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Abstract

Negli ultimi anni, si sta parlando sempre più spesso di �Big Data�, riferendosi

non solo a grandi moli di dati. Infatti, l'espressione riguarda alcune nuove

necessità e le conseguenti s�de, dette le �Tre V�: Volume, cioè gestione di grandi

moli; Velocità, cioè rapidità di analisi; Varietà, cioè elaborazione di dati non

strutturati, come testi, immagini e video.

Questa tesi tratta l'utilizzo di tecniche di clustering in questo nuovo contesto.

Il clustering consiste nella segmentazione di un insieme di oggetti in gruppi che

siano il più possibile omogenei. Di fronte a grandi moli di dati, il clustering

è uno strumento potente che produce un piccolo insieme di gruppi, facilmente

trattabile. Inoltre, le tecniche presentate sono particolarmente e�cienti, quindi

uno strumento di calcolo adeguato risolve il problema della velocità. Per quanto

riguarda la varietà, esistono strumenti di clustering che trattano anche dati non

strutturati, ma non sono parte della tesi.

Il software che è stato scelto è �Hadoop�, molto utilizzato in ambito �Big

Data� in quanto permette di gestire grandi moli di dati con un costo contenuto

e di trattare dati non strutturati. Esso è basato sulla gestione di grandi volumi

mediante la distribuzione del lavoro su un cluster di computer. A tal �ne, gli

algoritmi sono stati sviluppati in uno speci�co paradigma, detto �MapReduce�,

che consente la loro parallelizzazione mediante Hadoop. Per questo motivo,

alcuni algoritmi di clustering già esistenti sono stati adattati alla struttura del

MapReduce e altri sono stati sviluppati direttamente seguendo questa logica.

Il lavoro di tesi è consisito nello sviluppo di alcuni algoritmi, che sono stati

poi testati su dataset simulati. La prima fase di testing ha riguardato l'e�cacia

degli algoritmi, cioè la loro capacità di segmentare correttamente un insieme di

oggetti. A tal �ne, sono stati utilizzati dataset di piccole dimensioni e aventi

caratteristiche particolari. L'altra fase ha riguardato l'e�cienza, cioè la rapidità

di esecuzione, e il testing è stato condotto su dataset di dimensioni maggiori

tramite un cluster Amazon di 5 nodi. Nonostante il volume dei dati trattati sia

ancora relativamente piccolo, è possibile stimare le prestazioni su moli maggiori.

Infatti, il MapReduce ha la peculiarità di essere scalabile. Questo signi�ca che

la potenza di calcolo cresce linearmente all'aumentare delle risorse, quindi è

su�ciente aumentare il numero di nodi in proporzione alla mole di dati da

processare per ottenere le stesse prestazioni.

In conclusione, la parte innovativa del lavoro di tesi consiste nella proget-

tazione e implementazione di algoritmi di clustering in MapReduce. Essi sono
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basati sulla combinazione di logiche di algoritmi già esistenti, riadattate nel

nuovo paradigma.
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Abstract

The expression �Big Data� has become very popular in the last few years though

it does not concern exclusively large volumes of data. In fact, it is more con-

nected to the way the data needs to be treated and the consequential challenges,

called the �Three V�, that stand for Volume (treatment of large datasets) , Ve-

locity (quickness of analysis), and Variety (handle of unstructured data, such as

texts, images, and videos).

This paper discusses the use of clustering in this context, though not consid-

ering the challenge of variety. Clustering consists in the segmentation of a set of

objects through the identi�cation of features, so to group them accordingly as

much as possible. By all means, this approach reduces the size of the problems

involved, as a wide dataset can be handled as though as it were a small set

of clusters. Furthermore, the paper describes e�cient algorithms, which can

be used to create the appropriate tools to allow quick data processes, thereby

dealing e�ectively with the velocity challenge.

For this purpose, the choice of software framework went for Hadoop, as it

allows a cheap processing of large volumes of data and the handling of unstruc-

tured data. The logic upon which it is based is the parallelization of processes

using a cluster of computers. For this purpose, the clustering algorithms have

been developed through a speci�c programming model, i.e. MapReduce, since

it allows the parallelization of tasks. Therefore, some of the current clustering

algorithms have been converted to the MapReduce structure, while others have

been developed straight away in that manor.

Once the tools were designed, the testing was conducted on some simulated

datasets. The �rst stage regarded the e�ectiveness, i.e. the capability of iden-

tifying correctly some unusually shaped clusters. Therefore, the used dataset

were small-sized. Consequently, the e�ciency testing aimed to cluster the big

dataset more rapidly. For this stage, the used tool was an Amazon cluster of 5

computers.

Although the tested volume was still pretty small, it is possible to estimate

the performance changes as the dataset grow. As a matter of fact, one of the

MapReduce peculiarities is its scalability, i.e. the capability to increase linearly

the computational power as the resources grow. Hence, if the size of the cluster is

proportional to the data volume, the performances are approximately constant.

In conclusion, the design and the development of these new clustering algo-

rithms in MapReduce combines the logics of two current classes of clustering
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algorithms. By all means, this approach has the advantages of both and gives,

therefore, a new range of e�cient analytical methodologies and consequential

results.



Chapter 1

Introduction

In the last years, digital technologies, social networks, and forums have been

propagating much more than in the past decades. Moreover, their growth is

expected to quicken further. As regards the most of private companies, data

volume is much smaller, but it is growing a lot too. These are just a few examples

of the data deluge a�ecting almost everything.

It is possible to extract useful information from them through the techniques

of data analysis. The target is the solution of a wide set of problems, such as

interaction with customers, strategic decisions, and processes optimization. For

instance, many chains of stores track their customers' purchases using data

extracted from their �delity cards. In addition, the integration between data

coming from companies and from the web can produce further information. In

this way, some companies try to understand the opinions about their products

by analyzing forum discussions. These examples are only a small part of the

multitude of results that can be extracted from the huge mine of data.

Regarding current approaches, such as the use of databases, the starting

point is often the selection of small datasets from the whole, including only

information that is highly relevant to the problem, on the base of analysts'

opinions. Since most of the tools do not allow a cheap treatment of wider sets

of data, this is the most common way to proceed. However, this approach has

some disadvantages since it is not always possible to determine with enough

precision which information is useful and which can be excluded. Maybe it was

not a considerable problem when the overall data were small, but the data spread

has worsened the situation. Moreover, the introduction of less relevant data in

analysis can lead to more precise results and to a bird's eye understanding of

13
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the problem, so the ideal tool exploits all the available information.

There are some tools that can be integrated in the current devices, in order

to handle wider datasets, but these solutions are often afterthoughts and they

imply some e�ciency problems. In fact, the cost often becomes much higher.

Furthermore, the maximum amount of data analyzable is not growing as fast as

data.

1.1 New challenges

The target is to extend the analysis to all available information, so it is necessary

to use new techniques. According to some companies [1] [2], such as IBM, the

new challenges are the �Three V" that stand for Volume, Velocity, and Variety.

�Big Data" phrase refers to all data analysis that present any of these new

necessities.

1.1.1 Volume

According to some IBM estimations, the amount of data produced every day is

about 2.5 quintillion of bytes and the most of it (about 90%) belongs to the last

two years. Furthermore, according to the current trend, the growth is speeding

up, so it is just the beginning. This fact is just an index of how recent the

volume problem is. In regards to the total size of data, in 2009 it was about 0.8

zettabytes, i.e. 0.8× 1021 bytes, and, according to the trend, in 2020 it will be

44 times more [4]. Figure 1.1 shows a trend estimation.

The main data source is the Internet since the web di�usion a�ects billions

of people and each one of them produces a lot of data. Indeed, almost every

forum, social network, and chat gathers the thoughts of thousands or even

millions of people. Just to give some numbers, Facebook generates every day

about 10 terabytes of data and Twitter about 7 terabytes. These data can be

used to extract information about many situations. For instance, it is possible

to evaluate the opinions about some products, assuming that they will have a

signi�cant impact on the sales.

As regards most of private companies, an example of a data source is given

by electronic devices, such as Smartphones and sensors. In fact they provide

track of the activities, so they contain a lot of useful information. For example,

it is possible to analyze car movements, using data coming from GPS, in order

to manage tra�c.
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Figure 1.1: Data growth trend estimation.

Of course not all data will be used, but, combining stored data with web

information and devices tracks, a single problem can be related with terabytes

of even petabytes of useful data. Clearly, even if the analysis does not consider

the web, the volume can be very big. Unfortunately, current technologies imply

an elevated cost for the treatment of big volumes. For this reason, there is a

need for a new kind of data storage and processing.

1.1.2 Velocity

Nowadays, the world is a lot quick-change, so it is often necessary to take fast

decisions. The amount of data that are generated every day is very big and it is

necessary to gather, store, and analyze them in a fast way. Sometimes it is even

necessary to have a real-time track of facts that comes from the collection and

analysis of streams of data coming from di�erent sources. Some examples of

problems that need this kind of information are �nancial investments planning,

weather forecast, and tra�c management.

In order to speed up an analysis, the easiest way is to store data in a fast
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and e�cient memory, i.e. the RAM of the computer. This approach, called in-

memory processing, is now used a lot. For example, the statistical software R

is mostly based on that. Unfortunately, fast and e�cient memory devices are a

very expensive, so their size is limited. For that reason, the RAM of computers

can contain only a few gigabytes. Clearly, this approach does not work well

with Big Data problems, so it is necessary to �nd an alternative.

As regards on-database storage, analysis is much slower, and, as data size

grows, the computational cost explodes. Consequently, the solution is a tool

that allows a fast access and process of big amounts of data, by using a cluster

of computers, as described subsequently.

1.1.3 Variety

A few years ago, analysis used to deal only with well-structured sets of data.

However, most of data growth is due to websites as they contain texts, images,

videos, and log �les. Each of these kinds of data is structured in its own way,

so it requires a proper handle. Furthermore, also data generated by sensors are

usually unstructured. Of course it is not ways e�ective to ignore all these useful

information, so new tools must be able to treat all kinds of data, or at least the

most of them.

A possibility is to use an approach that is partly equal to the current one. It

consists in the structuring data with new tools, before conducting an analysis

through classical tools. For example, data scraping is a technique that trans-

lates human-readable information, such as texts, in computer language, i.e. in

structured data.

A better way is to develop new techniques that directly analyze all data.

Since there are di�erent kinds of unstructured data, each one of them needs a

proper tool. Therefore, this approach leads to some complications and to the

use of a wider number of new techniques.

1.2 Big Data improvements on clustering

Section 1.1 gave an overview of the wide Big Data world, but this paper is only

about a small part of the techniques. In fact, it deals with cluster analysis in

a Big Data environment. The aim of this section is to give an overview of the

issues and of the techniques.
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1.2.1 Cluster analysis overview

The target of data analysis is to obtain a concise information about a set of

objects. If the number of them is too high and the analysis considers each one

of them individually, the information is too detailed, so it is impossible to have

useful results. For this reason, the �rst step consists in a reduction of the size of

the problem. The approach that we present consists in dividing the objects in

clusters, so that the ones that belong to the same are similar. In this way, the

clusters are as homogeneous as possible and it becomes enough to show results

about each one of them. Afterwards, each datum is automatically a�ected by

results about the cluster it belongs to.

The aim of clustering is to identify the clusters, and to assign each object

to the right one. In order to combine the objects and to determine which ones

are joined in the same cluster, it is necessary to use a criterion that evaluates

a similarity between them. A possible approach is to compute the distances

between the objects, i.e. values that express the di�erence between them. If

they are described by features, the distance simply represents the dissimilarity

between their values. However, there are also other possibilities. For example,

if there is an interaction between the objects, it is possible to build a network

that plays a role in the distances computation.

In addition to the distance criterion choice, the clustering mechanism de-

pends on the chosen algorithm. There are many main classes of methods and

the two most important are the following.

Hierarchical clustering First association of near objects, then choice of the

clusters.

Centroid-based clustering First clusters identi�cation, then assignment of

each object to the nearest cluster.

1.2.2 Why Big Data in clustering?

For many years, cluster analysis has been conducted using traditional approaches.

However, it is one of the best and most evident example of a situation that is

a�ected by all Big Data problems. In fact, cluster analysis is a�icted by the

�Three V" mentioned in Section 1.1.

An analysis can now treat even millions or billions objects. In those sit-

uations, clustering is particularly important since it simpli�es the problem by

generating a few clusters from the multitude of objects. Not all the current
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clustering techniques are capable of handling large volumes, so some of them

cannot be used at all.

Even if an algorithm is adaptable to the handle of big volumes, its com-

putational cost often explodes in those situations and the analysis needs an

answer in a reasonable time. Furthermore, nowadays many problems require an

even quicker data process. For these reasons, there is a need of more e�cient

algorithms.

Another problem of cluster analysis is the variety handle. In fact, in some

situations, unstructured data contain much information that should be consid-

ered by the analysis. Some examples of unstructured information are networks

that link objects and texts to compare. The easiest approach is to convert

that information in structured data, processed through a traditional algorithm.

By the way, a better result is obtained if the clustering algorithm can directly

handle the variety. An example of these techniques is cluster analysis of graphs.

1.3 Thesis organization

The target of this paper is to present some techniques that allow to perform

cluster analysis on big volumes of data. Although clustering is a�ected by all

the �Three V" mentioned in Section 1.1, this paper deals only with the volume

and velocity challenges.

Chapter 2 describes the Hadoop framework that allows the use of the tech-

niques, in order to show the logic upon which it is based. In fact, Hadoop has

some particular requirements regarding the algorithms structure. The advan-

tage of its use is the scalability of the techniques, i.e. their capability to increase

linearly the computing power as the resources grow. This fact is allowed by the

use of a speci�c programming model for the algorithms that is MapReduce. Al-

though this is not the only possibility, Hadoop �ts the problem treated in this

paper.

Chapter 3 describes some clustering algorithms. The easiest approach is to

adapt some current clustering techniques to the new environment. In detail,

the reference algorithm is K-means since it is e�cient and easily adaptable into

Big Data problems. An other option, treated in Chapter 4, is the use of new

algorithms that ful�ll the MapReduce requirements. The solution consists in the

combination of two kinds of techniques, in order to have, as much as possible,

the advantages of both. The algorithms have been developed in R and tested
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on some datasets. The code is described in Appendix B.

Once the current algorithms have been chosen and the new have been de-

signed, the work has consisted in their implementation in MapReduce. Chap-

ter 5 describes the steps and Appendix A shows the code. The chosen software

is R, connected with Hadoop. The advantages of using R, rather than some

others programming languages, is the possibility of integrating the overall anal-

ysis process in the same environment. In fact, it allows both the MapReduce

implementation and the analysis of results.

Finally, in order to evaluate the computational cost of the algorithms, they

have been tested on di�erent-sized datasets. Chapter 6 presents the results and

Chapter 7 discusses the overall work.



20 CHAPTER 1. INTRODUCTION



Chapter 2

Hadoop framework

This chapter describes a possible solution for the handle of some Big Data

problems that consists in the use of Hadoop [5]. It is an open-source framework

that is written in Java and it allows the handle of big volumes of data through a

scalable and distributed system. Hadoop runs on commodity hardware, i.e. not

expensive and also available on demand on the cloud, so the main advantage

that derives from it is the reduction of the cost of data storage and process,

particularly when the volume increases. Furthermore, it allows the handle of

unstructured data, so it can solve a wide range of problems when compared

with more traditional approaches.

2.1 Storage of big volumes of data

The traditional approach is to keep data in structured repositories, such as

RDBMS (Relational DataBase Management System). An advantage that de-

rives from that is a better organization of information since data are directly

structured during the loading. However, the use of this approach to handle large

volumes of data leads to a cost explosion. Furthermore, relational databases

treat well homogeneous data, but they do not allow the handle of unstructured

data, so they are not a good solution in some situations.

As mentioned in Subsections 1.1.1 and 1.1.3, the analysis may require the

use of big and unstructured volumes of data. This section describes the Hadoop

solution to the volume problem that is based on the use of cheap devices.

21
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2.1.1 Distributed �le system: HDFS

One of the advantages of Hadoop is the scalability, i.e. the ability to handle a

growing amount of work with the same level of performance. This means that,

as the available resources grow, the computational capacity grows in a linear

way. In this case, the maximum allowed storage is proportional to the number

of computers in the cluster, so the volume problem is handled by increasing the

size of the cluster. The cheapness comes from the fact that it is not necessary

to make use of expensive devices, but it is su�cient to increase the number of

cheap computers.

Before processing the data, Hadoop stores them through HDFS[6] (Hadoop

Distributed File System). In fact, this kind of storage is thought to allow a fast

and scalable data process.

Regarding of the structure, data are stored as key-value pairs. It means that

each datum is constituted by a value that represents the datum itself, associated

with a key that identi�es it and allows its access. As regards of the shape of

the value, it has not got any particular requirement, so it is not necessary to

treat data before they are stored. In fact, the task of treating in proper ways

di�erent kind of data is left to the analysis.

Another advantage of HDFS is its fault-tolerance. In fact, the data are

stored in multiple copies, so the failure of a single computer of the cluster does

not have any relevant consequences. Due to this fact, Hadoop does not have

any particular requirement about the hardware. In fact, it can use without any

problems commodity hardware, i.e. common available hardware that is cheap

and easily a�ectable by failures.

As regards the data import, there is a master node, i.e. a chosen computer

that gradually receives data, splits them in blocks and scatters them around the

cluster. The block size is very big, if compared to the one of other �le systems,

in order to improve the e�ciency. In detail, the default block size is about 64

MB or 128 MB, due to the results of the following calculation. Let tr be the

transfer rate and let st be the seek time. If the purpose is to have tr = 0.01 st

and the hardware has tr = 100MB/s and st = 10ms, then the ideal chunk size

is 100MB.
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2.2 Algorithms in the Hadoop environment

Similarly to the data storage, the data analysis is conducted through a proper

scalable technique. This section presents the programming model provided by

Hadoop.

2.2.1 MapReduce paradigm

In order to process data, Hadoop uses a programming model developed by

Google, named �MapReduce" [3]. Due to its scalability, it allows the process of

huge amounts of data that have been stored through HDFS.

The process management is based upon a hierarchy between the computers

in the cluster. In detail, there is a master node that coordinates the jobs by scat-

tering the operations through the other computers, called workers. Moreover,

this hierarchy can be built on di�erent levels.

The scalability derives from the logic upon which the job is split. In fact,

the dataset is divided into chunks, each one of which is assigned to a worker.

Then, the master task is only to coordinate the jobs, so its workload is only a

small part of the total and all processes are committed to the workers.

As its name suggests, MapReduce is based upon the separation of algorithms

in the following two steps that will be described in detail afterwards.

Map Separate process of dataset chunks.

Reduce Collection of the Map outputs.

The input is made o� by HDFS data that are stored in the form of key-value

pairs. Moreover, the algorithm requires the storage of intermediate �les during

the computation of the output and, in order to handle them, these �les are

stored as key-value pairs too.

In order to explain the paradigm, let X be the dataset and let {X1, ..., XN}
be its partition, in such a way that each chunk Xi is associated with a task. For

simplicity, since now, let us assume that each node always performs one task.

Accordingly, the implementation consists in the following steps.

Input split The master receives the job and it splits it in small tasks, each one

of which analyzes a single dataset chunk. ∀i = 1, ..., N,Xi is assigned to

a worker that will process it.
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Map For each task, the corresponding worker maps its chunk, producing a

key/value output. Mapping consists in applying a function that is the

same for all the subsets.

Map(Xi) = (ki, Vi) = {(kji , V
j
i )}j=1,...,Ji

where ki is the vector of keys, Vi is the matrix containing the corresponding

values, and Ji is the output size.

Shu�e Data with the same key are grouped and moved into the same place.

In formulas, let K be the set of all possible values of the keys. Then,

Wk = {V ji : kji = k, i = 1, ..., N}, ∀k ∈ K.

Reduce For any key, the master1 computes a result by applying the reduce

function to the set of data associated with it. Yk = Red(Wk), ∀k ∈ K.

Output collection Output coming from the Reduce processes are collected,

producing the results. Y = {Yk}k∈K .

Example 2.1 illustrates the logic upon which MapReduce is based.

Example 2.1 (Wordcount). The aim is to count the number of occurrences

of each word in a book. The result is a list of words, associated each with the

number of its occurrences. In order to parallelize the jobs, the algorithm splits

the text in chapters and it assigns each one of them to a worker. The steps are

the following.

Input split The master assigns to each worker the task of mapping a single

chapter.

Map Since the output will be a list of words, the worker maps each one of

them with its key that is the word itself. In order to count the number of

occurrences, the value is their number that in this case is always equal to

�1". In fact, each word is present just once when is mapped.

Shu�e For any word, all data are put in the same place, in order to process

them.

1In the practice, any value of the key is associated with a task that can be executed by the

master or by a worker.
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Reduce The master computes the sum of occurrences of any word. It means

that it counts the number of times the word is present in the whole of

mapping outputs.

Output collection The master produces a list of all words, associated with

their count.

Figure 2.1 shows this MapReduce example.

Figure 2.1: An example of MapReduce: wordcount

Clearly, not all algorithms can be parallelized via MapReduce. In fact, there

must be the appropriate conditions to set them as parallelizable. Furthermore,

the splitting is not automatic, so Map and Reduce functions must be chosen ad

hoc.

2.2.2 Combiner use

If the Map outputs are too big, the process of all data that are mapped with

the same key can be problematic. In fact, it leads to a bottleneck that slows

down the entire process. A possible solution is to split the Reduce operations

by introducing another step.

After the Map step, each worker can apply a function to its data, in order

to reduce the size of its output. This step is called Combine, expressing the fact

that the workers combine data before sending them to the master, and it is used
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before the shu�e step. It is not always possible, but, under some conditions, it

can even be a function identical to the Reduce one. In other situations, instead,

it is not the same function. After the Combine step, the master collects the

outputs of all nodes by applying the Reduce function.

Input split The master receives the job and it splits it in small tasks, each one

of which analyzes a single dataset chunk.

Map For each task, the corresponding worker maps its chunk, producing a

key/value output.

Combine Within any chunk, the corresponding worker applies the Combine

function to the data belonging to the corresponding dataset and mapped

with the same key.

Shu�e Data associated with the same key are grouped and moved to the same

place

Reduce For any key, the master computes a result by applying the Reduce

function to the set of data associated with it.

Output collection The outputs that are generated by Reduce processes are

collected, producing the result.

The addition of Combine is a good choice, as it decreases the computational

cost, but when is it possible? As mentioned before, in some cases it is su�cient to

apply the Reduce function one more time. In order to allow this, the result with

its use must be identical to the Combine-less MapReduce. Hence, calling W i
k =

{V ji : kji = k}, it must be true that Red({Red(W i
k)}) = Red(

⋃
i=1,...,N W

i
k), i.e.

that the Reduce function must be associative. Furthermore, since nodes are not

ordered, function must be commutative too.

Another possibility is to use a Combine function that is di�erent from the

Reduce one. Because of the variety of algorithms, there is not a speci�c rule, so

each case must be treated in a di�erent way.

In the case of word-count, the Reduce function is a sum that is a commutative

and associative operation. Hence, MapReduce with Combiner is possible and it

consists in the steps described in Example 2.2.

Example 2.2 (Wordcount with Combiner). The aim is to count the number of

occurrences of each word in a book. The result will be a list of words, associated
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each with the number of its occurrences. In order to parallelize the job, the

master splits the text in chapters and assigns each one of them to a worker.

The algorithm steps are the following.

Input split The master assigns to each worker the task of mapping a single

chapter.

Map Since the output will be a list of words, the worker maps each one of

them with a key that is the word itself. In order to count the number of

occurrences, the value is their number that in this case is always equal to

�1". In fact, each word is present just once when it is mapped.

Combine Any worker computes the partial wordcount.

Shu�e The master lays out all the words.

Reduce The master computes the sum of occurrences of any word. It means

that it sums up the Combine count outputs.

Output collection The master produces a list of all words, associated with its

count.

2.3 A part of the Hadoop ecosystem

Hadoop has some useful components that ease the data handle. Here is reported

a list of the most important among them.

Sqoop A connector between Hadoop and many databases.

Hive A tool that allows to use Hadoop as though as it was a data warehouse.

Pig A batch-oriented high-level query language.

Mahout A data-mining and arti�cial intelligence library.

Flume A log and text �les import tool.

Hbase A column-oriented key-value database.

Zookeeper A con�guration and synchronization service.

Since the analysis described in this paper does not need all of them, this

section describes only the ones that have been used.
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2.3.1 Connection with other databases: Sqoop

Hadoop ecosystem deals with di�erent-shaped data and, in most of the situa-

tions, some of them are in structured databases. The aim of Sqoop is to integrate

this kinds of data into the environment.

Regarding the source, Sqoop supports the connection with several relational

databases, such as MySQL and Oracle, with data warehouses, and with NoSQL

stores. Starting from them, it extracts data, puts them into Hadoop, and stores

them using HDFS �lesystem. Furthermore, it also supports HBase and Hive

storage. Once data has been analyzed through Hadoop, Sqoop allows also to

store the results in the starting relational database.

In order to parallelize the job, the extraction is made through MapReduce.

In detail, each map imports a part of the database and stores it into a HDFS

chunk, as shown in Figure 2.2.

Figure 2.2: Sqoop import process
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2.3.2 Hadoop DWH: Hive

Hive [7] is a framework originally developed by a Facebook team and it is a data

warehouse system for Hadoop. In particular, using Hive it is possible to handle

data through Hive Query Language (HQL) that is much similar to SQL. The

logic upon which it is based is to translate SQL-like queries in MapReduce jobs,

in order to have a fast and scalable data process.

Nevertheless, although the data process is similar to the one of a traditional

database, the use of MapReduce implies some structural di�erences. The main

dissimilarity is about the table schema. In fact, traditional databases use a

�schema on write", i.e. the comparison between the data and the schema during

the storage. In this way, related tables are already stored near, in order to

quicken the analysis. On the other hand, Hive uses a �schema on read". It

means that the data are not structured when they are loaded, but when a query

is issued. The advantage is that in this way the data load is faster because of

the lack of checking. However, the �schema on write" allows to speed up the

queries because of the indexing and the compression during the data load. This

trade-o� is in favor of Hive in situations in which the schema is not already

known during the loading.

A Hive disadvantage is the lack of the possibility of updating the table. In

fact, MapReduce implies the access of all data at the same time and the storage

of data into a new table.

2.4 R with Hadoop

R is a powerful and �exible analysis software. In fact, it provides many useful

statistical tools and it allows to develop custom algorithms. However, it mainly

deals with in-memory analysis, in contrast with Big Data needs. Even if there

are some packages that allow the handle of big volumes of data, they are not as

e�cient as Hadoop.

Fortunately, there are also some connectors between R and the Hadoop

framework. In this way, there are some packages that allow to develop MapRe-

duce algorithms directly from R. As typically an algorithm requires the paral-

lelization of only some steps, this approach is useful. In fact, the integration

between R and Hadoop allows to develop the whole of the algorithm in an R

environment, by writing in MapReduce only the parts that need scalability.

Regarding the package, there are some possibilities, such as the connectors
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provided by Oracle, i.e. the �ORCH" package, and by Revolution Analytics [10],

i.e. the �rmr2" package. In the case study, the chosen is rmr2. In addition,

the Comprehensive R Archive Network (CRAN) provides �RHive" package that

allows the integration with Hive.

Through all these packages, it is possible to develop the most of the analysis

procedures in the same environment, obtaining complex ad accurate techniques,

e.g. machine learning algorithms. In fact, if the tools are not integrated, the

analysis requires the separate and sequential use of them, precluding some pos-

sibilities.

2.4.1 �rmr2" package

As mentioned before, the most important R-Hadoop integration package is rmr2.

In fact, it deals with the algorithm that is the part of analysis that requires the

integration.

The rmr2 package provides �mapreduce" function that allows to write MapRe-

duce jobs, taking the following inputs.

Map function

Reduce function

Combine function

HDFS path of input �le

HDFS path of output �le

Map, Reduce, and Combine functions take as an input a key-value matrix that

is an HDFS chunk. Since the output will be stored in HDFS too, it should be

in the key-value form. In detail, all functions are written in R code that will be

translated in Hadoop Java code in an automatic way.

An advantage is that all MapReduce function can access to all R variables.

This is very useful since many algorithms need the use a small set of information

during their steps. For instance, K-means algorithm, described in Chapter 3,

requires to keep a list of the centers.



Chapter 3

K-means and variations

The starting point for all centroid-based clustering algorithms is K-means [11].

In fact, it is simple, basic, and easily scalable. This chapter presents some

variations of the algorithm that consist in di�erent initialization choices.

3.1 Basic K-means

The subject of the analysis is a set of I objects x1, ...xI described by F features

each. It means that

xi = (x1i , ..., x
F
i ), ∀i = 1, ..., I

K-means partitions the setX = {xi, i = 1, ..., I} ⊂ RF in the clusters C1, ..., CK ,

identi�ed by the centers c1, ..., cK respectively. Each center represents the �av-

erage object" of the corresponding cluster, i.e. a �ctitious object which features

are the average of the ones of all the objects of the cluster.

An index that expresses the dispersion within the objects of a cluster is the

within-cluster sum of squares, i.e. the sum of the square distances between the

objects that belong to the cluster and its center.

The aim is to choose the partitioning that minimizes the sum of the within-

cluster sums of squares of all clusters. Let P = (C1, ..., Ck) be the partition of

X. Then, the choice of clusters has the goal of

P = arg min
P

∑
k=1,...,K

∑
i∈Ck

‖xi − ck‖2

31
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where ‖ · ‖ is the Euclidean norm

‖x‖ =

 ∑
f=1,...,F

(
xf
)21/2

K-means is an iterative algorithm since it consists in a repeated update of

the centers. First, before starting the process, it is necessary to choose the

seeds, i.e. the initial values of the centers 1. Then, the K-means iterated step

consists in �rst updating the choice of the clusters by assigning each object to

the nearest center, then recomputing the center of each cluster. The detailed

steps are the following.

1. Assignment step Assign any object xi to the cluster Ck if the center ck is

the nearest.

k = arg min
k=1,...,K

‖xi − ck‖2, ∀i = 1, . . . , I

2. Update of the centers For any cluster, compute the value of its center as

the barycenter.

ck =
1

|Ck|
∑
i∈Ck

xi, ∀k = 1, ...,K

In order to determine when to stop updating, the best choice is to repeat this

step until the algorithm reaches the convergence, i.e. until there is no change

in the centers. If the convergence does not happen in a reasonable time, it is

possible to stop updating. In order to do that, the most common option is to �x

the maximum number of steps before starting K-means, although unfortunately

this way does not ensure the convergence.

3.1.1 K-means performances

K-means is the main centroid-based clustering algorithm, but it is not always

the best choice.

First of all, K-means is not a stable algorithms, so di�erent seeds choices

may lead to di�erent results. Because of this fact, it is essential to choose a

proper initialization method. Conversely, in the absence of a good criterion, we

can run the algorithm multiple times, using di�erent initializations. In fact, a

good understanding of the problem can come from the comparison of di�erent

1As regards the initialization, there are di�erent options that will be described afterwards.
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results. Since we deal with initialization in Section 3.2, this section assumes

that the algorithm has already been properly initialized.

Another limit of K-means is that its cluster assignment is solely based on

the distance between the objects and the centers of the clusters. As most of

the objects are close to the center, the shape of the groups is spherical-like. In

this way, the algorithm cannot identify the weird-shaped cluster. Example 3.1

illustrates this fact, showing a case in which K-means does not succeed in the

identi�cation of two clearly distinct clusters.

Example 3.1 (Semicircle dataset). We have two sets of bivariate objects.

Cluster 1 The objects are distributed around the center (0, 0) and the maximum

distance is ρmax = 1.
yi = (ρi sin θi, ρi cos θi)

ρi ∼ U(0, ρmax) ∀i = 1, ..., N2

θi ∼ U(0, 2π)

(3.1)

Cluster 2 The objects are distributed like a normal which mean is distributed

like a uniform around an half-circumference.


yi = (ρi sin θi, ρi cos θi)

ρi ∼ N(ρ0, σ) ∀i = 1, ..., N2

θi ∼ U(−π2 ,
π
2 )

(3.2)

The parameters are σ = 0.2 and ρ0 = 5

The R implementation is shown in Appendix B.1.1.

After a proper initialization, K-means divides the dataset into 2 clusters. As

can be seen in Figure 3.1 (a), the algorithm is not able to identify the centers.

By the way, it is possible to work around the problem. In fact, if K-means is

told to divide the dataset in 3 clusters, it �nds precisely cluster 1, but splits the

curved clusters in two parts (see Figure 3.1 (b)). This fact shows that K-means

can recognize the regions, but it needs to split into two parts the weird-shaped

cluster.

Example 3.1 shows that K-means is not bad at all. Unfortunately, in some

situations, the shape of the clusters can be a considerable problem. Examples 3.2

- 3.3 show the failure of K-means clustering on weird-shaped datasets.
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Figure 3.1: Semicircle dataset test on K-means.
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Example 3.2 (Dartboard dataset). We have three sets of N bivariate objects.

Central cluster The objects are normal-distributed around the center.
yi = (ρi sin θi, ρi cos θi)

ρi ∼ N(ρ01, σ) ∀i = 1, ..., N

θi ∼ U(−π, π)

(3.3)

Central ring The objects are distributed like a normal with mean distributed

like an uniform around a circumference with radius ρ02.


yi = (ρi sin θi, ρi cos θi)

ρi ∼ N(ρ02, σ) ∀i = 1, ..., N

θi ∼ U(−π, π)

(3.4)

Peripheral ring The objects are distributed like a normal with mean distributed

like an uniform around a circumference with radius ρ03 > ρ02.


yi = (ρi sin θi, ρi cos θi)

ρi ∼ N(ρ03, σ) ∀i = 1, ..., N

θi ∼ U(−π, π)

(3.5)

The parameters are ρ01 = 0, ρ02 = 2, ρ03 = 4, and σ = 0.1. The R imple-

mentation is shown in Appendix B.1.2.

If the �xed number of centers is set to three, K-means does not succeed in the

identi�cation of the clusters. Furthermore, even if the algorithm is told to �nd

10 clusters, it still does not give acceptable results since the identi�ed clusters

contain points belonging to di�erent sets. Figure 3.2 shows both results.

Example 3.3 (Spiral dataset). We have two sets of N bivariate objects. The

ones of any set are distributed like a normal with mean distributed like an uni-

form on a spiral.
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Figure 3.2: Dartboard dataset test on K-means.
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Spiral cluster 1 

yi = (ρi sin θi, ρi cos θi)

ρi ∼ N(5si, σ) ∀i = 1, ..., N

θi = 4πsi

si ∼ U(0, 1)

(3.6)

Spiral cluster 2 

yi = (ρi sin θi, ρi cos θi)

ρi ∼ N(5si + 1, σ) ∀i = 1, ..., N

θi = 4πsi

si ∼ U(0, 1)

(3.7)

The R implementation is shown in Appendix B.1.4.

As Figure 3.3 shows, the results are even worst than in the case of the Dart-

board dataset, since each cluster contains some points that belong to both sets.

Another problem is that, even in situations in which the real clusters are

round-shaped, sometimes K-means does not work well. In fact, it has a tendency

to generate equally-sized clusters, as shown in Example 3.4

Example 3.4 (Mouse dataset). We have three sets of bivariate data. One of

them is big-sized and the other two are smaller.

Big cluster 
yi = (ρi sin θi, ρi cos θi) + x1

ρi ∼ U(0, ρ01) ∀i = 1, ..., N2

θi ∼ U(0, 2π)

(3.8)

Small cluster 1 
yi = (ρi sin θi, ρi cos θi) + x2

ρi ∼ U(0, ρ02) ∀i = 1, ..., N2

θi ∼ U(0, 2π)

(3.9)
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Figure 3.3: Dartboard dataset test on K-means.
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Small cluster 2 
yi = (ρi sin θi, ρi cos θi) + x3

ρi ∼ U(0, ρ03) ∀i = 1, ..., N2

θi ∼ U(0, 2π)

(3.10)

The parameters are ρ01 = 4.5, ρ02 = ρ03 = 2, x1 = (0, 0), x2 = (5, 5), and

x3 = (−5, 5)

The R implementation is shown in Appendix B.1.3.

As can be seen in Figure 3.4, the algorithm identi�es the three clusters, but

it assigns some points of the bigger to the two smaller.

Figure 3.4: Mouse dataset test on K-means.

3.2 K-means initialization

In this section, we will focus on the choice of K-means initial centers, i.e. the

seeds. This step is very important, since di�erent initializations may lead to
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di�erent results, and there are some alternatives. This section describes some

of them.

3.2.1 K-means random partitioning initialization

A possibility is to give the same relevance to all data. It means that the choice

is totally random, so it is a naive approach. The only assumption is that the

number of clusters K has already been �xed. There are two possible approaches

that are random segmentation and random sampling.

Random segmentation splits the dataset in K subsets, by labeling each da-

tum x in a random way. Let kx ∈ {1, . . .K} be the tag of x that associates it

to the cluster k. The computation of the seeds is an average of all objects with

the same label k. The steps of the random segmentation are the following.

1. Label assignment kx = sample(1, ...,K), ∀x ∈ X

2. Clusters de�nition Ck = {x ∈ X : kx = k}, ∀k = 1, ...,K

3. Centers computation ck =
∑
x∈Ck

x/|Ck|, ∀k = 1, ...,K

The peculiarity of this initialization is the closeness between the centers. In

fact, especially if the dataset is rather wide, all of them will be likely located

near the barycenter. This fact conveys in a stability of the seeds since they likely

belong to the same region. Unfortunately, in some cases, there is an incongruity

between the initialization and the real nature of data, as shown in Example 3.5.

Example 3.5 (Four regions dataset). We have four sets of N normal-distributed

bivariate objects.

Cluster 1

xi ∼ N

((
1

1

)
,

(
σ 0

0 σ

))
, i = 1, ..., N

Cluster 2

xi ∼ N

((
−1

1

)
,

(
σ 0

0 σ

))
, i = 1, ..., N

Cluster 3

xi ∼ N

((
1

−1

)
,

(
σ 0

0 σ

))
, i = 1, ..., N



3.2. K-MEANS INITIALIZATION 41

Cluster 4

xi ∼ N

((
−1

−1

)
,

(
σ 0

0 σ

))
, i = 1, ..., N

The initialization algorithm splits the points in 4 clusters, by assigning any of

them to a random one. In this way, all clusters contain much the same number

of points of each set, so the seeds will be in the central area, where the data are

absent, as shown in Figure 3.5. The problem is that this choice is much far from

the real nature of the problem and this fact can lead to bad results, even after

K-means reaches the convergence. Figure 3.6 shows the �nal results that come

from a multiple run of the algorithm.

Figure 3.5: Random partitioning initialization, with centers that do not belong
to any cluster.

As regards the choice of the number of clusters, random initialization lacks

of a proper criterion, so it is often necessary to �x it beforehand. A possibility

is to run the algorithm more than once and to compare the results, in order to

obtain the correct number.
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Figure 3.6: Results of K-means run with 4 random partitioning initialization.

3.2.2 K-means random sample

A second chance for a random initialization consists in sampling K random

points. This approach [13], i.e. the random sampling, is a good alternative to

the random segmentation since it makes possible the identi�cation of clusters

that are distant from the central region.

The disadvantage is that, because of the multitude of possibilities, the method

is much unstable, so it performs badly if it is used just once. Furthermore, it

samples each point with the same probability, so it has the tendency of ignoring

the small clusters since they contain only a few points. On the other hand, for

the same reason, it likely samples more than a single point from the big clusters.

Furthermore, even if the size of the clusters is about the same, the randomness

of sampling implies an instability of this method. For example, let us suppose

there are K clusters of the same size and that the number of seeds is set to K.

Random sampling likely chooses more than a single point from a single cluster

and no one from others.

However, random sampling initialization can ve very useful in some situa-
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tions. In fact, some results can be obtained through the repetition of random-

sampling-initialized K-means di�erent times, in order to identify each cluster at

least once. It is also useful to vary the �xed number of desired seeds, in order

to see how the segmentation changes. In this way, the analysts can explore the

nature of data, in order to choose a proper initialization.

3.2.3 K-means++ sampling initialization

In situations in which some clusters are much bigger than the others, an ideal

initialization chooses a single seed from any cluster, independently from its size.

On the contrary, the random sampling has the tendency of choosing the most

of the seeds from the big clusters and random partitioning is inclined to ignore

the peripheral clusters.

A possible solution is to sample initial points that are as much as possible

scattered among the domain. It means that, if two points are near, the algorithm

will unlikely sample both of them. In this way, it is unlikely a situation in which

two points will belong to the same cluster, unless it is very big. On the other

hand, if there is a small cluster that is distant from the others, the algorithm

will likely sample a point from it.

An initialization that is based upon this logic is K-means++ [14]. It consists

in a one-by-one sampling of seeds, in such a way that each new seed is likely as

much as possible distant from all the previous ones. The idea is that each point

can be potentially sampled, but the sampling probability is proportional to the

squared distance between the nearest seed and it.

The algorithm consists in the iteration of the same step, until the number

of seeds reaches K. Let X be the set of all points, C the set of already chosen

seeds, and D : X −→ R a function that de�nes the distance between a generic

object and its closest seed.

D(x) = min
c∈C
‖x− c‖, ∀x ∈ X

First, the initial point is sampled in a totally random way, i.e. c1 = sample(X)

with uniform probability.

Then, the other points are sampled until the number of the seeds reaches K.

It means that, for any k = 2, ...,K, the algorithm iterates the following steps.

1. Computation of probabilities px = D2(x)∑
y∈X

D2(y)
, ∀x ∈ X
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2. Sample ck = sample(X) with probability p = {px, x ∈ X}

Figure 3.7 shows an example of K-means++ initialization on a testing dataset,

in which there are four distinct di�erent-shaped clusters.

Figure 3.7: Results of K-means++ initialization repeated 4 times.

3.2.4 K-means Kau�man initialization

Despite K-means++ initialization improves the K-means performances, it does

not always choose the same seeds. In fact, randomness comes from the fact that

each point can potentially be sampled, although with di�erent probabilities.

In order avoid this fact, it is possible to initialize K-means in a deterministic

way through the Kaufman initialization [12]. In fact, it samples the seeds one

at a time, by choosing the point that is as much as possible distant from the

already sampled ones.

Since the algorithm will use all distances between two objects, the value of

all of them are computed before.

d(x, y) = ‖x− y‖, ∀x, y ∈ X
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The steps of the algorithm are the following.

1. First sampling Selection of the point c as the most centrally located, i.e.

the closer to the mean of all points, and addition of it to the list of the

centers.

c = arg min
x∈X

∥∥∥∥∥x− 1

|X|
∑
x∈X

x

∥∥∥∥∥
C = {c}

2. Iterative sampling While the number of seeds is less than K

2a. Computation of the minimum distances

D(x) = min
c∈C

d(x, c), ∀x ∈ X \ C

2b. Computation of the indexes

b(x, y) = max(D(x)− d(x, y), 0), ∀x, y ∈ X \ C

2c. Choice of the new seed

c = arg min
x∈X

∑
y∈X

b(x, y)

C = C ∪ {c}

Figure 3.8 shows that Kaufman does not succeed in sampling a point from

each one of the 4 clusters. As a matter of fact, the smallest is ignored and two

points are sampled by the biggest. However, if the �xed number of seeds is set

to 5, results are better, as shown in Figure 3.9. In fact, it samples at least a

point from any cluster.
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Figure 3.8: Kaufman sampling of 4 points.

Figure 3.9: Kaufman sampling of 5 points.



Chapter 4

Hybrid clustering

As regards clustering, it can be based on connectivity or on centroids. The �st

case is called hierarchical and the other is centroid-based.

Hierarchical clustering is very slow and the computational cost explodes as

the data volume grows. Furthermore, the algorithms need to build and use huge

matrices, so the volume easily exceeds the capacity of devices, even in a Big Data

framework. For these reasons, hierarchical clustering algorithms cannot resolve

the most of Big Data problems themselves.

On the other hand, centroid-based clustering provides some fast and scalable

algorithms that do not need the use of big matrices. For this reason, they are

a good starting point for a Big Data analysis, but they often lack of e�ciency.

The challenge is to use a new hybrid method that combines the two approaches,

maintaining both scalability and e�ectiveness as well as possible.

Although Hierarchical clustering techniques are not a good choice as regards

many Big Data analysis, they play an important role in the development of

hybrid approaches. For this purpose, Section 4.1 gives a brief overview of some

techniques that take part in the hybrid algorithm. The other sections, instead,

describe two possible hybrid clustering techniques.

4.1 Hierarchical clustering

Hierarchical clustering is based upon the logic of �rst taking account of many

partitioning options, then choosing the most proper one. As regards the possible

partitions, the two extremities that are a single cluster containing all the objects

47
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and a cluster for each object. In order to de�ne the set of options, there are two

main approaches.

Agglomerative clustering First, each object belongs to its own cluster. Then,

the clusters are merged, according to the similarity between them.

Divisive clustering First, all the objects belong to the same cluster. Then,

the algorithm iteratively splits the clusters.

The approach that takes part in the development of a hybrid algorithm is

agglomerative clustering, so this section is only about it.

First of all, let us give a distance d : X×X → R between two objects, e.g. the

Euclidean norm. In order to de�ne an evaluation criterion of similarity between

two clusters, it is necessary to de�ne also the distance D : P(X) × P(X) → R
between two subsets. For this purpose, there are three main options.

Single linkage Given two clusters C1 and C2, the distance is the minimal

distance between an object of C1 and an object of C2.

D(C1, C2) = min
x1∈C1,x2∈C2

d(x1, x2)

Complete linkage It is the opposite of single linkage since it uses the maximal

distance.

D(C1, C2) = max
x1∈C1,x2∈C2

d(x1, x2)

Average linkage It is a halfway between the two other two options and the

distance is the mean of all the distances.

D(C1, C2) =
1

|C1||C2|
∑

x1∈C1,x2∈C2

d(x1, x2)

Once the linkage has been chosen, the algorithm iteratively merges the two

nearest clusters. For this purpose, the distances between all couples of objects

are put in a matrix, which rows and columns correspond to the objects. This

distance matrix is symmetric and the main diagonal contains �0" values. Start-

ing from that, it is easy to compute the distance between each pair of clusters,

according to the linkage, and to identify the minimum.

After some iterations of this process, all the objects will belong to the same

cluster, so it is necessary to stop before it happens. For this purpose, there are

two possible options.
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Number of clusters The process goes on, until the number of clusters is less

than or equal to a �xed one.

Distance threshold The process goes on as long as there is at least a pair of

clusters which distance is less than a �xed threshold.

In order to determine a good criterion, it is possible to build a tree diagram,

called dendogram, that shows the progression of the agglomeration. At the

bottom of the diagram, each object belongs to a di�erent cluster. Then, going

up, in each level the merge a�ects all the clusters which distance is below the

level. The number of clusters or the distance threshold can be deduced by the

observation of the dendogram.

Figure 4.1 shows an example, in which it is easy to deduce that the number

of clusters is equal to 2 or 4. In fact, starting from the top, the dataset is initially

split into 2 clusters and immediately after in 4. Afterwards, the splitting is more

confusing. As regards the distance threshold, it is 0.8, if the clusters are two,

or 0.6, if the clusters are four.

Figure 4.1: Example of a dendogram.
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The results of the clustering depend on the choice of both the distance func-

tion and the linkage method (single, complete, or average). As regards the dis-

tance function, if data are numerical, the most common option is the Euclidean

distance. The linkage choice, instead, is more complicated, as it depends on

how data are distributed. In order to show the di�erences in their e�ectiveness,

hierarchical clustering with di�erent linkages has been tested on the following

four datasets, described in detail in Section 3.1.

Mouse dataset The objects belong to a big round cluster and to two smaller

ones.

Semicircle dataset There are a round cluster and a bowed one.

Dartboard dataset There are a central round cluster and two concentric cir-

cular ones around it.

Spiral dataset There are two spiral clusters.

Single linkage is the best choice in the absence of noise and it is a useful tool

in the search for weird-shaped clusters. As shown in Figure 4.6, it succeeds in

identifying all the clusters. Conversely, complete linkage has some problems in

the identi�cation of the weird-shaped ones. Figure 4.11 shows that the complete

linkage gives the correct results about the Mouse dataset only.

The algorithms have been tested also on the same datasets with the addition

of some noise, i.e. of points that are randomly scattered around the clusters.

Unfortunately, single linkage does not work well in the presence of some doubt

points that do not belong to any clearly distinct cluster, as shown in Figure 4.16.

In fact, the algorithm merges two clusters even if there are only a few points

that make a bridge between them. Fortunately, complete linkage is more stable,

as it provides slightly better results, although not yet satisfactory. Figure 4.21

shows that the algorithm succeeds in eliminating the outliers groups, but it is

still not able to identify the right clusters.

As regards average linkage, it has been tested, but it is a�ected by both

problems, so the results are not reported.

In conclusion, hierarchical clustering has a lot of problems in the identi�-

cation of clusters in the presence of outliers. In addition, the methods are not

scalable. A possible solution to these problems is a hybrid approach.
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Figure 4.2: Mouse dataset. Figure 4.3: Semicircle dataset.

Figure 4.4: Dartboard dataset. Figure 4.5: Spiral dataset.

Figure 4.6: Single-linkage hierarchical clustering testing.
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Figure 4.7: Mouse dataset. Figure 4.8: Semicircle dataset.

Figure 4.9: Dartboard dataset. Figure 4.10: Spiral dataset.

Figure 4.11: Complete-linkage hierarchical clustering testing.
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Figure 4.12: Mouse dataset. Figure 4.13: Semicircle dataset.

Figure 4.14: Dartboard dataset. Figure 4.15: Spiral dataset.

Figure 4.16: Single-linkage hierarchical clustering testing on datasets with noise.
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Figure 4.17: Mouse dataset. Figure 4.18: Semicircle dataset.

Figure 4.19: Dartboard dataset. Figure 4.20: Spiral dataset.

Figure 4.21: Complete-linkage hierarchical clustering testing on datasets with
noise.
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4.2 Split-merge algorithm

The Split-merge algorithm combines the e�ciency of centroid-based clustering

techniques with the e�ectiveness of hierarchical approaches. In order to do that,

it �rst reduces the size of the problem with a scalable algorithm, then applies

hierarchical clustering on the reduced dataset. The overall method consists in

the following procedures.

Dataset split K-means-like clustering, obtaining a wide number of clusters.

Hierarchical merge Merge of the centers of the clusters, using a hierarchical

algorithm.

Clusters identi�cation Assignment of the objects to the clusters de�ned by

the merge.

The procedures are illustrated in the next subsections.

4.2.1 Dataset split

The purpose of this procedure is to obtain small and very homogeneous clusters.

In this way, each point is represented by the nearest cluster center in a precise

way.

A possibility is to identify a wide number of clusters using through K-means.

Nevertheless, this approach leads to the following problems.

Initialization In order to obtain the stability, K-means should be initialized

in a proper way. As mentioned in Chapter 3.2.3, a stable method is K-

means++. However, its computational cost explodes if the desired number

of centers is high, so it is not a good choice in this case.1

Outliers sensitivity K-means is much sensitive to outliers, especially if any

cluster contains only a few points. As a matter of fact, the center of any

small cluster is dragged by a single outlier.

Outlier groups detection If there are some useless outliers located in the

same region, K-means will likely identify a cluster that contains them.

The problem is that they can cause some troubles during the hierarchical

merge, as shown in Subsection 4.2.2.

1This problem is partly solved by a scalable version of K-means++ initialization, shown

in Subsection 5.2.2
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Useless split If there is a compact cluster with many points, it will be sepa-

rated into many sub-clusters, as K-means always tries to �nd out the �xed

number of clusters. Although the hierarchical merge solves this problem,

it is very ine�cient if the number of sub-clusters is too high.

A solution to those problems consists in dividing the split procedure in two

parts.

1. Split the objects in a small number of clusters.

2. Iteratively split any cluster and detect the outliers.

First, it is necessary to de�ne a list containing the centers of all the already

chosen clusters. This list is empty at the beginning and is iteratively updated.

As regards the �rst part, it can be done using K-means, initialized with

K-means++. Now, the list of the centers is composed by in the ones of the

identi�ed clusters. In order to avoid having centers that are too near, the ones

that are too close are removed. A fast in-memory algorithm computes the

distance between any couple of centers and, if it is below a �xed threshold,

removes a center from them.

The second part consists in iterating the following steps for a �xed number

of times.

1. Addition of the centers For any cluster, the object that is the most dis-

tant from the center is added to the list, under the condition that the

distance between the center and it is more than a �xed threshold. This

condition avoids the split of small-sized clusters.

2. Update of the centers In order to �x the centers, the algorithm performs

a single K-means step and updates the list of the centers.

3. Removal of the outliers This step consists in the count of the objects

belonging to any cluster. If the size of a cluster is below a �xed threshold,

the corresponding center is removed from the list.

4. Assignment to the centers Any object that belonged to a removed clus-

ter is assigned to the nearest center.
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4.2.2 Hierarchical centers merge and clusters identi�ca-

tion

As regards hierarchical clustering, there are three options, i.e. single, complete,

and average linkage, which features has been described in Section 4.1. A problem

of the techniques is the presence of outliers, but the dataset split has already

removed them in order to avoid that.

As regards the linkage, the best choice is usually the single one. In fact,

since the outliers has already been removed, the main challenge is to identify

the weird-shaped clusters and single-linkage advantage is its e�ectiveness in

that.

This procedure cannot be automated because of the necessity to determine

the dendogram cut. Fortunately, the quickness of in-memory analysis allows the

trial of some alternatives.

Now, each cluster is identi�ed by the list of its centers. In order to obtain

information about them, the algorithm computes some summaries of the features

of the clusters. Some possible results are the following.

Size For any cluster, its size is computed by adding together the numbers of

the objects belonging to all the centers associated with it.

Mean The mean of any cluster consists in its barycenter and its computation

consists in a weighted mean, where the values are the centers and the

weights are the number of objects assigned to them.

Variance The variance expresses the dispersion of the objects within any clus-

ter.

4.2.3 E�ectiveness evaluation

The methods have been tested on some small-sized datasets using in-memory

devices, in order to evaluate their e�ectiveness. The datasets have already been

described in Subsection 3.1.1 and they are the following.

Mouse dataset

Semicircle dataset

Dartboard dataset

Spiral dataset
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Furthermore, the datasets contain also some random points, which addition

is described by the noise rate, de�ned as the ratio between the number of random

points and the number of points that belong to the clusters. The value of the

noise rate is set to 0.05 in all cases.

In all the �gures that show the results, the centers that come from the split

step are represented by black round-shaped points and the �nal clusters are

identi�ed by di�erent colors and shapes.

The �rst testing is about the algorithm that uses only K-means during the

split procedure. Although this approach leads to some problems, it is useful to

compare it with the others. The minimum required cluster size is set to 5 in the

case of the Mouse, Dartboard, and Spiral datasets and to 10 in the case of the

Semicircle dataset.

As shown in Figures 4.23 - 4.24, the results about the Dartboard and Semi-

circle datasets are satisfactory. The algorithm performs rather well also in the

case of Mouse dataset, with the exception of a small part of the big cluster, as

shown in Figure 4.22. However, the algorithm fails in identifying the two spiral-

shaped datasets since the most of the centers is concentrated in the central

region. Figure 4.25 shows this wrong result.

The testing of the iterative-split variant has been conducted using the same

�xed minimum required size. In this case, the results are more satisfactory since

the algorithm succeeds in identifying all the clusters. Figures 4.27- 4.30 show

the results.

As can be seen, if the parameters have properly been initialized, the al-

gorithm succeeds in identifying the clusters and detecting the outliers. The

goodness of results derives from the identi�cation of small sub-clusters that

cover the regions of the clusters in their whole.

4.3 Split-merge Same-step variation

The basic Split-merge algorithm divides the split procedure in two parts, due

to the necessity of detecting the outliers. The �rst part only splits the dataset,

while the purpose of the second one is to identify the outliers by removing any

object that belongs to a small cluster.

An alternative consists in the use of a split step that can both divide the

dataset and detect the outliers. At the beginning, all objects belong to the

same cluster. Then, the algorithm iteratively splits any cluster in two parts
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Figure 4.22: Mouse dataset Figure 4.23: Semicircle dataset

Figure 4.24: Dartboard dataset Figure 4.25: Spiral dataset

Figure 4.26: Only-K-means Split-merge clustering testing.
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Figure 4.27: Mouse dataset Figure 4.28: Semicircle dataset

Figure 4.29: Dartboard dataset Figure 4.30: Spiral dataset

Figure 4.31: Split-merge clustering testing.
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through the same step. The overall procedure, i.e. the combination between

this kind of split and the merge, is similar to the one of another hybrid clustering

algorithm [16]. The di�erence is that this new method treats di�erently small-

sized clusters, in order to detect the outliers.

The algorithm treats any cluster that comes from the previous step in a

di�erent way, depending on its size. The options are the following.

Option 1. Split into two equally important parts If the cluster is big, K-

means splits it in two parts. As regards the initialization, it is possible to

use K-means++ without a high computational cost since the number of

centers is just 2. By the way, it is also possible to use the other initializa-

tion methods without particular problems.

Option 2. Outliers separation If the cluster is medium-sized, the algorithm

tries to detect a group of outliers. First, it computes the barycenter and

the object that is as much as possible distant from it. If their distance

is above a �xed threshold, the cluster is split into two parts, each one of

which contains the points that are closer to a center than to the other.

After that, a single k-means step �xes the centers.

Option 3. Removal of the outliers If the cluster is too small, its elements

are classi�ed as outliers.

Let us �x the parameters, in order to determine how the algorithm will act.

Minimum size of big clusters If a cluster size is above this threshold, the

algorithm chooses Option 1.

Maximum size of small clusters If a cluster size is below this threshold, the

algorithm chooses Option 3.

Minimum distance that implies the splitting for detecting outliers In

Option 2, if the distance is above this threshold, the cluster is split into

two parts.

This method performs well when the clusters have di�erent features and

problems. In fact, each split step analyzes any cluster singularly, in order to �x

the errors that come from the previous step. For example, if a cluster contains

two distinct sets of points, a split step separates them.
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The main lack of this method is the necessity for a proper parameter choice.

In fact, it is not easy to determine whether a cluster is big or small, or when

two points are distant enough to separate them.

After the split procedure, the algorithm performs the same merge procedure

as the basic version.

4.3.1 Performances

The algorithm has been tested through in-memory devices in order to evaluate

its e�ectiveness. The testing datasets are the same as in Subsection 4.2.3, but

the noise rates have been slightly increased, due to an improvement in the

performances.

Mouse dataset Noise rate: 0.05. The results are shown in Figure 4.32.

Semicircle dataset Noise rate: 0.1. The results are shown in Figure 4.33.

Dartboard dataset Noise rate: 0.1. The results are shown in Figure 4.34.

Spiral dataset Noise rate: 0.1. The results are shown in Figure 4.35.

Similarly to the other tests, the centers that came from the split step are rep-

resented by black and round-shaped points and the �nal clusters are identi�ed

by di�erent colors. As can be seen, the results are satisfactory in all situations.
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Figure 4.32: Mouse dataset Figure 4.33: Semicircle dataset

Figure 4.34: Dartboard dataset Figure 4.35: Spiral dataset

Figure 4.36: Same-step Split-merge clustering testing.
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Chapter 5

Clustering algorithms in

MapReduce

In order to perform clustering on Big Data, it is necessary to adapt the clustering

methods to the new environment. It means that all the algorithms should be

developed in MapReduce, to obtain their scalability on distributed data.

Fortunately, some cluster algorithms are parallelizable, so it is possible to

translate them in MapReduce terms. Furthermore, some not scalable algorithm

can be slightly modi�ed, in order to have a scalable implementation. Others,

instead, cannot be parallelized at all.

This chapter describes the MapReduce implementation of the algorithms. As

regards the software, the algorithms have been implemented using R-Hadoop

connector rmr2 and the code is reported in Appendix A.2 and in Appendix A.4.

5.1 K-means in MapReduce

The K-means procedure consists in the iteration of the following 2 steps.

Assignment step For any object, compute the distances between the centers

and it. Then, assign it to the center that achieves the minimum of all

computed distances.

Center update For any cluster, compute the mean of all objects assigned to

it.

65
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The assignment step consists in an independent operation for any object, so

the process is easily scalable. If any center is associated with a di�erent key,

this step is a match of any object with the nearest center key, so it consists in

a Map. As regards the update of the centers, any operation is about a single

cluster. It means that it a�ects all the objects having the same key, so it is a

Reduce operation.

Furthermore, the Reduce step consists in the computation of a mean that

is a scalable operation. The addition of Combine step is not possible because

"mean" operation is not associative, unless it is a weighted mean that is both

commutative and associative. In order to do that, it is su�cient to associate

any object with an extra feature, i.e. a value that represents the weight. During

the Map step, the value of the weight of any object is set to �1", as it expresses

the fact that it is just one object. Then, during the Combine step, the worker

computes a mean and associates any result with a weight equal to the number

of objects with the same label within the chunk. It means that the elements

of the �1" column are simply summed up. Finally, also Reduce consists in a

weighted mean.

Since all the weights are equal to �1", the Combine step consists in an un-

weighted mean and the �1" column is totally useless. For this reason, a more

e�cient alternative consists in adding the weight column only after the Combine

step, by counting the number of objects.

In detail, the MapReduce algorithm consists in the following steps.

MapReduce 1. K-means step.

Map The worker computes the distances between any object and the centers.

Then, it labels the object by associating the key that corresponds to the

center which distance is lower. The value consists in the list of the features

of the object.

Combine For any key, the worker computes the mean of any feature of the

objects labeled with it and it computes a weight as the count of objects.

The key is the same and the value is the mean associated with the weight.

Reduce For any key, the master computes the weighted mean of any feature

from the weights. If the Combine step is absent, instead, the master com-

putes an unweighted mean.

The output consists in the list of the centers.
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5.2 K-means initialization in MapReduce

The parallelization of any K-means step is rather easy. However, as mentioned

before, the algorithm requires a proper initialization. The challenge of this

section is to develop the initialization algorithms in the MapReduce paradigm.

5.2.1 Random choices

As regards random partitioning initialization, it is similar to the K-means step,

so it is parallelizable through MapReduce. In this case, the Map step consists

in the choice of a random key for any object, in order to assign it to the cor-

responding cluster. Then, the Combine and Reduce steps are the same as the

ones of K-means.

MapReduce 2. Random-partitioning K-means initialization.

Map The worker maps any object with a key that is a random integer between

1 and the �xed number of seeds.

Combine For any key, the worker computes the mean of any feature of the

objects labeled with it and it computes the weight, i.e. the count of the

objects. The value consists in the mean, associated with the weight.

Reduce For any key, the master computes a weighted mean. If the algorithm

is Combine-less, the mean is unweighted.

The output consists in the seeds list.

The initialization based on random sampling is rather easy as well. As a

matter of fact, it is su�cient to split the objects in random chunks and to

sample a single object from each one of them. Splitting takes place during

the Map step, while sampling is during the Combine and Reduce steps. The

implementation is the following.

MapReduce 3. Random-sampling K-means initialization.

Map The worker maps any object with a key that is a random integer number

between 1 and the number of seeds.

Combine For any key, the worker samples a random object.

Reduce For any key, the master samples a random object.
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The output consists in the seeds list.

Using this MapReduce algorithm, the assignment to the keys is totally ran-

dom. Hence, it is possible that one or more keys do not have any point associated

with them. In this way, the number of seeds is lower than the �xed one, as some

keys have not any object associated with them. Fortunately, that situation is

much unlikely if the volume of the dataset is wide. Furthermore, random sam-

pling is mostly used by repeating it more than once, in order to obtain di�erent

results to compare, so it is not that a problem if the number of seeds is less than

the desired one.

5.2.2 K-means++ sampling

Unfortunately, K-means++ is not completely scalable. In fact, sampling is done

once at a time and each step depends on the previous ones. It means that any

sampling step needs at least an independent MapReduce job. Hence, it is fast

only if the desired number of seeds is low.

The initial seed comes from a random sampling that can be performed

through MapReduce 3 described before. For any step, the sampling consists

in �rst assigning sampling probabilities, then sampling according to them. As

regards the probabilities, their computation needs the sum of all distances. For-

tunately, it is su�cient to perform a separate normalization in each step.

The idea is that each object is matched with a weight, proportional to the

minimum squared distance between a center and it. Then, it will be sampled

by a weight-proportional probability.

MapReduce 4. K-means ++ single sampling.

Map The worker computes the squared distances between any object and the

seeds. Then, the value consists in the object features, with the addition of

a column containing the minimum squared distance. Since all objects will

take part in the same sampling, the key is the same for all.

Combine The worker normalizes the weights by dividing each one of them by

their sum. Then, it samples an object from these normalized weights. The

value is composed of the object features and a new weight, given by the

sum of all the weights.

Reduce The master divides any weight by the sum of all of them. Then, it

samples a single object from the normalized weights. This is the value of
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the new chosen seeds.

The output consists in the sampled object.

Instead of parallelizing the sampling of a single point, it is possible to use a

scalable version of the K-means++ [15] that consists in the following two steps.

1. Sampling of more points than necessary Sample KS ≥ K points that

are as much as possible distant one from each other.

2. Seeds choice Cluster the sampled points into K cluster. Then, �x the

seeds as the centers of the clusters.

Before describing the algorithm, we specify the notations. Let X be the

dataset and let C be the set of already sampled seeds. There are a �xed param-

eter l that is proportional to the desired number of centers and the following

two functions.

The minimum distance between any object and C

d : X → R

d(x) = min
c∈C
‖x− c‖2, ∀x ∈ X

The sum of the above minimum square distances

φX(C) =
∑
x∈X

d2(y, C) =
∑
x∈X

min
c∈C
‖y − c‖2

The algorithm consists in the following steps.

1. Random sampling of a single point C = {sample(X)}

2. Computation of the cost ψ ψ = φx(C)

3. Sampling of the other points For O(log(ψ)) times, sample any point in-

dependently with probability px = l ∗ d2(x,C)/φX(C)

4. Computation of the weights For any sampled point x ∈ C, compute the

weight ωx as the sum of points that are closer to x than to any other

sampled point.

5. Clustering of the sample Cluster the weighted sampled points into K

clusters.
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6. Seeds choice Compute the seeds as the weighted centers of the clusters.

The �rst sampling is easy parallelizable through MapReduce, as shown in

Subsection 5.2.1, and the computation of the cost ψ requires �rst to compute a

value for any point, then to sum up the values. Hence, it is easily parallelizable

too, as shown in MapReduce 5.

MapReduce 5. K-means++ Ψ computation.

Map The worker computes the square distances between any object and the

seeds. Then, the value is the smallest squared distance and the key is the

same for all the objects.

Combine The worker sums up all the chunk values.

Reduce The master sums up all the values.

The output consists in the value of ψ.

As regards sampling, the Map step consists in a computation of probabilities

and in a choice of sampling any object or not, while the Reduce step is an

ensemble of sampled points. The procedure in shown in MapReduce 6.

MapReduce 6. K-means++ sampling.

Map For any object, the worker computes its sampling probability and it gen-

erates a random number between 0 and 1. If the number is less than the

probability, the worker uses it as the value of an output. Otherwise, the

object is ignored. As regards the key, it is the same for all outputs.

Combine The worker generates a matrix with all objects.

Reduce The master binds the matrices.

The output consists in the list of sampled objects.

Next, the seeds must be chosen from the set of sampled points. Fortunately,

their number is small, so the algorithm can run in-memory. This algorithm can

be K-means, hierarchical clustering, or another one.
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5.2.3 Kau�man approach

As regards Kau�man sampling, there is a bottleneck. In fact, if there are n

objects, the computation of the indexes b(x, y) implies the storage of O(n2)

values. Clearly the computational cost is too high and the required storage too

wide. For example, if there are a million objects, it is necessary to compute a

trillion values and to store them.

5.3 Split-merge in MapReduce

In this section, we disclose our MapReduce implementation of the Split-merge

algorithm. The following list describes the steps and explains how they are

performed. As regards the implementation of any single MapReduce step, it is

described afterwards.

First split The initialization consists in the split of the dataset, using K-

means. As shown in Sections 5.1-5.2, the algorithm supports the MapRe-

duce implementations, with random partitioning, random sampling, or

K-means++ initialization.

Addition of the centers Performed in MapReduce, as shown in MapReduce 7.

Update of the centers Performed in MapReduce, in the same way as a K-

means step, as shown in MapReduce 1.

Removal of the outliers Performed in MapReduce, as shown in MapReduce 8.

Assignment to the centers Incorporated in the addition of the centers, as

shown in MapReduce 7.

Hierarchical clustering Due to the littleness of the set of centers, it is possi-

ble to perform this step in-memory.

Computation of �nal results The operations are performed in MapReduce,

as shown in Section 5.3.3.

The steps require to keep a list of the centers, used by the Map functions.

In addition, it is necessary to de�ne some parameters.

Minimum cluster size Any cluster which size is less than is it ignored.
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Minimum distance between clusters The algorithm adds a new object to

the list of the centers only if its distance from the center is above this

parameter.

5.3.1 Addition of the centers

The purpose of the algorithm is �rst to identify the clusters, then to select the

most peripheral element from any one of them. The steps are the following.

1. Distances computation For any object, the algorithm computes the dis-

tances between the centers and it.

2. Assignment The algorithm assigns any object to the nearest center.

3. Identi�cation of the most distant object For any cluster, the algorithm

computes the distances between its objects and the center.

4. Identi�cation of the most distant object For any cluster, the algorithm

chooses the object which distance is the highest as the new center, with

the condition that the distance is above the �xed threshold.

Steps 1 and step 2 consist in a Map procedure since the computation a�ects

any object separately. As regards steps 3 and step 4, they are about any cluster,

so they are performed during the Reduce step.

MapReduce 7. Addition of the centers.

Map The worker computes the distances between any object and the centers.

Then, it matches the distances, obtaining the index of the nearest center

that is the key. As regards the value, it consists in the object features and

in the minimum between the distances.

Combine For any key, the worker chooses the object which distance from the

center is the highest.

Reduce For any key, the master chooses the object which distance from the

center is the greatest. If the distance is above the �xed threshold, the

output consists in the object features. Otherwise, there is no output.

The output consists in the list of the new centers.
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5.3.2 Removal of the outliers

The purpose of this step is to remove from the list the centers of the small

clusters. This is the procedure.

1. Computation of the distances For any object, the algorithm computes

the distance between the center of its cluster and it.

2. Assignment The algorithm assigns any object to the nearest center.

3. Computation of the size of any cluster For any cluster, the algorithm

counts the number of assigned objects.

4. Removal of small clusters The algorithm matches the size of any cluster

with the �xed threshold and it removes the center of the cluster if its size

is below the threshold.

Similarly to the addition of the centers, the Map step includes step 1 and

step 2 while step 3 and step 4 are performed during the Reduce step.

MapReduce 8. Removal of the outliers.

Map For any object, the worker computes the distances between the centers

and it. Then, it matches the distances, obtaining the index of the nearest

center, and it uses it as the key. The value consists in the object features.

Combine For any key, the worker computes the value as the count of the objects

associated with it.

Reduce If the Combine step has been performed, the master computes the size

by adding together the values. Otherwise, in order to do that, it counts

the number of objects associated with any key. In both cases, if the size is

above the �xed threshold, the output consists in the corresponding center,

extracted from the list of the centers. Otherwise, there is no output.

The output consists in the list of the centers that has not been removed.

5.3.3 Computation of �nal results

Some possible �nal results are the size, given by the number of objects belonging

to any cluster, the mean, given by the barycenter, and the variance.

The computation of the size of any cluster is rather easy, as it only consists

in a count. Each cluster is de�ned by a list of centers, so any object is assigned
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to the cluster that owns the nearest center. The procedure for the computation

of any mean is the same.

MapReduce 9. Computation of the size of any cluster.

Map The worker computes the distances between any object and the centers

and it matches the distances, identifying the lowest. The key is the label

of the nearest center and the value is equal to �1".

Combine For any key, the worker sums up the values.

Reduce For any key, the master sums up the values.

The output consists in a list containing the sizes of the clusters.

MapReduce 10. Computation of the means of the clusters.

Map The worker computes the distances between any object and the centers

and identi�es the lowest. The key is the label of the nearest center and the

value consists in the object features.

Combine For any key, the worker computes the value as the mean associated

with the count of objects.

Reduce For any key, the master computes the weighted mean from the weights.

The output consists in the list of the barycenters of the clusters.

The computation of the variance can be performed using the list of the

barycenters. In fact, for any cluster, it is enough to add up the square distances

between its object and the barycenter of its cluster.

MapReduce 11. Computation of the variance of any cluster.

Map The worker computes the distances between any object and the centers.

The key is the label of the cluster associated with the nearest center and the

value is equal to the squared distance between the object and the barycenter

of the cluster.

Combine For any key, the worker adds up the values and counts the objects.

The value consists in the sum and in the counts.

Reduce For any key, the master adds up the values and divides them by the

sum of the counts (minus one).

The output consists in the list of the variances of the clusters.
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5.4 Split-merge Same-step in MapReduce

Same-step variation of Split-merge algorithm can be implemented in MapRe-

duce, although it requires the use of more computer memory. In fact, since the

algorithm needs to keep the labeling of data, it is necessary to copy the entire

dataset during each step. Other algorithms need only to store the dataset dur-

ing the Reduce step, so the total memory requirement is twice its size (six times,

considering that HDFS replicates data three times). In this case, instead, the

dataset must be stored in another place too, so it is necessary to use three times

the dataset size (nine times, due to HDFS replication).

This section shows a MapReduce implementation of the algorithm. As re-

gards the initialization, it simply consists in mapping any data with the key �1",

as shown in MapReduce 12. The required parameters are the following.

Centers distance threshold If two centers are too near, the cluster is not

split. For this purpose, the split requires that the distance between the

identi�ed centers overcomes this threshold.

First cluster size threshold If a cluster size is below this threshold, all its

objects are classi�ed as �outliers", so they are removed from the dataset.

Second cluster size threshold, above the �rst one A cluster that is too

big for being classi�ed as �outlier cluster" and too small to overcome this

threshold will is the object of an outliers detection. In order to do that,

the algorithm splits it into two parts that are a centrally-located one and

a peripheral one.

Number of iterations The number of times the algorithm iterates the split

procedure.

After the initialization, each step consists in the repeating of somMapReduce

jobs, introduced in the following list and described in detail afterwards.

Computation of the size of any cluster Count of the number of objects

belonging to any cluster. The implementation is shown in MapReduce 13.

Removal of the outliers Copy of all data, except the ones that belong to

small clusters, i.e. to that clusters which sizes are below the �rst threshold.

The implementation is shown in MapReduce 14.

Centers computation Identi�cation of two new centers for any cluster. The

implementation is shown in MapReduce 15.
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Update of the centers Execution of a single K-means step within any cluster,

in order to update the new centers. The implementation is shown in

MapReduce 16.

Near centers removal In-memory computation of the distance between any

couple of new centers belonging to the same cluster. If it is below the

�xed threshold, the cluster will not be split. For this purpose, one of the

two centers is removed from the list.

Assignment For any cluster, if there are two new centers, any object is as-

signed to the nearest. The implementation is shown in MapReduce 17

As regards the merge, it is the same as in the other variant of Split-merge

(see Section 5.3).

5.4.1 Initialization

The purpose of this step is to prepare the dataset for the processing. At the

beginning, all the objects belong to the same cluster, so they are mapped with

the same key.

MapReduce 12. Map with �1" key.

Map The algorithm associates any object with �1" key.

Combine The output is the same as the input.

Reduce The output is the same as the input.

The output is the list of data, associated with �1" key each.

5.4.2 Computation of the sizes of the clusters

The purpose of this step is to compute the number of objects belonging to each

cluster.

MapReduce 13. Computation of the sizes of the clusters.

Map The output is the same as the input since objects are already mapped with

the right key.

Combine For any key, computation of the number of the objects of the chunk

labeled with it. The value is the count and the key is the same.
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Reduce For any key, sum up the values.

The output is a list containing the sizes of the clusters.

5.4.3 Removal of the outliers

The purpose of this step is to create a new dataset that does not contain the

objects classi�ed as �outliers". A quicker variant performs the detection during

the assignment stage after the centers computation, but it is easier to describe

the procedure in this way since it follows the logic �ow of the overall algorithm.

MapReduce 14. Removal of the outliers.

Map Any object is given as an output only if its key does not belong to a cluster

which size is below the �rst �xed threshold. The key and the value are the

same.

Combine Input and output are the same.

Reduce Input and output are the same.

The output consists in the same dataset as the input, without the detected

outliers.

5.4.4 Computation of the centers

The purpose of this step is to compute two new centers for each cluster. The

computation depends on the cluster size, so each step of the MapReduce algo-

rithm must check the dimensions of the cluster associated with the key. Fur-

thermore, since the centers are two, there are two di�erent outputs for each key.

In order to distinguish them, one is mapped with a di�erent key that is equal

to the cluster key, plus the number of centers. In this way, it is easy to match

the new key with the old one and there are no overlaps between the keys.

MapReduce 15. Centers computation.

Map For any object, there are two possibilities.

Medium-sized cluster If the key is matched with a cluster which size

is below the second �xed threshold, the value of the output consists

in the features of the object and in the distance between the cluster

center and it. As regards the key, it is the same.
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Big cluster Otherwise, the value consists in the object features and in a

weight set to �1", in order to have the same length as the output of a

medium-sized cluster. The key is randomly chosen from {k, k+kmax},
where k is the key of the center and kmax is the maximum key before

this step.

Combine For any object, there are two possibilities.

Medium-sized cluster If the key is matched with a cluster which size

is below the second threshold, the output consists in two objects. The

�rst value is the object that is the nearest to the center of the cluster

associated with the distance between the center and it, with the same

key. The other value consists in a mean, associated with the count of

objects, with a key that is the old key plus the number of centers.

Big cluster Otherwise, the value consists in the mean of the features of

the objects and in the count of the number of objects that will be used

as a weight. As regards the key, it is the same.

Reduce For any object, there are two possibilities.

Medium-sized cluster If the key is matched with a cluster which size

is below the second threshold, the value consists in the object that is

the nearest to the cluster center.

Big cluster If the key corresponds to a big cluster, the value consists in

the mean and in the count of the number of objects, used as a weight.

New cluster If the key is a new one, i.e. it is above the previous maxi-

mum key, the value is a weighted mean.

The output is the list of all the new centers.

5.4.5 Update of the centers

This step performs a single step of K-means clustering within each past cluster.

The match of couples of centers is rather easy since the di�erence between their

keys is equal to the past number of centers.

MapReduce 16. Update of the centers.

Map Computation of the distances between any object and the new centers

associated with its cluster. The key is the one matched with the nearest

center and the value is the same.
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Combine The value consists in the mean and in the count of the objects.

Reduce The value consists in a weighted mean from the counts.

The output is the updated list of the centers.

5.4.6 Assignment

The purpose of this step is to assign any object to the nearest center between

the ones that come from its past cluster.

MapReduce 17. Assignment to the centers.

Map Computation of the distances between any object and the centers corre-

sponding to its cluster. The key corresponds to the nearest center one.

Combine Input and output are the same.

Reduce Input and output are the same.

The output is the dataset, with each object mapped with the key of the nearest

cluster.



80 CHAPTER 5. CLUSTERING ALGORITHMS IN MAPREDUCE



Chapter 6

Testing of the algorithms

In this chapter we describe the testing of the algorithms performances.

At the beginning, the work has consisted in a Proof of concept required by

the company and Section 6.1 describes the work and some results. Neverthe-

less, they are not enough for the evaluation of the algorithms, for the following

reasons.

Algorithm Data are clustered through K-means only, so the other algorithms

are not handled at all.

Software The analysis has been conducted through Mahout, that is a library

that supplies some MapReduce algorithms, such as K-means. On the other

hand, the algorithms described in Chapter 5 are implemented through R,

linked with Hadoop.

Privacy policies It is not allowed to show the results.

Since the Proof on concept is not enough, the algorithms have been tested

on some simulated datasets, as described in Section 6.3. The results are about

the computational cost of all the algorithms and they are shown in Section 6.4.

6.1 Real data analysis brief overview

This section brie�y describes the analysis on the real customer base data. The

work is about a project for a customer of the consulting company where the

internship took part. In detail, the data are about the customer base of a big

retail chain.
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As regards the thesis, the main purpose of this section is to show the per-

formances of K-means since it is the only testing that uses a rather powerful

cluster of computers. In addition, this section describes the overall analysis

process, in order to show the use of the part of the Hadoop ecosystem described

in Section 2.3.

At the beginning, the dataset consists in a structured set of tables, contained

in a data warehouse. The main information is a fact table, i.e the set of tickets.

In addition, there are some lookup tables that contain some information about

the customers and the products.

Since the target of the analysis is the customer base, the �rst step consists

in building a data mart, i.e. a structured set of information about each cus-

tomer. In detail, each one of them is described by some KPI (Key Performance

Indicators), i.e. numeric features that pro�le the customers on the base of their

purchase habits. The KPI computation is based upon the aggregation of the

tables. In detail, the chosen fact table consists in the tickets that belong to a

chosen period that in this case lasts for three months. As regards the lookup ta-

bles, they are the ones related to the fact table. The analysis uses the following

34 KPI.

Monetary The total of expenses.

Frequency The number of ticket markets.

Departments parts The percentage of money spent in items belonging to

each one of the 30 departments.

Promo part The percentage of money spent in promotional-o�erings items.

Branded part The percentage of money spent in retail-store-branded items.

For example, the computation of each customer monetary consists in the

total amount of all his/her tickets imports in the chosen period. In order to

compute the KPI, it is necessary to aggregate the ticket table with the one that

contains the cost af any item. As regards the dataset size, there are about 1.5

million customers and the tables have a total size of about 180 GB.

The analysis has been conducted through a cloud cluster of 5 computers,

with each

RAM: 16 GB;

CPU: quad-core with 2.8 Ghz;
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hard-disk: 500 GB.

The computation is performed through 4 computers since the other is the master

and it only coordinates the jobs.

The �rst stage of the data process consists in the import of the DWH data

into the Hadoop environment through Sqoop. In order to allow a further process,

data are stored in Hive tables. The import takes about 10 hours, but it is not

a signi�cant information since an eventual weekly update is much quicker.

The aggregation is performed through 5 Hive scripts, written in HQL. The

output of this stage is a data mart that consists in a 5 GB table containing the

34 KPI of all customers. The aggregation takes about 2 hours.

The segmentation of the customer base is conducted using K-means clus-

tering, performed through Mahout libraries. In fact, Mahout includes some

MapReduce algorithms, such as K-means. The desired number of clusters is set

to 10 and it is the only parameter. As regards the required time, it is about 15

minutes.

6.2 Algorithms testing targets

The purpose of this testing is to give an estimation of the performances of all

the clustering algorithms described in Chapter 5. The subject of the analysis

is the computational cost that depends both on the dataset size and on the

resources, i.e. the calculating capacity of the cluster of computers.

Any described clustering algorithm consists in a sequence of MapReduce

jobs, with the addition of some quick in-memory operations. Since the most of

any computation consists in some MapReduce steps, the total cost, with a good

approximation, is the sum of their costs. Fortunately, it is possible to have an

evaluation of any step. As a matter of fact, it depends only on the dataset size

and on the computational power. As regards the overall process, its evaluation

is more complicated since the required number of steps depends also on the

shape of the dataset.

Since the available cluster of computers is not much powerful, the main pur-

pose of the testing is to evaluate how the cost varies between a MapReduce and

another. The cluster size is the same for all the testings, so the computational

cost depends only on the algorithm and on the dataset size.

The �rst part of the testing consists in the comparison between di�erent

MapReduce algorithms. An important fact is that there are two main classes of
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them, on the base of the Reduce features. The �rst class is about the algorithms

that require an expensive Reduce step, such as the computation of a mean, e.g.

as regards the K-means update of the centers. The other class contains the

algorithms which Reduce operation is quick, such as a count or a sampling, e.g.

in the case of K-means random sampling initialization. The di�erence is that

in the �rst case the cost of both Map and Reduce step grows as the volume

increases, while in the second case the increment a�ects mainly the Map step.

The comparison is based on the run of all the algorithms of any same class on

the same small-sized dataset and the output is a list of the relative costs.

The second stage of the testing is about the variation of the performances as

the size grows. According to the results of the previous testing, it is enough to

consider only a single MapReduce algorithm of any class. In fact, starting from

that, it is easy to evaluate the performances of the others, using the results of

the �rst step.

The Map step performs the same operations over all data, so its cost is

proportional to the dataset size. The Reduce cost behavior, instead, is more

complicated since it is an operation between all the objects with the same key.

In the case of the second class of MapReduce, it is about the same as dataset

grows. On the other hand, if the algorithm belongs to the �rst class, it is

proportional to the size too. In addition to that, the overall cost is increased

by some Hadoop needs, such as the management of the jobs and the access to

the data. For these reason, there is likely an extra cost. In conclusion, the cost

growth is not necessarily linear.

Once the experiments are done, it is possible to have an estimation of the

total cost of any algorithm, based only on the number of steps.

6.3 Testing settings

6.3.1 Simulated datasets

In the chosen dataset, we have 5 sets of 10-dimensional data. Any set s is

identi�ed by its center cs, chosen at random.

cs ∼ N(0, σ1I10), ∀s = 1, . . . 5

where I10 is the 10-dimensional identity matrix.
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Any set s contains ns data that are normal-distributed around the center.

xis ∼ N(cs, σ2I10), ∀i = 1, . . . ns

with σ2 << σ1.

There are n = n1 + · · · + n5 objects that can belong each to a cluster with

probability proportional to 10, 100, 1, 50, and 20, respectively, so the sizes ns are

di�erent. As regards n, it varies on a wide range and it depends on the testing.

In order to simulate the datasets, an R script iteratively generates small chunks

and appends them to a csv �le. The �le size (in Megabytes) is proportional to

n:

size = 1.7× 10−4 × n

6.3.2 Computers clusters settings

The execution of algorithms is conducted through an Amazon cloud cluster of

computers. Each node is an Amazon small instance and it has the following

setup.

RAM 1.7 GB.

CPU 1 virtual core with 1 EC2 Compute Unit (1 GHz).

As regards the storage, it is variable, according to the necessities.

Since the computational power of the cluster is not much high, the maximum

processable volume of data is rather low. The problem is that HDFS chunks

have a default size of 64 MB that overcomes the size of the used dataset, so the

algorithms would not be parallelized. For that reason, the HDFS chunk size has

been set to lower values, in order to always have at least 4 chunks of data. In

this way, each one of the four worker nodes has at least a chunk to process.

6.3.3 Classes of MapReduce algorithms

The �rst class of MapReduce algorithms is about the ones that have an expen-

sive, although scalable, Reduce, such as a mean or a sum. The algorithms are

in the following list.

K-means random partitioning initialization Reduce is a mean.

K-means step Reduce is a mean.
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K-means++ single sampling Reduce is a weighted sampling.

K-means++ psi computation Reduce is a sum.

Split-merge addition of the centers Reduce is a maximum.

Split-merge update of the centers Reduce is a mean.

One-step Split-merge addition of the centers Reduce is a mean.

One-step Split-merge update of the centers Reduce is a mean.

The second class of MapReduce algorithms is about the algorithms which

Reduce does not become more expensive as the dataset size increases. For

instance, it can be a sampling, or a carrying of data, i.e. an absence of Reduce.

The algorithms are in the following list.

K-means random sampling initialization Reduce is a sampling.

K-means++ multiple sampling Reduce is a bind between matrices.

Split-merge removal of the outliers Reduce does not perform any opera-

tion.

One-step Split-merge size Reduce is a count.

One-step Split-merge outliers Reduce does not perform any operation.

One-step Split-merge assignment Reduce does not perform any operation.

6.4 Results

6.4.1 Single steps comparison

The comparison between the single steps has been conducted on a small-sized

dataset, with 2 × 104 data and a size of 3.4 MB. As regards the HDFS blocks

size, it is set to 1 MB. The R code used to assess the required time is shown in

Appendix B.2. The following table illustrates the results.

Algorithm Cost (sec) Class

K-means random partitioning initialization 92.855 1

K-means step 401.362 1

K-means++ single sampling 415.458 1
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K-means++ psi computation 267.873 1

Split-merge addition of the centers 389.678 1

Split-merge update of the centers 392.568 1

One-step Split-merge addition of the centers 90.989 1

One-step Split-merge update of the centers 91.767 1

K-means random sampling initialization 79.926 2

K-means++ multiple sampling 273.939 2

Split-merge Removal of the outliers 388.017 2

One-step Split-merge size 89.242 2

One-step Split-merge outliers 88.992 2

One-step Split-merge assignment 105.532 2

The variation of the computational cost is tested only on K-means step

and K-means random sampling initialization, so the important information is

the relative cost, i.e. the rate between the cost of any step and of the chosen

algorithm of the class. Since the data about the required time are not exact,

the relative costs are approximate. Let us call t1 the cost of a K-means step and

t2 the cost of a K-means random sampling initialization. The following table

shows the relative costs of all MapReduce jobs.

Algorithm Cost (sec)

K-means partitioning initialization 1/3 t1

K-means step 1 t1

K-means++ single sampling 1 t1

K-means++ psi computation 2/3 t1

Split-merge addition of the centers 1 t1

Split-merge update of the centers 1 t1

One-step Split-merge addition of the centers1/3 t1

One-step Split-merge update of the centers1/3 t1

K-means random sampling initialization 1 t2

K-means++ multiple sampling 10/3 t2

Split-merge removal of the outliers 5 t2

One-step Split-merge size 1 t2

One-step Split-merge outliers 1 t2

One-step Split-merge assignment 4/3 t2
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6.4.2 Computational cost of two single steps

The range of the dataset sizes is between 2 × 104 and 20 × 104. The reason is

that the cost is more than an hour if the size overcomes the threshold. The step

is of 2× 104 and it is constant, in order to have a good estimation of the trend.

As regards the dataset chunk size, it is chosen in such a way that there are

always 4 blocks since there are 4 worker nodes. In fact, the volume is too small

for needing the use of more blocks. The following table reports the features of

the datasets.

Number of data File size (MB) Block size (MB)

2.00E+4 3.4 1

4.00E+4 6.8 2

6.00E+4 10.2 3

8.00E+4 13.6 4

1.00E+5 17 5

1.20E+5 20.4 6

1.40E+5 23.8 7

1.60E+5 27.2 8

1.80E+5 30.6 9

2.00E+5 34 10

As shown in Figure 6.1, the cost of a K-means step grows linearly with the

increment of the volume. As regards the slope, it is about 0.0158 sec/datum.

Conversely, as shown in Figure 6.2, the growth of the cost of K-means random

sampling initialization is more problematic. In fact, the growth is slower and is

less predictable. We can say that the cost is constant and it is about 100 sec.

Fortunately, these performances are about a small-sized cluster, so they are

not explanatory about the real ones. Nevertheless, they may help in the calcu-

lation of the cost of a bigger cluster.

6.4.3 Computational cost of the overall algorithms

Before estimating the cost of the algorithms, let us give a list of the required

MapReduce steps. Let S be the number of steps and K the desired number of

centers. The steps and the cost t of any complete clustering algorithm are in

the following list.
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Figure 6.1: Cost growth of a K-means step.
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Figure 6.2: Cost growth of a K-means random sampling initialization.
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means, is not included.
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Chapter 7

Conclusions

This chapter summarizes and evaluates the overall work. Section 7.1 discusses

the results, whereas Section 7.2 concerns some possible continuations of the

work.

7.1 Thesis overview

In this thesis we have presented some techniques that allow the handle of big

volumes of data through cluster analysis. Since all the methods are based on

MapReduce, the core of the work is the development of this kind of algorithms.

As regard K-means, there is nothing new in its MapReduce implementation.

As a matter of fact, there are several tools that provide it, since it is one of the

most popular clustering algorithms. By the way, its re-implementation through

R-Hadoop has allowed us to gain familiarity with MapReduce. As regards K-

means initialization, the tools we know provide only the random sampling and

the random partitioning. Scalable K-means++, instead, is described in [15].

However, since we have not found any software that provides it, its implemen-

tation was necessary.

The innovative part of this work consists in the development of new Hybrid

clustering techniques. In fact, they combine a slow handle of big volumes of data

with a fast in-memory process. The idea is to use the job parallelization only

when it is needed, in order to have more e�ective results. The validity of this

kind of solution is con�rmed by the existence of similar algorithms in literature

(see [16]). By the way, our opinion is that these hybrid clustering techniques
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may still be signi�cantly improved and that the main lack is a criterion for the

choice of the parameters. In conclusion, we think that they could potentially

be the starting point for other algorithms.

As regards the techniques applications, there are di�erent �elds, such as

Customer Relationship Management and fraud detection. The algorithms are

scalable, so there is no limit in the maximum volume of processable data, despite

the maximum amount of available resources. Furthermore, the use of a big

cluster of computers allows a very quick process, so the methods can provide

quick answers. As regards the cost, the use of Hadoop keeps it rather low, since

the hardware does not have any particular requirements. For all these reasons,

the techniques �t well some Big Data problems.

7.2 Future developments

As mentioned in Section 1.1, Big Data is about the problems a�ected by the

�Three V", i.e. volume, velocity, and variety. Unfortunately, this paper deals

mainly with the volume problem and only partly with the velocity. As regards

the variety, it does not take part at all in the work, despite we consider it as the

more fascinating challenge.

Some examples of unstructured data are lists, graphs, and texts. Since the

starting point of cluster analysis is the distance between two objects, �rst it is

necessary to de�ne how to compute it. As regards lists, the distance can be a

value that is inversely proportional to the number of elements in common. Also

the case of texts is similar, since it is possible to convert a text in a wordcount

list. As regards graphs with weighted edges, the distance between two objects

is inversely proportional to the weight of the edge that links them.

Once the distance is de�ned, it is possible to perform hierarchical cluster-

ing since the algorithms are only based upon it. By the way, this solution is

not scalable over big volumes of data, so it is necessary to use centroid-based

clustering. However, in this way, the algorithm requires the computation of

centroids, that is impossible in the case of some kinds of unstructured data. For

this purpose, there are some alternatives. For example, in the case of graphs, it

is possible to de�ne a �generalized median graph�[17], instead of a barycenter.

In conclusion, this paper deals with only a small part of Big Data cluster

analysis and there is a multitude of possible continuations.



Appendix A

R-Hadoop Codes

This appendix shows the codes used to implement the MapReduce algorithms.

The used software is R, connected with Hadoop through �rmr2" package, intro-

duced in Subsection 2.4.1. Each clustering algorithm recalls some MapReduce

subroutines, that are functions that follow the model described in Section A.1.

Since the di�erence between two MapReduce jobs a�ects only the Map and

Reduce function, the section reports them only.

A.1 Mapreduce functions

This is the model for any MapReduce job.

mrStep = function(

pathin,

pathout,

input.format = 'native',

output.format = 'native'

){

cat('\n\nName of the step\n\n')

if(hdfs.exists(pathout)) hdfs.rm(pathout)

mapFunction = function(k, v) {

# computation of key and val

keyval(key, val)

}
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comFunction = function(k, v) {

# computation of key and val

keyval(key, val)

}

redFunction = function(k, v) {

# computation of key and val

keyval(key, val)

}

mapreduce(

input = pathin,

output = pathout,

input.format = input.format,

output.format = output.format,

map = mapFunction,

combine = comFunction,

reduce = redFunction

)

}

A.2 K-means

A.2.1 K-means main

mrKmeans = function(

pathin,

pathout,

parKmeans,

clustersSize = T

){

cat('\n\nKMEANS',

'\nnumber of iterations: ', parKmeans$nIter, '\n\n')

if(is.null(parKmeans$init))

parKmeans$init = 'sample'
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# 1) INITIALIZATION

if(is.null(parKmeans$centers)){

if(is.null(parKmeans$nCenters)){

cat('\nWARINING: number of centers set to default (2)')

parKmeans$nCenters = 2

}

cat('\nCENTERS INITIALIZATION\n')

if(parKmeans$init == 'random' | parKmeans$init == 1)

mrKmeansInitRandom(pathin, pathout)

else if(parKmeans$init == 'sample' | parKmeans$init == 2)

mrKmeansInitSample(pathin, pathout)

else if(parKmeans$init == 'kmeans++ scalable' | parKmeans$init == 4)

mrKmeansppScalable(pathin, pathout, parKmeans=parKmeans, nIter=2)

else if(parKmeans$init == 'kmeans++ one step' | parKmeans$init == 5)

mrKmeanspp(pathin, pathout, parKmeans)

else{

cat('\nERROR: no initialization method')

return()

}

if(is.null(parKmeans$centers)){

centers = from.dfs(pathout)$val

centers = matrixOrder(centers)

colnames(centers) = paste('V', 1:dim(centers)[2], sep = '')

parKmeans$centers = centers

cat('\ncenters:\n')

print(centers)

}

}

else{

cat('\ncenters are already initialized')

}

parKmeans$centersList = list(centers0=parKmeans$centers)

# 2) ITERATIVE UPDATE

for(i in 1:parKmeans$nIter){
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cat('\nK MEANS ITERATION', i)

mrKmeansStep(pathin, pathout)

output = from.dfs(pathout)$val

centers = matrixOrder(output)

colnames(centers) = paste('V', 1:dim(centers)[2], sep = '')

if(dim(centers)[1] == dim(parKmeans$centers)[1])

if(prod(centers == parKmeans$centers)){

cat('\nsame centers as the previous step!',

'\nnew centers:\n')

print(centers)

cat('\nold centers:\n')

print(parKmeans$centers)

mrKmClusterSize(pathin, pathout)

if(clustersSize)

parKmeans$clustersSize = from.dfs(pathout)$val

return(parKmeans$centers)

}else

cat('\ncenters changed')

parKmeans$centers = centers

parKmeans$centersList[[paste('centers',i,sep='')]] = centers

cat('\ncenters:\n')

print(centers)

}

mrKmClusterSize(pathin, pathout)

if(clustersSize)

parKmeans$clustersSize = from.dfs(pathout)$val

parKmeans$centers

}

A.2.2 K-means parameters initialization

mrParKmeans = function(

nCenters=NULL,

centers=NULL,
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distFun=NULL

){

print('# K-means parameters initialization')

if(is.null(distFun))

distFun = function(centers, data){

# warning: it is the square of the distance!

if(is.null(dim(centers))) {

distances = array(NA, c(1, dim(data)[1]))

for(j in 1:length(distances))

distances[1, j] = sum((centers - data[j, ]) ^ 2)

return(distances)

}

if(dim(centers)[2] == 1) centers = t(centers)

distances = array(NA, c(dim(centers)[1], dim(data)[1]))

for(i in 1:dim(centers)[1])

for(j in 1:dim(data)[1])

distances[i, j] = sum((centers[i, ] - data[j, ]) ^ 2)

return(distances)

}

parList = new.env(parent=globalenv())

class(parList) = 'pointer'

parList$nCenters = nCenters

parList$centers = centers

parList$distFun = distFun

parList

}

A.2.3 K-means step

mrKmeansStep

mapFunction = function(k, v) {

distances = parKmeans$distFun(parKmeans$centers, v)

key = as.matrix(max.col(-t(distances)))

keyval(key, v)

}

redFunction = function(k, v){
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val = t(as.matrix(colMeans(v)))

colnames(val) = paste('V', 1:dim(val)[2], sep = '')

keyval(k, val)

}

A.2.4 K-means random split initialization

mrKmeansInitRandom

mapFunction = function(k, v) {

key = as.matrix(sample(1:parKmeans$nCenters, nrow(v), replace=T))

keyval(key, v)

}

redFunction = function(k, v){

val = t(as.matrix(colMeans(v)))

colnames(val) = paste('V', 1:dim(val)[2], sep = '')

keyval(k, val)

}

A.2.5 K-means random sample initialization

mrKmeansInitSample

mapFunction = function(k, v) {

key = as.matrix(sample(1:parKmeans$nCenters, nrow(v), replace=T))

keyval(key, rbind(v))

}

redFunction = function(k, v){

sampledId = sample(1:dim(v)[1], 1)

val = rbind(v[sampledId, ])

# key = as.matrix(k[1])

key = 1

keyval(k, val)

}
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A.2.6 K-means++ initialization

K-means++ initialization main

mrKmeanspp = function(

pathin,

pathout,

parKmeans

){

cat('\n\nKMEANS++ (NORMAL)\n\n')

for(i in 1:parKmeans$nCenters){

cat('\nKmeans++ iteration', i, '\n')

mrKmeansppStep(pathin, pathout)

newCenter = from.dfs(pathout)$val

parKmeans$centers = rbind(parKmeans$centers, newCenter)

colnames(parKmeans$centers) = paste('V', 1:dim(parKmeans$centers)[2], sep='')

rownames(parKmeans$centers) = paste('center', 1:dim(parKmeans$centers)[1], sep='')

cat('\ncenters:\n')

print(parKmeans$centers)

}

cat('\n kmeanspp end \nsampled points:\n')

return(parKmeans$centers)

}

K-means++ step

mrKmeanspp = function(

pathin,

pathout,

parKmeans

){

cat('\n\nKMEANS++ (NORMAL)\n\n')

for(i in 1:parKmeans$nCenters){

cat('\nKmeans++ iteration', i, '\n')

mrKmeansppStep(pathin, pathout)

newCenter = from.dfs(pathout)$val

parKmeans$centers = rbind(parKmeans$centers, newCenter)

colnames(parKmeans$centers) = paste('V', 1:dim(parKmeans$centers)[2], sep='')
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rownames(parKmeans$centers) = paste('center', 1:dim(parKmeans$centers)[1], sep='')

cat('\ncenters:\n')

print(parKmeans$centers)

}

cat('\n kmeanspp end \nsampled points:\n')

return(parKmeans$centers)

}

A.2.7 Alternative K-means++ initialization

K-means++ initialization main

mrKmeansppScalable = function(

pathin,

pathout,

parKmeans,

l = 10, # it is about the number of centers sampled in each iteration

nIter = NULL,

maxcentersNumber = 1000

){

library(LICORS)

cat('\n\nK-means ++ SCALABLE\n\n')

mrSampleKmeansppFirst(pathin,pathout)

parKmeans$centerspp = from.dfs(pathout)$val

colnames(parKmeans$centerspp) = paste('V', 1:dim(parKmeans$centerspp)[2], sep='')

rownames(parKmeans$centerspp) = 'center1'

centersNumber = 1

cat('\n\npsi initial computation\n\n')

mrMinDistSquareSum(pathin,pathout)

parKmeans$psi = from.dfs(pathout)$val

cat('\n\npsi = ', parKmeans$psi,'\n\n')

if(is.null(nIter))

nIter=ceiling(log(parKmeans$psi))

cat('\n\nK MEANS++ NUMBER OF ITERATIONS: ', nIter, '\n\n')

for(i in 1:nIter) if(parKmeans$psi>0){
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cat('\n\nK MEANS++ ITERATION', i, '\n\n')

mrSampleKmeanspp(pathin,pathout)

newCenters = from.dfs(pathout)$val

if(length(newCenters) > 1){

maxcentersNumberAvailable = maxcentersNumber - centersNumber

if(is.null(dim(newCenters)))

newcentersNumber = 1

else

newcentersNumber = dim(newCenters)[1]

if(newcentersNumber > maxcentersNumberAvailable){

print('too many new centers: only some of them will be used')

newCenterChosen = sample(1:newcentersNumber, maxcentersNumberAvailable)

newCenters = newCenters[newCenterChosen, ]

}

parKmeans$centerspp = rbind(parKmeans$centerspp, newCenters)

parKmeans$centerspp = matrixDuplicatesElimination(parKmeans$centerspp)

rownames(parKmeans$centerspp) = paste('center', 1:dim(parKmeans$centerspp)[1], sep='')

mrMinDistSquareSum(pathin,pathout)

parKmeans$psi = from.dfs(pathout)$val

if(parKmeans$psi == 0){

cat('\n\nWARNING: psi=0\n\n')

return(parKmeans$centerspp)

}

centersNumber = dim(parKmeans$centerspp)[1]

# if(centersNumber >= maxcentersNumber)

# return(parKmeans$centerspp)

}

cat('\n\ncenters:\n')

print(parKmeans$centerspp)

cat('\n\npsi = ', parKmeans$psi,'\n\n')

}

if(is.null(dim(parKmeans$centerspp)))

cat('\n\nERROR: KMEANS++ (SCALABLE) HAS NOT SAMPLED ANY POINT\n\n')
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if(dim(parKmeans$centerspp)[1] < parKmeans$nCenters)

cat('\n\nERROR: KMEANS++ (SCALABLE) HAS NOT SAMPLED ENOUGH POINT\n\n')

# mrClusterSizepp(pathin,pathout)

# cat('\nkmeans++ (scalable) end\nsample size:\n', dim(parKmeans$centerspp)[1], '\n')

centers = kmeanspp(parKmeans$centerspp, parKmeans$nCenters)$centers

centers = kmeans(parKmeans$centerspp, centers)$centers

parKmeans$centers = centers

cat('\n\nfinal K-means++ centers:\n')

print(parKmeans$centers)

return(centers)

}

Sum of minimum square distances

mrMinDistSquareSum

mapFunction = function(k, v){

distances = parKmeans$distFun(parKmeans$centerspp, v)

val = as.matrix(apply(distances, 2, min))

key = matrix(1, dim(val)[1])

return(keyval(key, val))

}

redFunction = function(k, v){

keyval(1, sum(v))

}

K-means++ initial sample

mrSampleKmeansppFirst

mapFunction = function(k, v){

if(is.null(dim(v))){

val = rbind(v)

return(keyval(1, val))

}
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sampledId = sample(1:dim(v)[1], 1)

val = v[sampledId, ]

keyval(1, val)

}

redFunction = function(k, v){

if(is.null(dim(v))){

val = rbind(v)

return(keyval(k, val))

}

sampledId = sample(1:dim(v)[1], 1)

val = v[sampledId, ]

keyval(1, val)

}

K-means++ sample

mrSampleKmeanspp

mapFunction = function(k, v){

val = matrix(1, 0, dim(v)[2])

for(i in 1:dim(v)[1]){

distances = parKmeans$distFun(parKmeans$centerspp, rbind(v[i, ]))

d = min(distances)

prob = parKmeans$l * d / parKmeans$psi

if(runif(1,0,1) < prob) val = rbind(val, v[i, ])

}

if(dim(val)[1] == 0){

return(keyval(0, 0))

l$log = paste(l$log, '\n WARNING in function mrSampleKmeanspp')

}

if(dim(val)[1] == 0)

return(NULL)

key = matrix(1, dim(val)[1])

return(keyval(key, val))

}
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redFunction = function(k, v){

keyval(k, v)

}

A.3 Split-merge

A.3.1 Split-merge main

smMain = function(

pathin,

pathout,

parSm,

parKmeans,

outputHead = T

){

# INITIALIZATION

if(is.null(parKmeans$nCenters))

parKmeans$nCenters = 4

if(is.null(parKmeans$nIter))

parKmeans$nIter = 4

if(is.null(parKmeans$init))

parKmeans$init = 'sample'

if(is.null(parSm$minDist))

parSm$minDist = 0.5

smInitMain(pathin, pathout, parKmeans)

centers = parKmeans$centers

cat('\n\n REMOVAL OF NEAR CENTERS')

cat('\n\n centers:\n')

print(centers)

nCenters = dim(centers)[1]

if(nCenters > 1){

removeId = nCenters + 1

for(i in 2:nCenters)



A.3. SPLIT-MERGE 105

for(j in 1:(i - 1))

if(sum((centers[i, ] - centers[j, ]) ^ 2) < parSm$minDist)

removeId = c(removeId, i)

centers = centers[-removeId, ]

}

cat('\n\n CENTERS AFTER THE REMOVAL')

cat('\n\n centers:\n')

print(centers)

parSm$centers = centers

# SPLIT

if(is.null(parSm$nIter))

parSm$nIter = 2

if(is.null(parSm$distFun))

parSm$distFun = parKmeans$distFun

if(is.null(parSm$minClusterSize))

parSm$minClusterSize = 5

smSplitMain(pathin, pathout, parSm)

# MERGE

if(is.null(parSm$linkage))

parSm$linkage = 'single'

if(is.null(parSm$cutMethod))

parSm$cutMethod = 'number' # or height

if(is.null(parSm$cutHeight))

parSm$cutHeight = 1.2

if(is.null(parSm$cutNumber))

parSm$cutNumber = 4

smMergeMain(pathin, pathout, parSm)

return(pathout)

}
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A.3.2 Split-merge parameters initialization

mrParSm = function(

distFun=NULL,

centers=NULL

){

cat('\n# split&merge parameters initialization')

if(is.null(distFun))

distFun = function(centers, data){

# warning: it is the square of the distance!

if(is.null(dim(centers))) {

distances = array(NA, c(1, dim(data)[1]))

for(j in 1:length(distances))

distances[1, j] = sum((centers - data[j, ]) ^ 2)

return(distances)

}

if(dim(centers)[2] == 1) centers = t(centers)

distances = array(NA, c(dim(centers)[1], dim(data)[1]))

for(i in 1:dim(centers)[1])

for(j in 1:dim(data)[1])

distances[i, j] = sum((centers[i, ] - data[j, ]) ^ 2)

return(distances)

}

parList = new.env(parent=globalenv())

class(parList) = 'pointer'

parList$centers = centers

parList$distFun = distFun

parList

}

A.3.3 Split initialization

smInitMain = function(

pathin,

pathout,

parKmeans

){

cat('\n\nSPLIT-MERGE INITIALIZATION\n\n')
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mrKmeans(pathin, pathout, parKmeans)

cat('\n\nsplit-merge initialization end\n\n')

return(pathout)

}

A.3.4 Split

Split main

smSplitMain = function(

pathin,

pathout,

parSm

){

cat('\n\nSPLIT-MERGE ITERATIVE SPLITTING\n\n')

parSm$removedCenters = NULL

for(i in 1:parSm$nIter){

cat('\n\nSPLIT-MERGE SPLITTING ITERATION ', i, '\n\n')

mrSmSplitAdd(pathin, pathout)

newCenters = from.dfs(pathout)$val

if(is.matrix(newCenters))

parSm$centers = rbind(parSm$centers, newCenters)

rownames(parSm$centers) = NULL

cat('\n\ncenters after add ', i, '\n')

print(parSm$centers)

mrSmSplitUpdate(pathin, pathout)

parSm$centers = from.dfs(pathout)$val

rownames(parSm$centers) = NULL

cat('\n\ncenters after update ', i, '\n')

print(parSm$centers)

mrSmSplitClean(pathin, pathout)

parSm$centers = from.dfs(pathout)$val

cat('\n\ncenters after clean ', i, '\n')

print(parSm$centers)

}
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cat('\n\nsplit-merge iterative splitting end\n\n')

return(pathout)

}

Centers addition

mrSmSplitAdd

mapFunction = function(k, v) {

distances = parSm$distFun(parSm$centers, v)

key = as.matrix(max.col(-t(distances)))

val = cbind(v, apply(t(distances), 1, min))

keyval(key, val)

}

redFunction = function(k, v){

chosenID = which.max(v[, dim(v)[2]])

dist = max(v[, dim(v)[2]])

key = as.matrix(k[1])

val = v[chosenID, 1:(dim(v)[2] - 1)]

val = rbind(val)

# if(sum((val - parSm$centers[key]) ^ 2) < parSm$minDist ^ 2)

# return(NULL)

if(dist < parSm$minDist)

return(NULL)

return(keyval(key, val))

}

Update of the centers

mrSmSplitUpdate

mapFunction = function(k, v) {

distances = parSm$distFun(parSm$centers, v)

key = as.matrix(max.col(-t(distances)))

keyval(key, v)

}
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redFunction = function(k, v){

val = t(as.matrix(colMeans(v)))

keyval(k, val)

}

Outliers detection

mrSmSplitClean

mapFunction = function(k, v) {

distances = parSm$distFun(parSm$centers, v)

key = as.matrix(max.col(-t(distances)))

keyval(key, v)

}

redFunction = function(k, v) {

clusterSize = dim(v)[1]

if(clusterSize < parSm$minClusterSize){

return(NULL)

}else{

val = rbind(parSm$centers[k, ])

return(keyval(k, val))

}

}

A.3.5 Merge

Merge main

smMergeMain = function(

pathin,

pathout,

parSm

){

cat('\n\nSPLIT-MERGE MERGE\n\n')

d = dist(parSm$centers)

clusts <- hclust(d, method=parSm$linkage)

if(parSm$cutMethod == 'number'){
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k <- cutree(clusts, k = parSm$cutNumber)

}else if(parSm$cutMethod == 'height'){

k <- cutree(clusts, h = parSm$cutHeight)

}else{

cat('\n\nERROR: no dendogram cut method!!!\n\n')

}

mrSmMergeCount(pathin, pathout)

dimensionsSplit = from.dfs(pathout)$val

dimensionsMerged = list()

cat('\n\nMERGED CLUSTERS DIMENSIONS:\n')

for (key in unique(k)){

dimensionsMerged[[key]] = sum(dimensionsSplit[k == key])

cat('\n cluster ', key, ': ', dimensionsMerged[[key]], '\n')

}

parSm$dimensionsMerged = dimensionsMerged

return(pathout)

}

Merge count

mrSmMergeCount

mapFunction = function(k, v) {

distances = parSm$distFun(parKmeans$centers, v)

key = as.matrix(max.col(-t(distances)))

keyval(key, v)

}

redFunction = function(k, v){

val = as.matrix(dim(v)[1])

keyval(k, val)

}
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A.4 One-step Split-merge

A.4.1 One-step Split-merge main

sm1Main = function(

pathin,

pathout,

pathtemp,

parSm,

parKmeans,

outputHead = T

){

# INITIALIZATION

if(is.null(parKmeans$nCenters))

parKmeans$nCenters = 4

if(is.null(parKmeans$nIter))

parKmeans$nIter = 10

if(is.null(parKmeans$init))

parKmeans$init = 'sample'

if(is.null(parSm$minDist))

parSm$minDist = 0.5

sm1InitMain(pathin, pathout, pathtemp)

parSm$centers = from.dfs(pathout)$val

# SPLIT

if(is.null(parSm$nIter))

parSm$nIter = 2

if(is.null(parSm$distFun))

parSm$distFun = parKmeans$distFun

if(is.null(parSm$minClusterSize))

parSm$minClusterSize = 5

sm1SplitMain(pathtemp, pathout, pathin, parSm)

# MERGE



112 APPENDIX A. R-HADOOP CODES

if(is.null(parSm$linkage))

parSm$linkage = 'single'

if(is.null(parSm$cutMethod))

parSm$cutMethod = 'number' # or height

if(is.null(parSm$cutHeight))

parSm$cutHeight = 1.2

if(is.null(parSm$cutNumber))

parSm$cutNumber = 4

smMergeMain(pathtemp, pathout, parSm)

return(pathout)

}

A.4.2 One-step Split-merge initialization

Initialization main

sm1InitMain = function(

pathin,

pathout,

pathtemp

){

cat('\n\nSPLIT-MERGE ONE-STEP INITIALIZATION\n\n')

mrSm1InitLabel(pathin, pathtemp)

mrSm1InitMean(pathin, pathout)

cat('\n\nsplit-merge initialization end\n\n')

return(pathout)

}

Initial labeling

mrSm1InitLabel

mapFunction = function(k, v) {

key = matrix(1, dim(v)[1])

val = rbind(v)

return(keyval(key, val) )

}
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redFunction = function(k, v){

return(keyval(k, v))

}

Computation of the barycenter

mrSm1InitMean

mapFunction = function(k, v) {

key = 1

val = rbind(colMeans(v))

val = cbind(val, dim(v)[1])

keyval(key, val)

}

redFunction = function(k, v){

key = 1

val = matrix(0, 1, dim(v)[2] - 1)

for(i in 1:dim(v)[1]){

val = val + rbind(v[i, 1:(dim(v)[2] - 1)]) * v[i, dim(v)[2]]

}

val = val / sum(v[, dim(v)[2]])

return(keyval(key, val))

}

A.4.3 One-step Split

One-step Split main

sm1SplitMain = function(

pathin,

pathout,

pathtemp,

parSm

){

cat('\n\nSPLIT-MERGE ONE-STEP ITERATIVE SPLITTING\n\n')

printCenters = function(centers){



114 APPENDIX A. R-HADOOP CODES

cat('\n')

for(i in 1:length(centers))

if(!is.null((centers[[i]]))){

cat('\ncenter ', i, ': ', sep='')

cat(centers[[i]])

}

cat('\n\n')

}

firstCenter = parSm$centers

parSm$centers = list()

parSm$centers[[1]] = firstCenter

for(iter in 1:parSm$nIter){

cat('\n\nSPLIT ITERATION ', iter, '\n\n')

mrSm1SplitSize(pathin, pathout)

output = from.dfs(pathout)

parSm$size = array(0, max(output$key))

for(i in 1:length(output$key)){

clusterId = output$key[i]

parSm$size[clusterId] = output$val[i]

}

cat('\n\nclusters sizes at the beginning of step ', iter, ' :\n')

print(parSm$size)

mrSm1SplitOutliers(pathin, pathtemp)

cat('\n\ncenters before add ', iter, ' :\n')

printCenters(parSm$centers)

parSm$maxKey = 0

for(i in 1:length(parSm$centers))

if(!is.null(parSm$centers[[i]]))

parSm$maxKey = i



A.4. ONE-STEP SPLIT-MERGE 115

mrSm1SplitAdd(pathtemp, pathout)

output = from.dfs(pathout)

parSm$centers = list()

for(i in 1:(parSm$maxKey * 2))

parSm$centers[[i]] = NA

for(iCenter in 1:dim(output$val)[1])

parSm$centers[[output$key[iCenter]]] = output$val[iCenter, ]

cat('\n\ncenters after add ', iter, ' :\n')

printCenters(parSm$centers)

cat('\n\nmax key:\n')

print(parSm$maxKey)

mrSm1SplitUpdate(pathtemp, pathout)

output = from.dfs(pathout)

parSm$centers = list()

for(i in 1:(parSm$maxKey * 2))

parSm$centers[[i]] = NA

for(iCenter in 1:dim(output$val)[1])

parSm$centers[[output$key[iCenter]]] = output$val[iCenter, ]

cat('\n\ncenters after update ', iter, ' :\n')

printCenters(parSm$centers)

cat('\n\nnear centers removal at step ', iter, ' :\n')

for(i in 1:parSm$maxKey)

if(prod(is.na(parSm$centers[[i + parSm$maxKey]])) == 0 &

prod(is.na(parSm$centers[[i]])) == 0)

if(sum((parSm$centers[[i]] - parSm$centers[[i + parSm$maxKey]]) ^ 2)

< parSm$minDist){

parSm$centers[[i + parSm$maxKey]] = NA

}

cat('\n\nclusters to split at step', iter, ' :\n')
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for(i in 1:parSm$maxKey)

if(prod(is.na(parSm$centers[[i + parSm$maxKey]])) == 0)

cat(' ', i)

cat('\n')

mrSm1SplitAssign(pathtemp, pathin)

}

cat('\n\nsplit-merge one-step iterative splitting end\n\n')

centers = NULL

cat('\n\nfinal centers: \n')

for(i in 1:length(parSm$centers))

if(sum(is.na(parSm$centers[[i]])) == 0){

print(parSm$centers[[i]])

centers = rbind(centers, parSm$centers[[i]])

}

parSm$centers = centers

return(pathout)

}

Clusters sizes computation

mapFunction = function(k, v) {

key = k

val = 1

keyval(key, val)

}

redFunction = function(k, v){

key = k[1]

val = sum(v)

return(keyval(key, val))

}

Outliers detection

mrSm1SplitOutliers
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mapFunction = function(k, v) {

return(keyval(k, v))

}

redFunction = function(k, v){

key = k[1]

if(parSm$size[key] < parSm$minClusterSize1)

return(NULL)

return(keyval(k, v))

}

Centers addition

mrSm1SplitAdd

mapFunction = function(k, v) {

key = k

val = matrix(NA, dim(v)[1], dim(v)[2] + 1)

for(i in 1:dim(v)[1]){

if(parSm$size[k[i]] < parSm$minClusterSize2){

distance = sum((rbind(v[i, ]) - parSm$centers[[k[i]]]) ^ 2)

if(is.na(distance))

distance = Inf

val[i, ] = cbind(rbind(v[i, ]), distance)

}else{

val[i, ] = cbind(rbind(v[i, ]), 1)

key[i] = k[i] + sample(c(0, parSm$maxKey), 1)

}

}

for(i in 1:length(parSm$centers))

if(parSm$size[k[i]] < parSm$minClusterSize2)

if(prod(is.na(parSm$centers[[i]])) == 0)

val = rbind(val, cbind(rbind(parSm$centers[[i]]), 1))

keyval(key, val)

}

redFunction = function(k, v){
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key = k[1]

val = rbind(colMeans(v[, 1:(dim(v)[2] - 1)]))

return(keyval(key, val))

}

Update of the centers

mrSm1SplitUpdate

mapFunction = function(k, v) {

key = k

val = v

for(i in 1:dim(v)[1]){

if(prod(is.na(parSm$centers[[k[i] + parSm$maxKey]])) > 0){

key[i] = key[i] + parSm$maxKey

}else{

distance1 = sum((parSm$centers[[k[i]]] - v[i, ]) ^ 2)

distance2 = sum((parSm$centers[[k[i] + parSm$maxKey]] - v[i, ]) ^ 2)

if(distance1 < distance2)

key[i] = key[i] + parSm$maxKey

}

}

keyval(key, v)

}

redFunction = function(k, v){

key = k[1]

val = t(as.matrix(colMeans(v, na.rm = T)))

if(sum(is.na(val)) > 0){

val = matrix(Inf, 1, dim(v)[2])

}

keyval(key, val)

}

Assignment to the centers

mrSm1SplitAssign

mapFunction = function(k, v) {
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key = k

for(i in 1:dim(v)[1]){

if(prod(is.na(parSm$centers[[k[i] + parSm$maxKey]])) == 0 &

prod(is.na(parSm$centers[[k[i]]])) == 0){

distance1 = sum((parSm$centers[[k[i]]] - v[i, ]) ^ 2)

distance2 = sum((parSm$centers[[k[i] + parSm$maxKey]] - v[i, ]) ^ 2)

if(distance1 < distance2)

key[i] = key[i] + parSm$maxKey

}

}

keyval(key, v)

}

redFunction = function(k, v){

return(keyval(k, v))

}
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Appendix B

R Codes

In this chapter, we report some R codes used.

B.1 testing datasets

This section presents the R codes that generated the testing datasets.

B.1.1 Semicircle dataset

testSemicircle = function(n){

n1 = n/2

n2 = n/2

rho1 = runif(n1, 0, 1)

rho2 = rnorm(n2, 5, 0.2)

theta1 = runif(n1, 0, 2*pi)

theta2 = runif(n2, 0, pi)

x1 = cbind(rho1 * sin(theta1), rho1 * cos(theta1))

x2 = cbind(rho2 * sin(theta2), rho2 * cos(theta2))

x = rbind(x1, x2)

return(x)

}

B.1.2 Dartboard dataset

testDartboard = function(n){

121
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n1 = n2 = n3 = ceiling(n/3)

rho1 = rep(0, n1) + rnorm(n1, 0, 0.1)

rho2 = rep(2, n2) + rnorm(n2, 0, 0.1)

rho3 = rep(4, n3) + rnorm(n3, 0, 0.1)

theta1 = seq(0, 2*pi, length.out=n1)

theta2 = seq(0, 2*pi, length.out=n2)

theta3 = seq(0, 2*pi, length.out=n3)

x1 = cbind(rho1 * sin(theta1), rho1 * cos(theta1))

x2 = cbind(rho2 * sin(theta2), rho2 * cos(theta2))

x3 = cbind(rho3 * sin(theta3), rho3 * cos(theta3))

x = rbind(x1, x2, x3)

return(x)

}

B.1.3 Mouse dataset

testMouse = function(n){

n1 = n*0.75

n2 = n3 = (n-n1)/2

rho1 = runif(n1, 0, 4.5)

rho2 = runif(n2, 0, 2)

rho3 = runif(n3, 0, 2)

theta1 = runif(n1, 0, 2*pi)

theta2 = runif(n2, 0, 2*pi)

theta3 = runif(n3, 0, 2*pi)

x1 = cbind(rho1 * sin(theta1), rho1 * cos(theta1))

x2 = cbind(rho2 * sin(theta2) + 5, rho2 * cos(theta2)+ 5)

x3 = cbind(rho3 * sin(theta3) - 5, rho3 * cos(theta3)+ 5)

x = rbind(x1, x2, x3)

return(x)

}

B.1.4 Spiral dataset

testSpiral = function(n){

n1 = n2 = n/2

rho1 = seq(0, 5, length.out=n1) + runif(n1, 0, 0.1)

rho2 = seq(1, 6, length.out=n2) + runif(n1, 0, 0.1)
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theta1 = seq(0, 4*pi, length.out=n1)

theta2 = seq(0, 4*pi, length.out=n2)

x1 = cbind(rho1 * sin(theta1), rho1 * cos(theta1))

x2 = cbind(rho2 * sin(theta2), rho2 * cos(theta2))

x = rbind(x1, x2)

return(x)

}

B.1.5 Four clusters dataset

testFourDistinct = function(n){

n1 = n2 = n3 = n4 = ceiling(n/4)

rho1 = rep(0, n1) + rnorm(n1, 0, 1)

rho2 = rep(0, n2) + rnorm(n2, 0, 1)

rho3 = rep(0, n3) + rnorm(n3, 0, 1)

rho4 = rep(0, n4) + rnorm(n4, 0, 1)

theta1 = seq(0, 2*pi, length.out=n1)

theta2 = seq(0, 2*pi, length.out=n2)

theta3 = seq(0, 2*pi, length.out=n3)

theta4 = seq(0, 2*pi, length.out=n4)

x1 = cbind(rho1 * sin(theta1) + 5, rho1 * cos(theta1) + 5)

x2 = cbind(rho2 * sin(theta2) + 5, rho2 * cos(theta2) - 5)

x3 = cbind(rho3 * sin(theta3) - 5, rho3 * cos(theta3) + 5)

x4 = cbind(rho4 * sin(theta4) - 5, rho4 * cos(theta4) - 5)

x = rbind(x1, x2, x3, x4)

return(x)

}

B.1.6 Add noise function

addNoise = function(x, noiseRate = 0.01, varScale = 0.2){

functionName = 'addNoise'

if(!is.matrix(x)) cat(verboseInputClass(functionName, 'x', 'matrix'))

if(!is.numeric(noiseRate)) cat(verboseInputClass(functionName, 'N', 'noiseRate'))

if(noiseRate == 0) return(x)

n = ceiling(dim(x)[1] * noiseRate)

var = sqrt(sum(max.col(x) + max.col(-x))) / dim(x)[2] * varScale
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xNew = NULL

for(j in 1:n){

xNewSingle = NULL

for(p in 1:dim(x)[2]){

xNewSingle = c(xNewSingle, rnorm(1, 0, var))

}

xNew = rbind(xNew, xNewSingle)

}

x = rbind(x, xNew)

if(!is.matrix(x)) cat(verboseOutputClass(functionName, 'x', 'matrix'))

return(x)

}

B.2 Computational cost

This small piece of R code has been used to asses the computational cost of

some algorithms.

time = proc.time()

# algorithm

cat('\n\ntime for the algorithm: ',

proc.time()[3] - time[3], 'seconds\n\n')
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