𝑉𝑜𝑙
(𝐸𝑂𝐶 − 𝐸 − 𝑇

𝑑𝐸𝑂𝐶

𝑑𝑇
)  

W

m3         (2.39) 

 

where I, Vol, Eoc and E denote respectively the total current of the battery, the 

total volume of the core region, the open-circuit potential and the working 

voltage, respectively. 

This equation is efficient enough but it is important to notice that the potential 

terms should be obtained, and the effect of temperature on electrochemical 

behaviors cannot be evaluated. 

Finally, it is necessary to determine several physical parameters at the interfaces 

between the different components inside a lithium-ion battery. The product 

value of density and heat capacity is calculated based on the volume of each 

component while the thermal conductivity at the interface should be determined 

based on connection between components and the contact resistance of the 

interface. Fortunately, the effect of contact resistance on effective thermal 

conductivity is insignificant in this case, because most of the pores and gaps are 

filled with liquid electrolyte, and the thermal conductivity of the liquid 

electrolyte is comparable with that of the materials. 

The 3D detailed thermal model presented is not the best candidate to perform 

the practical simulations due to its inefficient calculation. However, such 

detailed model could be useful for validate with a comparison more simple 

models. 
 
 
 



Chapter 2 
 

44 

 

 

 

 

The battery case and the contact layer appear to play significant roles in heat 

dissipation, and ignoring these components does not significantly improve the 

calculating speed. 

The core region (critical from the computational time point of view) is 

composed of repeating cells, and each cell consists of several extremely thin 

layers. Here the thermal behavior of the core region is assumed to be analogous 

to that of a homogeneous material in order to reduce significantly the calculation 

time. 

 

The accuracy for each thermal model is evaluated quantitatively by four 

representative indexes: 
 

 Absolute deviation of maximum temperature (important for secure 

design); 

 The minimum temperature (easy to measure from surface); 

 The average temperature (indicates the total heat left in the system); 

 Standard deviation of temperature distribution at the end of discharge 

(degree of consistency of the temperature profile). 

Then compact indexes, shown in Figure 2.34, have been computed. 

 

 
Figure 2.34. Deviation index and time index of simplified thermal models developed in [10], under 

forced convection (h = 100W/m2 K1). 

Table 2.1. Detailed information of simplified thermal models examined in [10]. 
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According to the results, it is found that, for the system considered in the 

study, a 1D model is insufficient to represent the thermal behavior, especially 

for the battery under forced convection. 2D models provide better accuracy but 

consume more time than 1D models. 3D thermal models provide the best 

accuracy, although the calculation time is expanded to 3000–11,000 times that 

of the one-dimensional models. The only exception is model number 10 (3D 

model that considers average properties instead of a layered structure), which is 

the optimum simplification proposed in this work (660 times faster than the 

detailed model). 

It is important to notice also that the resistance in the x-direction is significantly 

larger than in y and z directions, which means that conduction in x-direction is 

the less important. 

The temperature on the surface is lower than at the centerline, but the excellent 

thermal conductivity of the case offers a shortcut for heat to flow from the high 

temperature region to the low temperature region, so that small temperature 

gradients are maintained on the surface. By contrast, the high thermal resistance 

in the x-direction of the core region decreases the heat flow, whereby a steep 

temperature gradient is formed inside the battery. 

Therefore, according to this model, the temperature in the central region of the 

surface X=0 is lower than the surrounding temperature. 

 

 
Figure 2.35. Temperature distribution on the surface X = 0 at the end of 3C discharge procedure, 

[10]. 

The data discussed above clearly indicates that both the contact layer and the 

case strongly affect the temperature distribution in a Li-Ion battery, and that the 

temperature distribution inside the battery may be different from that on the 

surface. 
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Forced convection is employed whenever possible since it generally offers much 

better heat transfer than natural convection. Obviously, enhancing the forced 

convection greatly depresses both the maximum temperature and the minimum 

temperature in the system, as shown in Figure 2.36 

 

 
Figure 2.36. Temperature variation and standard deviation of temperature under different 

convection conditions at 3C discharge rate, [10]. 

However note that there exists an optimum condition for forced convection to 

control effectively the system in a suitable temperature range without waste of 

energy. 

Temperature uniformity, which is a very important issue, can be evaluated 

quantitatively by examining the standard deviation of the temperature 

distribution. 

Figure 2.36 shows that the standard deviation increases with enhancing the 

extent of convection under low to moderate convection. On the other hand 

increasing the forced convection does not induce further increase in the standard 

deviation under strong forced convection. 

According to the authors this study revealed that the battery case and the contact 

layer (a barrier to the heat conduction but an extra capacity that mitigates the 

temperature rise) are important components, and the complicated core region 

can be further simplified by adopting the average properties. 

The simulation results from the detailed thermal model show that the 

temperature distribution inside the battery is asymmetric. Analyzing the 

temperature distribution it comes out that the heat transfer is greater in y and z 

directions, and the metal case effectively spreads heat on the surface. 

Furthermore, radiation is found to be an important process for heat dissipation, 

especially in situations under natural convection and high temperatures. 

In summary, the research papers surveyed evidence that the temperature 

distribution in a Li-Ion battery module strongly depends on the cooling 

conditions adopted. 
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A thermal management system becomes critical to properly operate a battery 

module or pack to avoid premature aging or decreased performance. 

2.3.3 Thermal management systems 

The heat generated within a battery must be dissipated to improve 

reliability and prevent failure. A thermal management system is the framework 

of processes and procedures used to control and regulate the battery operating 

parameters that influence the battery temperature. 

To optimize the performance of a battery pack, the thermal management system 

should deliver: 
 

 Optimum operating temperature range for all battery modules; 

 Small temperature variations within a module; 

 Small temperature variations among various modules. 

Uneven temperature distribution in a pack could lead to electrically unbalanced 

modules and thus to lower performance for the pack and vehicle. 

If temperature uniformity can be obtained within and between modules, then, 

the pack can operate closer to its desired optimum operating temperature range, 

thus improving his performance. 

Battery pack thermal management and control could be achieved by air or liquid 

systems, insulation, thermal storage (phase-change material), active or passive 

approaches, or a combination of the above techniques. 

According to [7], the location of each module in a battery pack, the external 

conditions and the type of heating and cooling could create uneven temperature 

distributions. 

To quantify the impact of the temperature on the performance of a battery, 

temperature-dependent battery performance models are needed (see previous 

section). 

In order to evaluate the thermal performance of battery models and packs and to 

improve designs, NREL has been using computer aided engineering tools. The 

author have used finite element analysis software for performing two and three-

dimensional thermal analysis. ANSYS, a widely accepted commercial software 

package, was used. 

The model treats the battery core and battery case as two separate isothermal 

nodes. All the components inside the case, such as active material, cathode and 

anode, current collectors, separator, etc. are assumed to be a single homogenous 

material with averaged properties. Thus, the core can be approximated as a 

homogeneous material with different thermal conductivities in different 

directions. Since its thermal mass is quite small the temperature of the case is 

very close to the core one. 
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Currently the ADVISOR
10

 battery model, developed at NREL, uses the parallel 

airflow approach which is also used in the Toyota Prius. In this approach, the 

cooling air is distributed (usually) under the pack and flows up along each 

module, then is collected in a space above the pack and exhausted. This has the 

potential advantage of allowing every module to experience the same amount of 

air and inlet air temperature, leading to a more uniform pack temperature. 

Consequently, from a modeling standpoint, it means that the pack thermal 

behavior can be reasonably represented by modeling a single module. 

 

 
Figure 2.37. 2D analysis of a 30-module battery pack with two types of air cooling, [7]. 

Heat is generated in the core region due to electrochemical reactions and Joule 

effect and then conducted through the case and finally convected to the 

surrounding. In the paper, the rate of heat rejection is defined as: 

 

                                                 
10

 ADVISOR is an advanced vehicle simulator, implemented in MATLAB/SIMULINK 

environment at NREL. 
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𝑄 =
𝑇𝑠−𝑇∞
1

𝐴
+

𝑤

𝑘𝐴

          (2.40) 

 

where the heat transfer coefficient h is estimated from correlation taken from 

heat transfer textbooks and they include a minimum value to account for natural 

convection. 

The temperature rise in the battery is calculated based on the energy balance 

between battery heat generation, amount of heat lost from the battery, thermal 

mass of the battery and duration of battery use: 

 

𝑇𝑠 =  
𝑄 𝑔𝑒𝑛 −𝑄 

𝑚𝑏𝑎𝑡 𝑐𝑝 ,𝑏𝑎𝑡𝑡
𝑑𝑡

𝑡

0
      (2.41) 

 

Different thermal modeling approaches are then proposed in [7] to predict 

thermal performances. The lumped capacitance thermal model is integrated with 

ADVISOR battery performance models thus allowing one to predict the 

temperature changes in a vehicle‟s battery according to the drive cycle, air 

cooling flow rate and battery type. 

Since the battery performance model is temperature dependent, the impact of 

varying temperature on battery performance automatically affects the vehicle 

performance. 

In 2009, Kuper el al. proposed an extensive analysis of thermal 

management for hybrid vehicle battery systems, [41]. The thermal management 

system is used to optimize the performance of the battery pack during vehicle 

operations. 

During the operation of the vehicle the battery system is subjected to a wide 

range of thermal and electrical load conditions. Since batteries are electro-

chemical systems, lower temperatures lead to decreasing power capability and 

elevated temperatures can lead to premature aging of the device [1]. 

Moreover, in [41], the temperature influence on the aging of the battery is 

studied. It is shown that an Arrhenius type law of this kind: 

 

𝐾𝑎𝑔𝑖𝑛𝑔 = 𝑒−
𝐸𝑎𝑡
𝑅𝑇     (2.42) 

 

is suitable to account for the temperature effects on the aging of the battery. The 

higher the temperature, the higher value of K (note that K ranges between 0, at 

T=0 K, and 1, as T∞). 

A battery cooling system is needed to avoid reaching temperature that would 

lead to premature aging of the battery.  

Depending on the operational profile, the size of the battery system and the 

vehicle environment, a suitable cooling system can be chosen from the available 
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alternatives. The authors identified essentially three types of cooling system, 

distinguished by the cooling medium: 
 

 Air; 

 Water/glycol mixtures; 

 Refrigerant. 

The essential idea of an air cooled battery system is to utilize the conditioned air 

from the passenger compartment to maintain the battery in desired temperature 

range in warm ambient temperatures. 

As stated earlier, the cooling system must be able to keep the cell temperatures 

as uniform as possible. Air flow simulations are executed in the course of the 

battery development to ensure this goal will be met. Simulations as well as 

measurements on real battery systems show that up to four cells in series can be 

cooled sufficiently in most applications. 

 

 
Figure 2.38. CFD simulation of the air flow and cell temperature uniformity for a 44 cell stack of 

cross flow type, [41]. 

 

 
Figure 2.39. CFD simulation of the air flow for a 96 cell stack of axial cooling type, [41]. 

Figure 2.40 shows a scheme of the climatic system of a vehicle with refrigerant 

cooled battery parallel to the AC loop for passengers‟ cabin cooling. 
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Figure 2.40. Schematic of the climatic system of a vehicle with refrigerant cooled battery parallel to 

the AC loop for passenger cabin cooling, [41]. 

As regard liquid cooling systems, Figure 2.41 shows a typical heat transfer 

system of a liquid cooled battery. 

 

 
Figure 2.41. Schematic of the heat transfer system of a liquid cooled battery, [41]. 

The choice of battery cooling system depends on the constraints and 

requirements of the vehicle application. The total cost impact to the vehicle must 

also be considered. Heat exchanger possibilities, available space for fans and air 

ducts, as well as safety constraints must be taken into account. 

Where the operating environment is particular harsh or the duty cycle is 

extreme, closed loop systems like water/glycol or refrigerant may provide better 

cooling efficiency. 

Since active cooling requires energy – to operate fans or coolant pumps, to 

control valves or to put additional load onto the drive train for more AC power – 

the cooling intensity should be controlled to maintain the temperature level of 

the battery cells but also minimize the total energy usage of the system. 
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This can be achieved by design, including the right choice and size of the battery 

cooling system, and by implementation of appropriate thermal and electrical 

management strategies. 

An active thermal management strategy keeps the cell temperatures in the 

appropriate range, to provide sufficient power capability as well as to avoid 

aging rates higher than anticipated. 

 

2.3 Summary 

In this chapter an extensive literature review on the modeling of both 

electrical and thermal aspects of a Li-Ion battery cell has been presented. 

The electrical characterization has been proposed from both, fundamental and 

phenomenological points of view. In particular, control-oriented models of Li-

Ion batteries for automotive application have been presented and discussed in 

detail. 

The review of the thermal characterization of Li-Ion battery have been divided 

in two parts, namely single cell thermal models and pack thermal models. At the 

end a review of the state of art of thermal management system of Li-Ion battery 

has been presented. 

Analyzing the state of the art, it can be concluded that a more detailed 

thermal model, able to capture the temperature dynamic of a Li-Ion battery cell, 

is needed to improve the accuracy of models developed for control and 

optimization. 

In Chapter 3 the modeling approach to implement a model of the thermal 

dynamics of a Li-Ion battery cell will be presented 
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CHAPTER 3 

 

3. Modeling the thermal dynamics of Li-Ion 

batteries 

As stated in Chapter 1, Li-Ion batteries are becoming the dominant 

battery technology, in particular for high power systems.  Their greater specific 

power and energy content allow overcoming limitations in meeting the power 

demands of HEVs and PHEVs typical of Ni-MH batteries. Moreover they are 

able to withstand a wider range of temperatures. 

However, Li-Ion batteries must be controlled during their operation, in order to 

prevent accelerated aging, decreasing of performance or damages. 

Models based on first principles (referred to as fundamental models) are often 

very accurate, but they are generally not suitable for real-time implementation, 

due to their inherent complexity in describing the chemical behavior of the 

battery (i.e. [36]). The type of model that is often used as a compromise between 

accuracy and complexity is the equivalent circuit model. This class of models is 

inherently phenomenological and is intended to approximate the dynamic 

behavior of the battery. 

Equivalent circuit models for batteries are generally of low order and are 

relatively simple to work with, in the context of on-board implementation and 

real-time algorithms. The terminology “control-oriented” means that the model 

must be simple in structure and yet still able to provide enough accurate results 

to suit the application. 

Most of the works on control-oriented modeling and identification 

available in the open literature focus on isothermal (constant temperature) 

models, which are electro-thermal models whose parameters are scheduled 

assuming isothermal condition within a battery cell. 

Notwithstanding, it is well known ([8]) that the dynamic behavior of batteries 

depends on temperature as well as on SoC. The isothermal assumption thus 

inevitably leads to errors and hence more accurate models are needed. 

One way of compensating for SoC and temperature influence is to incorporate 

their dependency into the equivalent circuit model parameters (see i.e. [34] and 

[42]). Following this approach, however, requires high laboratory capability and 

a considerable amount of time. Many experiments have to be carried out at 

various temperatures and moreover the results are applicable only for the 

particular battery cell tested. 

Besides, due to limitations in the experimental capabilities, the model the 

parameters are identified based on the surface temperature of the cell, since 
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these tests are performed imposing a constant wall temperature (see Figure 4.21 

for a typical experimental setup). 

This assumption is evidently in contrast with the experimental and numerical 

results published to date, which state that inside a cell, the thermal conductivity 

and the heat generated by electro-chemical reactions and irreversibilities, lead to 

a three-dimensional temperature distribution. This causes the temperature inside 

a cell to be considerably different respect to the surface temperature. 

Hence, accounting for the temperature distribution becomes necessary in order 

to properly model the battery behavior. A detailed thermal model would allow 

accounting for the spatial distribution of the temperature within a battery cell. 

Developing a modeling approach able to characterize the spatial temperature 

distribution within a Li-Ion battery cells is the main objective of this thesis. 

3.1 Thermal modeling approach and mathematical formulation 

In order to design a thermal model of a prismatic Li-Ion battery cell two 

different heat transfer problems have to be solved. First of all a conduction 

problem within the battery cell must be formulated as an unsteady problem with 

non-homogeneous boundary conditions varying with respect to both time and 

space. Then an energy conservation problem at the boundaries needs to be 

introduced to describe the behavior of the medium used to cool the battery. In 

this section, a review of the basic concept of heat transfer problems will be 

presented, in relation to the specific problem here considered. 

3.1.1 Basic equation for energy conservation 

The problem of heat transfer can be approached in several ways. Many 

textbooks (for instance [43] or [44]) tend to introduce the basic equation for heat 

transfer starting from the fundamental laws of thermodynamics. 

The subjects of thermodynamics and heat transfer are highly complementary. In 

some aspects, because it treats the rate at which the heat is transferred, heat 

transfer theory may be viewed as an extension of thermodynamics. 

The first law of thermodynamics, according to [43], may be expressed as 

follows: The net change (increase or decrease) in the total energy of the system 

during a process is equal to the difference between the total energy entering and 

the total energy leaving the system during that process. 

Energy can be transferred to or from a system by heat or work, and it can enter 

or leave the system by exchanging mass flows directly through the boundaries. 

The total energy of a simple compressible system consists of internal, kinetic, 

and potential energies. 

Normally, in heat transfer analysis, the only form of energy of interest is the one 

that can be transferred as a result of a temperature difference, that is, heat or 

thermal energy. Therefore it is possible to write a heat balance equation: 



Modeling the thermal dynamics of Li-Ion batteries 

55 

 

𝑄 
𝑖𝑛 − 𝑄 

𝑜𝑢𝑡 + 𝐸 
𝑔𝑒𝑛 = 𝑑𝐸𝑡𝑒𝑟𝑚𝑎𝑙  𝑠𝑦𝑠𝑡𝑒𝑚      [W]        (3.1) 

 

In a closed system, where there are no mass flows, and when system involves 

heat transfer only and no work interactions across its boundary, the power 

balance relation further reduces to: 

 

𝑄 = 𝑚𝑐𝑣∆𝑇  [W]    (3.2) 

 

3.1.2  Basic equation for fluid flow 

In systems where fluid flows are present, the energy exchanged through 

the boundaries associated to transfer of mass, has to be considered, other that the 

energy fluxes. These problems can be modeled following the control volumes 

approach. 

According to [44], the inflow and outflow terms are surface phenomena. That is, 

they are associated exclusively with processes occurring at the control surface 

and are generally proportional to the surface area. This flow terms include heat 

transfer (which can be by conduction, convection or radiation) and work 

interaction occurring at the system boundaries as well as energy advected by 

mass entering and leaving the control volume. 

The flow of a fluid through a pipe or duct can normally be approximated to be 

one-dimensional. As a result, all properties are assumed to be uniform at any 

cross section normal to the flow direction, and the properties are assumed to 

have bulk average values over the entire cross section. 

Under the one-dimensional flow approximation, the mass flow rate of a fluid 

flowing in a pipe or duct is defined as: 

 

𝑚 = 𝜌𝑣𝐴       
𝑘𝑔

𝑠
     (3.3) 

 

where v is the mean velocity and A the cross-section area. 

The general energy conservation law, written in its differential form, can be cast 

as follow: 

 
𝑑𝐸

𝑑𝑡
= 𝑚𝑐𝑣

𝑑𝑇

𝑑𝑡
= 𝑚   +

1

2
𝑣2 + 𝑔𝑧 

𝑖𝑛
− 𝑚   +

1

2
𝑣2 + 𝑔𝑧 

𝑜𝑢𝑡
+ 𝑄 − 𝑊    (3.4) 

 

where 𝑊  represents the work term (not including the flow work) and h
11

 is the 

enthalpy per unit mass, in  
𝐽

𝑘𝑔
 . 

                                                 
11

 h=u+pv where u is the specific internal energy and the term pv represents the flow 

work per unit mass. 
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Figure 3.1 gives a representation of an energy balance for an open system. 

 
Figure 3.1. Open system energy balance representation. 

For a steady-flow system with one inlet and one outlet, the rate of mass flow 

into the control volume must be equal to the rate of mass flow out of it. That is, 

𝑚 𝑖𝑛  = 𝑚 𝑜𝑢𝑡  = 𝑚 . When the changes in kinetic and potential energies are 

negligible, which is usually the case, and there is no work interaction, the energy 

balance for such a steady-flow system reduces to: 

 

𝑚𝑐𝑣∆𝑇 = 𝑄 − 𝑚 ∆ = 𝑄 − 𝑚 𝑐𝑝∆𝑇   (3.5) 

 

By solving this balance it is possible to find how the mean temperature varies in 

the system considered. 

Fluid flow is streamlined and thus laminar at low velocities, but turns 

turbulent as the velocity is increased beyond a critical value. Transition from 

laminar to turbulent flow does not occur suddenly; rather, it occurs over some 

range of velocity where the flow fluctuates between laminar and turbulent flows 

before it becomes fully turbulent. 

The Reynolds number is a dimensionless parameter that accounts for fluid 

properties and flow condition and allow one to discriminate between the two 

kinds of flow [44]. 

𝑅𝑒 =  
𝜌𝑣𝑚 𝐿𝑐

𝜇
      (3.6) 

 

Re < 2300   Laminar flow 

2300 < Re < 10,000 Transitional flow 

Re > 10,000  Turbulent flow 

 

Flowing through a tube, the fluid particles in the layer in contact with the 

surface of the tube will come to a complete stop. This layer will also cause the 

fluid particles in the adjacent layers to slow down gradually as a result of 

friction. 
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To make up for this velocity reduction, the velocity of the fluid at the midsection 

of the tube will have to increase to keep the mass flow rate through the tube 

constant. As a result, a velocity boundary layer develops along the tube. 

The thickness of this boundary layer increases in the flow direction until the 

boundary layer reaches the tube center and thus fills the entire tube, as shown in 

Figure 3.2. 

 

 
Figure 3.2. The development of the velocity boundary layer in a tube, [43]. 

 

Similarly, along the fluid flow direction, a thermal boundary layer develops as 

shown in Figure 3.3. 

The region in which the flow is both hydro-dynamically and thermally 

developed and thus both the velocity and dimensionless temperature profiles 

remain unchanged is called fully developed region. 

 

 
Figure 3.3. The development of the thermal boundary layer in a tube, [43].                                          

(in this case the fluid is being cooled). 

 

Fluid flow problems are normally solved using experimental correlations that 

are available for both laminar and turbulent flows and for entry region as well as 

for fully developed region. 
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Since an in depth discussion on this topic is out of the scope of this work, more 

references can be found in [44], [45] or [46]. 

Nonetheless, a quantity of great interest in the analysis of tube flow is 

the pressure drop ΔP since this value is directly related to the power 

requirements of the fan or pump to maintain the flow. It is convenient to express 

this quantity as: 

 

∆𝑃 = 𝑓
𝐿

𝐷

𝜌𝑣𝑚
2  

2
     (3.7) 

 

where L is the tube length, D the diameter, vm the mean velocity, 𝜌 the density 

and f  the friction factor, which is a function of the Reynolds number. 

The friction factor and the heat transfer coefficient are highest at the tube inlet 

where the thickness of the boundary layers is zero, and decrease gradually to the 

fully developed values, as shown in Figure 3.4. 

Therefore, the pressure drop and heat flux are higher in the entrance regions of a 

tube. The effect of the entrance region is always to enhance the average friction 

and heat transfer coefficients for the entire tube. This enhancement can be 

significant for short tubes but negligible for long ones. 

 

 
Figure 3.4. Variation of the friction factor and of the convection heat transfer coefficient in the flow 

direction for flow in a tube (Pr>1), [43]. 

Typically, engineering problems involve a consideration of both the heat 

transfer rates between the fluids and the mechanical pumping power expended 

to overcome the friction and move the fluids. The so called friction-power 



Modeling the thermal dynamics of Li-Ion batteries 

59 

 

expenditure, as the ratio between the power needed to move the fluid and the 

heat exchanged is defined in [45], is a parameter of great importance in the 

development of heat exchangers or in the analysis of fluid flow that involve heat 

transfer. 

The friction between the fluid layers in a tube may cause a slight rise in fluid 

temperature as a result of mechanical energy being converted to thermal energy. 

However, this frictional heating is too small to warrant any consideration in 

calculations, and thus is generally disregarded. 

Remember that, although the theory of fluid flow is reasonably well understood, 

theoretical solutions are obtained only for a few simple cases such as the fully 

developed laminar flow in a circular pipe. Therefore, one must rely on the 

experimental results and the empirical relations obtained for most fluid flow 

problems rather than closed form analytical solutions. Errors of approximately 

10-15 % are considered normal in this kind of applications. 
 

3.1.3  Basic equations for heat transfer 

A major objective in a heat transfer analysis is to determine the 

temperature field in a medium resulting from conditions imposed on its 

boundaries. 

Heat is a form of energy in transit due to a temperature difference. There are 

three ways this transfer can occur: 
 

 Conduction of heat throughout a medium due to transfer of energy from 

the more energetic particles of a substance to the adjacent less energetic 

ones, as a result of interactions between the particles; 

 Convection, which is defined as heat transfer between a surface and a 

moving fluid; 

 Radiation of energy emitted by matter in the form of electromagnetic 

waves (or photons) as a result of the changes in the electronic 

configurations of the atoms or molecules. 

 

Unlike conduction and convection, the transfer of energy by radiation does not 

require the presence of an intervening medium. 

This form of transfer relies on the Stefan-Boltzmann law, which for a grey 

surface is written as: 

 

𝑞 𝑟𝑎𝑑 = 휀𝜍 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
4 − 𝑇𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑠

4
      

W

m2    (3.8) 

where σ is the Stefan-Boltzmann constant = 5.67 ∗ 10−8   
𝑊

𝑚2𝐾4 and ε is the 

surface emissivity. 
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According to [44], radiation is usually significant relative to conduction or 

natural convection, but negligible relative to forced convection. Thus radiation 

in forced convection applications, when temperatures are below large values (on 

the order of 10
2
 degree Celsius), is disregarded. Sometimes this way of heat 

transfer is accounted for in the computation of the convective heat transfer 

coefficient obtaining thus an overall coefficient for both way of heat diffusion. 

In this work radiation will always be neglected.  

The convection heat transfer mode is comprised of two mechanisms: 

energy transfer due to random molecular motion (diffusion) and macroscopic 

motion of the fluid (advection). 

Regardless of the particular nature of the convection heat transfer process the 

appropriate rate equation is given by the Newton’s law of cooling: 
 

𝑞 𝑐𝑜𝑛𝑣 =   𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑇∞    
W

m2      (3.9) 

 

where h is the convective heat transfer coefficient  W m2K   and 𝑇∞ is the 

average bulk temperature of the fluid. Any study of convection ultimately 

reduces to a study of means by which h may be determined. 

The convection heat transfer coefficient is not a property of the fluid. It is an 

experimentally determined parameter whose value depends on all the variables 

influencing convection such as the surface geometry, the nature of fluid motion, 

the properties of the fluid, and the bulk fluid velocity. 

Convection is called forced convection if the fluid is forced to flow over the 

surface by external agents such as a fan, pump, or the wind. In contrast, 

convection is called natural (or free) if the fluid motion is caused by buoyancy 

forces that are induced by density differences due to the variation of temperature 

in the fluid. Plenty of empirical correlations have been derived for external 

flows, internal flows, natural convection and boiling or condensation 

phenomena. 

For most conduction problems the first law of thermodynamic, the 

energy conservation law, represents the essential tool that provides the solution 

to the problem. To determine the temperature distribution in a body, a precise 

methodology has to be followed and thus it is necessary to, respectively, define 

a differential control volume, identify the relevant energy transfer processes and 

introduce appropriate rate equations. 

The conduction heat transfer fundamentally relies on the heat diffusion 

equation which provides the basic tool for heat conduction analysis. Its general 

form in Cartesian coordinates is: 

 
𝜕

𝜕𝑥
 𝑘𝑥

𝜕𝑇

𝜕𝑥
 +

𝜕

𝜕𝑦
 𝑘𝑦

𝜕𝑇

𝜕𝑦
 +

𝜕

𝜕𝑧
 𝑘𝑧

𝜕𝑇

𝜕𝑧
 + 𝑞 = 𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
  (3.10) 
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where ki (i=x,y,z), is the thermal conductivity in different spatial directions 

 W mK  , ρ the density  kg m3  , cp thermal capacity  J kgK   and 𝑞  the heat 

generation rate per unit volume,  W m3  . 
In the case of isotropic material, which is a common assumption in heat transfer 

problems, the thermal conductivity does not vary with respect to the direction 

chosen and so the equation above can be written as: 

 

 
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2 +
𝑞  (𝑥 ,𝑡)

k
=

1

α

∂T

∂t
  (3.11) 

 

where  𝛼 =
𝐻𝑒𝑎𝑡  𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑒𝑑

𝐻𝑒𝑎𝑡  𝑠𝑡𝑜𝑟𝑒𝑑
=

𝑘

𝜌𝑐𝑝
  is the thermal diffusivity  

m2

s
 , and represents 

how fast heat diffuses through a material. 

In the technical literature, i.e. [43] or [44], many simplified problems are 

considered and solved. Particularly relevant to this study is the solution of 

Equation (3.11) for one-dimensional case, specifically when  
𝜕𝑇

𝜕𝑦
=

𝜕𝑇

𝜕𝑧
≜ 0, the 

heat diffusion equation reduces to: 

 
∂2T

∂x2
+

𝑞  (x,t)

k
=

1

α

∂T

∂t
    (3.12) 

 

First of all the body will be considered to be in a steady-state situation 

which means that the temperature does not vary with respect the time but only 

along the spatial direction. In absence of internal heat generation the problem 

can be stated with the well known Laplace equation: 

 
𝜕2𝑇

𝜕𝑥2 = 0    (3.13) 

 

Solution of Equation (3.13) leads one to find that the temperature distribution 

varies linearly with respect to the space coordinate x and performing a double 

integration the analytical solution obtained is: 𝑇 𝑥 = 𝐶1𝑥 + 𝐶2 where the two 

variables are obtained imposing the boundary conditions. 

Considering now the case with presence of heat generation at a rate 𝑞  , the 

problem becomes: 

 
𝜕2𝑇

𝜕𝑥2 +  
𝑞  

𝑘
= 0     (3.14) 

 

And the corresponding analytical solution is: 𝑇 𝑥 = −
𝑞 

2𝑘
𝐶1𝑥 + 𝐶2  
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Just as an example, the cartesian solution of a steady-state conduction problem 

within a plane wall of thickness L in presence of heat generation and with 

symmetrical convective boundary conditions results to be: 

 

𝑇 𝑥 = 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 +
𝑞  𝐿2

2𝑘
 1 −

𝑥2

𝐿2
    𝑤𝑒𝑟𝑒  𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑇∞ +

𝑞  𝐿


 (3.15) 

 

The transient cases are more complex, since now the temperature varies 

with respect to both space and time. A fairly representative problem of one-

dimensional transient heat conduction, without heat generation, has the form: 

 
∂2T

∂x2 =
1

α

∂T

∂t
          (3.16) 

 

These kinds of problems can be solved by the separation of variables method or 

applying advanced mathematical or numerical methods. However they are often 

treated using the lumped parameters method.  

This simplified approach assumes that the temperature of a solid varies with 

time but remains uniform throughout the system at any time. As suggested in 

[43], this assumption provides great simplification in certain classes of heat 

transfer problems without much sacrifice in terms of accuracy. 

The temperature distribution with respect to the time can be find performing an 

energy balance of the solid for the time interval dt. Consider a body of arbitrary 

shape of mass m, volume V, surface area As, density ρ, and specific heat cp 

initially at a uniform temperature Ti. At time t = 0, the body is placed into a 

medium at temperature T∞, and heat transfer takes place between the body and 

the medium with a heat transfer coefficient h, as shown in Figure 3.5. 

 

 
Figure 3.5. Geometry and parameters involved in the lumped parameters analysis, from [43]. 
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The heat transfered to the body during dt equals the increasing in the energy of 

the body during the same time step. 
 

𝐴 𝑇∞ − 𝑇 𝑑𝑡 = 𝑚𝑐𝑝𝑑𝑇          (3.17) 

 

Considering dT=d(T-𝑇∞) since 𝑇∞  = constant, Equation (3.17) can be expressed 

as: 

 
𝑑(𝑇−𝑇∞ )

𝑇−𝑇∞
= −

𝐴

𝜌𝑉𝑐𝑝
𝑑𝑡                 (3.18) 

 

Equation (3.18) can be easily integrated to obtain the solution to the problem: 

 
𝑇 𝑡 −𝑇∞

𝑇 𝑡=0 −𝑇∞
= 𝑒−𝑏𝑡    𝑤𝑒𝑟𝑒 𝑏 =

𝐴

𝜌𝑉𝑐𝑝
                (3.19) 

 

The lumped system analysis certainly provides great convenience in heat 

transfer analysis, but one must wonder when it is appropriate to use it. 

The criterion used to establish whether the lumped parameters approach is 

applicable or not consists on the relative comparison of the conduction 

resistance within the body and the convection resistance at the surface of the 

body. 

𝐵𝑖 =
𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛  𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑤𝑖𝑡𝑖𝑛  𝑡𝑒  𝑏𝑜𝑑𝑦

𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛  𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑎𝑡  𝑡𝑒  𝑠𝑢𝑟𝑓𝑎𝑐𝑒
=

𝐿𝐶
𝑘 

1
 

=
  𝐿𝐶

𝑘
 (3.20) 

 

The dimensionless Biot number is the ratio of the internal resistance of a body 

to heat conduction to its external resistance to heat convection [44]. 

Therefore, a small Biot number represents small resistance to heat conduction, 

and thus small temperature gradients within the body. 

Lumped system analysis assumes a uniform temperature distribution throughout 

the body, which will be the case only when the thermal resistance of the body to 

heat conduction is zero. Thus, lumped system analysis would be exact in the 

limit case of Bi = 0 and approximate or fairly inaccurate when Bi > 0. 

It is generally accepted that lumped system analysis is applicable when Bi < 0.1 

[44]. 

In a typical case of a Li-Ion battery, nevertheless, the Biot number results to be 

much larger than 0.1 (typical values are between 0.2 and 1.0) and thus the 

lumped parameters approach is definitely inaccurate. 

To complete the review of the basic equations, the heat transfer from 

extended surfaces has to be analyzed. Consider the case of a solid that 

experiences energy transfer by conduction within its boundaries, as well as 

convection (or radiation) between its boundaries and the surroundings. 
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The convective removal of heat from a surface can be substantially improved 

putting some extensions on that surface, in order to increase its area. Such an 

extended surface is termed a fin. 

These extensions can take a variety of forms and configurations, as shown in 

Figure 3.6 and Figure 3.7. 

 
Figure 3.6. Fin configurations. (a) Straight fin of uniform cross section. (b) Straight fin of non-

uniform cross section. (c) Annular fin. (d) Pin fin, [44]. 

 

A straight fin is any extended surface that is attached to a plane wall. It may be 

of uniform sectional area or its cross-sectional area may vary with the distance x 

from the wall. An annular fin is circumferentially attached to a cylinder, and its 

cross section varies with radius from the centerline of the cylinder. 

 

 
Figure 3.7. Examples of externally finned tubing, [47]: 1) and 2) are typical commercial circular fins 

of constant thickness; 3) and 4) serrated circular fins and dimpled spirally-wound circular fins, both 

intended to improve convection; 5) spirally-wound copper coils outside and inside; 6) and 8) bristle 

fins, spirally-wound and machined from base metal; 7) a spirally indented tube to improve 

convection and increase surface area 
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In the analysis of fins, steady-state operation with no heat generation in the fin is 

considered, and the thermal conductivity k of the material is assumed to remain 

constant. The convection heat transfer coefficient h is also considered to be 

constant and uniform over the entire surface of the fin for convenience in the 

analysis. 

Considering a volume element of a fin, at location x, having a length of Δx, 

cross-sectional area of Ac, and perimeter p, as shown in Figure 3.8, it is possible 

to write an energy balance: 

 

𝑄 
𝑐𝑜𝑛𝑑 ,𝑥 = 𝑄 

𝑐𝑜𝑛𝑑 ,𝑥+∆𝑥 + 𝑄 
𝑐𝑜𝑛𝑣      [W]     (3.21) 

 

where   𝑄 
𝑐𝑜𝑛𝑣 =  𝑝 ∆𝑥  𝑇 − 𝑇∞      [W]  (3.22) 

 

 
Figure 3.8. Volume element of a fin, [43]. 

Substituting Equation (3.22) into (3.21), dividing by x and taking the limit as 

Δx→0: 

 
𝑑𝑄 𝑐𝑜𝑛𝑑

𝑑𝑥
+ 𝑑𝐴𝑐 𝑇 − 𝑇∞ = 0           (3.23) 

 

Fourier‟s law of heat conduction states that: 

 

𝑄 
𝑐𝑜𝑛𝑑 = −𝑘𝐴𝑐

𝑑𝑇

𝑑𝑥
     (3.24) 

 

It is possible to express the differential equation governing heat transfer in fins 

as: 
𝑑2𝑇

𝑑𝑥2 +  
1

𝐴𝑐

𝑑𝐴𝑐

𝑑𝑥
 −  

1

𝐴𝑐



𝑘

𝑑𝐴𝑐

𝑑𝑥
  𝑇 − 𝑇∞ = 0             (3.25) 
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In the case of constant cross-sectional area, constant thermal conductivity and 

defining the excess temperature θ to be: 𝜃 𝑥 = 𝑇 𝑥 − 𝑇∞  the solution of 

Equation (3.25) is: 
𝑑2𝜃

𝑑𝑥2 − 𝑚2𝜃 = 0     where   𝑚2 ≡
𝑝

𝑘𝐴𝑐
   (3.26) 

 

Equation (3.26) is a linear, homogeneous, second-order differential equation 

with constant coefficients. The fundamental theory of differential equations 

states that such an equation has two linearly independent solution functions, and 

its general solution is the linear combination of those two solution functions. 

 

𝜃 𝑥 = 𝐶1𝑒𝑚𝑥 + 𝐶2𝑒−𝑚𝑥    (3.27) 

 

where C1 and C2  are arbitrary constants whose values are to be determined from 

the boundary conditions at the base and at the tip of the fin. 

The temperature of the plate to which the fins are attached is normally known in 

advance and considered to be kept constant. Therefore, at the fin base a 

specified temperature boundary condition is considered, expressed as: 

 

𝜃 0 = 𝜃𝑏 = 𝑇𝑏 − 𝑇∞  
 

As regard the fin tip various boundary conditions are possible, including 

specified temperature, negligible heat loss (idealized as an insulated tip), 

convection, and combined convection and radiation, as shown in Table 3.1. 
 
Table 3.1. Summary of temperature distribution and heat loss for fins of uniform cross section, [44]. 

 
 

Although the heat diffusion problem (Equation (3.12)) can be solved in a 

large number of practical cases by means of suitable approximation, a general 
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solution for the transient one-dimensional boundary-value problem of heat 

conduction in a finite region with heat generation within the solid and with non-

homogeneous boundary conditions is hard to obtain.  

For this kind of problem, it is not possible to find a simple solution and so a 

more complex mathematical analysis has to be performed. 

To solve non-homogeneous boundaries problems it is common to use a Laplace 

transform to remove time variable from the partial differential equation. 

However, in many problems it is more convenient to apply an integral 

transformation that removes the space variable from the partial differential 

equation. 

According to [11], the integral transform technique is especially attractive for 

transient and steady-state heat conduction problems in which it treats all space 

variables in the same manner and has no inversion difficulties as in the case of 

Laplace transformation. This is due to the fact that both the integral transform 

and the inversion formula are defined at the onset of the problem. 

For a given problem, however, the type of integral transform and the 

corresponding inversion formula depend on the range of the space variables 

(finite, semi-infinite or infinite extend) and on the type of the boundary 

conditions. 

The integral transform technique is used in this work to solve the conduction 

problem. The complete solution will be shown in a few pages when the 

development of the detailed thermal model will be presented (Section 4.2.1). 
 

3.2 Assumptions for battery thermal modeling 

In this section, the mathematical assumptions and simplification adopted to 

write the equations of the battery cell models developed in Chapter 4 will be 

discussed, starting from the basic, general, equations presented above. 

First of all, as in major heat transfer problem, common assumptions about the 

different materials that compose the battery are made: 
 

 The cell materials are considered to be homogeneous and without bulk 

motion; 

 The cells are considered to be isotropic, so that all the properties don‟t 

depend on the direction; 

 The thermal conductivity, k, and the other thermo-physical properties are 

assumed to be constant. 

 

Moreover some simplifying assumptions are used when approaching the heat 

transfer problem: 
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 The radiation heat transfer is neglected, since the temperatures and their 

differences are not in this kind of heat transmission interest; 

 Perfect contact at the interface of two surface and thus no concentrated 

temperature drop (negligible contact resistance); 

 The heat generated within the battery to be homogeneously distributed 

within the cell volume; 

 All the flows are considered to present uniform velocity distribution; 

 The pressure drop across the channels is negligible. 

 

3.2.1 Mathematical formulation of the simplified system 

From a mathematical standpoint, the problem can be cast into a non-

homogeneous boundary-value problem (BVP). For the case of one-dimensional, 

unsteady heat conduction it is represented by the heat diffusion equation 

mentioned above (Equation (3.12)): 
 

∂2T

∂x2
+

𝑞  (x, t)

k
=

1

α

∂T

∂t
 

 

To solve this equation two boundary conditions and one initial condition must 

be chosen. In general, there are three kinds of different boundary conditions: 
 

 Specified temperature of an exposed surface (e.g. T(x=x0, t)=const); 
 

 Specified heat flux from or to an exposed surface (e.g. 

𝑞 = −𝑘
𝜕𝑇(𝑥=𝑥0 ,𝑡)

𝜕𝑥
= 𝑐𝑜𝑛𝑠𝑡). 

Note that insulation and symmetry are particular cases of this kind of 

boundary condition (𝑞 = −𝑘
𝜕𝑇(𝑥=𝑥0 ,𝑡)

𝜕𝑥
= 0); 

 

 Convection or radiation (e.g. −𝑘
𝜕𝑇(𝑥=𝑥0 ,𝑡)

𝜕𝑥
= 𝑐𝑜𝑛𝑣 (𝑇 𝑥 = 𝑥0, 𝑡 − 𝑇∞)  

 

or   −𝑘
𝜕𝑇(𝑥=𝑥0 ,𝑡)

𝜕𝑥
= 휀𝜍(𝑇4 𝑥 = 𝑥0, 𝑡 − 𝑇𝑠𝑢𝑟𝑟

4 )). 

 

The initial condition is relative to the temperature at which the medium is at a 

specific instant of time, t=0 when the analysis of the problem starts. 
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3.3 Summary 

In this chapter the approach to model the thermal dynamics of a Li-Ion battery 

has been presented and an overview of the basic physical principles needed to 

implement such a model has been given. 

The basic principles and physical laws of the energy conservation analysis, fluid 

flows and heat transfer have been discussed in detail. The principles described 

here will be instrumental to solve the problem under study. For any further 

detail, it is possible to consult the wide literature available for such topics (for 

example [43]-[48]). 

In Chapter 4 this approach will be used to implement a Li-Ion thermal modeling 

methodology. 
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CHAPTER 4 

 

4. Development of the thermal modeling 

approach 

In this chapter, the development of a general modeling methodology to 

characterize the thermal behavior of a Li-Ion battery cell will be described. The 

purpose of this work is to obtain a family of models that can predict the 

temperature distribution within a battery cell under varying operating 

conditions. 

The models must be sufficiently simple to be implemented nearly in real-time, 

yet accurate enough to provide a reasonable estimate of the dynamic of the 

temperature distribution inside the cell. Possible applications can be in the 

design and simulation of thermal management systems for battery packs. 

In the previous chapter, a review of the mathematical equations on which the 

solution relies has been presented, and then assumptions made to simplify the 

mathematical formulation have been shown. 

This chapter presents the approach followed to implement a general thermal 

model, together with a detailed description of the model assumptions and the 

mathematical framework. Then different models will be developed to represent 

different cooling systems, in particular first an air cooled battery cell will be 

described and then a cooling bar system will be modeled. 

4..1 Introduction and scope of the work 

The purpose of this work is to implement a family of simplified thermal 

models of a prismatic Li-Ion battery cell that approximate the temperature 

distribution in presence of uniform internal heat generation and under different 

boundary and initial conditions. 

These models predict the temperature distribution inside the battery cell with 

respect to both time and space, thus providing a real-time thermal 

characterization of a Li-Ion cell. 

The intent of these models is to serve applications in the areas of performance 

and thermal management studies for battery pack cooling systems. 

Due to their high specific energy and power, Li-Ion batteries have recently been 

considered the technology of choice for application in the automotive field, such 

as energy storage system for BEV/PHEV/HEV. 
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In particular, prismatic Li-Ion batteries with a pouch-style shape are today 

largely used due to advantages in packaging and cooling. Figure 4.1 shows an 

example of prismatic pouch-style battery cell. 
 

 
Figure 4.1. Examples of pouch-style battery cells available on the market. 

Figure 4.2 shows the reference geometry for a typical pouch-style prismatic 

battery cell. Note that, for this system, the dimensions in the length and width 

directions (y and z) are much larger than in the thickness direction (x). 

 

 
 

Figure 4.2. Pouch-style battery cell sketch and coordinate system. 

For the system shown in Figure 4.2, the heat diffusion equation can be applied 

in Cartesian coordinates: 

 
𝜕

𝜕𝑥
 𝑘𝑥

𝜕𝑇

𝜕𝑥
 +

𝜕

𝜕𝑦
 𝑘𝑦

𝜕𝑇

𝜕𝑦
 +

𝜕

𝜕𝑧
 𝑘𝑧

𝜕𝑇

𝜕𝑧
 + 𝑞 = 𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
  (4.1) 
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Such three dimensional equation is generally complex to solve, unless numerical 

approximations are introduced. In case of pouch-style cell, such as the system 

shown in Figure 4.2, it is possible to operate a simplification of Equation (4.4.1) 

into a 1-D problem. This assumption can be verified by a simple order of 

magnitude analysis. As suggested in [46], Equation (4.4.1) can be non-

dimensionalized by defining the following variables: 

 

𝑥∗ =
𝑥

𝐿𝑐
;    𝑦∗ =

𝑦

𝐿𝑐
;    𝑧∗ =

𝑧

𝐿𝑐
 

(4.2) 

𝜏 =
𝑡

𝑇
;    𝑇∗ =

𝑇 − 𝑇∞

𝑇0 − 𝑇∞
 

 

Equation (4.4.1) becomes then: 

 
𝜕

𝜕𝑥∗  𝑘𝑥
𝜕𝑇∗

𝜕𝑥∗ +
𝜕

𝜕𝑦∗  𝑘𝑦
𝜕𝑇∗

𝜕𝑦∗ +
𝜕

𝜕𝑧∗  𝑘𝑧
𝜕𝑇∗

𝜕𝑧∗ + 𝑞 = 𝜌𝑐𝑝
𝜕𝑇∗

𝜕𝜏
     (4.3) 

 

For a pouch-style battery cell, the order of magnitude of the length in x 

direction is typically 10
-1

 mm. Instead, the dimensions in y and z directions are 

two orders of magnitude larger than that (as in Figure 4.2). 

 

𝑥∗ ≪ 𝑦∗   𝑎𝑛𝑑   𝑥∗ ≪ 𝑧∗      (4.4) 

 

On the other hand, Li-Ion battery cells present anisotropic thermal conductivity. 

It can be inferred from literature data (see i.e. [39] or [49]) that ky = kz ~ 100 kx. 

Therefore, the second and third term of Equation (4.3) are of the same order of 

magnitude but the temperature gradient with respect to x-direction results to be 

larger, considering that x
*
 appears in the denominator elevated to the second 

power. 

 
𝜕

𝜕𝑥∗
 𝑘𝑥

𝜕𝑇∗

𝜕𝑥∗
 ≫

𝜕

𝜕𝑦∗
 𝑘𝑦

𝜕𝑇∗

𝜕𝑦∗
    and   

𝜕

𝜕𝑥∗
 𝑘𝑥

𝜕𝑇∗

𝜕𝑥∗
 ≫

𝜕

𝜕𝑧∗
 𝑘𝑧

𝜕𝑇∗

𝜕𝑧∗
  (4.5) 

 

Hence, for a pouch-style Li-Ion battery cell, the heat diffusion can be 

approximated as a one-dimensional problem in the x-direction, and the heat flux 

along y and z can be neglected for engineering purpose. 

By consequence, a 1D approach has been chosen in this work to solve the heat 

transfer problem and determine the dynamic temperature distribution inside a 

Li-Ion battery cell. 

In order to characterize the effects of different cooling systems on the 

temperature distribution within the cell, the one-dimensional solution is then 

extended to a 1+1D model that accounts for the variability of the boundary 
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conditions. This allows one to characterize the temperature dynamics when the 

cell is cooled by an external source, as explained in Section 4.2.3. 
 

4..2 Development of thermal model structure 

Starting from the basic principles outlined in Section 3.1, a modeling 

approach to characterize the temperature dynamics of a prismatic Li-Ion battery 

cell is here developed. 

First a general one-dimensional model is presented to predict the temperature 

field in a prismatic medium in presence of uniform internal heat generation and 

under different conditions (various initial and boundary conditions). 

Then, a model with convective boundary conditions will be presented. This 1D 

model is able to characterize the temperature distribution in the x direction, 

assuming uniform coolant temperature. However, as the air flows in the channel, 

its temperature increases, hence decreasing its ability to extract heat from the 

cell. 

The one-dimensional model is then extended to a 1+1D model that accounts for 

the variability of the boundary conditions in the air flow direction (y). 

Finally, a model with imposed temperature boundary conditions will be 

presented and then extended to a 1+1D model to simulate the behavior of a 

battery pack including cooling bars. 

The extension to the 1+1D approach allows for comparing the effects of 

different cooling systems. The simple structure and the computational efficiency 

make the model an ideal candidate for design of thermal management systems 

and real-time simulations. 

4.2.1 General mathematical formulation of 1-D temperature distribution in 

a prismatic finite medium 

This sub-section describes the development of a general modeling 

approach that, relying on the transformation method, predicts the temperature 

distribution within a battery cell under different conditions. 

As stated above, the starting point is the unsteady heat diffusion equation for 1D 

conduction problem in x direction: 

 
𝜕2𝑇

𝜕𝑥2
+

𝑞 (𝑥 ,𝑡)

𝑘
=

1

𝛼

𝜕𝑇

𝜕𝑡
    (4.6) 

 

Figure 4.3 shows a sketch of a prismatic battery cell in presence of internal heat 

generation and subjected to general boundary conditions. 
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Figure 4.3. Sketch of a battery cell subjected to general boundary conditions,[50]. 

To solve the problem two boundary conditions and an initial condition have to 

be imposed.  

 

 
 

 
𝑇 = 𝑇0              𝑎𝑡 0 ≤ 𝑥 ≤ 2𝐿, 𝑡 = 0

−𝑘𝑥
𝜕𝑇

𝜕𝑥
+ 2 = 0     𝑎𝑡 𝑥 = 2𝐿, 𝑡 > 0

−𝑘𝑥
𝜕𝑇

𝜕𝑥
+ 1 = 0     𝑎𝑡 𝑥 = 0, 𝑡 > 0

   (4.7) 

 

Although analytical solutions have been developed for particularly simple cases 

(see 3.1.3), to solve the most general case (transient boundary-value problem in 

a finite region in presence of heat generation and with non-homogeneous 

boundary conditions), numerical techniques are normally used. 

However, it is possible to find an analytical solution for the general problem that 

does not require iterations/discretizations by applying the integral 

transformation method, as proposed i.e. in [11] or [51]. 

The integral transforms for use in the Cartesian coordinate system are usually 

called Fourier transforms because they are derived from Fourier series 

expansion of an arbitrary function in a given interval. This solution method was 

largely used in the 60‟s -70‟s when the numerical methods and the 

computational power were not as developed as nowadays. 

The method is essentially a projection technique where the problem is solved 

using a functional space. In this auxiliary space, the space variable is removed 

from the partial differential equation (PDE). To understand the concept beyond 

this method, one should think about the Laplace transform. 

The Laplace transform is commonly used in engineering for solving differential 

and integral equations. Many examples of application can be found, for example 

solution of electrical circuits or mechanical systems. In these analyses, the 

Laplace transform is often interpreted as a transformation from the time-domain, 

in which inputs and outputs are functions of time, to the frequency-domain, 

where the same inputs and outputs are functions of complex angular frequency, 

01 1  h
dx

dT
k

02 2  h
dx

dT
k
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in radians per unit time. Given a simple mathematical or functional description 

of an input or output to a system, the Laplace transform provides an alternative 

functional description that often simplifies the process of analyzing the behavior 

of the system. 

In solving the transient heat-conduction problem, it is common to use a Laplace 

transform to remove time variable from the partial differential equation, as show 

for example in [52] or [53]. 

However, in some heat transfer problems, it is more convenient to apply an 

integral transformation that removes the space variable from the equation. Using 

such methodology it is possible to avoid the inversion difficulties that the 

Laplace transform presents in cases where complex geometries or boundary 

conditions are present. 

The Fourier integral transform method allows solving the PDE applying the 

following procedure: 

 

• Transform the problem, projecting it to the functional space; 

• Solve the equation in the functional space; 

• Inverse-transform to obtain the dimensional solution to the problem. 

 

The general formulation of the Fourier transform, and the corresponding 

inversion formula, for a function F(x) in the finite interval  0 ≤ 𝑥 ≤ 2𝐿  look 

like: 

 

 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 : 𝐹  𝛽𝑚 =  𝐾(𝛽𝑚 , 𝑥 ) ∙ 𝐹(𝑥 )
2𝐿

𝑥 =0
𝑑𝑥  (4.8) 

 

 

 𝐼𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 : 𝐹 𝑥 =  𝐾 𝛽𝑚 , 𝑥 ∞
𝑚=1 ∙ 𝐹  𝛽𝑚   (4.9) 

 

where the transform operator K depends on the boundary conditions. 

With reference to the heat transfer problem shown in Figure 4.3, the terms that 

must be transformed are the initial temperature T0 and the heat generation rate 

per unit volume 𝑞 : 

 

xdxTxKTF

L

x

mmm
 



)(),()()( 0

0

0     (4.10) 

 

𝑞 =  𝐾(𝛽𝑚  , 𝑥′ ) ∙ 𝑞  𝑥′ , 𝑡 𝑑𝑥′𝐿

𝑥 ′ =0
         (4.11) 
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The terms K that compare in the transform functions are called Kernel and are 

the transformation operators that allow for passing from the dimensional space 

into the functional space. 

The inversion formulas are obtained from the expansion of the homogeneous 

associated system in an infinite series of the normalized eigenfunctions of the 

eigenvalue problem: 

 

 
 
 

 
 

𝑑2𝑋

𝑑𝑥2 + 𝛽𝑋 = 0   𝑖𝑛 0 ≤ 𝑥 ≤ 2𝐿

𝑑𝑋

𝑑𝑥
= 0                             𝑎𝑡 𝑥 = 0

𝑋 = 0                            𝑎𝑡 𝑋 = 2𝐿

    (4.12) 

 

As mentioned above, these terms depend on the boundary conditions other than 

on the range of the space variables. In the Table 4.1, it is possible to find 

analytical expressions of the Kernel for different boundary conditions in the case 

of a finite solid, [11]. 

In this formulation the boundary conditions are expressed by the term 𝐻 =
𝑐𝑜𝑛𝑣

𝑘𝑐𝑜𝑛𝑑
, where H1 refers to the boundary condition at x=0 and H2 to the one at the 

other surface of the solid. 

 
Table 4.1. Kernel for different boundary conditions, [11]. 

Boundary 

condition at x=0 

Boundary 

condition at x=2L 
KERNEL(βm,x) 

3
rd

 kind 

H1 = finite 
3

rd
 kind 

H2 = finite 

 2
𝛽𝑚 cos 𝛽𝑚𝑥 + 𝐻1sin(𝛽𝑚𝑥)

  𝛽𝑚
2 + 𝐻1

2  2𝐿 +
𝐻2

𝛽𝑚
2 + 𝐻1

2 + 𝐻1  

1
2 
 

3
rd

 kind 

H1 = finite 

2
nd

 kind 

H2 = 0 (h2 =0)  2  
𝛽𝑚

2 + 𝐻1
2

2𝐿 𝛽𝑚
2 + 𝐻1

2 + 𝐻1

 

1
2 

cos(𝛽𝑚 (2𝐿 − 𝑥)) 

3
rd

 kind 

H1 = finite 

1
st
 kind 

H2 = ∞ (k2 =0)  2  
𝛽𝑚

2 + 𝐻1
2

2𝐿 𝛽𝑚
2 + 𝐻1

2 + 𝐻1

 

1
2 

sin(𝛽𝑚 (2𝐿 − 𝑥)) 

2
nd

 kind 

H1 = 0 (h1=0) 

3
rd

 kind 

H2 = finite  2  
𝛽𝑚

2 + 𝐻2
2

2𝐿 𝛽𝑚
2 + 𝐻2

2 + 𝐻2

 

1
2 

cos(𝛽𝑚𝑥) 

2
nd

 kind 

H1 = 0 (h1=0) 

2
nd

 kind 

H2 = 0 (h2 =0)  
2

2𝐿
cos(𝛽𝑚𝑥) 

2
nd

 kind 

H1 = 0 (h1=0) 

1
st
 kind 

H2 = ∞ (k2 =0)  
2

2𝐿
cos(𝛽𝑚𝑥) 
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1
st
 kind 

H1 = ∞ (k1 =0) 

3
rd

 kind 

H2 = finite  2  
𝛽𝑚

2 + 𝐻2
2

2𝐿 𝛽𝑚
2 + 𝐻2

2 + 𝐻2

 

1
2 

sin(𝛽𝑚𝑥) 

1
st
 kind 

H1 = ∞ (k1 =0) 

2
nd

 kind 

H2 = 0 (h2 =0)  
2

2𝐿
sin(𝛽𝑚𝑥) 

1
st
 kind 

H1 = ∞ (k1 =0) 

1
st
 kind 

H2 = ∞ (k2 =0)  
2

2𝐿
sin(𝛽𝑚𝑥) 

 

The terms β are the positive roots of a transcendental function that varies for 

different boundary conditions, as shown in Table 4.2: 

 
Table 4.2. Transcendental functions for the terms β, [11]. 

Boundary 

condition at x=0 

Boundary 

condition at x=2L 
Eigenvalues βm (positive roots of): 

3
rd

 kind 

H1 = finite 

3
rd

 kind 

H2 = finite 
tan 𝛽2𝐿 =

𝛽(𝐻1 + 𝐻2)

𝛽2 − 𝐻1𝐻2
 

3
rd

 kind 

H1 = finite 

2
nd

 kind 

H2 = 0 (h2 =0) 
𝛽 tan 𝛽 2𝐿 = 𝐻1 

3
rd

 kind 

H1 = finite 

1
st
 kind 

H2 = ∞ (k2 =0) 
𝛽 cot 𝛽 2𝐿 = −𝐻1 

2
nd

 kind 

H1 = 0 (h1=0) 

3
rd

 kind 

H2 = finite 
𝛽 tan 𝛽 2𝐿 = 𝐻2 

2
nd

 kind 

H1 = 0 (h1=0) 

2
nd

 kind 

H2 = 0 (h2 =0) 
sin 𝛽 2𝐿 = 0 

2
nd

 kind 

H1 = 0 (h1=0) 

1
st
 kind 

H2 = ∞ (k2 =0) 
cos 𝛽 2𝐿 = 0 

1
st
 kind 

H1 = ∞ (k1 =0) 

3
rd

 kind 

H2 = finite 
𝛽 cot 𝛽 2𝐿 = −𝐻2 

1
st
 kind 

H1 = ∞ (k1 =0) 

2
nd

 kind 

H2 = 0 (h2 =0) 
cos 𝛽 2𝐿 = 0 

1
st
 kind 

H1 = ∞ (k1 =0) 

1
st
 kind 

H2 = ∞ (k2 =0) 
sin 𝛽 2𝐿 = 0 
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Applying the transform method, Equation (4.4.8) and Equation (4.4.9), to the 

heat diffusion equation (Equation (4.6)), the analytical solution results: 

 

𝑇 𝑥, 𝑡 =  𝑒−𝛼𝛽2𝑡

∞

𝑚=1

𝐾 𝛽𝑚 , 𝑥 ∙   𝐹  𝛽𝑚 +  𝑒𝛼𝛽2𝑡
𝑡

𝑡=0

𝐴 𝛽𝑚  , 𝑡 𝑑𝑡  

(4.13) 

 𝐴 𝛽𝑚  , 𝑡 =
𝛼

𝑘
𝑞  𝛽𝑚 , 𝑥 + 𝛼  

𝐾 𝛽𝑚 , 𝑥 = 0 

𝑘
𝑓1(𝑡) +

𝐾 𝛽𝑚 , 𝑥 = 𝐿 

𝑘
𝑓2(𝑡)  

 

where 𝐹  𝛽𝑚  is the transformed initial condition, 𝑞  𝛽𝑚 , 𝑥  the transformed heat 

generation rate and f1 and f2 represent the boundary condition of the problem: 

 

𝑓1 𝑡 = −𝑘1
𝜕𝑇

𝜕𝑥
+ 1𝑇 = 1𝑇∞    (4.14) 

 

𝑓2 𝑡 = −𝑘2
𝜕𝑇

𝜕𝑥
+ 2𝑇 = 2𝑇∞     (4.15) 

 

Due to the symmetry of the problem considered: 

 

𝐻1 = 𝐻2 =
𝑘


      

1

m
      (4.16) 

 

Equation (4.4.13) can be expanded and divided into two parts: 

 

Part 1:       (4.17) 
 

𝑇 𝑥, 𝑡 =  𝑒−𝛼𝛽2𝑡

∞

𝑚=1

𝐾 𝛽𝑚 , 𝑥 𝐹  𝛽𝑚  

 

Part 2:        (4.18) 
 

𝑇 𝑥, 𝑡 =  𝑒−𝛼𝛽2𝑡   𝑒𝛼𝛽2𝑡
𝑡

𝑡=0

 
𝛼

𝑘
𝑞  𝛽𝑚 , 𝑥 

∞

𝑚=1

+ 𝛼  
𝐾 𝛽𝑚 , 𝑥 = 0 

𝑘
𝑓1 +

𝐾 𝛽𝑚 , 𝑥 = 𝐿 

𝑘
𝑓2 𝑑𝑡   

 

The total solution will result by summing the two parts. 
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It is possible to note the presence of exponential terms whose argument 

depending on t and β
2 

in both Equation (4.4.17) and Equation (4.4.18). 

Depending on the algorithm used for solving such equations, the above terms 

might lead to indetermination. 

For part 1, it is clear that, being K and 𝐹  bounded, lim𝑡→∞ 𝑇(𝑥, 𝑡) converges. As 

for part 2, it can be noticed the presence of the term:  𝑒−𝛼𝛽2𝑡∞
𝑚=1  𝑒𝛼𝛽2𝑡𝑡

𝑡=0
  

which leads to indetermination for large values of t, and thus there is the need to 

further elaborate as follows. Noting that at any instant ti: 

 

𝑒−𝛼𝛽2𝑡   𝑒𝛼𝛽2𝑡
𝑡

0

𝐹(𝑡)𝑑𝑡 = 

 

𝑒−𝛼𝛽2𝑡   𝑒𝛼𝛽2𝑡𝑡𝑖−1

0
𝐹(𝑡)𝑑𝑡 + 𝑒−𝛼𝛽2𝑡   𝑒𝛼𝛽2𝑡𝑡𝑖

𝑡𝑖−1
𝐹(𝑡)𝑑𝑡   (4.19) 

 

Considering the trapezoidal rule to approximate the integral calculation: 

 

 𝐹 𝑡 𝑑𝑡 ≅
∆𝑡

2
 𝐹 𝑎 + 𝐹(𝑏) 

𝑏

𝑎
   (4.20) 

 

It is possible to write the second term of the right-hand side of Equation (4.4.19) 

as: 

 

𝑒−𝛼𝛽2𝑡   𝑒𝛼𝛽2𝑡
𝑡𝑖

𝑡𝑖−1

𝐹(𝑡)𝑑𝑡 ≅
∆𝑡

2
𝑒−𝛼𝛽2𝑡𝑖 𝑒𝛼𝛽2𝑡𝑖−1𝐹 𝑡𝑖−1 + 𝑒𝛼𝛽2𝑡𝑖𝐹 𝑡𝑖   

 

=
∆𝑡

2
 𝑒𝛼𝛽2∆𝑡𝐹 𝑡𝑖−1 + 𝐹 𝑡𝑖            (4.21) 

 

This procedure allows one to avoid the indetermination issue and, ultimately, 

any computational problem. The model can be then implemented as a Matlab
® 

function, whose input/output block diagram is shown in Figure 4.4. 

 

 
Figure 4.4. General thermal model input / output diagram. 
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The output of the model, T, is the temperature distribution in the space (x-

direction) and time (a matrix which dimensions are the length of the heat 

generation profile and the discretization grid in which the x direction has been 

divided). The thermal parameters needed to solve the problem are the overall 

thermal conductivity k of the cell, the average cell heat capacity cp, and the 

average cell density ρ. In case of convective boundary conditions the value of 

the convective heat transfer coefficient h must be provided as input to the 

model. 

The model parameters can be determined from experimental studies or 

from results published in the open literature (i.e.,[8], [10] and [39]). Table 4.3 

reports the values initially adopted for this study. 

 
Table 4.3. Typical values of thermal parameters for Li-Ion batteries. 

Thermal parameter Typical Range Value 

k [𝑾 𝒎𝑲 ] 0.40 – 0.85 0.66 

cp [𝑱 𝒌𝒈𝑲 ] 650 - 950 795 

ρ [𝒌𝒈 𝒎𝟑 ] 1700 - 2500 2100 

4.2.2  Formulation of model with convective boundary conditions 

Since most battery modules are cooled by forced convection, it is useful 

to apply the modeling methodology developed to characterize this problem. 

The geometry shown in Figure 4.5 is representative of a portion of a battery 

module. Such system will be described in detail in Section 5.1.1. The air flow is 

supposed to approach the battery cell at ambient temperature (25°C) and cool it 

with a certain heat transfer coefficient h. 

 

 
Figure 4.5. Simplified sketch of a battery cell cooled by a forced air flow.  
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The convective heat transfer coefficient can be computed from empirical 

correlations available in the open literature (i.e. [43],[44] or more specifically 

for laminar flows [54]). In general, the convection coefficient is expressed as a 

function of the Nusselt number, which represents the dimensionless temperature 

gradient at the surface: 

 =
𝑁𝑢  𝑘𝑓𝑙𝑢𝑖𝑑

𝐿𝑐
     (4.22) 

 

From experimental and numerical studies on convective heat transfer, it is 

possible to assume a standard representation for the Nusselt number, in the form 

of a power law: 

𝑁𝑢 = 𝐶 𝑅𝑒𝑚𝑃𝑟𝑛     (4.23) 

 

Mathematically, for this model the boundary and initial conditions are: 
 

 
 
 

 
 −𝑘

𝜕𝑇

𝜕𝑥
=  𝑇 − 𝑇∞     𝑓𝑜𝑟 𝑥 = 0 , 𝑡 > 0

−𝑘
𝜕𝑇

𝜕𝑥
=  𝑇 − 𝑇∞     𝑓𝑜𝑟 𝑥 = 2𝐿 , 𝑡 > 0

𝑇 = 𝑇0                 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 2𝐿 , 𝑡 = 0

    (4.24) 

 

In this case, boundary conditions of the 3
rd

 kind are applied to both the two 

boundaries. 

As regard the air flows, analyzing the study reported in [7], it is possible to 

consider the two flow rates cooling the surfaces of the cell to be equivalent, 

using a parallel cooling case system, as shown in Figure 2.37 (see Section 

2.3.3). This means that the air has the same velocity profile in the two channels. 

In such a case the problem becomes symmetrical and the mathematical 

formulation can be simplified. Since h is a function of the velocity of the air 

flows, the two H terms can be considered to have the same value. 

The transcendental function that have to be solved to compute the terms 

β can be found in Table 4.2: 

tan 2𝛽𝐿 =
𝛽(𝐻1+𝐻2)

𝛽2−𝐻1𝐻2
              (4.25) 

 

Equation (4.4.25) is plotted in Figure 4.6. It is interesting to notice that this 

transcendental function has a periodicity of  
𝜋+2𝑘𝜋

2𝐿
 , where 2L is the battery cell 

thickness. This is true in the entire real positive axis except for one additional 

asymptote due to the rational term. Thereby there is a root of the equation that is 

between zero and the second root that does not present the same periodicity. 

It is important to remind this, when implementing the code, in order to correctly 

account for all of the function zeros. 
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Figure 4.6. Calculation of the terms β for convective boundary condition assuming L=0.0036 m, 

k=0.66 W/mK and h=20 W/m2K. 

The transcendent function written above (Equation (4.4.25)) depends on H and 

hence on the thermal parameters of the problem, namely the conductivity of the 

cell and the convective heat transfer coefficient. 

As regard the convective heat transfer coefficient, it has been here supposed to 

be h= 20  W m2K   which is a reasonable value for forced laminar convection, 

e.g. [44], [45] or [54]. 

In Table 4.4 the value of the terms β for this case are shown. 
 
Table 4.4. Numerical values of the eigenvalues β for convective boundary conditions, assuming 

L=0.0036 m, k=0.66 W/mK and h=20 W/m2K.  

Terms 1
st 

2
nd 

3
rd 

4
th 

5
th 

6
th 

7
th 

8
th 

9
th 

10
th 

Beta 0 93 456 883 1315 1750 2185 2621 3057 3493 

 

The Kernel function, as stated in Table 4.1, is: 

 

𝐾 =  2
𝛽𝑚 cos  𝛽𝑚 𝑥 +𝐻1sin (𝛽𝑚 𝑥)

  𝛽𝑚
2 +𝐻1

2  2𝐿+
𝐻2

𝛽𝑚
2 +𝐻1

2+𝐻1  

1
2 
  (4.26) 

 

There are an infinite numbers of kernel terms and therefore the accuracy of the 

solution increases if more terms are considered. However it is possible to notice 

that the terms after the fifth do not improve the accuracy for this specific 

problem, and thus they are negligible. Figure 4.7 shows the first relevant Kernel 

terms. 
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Figure 4.7. Kernel function for convective boundary conditions, computed assuming L=0.0036 m, 

k=0.66 W/mK and h=20 W/m2K. 

As stated above, and depicted by the diagram in Figure 4.4, the thermal 

model requires a heat generation rate as an input. The heat generation rate can 

be computed starting from the electrical data (current, voltage and open circuit 

voltage) of a typical discharge cycle for electro-thermal characterization (see i.e. 

[16]). The internal heat generation is computed as: 

 

𝑄 = 𝐼  𝐸0 − 𝑉 −
𝜕𝐸0

𝜕𝑇
𝑇     [W]   (4.27) 

 

where, in case of Li-Ion batteries, the latter term can be neglected. This is due to 

the fact that the open circuit voltage, which is measured in a non-operating 

condition, depends only on the ions concentration. This quantity does not 

depend on the temperature, unless considering very high or low values that are 

not in the normal operating temperature range [21]. 

The heat generation rate used as input to the model is shown in Figure 4.8, it has 

been taken from a 3000 s discharge cycle used for identification of electro-

thermal models (see [16]). It consists of a series of steps and short pulses that 

simulate the conditions to which a battery is subjected during a common driving 

cycle. 
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Figure 4.8. Heat generation rate profile. 

In Figure 4.9 the temperature distribution inside a battery cell under 

these conditions is shown: 

 

 
Figure 4.9. Temperature distribution within a battery cell assuming L=0.0036 m, k=0.66 W/mK and 

h=20 W/m2K. 

Figure 4.10 presents the specific heat generation rate per unit volume and the 

comparison of the temperature at the surfaces and at the center of the cell. 
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Figure 4.10. Center and surface temperature trends, assuming L=0.0036 m,                                  

k=0.66 W/mK and h=20 W/m2K. 

 

From Figure 4.10 it is possible to note that the temperature distribution is pretty 

flat across the cell thickness (x-direction) and there are no appreciable 

differences between the center and the surfaces temperature. This is due to the 

geometry of the cell, the low heat conductivity and the low heat removal 

capability at the boundaries. 

The previous results considered h to be 20  W m2K  . In the case of a typical 

turbulent flow, the heat transfer coefficient results to be significantly increased: 

h= 150  W m2K   
 

 
Figure 4.11. Temperature distribution within a battery cell assuming L=0.0036 m,                      

k=0.66 W/mK and h=150 W/m2K.  
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Although the terms β and the Kernels present slight variation, the temperature 

profile results completely changed respect to the previous, laminar case. 

As expected, increasing the heat removal capability, the temperature reaches 

much lower values (almost 10°C less than the previous case), but the curvature 

of the temperature distribution results greatly increased (see Figure 4.11). The 

difference between the center and the surface temperature is more than three 

times respect to the previous case, as results comparing Figure 4.12 with Figure 

4.10. 

 

 
Figure 4.12. Center and surface temperature trends, assuming L=0.0036 m,                                  

k=0.66 W/mK and h=150 W/m2K. 

Other than geometry, thermal parameters and boundary conditions, the model 

needs as input the initial temperature distribution. 

In order to evaluate the sensitivity of the model to the initial condition, Figure 

4.13 shows the result for a battery cell initially at 5°C. The ambient air 

temperature is still 25 °C and the cell is subjected to the heat generation rate 

showed in Figure 4.8. 

Analyzing Figure 4.13, compared to Figure 4.9, it is possible to notice that the 

difference in the initial value of the cell temperature does not influence the final 

temperature distribution. The only difference is in the first part of the 

simulation, where the air warm up the battery due the temperature difference 

between the two media even if there is no heat generation in that time period. 
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Figure 4.13. Temperature distribution within a battery cell, assuming L=0.0036 m, k=0.66 W/mK, 

h=20 W/m2K, considering an initial temperature of 5 °C. 

With its characteristics, the model allows for a complete prediction of 

the 1D internal temperature distribution of a prismatic Li-Ion battery cell cooled 

by an air flow, under all the possible practical condition that the device could 

face during its operations. 

4.2.3 Formulation of 1+1D pack model with air cooling 

The 1D model developed in Section 4.2.2 is able to characterize the 

temperature distribution within a battery cell in the x direction, assuming 

uniform coolant temperature. However, as the cooling air flows through a 

battery pack, its temperature start rising, due to the convective heat flux from the 

cell walls. In order to characterize the air temperature variation along the air 

flow direction (here denoted with y), the 1D model has been extended to 1+1D 

model, where the cell is discretized into a finite number N of lumps along the y-

direction, as shown in Figure 4.14. 

 
Figure 4.14. 1+1D model approach. 
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As the air moves along the channel, its temperature increases, hence decreasing 

the ability of the air to extract heat from the cell. Each cell lump is cooled by an 

air flow at a different temperature, as the air is gradually heated flowing along 

the cooling channel. 

In each cell lump, the 1D model described before (Section 4.2.1) can be used to 

compute the temperature distribution in the x-direction. To model the 

temperature distribution in both x and y directions the model needs as input the 

air temperature at each lump, namely the boundary condition of each 1D 

problem. 

As shown in Figure 4.15, the temperature of the air in the lump i-1 (Tair, i-1) is 

used, as boundary condition, in the 1D model of the lump i.  

 

 
Figure 4.15. Marching approach to compute the boundary conditions in the 1+1D model. 

 

Just for clarification, the notation Tair,,i refers to the temperature of the air in the 

lump i; Twall,,i indicates the cell surface temperature of the battery cell at the 

position corresponding to the i
th

 lump. 

The wall temperature of the cell i is then used to solve the energy balance shown 

in Equation (4.4.28), allowing to determine the temperature of the air in the 

lump i. Thus, marching in the air flow direction, it is possible to capture the 1D 

temperature distribution of each battery cell lump. This assumption is justified 

by the fact that the air is moving in the positive y direction during the analysis. 

Following this approach, the temperature distribution in i
th

 battery cell lump 

results to be a function only of the air temperature and air properties in the lump 

i-1 (Tair, i-1 and cp air, i-1). 

The resulting model is called 1+1D, since it is able to predict the temperature 

distribution in both in x and y directions. The air temperature evolution along the 

y direction needs thus to be explicitly computed. 

The air is assumed to be at constant temperature within each single lump. 

Under this assumption, Figure 4.16 shows an energy balance for the generic i
th

 

lump: The energy balance for the air flow is: 

 

𝑚𝑐𝑣
𝑑𝑇𝑎𝑖𝑟 ,𝑖

𝑑𝑖
= 𝑚 𝑐𝑝𝑇𝑎𝑖𝑟 ,𝑖−1 − 𝑚 𝑐𝑝𝑇𝑎𝑖𝑟 ,𝑖 + 𝐴(𝑇𝑤𝑎𝑙𝑙 ,𝑖 − 𝑇𝑎𝑖𝑟 ,𝑖) (4.28) 
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Figure 4.16. Air energy balance representation. 

By solving Equation (4.4.28), the air temperature evolution can be obtained. 

Equation (4.4.28) can be re-written as: 

 

𝑚𝑐𝑣
𝑑𝑇𝑎𝑖𝑟  𝑖

𝑑𝑖
+  𝑚 𝑐𝑝 + 𝐴 𝑇𝑎𝑖𝑟  𝑖 = 𝐶               (4.29) 

 

where 𝐶 = 𝑚 𝑐𝑝𝑇𝑎𝑖𝑟 ,𝑖−1 + 𝐴𝑇𝑤𝑎𝑙𝑙 ,𝑖   is a constant. The linear equation can be 

solved, with respect to 𝑇𝑎𝑖𝑟 ,𝑖 , using the Laplace method. The initial condition is 

𝑇 = 𝑇0. 

 

𝓛(4.29) → 𝑚𝑐𝑣(𝑠𝑇𝑎𝑖𝑟 ,𝑖(𝑠) − 𝑇0) +  𝑚 𝑐𝑝 + 𝐴 𝑇𝑎𝑖𝑟 ,𝑖(𝑠) =
𝐶

𝑠
     (4.30) 

 

𝑇𝑎𝑖𝑟 ,𝑖 𝑠 =
𝐶

𝑠

1

𝑚𝑐𝑣𝑠+𝑚 𝑐𝑝 +𝐴
+

𝑚𝑐𝑣𝑇0

𝑚𝑐𝑣𝑠+𝑚 𝑐𝑝 +𝐴
           (4.31) 

 

𝑇𝑎𝑖𝑟 ,𝑖 𝑠 =
𝐶

𝑠

1

𝑚𝑐𝑣𝑠+𝑚 𝑐𝑝 +𝐴
+

𝑇0

𝑠+
𝑚 𝑐𝑝 +𝐴

𝑚 𝑐𝑣

       (4.32) 

 

Equation (4.4.32) is the sum of two terms. The solution of the problem, due to 

the superposition principle, will result in the sum of the solutions of each part 

separately. The first term in the right hand side of Equation (4.4.32) can be 

written as: 
 

𝑝𝑎𝑟𝑡 1:   𝑇𝑎𝑖𝑟 ,𝑖 𝑠 =  
𝐶

𝑠

1

𝑚𝑐𝑣𝑠+𝑚 𝑐𝑝 +𝐴
=  

𝐶

𝑠
 
1

𝑚𝑐𝑣 

𝑠+𝑝
             (4.33) 

 

where 𝑝 =
𝑚 𝑐𝑝 +𝐴

𝑚𝑐𝑣
. The anti-transform of Equation (4.4.33) is found by 

computing the residuals of the equation, as: 
 

 
𝐹 𝑠 =

𝛼

𝑠
+

𝛽

𝑠+𝑝
=

𝐶

𝑠

1
𝑚𝑐𝑣 

𝑠+𝑝

𝛼 = 𝐹 𝑠 ∙ 𝑠                 𝑓𝑜𝑟 𝑠 = 0

𝛽 = 𝐹 𝑠 ∙  𝑠 + 𝑝    𝑓𝑜𝑟 𝑠 = −𝑝

    (4.34) 
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where 𝛼 =
𝐶

𝑚𝑐𝑣
 

𝑠+𝑝
  and  𝛽 = −

𝐶
𝑚𝑐𝑣

 

𝑝
. 

 

Thus, the solution the first part of Equation (4.4.32) is: 
 

𝓛−𝟏  
𝐶

𝑚𝑐𝑣
 
𝑝

𝑠 
−

𝐶
𝑚𝑐𝑣

 

𝑝

1

𝑠+𝑝
 → 𝑇𝑎𝑖𝑟 ,𝑖 𝑡 =

𝐶
𝑚𝑐𝑣

 

𝑝
−

𝐶
𝑚𝑐𝑣

 

𝑝
𝑒−𝑝𝑡   (4.35) 

 

The anti-transform of the second part of Equation (4.4.32) can be easily 

obtained from the Laplace transform table [55], and turns out to be: 

 

 𝓛−𝟏  
𝑇0

𝑠+
𝑚 𝑐𝑝 +𝐴

𝑚 𝑐𝑣

 → 𝑇𝑎𝑖𝑟 ,𝑖 𝑡 = 𝑇0𝑒
− 

𝑚 𝑐𝑝 +𝐴

𝑚 𝑐𝑣              (4.36) 

 

Summing equations (4.4.35) and (4.4.36) the overall solution of Equation 

(4.4.32) results to be: 
 

𝑇𝑎𝑖𝑟 ,𝑖 𝑡 =
𝐶

𝑚𝑐𝑣
 

𝑝
−

𝐶
𝑚𝑐𝑣

 

𝑝
𝑒−𝑝𝑡 + 𝑇0𝑒−𝑝𝑡      (4.37) 

 

=
𝑚 𝑐𝑝𝑇𝑎𝑖𝑟 ,𝑖−1 + 𝐴𝑇𝑤𝑎𝑙𝑙 ,𝑖

𝑚 𝑐𝑝 + 𝐴
+  𝑇0 −

𝑚 𝑐𝑝𝑇𝑎𝑖𝑟 ,𝑖−1 + 𝐴𝑇𝑤𝑎𝑙𝑙 ,𝑖

𝑚 𝑐𝑝 + 𝐴
 𝑒

− 
𝑚 𝑐𝑝 +𝐴

𝑚𝑐𝑣
𝑡
 

 

The explicit solution of the air energy balance, shown in Equation 

(4.4.37), allows capturing the temperature distribution of the air along the flow 

direction (y direction). 

Figure 4.17 shows the air temperature evolution with respect to time for 

different lumps of the battery cell. For these simulations the heat generation rate 

is imposed as in Figure 4.8. 
 

 
Figure 4.17. Air temperature distribution along the flow direction,                                              

assuming k=0.66 W/mK, h=20 W/m2K and v =3 m/s. 
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As expected, in the first lump (inlet of the cooling channels) the air is at the 

ambient temperature. As moving along the channels (normalized lumps in y 

direction), the air is warmed up by the heat received from the battery cell. The 

last lump results to be the hottest. Along the time, the air temperature profile 

follows the heat generation rate profile used as input to the model, with just a 

minor delay respect to the battery cell. 

 

 
Figure 4.18. Battery cell lumps temperature distribution at the surface,                                    

assuming k=0.66 W/mK, h=20 W/m2K and v =3 m/s. 

Since the air temperature changes in the y direction, each lump is subjected to a 

different boundary condition, and thus the cell temperature evolves in this 

direction, other than in x direction. 

Figure 4.18 shows the temperature distribution of the battery cell walls. It 

changes with respect to time, due to heat generation rate profile, and in the y-

direction (different lumps), due to the change of the boundary conditions. The 

temperature distribution in the x-direction has been shown in Figure 4.11, and it 

is not depicted here. 

It is interesting to analyze the temperature distribution in the first and last lumps. 

Figure 4.19 shows the temperature distribution at the inlet of the air channel 

(first lump, y=0). In this lump, the air temperature is constant and equal to the 

ambient temperature. The cell temperature is the same as the one shown in 

Figure 4.10 for the 1D model, since this lump is subjected to the same boundary 

conditions. 
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Figure 4.19. Center and surface temperature trend in the first battery lump,                           

assuming h=20 W/m2K and v =3 m/s. 

 

 
Figure 4.20. Center and surface temperature trend in the last battery lump,                            

assuming h=20 W/m2K and v =3 m/s. 

The last lump presents a different air temperature profile, as shown in Figure 

4.20. The air temperature now evolves also with respect to the time, following 

the heat generation rate profile. It reaches almost 28 °C during the peaks, 

starting from an initial temperature of 25 °C. 

In this lump, due to the different boundary conditions, higher temperature are 

reached inside the battery cell and the peak temperature results almost 5°C 

higher respect to the first lump. 

Nonetheless, it should be considered that, in this model, a 1D approach has been 

followed, which means neglecting the conduction along the y direction. In 

reality, it is expected that some heat is conducted within the battery in the y 
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direction, from the last, hotter lump toward the first. This will result in a 

temperature profile more flat than the one predicted by this model. 

Its intrinsic simplicity and computational efficiency make the 1+1D 

model proposed an ideal candidate for design and simulation of thermal 

management systems for battery packs. 

4.2.4 Formulation of model with imposed temperature boundary conditions 

In applications related to control and diagnostics of batteries, the 

parameters identification is typically done with experimental data, using a set-up 

consisting of a programmable load that imposes a determined current profile to 

reproduce various battery usage conditions. Two Peltier junctions maintain the 

surfaces temperature of the battery cell at a prescribed value. 

 

 
Figure 4.21. Imposed surface temperature experimental set-up, from [50]. 

 

This third model considers boundary conditions of the 1
st
 kind, in order to 

impose a constant temperature at the surfaces of the cell. This allows obtaining a 

1D temperature map of the core region of the battery while performing such 

tests. Mathematically the problem is cast in the form: 

 

∂2T

∂x2 +
𝑞 (x,t)

k
=

1

α

∂T

∂t
   (4.38) 

 

Also: 

 
 
 

 
 

𝑇(𝑥 = 0, 𝑡 > 0) = 𝑇𝑎𝑚𝑏  

𝑇(𝑥 = 2𝐿, 𝑡 > 0) = 𝑇𝑎𝑚𝑏

𝑇(0 ≤ 𝑥 ≤ 2𝐿 , 𝑡 = 0) = 𝑇0 

     (4.39) 
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Figure 4.22. Sketch of the imposed surface temperatures model. 

Figure 4.22 shows a visual representation of the problem. Imposing these 

boundary conditions, the Kernel and the transcendental functions are shown in 

Figure 4.23 and Figure 4.24: 

 

sin 𝛽 2𝐿 = 0            (4.40) 

 

 
Figure 4.23. Calculation of the terms β for imposed boundary conditions, assuming L=0.0036 m. 

Table 4.5 shows the numerical values of the first 10 eigenvalues β. 

 
Table 4.5. Numerical values of the eigenvalues β for imposed temperature boundary conditions, 

assuming L=0.0036 m. 

Terms 1
st 

2
nd 

3
rd 

4
th 

5
th 

6
th 

7
th 

8
th 

9
th 

10
th 

Beta 0 436 873 1309 1745 2181 2618 3054 3491 3927 

 

𝐾 =  
2

2𝐿
sin(𝛽𝑚𝑥)    (4.41) 
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Figure 4.24. Kernel function for imposed temperature boundary conditions, assuming L=0.0036 m. 

Using as input to the model the heat generation rate represented in 

Figure 4.8, and using the thermal parameters shown in Table 4.3, it is possible to 

obtain the temperature distribution for this case study. 

 

 
Figure 4.25. Temperature evolution for imposed temperature boundary conditions,               

assuming L=0.0036 m, k=0.66 W/mK. 
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Figure 4.26. Temperature distribution within a battery cell under imposed temperature boundary 

conditions, assuming L=0.0036 m, k=0.66 W/mK  

The results using imposed temperature boundary conditions, shown in 

the last two figures, have been calculated with the same thermal parameters used 

in the Section 4.2.2 for the convective boundary conditions (see Figure 4.9 and 

Figure 4.10). It is interesting to notice that, in this case, the cell reaches much 

lower values of temperature. However, the temperature profile looks definitely 

more curved in the x direction and the difference between the center and surface 

temperature is definitely relevant. 

This is due to the fact that the boundary conditions of the first kind (imposed 

temperature) do not limit in any way the heat removal capability of the system. 

The curvature of the profile, now, depends only on the thermal conductivity of 

the battery cell itself, and not anymore on the convective heat transfer 

coefficient h. 

Assuming a higher thermal conductivity for the cell, i.e. k =2  W mK  , Figure 

4.27 and Figure 4.28 show that the temperature reaches lower values and the 

profile looks more flat. 
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Figure 4.27. Temperature evolution assuming L=0.0036 m, k=2 W/mK. 

 

 
Figure 4.28. Temperature distribution within a battery cell under imposed temperature boundary 

conditions, assuming L=0.0036 m, k=2 W/mK. 

 

This 1D model allows for a prediction of the temperature distribution 

inside a Li-Ion battery cell subject to the conditions normally used during 

electro-thermal characterization tests of such devices. This tool can be used to 

calibrate low-order or reduced models or to better characterize a Li-Ion cell 

thermal behavior. 
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4.2.5  Formulation of 1+1D pack model with cooling bar system 

As analogously treated in paragraph 4.2.3 to model an air cooling 

system, the 1D model with imposed boundary conditions can be extended to a 

1+1D model in order to simulate the behavior of a cooling bar system (see 

Figure 4.29). 

 
 

Figure 4.29, General sketch of a cooling bar system. 

This system consists of a cooling plate, maintained at a constant imposed 

temperature by an external cooling system, to which several aluminum fins are 

attached.  

The cooling plate presents: 
 

 High thermal mass; 

 High thermal conductivity; 

 Constant temperature. 
 

Given its characteristics, the cooling plate system can be viewed as an infinite 

heat sink. 

Each battery cell is positioned in between two fins and the heat generated within 

the cell is removed by conduction from the cell to the fins, and ultimately to the 

cooling plate. In the automotive field, this system can be interfaced with the pre-

existing cooling system, often in parallel with the air conditioning circuit, 

without adding any significant complication to the cooling system. 

The idea beyond this approach is to substitute the air channels with a more 

effective heat removal system. The limit of the air cooling system is given, 

essentially, by the convection resistance; here the cells are directly in contact 

with a high conductivity material, such as aluminum, which is able to rapidly 

spread the heat. Hence the battery results cooled only by conduction. The 

thermal conductivity of the aluminum is two orders of magnitude higher than 

the conductivity of the Li-Ion cell and thus the heat transfer is limited only by 

the contact resistance between the two domains and the conductivity of the Li-

Ion cell itself. 

With reference to the geometry shown in Figure 4.30, the aluminum fins 

are characterized by very small thickness, compared to their length. Combined 

with their high thermal conductivity, it can be safely assumed that it is possible 

to neglect the temperature distribution along the x direction. Therefore, in order 



Chapter 4 

100 

 

to model the system, only the heat fluxes in the y direction will be here 

considered. 

Note that the assumptions introduced are aligned with the results obtained for 

fins, [44]. See Section 3.1.3 for a discussion of heat transfer from extended 

surfaces. 
 

 
Figure 4.30. Heat fluxes in a cooling bar system. 

 

In this case, instead of solving an energy balance for an air flow (as proposed in 

paragraph 4.2.3), the fin temperature distribution in y direction has to be 

calculated. 

The cell walls are directly in contact with the fins. Discretizing the system, as 

shown in Figure 4.29, it is possible to use the fin temperature in each lump as 

imposed boundary condition for the corresponding battery cell lump. In each 

cell lump is thus possible to apply the model with imposed temperature 

boundary conditions presented in Section 4.2.4. 

The 1D model allows for finding the temperature distribution in x direction, 

while the variability of the boundary conditions allows for capturing the 

temperature distribution in y direction. 

 

 
Figure 4.31. Energy balance for a cooling bar system. 
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To solve the conduction problem along a fin an Euler energy balance can 

be performed, as shown in Figure 4.31. Each fin lump has been assumed to be in 

steady-state due to its high conductivity and small thickness: 

 

𝑞  𝑥 = 𝑞  𝑥 + 𝑑𝑥 + 𝑞 𝑏𝑎𝑡𝑡      (4.42) 

 

where   𝑞  𝑥 = −𝑘𝐴𝑙𝐴𝐹
𝑑𝑇𝑓𝑖𝑛

𝑑𝑦
,    𝑞  𝑥 + 𝑑𝑥 = −𝑘𝐴𝑙𝐴𝐹

𝑑𝑇𝑓𝑖𝑛

𝑑𝑦
− 𝑘𝐴𝑙

𝑑

𝑑𝑦
 𝐴𝐹

𝑑𝑇𝑓𝑖𝑛

𝑑𝑦
 .  

 

AF is the front sectional area of the fin and 𝑞 𝑏𝑎𝑡𝑡  is the heat flux, [W m2 ], 

conducted from the battery cell to the fin in the x direction.  

Due to the energy conservation principle the heat flux at the surface of the 

battery cell enters the fin and thus 𝑞 𝑏𝑎𝑡𝑡  is computed as: 

 

𝑞 𝑏𝑎𝑡𝑡 = −𝑘𝑐𝑒𝑙𝑙 𝐴𝑐𝑜𝑛𝑑
𝑑𝑇𝑐𝑒𝑙𝑙

𝑑𝑥 𝑥=0
     (4.43) 

 

where Acond is the area of contact between each cell and fin lump. 

Substituting Equation (4.43) into the balance shown in Equation (4.42) it is 

possible to find the analytical expression for the fin temperature along its length 

(y direction). 

 

−𝑘𝐴𝑙𝐴𝐹
𝑑𝑇𝑓𝑖𝑛

𝑑𝑦
= −𝑘𝐴𝑙𝐴𝐹

𝑑𝑇𝑓𝑖𝑛

𝑑𝑦
− 𝑘𝐴𝑙

𝑑

𝑑𝑦
 𝐴𝐹

𝑑𝑇𝑓𝑖𝑛

𝑑𝑦
 − 𝑘𝑐𝑒𝑙𝑙 𝐴𝑐𝑜𝑛𝑑

 𝑑𝑇𝑐𝑒𝑙𝑙

𝑑𝑥
 
𝑥=0

  (4.44) 

 
𝑑2𝑇𝑓𝑖𝑛

𝑑𝑦2 = −
𝐾𝑐𝑒𝑙𝑙

𝑘𝐴𝑙

𝐴𝑐𝑜𝑛𝑑

𝐴𝐹

 𝑑𝑇𝑐𝑒𝑙𝑙

𝑑𝑥
 
𝑥=0

    (4.45) 

 

To integrate Equation (4.45), two boundary conditions are needed. In this case 

an imposed temperature at the root of the fin (x=0) is chosen while the fin tip 

(x=L) is supposed to be insulated. 

 

 

𝑇𝑓𝑖𝑛  𝑦 = 0 = 𝑇0

 𝑑𝑇𝑓𝑖𝑛

𝑑𝑦
 
𝑥=𝐿

= 0         
     (4.46) 

 

The solution of Equation (4.4.45) results to be: 

 

𝑇𝑓𝑖𝑛  𝑦 =
1

2
𝐴𝑦2 − 𝐴𝐿𝑦 + 𝑇𝑜    (4.47) 

 

where L is the fin length and 𝐴 = −
𝐾𝑐𝑒𝑙𝑙

𝑘𝐴𝑙

𝐴𝑐𝑜𝑛𝑑

𝐴𝐹

 𝑑𝑇𝑐𝑒𝑙𝑙

𝑑𝑥
 
𝑥=0
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Imposing the heat generation rate shown in Figure 4.8 as input to the 

system, and using the typical thermal parameters for Li-Ion batteries (Table 4.3), 

it is possible to solve the 1+1D cooling bar model. Figure 4.32 shows the 

temperature along a 0.5 mm thick aluminum fin. 
 

 
Figure 4.32. Fin temperature distribution along the flow direction,                                            

assuming k=0.66 W/mK, h=20 W/m2K. 

Increasing the thickness of the fins results in a decreased thermal resistance, 

allowing to reach even lower values of temperature. However, a thickness of 0.5 

mm is a reasonable compromise between weight-cost and efficiency for a fin 

used to cool a pouch-style Li-Ion battery cell. Figure 4.33 shows the Li-Ion cell 

temperature distribution in the y direction along the centerline of the cell (again, 

the temperature distribution in x direction is not shown in this picture). 

 

 
Figure 4.33. Battery cell temperature distribution along the centerline,                                     

assuming k=0.66 W/mK and y=0.5 mm 

Figure 4.33 shows that the battery cell cooled with a cooling bar system reaches 

much lower temperature (~30°C) than the one cooled by an air flow (~40 °C), 
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showed in Figure 4.18. Moreover, it is interesting to notice that the cooling bar 

system presents a really fast dynamic behavior. 

The heat generation rate profile used as input the models (Figure 4.8) lasts for 

1600 s. Using the cooling bar system, after only 400 s from the moment the 

current is zero all the effects of the heat generated inside the battery have been 

removed by the cooling system and the temperature of the whole system is equal 

to the ambient one. To obtain the same result with the air cooling system almost 

1000 s more are needed. 

Figure 4.34 shows the temperature of the center of the cell and of the aluminum 

fin in the first lump. As expected, the fin temperature is constant and equal to 

the temperature of the cooling bar to which it is attached, the center of the cell, 

instead, reaches temperatures that are at maximum 5°C over this value. 
 

 
Figure 4.34. Center and fin temperature trend in the first battery lump,                                   

assuming k=0.66 W/mK and y=0.5 mm. 

 

 
Figure 4.35. Center cell and fin temperature trend in the first battery lump,                            

assuming k=0.66 W/mK and y=0.5 mm. 
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In the last lump also the fin presents a time-varying temperature profile. Here 

the temperature of the Li-Ion cell reaches values a bit higher than in the first 

lump, but still very low (~31 °C). 

 

4..3 Summary 

In this chapter the development of a general modeling methodology to 

characterize the thermal behavior of a Li-Ion battery cell has been described. 

First, a general 1D model has been developed to predict the temperature 

distribution in a Li-Ion battery cell under any kind of boundary conditions. Then 

the model methodology has been applied to model two particular cases: imposed 

temperature boundary conditions and convective boundary conditions. 

The 1D models have been extended to 1+1D models in order to simulate 

complete cooling systems, namely a air cooling system and a cooling bar 

system. Concluding, the models predict that a cooling bar system is able to cool 

definitely better a Li-Ion battery module respect to a normal air cooling system. 

On the other hand, the former system requires much more energy to keep the 

cooling plate at the constant temperature of 25 °C and its weight is definitely 

higher that the weight of the fans used to cool the battery using an air cooling 

system. 

The 1+1D modeling approach developed allow for an easy and rapid 

comparison of different cooling systems and can be used for simulation of 

battery packs and as a tool for design and optimization of different cooling 

systems. 

In the next chapter the modeling methodology developed will be applied to a 

pouch-style Li-Ion battery cell and experimental results will be used to calibrate 

the model. A 1+1D model of a cooling air system will be then validated though 

a comparison with an advanced finite element simulator. 
 



 

105 

 

CHAPTER 5 

 

5. Calibration and validation of the models 

The modeling methodology developed in Chapter 4 is absolutely general 

and it can be applied to various systems under different conditions. In order to 

calibrate and validate the models, although, the 1+1D convection model 

described in section 4.2.3 is here applied to characterize the temperature 

distribution in a real Li-Ion prismatic battery produced by EIG. 

First of all, the Li-Ion battery cell and module will be described in detail. Then 

the thermal parameters used in the model will be computed and the current 

profile, and the heat generation rate used to perform the calibration, will be 

presented. 

The thermal parameters of the cell are then experimentally measured in order to 

calibrate the model. 

Finally, to provide a validation framework for the 1D and the 1+1D model, a 

FEM model was developed in COMSOL
® 

and the results of the simulation are 

used to calibrate the modeling technique. 

5.1 Technical specification of modeled Li-Ion battery cell 

The models developed were applied to a rechargeable Li-Ion polymer 

battery. In particular, a prismatic pouch-style LiFePO4 battery, produced by EiG 

(model ePLB C020B) is considered in this study. 

 

 
Figure 5.1, EiG ePLB C020B battery cell. 
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The Li-Ion cell analyzed has been developed in 2009 for motive power 

applications (small electric vehicles, up to hybrid vehicles). Figure 5.2 shows a 

sketch of a cell with the coordinate system here adopted. 

 

 
Figure 5.2. Battery cell sketch and coordinates system. 

 

The nominal specifications of the battery are listed in Table 5.1: 

 
Table 5.1. Battery cell technical specifications. 

ITEMS SPECIFICATIONS 

Nominal Capacity 20 Ah 

Nominal Voltage 3.65 V 

Cell Dimensions 

Thickness: 7.2 ± 0.2 mm (fully charged) 

Width: 129 ± 0.5 mm 

216 ± 1.0 mm 

Operation Temperature 
Charge: 0 °C to 40 °C 

Discharge: -30 °C to 55 °C 

Weight 425 ± 3 g. 

Energy Density 
Volume: 360 Wh/l 

Mass: 175 Wh/kg 

 

Where unless otherwise specified all tests have been performed at 25 °C. 

For any further specification on tests methods used see the attached appendix A  

5.1.1 Description of the battery module 

The battery cell described above is part of a 20-cell high-power, high-

capacity module. This product has been developed for application such electric 
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scooters, golf carts, and wheelchairs as an interest in non-polluting 

transportation method increases. 

The general specifications of the module are shown in Table 5.2. 

 
Table 5.2. Battery module specifications. 

ITEMS SPECIFICATIONS 

Length 291.0  ± 5 mm 

Width 150.0 ± 5 mm 

Height 273.0 ± 5 mm (without terminals) 

Weight Approx. 13.6 kg 

Nominal Voltage 72.0 V 

Nominal Capacity 20.0 Ah 

Energy Density 
Volume: 120 Wh/l 

Mass: 105 Wh/kg 

Maximum Charge Voltage 83.0 V (4.15 V per cell) 

Recommended Charge Current 10 A (0.5 C) 

Maximum Charge Current (<1hr by 90 %) 20 A (fast charge) 

Recommended Voltage Limit for Discharge  60.0 V 

Lower Voltage Limit for Discharge 55.0 V 

Maximum Discharge Current ( Continuous ) 60.0 A (2 C) 

Maximum Discharge Current ( Peak, < 10 sec ) 100.0 A (5 C) 

 

The battery module presents a prismatic shape and it is cooled by a forced air 

flow. A conceptual representation of the cross-section of the module, showing 

the position of cells and cooling channels, is presented in Figure 5.3. 

 

 
Figure 5.3, Cross-sectional view of a typical battery module. 
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The battery cells are separated by flow channels wherein air is forced through by 

a fan. The air is the cooling medium of the battery and removes the heat 

generated inside the cells due to irreversibilities and electrochemical reactions. 

Each of the 19 cooling channels is 5 mm (a battery cell has a thickness of 7.2 

mm) and has the same y and z dimensions of the battery cell (129 x 216 mm). 
 

5.2 Calculation of the battery thermal parameters 

As can be noticed from the equations shown in Chapter 3 and 4, the 

thermal parameters required for the model are the thermal diffusivity (α) of the 

cell and, the convective heat transfer coefficient h. 

 

𝛼 =
𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑡𝑜  𝑐𝑜𝑛𝑑𝑢𝑐𝑡  𝑡𝑒𝑟𝑚𝑎𝑙  𝑒𝑛𝑒𝑟𝑔𝑦

𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑡𝑜  𝑠𝑡𝑜𝑟𝑒  𝑡𝑒𝑟𝑚𝑎𝑙  𝑒𝑛𝑒𝑟𝑔𝑦
=

𝑘

𝜌𝑐𝑝
    

m2

s
        (5.1) 

 

First of all these three intrinsic parameters of the cell (k, ρ, cp) will be computed, 

and then the convective heat transfer coefficient will be calculated. 

5.2.1  Calculation of cell density, thermal capacity and thermal conductivity 

The density of the cell can be calculated starting from the data shown in 

Table 5.1, resulting 2118 [kg m3 ]. However, among the data given by the 

manufacturer, the thermal capacity and the thermal conductivity of the cell are 

missing. 

The latter data has been computed in the open literature (i.e. [8] or [10]) 

applying the Meredith and Tobias theory to calculate the conductivity of a 

system of uniform spheres arranged in a cubic lattice (see Table 4.3 for typical 

values). 

Here, a simple calculation has been performed to compute the thermal 

conductivity of a single cell. Analyzing the literature, e.g. [49], the cell has been 

assumed to be a series of elementary cells coupled together. The elementary 

cells are often referred as jelly roll and an example is shown in Figure 5.4. 
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Figure 5.4. Schematic diagram of the Lithium negative electrode \ solid polymer separator \ insertion 

positive electrode elementary cell, from [8]. 

The dimensions of the cell layers depicted in Figure 5.4 are shown in Table 5.3. 
 

Table 5.3. Dimensions of the elementary cell layers (jelly roll). 

Layers in x-direction Thickness [μm] 
Graphite (anode) 60 

Separator 40 
Composite electrode (LIFePO4) 125 

Bipolar partition 10 

Total elementary cell 235 

 

The thickness of the cell constituents have been taken from digital optical 

microscope imaging for Li-Ion battery cell available on the market for 

automotive applications [49]. 

 

 
Figure 5.5. Electronic microscope imaging of the anode, [49]. 
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Figure 5.6. Electronic microscope imaging of the cathode, [49]. 

 

A battery cell is then composed by putting together various layers of the jelly 

roll, as qualitatively shown in Figure 5.7 
 

 
Figure 5.7. Example of jelly roll manufacturing process [22]. 

 

A battery cell is then composed by putting together various layers of the 

jelly roll, as qualitatively shown in Figure 5.7. The anode is considered to be 

made of Graphite with 95% of purity. This assumption is necessary since the 

conductivity of the graphite (kgraphite) strongly depends on its purity. From the 

open literature, various values of the graphite conductivity at different 

percentage of purity are available. By performing an analytical interpolation, an 

approximate correlation between the graphite purity and its own conductivity 

has been obtained, resulting  65.82 [W m K ]. 
In the x direction, the layers shown in Figure 5.4 are in series. The 

overall thermal conductivity in this direction can be computed, using the 

electrical analogy (see i.e. [44]), as shown in Figure 5.8. 
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Figure 5.8. Series thermal-electric analogy. 

 

𝑘𝑥 =
𝑅𝑡𝑜𝑡

𝐿𝑡𝑜𝑡
=

𝑅1+𝑅2+𝑅3+𝑅4

𝐿1+𝐿2+𝐿3+𝐿4
       (5.2) 

 

where Ln is the length of each layer in the x direction and Rn is the thermal 

resistance on each layer, defined as: 

 

𝑅𝑛 =
𝑘𝑛

𝐿𝑛
      

𝑚2𝐾

𝑊
     (5.3) 

From the open literature (i.e.[8],[10]) and technical datasheets of the 

conductivity of pure materials, the overall thermal conductivity of the cell is 

calculated, as shown in Table 5.4. 

 
Table 5.4. Elementary cell thermal conductivity in x direction. 

x-direction 
Length 

[m] 
k  

[W/m K] 
Thermal resistance 

 [m2 K/W] 
Graphite (anode) 6.00E-05 65.82 9.59E-07 

Separator 4.00E-05 0.16 2.5E-04 
Composite electrode 

(LIFePO4) 
1.25E-04 1.47 8.5034E-05 

Bipolar partition 1.00E-05 6.53 1.53139E-06 

Total 2.35E-04 0.6963 3.37525E-04 

 

In the y and z directions, the layers are in parallel and then the overall 

thermal conductivity has to be computed according to: 

 

𝑘𝑦 ,𝑧 =
𝑅𝑡𝑜𝑡

𝐿𝑡𝑜𝑡
  𝑤𝑒𝑟𝑒 

1

𝑅𝑡𝑜𝑡
=

1

𝑅1
+

1

𝑅2
+

1

𝑅3
+

1

𝑅4
        (5.4) 

 

The parallel resistance analogy is depicted in Figure 5.9. 
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Figure 5.9, Parallel thermal-electric analogy. 

 
Table 5.5. Elementary cell thermal conductivity in y direction. 

y-direction 
Length 

[m] 
k  

[W/m K] 
Thermal resistance 

 [m2 K/W] 
Graphite (anode) 2.16E-01 65.82 3.51E-03 

Separator 2.16E-01 0.16 1.35 
Composite electrode 

(LIFePO4) 
2.16E-01 1.47 0.146938776 

Bipolar partition 2.16E-01 6.53 3.3078101E-02 

Total 2.16E-01 73.980 3.10E-03 

 
 
Table 5.6. Elementary cell thermal conductivity in z direction. 

z-direction 
Thickness 

[m] 
k 

 [W/m K] 
Thermal resistance 

[m2 K/W] 
Graphite (anode) 1.29E-01 65.82 2.10E-03 

Separator 1.29E-01 0.16 0.80625 
Composite electrode 

(LIFePO4) 
1.29E-01 1.47 8.7755102E-02 

Bipolar partition 1.29E-01 6.53 1.9754977E-02 

Total 1.29E-01 73.980 1.85E-03 

 

As expected, the thermal resistance varies in y and z directions due to different 

geometry. However, the conductivity, which is an intrinsic property of the 

materials, does not change in these two directions. 

The overall cell conductivity results 0.696 [W mK ] along the thickness 

direction and 73.980 [W mK ] along the other two directions. The values found 

are consistent with the range that can be found in the open literature, 

summarized in Table 4.3. 

As regard the thermal capacity, determining its numerical value is a 

complex task, due to the need of dedicated experimental equipment to measure 

the thermal diffusivity (such as Flash Diffusivity Systems or Differential 

Scanner Calorimeters). 
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For this reason, in this study, values proposed in the literature, [10], will be used 

(in particular 𝑐𝑝 = 795    J kg K  ). 

5.2.2  Convective heat transfer coefficient 

It is well known that the convective heat transfer solutions rely on 

empirical correlations that are based on the use of dimensionless numbers. In 

this work a forced flow in a rectangular duct has to be analyzed. 

The Reynolds number for internal flows in non-circular tubes can be expressed 

as: 

𝑅𝑒 =  
𝜌𝑢𝑚 𝐷

𝜇
     (5.5) 

 

where um is the mean velocity of the fluid, which has been here chosen to be 

equal to 3 m/s, and Dh is the hydraulic diameter:  
 

𝐷 =
4𝐴𝐶

𝑝
     (5.6) 

 

where p is the wet perimeter of the channel and Ac is the flow cross-sectional 

area. For the battery channels described in 5.1.1 the hydraulic diameter results to 

be equal to 9.6 mm. 

The Reynolds number results to be 1854, indicating laminar flow conditions. 

Table 5.7, taken from [44], shows the values of the Nusselt number and friction 

factor for fully developed laminar flow in rectangular ducts. 
Table 5.7. Nusselt numbers and friction factors for fully developed laminar flow in tubes of different 

cross section, [44]. 
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According to the nomenclature used in Table 5.7, the aspect ratio 
𝑏

𝑎
=

216

5
=

43.2, → ∞ and thus the suitable Nusselt number for this problem results to be 

8.23. 

The heat flux rate is assumed to be uniform along the section, while the 

temperature should vary. 

Obtained the Nu number from the literature, it is simple to compute the 

convective heat transfer coefficient: 

 

 =
𝑁𝑢  𝑘𝑎𝑖𝑟

𝐷
          (5.7) 

 

which, for fully developed flow, is constant along the flow direction. 

For the EiG module modeled in this work the fully developed convective heat 

transfer coefficient h results to be equal to 22.27  [W m2K] . 

However, the hydrodynamic entry length, for laminar flows [44], is an 

expression of the form: 
 

 
𝑥𝑓𝑑 ,

𝐷
 ≈ 0.05 𝑅𝑒    (5.8) 

 

For the EiG battery module analyzed, the entry region length results to 

be 0.89 m and thus appropriate correlations must be considered. A complete 

treatment of forced laminar flow in ducts can be found in [54]. Note that here 

the aspect ratio is considered as: 
𝑎

𝑏
=

5

216
= 0.023. 

 
Table 5.8. Nusselt number for rectangular ducts as function of normalized position x* and aspect 

ratio α, considering Pr=0.72, [54]. 
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Figure 5.10. Nusselt number for laminar flow in a rectangular duct as function of Pr and normalized 

position x* for α  = 0.5. [54]. 

As can be noticed in Figure 5.10, the heat transfer coefficient tends to really 

high values near the entry edge and then it settles to a value similar to the one 

obtained for the fully developed region. 

The large value of the heat transfer coefficient in the entry region leads to a 

great heat removal capability. This condition is obtained with a laminar flow in 

small hydraulic diameter passage and allow for a compact design of the battery 

module [56]. This confirms that laminar flow is the preferred choice for this 

kind of systems and the channels dimensions are appropriate to the purpose of 

optimizing the cooling system. 

Since a closed correlation to calculate the heat transfer coefficient with 

respect to the position along the duct is not available it has been decided to run 

the model with a constant h, assuming fully developed conditions. 

Then, in 5.4.3, the model will be compared with a FEM 3D simulation and the 

heat transfer coefficient will be calibrated in order to account for the developing 

region. 

As a final remark, it is possible to verify the modeling assumptions proposed in 

3.2. Using the values calculated for the considered battery module the Biot 

number results to be 0.23, indicating that a lumped analysis would be a fairly 

inaccurate solution method for this problem. 
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5.3 Definition of the model inputs: current profile and heat 

generation rate 

Since the transient temperature rise of the Li-Ion battery originates in its 

internal heat generation during its operation, a precise estimation of the heat 

generation rate is indispensable to calculate the temperature distribution with 

high accuracy. This term depends on the current, voltage and open-circuit 

voltage of the battery cell, as stated in 4.2.1. 

For this kind of model, combinations of pulses and steps, shown in Figure 5.11 

and Figure 5.12, can provide the necessary excitation for the dynamics modeled. 
 

 Figure 5.11. Asymmetric step current profile, 

[34]. 

 

 Figure 5.12. Pulse current profile, [34]. 

 

The step profile provides more of a PHEV type current request where the C-rate 

is moderate but the duration of power request is longer. The pulse profile 

provides more of a HEV type power request. 

The values of the current and voltage used in this section were taken from a 

24000 seconds cycle implemented ad hoc for electrical characterization of Li-

Ion battery. This cycle, shown in Figure 5.13, alternating symmetric steps and 

impulses, allows for a complete mapping of the possible operating conditions. 

The open-circuit voltage, E0, has been obtained performing an electrical 

characterization of the battery [42]. 
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Figure 5.13. Current, voltage and heat generation rate profile. 

 

For the purpose of showing model results ,the 800 s cycle between t = 200 s and 

t= 1000 s, shown in Figure 5.14 has been chosen. 

 
Figure 5.14. Current voltage and heat generation rate profile used to perform the simulations. 

 

Figure 5.15 shows the heat generation rate per unit volume generated within 

each Li-Ion battery cell. 
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Figure 5.15. Heat generation rate per unit volume used to perform the simulations. 

5.4 Model calibration and validation 

In order to calibrate and validate the modeling approach described in the 

previous chapter, an experimental set-up has been developed and a comparison 

with advanced finite element simulation software (FEM) has been performed. 

5.4.1  Experimental set-up 

At CAR
12

, extensive research and experimental studies are conducted to 

test various kinds of batteries. 

Electrical characterizations are performed to compute the open circuit voltage 

and electrical parameters of battery cells and modules. Current profiles have 

been generated ad hoc for various applications and studies about battery aging 

are performed. 

These laboratories contains multiple stations capable of running tests of 

arbitrary lengths and can accommodate 24/7 unattended operation if needed. 

Each station testing a single cell or module consists of: 
 

 Power supply; 

 Programmable electronic load; 

 Data acquisition and control computer; 

 Peltier junctions (and/or environmental chamber) and associated 

controllers; 

 Electrochemical impedance spectroscopy equipment EIS (mounted 

externally). 

                                                 
12

 Center for Automotive Research, The Ohio State University, Columbus (OH), U.S.A. 
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Figure 5.16. Battery test bench. 

 

Each experimental station shown in Figure 5.16, consists of an 800W 

programmable electronic load and a 1.2 kW programmable power supply. 

The testing stations are calibrated on a regular basis to ensure the best possible 

sensor measurements. Three measurements are collected during each test: 

current (inductive), voltage, and temperature. All measurements are sampled at 

10 Hz. 

The instrumentation allows for running test for temperatures ranging between -

25°C to +60 °C. For large battery packs, environmental chambers are used to 

keep the temperature constant, while for smaller cells the use of the Peltier 

junction is preferable. 

Environmental chambers are devices that are used to simulate an 

environment of a different temperature humidity or climate, etc. They are also 

used to simulate and test for various effects, such as altitude, radiation, wind, 

bacteria, dust, chemical exposure and vacuums. These chambers are used in 

many different industries and especially useful for the testing of electronic and 

telecommunication components to see how they perform in various types of 

conditions. The chambers are ideal for performing quality control tests along 

with other types of experiments. 
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Battery aging tests are actually conducted at different temperatures to test the 

influence of the temperature on the battery parameters. The environmental 

chamber, controlling temperature and humidity, is used to simulate the climate 

that is desired for the aging process. 

 

 
Figure 5.17. Environmental chamber. 

Small battery cells are kept at constant imposed temperature using a 

Peltier junction. This device is based on the thermo-electric effect known as the 

Peltier effect: when a voltage is applied across a semiconductor thermocouple, 

any surplus charge carriers present in the semiconductor will be attracted 

towards the terminal with the opposite polarity, as shown in Figure 5.18. Thus 

electrons in the N type material migrate towards the positive terminal causing a 

surplus to accumulate in the region of the semiconductor next to the terminal 

leaving a deficit at the negative side of the device. Similarly holes in the P type 

material migrate towards the negative terminal. In other words the charge 

carriers are swept through the material accelerating as they do so, due to the 

electric field created by the voltage between the terminals of the device, and 

their increased kinetic energy is manifest as heat. 

The temperature within the device depends on the number and the kinetic 

energy of the charge carriers. The temperature will therefore be higher in the 

region where the charge carriers are concentrated and lower in the region they 

have just vacated where charge density is consequently lower. Thus a 

temperature gradient, proportional to the magnitude of the applied current, 

builds up across the device. This temperature gradient can only be maintained, 

however, if heat can be removed from the hot junction. Otherwise the 

temperature will tend to equalize across the device and continued current flow 

will cause the device to overheat. This results in a cooling effect on the colder 

side of the junction itself (thermo-electric cooling). 

The heat absorbed or created at the junctions is proportional to the electrical 

current flow and the proportionality constant is known as the Peltier coefficient. 
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Contrary to Joule heating (I
2
R), the Peltier effect is reversible depending on the 

direction of the current 

 

 
Figure 5.18. Operation scheme of a Peltier junction, [57]. 

To ensure tight tolerance on the battery temperature under any current profile, 

each test specimen is fixtured in a specially machined aluminum or stainless 

steel plate with a large thermal mass. 

Figure 5.19 shows one machined stainless steel plate with channels for the 

thermocouples wires and fixing holes. 
 

 
Figure 5.19. Machined stainless steel plate with inserted thermocouples. 
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The thermal acquisition system consists of a National Instrument signal 

conditioning with 32 thermocouples channels, as shown in Figure 5.20. Each 

input channel includes an instrumentation amplifier, a cold-junction 

compensation and a 2 Hz low-pass filter. 

 

 
Figure 5.20. Thermal signal conditioning system. 

Thermal imaging cameras are also available in the laboratory. Figure 5.21 shows 

a thermal image of a battery during a characterization test. 

 

 
Figure 5.21. Thermal image of a Li-Ion battery cell. 

 

5.4.2  Thermal conductivity experiment 

An experimental set-up has been developed to measure the thermal 

conductivity in the direction of the thickness of the EiG Li-Ion battery cell 

analyzed in this thesis. The conductivity can be calculated by applying its 

definition: 
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𝑘𝑏𝑎𝑡𝑡 ,   𝑥 ≡ −
𝑞 𝑥

𝑑𝑇𝑏𝑎𝑡𝑡
𝑑𝑥 

     
W

mK
     (5.9) 

 

To estimate this parameter, two quantities are needed: 
 

 The heat flux in x direction, 𝑞 𝑥 ; 

 The temperature drop across the battery cell in the same direction, 
𝑑𝑇𝑏𝑎𝑡𝑡

𝑑𝑥
. 

 

 
Figure 5.22. Experimental set-up for thermal conductivity measurement. 

Figure 5.22 shows a schematic of the experimental set-up developed ad hoc to 

calculate the thermal conductivity of the battery cell. 

The system built in the laboratory is composed, in the x direction, of a series of 

five elements:  

 

1. Peltier junction; 

2. Stainless steel plate; 

3. Battery cell; 

4. Stainless steel plate; 

5. Peltier junction. 

 

Figure 5.23, taken during the implementation of the experiment, shows half of 

the system described above. 
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Figure 5.23. Peltier junction - stainless steel plate - battery cell sandwich                                             

for the thermal conductivity experiment. 

Nine T-type thermocouples have been positioned in an equally spaced 

grid to completely cover the heat transfer surface of each of the four planes 

shown in Figure 5.22. This allows one to obtain a complete map of the 

temperature of the system. 

The two Peltier junctions impose two different temperatures at the extremes of 

the system so that a heat flux is established in the x direction. The battery cell 

has been positioned in between of two plates of known material (stainless steel 

304). The three components in series (plate-battery cell-plate) experience the 

same heat flux. Measuring the temperature drop across each stainless steel plate, 

of known thermal conductivity (𝑘𝑠𝑠), the heat flux can be computed as: 

 

𝑞 𝑥 = −  𝑘𝑠𝑠
∆𝑇𝑠𝑠

𝐿𝑠𝑠
    (5.10) 

 

where ∆𝑇𝑠𝑠  is an average of the temperature drops across the two plates. 

As far as the temperature drop across the battery cell is concerned, 

∆𝑇𝑏𝑎𝑡𝑡  is directly measured. The temperature at each plane is an average of the 

nine measurements. In order to reach a steady-state condition, the experiment 

has run for a few hours. Figure 5.24 shows the temperatures at the four planes 

defined in Figure 5.22. The values shown result from an average of the last 200 

s of the experiment. 
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Figure 5.24. Temperature profile along the system considered in the thermal conductivity 

experiment. 

 

Experimental results are shown Table 5.9. 
 

Table 5.9. Thermal conductivity experiment result. 

Dimension Value 

Lss [mm] 25.4 

kss [W/mK] 16.2 

Average ΔTss [°C] 3.8 

Lbatt [mm] 7.2 

Average ΔTbat [°C] 26.0 

 

Substituting Equation (5.10) into Equation (5.9), the battery cell conductivity is 

thus obtained as:. 

 

𝑘𝑏𝑎𝑡𝑡 = −
𝑘𝑠𝑠

∆𝑇𝑠𝑠
𝐿𝑠𝑠

∆𝑇𝑏𝑎𝑡𝑡
𝐿𝑏𝑎𝑡𝑡

    (5.11) 

 

The thermal conductivity of the battery cell in the x direction turns out to be: 

kbatt,x = 0.67 W/mK, which  is consistent with the range that can be found in the 

open literature (Table 4.3) and really close to the value calculated in Section 

5.2.1 (k =0.696 W/mK), confirming the reliability of the assumptions made in 

this thesis. 
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5.4.3 FEM comparison 

In order to provide a validation framework for the 1D and the 1+1D 

model in the absence of experimental data, a FEM model was developed in 

COMSOL
®

 (an advanced FEM simulator), with reference to the system 

geometry shown in Table 5.1 and Figure 5.3. Due to the nature of the system 

considered in this study, a 2D heat transfer problem is formulated in the x and y 

dimensions, assuming uniformity of the velocity and temperature fields along 

the z direction. This assumption allows for a partial simplification of the 

problem, without any relevant implication on the accuracy of the solution. The 

software solves simultaneously the coupled heat transfer equation and the 

incompressible Navier-Stokes equations in the air flow domains. In the battery 

cell domain, the 2D heat diffusion equation is solved, considering anisotropic 

thermal properties for the cell materials [10]. 

In order to solve the problem, boundary and initial conditions are needed. In this 

case, the air is assumed to enter the cooling channels at 3 m/s and at the initial 

instant the whole system presents a uniform temperature of 25 °C.  

The FEM model uses as input the same heat generation rate adopted for the 

1+1D model and shown in Figure 5.14. 
 

 
Figure 5.25. FEM prediction of the temperature distribution within a battery cell and two cooling 

channels. 

 

Figure 5.25 shows the temperature field predicted by the FEM simulation at the 

time t=327 s, where temperatures of the battery cell reaches one of the peaks. 

Only the first 40 mm and the last 40 mm regions of the cell are shown in the 

figure, to give better temperature field resolutions. It is possible to observe that 

the thermal boundary layer in the air gradually develop along the flow direction.  

A preliminary comparison of the 1+1D
13

 model prediction was done 

against the FEM simulation results. Figures 5.27-29 show the temperature 

dynamics at the center of the cell (x=L), as well as the cooling air temperature at 

three locations within the domain, namely the inlet of the cooling channel (y=0 

                                                 
13

 The simulations where performed discretizing the battery cell into 200 lumps.  
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mm), at the outlet (y=216 mm) and at an intermediate location (y=54 mm), as 

shown in Figure 5.26. 

 

 
Figure 5.26. Locations at which the comparisons between 1+1D and FEM have been performed. 

 

Due to the increasing of the air temperature along the flows, each lumps of the 

battery cell are subjected to slightly different boundary conditions which results 

in the temperature differences shown in figures : 

 

 
Figure 5.27. 1+1D and FEM temperature profiles at y=0 mm. 
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Figure 5.28. 1+1D and FEM temperature profiles at y=54 mm. 

 
Figure 5.29. 1+1D and FEM temperature profiles at y=216 mm. 

Analyzing the previous figures, it can be observed that the 1+1D model tends to 

overestimate the battery temperatures predicted by the FEM model, especially at 

the entrance of the cooling channel. 

The reason for this behavior stems from the effects of the entry region, which 

have been neglected from the calculation of the convective heat transfer 

coefficient used in the 1+1D model. A fully developed laminar flow was 

assumed in the channel, hence leading to constant Nusselt number and constant 

heat transfer coefficient. In reality, the heat exchange between the battery 

surface and the coolant should be significantly higher at the entrance, and 

progressively decreasing along the flow direction. 
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Consequently, the heat transfer coefficient h is expected to present higher values 

in the entry region.  

In order to calibrate the 1+1D model, the convective heat transfer 

coefficient was adjusted to characterize the effects of the entry region in the 

computation of the temperatures. 

In order to calibrate h, the heat flux flowing from the cell to the cooling air 

calculated with COMSOL and the 1+1D model has been compared. 

 

 
Figure 5.30. Comparison of the heat flux predicted by the FEM and 1+1D model. 

From Figure 5.30, a noticeable heat flux difference between the FEM simulation 

and the 1+1D model prediction can be observed.  

It is possible to directly calculate h using the numerical data available from the 

FEM simulation, considering the fact that the heat flux from the battery cell wall 

is: 𝑄 = 𝐴(𝑇𝑤 − 𝑇∞). 

As a first-order approximation, h has been averaged along the time at each y 

position. This implies that the heat transfer coefficient is a function only with 

respect to space (y). Non-dimensionalizing the result with respect to the 

hydraulic diameter, the calibrated heat transfer coefficient results to be: 

 

 =  𝑦∗ =
70.223

𝑦∗ + 13.068       (5.12) 

where 𝑦∗ =
𝑦

𝐷
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Figure 5.31. Trend of the calibrated heat transfer coefficient. 

Comparing again the heat flux computed by the FEM simulator and the flux 

predicted by the calibrated 1+1D model, it can be noticed that the gap between 

the two simulations has been significantly reduced. 

 

 
Figure 5.32. Comparison of the heat flux predicted by the FEM and calibrated 1+1D model. 

 

The next three figures show the comparison between the FEM results and the 

calibrated 1+1D model predictions. 
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Figure 5.33, Calibrated 1+1D and FEM temperature profiles at y=0 mm. 

 

 
Figure 5.34, Calibrated 1+1D and FEM temperature profiles at y=54 mm. 

 

 
Figure 5.35, Calibrated 1+1D and FEM temperature profiles at y=216 mm. 
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5.5 Summary 

In this chapter, the model methodology developed has been applied to a 

pouch-style Li-Ion battery module cooled by an air flow produced by EiG. 

First the thermal parameters of the battery cell have been calculated and the heat 

transfer coefficient has been computed. Then an experimental setup to calibrate 

and validate thermal models of Li-Ion battery cells has been developed. Starting 

from this setup, the thermal conductivity of the battery cell has been 

experimentally measured. The model results have then been compared with a 

2D FEM simulation, in order to validate the model. 

Although some minor errors between the 1+1D model results and the 2D 

FEM simulation are present, the developed model results reasonably accurate to 

predict the temperature distribution within a Li-Ion battery cell. 

The 1+1D model here developed is computationally more efficient than the 

FEM software. As a proof, Table 5.10 compares the computation time and 

memory requirements of the 1+1D model developed in 4.2.3, with reference to 

the simulation results shown in the above figures. 

 
Table 5.10, Comparison of computational efficiency of different models. 

Model 
Computation 

Time [s] 
Memory Usage 

[Mb] 

1D 1.5 290 

1+1D 58 300 

FEM 2100 341 

 

The 1+1D model present a simple structure and the approach used has a genral 

applicability. Its accuracy and computational efficiency make the 1+1D model 

an ideal candidate to serve application in the area of simulation of battery packs, 

design of cooling systems and optimization of thermal management systems 
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CHAPTER 6 

 

6. Conclusions 

Li-Ion batteries are today considered the prime solution as energy 

storage system for EV/PHEV/HEV, due to their high specific energy and power. 

Since their performance, life and reliability are quite dependent on the operating 

temperature, great interest has been devoted to study solutions for cooling and 

control algorithms for battery thermal management. 

This thesis has presented a computationally efficient, low-order modeling 

methodology to predict the dynamic temperature distribution in a prismatic Li-

Ion battery cell. The modeling approach developed is general, in a sense that it 

can predict the temperature distribution within a cell under different conditions. 

Unlike most control-oriented models based on system identification techniques, 

the proposed approach relies only on physical principles. These models can find 

applications in the area of simulation and optimization of battery cooling 

systems. 

In Chapter 4, a general one-dimensional thermal model has been developed to 

predict the temperature distribution inside a prismatic Li-Ion battery cell under 

different boundary and initial conditions. A one-dimensional boundary-value 

problem for heat diffusion in unsteady conditions has been defined and 

analytically solved, applying the integral transformation method. 

To characterize the effects of the cooling system on the temperature distribution 

within the cell, the one-dimensional solution has been then extended to a 1+1D 

approach that accounts for the variability of the boundary conditions. 

The modeling approach developed is characterized by a general 

structure, which allows one to easily select cooling parameters, such as cooling 

air velocity, air temperature, air duct geometry, etc., and compare the effects of 

different cooling systems. The approach adopted ensures consistency with the 

physical behavior of the system and relies on a limited set of physical 

parameters that can be obtained from the open literature, or calibrated if 

experiments or FEM simulation results are available. 

In particular, a 1+1D model, with convective boundary conditions, was 

developed. An ad hoc experimental set-up has been developed to calibrate the 

thermal parameters of the model and a comparison with a FEM simulator was 

used to validate the results, as discussed in Chapter 5. 

The consistency with the FEM solution, the simple structure, and the 

computational efficiency make the model an ideal candidate for simulation of 

battery packs, design of cooling systems or thermal management systems. 
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The models developed can serve application in the area simulation of battery 

packs performance, design of cooling systems and optimization of thermal 

management systems or as a tool to support the calibration of reduced-order 

electro-thermal battery dynamic models for on-board implementation. 

6.1 Future work 

In order to further validate the modeling approach proposed in this work, 

an experimental setup is being planned to measure the surface temperature 

distribution on a prismatic Li-Ion cell. The experimental setup has already been 

developed and the experiments are currently planned. 

This would allow comparing the models predictions with experimental data and 

thus verifying the accuracy of the modeling approach and the consistency of the 

assumptions made. 

The same methodology, moreover, can be applied to cylindrical cell, in order to 

compare the effect of the geometry on the thermal issues. 

The models developed can be used for a comparative analysis of different 

cooling technologies or to develop a thermal management system, interfacing 

the simulator with a control algorithm. 
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Appendix A: Product specification ePLBc020B 
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Appendix B: A reduced order model for the 

thermal dynamics of Li-Ion battery cells 
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Appendix C: A model order reduction method for the 

temperature estimation in a cylindrical Li-Ion battery cell 
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Appendix D: A 1+1D thermal dynamic model of 

a Li-Ion battery cell 
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