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Abstract

JavaScript is the most common scripting language that is used to build rich web interfaces. It

has also been abused to harm customers’ machines, such as stealing customers’ private data, for

a long time. JavaScript is a prototype-based scripting language that is dynamic, weakly-typed

and has first-class functions. Because of these peculiarities, it is very difficult to apply traditional

program-analysis techniques such as static analysis and dynamic analysis. Indeed, the research

in this field is very active, motivated by the need for tools that can recognize malicious JavaScript

code (e.g., code that attempt to exploit a browser vulnerability) and protect clients (e.g, browsers)

from being compromised by malicious JavaScript code.

Unfortunately, there is no paper that systematise the knowledge in this field. The goal of this

thesis is to systematise the research approaches published in the proceedings of top computer

security conferences between 2005 and 2012. In addition, we attempt to draw future trends of

JavaScript-based threats and mitigation approaches. We study the evolution of both JavaScript-

based threats and mitigation approaches and propose a taxonomy. We describe 34 papers in detail

and compare the advantages and disadvantages among them.
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Sommario

Il pericolo crescente di codice JavaScript malevolo. Per migliorare la visualizzazione dei siti

web sul lato cliente, JavaScript é il linguaggio piú comunemente scelto dagli sviluppatori web, ed

é supportato da tutti i browser web come Google Chrome, Firefox e Internet Explorer. Il linguag-

gio JavaScript [Flanagan, 1998] é stato sviluppato da Netscape come linguaggio di scripting leg-

gero con funzionalitá orientate agli oggetti ed é stato successivamente standardizzato da ECMA

[ECMA, 2011].

JavaScript puó essere abusato per scopi malevoli (ad esempio, sfruttare le vulnerabilitá dei

browser per causare la perdita di dati privati). JavaScript ha le seguenti quattro caratteristiche:

basato su prototipo, dinamica, debolmente tipizzato ed espone funzioni di prima classe che ren-

dono molto difficile da rilevare le minacce basate su di esso. Al giorno d’oggi, l’abuso maligno

di Javascript é diventata la principale minaccia per i clienti. Secondo un rapporto pubblicato da

Sophos Labs indicano che il numero di frammenti JavaScript maligni analizzati ogni giorno nel

2010 - circa 95.000 campioni - quasi raddoppiato dal 2009 citep 2011. Ci sono diversi tipi di

minacce basate su JavaScript contro i browser attuali, come ad esempio:

1. Attacchi drive-by download, che significa una vulnerabilitá nel browser web o uno dei suoi

componenti / estensioni (ad esempio, Acrobat Reader o Flash plug-in) viene sfruttata per

imporre ai client di scaricare ed eseguire codice arbitrario.

2. Cross-Site Scripting (XSS) che consente ad un utente malintenzionato di iniettare codice

JavaScript malevolo in pagine web.

3. Attacchi heap spraying, che sfruttano vulnerabilitá di heap/buffer overflow del browser

o browser dei suoi plug-ins per allocare una grande quantitá di memoria heap, di solito

utilizzando array di stringhe che contengono shell-code e NOP sleds.

Lavori precedenti. Motivata dalla necessitá di proteggere i clienti dalle minacce basate su JavaScript,

la ricerca in questo campo é molto attiva. Diversi, nuovi approcci e strumenti sono stati proposti,

ad esempio: Wepawet [Cova et al., 2010] esegue un’analisi on-line di una determinata pagina,

al fine di rilevare gli attacchi drive-by download. Cujo [Rieck et al., 2010] esegue l’analisi on-

line, ma introduce un overhead di piú di 1,5 secondi su siti JavaScript pesanti come Facebook,

che incide negativamente sulla qualitá dell’esperienza dell’utente. Gatekeeper [Guarnieri and

Livshits, 2009] e Google Caja [Mark S. Miller, 2007] tentano di trovare un modo per eseguire

codice JavaScript arbitrario in un ambiente protetto, il che richiede di lavorare su un sottoin-

sieme della specifica JavaScript completa, ad esempio, Gatekeeper rimuove costrutti del linguag-

gio come eval() e document.write() dalla specifica JavaScript per la loro analisi.

La motivazione di questa tesi. Finora, ci sono numerosi tipi di minacce basate su JavaScript

e proposti approcci che ne mitigano gli effetti. Ma, purtroppo, non c’é un tesi che istematizza
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la conoscenza in questo campo. Questa tesi é la prima tesi che sistematizza la conoscenza della

sicurezza JavaScript. Pensiamo che questa tesi puó aiutare le persone che e nuovo in questo

campo, nella prospettiva di rispondere alle seguenti problematiche:

1. Quali minacce basate su JavaScript e approcci di mitigazione sono stati sviluppati.

2. Per attenuare uno specifico minaccia basato su JavaScript, quali tipi di contromisure sono

efficaci per fermarla.

3. Quale puó essere la prossima minaccia basata su JavaScript e quali contromisure possono

essere preparate per mitigarla.

Principali contributi. Per riassumere, questa tesi presenta i seguenti contributi:

1. Studiamo l’evoluzione di entrambe le minacce basate su JavaScript e le tecniche di mit-

igazione contro di loro. Esponendole in ordine della loro evoluzione temporale.

2. Forniamo una tassonomia per classificare le minacce basate su JavaScript esistenti e gli ap-

procci di mitigazione e di descrivere le differenze, i vantaggi, gli svantaggi delle diverse

classi di approcci di mitigazione.

3. Usiamo due tavoli di correlare le tecniche di mitigazione con le minacce basate su JavaScript

per mostrare l’efficacia delle tecniche di mitigazione.

4. Descriviamo i documenti cui si fa riferimento in dettaglio come prova per la conoscenza che

abbiamo di sistematizzare.

5. Indichiamo i prossimi possibili attacchi.
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Chapter 1

Introduction

The increasing danger of malicious JavaScript code. To enhance the display of web sites on

the client side, JavaScript is the most common language that is chosen by web developers, and

it is supported by all the web browsers such as Google Chrome, Firefox and Internet Explorer.

JavaScript language [Flanagan, 1998] was developed by Netscape as a lightweight scripting lan-

guage with object-oriented capabilities and was later standardized by ECMA [ECMA, 2011].

JavaScript can be abused for malicious purpose (e.g, exploit the vulnerabilities of browser

to cause private data leakage). JavaScript has the following four peculiarities: prototype-based,

dynamic, weakly-typed and first-class functions, which make it very difficult to detect JavaScript-

based threats. Nowadays, abusing JavaScript maliciously has become the major threat to clients.

According to a report from Sophos Labs indicates that the number of JavaScript malware pieces

analysed by Sophos Labs every day in 2010 - about 95,000 samples - nearly doubled from 2009

[Labs, 2011]. There are many different kinds of JavaScript-based threats against current browsers,

such as:

1. Drive-by download attacks, which means a vulnerability in the web browser or one of its

components/extensions (e.g., Acrobat Reader or Flash plug-ins) is exploited to force clients

to download and execute arbitrary code.

2. Cross-Site Scripting (XSS) vulnerabilities that enable an attacker to inject malicious JavaScript

code into web pages.

3. Heap spraying attacks, which exploit heap/buffer overflow vulnerabilities of the browser

or installed browser-plug-ins by allocating big amount of memory on the heap, usually

utilising arrays of strings that contain shell-code and NOP sleds.

Previous Works. Motivated by the need to protect clients from JavaScript-based threats, the

research in this field is very active. Different novel approaches and tools were proposed, for ex-

ample: Wepawet [Cova et al., 2010] performs an on-line analysis of a given page in order to detect

drive-by download attacks. Cujo [Rieck et al., 2010] performs on-line analysis, but introduces an

overhead of more than 1.5 seconds on JavaScript-heavy sites such as Facebook, which negatively

impacts the user experience. Gatekeeper [Guarnieri and Livshits, 2009] and Google Caja [Mark

S. Miller, 2007] attempt to find a way to execute arbitrary JavaScript in a secure environment,

which requires working on a subset of the complete JavaScript specification, e.g., Gatekeeper re-

moves language constructs such as eval() and document.write() from the JavaScript speci-

fication for their analysis.
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CHAPTER 1. INTRODUCTION 9

Motivation of this thesis. Until now, there are numerous kinds of JavaScript-based threats and

mitigation approaches against them. But unfortunately, there is no paper that systematises the

knowledge in this field. This thesis systematises the knowledge of JavaScript security for the first

time. We think this thesis can help people who is new to this field with a view to answer the

following important questions:

1. What JavaScript-based threats and mitigation approaches have been developed.

2. To mitigate a specific JavaScript-based threat, what kind of mitigation approach is effective.

3. What can be the next JavaScript-based threat and what countermeasures can be prepared to

mitigate it.

Main Contribution. To summarise, this thesis presents the following contributions:

1. We study the evolution of both JavaScript-based threats and mitigation techniques against

them. We draw two time-lines to illustrate the evolution.

2. We provide a taxonomy to classify the existing JavaScript-based threats and mitigation ap-

proaches and describe the differences, advantages, disadvantages of different classes of mit-

igation approaches.

3. We use two tables to correlate mitigation techniques with JavaScript-based threats to show

the effectiveness of mitigation techniques.

4. We describe the referenced papers in detail as proof to the knowledge that we systematise.

5. We indicate the next possible attacks.

Organization of this thesis. The remainder of this thesis is structured as follows:

1. In Chapter 2, we give a brief introduction on JavaScript language. We systematise the

knowledge that we learned from all referenced papers including the evolution of JavaScript-

based threats and mitigation approaches, classification of mitigation approaches, and corre-

lation between JavaScript-based threats and mitigation approaches.

2. In Chapter 3, we describe 34 papers in detail to prove the knowledge described in Chapter

3. We compare the difference, advantages and disadvantages among all the approaches.

3. In Chapter 4, we draw some conclusions. We indicate the next possible attacks and suggest

the possible ways to mitigate next attacks.



Chapter 2

Systematisation of the research

approaches

In this chapter, to describe the knowledge that we systematise from referenced papers in an

organized way, we divide this chapter into 4 sections. First, we start from a brief introduction on

JavaScript language, which explains why and how JavaScript can be abused. Second, we use two

time-lines to present the evolution of JavaScript-based threats and mitigation techniques. Third,

we build a classification for mitigation techniques. Finally we present two tables to illustrate what

class of mitigation techniques is effective against what JavaScript-based threats.

2.1 Brief introduction on JavaScript

JavaScript is the most common scripting language that is used to build dynamic websites.

Also the situation of abusing JavaScript is severe, since JavaScript has the following peculiarities:

• Prototype-based scripting language

JavaScript is an object-oriented language that uses prototype inheritance. Prototype inher-

itance is a form of object-oriented code reuse. In the prototype inheritance form, objects

inherit directly from other objects. In JavaScript, every JavaScript object has a secret link

to another JavaScript object, which created it, forming a chain. When a JavaScript object is

asked for a property that it does not have, its parent object is asked continually up the chain

until the property is found or until the root object is reached. In JavaScript, root objects such

as Cache, Document are pre-defined.

This peculiarity provides attackers with a way to illegally access the root objects through

the prototype inheritance chain. Since the root objects are global object, if they are modified

for malicious purposes, the modification will affect all other objects.

• Dynamic

JavaScript is a dynamic language since it allows JavaScript code to be dynamically gener-

ated at run-time(e.g., code obfuscation). Code obfuscation is a technique to transform source

code to e.g., protect code copyright.

This peculiarity also makes static analysis very difficult, because the code is dynamically

generated and can only be analysed at run-time.

• Weakly-typed
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CHAPTER 2. SYSTEMATISATION OF THE RESEARCH APPROACHES 11

JavaScript is a weakly typed scripting language. Compared to strong typed language,

JavaScript removes some rules during compilation (e.g., JavaScript allows overloading and

type conversion). Weakly typing does create more runtime errors and exceptions, such as

heap overflow, which can be used to inject and execute arbitrary malicious code.

• First-class functions

This peculiarity means that JavaScript allows passing functions as arguments to other func-

tions, returning them as the values from other functions, and assigning them to variables or

storing them in data structures. This increase the difficulty to apply static analysis.

2.2 Referenced material

To ensure the knowledge that is systematised in this thesis and our final conclusions are com-

plete, we have tried our best to collect as many related papers as possible. The collecting criteria

is composed by 2 steps: (1) We select papers that are related to JavaScript security from the pro-

ceedings of the top conferences in computer security since 2005:

• IEEE S&P (IEEE Symposium on Security and Privacy)

• CCS (ACM Conference on Computer and Communications Security)

• NDSS (ISOC Network and Distributed System Security Symposium)

• USENIX (Usenix Security Symposium)

• ACSAC (Annual Computer Security Applications Conference)

• RAID (International Symposium on Recent Advances in Intrusion Detection)

(2) After reading the papers that are selected in step 1, we also read all their reference papers.

If there are new related papers found, we continue repeating step 2 until no more new related

papers are found. As a result, we choose 88 related papers, among which 34 papers propose

mitigation approaches against JavaScript-based threats. From these 34 papers, we

• observed the evolution and the focus of the research approaches, and

• inferred the evolution of the JavaScript-based threats.

The rest of the papers are important to understand a specific technique; they can be considered as

secondary references.

2.3 Evolution of JavaScript-based threats and defences

In this section, we present two time-lines, which summarise the evolution of, respectively,

JavaScript-based threats and the research approaches proposed to mitigate or defeat them. We

notice immediately the well-known arms race. On one hand, the evolution trend of JavaScript-

based threats focuses on developing new vectors , new techniques or new evasions to evade

existing mitigation approaches. On the other hand, the mitigation approaches also evolve, the

efficiency and coverage of threats are both improved through time.



CHAPTER 2. SYSTEMATISATION OF THE RESEARCH APPROACHES 12

Figure 2.1: Evolution of JavaScript-based threats

2.3.1 JavaScript-based threats

The time-line in Fig. 2.1 shows the evolution of JavaScript-based threats and their charac-

teristics. We associate to each year one of the following semantic keywords: vectors, evasions,

and technique. These keywords characterise JavaScript-based threats from different angles. For

example, vectors are the ways to inject and execute malicious JavaScript code, evasions means

the techniques to hide the source malicious JavaScript code and evade known mitigation ap-

proaches, technique means the technique that is used to write malicious JavaScript code to ex-

ploit browser/browser plug-ins vulnerabilities. We tag each year with at least one keywords that

better indicate the focus of the researches on that year.

Before explaining all these keywords in detail, we want to mention that there is a common goal

behind any JavaScript-based threats that is writing malicious JavaScript code to exploit browser

vulnerabilities and making the code executed. Drive-by download is the most common sub-

goal to pursue this common goal. In our thesis, drive-by download regards executing malicious

JavaScript code to force clients to download computer malware (e.g., malicious JavaScript code,

binary malware) unintentionally and execute it. We can see from Fig. 2.1 that the researches

started to focus on drive-by download around 2009. However, drive-by download is still common

today, although it is more complex today than it was in 2009.

• Vectors

Vectors are the means to implement an attack, thus, in the context of this thesis, the ways to

inject malicious JavaScript code and execute it. In our time-line, the referenced papers focus

on mitigating 4 vectors:

XSS vulnerabilities

XSS is a well-known vulnerability found in web applications https://www.owasp.

org/index.php/Top_10_2013, which can be used to inject arbitrary code into a

webpage. Unsurprisingly, cybercriminals have been exploiting XSS vulnerabilities to

https://www.owasp.org/index.php/Top_10_2013
https://www.owasp.org/index.php/Top_10_2013
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inject malicious JavaScript code, which ends up to be executed on the visitors’ ma-

chines.

Mash-ups

A mash-up is a web page that uses and combines data, JavaScript, presentation or

functionality from two or more sources (e.g., JavaScript advertising). This practice may

create data-leak vulnerabilities, which means leaking private data from one source to

another (e.g., from safe, trusted source to unsafe, untrusted source/third party). This

provides a way for attackers to load and execute malicious code on the client side in

the form of third party code. When a customer visits a mash-up that includes a piece of

malicious JavaScript code, the browser automatically invokes the malicious third-party

code and executes it.

JavaScript-based browser extensions

This vector may also create data-leak vulnerabilities like mash-ups. In this case, the

malicious JavaScript code is injected inside browser extensions. When the customer

visits a webpage that requires the execution of malicious browser extension, the mali-

cious code gets executed.

PDFs with embedded JavaScript

Differently from previous vectors, which target the execution of JavaScript code in a

browser and the exploitation of the browser environment. In this case, the malicious

JavaScript code is injected into PDF files and gets executed only with the opening of

PDF file (e.g., within a PDF reader, or browser plug-in for rendering PDF).

• Evasion

Evasion means the techniques to evade the existing, known detection or prevention mecha-

nisms, making malicious code hard to be detected. While reading the research works since

2005, we notice the following evasion techniques:

Obfuscation, dynamically generated code

Obfuscation is a method to transform source code such that it is harder to read and

understand. Obfuscation is used to legitimately protect code copyright, but it can also

be abused to hide the code that is responsible for attacks to make static analysis harder.

In JavaScript, it can be simply achieved by using the eval() function. In general,

the dynamic features of JavaScript allow other ways to dynamically generate code,

for example, by invoking initial pieces of JavaScript code from different sources, and

compose a final malicious JavaScript code at run-time. This also increases the difficulty

for static analysis.

Environment matching

If attackers can detect the environment of the client (e.g., vulnerabilities, browser ver-

sion, OS), then attackers can deliver tailored malicious JavaScript code. Or, if the client

is actually a sandbox that runs JavaScript code in a controlled environment to detect

whether it is malicious, then attacker can decide not to reveal the true malicious be-

haviour of the code.

This kind of evasion now starts to be widely used. From our referenced papers we

found 2 techniques that are specifically used for this purpose:

– Fingerprinting
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Browser fingerprinting is a technique in which a variety of environment variables

are evaluated to assess the capabilities of the browser. Privacy advocates show that

browser fingerprinting can be used to track users across sessions without the help

of cookies as browsers carry unique information that results in unique fingerprints.

– Cloaking

Cloaking can be divided into server-side cloaking and client-side cloaking. In

server-side cloaking the server can choose not to deliver the malicious code (e.g.,

when the request comes from a suspicious IP, for instance, the IP of a research labo-

ratory). Meanwhile client-side cloaking is achieved by using JavaScript to identify

client-side characteristics (e.g., malware that checks if images have been success-

fully loaded before executing its attack.).

• Technique

This vector refers to the techniques that are used to exploit the clients’ vulnerabilities to

execute machine code.

– Heap spraying

Heap spraying is a technique to exploit memory errors such as heap overflow to exe-

cute arbitrary code. Heap overflow is a type of buffer overflow that occurs in the heap

data area. Memory on the heap is dynamically allocated by the application at run-

time and typically contains program data. Exploitation is performed by corrupting

this data in specific ways to cause the application to overwrite internal structures such

as linked list pointers. The canonical heap overflow technique overwrites dynamic

memory allocation linkage and uses the resulting pointer exchange to overwrite a pro-

gram function pointer. In a practice of implementing heap spraying, code that sprays

the heap attempts to put a certain sequence of bytes at a predetermined location in the

memory of a target process by having it allocate large blocks on the process’ heap and

fill the bytes in these blocks with the right values.

In JavaScript, heap spraying can be implemented by allocating large strings. The most

common technique used is to start with a string of one character and concatenating it

with itself over and over. This way, the length of the string can grow exponentially

up to the maximum length allowed by the scripting engine. Depending on how the

browser implements strings, the heap spraying code makes copies of the long string

with shell code and stores these in an array, up to the point where enough memory has

been sprayed to ensure the exploit works.

Conclusion To summarise, Fig. 2.2 is a bar-chart that shows the number of papers that mitigate

different vectors in each year. We find that the focus of attacks evolve from malicious code injec-

tion through XSS vulnerabilities to source code transformation, evasion of mitigation approaches

and the developing of new techniques to exploit new vulnerabilities, which all of them make

defending more and more difficult.

2.3.2 Mitigation techniques

Fig. 2.3 shows a time-line that presents the evolution of mitigation approaches against JavaScript-

based threats. The keywords in this time-line are explained in subsection 2.3.1. Here, we describe

some observations we find from this time-line:



CHAPTER 2. SYSTEMATISATION OF THE RESEARCH APPROACHES 15

Figure 2.2: Number of papers that target different vectors in each year.

Figure 2.3: Time-line of mitigation approaches against JavaScript-based threats.
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Figure 2.4: Number of papers that mitigate JavaScript-based threats in each year.

• Dynamic analysis can be used to restrict the privileges by running JavaScript in sandbox

(e.g., by restricting the access of some private data in the browser). Dynamic analysis can

also be used as a procedure of logging code behaviour (e.g, environment changing, reading

browser cookie) during code execution to determine whether a piece of JavaScript code is

malicious or not.

• Rewriting techniques can be applied to rewrite known malicious JavaScript code or to re-

duce code to a pre-defined secure subset of JavaScript.

• Static analysis compensates for the limitations of dynamic analysis. Static analysis is per-

formed without code execution, and is performed directly on source or the object code. Hy-

brid analysis combines static and dynamic analysis. The idea is to use both the advantages

of static analysis and dynamic analysis and evade their limitations.

We also provide another bar-chart to show the trend of the usage of mitigation techniques in

Fig. 2.4

2.4 Taxonomy of defence techniques against JavaScript-based threats

In this section, we describe our classification of mitigation techniques. We start from present-

ing a global taxonomy, then explain two main classes of mitigation techniques in detail including

the comparison among all techniques inside each class.

2.4.1 Global taxonomy

Fig. 2.5 shows the global taxonomy of the research approaches to mitigate or defeat JavaScript-

based threats, which we divide into Detection and Prevention approaches. Detection approaches
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Figure 2.5: Taxonomy of mitigation approaches against JavaScript-based threats.

aim at detecting malicious JavaScript code by analysing JavaScript code. Usually new detection

techniques are developed after new attacks are discovered, since it requires time to capture the

characteristics of new attacks. Prevention approaches propose mechanisms that can stop attacks

before damage is taken without analysing JavaScript code. Prevention techniques are able to

protect clients from being harmed by even unknown attacks.

2.4.2 Detection techniques

The detection of JavaScript-based threats requires the analysis on JavaScript code. Fig. 2.5

shows that all detection approaches can be generally classified into three classes, according to the

analysis techniques that they use:

1. Static analysis

Static analysis does not require code execution. Static analysis usually analyses the syntax

of the code (e.g., lexical analysis, syntactic analysis, such as type-based analysis). The goal

is to check whether suspicious keywords or code fragments exist. Also semantic analysis

techniques have been proposed (e.g., points-to analysis helps understanding the points-to

relationship between the heap objects). There are mainly 3 kinds of static analysis:

(a) Type-based

Object-oriented scripting languages like JavaScript is popular partly because of the dy-

namic features. These include the runtime modification of objects and classes through

addition of fields or updating of methods. These features make static typing difficult.

The idea is to statically define structural types to JavaScript. The types should allow

JavaScript objects to evolve in a controlled manner. It is necessary to define a type in-

ference algorithm for JavaScript that is sound with respect to the type system. If the

type inference algorithm succeeds, then the program is type-able. Therefore, program-

mers can benefit from the safety offered by the type system, without the need to write

explicitly types in their programs.

[Jensen et al., 2009] introduces type analysis into JavaScript. Type analysis can be used

for code correctness checking, and it can also be used for security reasons by high-

levelling JavaScript code into security-related types such as described in [Politz et al.,
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Figure 2.6: An example of AST. Source: http://en.wikipedia.org/wiki/Abstract_

syntax_tree

2011]. [Anderson et al., 2005] introduces a type inference algorithm, which is the first

paper that introduces a set of types defined for JavaScript.

(b) AST-based

Abstract Syntax Tree (AST) is a tree representation that presents the abstract syntactic

structure of source code as exemplified in Fig. 2.6. All constructs such as variables, val-

ues, keywords are contained in the tree in the form of AST nodes. AST-based analysis

is a very popular technique that is used to extract static features such as the usage of

keywords or the suspicious variable assignment. For instance, ZOZZLE [Curtsinger

et al., 2011] uses machine learning on features, which are extracted from AST nodes,

to build model for benign JavaScript and Gatekeeper [Guarnieri and Livshits, 2009]

passes JavaScript programs’ AST for further points-to analysis and policy enforcement.

Unfortunately, AST-based analysis can not help to understand what is happening in

the heap, what is the JavaScript code exactly doing.

(c) Points-to analysis

As exemplified in Fig. 2.7, points-to analysis is a static code analysis technique that

establishes, which pointers, or heap references, can point to which variables or storage

locations. Since it provides the information of the heap and the object references, it has

semantic meanings. [Jang and Choe, 2009] introduces how points-to analysis is ported

from C to JavaScript. Paper [Barth et al., 2009] uses points-to analysis to monitor the

JavaScript heap and draw heap graph, in which suspicious edges are searched for.

Paper [Taly et al., 2011] proposes to use points-to analysis to monitor JavaScript API

and implement API confinement.

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
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Figure 2.7: Example of JavaScript program and its points-to graphs. Top: program code, bottom

left: conventional graph, bottom right: graph with properties. Source: [Jang and Choe, 2009]

Conclusion Type-based analysis is not widely used for security purpose (1 referenced pa-

per) as it requires a good definition of types, which is very difficult. However, it can be used

as a pre-processing filter because it requires less computing resources.

AST-based analysis is commonly used and quite well developed (3 referenced papers). It

can ease the representation of JavaScript program for other analysis techniques or it can

extract static features on which machine learning can build knowledge model.

Points-to analysis is also common (4 referenced papers). It is used especially when mem-

ory/heap information, such as variable assignment and string allocation, is crucial to be

known. It can help researchers to know what the code is actually doing.

2. Dynamic analysis

Compared to static analysis, the idea of dynamic analysis is very simple: executing the code,

logging the interesting events and analysing the logs. Dynamic analysis requires partial or

complete emulation of a real client (e.g., file system, browser environment, plug-ins). We

classify all mitigation approaches that uses dynamic analysis into 3 subclasses, according to

different emulation techniques they use:

(a) VM-based

The approaches that use VM-based emulation techniques are typically called honey-

pots, or honeyclients. Honeypots and honeyclients are usually divided into either low-

interaction or high-interaction: High-interaction honeypots are real systems, providing

real applications for the malicious code to interact with. Low-interaction honeypots

emulate real systems and services. High-interaction honyclients are usually real auto-

mated web browsers on real operating systems, which allows and traces the execution

of malicious code. Low-interaction honyclients, on the other hand, are usually emu-

lated web browsers.

Capture-HPC [Christian Seifert, 2006], which is widely used for research papers, is a

famous example of honeypots.

(b) Sandbox

Sandbox, such as[Microsoft, 2012], is a security mechanism to isolate the execution of

untrusted JavaScript in a virtualizd runtime browser environment. Usually, JavaScript

sandboxes are implemented inside the browser to virtualize and restrict the access to
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DOM (Document Object Model, which is a cross-platform and language-independent

convention for representing and interacting with objects in HTML, XHTML and XML

documents.) or JavaScript API (e.g., root object Document, or Doucument.write()).

In practice, to decide whether a piece of JavaScript code is malicious or not, the re-

stricted DOM or JavaScript API is monitored to check whether code behaviours trigger

pre-defined heuristic. For example, ADSandbox [Dewald et al., 2010] propose a hybrid

solution to detect malicious JavaScript, which uses sandbox as its dynamic analysis

component. The pre-defined heuristics in ADSandbox include restricting the usage of

SaveToFile().

(c) Instrumented browser, JavaScript interpreter

Other approaches that use dynamic analysis rely on using instrumented browsers and

JavaScript interpreters to log information (e.g., JavaScript variables, function invoca-

tion chain). For example, Caja [Mark S. Miller, 2007] propose a new secure subset of

JavaScript to safely combine untrusted third party code (described in Subsection 2.3.1).

Since Caja changes the specifications of JavaScript, to compile Caja subset, it requires

the corresponding modifications on browser interpreter.

Conclusion Compared to other two kinds of dynamic analysis techniques, VM-based ap-

proaches are much more expensive, since it requires much more computing resources to

virtualize a complete machine. Another limitation is that it is very difficult to cover all

the possible configurations of real computers. For example, it is possible that JavaScript-

based attacks, which target vulnerabilities of Firefox and Windows OS, can successfully

evade honeypot/honeyclient detection if honeypot/honeyclient does not consider Firefox

+ Windows OS configuration. An advantage of VM-based dynamic analysis is that they can

monitor the whole system: even a slight change on the file system or on the kernel level can

be captured, which cannot be achieved by other kinds of approaches.

Sandbox, such as ADsandbox [Dewald et al., 2010], js.js sandbox[Terrace et al., 2012], is a

good way to limit the privileges of executing JavaScript and protect the access to privacy-

related information, but there is a limitation that scripts may conform to the sandbox policy,

but still violate the security of the system. For example, scripts may abuse systems re-

sources, such as opening browser windows that never close or creating a large number of

pop-up windows.

Instrumented Browser: There are papers such as Paper [Hallaraker and Vigna, 2005], Paper

[Dhawan and Ganapathy, 2009], Paper [Egele et al., 2009] use this technique. The advantage

of this technique is that it reuse the existing browser interpreter, which means reducing

effort to build or virtualize a new browser. But the limitation is that it can only monitor the

limited information/objects/variables inside the browser.

The most important aspect for all dynamic analysis approaches is what is monitored and

logged. Generally, there are 2 kinds of information that is considered interesting for security

reasons and is logged: (1) Security-related functions (e.g., eval(), document.write()),

JavaScript API and DOM (e.g., Document) (2) Changes of the file system or the state vari-

ables of the browser or the states of the OS kernel.

3. Hybrid analysis

There are many ways to combine static and dynamic analysis techniques, such as:
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Advantages Limitations

Static analysis Faster Can not do de-obfuscation

Complete code convergence Can not analyse dynamically

generated code

Dynamic analysis Can handle obfuscation Slower

Can analyse dynamically Can not cover all the code

generated code

Table 2.1: Comparison between static analysis and dynamic analysis.

(a) Use static analysis for filtering obvious malicious JavaScript then use dynamic analysis

only for suspicious JavaScript as [Canali et al., 2011] does.

(b) Use dynamic analysis only for de-obfuscation as first step then apply static analysis

(e.g., ZOZZLE[Curtsinger et al., 2011]).

(c) Features used for machine-learning, which require using both static analysis and dy-

namic analysis (e.g., Paper [Likarish et al., 2009], Wepawet [Cova et al., 2010], Cujo

[Rieck et al., 2010]).

We describe in detail how static analysis and dynamic analysis are combined with example

papers in Chapter 3

Another type of hybrid analysis is data-flow analysis. Data-flow analysis is a technique for

gathering information about the possible set of values calculated at various points in a pro-

gram. In JavaScript data-flow analysis is extended to Internet data flow (e.g., the invocation

of a variable at source B from a piece of JavaScript code at source A). This is achieved in

three steps: (1) Inserting data-taints: all variables or browser DOMs are tainted when mod-

ified or declared. (2) data-taints propagation: if a variable used in an expression that sets

a second variable that second variable is now tainted as the first variable. (3) data-taints

checking: according to pre-defined heuristics, taints are checked at the end. Data-flow anal-

ysis is especially useful for mitigating mash-ups or malicious JavaScript extensions (both

are described in Subsection 2.3.1).

Data-flow analysis is a hybrid analysis, because inserting data-taints is achieved by using

dynamic source code rewriting, also the data taints propagation needs the help of dynamic

execution of tainted JavaScript, but after all, the checking method in most case is static anal-

ysis by checking the taints. There are quite a lot of papers that choose using this technique

such as Paper [Vogt et al., 2007], Spectator [Livshits and Cui, 2008], Paper [Jang et al., 2010],

Paper [Chugh et al., 2009], VEX [Bandhakavi et al., 2010], and [Djeric and Goel, 2010].

Comparison between static analysis and dynamic analysis Table 2.1 describes the advantages

and limitations of static analysis and dynamic analysis. Static analysis can not mitigate the attacks

targeting runtime code execution such as obfuscation, but it can cover all possible code paths.

Dynamic analysis can mitigate the attacks such as obfuscation as a complementary solution to

static analysis, but it can only analysis the code that is executed at run-time, which means partial

of the code, which is not covered and executed can not be analysed by dynamic analysis.
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2.4.3 Prevention techniques

Prevention techniques aim at protecting clients without analysing JavaScript code. Mainly

there are 4 existing prevention techniques:

1. Code rewriting

Code rewriting is a very general prevention technique. The goal is to rewrite the potentially-

malicious code into safe code. Usually code rewriting technique is applied with defining

new secure subset of JavaScript code together. Another usage of code rewriting is the en-

forcement of policies, which means inserting policy-check code into source code.

2. Defining secure subset of JavaScript

The purpose of this prevention technique is to enforce the usage of a secure subset of

JavaScript. One example is FBJS [Facebook, 2012], which is a subset of JavaScript defined by

Facebook, developers are forced to use FBJS to write web applications for facebook. ADsafe,

another subset of JavaScript that is powerful enough to allow third-party code to perform

valuable interactions, while at the same time preventing malicious or accidental damage or

intrusion.

3. Filtering

In JavaScript security field, filtering is a common technique to avoid executing obviously

malicious JavaScript code. The decision relies on pre-defined heuristics, which can be match-

ing code-fragment patterns or keywords filtering (e.g., no use of eval()).

4. Wrapping

Wrapping has two usages: JavaScript API wrapping and browser DOM wrapping. JavaScript

API wrapping is used usually to protect the usage of security-related functions such as

eval() by transform it into another new function, developer will be forced to use the new

function instead of the original one, during the execution of the code, new function will

be compiled back to the original function first, then interpreted by browser. The idea of

browser DOM wrapping is similar to JavaScript API wrapping, original DOM has its own

image during the code execution. All modifications act on the image DOM. This technique

requires to instrument the browser interpreter.

In practice, these prevention techniques are usually used together. There are 7 papers: Browser-

Shield [Reis et al., 2006], Caja [Mark S. Miller, 2007], paper [Maffeis et al., 2009], paper [Phung

et al., 2009], paper [Sergio Maffeis, 2009], paper [Dongseok Jang, 2010], paper[Finifter et al., 2010]

that describe how these techniques work together. We will discuss these papers in detail in Chap-

ter 3.

2.5 Correlation between threats and mitigation techniques

In this section, we describe what class of mitigation approaches are effective against what

combination of different attacking vectors, evasions and goals. To this end, we organized all

referenced papers into two tables (Table 2.2 and 2.3), from which we can observe that:

1. Data-flow analysis is widely used for detecting malicious code that leverage JavaScript ex-

tensions, mash-ups and inclusion of code from untrusted third parties.
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2. Defining secure subset of JavaScript is useful to mitigate mash-ups or untrusted third party

code.

3. Rewriting/Filtering/Wrapping is usually combined and used with data-flow and defining

secure subset of JavaScript.

4. Pure static analysis is not widely used.

5. Hybrid and dynamic analysis are widely used, and machine learning are introduced in from

2009.

6. In mitigation approaches that use hybrid analysis, static analysis component usually ex-

tracts static features for machine learning or statically analyse the report that is generated

by dynamic analysis component.
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None Obfuscation Environment Matching

XSS Dynamic analysis:

[Hallaraker and Vigna, 2005]

[Kirda et al., 2006]

[Cao et al., 2012]

Hybrid/Data-flow:

[Vogt et al., 2007]

Mash-up Static analysis:

[Barth et al., 2009]

[Guarnieri and Livshits, 2009]

[Finifter et al., 2010]

[Taly et al., 2011]

Dynamic analysis:

[Terrace et al., 2012]

Hybrid/Data-flow:

[Chugh et al., 2009]

[Dongseok Jang, 2010]

Prevention::

[Phung et al., 2009]

[Maffeis et al., 2009]

[Maffeis et al., 2010]

[Mark S. Miller, 2007]

[Dongseok Jang, 2010]

[Finifter et al., 2010]

[Chugh et al., 2009]

JavaScript Extension Hybrid/Data-flow:

[Dhawan and Ganapathy, 2009]

[Bandhakavi et al., 2010]

[Djeric and Goel, 2010]

Malicious JavaScript Prevention: Hybrid: Dynamic analysis:

[Reis et al., 2006] [Likarish et al., 2009] [Kolbitsch et al., 2012]

Hybrid/Data-flow:

[Livshits and Cui, 2008]

[Jang et al., 2010]

[Curtsinger et al., 2011]

Dynamic analysis:

[Dewald et al., 2010]

[Reis et al., 2006]

PDF with embedded JavaScript Static analysis:

[Laskov and Srndic, 2011]

Hybrid:

[Tzermias et al., 2011]

None Dynamic analysis:

[Peck, 2007]

Hybrid:

[Lu and Debray, 2012]

Table 2.2: Papers the propose mitigation techniques against vectors and evasions.
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None Obfuscation Heap Spraying Environment Matching

Drive-By Download Hybrid: Hybrid: Dynamic: Hybrid:

[Rieck et al., 2010] [Cova et al., 2010] [Egele et al., 2009] [Cova et al., 2010]

Dynamic:

[Song et al., 2010]

[Heiderich et al., 2011]

None Hybrid:

[Ratanaworabhan et al., 2009]

Table 2.3: Papers the propose mitigation techniques against goals, techniques and evasions.



Chapter 3

Detailed survey and comparison of

research approaches

In this chapter, we describe in detail all referenced papers that propose mitigation approaches.

We organize these papers according to the targets that their approaches mitigate, which are vec-

tors, evasions, techniques or sub-goal: drive-by download. Some papers target a combination of

vectors and evasions; we explain these papers under the section of main target they address.

Since some papers consider malicious JavaScript itself without mitigating any specific vector

or evasion, we describe these papers in an individual section: malicious JavaScript. Moreover,

there are papers that target a more general goal, drive-by download, we decide to explain these

papers together in another single section.

Besides the sections we have mentioned, the rest of the sections are:

• XSS vulnerabilities

• Environment matching

• Obfuscation

• JavaScript extensions

• Mash-ups

• PDFs with embedded JavaScript

• Heap spraying

At last, totally we have 9 sections in this chapter.

3.1 Malicious JavaScript

In this section, we describe 5 papers in detail that target malicious JavaScript without mit-

igating any specific vector or evasion. We find that all these papers propose hybrid analysis

technique.

• ADSandbox: sandboxing JavaScript to fight malicious websites [Dewald et al., 2010]

Classification:

Hybrid analysis.

26
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Description:

Fig. 3.1 shows the architecture of ADSandbox. The core of ADSandbox is a controlled

execution environment (sandbox) for JavaScript. It utilizes Mozilla JavaScript engine,

SpiderMonkey, to execute JavaScript programs and log code behaviour during the exe-

cution. Afterwards, the system uses predefined heuristics on the resulting log to detect

malicious behaviour. All this is implemented within a browser helper object (BHO)

that interrupts any navigation process and initiates the analysis of the target URL by

the sandbox.

At the lowest level, two types of static analysis of the source code are performed: (1)

static IFrame/same origin analysis that detects every IFrame on a website and anal-

yses properties such as width, height, position to decide whether this IFrame comes

from a website with malicious JavaScript code. (2) static JavaScript analysis that de-

tects the manipulation of an object’s prototype or the use of the eval function. The

next level involves dynamic analysis on the behaviours of the JavaScript programs

that are embedded in the website. The dynamic analysis is performed in 3 phases: (1)

JavaScript source code is extracted from the HTML code, then passed and wrapped

into JavaScriptExecution Object, which is newly defined. (2) The JavaScript execution

creates a new instance of SpiderMonkey and executes the given ”JavaScriptExecution

Object”. SpiderMonkey on the other hand, is instrumented to interpreter ”JavaScrip-

tExecution Object”. (3) During execution, each time an JavaScript object is accessed, it

will trigger a corresponding static callback function of the JavaScriptExecution Object,

so every access to every JavaScript object is recognized and logged.

The execution log is searched for patterns that reveal typical malicious behaviour.

These patterns are implemented as regular expressions, which allow efficient match-

ing. In total, they define seven malicious behaviour patterns to detect a range of at-

tacks such as cookie stealing, file downloads and heap-spraying attacks. For example,

they search in the execution log if the JavaScript uses the function SaveToFile() or

run(), which are often used together, to save byte-code into a file and then run this

file. The corresponding regular expression pattern is CONVERT (SaveToFile|Run)

TO A FUNCTION

• Spectator: detection and containment of JavaScript worms [Livshits and Cui, 2008]

Classification:

Hybrid analysis, Data-flow analysis.

Description:

Spectator is an automatic detection and containment solution for malicious JavaScript.

Spectator performs data tainting (described here in Subsection 2.4.2) by observing and

tagging the data-flow between the clients and the web application. When a data-taint

propagates too far, a warning is reported.

The solution proposed in this paper seems quite similar to Paper [Vogt et al., 2007].

They both use data-flow analysis. The key difference is: in Paper [Vogt et al., 2007], data

tainting is implemented by analysing JavaScript code on the client side. In this paper,

it requires the cooperation both on the client side and on the server side. Spectator tags

both HTTP request and response, the criteria is to find long propagation chain.

The scenario is shown is Fig. 3.2. Whenever a user attempts to download a page con-

taining Spectator tags, the following steps are taken:
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Figure 3.1: System overview of ADSandbox. Source: [Dewald et al., 2010].

1. The tagged page is retrieved from the server.

2. The Spectator proxy examines the page. If the page contains tags, a new session ID

is created and associated with the list of tags in the page. The tags are stripped from

the page and are never seen by the browser or any malicious content executing

therein.

3. The modified page augmented with the session ID stored in a cookie (referred to

below as Spectator cookie) is passed to the browser.

Whenever an upload containing HTML is observed, the following steps are taken:

1. The client issues an HTTP request containing HTML and a new tagged content

(e.g., a new piece of JavaScript code that is tagged) for that upload. If a Spectator

cookie is found on the client, it is automatically sent to Spectator by the browser.

2. if the request has a valid session ID contained in a Spectator cookie attached to

the request, the list of tags it corresponds is looked up and, for every tag, links

are added to the propagation graph. The request is not propagated further if the

Spectator detection algorithm decides that the request is part of malicious code

propagation.

3. Finally, the request augmented with the newly created tag is uploaded and stored

at the server.

The advantages of Spectator are:

1. Spectator, not only can detect malicious JavaScript, but also contain the propaga-

tion of malicious JavaScript code.

2. Spectator can deal with rapid zero-day attacks as well as malicious code that dis-

guise their presence with slow propagation.

• An empirical study of privacy-violating information flows in JavaScript web applications

[Jang et al., 2010]

Classification:

Hybrid analysis, data-flow analysis.
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Figure 3.2: Spectator architecture. Source: [Livshits and Cui, 2008].

Description:

This approach uses data-flow analysis and it consists of three steps:

1. designed an expressive, fine-grained information flow policy language that allows

to specify and detect different kinds of privacy-violating flows in JavaScript code.

A fine-grained information flow policy is specified by defining taints, injection

taints and checking taints. A taint can be any JavaScript object, e.g., a URL string

denoting the provenance of a given piece of information. Policy is enforced by

automatically rewriting the code using the specified injection and checking taints.

2. implement a new rewriting-based JavaScript information flow engine within the

Chrome browser.

3. used the enhanced browser to conduct a large-scale empirical study over the 50,000

websites of four privacy-violating flows: cookie stealing, location hijacking, his-

tory sniffing, and behaviour tracking.

There are 4 important policies that are considered:

1. document:cookie should remain confidential.

2. document:location should not be influenced.

3. same origin/domain policy (same as described in paper[Hallaraker and Vigna,

2005].

4. white-list policy (If a JavaScript’s origin is within the white-list predefined, the

JavaScript is considered safe anyway).

• ZOZZLE: fast and precise in-browser JavaScript malware detection [Curtsinger et al.,

2011]

Classification:

Hybrid analysis.

Description:

ZOZZLE is a mostly static JavaScript malware detector that is fast enough to be used

in a browser. While its analysis is entirely static, ZOZZLE has a runtime component to

address the issue of JavaScript obfuscation (described here in Subsection 2.3.1). The dy-

namic analysis component monitors functions such as eval() and document.write().
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Figure 3.3: ZOZZLE training process. Source: [Curtsinger et al., 2011].

The unfolded JavaScript then is passed to a static classifier that is trained based on fea-

tures that are extracted from JavaScript AST (described herein Subsection 2.4.2)

Machine learning is applied to learn the characteristic features of malicious JavaScript.

Specifically, a feature consists of two parts: a context in which it appears (such as a

loop, conditional, try/catch block, etc.) and the text (or some sub-string) of the AST

node. To limit the possible number of features, only features from specific nodes of

JavaScript AST are extracted: expressions and variable declarations. Finally, they use

a Bayesian classifier to build the knowledge model. Fig. 3.3 illustrates the learning

process.

The accuracy of ZOZZLE relies on the correctness of the knowledge learned by ma-

chine learning from malicious JavaScript samples. On another word, it highly depends

on the feature robustness of the knowledge model.

• BrowserShield: vulnerability-driven filtering of dynamic HTML [Reis et al., 2006]

Classification:

Prevention, dynamic analysis (sandbox)

Description:

The approach proposed in this paper is to translate HTML pages and any embed-

ded scripts including JavaScript into safe equivalents before they are rendered by the

browser. The safe equivalent pages contain logic to recursively apply runtime checks
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Figure 3.4: Deployment of BrowserShield. Source: [Reis et al., 2006].

Figure 3.5: HTML and script translation of BrowserShield. Source: [Reis et al., 2006].

to dynamically generated or modified web content, based on known vulnerabilities

(which is also a limitation for BrowserShield). Fig. 3.4 shows the deployment of Browser-

Shield to protect the client.

In BrowserShield, the translation is done separately in two processes. One is HTML

translation, another is script translation, we use Fig. 3.5 to illustrate examples for trans-

lation.

To achieve complete interposition, runtime checks are injected to interpose on function

calls, JavaScript object method calls, JavaScript object property accesses, JavaScript ob-

ject creation, and control constructs.

3.2 XSS vulnerabilities

In this section, there are 3 papers regarding mitigation against XSS vulnerabilities from 2005

to 2012. All these 3 approaches need to use dynamic analysis technique.

• Detecting Malicious JavaScript Code in Mozilla [Hallaraker and Vigna, 2005]

Classification:

Dynamic analysis.

Description:

This paper is the first paper that gazes on JavaScript security issues. It rises the prob-

lem of malicious JavaScript injection through XSS vulnerabilities, and the solution
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that it proposes uses dynamic analysis (instrumented interpreter) based on monitoring

JavaScript code execution and compare the execution behaviour to pre-defined high-

level policies. In detail, this approach can be divided into 2 components: auditing

system and IDS (Intrusion Detection System). The auditing system is responsible for

collecting information about JavaScript execution. Based on these information, IDS

can judge whether the running JavaScript code is malicious or not. The auditing sys-

tem is integrated with Spider Monkey, a JavaScript Interpreter, to audit method calls

and property getters and setters. For the IDS, they propose a policy-based IDS, and the

two most important policies are same-origin policy and signed-script policy. The same-

origin policy prevents documents or scripts loaded from one origin (i.e., a web server),

from getting or setting properties of a document from a different origin. In this context,

same origin means same protocol, host, and port. This policy provides the foundation

for isolating one script from another, and ensures that a document downloaded from

one source cannot be changed by JavaScript code downloaded from another origin.

The signed-script policy was developed to give JavaScript more functionality and give

users the option to define a finer-grained security policy. Script signing allows a script

to get out of the auditing and is similar to the mechanisms used for signed Java applets.

The key difference between this approach and sand-boxing mechanism such as AD-

Sandbox[Dewald et al., 2010], paper [Terrace et al., 2012] is that sandbox restricts the

access to the resources such as API and private data, but the authority given by sand-

box is not based on the dynamic behaviour of JavaScript code, so the authority might

be given in a mistake that cause a successful attack (an example is described here in

Subsection 2.4.2). But this approach suggests logging all the actual behaviour of the

JavaScript code, so it will avoid this problem if necessary behaviour is logged and the

auditing system is perfect for all the attacks (which in reality the auditing system is not

capable to detect all the attacks).

The main limitation of this approach is that it is only applicable to protect known vul-

nerabilities and the performance highly depends on the efficiency of the auditing sys-

tem.

• Pathcutter: Severing the self-propagation path of XSS JavaScript worms in social web

networks [Cao et al., 2012]

Classification:

Dynamic analysis.

Description:

The tool that this paper propose uses dynamic analysis, which aims at blocking the

propagation of malicious JavaScript through XSS vulnerabilities. Pathcutter works by

blocking two critical steps in the propagation path: (i) DOM access to different views

(a portion of a web application) at the client side and (ii) unauthorized HTTP request to

the server. To achieve these two goals, Pathcutter proposes two integral mechanisms:

view separation and request authentication. For view separation, they use a solution

proposed by MiMoSA [Balzarotti et al., 2007] and for request authentication this paper

makes use of [Barth et al., 2008].

The working progress of Pathcutter is:

1. Dividing a web application/webpage into different views.

2. Isolating the different views at the client side.
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Object Tainted properties

Document Cookie, domain, forms, lastModified, links, referrer, title, URL

Form action

Any form input element checked, defaultchecked, defaultvaule, name, selectedindex, tostring, value

History current, next, previous, tostring

Select option defaultselected, selected, text, value

Location and link hash, host, hostname, href, pathname, port, protocol, search, tostring

Window default status, status

Table 3.1: Initial source of tainted values. Source: [Vogt et al., 2007].

3. If the request is from a view that has no right to perform a specific action, the

request is denied, which means the potential propagation is stopped.

This paper is interesting because it is the only paper we found that targets stopping the

propagation of malicious JavaScript.

• Cross-site scripting prevention with dynamic data tainting and static analysis [Vogt et al.,

2007]

Classification:

Hybrid analysis, Data-flow analysis.

Description:

The solution proposed in the paper uses data-flow analysis. The information flow of

sensitive data is tracked inside the JavaScript engine of the browser. Unfortunately, it

is not possible to detect all information flows dynamically. To address this limitation,

an additional static analysis component is used to complement the dynamic mecha-

nism. This static analysis component is invoked on-demand and covers those cases

that cannot be decided dynamically. The part of dynamic analysis allows to precisely

track sensitive information with low runtime overhead. By switching to static analy-

sis when necessary, the system can provide stronger security in the face of malevolent

attack code.

Table. 3.1 shows all the sensitive information that is tracked. Also, JavaScript programs

that are part of a web page are parsed and compiled into an internal byte code repre-

sentation. These byte code instructions are then interpreted by the JavaScript engine.

To track the use of sensitive information by JavaScript programs, they have extended

the JavaScript engine. More precisely, semantics of the byte code instructions has been

extended so that taint information is correctly propagated.

When tainted data (described here in Subsection 2.4.2) is about to be transferred to

third party code (described here in Subsection 2.3.1), different kinds of actions can be

taken. Examples are logging, preventing the transfer, or stopping the program with an

error.

3.3 Environment matching

There is a very important paper that target this vector: environment matching. It is proposed

in 2012. To detect the behaviour of environment matching, it does require code execution.

• Rozzle: De-cloaking Internet Malware [Kolbitsch et al., 2012]
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Classification:

Dynamic analysis (VM-based).

Description:

The security issue that this paper focuses on is environment matching /environment-

specific attack. To solve this issue, this paper proposes Rozzle, a JavaScript multi-

execution virtual machine (VM-based), as a way to explore multi-path execution. Roz-

zle is an enhancement or amplification technology, designed to improve the efficiency

of both static and runtime JavaScript malware detection.

The key technique that is used by Rozzle is Symbolic Execution. Symbolic Execu-

tion [Saxena et al., 2010]refers to the analysis of programs by tracking symbolic rather

than actual values, a case of abstract interpretation. The key idea behind Rozzle is to

execute all possible code paths whenever it encounters control flow branching that is

dependent on the environment. For example, in the case of an if statement, Rozzle

will execute both branches, one after another. During code multi-path execution, weak

updates are performed, in other words, the second assignment to variable does not

override, but adds to the first value.

A limitation of Rozzle is that it can be evaded by server-side cloaking (described here

in Subsection 2.3.1), or if Rozzle itself is detected.

3.4 Obfuscation

Obfuscation is a commonly used technique. In this section, we describe 3 papers that target it.

As we have explained, obfuscation is an example to show the dynamic feature of JavaScript, so

to detect obfuscated malicious JavaScript code, the mitigation approach must at least contain one

dynamic analysis component.

• Caffeine Monkey [Peck, 2007]

Classification:

Dynamic analysis (sandbox).

Description:

This paper introduces the obfuscation techniques that they address: white-space ran-

domization, block randomization and the usage of some common functions for ob-

fuscation such as eval(), document.write(), String.fromCharcode(). In this

paper a sandbox is used to execute JavaScript code and during the execution the final

unfolded JavaScript code can be recorded. To detect malicious JavaScript, the function

calls are counted. If the percentage of specific function calls is above a threshold, then

this piece of JavaScript code is supposed to be malicious.

This paper also does a survey on the wild using their approach, they found that be-

nign JavaScript makes significant use of document.write()method while malicious

JavaScript makes relatively more use of string instantiation.

This paper is the first paper that formally address the problem of obfuscation and pro-

vides a simple, basic solution for further improvement.

• Obfuscated malicious JavaScript detection using classification techniques [Likarish et al.,

2009]
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Figure 3.6: De-obfuscation process. Source: [Lu and Debray, 2012].

Classification:

Hybrid analysis.

Description:

The approach proposed by this paper is very similar to Wepawet [Cova et al., 2010].

It is also based on applying machine learning to the features of obfuscated malicious

JavaScript. There are two differences that varies from this paper to Wepawet [Cova

et al., 2010]: First, they extract 65 features in this paper, which are different (JavaScript

keywords and symbols accounted for 50 of them). Among all the features, there are 5

features that are most highly correlated with malicious JavaScript:

1. human readable

2. the use of the JavaScript keyword eval

3. the percentage of the script that was white-space

4. the average string length

5. the average characters per line

The features they extract require the usage of both static analysis and dynamic analysis.

Second, they use not only one machine learning technique, but Naive Bayes, Alternat-

ing Decision Tree (ADTree), Support Vector Machines (SVM) together and the RIPPER

rule learner is used as a classifier module.

• Automatic Simplification of Obfuscated JavaScript Code: A Semantics-Based Approach

[Lu and Debray, 2012]

Classification:

Hybrid analysis.

Description:

This paper propose another approach to de-obfuscate JavaScript code. Fig. 3.6 shows

the de-obfuscation process, which consists of the following steps:

1. Use an instrumented interpreter to obtain an execution trace (including function

calls, global variables, function references, document.write(), document ele-

ments and unfolded code) for the JavaScript code under consideration.

2. Construct a control flow graph from this trace to determine the structure of the

code that is executed.

3. Use dynamic slicing algorithm to identify instructions that are relevant to the ob-

servable behaviour of the program. Ideally, computing slices for the arguments

of the system calls made by the program. However, the actual system calls are

typically made from external library routines that appear as native methods. As a

proxy for system calls, therefore, the implementation of this paper computes slices

for the arguments passed to any native function.
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4. Decompile execution trace to an AST, and label all the nodes constructed from

resulting set of relevant instructions.

5. Eliminate goto statements from the AST, then traverse it to generate de-obfuscated

source code by printing only labelled syntax tree nodes.

The advantage of this approach is that the code obtained is semantically equivalent to

the original code but has obfuscations simplified away, thereby exposing the core logic

of the computation performed by the original code. The resulting code can then be

examined manually or fed to other analysis tools for further processing.

3.5 JavaScript extensions

For commercial reasons and to improve users experience, there are a lot of browser extensions

that are developed by using JavaScript. We think this is one of the most discovered attacking

vectors in real life. In this section, we prepare 3 papers. We find that data-flow analysis is effective

against this vector, because it can monitor the data flow between browser extensions and browser

interpreter to protect private data leaking by cutting the flow.

• Securing script-based extensibility in web browsers [Djeric and Goel, 2010]

Classification:

Hybrid analysis, Data-flow analysis.

Description:

The solution of this paper uses data-flow analysis. The approach divides code into 2

classes: privileged code and unprivileged code. It guarantees that tainted data (de-

scribed here in Subsection 2.4.2) will not be executed as privileged code. Tainting all

data from untrusted origins and propagating the tainted data throughout the browser

provides a much stronger basis for making security decisions.

The approach uses different policies based on the privilege level of the executing script.

Unprivileged code is completely untrusted and may be malicious, so it requires un-

conditionally tainting all script variables created or modified by executing scripts orig-

inating from untrusted (tainted) documents. For privileged scripts, they use standard

taint propagation rules (described here in Subsection 2.4.2) that mark the output of

JavaScript instructions as tainted when the instruction inputs are tainted. Tainting al-

lows to mark and track the influence of untrusted code throughout the browser.

They use both compilation detector (a proactive measure to prevent tainted data from

being compiled to privileged byte code, even if it is never executed) and invocation

detector (monitor script execution for situations where tainted references to script or

native functions are invoked inside the interpreter and result in the creation of privi-

leged stack frames) as detection components.

• Analysing Information Flow in JavaScript-Based Browser Extensions [Dhawan and Gana-

pathy, 2009]

Classification:

Data-flow analysis.

Description:
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Entity Sensitive attributes/Method of access

1. Document cookie, domain, forms, lastModified, links, referer, title, URL

2. Form action

3. Form input checked, defaultChecked, defaultVaule,name, selectedIndex, value, value

4. History current, next, previous, toString

5. Select option defaultSelected, selected, text, value

6. Location/Link hash, host, hostname, href, pathname, port, protocol, search, toString

7. Window defaultStatus, status

8. Files/Streams nsIInputStream, nsIFileInputStream, nsILocalFile, nsIFile

9. Passwords nsIPasswordManager, nsIPasswordManagerInternal

10. Cookies nsICookieService, nsICookieManager

11. Preferences nsIPrefService, nsIPrefBranch

12. Bookmarks nsIRDFDataSource

Table 3.2: Sensitive sources of Sabre. Source: [Dhawan and Ganapathy, 2009].

Entity Method of access

1. Files/Process nsIOutputStream, nsIFileOutputStream, nsIFile, nsIProcess, nsIDownload

2. Network nsIXMLHTTPRequest, nsIHTTPChannel, nsITransport

3. DOM Submission of sensitive DOM node over the network

Table 3.3: Insensitive sinks of Sabre. Source: [Dhawan and Ganapathy, 2009].

The tool proposed in this paper is Sabre, which provides a data-flow analysis solution.

It tracks data flow at the level of JavaScript instructions and does so within the browser.

Sabre achieves three goals:

1. Monitor JavaScript execution. Sabre monitors all JavaScript code executed by the

browser. This includes code in web applications, JavaScript extensions, as well as

JavaScript code executed by the browser interpreter.

2. Ease action attribution. When Sabre reports an information flow violation by a

JavaScript extension, an analyst may need to determine whether the violation is

because of an attack or whether the offending flow is part of the advertised be-

haviour of the JavaScript extension. In the latter case, the analyst must white-list

the flow. To do so, it is important to allow for easy action attribution, i.e, an analyst

must be able to quickly locate the JavaScript code that caused the information flow

violation and determine whether the offending flow must be white-listed.

3. Track data flow across browser subsystems (e.g., HTML, XUL and SVG elements

and XPCOM).

To implement the data flow system, they modifies Spider Monkey, a JavaScript inter-

preter, to include security label/taint(described here in Subsection 2.4.2) for document

object. They also modify the implementation of Spider Monkey to allow the propaga-

tion of security label/taint. Sabre detects flows from sensitive sources to low sensitivity

sinks. Table 3.2 and 3.3 shows the considered sensitive sources and sinks. Sabre alerts

for an data-flow violation only when an document object is modified by JavaScript

extension.

• VEX: vetting browser extensions for security vulnerabilities [Bandhakavi et al., 2010]
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Figure 3.7: The overall analysis process of VEX. Source: [Bandhakavi et al., 2010].

Classification:

Data-flow analysis.

Description:

This paper proposes a solution similar to paper[Dhawan and Ganapathy, 2009]. They

both check the data flow between the sources and the sinks that are important for

security issues. The only difference is that the analysis is applied on a core subset of

JavaScript (standard procedure of data-flow analysis is described here in Subsection

2.4.2) in this paper. The overall analysis process is shown in Fig. 3.7. Based on the

result this analysis, five malicious patterns are defined for detection.

Specifically, VEX tracks flows from Resource Description Framework (RDF) data (e.g.,

bookmarks) to innerHTML, content document data to eval(), content document data

to innerHTML, evalInSandbox return objects used improperly, or wrappedJSObject

return object used improperly. For example, the source location is any point where the

program accesses window.content.document, and the source object is the object

that is returned from this call. The sink locations are eval statements and the sink

objects are the objects being eval-ed.

RDF is a family of World Wide Web Consortium (W3C) specifications, originally de-

signed as a metadata data model. It has come to be used as a general method for con-

ceptual description or modelling of information that is implemented in web resources,

using a variety of syntax notations and data serialization formats.

3.6 Mash-ups

As explained in Subsection 2.3.1. Mash-up is a vector that can cause object leakage to un-

trusted third party code. We find that this vector is also widely discovered in real life and there are

lots of papers that target mitigating mash-ups. In this section, we select 11 papers. Mainly, there

are 2 classes of solutions for mitigating this vector: (1) Define new secure subset of JavaScript,

force developer to use new subset or rewrite original JavaScript code to new subset before render-

ing the code. (2) Data-flow analysis is used to monitor whether private data is leaked to untrusted

third party.

• JavaScript in JavaScript (js.js): sandboxing third-party scripts [Terrace et al., 2012]

Classification:

Dynamic analysis (sandbox).
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Figure 3.8: js.js architecture for example application. Source: [Terrace et al., 2012].

Description:

This paper proposes a sandbox. Fig. 3.8 shows an example of JavaScript application us-

ing js.js. A sand-boxed script has no access to any global variables except for JavaScript

built-in types (e.g., Array, Date, and String), the JavaScript application can add addi-

tional names including global names like window and document. The js.js API allows

an application, for example, to add a global name called alert that, when called in-

side the sandbox, calls a native JavaScript function. This way, the JavaScript applica-

tion (the mediator in Fig. 3.8)using js.js has complete control over the sand-boxed script

since the only access the sandbox is through these user defined methods. Thus these

methods must give the script access only to the elements that the user allows.

• Cross-origin JavaScript capability leaks: detection, exploitation, and defence [Barth et al.,

2009]

Classification:

Static analysis (points-to analysis).

Description:

The core idea of this paper is to get the points-to relationship (described here in Sub-

section 2.4.2) of JavaScript objects in the heap by using points-to analysis. From this

relationship, they define the security origin of each JavaScript object by tracing its pro-

totype chain. They then search for edges that connect objects in one security origin with

objects in another security origin. These suspicious edges likely represent cross-origin

JavaScript capability leaks.

They compute the security origin of each object directly from the is-prototype-of re-

lation (as described here in Subsection 2.4.2) in the heap graph using the following

algorithm:

1. Let obj be the JavaScript object in question.

2. If obj was created with a non-null prototype, assign obj the same origin as its

prototype.
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Figure 3.9: GATEKEEPER deployment. Source: [Guarnieri and Livshits, 2009].

3. Otherwise, obj must be the object prototype for some document d. In that case,

assign obj the security origin of d (i.e., the scheme, host, and port of that d’s URL).

Points-to analysis can generate heap graph, if you are interested to how to do points-to

analysis, you can refer to [Jang and Choe, 2009].

Besides proposing a detection approach, this paper recommends that to mitigate capa-

bility leakage, access control checks should be added into JavaScript interpreter.

• GATEKEEPER: mostly static enforcement of security and reliability policies for JavaScript

code [Guarnieri and Livshits, 2009]

Classification:

Static analysis (points-to analysis and AST-based analysis).

Description:

This paper proposes GATEKEEPER, a mostly static approach for enforcing security

and reliability policies for JavaScript programs. Fig. 3.10 shows the analysis process

of GATEKEEPER. The policies includes restricting widget capabilities, making sure

built-in objects are not modified, preventing code injection attempts, redirect and cross-

site scripting detection, preventing global name-space pollution, taint checking. Since

JavaScript relies on heap-based allocation for the objects it creates, this paper uses

points-to analysis on JavaScript. Since a sound and precise points-to analysis of the

full JavaScript language is very hard to construct. Therefore, they propose a points-

to analysis for JavaScript SAFE, a realistic subset that includes prototypes and reflec-

tive language constructs. To handle programs outside of the JavaScript SAFE subset,

GATEKEEPER inserts runtime checks to preclude dynamic code introduction. On the

basis of points-to information, they demonstrate the utility of their approach by de-

scribing nine representative security and reliability policies that are checked by GATE-

KEEPER, meaning no false negatives are introduced. For example, alert routine shall

never be called and disallow changing properties of built-in objects such as Boolean,

Array, Date, Function, Math, Document and Window. These policies are expressed

in the form of succinct declarative data-log queries.

The deployment of Gatekeeper is shown in Fig. 3.9, Gatekeeper is used as a verifier for

widget before it is deployed on web server.

• Automated Analysis of Security-Critical JavaScript APIs [Taly et al., 2011]

Classification:

Static analysis(points-to based).

Description:
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Figure 3.10: GATEKEEPER analysis architecture. Source: [Guarnieri and Livshits, 2009].

The purpose of this paper is to prevent privacy leakage to untrusted third party JavaScript

code (described here in Subsection 2.3.1). The solution it proposes is to do points-to

analysis for the purpose of JavaScript API confinement. In this paper, points-to anal-

ysis is applied on a subset of JavaScript ”SESlight”. SESlight solves two challenges

related to the API Confinement: (1) All code has undeniable write access to the built-in

objects, which can be maliciously used to alter the behaviour of trusted code that make

use of built-in objects, and (2) code running inside eval() is unavailable statically,

so it is hard to know what global state that is accessed. The first problem is solved

by making all built-in objects, except the global object, transitively immutable, which

means that all their properties are immutable and the objects cannot be extended with

additional properties. Further, all built-in properties of the global object are made im-

mutable. The second problem is addressed by imposing the restriction that all calls

to eval() must specify an upper bound on the set of free variables of the code being

eval-ed.

After doing points-to analysis on a piece of JavaScript code, a conservative data-log

model of all API methods is generated. Besides, they encode attacker’s behaviours as

a set of data-log rules, whose consequence set is an abstraction of the set of all possible

invocations of all the API methods.

• Staged information flow for JavaScript [Chugh et al., 2009]

Classification:

Data-flow analysis.

Description:

This paper presents a data-flow analysis based approach for inferring the effects that a

piece of JavaScript has on the website, in order to ensure the confidentiality of private

data. Data flow can capture the fact that a particular value in the program affects an-

other value in the program. To handle dynamically loaded and generated JavaScript

code, they propose a framework for staging data flow properties. Staging consists of

statically computing as much of the data flow as possible based on the known code,

and leaving the remainder of the computation until more code becomes available. The

framework propagates data flow through the currently known code in order to com-

pute a minimal set of syntactic residual checks that are performed on the remaining

code when it is dynamically loaded. If a piece of dynamically generated code is filled

with other dynamically loaded code, then the staging framework recursively checks

the residual policy.

Their approach involves 2 related areas of research. First, they define a subset of

JavaScript, they call it ”Core JavaScript,” which capture the essence of JavaScript. Sec-

ond, in this approach, it provides a flow policy (refers to the residual policy in last

paragraph), which is a set of pairs of policy elements. A policy element is a program

variable or a hole (dynamic, unknown code). Each pair in the policy represents flow
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that is disallowed. The idea of pairs and the expression of JavaScript code comes from

set-constraint system, which you can refer to [Flanagan and Felleisen, 1999] and [Ko-

dumal and Aiken, 2005].

• Caja: Safe active content in sanitized JavaScript [Mark S. Miller, 2007]

Classification:

Prevention.

Description:

This paper propose a new subset of JavaScript: Caja to allow third party JavaScript

code safely combined into webpage. The main differences between Caja and complete

JavaScript are:

1. Forbidden names. Caja rejects all names ending with ” ” (double underscore).

2. Frozen objects. If an object is frozen, an attempt to set, add, or delete its properties

will throw an exception instead. Functions and prototypes are implicitly frozen.

In addition, the Caja programmer can explicitly freeze objects to prevent their di-

rect modification. All objects in the default global environment are immutable, or

transitively frozen.

3. No shared global environment. Each separately loaded code has its own global

environment, which inherits from the default global environment, isolating them

from each other.

4. Internal names. Property names ending in ” ” (single underscore) serve as pro-

tected instance variables. Such names can only appear to the right of ”this.”.

5. Sharp knives removed. Caja contains no ”with” or ”eval”.

Although, Caja imposes 5 restrictions already. There are additional issues peculiar

to JavaScript that must be dealt with, such as unconstrained properties of JavaScript

objects. To solve these issues, they propose a subset of Caja: Cajita with more static

and dynamic restrictions. For example, in Caja, an internal name is a property name

ending in ” ”. Such names are used for encapsulation in Caja but are prohibited in

Cajita. Cajita’s only encapsulation mechanism is lexical scoping.

• Isolating JavaScript with filters, rewriting, and wrappers [Maffeis et al., 2009]

Classification:

Prevention.

Description:

This paper describes the guiding principles for all other papers related to prevention

techniques. It formalize the problem of isolating JavaScript, and provide 3 techniques:

filtering, rewriting, wrapping to achieve that goal, even more, it provides feasible rules

to do filtering, rewriting and wrapping.

For example, to isolate blacklisted (predefined) JavaScript object properties, it provides

3 filtering rules:

1. Disallow all terms, which contain an identifier from the blacklist.

2. Disallow all terms containing any of the identifier eval, Function, or contructor.

3. Disallow all terms, which involve an identifier name beginning with $.

• Lightweight self-protecting JavaScript [Phung et al., 2009]
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Classification:

Prevention.

Description:

This paper introduces a solution to control JavaScript execution. The aim is to prevent

or modify inappropriate behaviour caused by e.g., malicious injected scripts or poorly

designed third-party code. The approach is based on rewriting the code so as to make it

self-protecting: the protection mechanism (security policy) is embedded into the code

itself and intercepts security relevant API calls. The solution is lightweight in that (i) it

does not require a modified browser, and (ii) it does not require any runtime parsing

and transformation of code (including dynamically generated code). As a result, the

method has low runtime overhead.

The security policies are based on the security relevant built-in method and the security

states. JavaScript variables might be used to store security states for security decisions

in security policies. For example, a policy: ”application should never raise more than

two pop-up windows” monitors the built-in method window.open and needs a secu-

rity state variable to count the number of pop-ups so far. When all policy checks are

embedded into the source code of a webpage, it is called self-protecting.

• Run-Time Enforcement of Secure JavaScript Subsets [Sergio Maffeis, 2009]

Classification:

Prevention.

Description:

This paper illustrates 2 fundamental issues of JavaScript isolation:

1. Regardless of the techniques adopted to enforce isolation, the ultimate goal is:

make sure that a piece of untrusted code does not access a certain set of global

variables and DOM such as Document and Cache.

2. While enforcing this constraint may seem easy, there are a number of subtleties re-

lated to the expressiveness and complexity of JavaScript. Common isolation tech-

niques include blacklisting certain properties, separating the name-spaces corre-

sponding to code in different trust domains, inserting runtime checks to prevent

illegal accesses, and wrapping sensitive objects to limit their accessibility.

This paper is similar to Caja [Mark S. Miller, 2007]. It studies how to combine runtime

checks with syntactic restrictions that leads to secure subsets of JavaScript. It proposes

two secure subsets of JavaScript that enforce isolation by means of synaptic restriction

such as disallowing identifiers eval, Function, Constructor, hasOwnProperty.

And it proposes three more semantic JavaScript subset that enforce runtime checks

such as rewriting every occurrence of this in the code into the expression NOGLOBAL(this).

• Rewriting-based Dynamic Information Flow for JavaScript [Dongseok Jang, 2010]

Classification:

Data-flow analysis.

Description:

This paper proposes a solution that is similar to Spectator [Livshits and Cui, 2008], pa-

per[Jang et al., 2010], and paper [Vogt et al., 2007]. The solution it proposes to mitigate

untrusted third party code (described here in Subsection 2.3.1) is the enforcement of
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policies. For example, the object-location (document; ’’location’’) describes

the object-location corresponding to the URL of loaded JavaScript code. An integrity

policy is a map from object-locations to URLs whose code is allowed to influence the

values stored at that object-location. The policies are enforced via a three-step process:

taint injection, taint propagation and taint checking. The only difference between this

paper and other similar papers is that this paper taints different JavaScript API and

variables.

• Preventing capability leaks in secure JavaScript subsets [Finifter et al., 2010]

Classification:

Static analysis, Prevention.

Description:

This paper proposes a subset of JavaScript to prevent capability leaks.

This secure JavaScript subset uses statically verified containment to prevent guests

from using three classes of JavaScript language features, which if left unchecked, an

attack could use these language features to escalate its privileges and interfere with the

host page.

– Global variables. This paper prevents third party code from reading or writing

global variables. In particular, it require that all variables are declared before they

are used (to prevent unbound variables from referring to the global scope) and

forbid obtaining a pointer to the global object (to prevent accessing global variables

as properties of the global object). For example, it bans the this keyword, which

can refer to the global object in some contexts.

– Dangerous properties. Even without access to global variables, third party code

might be able to interfere with the host page using a number of special properties

of objects. For example, if the third party code were able to access the construc-

tor property of objects, it is possible to manipulate the constructors used by the

host page. This paper implements this restriction by blacklisting a set of known-

dangerous property names.

– Unverified constructs. Because dynamically generated JavaScript code cannot be

verified statically, this paper also bans language constructs, such as eval() that

run dynamic script. In addition to dynamic code, this paper also bans dynamic

property access via the subscript operator (e.g., foo[bar]) because bar might con-

tain a dangerous property name at run time.

Compared to ADsafe, which only blacklist known attacks, they prove that ADsafe is

not perfect by monitoring the points-to relationship of objects in heap. Finally, they

come to conclusion that instead of blacklist known attacks, it is better to only white-list

known safe properties in a secure subset of JavaScript.

3.7 Drive-by download

Drive-by download is a common goal for JavaScript-based attacking. Since it requires a down-

loading behaviour, dynamic analysis technique is used to mitigate drive-by download. In this

section, we have 5 papers to describe how to mitigate drive-by download.

• Defending Browsers against Drive-by Downloads: Mitigating Heap-Spraying Code In-

jection Attacks [Egele et al., 2009]
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Classification:

Dynamic analysis (instrumented browser).

Description:

In this paper, a proof-of-concept implementation of a system that detects shell-code

based drive-by download attacks is presented. The idea is to check the variables

(strings) that are allocated by the browser (the script engine) when executing JavaScript.

The detection is integrated into the browser, and performed before control is trans-

ferred to the shell-code, thus, effectively thwarting the attack.

The major tasks achieved are:

– Tracking object (String) allocation:

More precisely, they added code to all points in the interpreter where string vari-

ables are created. These points were found at three locations: one for the allocation

of global string variables, one for local string variables, and one for strings that are

properties (members) of objects. The code added keeps track of the start address

of a new string variable and its length.

– Checking strings for shell-code:

They use Libemu to do the shell-code detection. If you are interested in libemu,

please refer to http://libemu.mwcollect.org/.

– Performance optimizations:

To reduce the performance penalty that is incurred when checking every string

that is allocated, two techniques are implemented: First, one can reduce the total

number of invocations of the emulation engine. While executing JavaScript core

functionality, a script is allowed to create string objects without checks, even ones

that contain shell-code. Second, one can reduce the amount of data that the emu-

lator needs to inspect, by only recording information on all created string objects,

and postpone emulation to the time at which control flow leaves the interpreter,

entering an external component or the browser. The approach supports techniques

to leverage speed-ups from both of these techniques.

• Preventing drive-by download via inter-module communication monitoring [Song et al.,

2010]

Classification:

Dynamic analysis.

Description:

This paper proposes a dynamic analysis solution to monitor inter-module (e.g., basic

HTML parsing, rendering engine, diverse plug-ins) communication (IMC) for detect-

ing and preventing known drive-by download attacks.

The proposed detection mechanism works as:

1. Monitoring the communications to the vulnerable modules (e.g., Adobe Flash Player,

Adobe Reader Plug-in) during a browsing session. They define three kinds of

events to stand for the whole procedure of IMC:

(a) Object creation. A creation of a component object indicates the beginning of a

new communication session.

(b) Method invocation. Invocations of methods constitute the main part of the

communication.

http://libemu.mwcollect.org/
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(c) Object free. The free of a component object indicates the end of the session.

2. Checking the communication content to identify known attacks, for improving the

detect precision; here they use vulnerability-based signatures instead of traditional

attack-based signatures. In more detail, they use symbolic constraint signature

introduced in [Brumley et al., 2006].

• IceShield: detection and mitigation of malicious websites with a frozen DOM [Heiderich

et al., 2011]

Classification:

Dynamic analysis, Prevention.

Description:

This paper proposes a dynamic analysis solution called in-line code analysis. In-line

code analysis does the de-obfuscation first to get the unfolded JavaScript code. Then

based on the behaviour of the code execution to decide whether it is a piece of mali-

cious JavaScript or not. Totally, there are 8 heuristics implemented by IceShield:

1. External domain injection: A script injects an external domain into an existing

HTML element, which can indicate malicious activity, for example, link or form

hijacking. They distinguish between injection of <embed>, <object>, <applet>,

and <script> tags, as well as, <iframe> injections.

2. Dangerous MIME type injection: A script applies a MIME type that is potentially

dangerous to an existing DOM object such as application/java-deployment-toolkit.

3. Suspicious Unicode characters: A string used as argument for a native method

containing characters indicating a code execution attempt.

4. Suspicious decoding results: Decoding functions like unescape() or decodeURIComponent()

that contain suspicious characters indicating code execution attempts.

5. Over-long decoding results: A decoding function like mentioned above receives

an over-long argument. For now, they use a threshold of 4,096 characters based on

our empirical evaluation of current attacks and benign sites.

6. Dangerous element creation: A script attempts to create an element that is often

used in malicious contexts for example, <iframe>, <script>, <applet> or sim-

ilar elements. They distinguish between elements being created with and without

an explicit name-space context.

7. URI/CLSID pattern in attribute setter : An element attribute is being applied with

an external URI, data/JavaScript URI or a Class ID (CLSID) string.

8. Dangerous tag injection via the innerHTML property: A script attempts to set an

existing element’s value with a string containing dangerous HTML elements such

as <iframe>, <object>, <script>, or <applet>.

The most innovative work they do is the freezing of the document object. To freeze the

document object, it is necessary to overwrite and wrap the native DOM methods into a

context that allows researchers to dynamically inspect the name of the called function

and its parameters during runtime. It is also possible to protect clients by overwriting

the suspicious argument with an empty string or add randomly dimensioned padding

to maliciously looking strings before passing them to the actual method.

IceShield can be neutralized in case an attacker deploys a malicious PDF, Java Applet,

or Flash without using any native DOM methods, and IceShield lacks of heuristics to

cover all attacks (e.g., ActiveX based attacks).

application/java-deployment-toolkit


CHAPTER 3. DETAILED SURVEY AND COMPARISON OF RESEARCH APPROACHES 47

• Detection and analysis of drive-by-download attacks and malicious JavaScript code [Cova

et al., 2010]

Classification:

Hybrid.analysis.

Description:

In this paper Wepawet is introduced. The idea is to use machine learning to build a

model of benign JavaScript code, such that when a new sample of JavaScript code does

not fit the model, it will be classified as malicious. This paper introduces features that

capture the following events:

– Redirection and cloaking

– De-obfuscation

– Environment preparation

– Exploitation

Totally there are 10 features selected by Wepawet:

1. Number and target of redirections

2. Browser personality and history-based differences

3. Ratio of string definitions and string uses

4. Number of dynamic code executions

5. Length of dynamically evaluated code

6. Number of bytes allocated through string operations

7. Number of likely shell-code strings

8. Number of instantiated components

9. Values of attributes and parameters in method calls

10. Sequences of method calls

All these features are based on the study of different attacks and should be able to

capture the behaviour or effect of the attacks. These features require the usage of both

static features and dynamic features.

• Cujo: efficient detection and prevention of drive-by-download attacks [Rieck et al., 2010]

Classification:

Hybrid analysis.

Description:

Fig. 3.11 shows the schematic description of Cujo. Cujo uses both static analysis and

dynamic analysis. The analysis they use are existing technologies, which are static

lexical analysis and ADSandbox [Dewald et al., 2010] dynamic analysis. After each

analysis, a report is generated. We provide an example of the reports in Fig. 3.12. A

big difference between Wepawet and Cujo is that Cujo does one more step: feature

extraction, which Wepawet does not do. The feature extraction builds on the concept

of q-grams, which has been widely studied in the field of intrusion detection. To unify

the representation of static and dynamic analysis, Cujo first partitions each report into

a sequence of words using white-space characters. Then a fixed-length window is

moved over each report and extracts subsequence of q words at each position, so-called

q-grams. For machine learning, Cujo uses SVM on q-gram.
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Figure 3.11: Schematic description of Cujo. Source: [Rieck et al., 2010].

Figure 3.12: Example of reports generated by Cujo. Up: Report of static analysis. Bottom: Report

of dynamic analysis. Source: [Rieck et al., 2010].
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Figure 3.13: Architecture of PJScan. Source: [Laskov and Srndic, 2011].

3.8 PDFs with embedded JavaScript

In this section, we have 2 papers mitigating PDFs with embedded JavaScript. To extract

JavaScript from PDF, static analysis technique is used.

• Static detection of malicious JavaScript-bearing PDF documents [Laskov and Srndic, 2011]

Classification:

Static analysis.

Description:

This paper proposes a tool named PJscan 3.13, which targets the detection of malicious

JavaScript embedded inside PDF document. PJscan is closely related to static analy-

sis techniques for detection of browser-based JavaScript attacks. The methodology is

based on lexical analysis of JavaScript code and uses machine learning to automati-

cally construct models from available data for subsequent classification of new data.

The difficulty is the extraction of JavaScript code from PDF documents. Not only be-

cause PDF is a very complex format, but also PDF is rich with features that can be used

for hiding the presence of JavaScript code. For example, it supports compression of

arbitrary objects as well as various encodings for the JavaScript content.

This paper studies the complex structure of PDF format, and indicates that JavaScript

code can be found at the following locations of the PDF object hierarchy:

1. After keyword /js

2. In catalog dictionary’s /AA entry

3. In catalog dictionary’s /OpenAction entry

4. In document’s name tree

5. In document’s Outline hierarchy

After the extraction of JavaScript code, static lexical analysis follows. The analysis is

based on the tokens as shown in Fig. 3.14. After this step, JavaScript code is tokenized.

Based on these tokens, machine learning can be applied on and build the model for

future detection.

• Combining static and dynamic analysis for the detection of malicious documents [Tzer-

mias et al., 2011]

Classification:

Hybrid analysis.
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Figure 3.14: Tokens’ definition in PJscan. Source: [Laskov and Srndic, 2011].

Figure 3.15: Overall architecture of MDscan. Source: [Tzermias et al., 2011].

Description:

The tool proposed in this paper is MDscan, which aims at analysing PDFs to protect

it from malicious JavaScript. PDF scanning in MDscan consists mainly of two phases.

In the first phase, MDscan analyses the input file and reconstructs the logical struc-

ture of the document by extracting all identified PDF objects, including objects that

contain JavaScript code. The extraction of JavaScript code from the objects is achieved

by searching codes after the keywords such as /JS, /OpenAction and /AA. In the

second phase, any JavaScript code found in the document is executed by an instru-

mented JavaScript interpreter, which at runtime can detect the presence of embedded

shell-code using Nemu[Polychronakis et al., 2010]. The overall design of MDscan is

presented in Fig. 3.15
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Figure 3.16: NOZZLE system architecture. Source: [Ratanaworabhan et al., 2009].

3.9 Heap spraying

As explained in Subsection 2.3.1, Heap spraying spreads NOP sled in heap. To detect this

spreading behaviour and shell-code that is injected into the heap, a dynamic analysis component

is essential. We describe a very important paper that specifically target this vector.

• NOZZLE: a defence against heap-spraying code injection attacks [Ratanaworabhan et al.,

2009]

Classification:

Hybrid analysis.

Description:

This paper propose a tool named NOZZLE. Its architecture is shown in Fig. 3.16. NOZ-

ZLE is a two-level approach to detect heap spraying attacks: scanning objects locally

while at the same time maintaining heap health metrics globally. At the individual

object level, NOZZLE performs lightweight interpretation of heap-allocated objects,

treating them as though they were code. This allows recognizing potentially unsafe

code by interpreting it within a safe environment, looking for malicious intent by static

analysis. In detail, NOZZLE scans heap objects to identify valid x86 code sequences,

disassembling the code and building a control flow graph. The analysis focuses on

detecting NOP sleds. Unfortunately, the density of the x86 instruction set makes the

contents of many objects look like executable code, and as a result, existing methods

lead to high false positive rates. To solve this problem they have developed a novel

approach to mitigate this problem using global heap health metrics, which effectively

distinguishes benign allocation behaviour from malicious attacks.

Although there are existing solutions for NOP sled detection such as [Akritidis et al.,

2005] and [Toth and Kruegel, 2002], but with high false positive since the lack of object

selection. NOZZLE attempts to discover objects in which control flow through the

object (the NOP sled) frequently reaches the same basic block(s), the assumption being

that an attacker wants to arrange it so that a random jump into the object will reach the

shell-code with the greatest probability.

Nozzle has the following limitations:

– Time-of-check to Time-of-use
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Because NOZZLE examines object contents only at specific times, this leads to a

potential time-of-check to time-of-use vulnerability. An attacker aware that NOZ-

ZLE was being used could allocate a benign object, wait until NOZZLE scans it,

and then rapidly change the object into a malicious one before executing the attack.

– Interpretation start offset

NOZZLE interprets the contents of objects as instructions starting at offset zero

in the object, which allows NOZZLE to detect the current generation of heap-

spraying exploits. However, if attackers are aware that NOZZLE is being used,

they could arrange to fool NOZZLE by inserting junk bytes at the start of objects.

– Threshold setting

The success of heap spraying is directly proportional to the density of dangerous

objects in the program heap, which is approximated by NOZZLE. Increasing the

number of sprayed malicious objects increases the attackers likelihood of success,

but at the same time, more sprayed objects will increase the likelihood that NOZ-

ZLE will detect the attack.

– Targeted jumps into pages

One approach to circumventing NOZZLE detection is for the attacker to eliminate

the large NOP sled that heap sprays typically use. This may be accomplished

by allocating page-size chunks of memory (or multiples thereof) and placing the

shell-code at fixed offsets on every page.

– Confusing control flow patterns

NOZZLE attempts to find basic blocks that act as sinks for random jumps into

objects. One approach that will confuse NOZZLE is to include a large number of

copies of shell-code in an object such that no one of them has a high surface area.
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Conclusions

In this chapter, we will indicate the next possible JavaScript-based threats and we suggest

possible ways to mitigate them in Section 4.1. Moreover, we draw some conclusions for the whole

thesis in Section 4.2

4.1 Future research directions

By studying the referenced papers, we find that from 2010, researchers start to realize that

there is a common limitation for their mitigation approaches such as described in Rozzle [Kol-

bitsch et al., 2012], Wepawet [Cova et al., 2010], they are weak against environment specific at-

tacks. If the mitigation approach/tool itself gets detected by malicious JavaScript code, then

malicious JavaScript code can choose not to reveal itself or launch different attacks. For exam-

ple, a piece of malicious JavaScript code can try to detect if NOZZLE [Ratanaworabhan et al.,

2009] exists in the customer’s machine as first step during code execution, then by simply using

an if branch, if NOZZLE exists, malicious JavaScript code does nothing, if no NOZZLE exists,

malicious JavaScript code can execute a piece of code that does heap spraying. There is a class

of evasion techniques called environment matching techniques (described in Subsection 2.3.1) to

detect existing mitigation approach or clients’ environment. Nowadays, there are 2 techniques

that can achieve such goal: fingerprinting and cloaking. We find that it is a reasonable trend for

attackers, when it becomes more and more difficult to invent new vector or technique to attack.

Facing this new JavaScript-based threat, we think there are two ways that can be considered

to mitigate it:

1. How to hide the existence of mitigation tool itself. For example, to implement mitigation

tools such as Gatekeeper [Guarnieri and Livshits, 2009], it is necessary to modify the original

JavaScript specification. As a consequence, to compile the code that suits the new specifi-

cation, modification on browser interpreter is essential. But the modification on browser

interpreter can be detect by JavaScript code when checking the browser information (e.g.,

browser version, available API name, global variable name) that is stored in the browser

header and cookie. We think a sandbox solution can help to hide the truth of using a

modified browser interpreter, the sandbox must implement browser environment mapping,

which means wrapping the whole modified browser environment including JavaScript API,

DOM and variables inside the sandbox, but from the outside the sandbox must appears like

an unmodified browser, which means JavaScript code can use all original JavaScript API or

variable without knowing that actually during code execution, another version of API or

variables are running in the sandbox instead.

53
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2. Detect and restrict the access to environment-related variables. Usually the environment

variables such as browser information are stored into a header that is sent to the web server

when a client do a web page request and these variables are backed-up into a cookie. By

doing cookie tracking, environment variables can be taken illegally. We suggest one so-

lution that takes two steps: (1) We give different privileges to browser interpreter, trusted

JavaScript code and untrusted JavaScript code. (2) apply access-control policy to restrict the

access to cookie. For example, untrusted JavaScript code can never read cookie.

4.2 Conclusions

In this systematization of knowledge thesis we present the peculiarities of JavaScript language

and why JavaScript is easy to be abused, but difficult to be detected. We provide two time-

lines to show the evolution of JavaScript-based threats and mitigation techniques. We define new

keywords: vector, evasion and technique to classify different JavaScript-based threats.

1. Vector means the methods to inject and execute malicious JavaScript code.

2. evasion means the techniques to evade existing mitigation approaches.

3. technique refers to the techniques used to exploit browser vulnerabilities.

We provide a global, high level taxonomy of mitigation approaches in which we classify mitiga-

tion approaches into Detection approaches and Prevention approaches. There are 3 subclasses of

Detection approaches:

1. approaches using static analysis, which does not require code execution.

2. approaches using dynamic analysis, which requires code execution.

3. approaches using hybrid analysis, which combines static analysis and dynamic analysis and

prevention.

We also provide one lower-level taxonomy for static analysis and another lower-level taxonomy

for dynamic analysis. There are three subclasses of static analysis:

1. type analysis

2. AST-based analysis

3. points-to analysis

Meanwhile there are also three kinds of dynamic analysis:

1. VM-based

2. Sandbox

3. Instrumented browser-based

Especially, we find there is a hybrid analysis technique that is used by many approaches named

data-flow analysis. We not only compare the differences between static analysis and dynamic

analysis at high level, but also we compare the differences among mitigation techniques in-

side each class. We found some relationships between JavaScript-base threats and mitigation

approaches such as:
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1. defining new subset of JavaScript (one prevention technique) is effective against mash-ups

(one vector).

2. data-flow analysis (a hybrid analysis technique) is effective against JavaScript extensions

(one vector).

We describe each mitigation approach in detail and compare the similarities and differences

among them to prove our knowledge. We think this thesis can help readers to have a view for

JavaScript security, and can help readers to choose the class of mitigation techniques when facing

a specific JavaScript-based threat. This thesis warns the readers to prepare for the next possible

attacks and indicate the possible directions for further researches.
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