Sandhurst Road Rail Yard Urban Transformation

Regeneration of Mumbai Rail yard.
A new center reintegrating different parts of the city. An architectural and urban design on Sandhurst Road rail yard transformation.

Mentor: Prof. Cassandra Cozza

Student: Saumin Vijay Lad, 767411

AY: 2012/2013
Dedicated to my Grandmother and Grandfather
Acknowledgment

The adventure of understanding cities and its urban texture began in young age and that leads to the explorations of the cities. After completing my graduation Thesis on Rejuvenating the Urban Void in my town and traveled around the parts of India, I look for the pursuit of further understanding of my city Mumbai. This leads to the series of unexplored territories and leads me to the most challenging and exiting journey of my life at Politecnico di Milano Architecture Program and this reflect the culminaon of Graduaon Thesis.

I take this opportunity to deeply acknowledge the contribuons of the many whose support and encouragement has helped me to develop and define this thesis. I thank all who have helped me and contributed to the research and analysis of the thesis and helped me in difficult times and periods of this work.

First and foremost, I wish to sincerely express my gratude to my mentor, Prof. Cassandra Cozza for her constant guidance and support. Encouragement is the key for the success and I would like to thank my mentor for understanding and guiding throughout the process of this thesis. I would also like to thank Prof. Andrea Oldani for his specific comments during my presentaons. I also received professional mentoring during my internship at DAP studio, Milano, which contributed me in my design thoughts and discussions and helped me gain new perspectives. I like to menon Apostrophe Architecture, Mumbai, for the contribution in thesis material.

Special thanks to my parents who contributed tremendously in motivating me with their understanding in several occasions. The success to this thesis work is dedicated to my father, for his endless patience and wisdom and to my mother, for her encourangement. I would like to mention my brothers Sahas and Saurabh and my sister Samiksha who encouraged me during my entire thesis period and specially I pass my love to my sweet niece Nytika and my loving nephew Shaurya.

I am truly grateful to all my friends and take immense pleasure in thanking those who have helped me realize this work and for all the invaluable good times spent. I would like to thank Shantanu, for helping, encouraging and contributing in difficult times. I take this moment to thank Maicheal and Hema, for always being there when I needed. Last but not least, I would like to thank Priyanka and Snigdha, for the initiation of this work and the discussion over countless number of Italian coffee.
Part 1
Introduction
1.1 Thesis Abstract:

This thesis is an Architecture and Urban design proposal for the regeneration of Mumbai’s railway network of Sandhurst road rail yard complex.

Mumbai is the financial capital of India and an alpha city owing to its increased corporate presence in the global economic network. The Population of Mumbai Metropolitan Region is expected to increase from 21.0 million in 2005 to 34.0 million in 2030 (CTBUH 2009).

Mumbai is transforming rapidly and restructuring its urban texture in the process. Due to the rapid urbanization of the city, the railway network is acting as a void for the city and it is dividing it into parts.

The thesis analyzed the part of the railway network and aims to propose an architectural and urban design solution to connect the parts of the city and to design the voids for further development and with the high design quality and livability.

The main background of the thesis analyzed the city development from the historical time to the present condition and frames a Master-Plan for the development of the part of the city, which once played a pivotal role in transforming the city to its present state, but now remains as a void and hindering in the development of the city further.

The main problem deals with the existing condition of under-utilized railway storage lands in the city of Mumbai and its strategic location in the city (as railway network is called a Lifeline of the city). The problem of non-integration of railway land of the city with the rest, which has enormous potential for development but remain isolated from the city.

The architectural and urban design proposal is based on these challenges of connecting the existing urban fabric with the site and creating a much needed open public space.

“Reintegrating: to integrate again into an entity/ restore to unity”
(Merriam Webster, 2013)

The project focuses on the global as well as local level by analyzing the city with morphology and creating a new built fabric by connecting with the existing urban fabric. The project also strengthens the railway infrastructure of the city by giving new identity to the site and create new program for the interchange areas.
1.2 Existing Situation

According to McKinsey (2010) by the year 2025, nearly 2.5 billion Asians will live in cities accounting for almost 54% of the world’s urban population (see Fig. 02). India and China alone will account for more than 62% of Asia’s urban population. The number of mega-cities with population more than 10 million is expected to double in 20 years.

The world is experiencing intense urbanization by the hand of extensive yet uneven processes of growth and expansion. More than half of humanity now lives in cities (Urban Age, 2007). Indian cities have been following a continuous trajectory of population growth from the start of the twentieth century (see Fig. 33).

The shift to cities is both the product and a catalyst of economic growth. This growth in Indian cities leads to tremendous pressure in the existing cities. The cities are becoming a magnet of prosperity and connection to the world.

Mumbai has seen tremendous growth in urban population in the past 2 decades. The city is transformed from a city to a mega-city and is rapidly expanding to be no.2 city in terms of population with 30 million inhabitants.
1.3 Problems and Potentials

Problems
Due to rapid urbanization in India and shifting of rural based economy to service based economy, there is an unprecedented migration towards the cities. Mumbai has seen dramatic urban influx in the recent history.
Due to the opportunities in the cities, they act as a magnet thereby attracting people.
The city of Mumbai started transforming in a major way by proposing satellite towns but the problems of poor infrastructure, healthcare, housing persists. The city has undertaken massive projects to restructure its centralities but it is still not effective. The main issue of the city development is its locked land. The city was developed due to the port trading activity, which contributes little to the present day service based economy. Due to this shift in economical activity, large part of Mumbai land used for the port activity or its related activity now act as void in the city and hindering the development of the city.

Potentials
Due to the location of the city, it has tremendous potential to become world class city. The city infrastructure, specially the railways have a large part of land staying idle, because it is no more in use of the activity it once used for.
1.4 Statement of purpose

As Mumbai expands, its open spaces are shrinking. The city’s shrinking physical open spaces are the most visible manifestation as they directly and adversely affect our very quality of life. (Open Mumbai, 2011)

The main driver behind the growth and development of Mumbai has been public transport, at the moment well served by the suburban trains and the city bus system. The Railway system is used by millions daily for commuting but still the point of exchange remain problematic. The city has 51 stations, covering 155 acres, yet crowds, congestion and chaos prevails at the hubs that links the trains. Also due to the shift towards service based economy, the city’s railyards are no longer in function it used to be.

The thesis identifies the problems of the situation with its local as well as global scale for providing an architecture and urban design solution to the existing situation.
Part 2
Analysis of the City

This part aims to analyze the city from its historical background to the development after independence.
Developed as a port city, it played a predominant role in shaping the urban texture of the city and as it is shifting from the port based activity to service based activity, it is transforming itself thereby changing its urban texture.
The analysis discuss key issues of history, transportation, city structure, its development, morphology and urban activities. The analysis focus on the different scale from the city region to the change in urban texture due to urban transformation.
Fig 05
Satellite View of Mumbai
Source: Google 2010
2.1 Timeline of important events in Mumbai’s Transformation

Pre Colonization

1534
Francis Almeida, Portuguese, sailed to what he called Bom Bahia (good bay)

1558
Magadhan Empire, ruled by Emperor Ashoka

Colonization

1508
Portuguese

1661
Charles II of England received the islands as part of a marriage dowry through Catherine of Braganza

1708
Villagers began to practice other trades such as pottery and tanning

Post-Colonization

1950
India became independent of Britain

1990
Bandra Worli sea Link is an eight-lane cable stayed bridge, linking Bandra and the western suburbs of Mumbai with Worli and Central Mumbai, and is the first phase of the proposed West Island Freeway project

1971
Dharavi pottery industry

1960
Completed the Hornby Vellard project, to build a causeway uniting all seven islands

1984
Mahim Causeway was a vital link road connecting the city with its northern suburbs

1986
British won victory in war and began civil engineering works

1989
Mahim Causeway was a vital link road connecting the city with its northern suburbs

1990
Bandra Worli sea Link is an eight-lane cable stayed bridge, linking Bandra and the western suburbs of Mumbai with Worli and Central Mumbai, and is the first phase of the proposed West Island Freeway project

1991
Cotton Economy Boom

1995
Another Railway line connecting Surat to Bombay was completed

2008
Dharavi recognized as a slum, efforts of “slum removal” attracted world wide media attention

35 Kms. long railway line (the Great Indian Peninsular)

Land-use laws segregated British parts from the “black town”

First Major land Reclamation between Mahim and Sion

Second Major land Reclamation between to mitigate flooding of central Mumbai, connects Mahalaxmi and Worli

Fig 06
Timeline of important events in Mumbai’s transformation

Source Author
2.2 Historical Transformation

2.2.1 Pre Colonial Phase

Mumbai has been growing for five hundred years, even though it was built on what initially looked like very weak foundations. At first there were just seven islands separated by swamps: the land was dangerous and unhealthy.

A thousand years ago the islands were part of the Magadhan empire. Later they belonged to the Silhara family and in 1343 they became part of the lands of the Sultan of Gujarat. (British Library, 2012)

In 1534, the Portuguese captured the islands and established a trading center (or 'factory') there. The Portuguese called the place Bom Bahia, meaning 'the good bay', which the English pronounced Bombay.

Although the archipelago which developed into the modern city of Mumbai was inhabited whenever history chanced on it. The islands lay outside of the sweep of history and beyond the marches of armies for millennia. Stone age implements have been found at several sites in these islands. Later, around the third century BC, the coastal regions, and presumably the islands, were part of the Magadhan empire ruled by the emperor Ashok. The empire ebbed, leaving behind some Buddhist monks and the deep-sea fishermen called Kolis, whose stone goddess, Mumbadevi, gave her name to the modern metropolis. (City data, 2008)

Between the 9th and 13th centuries, the Indian ocean, and especially the Arabian Sea, was the world's center of commerce. Deep sea crafts made of wood tied together with ropes transported merchandise between Aden, Calicut, Cambay and cities on the West coast of Africa. Marco Polo, Ibn Batuta and other travelers passed by without ever making a landfall in these islands.

Bombay changed hands many times. The islands belonged to the Silhara dynasty till the middle of the 13th century. The oldest structures in the archipelago; the caves at Elephanta, and part of the Walkeshwar temple complex probably date from this time. Modern sources identify a 13th century Raja Bhimdev who had his capital in Mahikawati; present-day Mahim, and Prabhadevi. Presumably the first merchants and agriculturists settled in Mumbai at this time.
In 1343 the island of Salsette, and eventually the whole archipelago, passed to the Sultan of Gujarat. The mosque in Mahim dates from this period.

2.2.2 Colonial Phase

Portuguese Colony: Portuguese captured the Islands in 1534 from Sultan of Gujarat.

The islands were leased to several Portuguese officers during their regime. The Portuguese built several fortifications around the city like the Bombay Castle, Castella de Aguada (Bandra Fort), and Madh Fort. (see Fig. 08)

In 1534, the Portuguese captured the islands and established a trading centre (or ‘factory’) there. The Portuguese called the place Bom Bahia, meaning ‘the good bay’, which the English pronounced Bombay.

This trading place slowly grew, with local people trading products such as silk, muslin, chintz, onyx, rice, cotton and tobacco. By 1626, there was a great warehouse, a friary, a fort and a ship building yard. There were also new houses for the general population, and mansions for the wealthy.

In 1661 Bombay was given to the British Empire, as part of dowry from Portuguese.

Home of fisherfolk where a group of Buddhist monks established an outpost late during the *Magadhan Empire*.

The Chalukyas (A. D. 550–750) built the magnificent cave temples on *Elephanta Island* in Mumbai Harbor.

The Hindu *Sihara dynasty* ruled the region around present-day Mumbai between 810 and 1240.

The *Walkeshwar Temple* and the *Banganga Tank* were built during the reign of Chittaraja, a king of this dynasty.

Part of the Sultanate of Gujarat in 1343. Established base in Mahim, one of the 7 islands of Mumbai.

Portuguese captured the Islands in 1534 from Sultan of Gujarat.
Fig 13
Ships in Bombay Harbour, 1731

Fig 14
Map of Bombay, 1909
British Colony
The first Englishmen to visit Mumbai were raiders. In October 1626, whilst at war with Portugal, English sailors heard that the Portuguese had “got into a hole called Bombay” to repair their ships.
They attacked Bombay, but the ships had already left. The English burned down buildings, and destroyed two new Portuguese ships “not yet from the stocks”.

In May 1662, King Charles II of England married Catherine of Braganza, whose family offered a large dowry (a gift made by the father of the bride to the groom). Part of this gift was the Portuguese territory of Bombay. However, Charles II did not want the trouble of ruling these islands and in 1668 persuaded the East India Company to rent them for just 10 pounds of gold a year.
As Bombay was a deep water port, large vessels were able to dock there. Bombay needed a fort and a garrison of soldiers to protect it from Dutch fleets and Indian pirates. (British Library, 2013)

Recognizing the potential of Mumbai and its harbor, the East India Company set about strengthening the settlement’s defenses and soon shifted its administrative headquarters to Mumbai from Surat, in Gujarat. Mumbai’s second governor, Gerald Aungier (d. 1677), laid the foundations for the city’s future growth.

Economy and Expansion: In 1857, the first spinning and weaving mill was established in Mumbai, creating a cotton textile industry that was given a great boost by the American Civil War (1861–65), which cut off supplies of cotton to Britain. The opening of the Suez Canal in 1869 was another stimulus to Mumbai’s growth, further enhancing its position as a major trade, commercial, and industrial center.
Reclamation Project

In the early 1800s, much engineering work was carried out in Bombay. The very end of the seventeenth century saw the beginning of the construction of seawalls, breakwaters, and reclamation projects that eventually connected the original seven islands (Mahim, Worli, Mazagaon, Old Woman’s Island, Colaba, and Mumbai Island) into a single Mumbai Island.

- **1708**
 First major reclamation of Causeway between Mahim and Sion

- **1772**
 Second major reclamation connecting Mahalaxmi and Worli

- **1803**
 Mumbai connected to Salsette island by a causeway from Sion.

- **1838**
 Colaba island joined with Bombay by Colaba Causeway

- **1845**
 Mahim and Bandra connected to Mumbai

- **1914**
 Extension of the Docklands

- **1960**
 New Backbay Reclamation

The Great Breach:

The remnants of a massive stone causeway across the Flats on the island of Bombay between Dongri and Malabar hills

Pydhonie and Umarkhadi:

The Great Breach extended to Umarkhadi, the creek separating Bombay from Mazagaon. The two islands linked by a shallow creek at the site of Pydhonie.

The Hornby Vellard:

Major reclamation was due to the closure of the Great Breach north of Cumballa Hill in 1784 by the building of a sea-wall called the Hornby Vellard. The wall allowed reclamation of the Flats and supplied about 400 acres of land for the extension of the crowded inner city.

Colaba and Old Woman’s Island:

The Colaba Causeway was completed in 1838, and used Old Woman’s island as a stepping stone to Colaba.

The First Backbay Reclamation Scheme:

The first Backbay Reclamation Company was formed during the boom years of the early 1860’s, with the stated purpose of reclaiming the whole of Backbay, from the tip of Malabar Hill to the end of Colaba.

The Dockyards:

The Elphinstone Land and Press Company was formed in 1858 to reclaim 250 acres of land from Apollo Bunder to Mazagaon, and a further 100 acres at Bori Bunder, to be given to the GIP Railways for building a the Victoria Terminus.

Early Twentieth Century:

Between 1914 and 1918 it completed building a dry dock and used the excavated earth to create the 22 acre Ballard Estate.

Late Twentieth Century:

The third Backbay reclamation scheme was put into effect and yielded the small acreage on which the high-rises of Nariman Point and Cuffe Parade are planted. The Naval Dockyards were reclaimed on the east, and smaller works were continued further north.

(TIFR, 2007)
2.2.3 Post Colonial Phase

Mumbai’s size and economic power are reflected in its role in India’s modern political history. The city was an important center in India’s struggle for independence from British colonial rule. The Indian National Congress, which led the nation’s fight for freedom, was founded there in 1885. Mohandas Karamchand Gandhi (1869–1948), the Mahatma, spiritual leader of the independence movement, launched his "Quit India" campaign against the British in Mumbai in 1942. Linguistic tensions between Mumbai’s Marathi and Gujarati speakers resulted in violence in the city in the late 1950s. This led eventually to the separation of Gujarati-speaking areas from Mumbai state and the creation of Maharashtra State (1960).

During the early 1990s, communal violence between Hindus and Muslims in Mumbai again shattered the myth of a tolerant, cosmopolitan city. Rioting led to the deaths of several hundred people (mostly Muslims) and culminated in the bombing (with numerous fatalities) of several buildings in March 1993. The Shiv Sena, a right-wing Maharashtra-based Hindu political party led byBal Thackeray, was widely blamed for instigating Hindu violence against Muslims in the city. Subsequently elected to office, the Shiv Sena party in 1996 changed Mumbai’s name to "Mumbai," the Maratha name for the city.

In the twenty first century Mumbai is heading towards world class city. Mumbai is developing at unprecedented rate and transforming itself. Massive construction projects are emerging all around the main mumbai region. Upgradation of existing infrastructure, developing new highways, Freeway projects, Sea link project rapidly changing the urban pattern of the city.
2.2.4 Present Phase

In the twenty first century Mumbai is heading towards world
class city. Mumbai is developing at unprecedented rate and
transforming itself. Massive construction projects are emerging
all around the main Mumbai region. Up-gradation of existing
infrastructure, developing new highways, Freeway projects, Sea
link project rapidly changing the urban pattern of the city.
Due to the Economic liberalization in 1991, the city of Mumbai
slowly transformed from industrial based economy to the
service based economy.
The period from 1991 to 2005 showed a sharp increase in the
commercial growth and an associated expansion of the city
infrastructure. The nature of the economy also underwent a
core change from manufacturing to a service based industry.
Foreign investments and corporations increased in Mumbai in
this period following the emergence of a largely free market
economy.
This period also saw an increased immigration from other parts
of the country into suburban Mumbai and Navi Mumbai.
2.3 Geography

Mumbai consists of two distinct regions: Mumbai City district and Mumbai Suburban district, which form two separate revenue districts of Maharashtra. The city district region is also commonly referred to as the Island City or South Mumbai. The total area of Mumbai is 603.4 km² (233 sq mi), of this, the island city spans 67.79 km² (26 sq mi), while the suburban district spans 370 km² (143 sq mi), together accounting for 437.71 km² (169 sq mi) under the administration of Brihanmumbai Municipal Corporation (BMC). The remaining area belongs to Defence, Mumbai Port Trust, Atomic Energy Commission and Borivali National Park, which are out of the jurisdiction of the BMC.

(MCGM, 2012)

Mumbai lies at the mouth of the Ulhas River on the western coast of India, in the coastal region known as the Konkan. It sits on Salsette Island, partially shared with the Thane district. Mumbai is bounded by the Arabian Sea to the west. Many parts of the city lie just above sea level, with elevations ranging from 10 m (33 ft) to 15 m (49 ft); the city has an average elevation of 14 m (46 ft).

Northern Mumbai (Salsette) is hilly, and the highest point in the city is 450 m (1,476 ft) at Salsette in the Powai–Kanheri ranges. Sanjay Gandhi National Park (Borivali National Park) is located partly in the Mumbai suburban district, and partly in the Thane district, and it extends over an area of 103.09 km² (39.80 sq mi).

Apart from the Bhatsa Dam, there are six major lakes that supply water to the city: Vihar, Lower Vaitarna, Upper Vaitarna, Tulsi, Tansa and Powai. Tulsi Lake and Vihar Lake are located in Borivili National Park, within the city’s limits. The supply from Powai lake, also within the city limits, is used only for agricultural and industrial purposes. Three small rivers, the Dahisar River, Poinsar (or Poisar) and Ohiwara (or Oshiwara) originate within the park, while the polluted Mithi River originates from Tulsi Lake and gathers water overflowing from Vihar and Powai Lakes. The coastline of the city is indented with numerous creeks and bays, stretching from Thane creek on the eastern to Madh Marve on the western front. The eastern coast of Salsette Island is covered with large mangrove swamps, rich in biodiversity, while the western coast is mostly sandy and rocky.

Fig 29
Mumbai Geography with Mumbai metropolitan region
2.4 Administration

Cities are not always able to incorporate newly developed land into the administrative boundaries drawn around the original cores. Hence their local governments may lack control on suburban and peri-urban growth, generating problems of metropolitan governance. Also, the varying relation between political boundaries and urbanised areas results in different cities appearing to assume more dissimilar urbanisation patterns than they actually do. Boundary-sensitive differences may appear when comparing patterns of land consumption; ratios between built and green areas; local shares of national populations, etc.

The capital of the State of Maharashtra, Mumbai is a city of 12 million. Known as Greater Mumbai, it covers an area of 438 sq. km with an extremely high population density (27,348 people per sq. km). Furthermore, the Mumbai Metropolitan Region of 18 million residents is the world’s fifth most populous metropolitan region. Mumbai is India’s entertainment and financial capital, yet also the city with the largest slums. It contributes 40 per cent of national income tax and 60 per cent of customs duty. In purchasing power parity (PPP), Mumbai is estimated to have a US$143 billion economy. Per capita income is US$12,070. Traffic congestion, loss of wetlands, and flooding as well as the critical housing issues and slums are key challenges facing Mumbai. Some projections state that Mumbai could overtake Tokyo as the world’s largest city by 2050. (Urban Age, 2007)

The Mumbai Metropolitan Region includes the metropolis of Mumbai along with its satellite towns and has developed over a period of 35 years. The first and second municipal expansions of the city were made when the demand for space increased with the accelerated growth of population.

The Mumbai Metropolitan Region (MMR) consists of the following divisions,
1. Mumbai city, covering parts of the city limits of island city until Sion, Mahim and King’s circle;
2. Mumbai Suburban, covering parts of Greater Mumbai and Navi Mumbai which extends until Mulund in the central line, Vasai in the west and Mankhurd in the east;
3. Thane, originally the northeastern parts of Greater Mumbai extends from Thane creek upto Ulhas river;
4. Raigad district, a major industrial and housing center.

Mumbai is divided into 21 wards distributed amongst 6 zones. The administration in the different constituents of the districts(called “Tehsils”) is handled by the municipality corporations. Mumbai and the suburban regions are governed by the Brihanmumbai Municipal council, the district of Thane is governed by the Thane Municipality council, Navi-Mumbai by the Navi-Mumbai Municipality corporation.
2.5 Urban Texture

2.5.1 Density

The ability of Indian cities to accommodate such high numbers of people in relatively confined areas albeit many are living in substandard conditions provides a significant point of comparison in the current debate on urban sustainability and the impact of a city’s footprint on energy consumption and climate change.

Mumbai (one of the densest cities in the world) constitutes a category on its own. The territorial constraints of this island city have created unusually high urban densities. Within the city limits, the average density surpasses the mark of 27,000 people per sq. km, a figure that rises to well above 50,000 people per sq. km (if one only takes the built-up area into account), a level higher than even the highest density peaks in New York City’s borough of Manhattan.

Furthermore, it is not rare for the densest neighbourhoods of Mumbai, such as Dharavi, to accommodate as many as 100,000 residents per sq. km.

\[\text{Population Density (per sq. km)} : \text{Mumbai} \]

\[\begin{array}{c|c}
\hline
& 0 - 4,000 & 4,000 - 8,000 & 8,000 - 12,000 & 12,000 - 20,000 & 20,000 and over \\
\hline
\end{array} \]

\[\text{Source: Urban Age, 2007} \]

\[\text{Fig 31: Population density in Mumbai} \]

\[\text{Fig 32: Comparison of population density in world cities} \]

\[\text{Source: Urban Age, 2007} \]

\[\text{Fig 33: Mumbai’s densest area (as shown by the tallest peak at right) is in Kamathipura (above), with 121,312 people per square kilometer. Many low-rise buildings here are now being replaced by tall towers with larger footprints.} \]

\[\text{Fig 34: New York City’s peak density is found on Manhattan’s Upper East Side, with 58,530 people per square kilometer. It’s also home to some of the most expensive real estate in the city.} \]

\[\text{Fig 35: Istanbul’s Gungoren neighborhood is the city’s densest, with 77,267 people per square kilometer. The working-class area has blocks of six- and seven-story apartment buildings, with few green spaces.} \]
The density map of Mumbai Municipal Corporation shows quite clearly how the population pressure has shifted over the last two decades (1981–2001) from the southern Mumbai toward western and central Mumbai, signifying the decay of the core.
Evolution of Urbanization in India 1872 - 2001

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1872</td>
<td>50,000</td>
</tr>
<tr>
<td>1901</td>
<td>100,000</td>
</tr>
<tr>
<td>1951</td>
<td>1,000,000</td>
</tr>
<tr>
<td>2001</td>
<td>20,000,000</td>
</tr>
</tbody>
</table>

Before Independence

After Independence

Rate of Urban migration in India.

Source: Geopolis.eu, 2012

Fig 33
2.5.2 Urban Morphology
Cities all over the world need to respond to the demographic and economic pressures that are causing rapid urban growth. The design of city streets, buildings and spaces – their spatial DNA – plays an important role in securing the livability and flexibility of urban environments that are undergoing intense processes of change. One of the central objectives of the Urban Age project is to produce research that helps to better understand the varying capacity of different street grids and block layouts to accommodate change in a resilient way.

The ‘figure-ground’ (Colin Rowe, Collage City) image presented here are useful tools to visualize the micro-scale of urban neighborhoods and understand how buildings and their surroundings succeed or fail in making a continuous and integrated urban whole. They provide a street-level portrayal of the built forms and arrangements of volumes that shape everyday social life in the city. The ‘figure-ground’ map of Mumbai representing buildings in black and transport network spaces in white and green open spaces in green.
The spatial structure of the Indian cities reveals an intense and compact arrangement of buildings and structures, containing and compressing the open ‘white’ spaces that constitute the public realm of the city. The central area of Buleshwar Market in Mumbai (See Fig. 35) shows how dense urban blocks are arranged efficiently along main streets and side alleyways. The Buleshawar area shown indicate the intricate texture slowly transforming into new texture.

While comparing the city morphology with different cities in the world (See Fig. 37,38,39,40) illustrates the compact density of Mumbai.

From Top to Bottom

Fig 37,38,39,40
Morphology of different cities compared to Mumbai

Source: Urban Age, 2007
2.6 Transport Infrastructure

The transport systems of the city reflect the specific geographical, historical and political conditions that have shaped their development. Infrastructure development for mass transit, whether metro, trains or buses as well as for private vehicles has had an enormous impact on the patterns of urban growth with long-lasting effects on land use, densities and the residential distribution of different social groups. Urban rail outranks all other forms of travel in terms of its capacity to move vast numbers of passengers throughout a metropolitan region, and its footprint requires relatively small amounts of urban land.

The 300 km long, Mumbai’s suburban rail system is the most extensive on the subcontinent. Transporting more than 6 million passengers each day, it is also one of the busiest rail systems worldwide.
2.6.1 Mumbai Metropolitan Region Physical connection
The city is very well connected with the country by railway and roadways. Due to the geographical spread of the population and location of business areas, the rail network is the principal mode of mass transport in Mumbai.
2.6.2 Railway Network
Due to the geographical spread of the population and location of business areas, the rail network is the principal mode of mass transport in Mumbai.

Fig 43
Mumbai's Infrastructure Network.
Source: Author
Mumbai has around 9% of its surface area under railway line and railway related activities. Around 6 million people travel/use the railway system daily. The connectivity with the city and the railways is disconnected and poor connectivity considering that 40% of people use it in one form or other. These spaces could be utilize for Public purposes and can be transformed for connectivity with the city and creating a much needed public spaces for the city.

The Railway system comprises of 55 stations and covers 155 acres of space with 300 kms. long suburban lines.

Fig 46
Mumbai's Railway Network with railway activity areas
Source: P.K. Das
Open Mumbai 2012
Graphics: Author

From Left to Right
Fig 44, 45
Mumbai’s Rail and Road Network respectively.
Source: Author
2.6.3 Mumbai Sub-urban railway

The Mumbai Suburban Railway is a suburban rail system serving the Mumbai Metropolitan Region. It is operated by Indian Railways’ two zonal Western Railways (WR) and Central Railways (CR). The system carries more than 7.24 million commuters daily. It has the highest passenger density of any urban railway system in the world. The trains plying on its routes are commonly referred to as local trains or simply as locals by Mumbaikars.

Spread over 465 km, the suburban railway services are run by electric multiple units (EMUs). 191 rakes (train sets) of 9-car, 12-car & 15-car composition are utilized to run 2342 train services, carrying 6.94 million passengers per day. If annual ridership (2.64 billion) is taken into account, the Suburban rail would be the second busiest rapid transit system in the world.

Due to the geographical spread of the population and location of business areas, the rail network is the principal mode of mass transport in Mumbai.

History

The Mumbai Suburban Railway, as well as the Indian Railways, are an offshoot of the first railway to be built by the British in India, and is also the oldest railway system in Asia. The first train ran between Bori Bunder (now Chhatrapati Shivaji Terminus) and Thane, a distance of 34 km, on 16 April 1853.

Subdivision of Sub-urban railway system

The Railway system is divided into 3 main lines called central, Western and Harbor. The Trans Harbor line connects Navi-Mumbai to Thane.

FutureExpansion

The city is upgrading of existing infrastructure of railways and creating a dedicated corridor for long distance and freight. A metro system and a monorail system are under construction in Mumbai to ease the traveling conditions on the suburban network.
2.7 Open Spaces in Mumbai

As Mumbai expands, its open spaces are shrinking. The city’s shrinking physical open spaces are the most visible manifestation as they directly and adversely affect our very quality of life (Open Mumbai, 2011). Mumbai needs new program to sustainable development and also to expand its public spaces. Due to increase in development projects, Mumbai needs to rethink its existing unused infrastructure spaces and incorporate them in the city structure. These unutilized spaces needs to be regenerated and integrated into city structure to generate much needed public spaces. The city has 3 major types unlocked spaces

1. Mill Lands: Due to the strike in mill lands in twentieth century the mills in Mumbai were shut down and since then never been resumed. These mills were booming at the time of American Civil War and made Mumbai richer. Lot of proposals and new constructions have been implemented in various mill lands which is changing the very fabric of the city, but open spaces for the city is given least priority in the development plan.

2. The Railway network: Railways are the lifeline of Mumbai as it connects far satellite towns to the city center and used by millions daily, but the hubs connecting them are chaotic and congested. the areas around the railway system, which was once used for transportation and storage of cotton; to be exported to England, remains vacant and unused. These spaces have huge potential to become the public spaces; as a large number of urban population depends on them.

3. Docklands: Due to the shift in economy from industrial to service based and recent shifting of major dock to JNPT (opposite Victoria dock, in Raigad district) the docklands remain a landlock area of 600 acres. The docks can create much needed open spaces in the city by opening to the waterfront and further develop the area more sustainably.

Source: P.K. Das, Open Space Mumbai 2012
Fig 49
View of Girgaon
Chowpatty on occasion of Ganesh Visarjan

Source:
Urban Age, 2007
Part 3
Analysis of Site

This part attempts to analyze the site from its historical background to the existing situation. Developed predominantly for the purpose of storage of goods and transfer of goods, it played a predominant role in shaping the urban texture of the city. The analysis discuss key issues of site location, its context, transportation, morphology, its development and landuse. The analysis focus on the different scale from the city region to the change in urban texture due to urban transformation.
3.0 Site Analysis

3.1 Location of Site

The Sandhurst Road Railyard is named after Lord Sandhurst, the Governor of Bombay between 1895 and 1900, the station was built in 1910 using funds from the Bombay City Improvement Trust. The Sandhurst Road railway station (upper level servicing the Harbour Line) was built in 1921. Mumbai is divided into administrative wards for the administration of the region. The Site is located in the B ward of Administrative district of Mumbai.
Fig 51
Satellite image of Mumbai in context of Site

Source: Google Maps
Fig 52
Location of site in context with important places in Mumbai
Source: Author

Fig 53
Location of Site in Mumbai
Source: Author
3.2 History

Mumbai has been growing for five hundred years, even though it was built on what initially looked like very weak foundations. The site was developed as a part of a reclamation project to create a new hub for storage and transportation of goods to Europe as well to other parts of the country. Due to the American Civil War, cotton was produced in different parts of the country and then transported in freight to the Wadi-Bunder for docking and shipping to UK. After the end of civil war, the site (wadi-bunder) continues to remain active and expanded to the present form. But then series of events took place in Mumbai which transformed the economy driven by industry to service based economy leads to massive underutilization of such places. These events further accentuated by the mill strike which completely and painfully annihilated the industrial production. Meanwhile, due to series of political decisions after independence leads to shifting of docks to new terminus (JNPT) on the other side of island of Mumbai, created a void in the spaces dependent on freight storage and transportation.

3.3 Existing Site condition

The Sandhurst road Rail yard; formerly called Wadi Bunder is a complex consist of underutilized freight and weighing stations and repair yards for the trains of the Central Railway network. some of these structures are historically important sheds.

3.3.1 Railway network

The site has 2 stations for Central railway and for the Harbor railway. The harbor rail station is at the upper level and is at the same level as the city on the west side of the site. The west side of site is disconnected with the west side of city by the railway system.

3.3.2 Road Network

The eastern freeway is on the east side of site culminating at the end of the site junction of SVP road. P D’mello road is the main road connecting east side of the site to the city in the north and SVP road connecting south side of site to the west part of site.

Fig 54
view of Wadi Bunder in 1925
Source: IRFCA

Fig 55
Graphical representation of city topography
Source: Author
3.4 Climate Condition

The Climate of Mumbai is a tropical wet and dry climate. Mumbai’s climate can be best described as moderate temperatures with high level of humidity. Due to higher humidity level, it is required to have a ventilation.

3.5 Landuse

Part of the site is situated on the reclaimed land and it is lower than the city in the west side. The land is predominantly used for the railway workshop and car shed. Most of the sheds are unutilized and remain vacant. There are some storage buildings and existing maintenance yards for railway related activities. The site surrounding clearly indicates the shift in programs in various zones.

The west side has mostly housing, while the east side contains docklands. The north side has residential as well as historical fort, while the north-west side has a big hospital complex. (JJ Hospital complex)

The south side is mainly dedicated to commercial activity related to docks and storage.
Land use Plan of part of Mumbai

Source: MMRDA

Legend:
- Residential
- Commercial
- Natural and Open Spaces
- Medical Amenities
- Educational Activities
- Social Amenities
- Vacant
- Slum / Cluster
- Public Utility and Facilities
- Wards Limit
Fig 58
Satellite image of Site
Source: Google earth
Fig 59
Urban Morphology of Site. 1:5000
Source: Author
3.6 Site Characters

various character of site create an unique challenge for the development of Masterplan.
Site consists of 2 existing railway stations, one above. These stations are poorly connected with the part of the city; albeit used by millions daily.
The potential of site creates an unique opportunity for new public spaces as it is loosely connected with the existing part of city but strongly connected with existing railway stations and bus network. the site has a potential to open up the much needed public spaces in the city and strengthen the existing open spaces by connecting the part of the city together. The site can also extends itself towards the docks by a public axis.
From Top to Bottom

Fig 64 Site topography

Fig 65 Main roads along the site

Fig 66 Transportation network
3.7 Site Sections

The site sections explain the topography of the site and its relation to the context. The sections also indicate the density of the city and the site condition. The sections 8-13 clearly indicates the dis-connection of the site with respect to its surrounding.
3.8 Site Images

The site photographs illustrate the present condition of site and its context. Most part of site is un-utilized and used as a dumping place for railway activities. The part of workshop is being utilized for maintenance of the car. The rest of the space is mostly used as a car-shed and remain as a void in the city.
Part 4
Concept and Program

This part explains the initial approach taken for the development of the Masterplan. After analyzing the context of the site, the concept interprets the areas of site to be preserved while others to be demolished in order to create a new Masterplan.
4.0 Concept

4.1 The Integration of Fabric

Due to the difference in level between the city structure, the idea is to stretch the city Fabric towards the site to integrate the city with the site. The site then transforms with the context by creating a connection between the existing fabric and the new program. This eventually creates the site as a part of city rather than part in the city and establish a continuous flow of connection between existing and new. This approach extends the existing program of the city into the site by extending the existing functions and creating a new function along with it by creating relations.
4.2 City axis

The concept evolves from connecting the city with the site through existing axis created by the city texture. The concept identifies main axis and connects the parts of the city through Public spaces and green spaces.
4.3 Preservation

The site consists of storage areas which are of historical importance (see fig. 80). The main gate for the site also built as a monument which needs to be preserved for the relevance of site and its importance in shaping the city. The concept carefully analyzed the buildings that meeds to be preserved along with its importance and incorporate new program to the structures, thereby utilizing the existing infrastructure. Relevant preservation technique should be used to preserve the structure and use it for the function relevant to the context. The design proposal for the existing important storage sheds was to reintegrate the space into the existing functional context, by proposing a market, relevant to the city and to the site context.
4.4 Demolition

The site consists of many dilapidated sheds and structures which are no longer in use (see Fig 81). The concept carefully analyzed the buildings that needs to be demolished and incorporate new program.

4.5 Addition

The dilapidated sheds and structures are demolished and new structures are added (see Fig 82). The concept carefully analyzed the buildings that needs to be demolished and preserved, to incorporate new program.
The Fig 83 illustrates the diagrammatic process of creating a new master plan for the site with relation to the concept.
The Program uses the existing spaces and infrastructure elements to create an unique identity for the site as well as for the city.
The Market redefines the historical importance of the Market and its importance in the Indian cities.
The program carefully analyze the existing city and its transformation for the past 400 years and to look forward in the 21st century.
The new development and new infrastructure projects influence the program of the site by considering the Freeway project and the allocation of Dock lands for development.
Program also consider the future development of the area and create a heterogeneous environment. Program reintegrate the texture of the city and create a continuous city grid for connecting the existing part of the city.

The porous programming leads in creating much needed public spaces. The existing Railway infrastructures are incorporated in the program and strengthen it. The Railway station consider not just a transition space but a program area for connecting the void to the city structure.

Public Open Areas:
Market, parks, squares, Landscaeped areas 35%
Parking/ Interchange Area 5%
Special Housing (Hospital) 4%
New Housing 20%
Offices 10%
Entertainment areas: Restaurant, Cinema, etc 5%
Street shopping/ Open shopping areas 1%
New Railway Station area 10%
Existing Railway Yard 2%
Existing storage godowns 8%
Part 5
Case Studies

This part studies some of the projects around the world concerning the Urban morphology and Voids.
5.0 Case Studies

The case studies involves an understanding of creating a new place or understanding the existing context by referring to the new built spaces

5.1 Gasometer, Vienna, Austria

Gasometer, Renovated to 615 Apartments.
Arch: Jean Nouvel, Coop Himmelb(l)au, Manfred Wehdorn, & Wilhelm Holzbauer

In 1896 Viennese authorities constructed a large-scale gas and electric utility, which became Europe’s largest gas plant. After nearly a century long run the plant was decommissioned, and left behind were four massive gasometers.

These incredible structures were cast off, but a recent revitalization project led by Jean Nouvel, Coop Himmelb(l)au, Manfred Wehdorn, and Wilhelm Holzbauer have transformed these four tanks into spectacular and thriving communities.
Fig 87
Gasometer, Vienna
Aerial view
The gasometers are four gigantic gas tanks enclosed by a brick facade. Once used for the storage of coal gas, the gasometers were retired in 1984 as the city shifted over to natural gas between 1999 and 2001 the Gasometers were gutted leaving only the brick exterior and parts of the roof. The structures were then renovated into 615 new apartments, a student dormitory, offices, a day care centre, a multiplex, over 70 shops, restaurants, bars and cafes an events hall, and the Vienna National Archive.

Today the gasometers form a unique city center all their own, with a strong sense of community given its abundant housing and diversity of destinations.
5.2 Philipphof, Vienna
Memorial for War and Fascism, Sculpture by: Alfred Hrdlicka

The Austrian sculptor Alfred Hrdlicka created a monument in 1991 to commemorate all those killed during the National Socialist regime and World War II. Separate elements, made of granite from the area of the Mauthausen concentration camp, are arranged on the square where the Philipphof house was situated. The house was destroyed during an air raid on 12 March 1945 and more than 300 people were buried alive in the debris. The monument includes the Austrian Declaration of Independence on the Stone of the Republic.
The Monument Against War and Fascism consists of four thought-provoking statues.
5.3 Potsdamer Platz: Berlin, Germany
Richard Rogers Partnership

This historic 100-hectare site is situated at the heart of reunited Berlin between Alexander Platz and Kurfürstendamm. The brief’s objective was to transform one million square metres of urban waste land into a dynamic mixed-use development that would re-establish Potsdamer Platz as a key destination at the centre of the re-united city.

Design Concept:
The proposed masterplan places Potsdamer Platz as the focus of the historic radial street pattern, creating four zones of development, each with their own balance of offices, residential, retail and cultural activities. The built form of the envelope rises from heights at Potsdamer Platz that respect the traditional building typology of the old center, to taller buildings at the back of the site that can take advantage of views across the Tiergarten.

Sustainable Development:
The development zones are anchored in a clearly defined public realm, including major green spaces in the form of a series of linear parks that act as an ecological link passing right through the heart of the scheme, from the Landwehr Canal to the Tiergarten and all the way to the banks of the river Spree.
Fig 95
Conceptual idea for the Potsdamer Platz

Fig 96
Masterplan model of Potsdamer Platz

Fig 97
Masterplan of Potsdamer Platz
From Left to Right

Fig 98
The most busiest place in Europe in 1930’s
Potsdamer Platz

Fig 99
After WWII the area became a void

Fig 100, 101, 102
View of the area After redesign.
5.4 Morphological Studies of Public Spaces

The Study compares 4 different Squares and spaces and Circulation around it. This study also focus on the utility of different spaces and its texture and circulation.

Fig 103
The Duomo Area creates a large Open Public space where program can be organized and the space can be utilized for different functions.

Fig 104
Due to the presence of Architectural elements the place is divided into many small fragments of open areas connected but still segregated, creating many different uses.

Fig 105
The Piazza in front of the Opera serves as a stop point in space and create a foreground for the Opera.

Fig 106
The Piazza Del Campo is an interesting space as it is the place where major street converge resulting in the use of space as most effective Public Piazza for celebrations, Protests or just evening leisure or rest a while.

Duomo Area, Milano

Krakow Square, Poland

Palazzo Marino, Milano

Piazza Del Campo, Sienna
5.5 Parc André Citroën, Paris

Parc André Citroën is a 14 hectares (35 acres) public park located on the left bank[1] of the river Seine in the XVe arrondissement (district) of Paris. The park was built on the site of a former Citroën automobile manufacturing plant,[2] and is named after company founder André Citroën.

History
In 1915, Citroën built his factory on the banks of the Seine; it operated there until closure in the 1970s. At that time, 24 hectares (59 acres) were thus freed up and included in the capital's "urbanization" policy and gave rise to the Parc André Citroën. It was created at the beginning of the 1990s and was officially opened in 1992. Responsible for its design are the French landscape designers Gilles Clément and Alain Provost, and the architects Patrick Berger, Jean-François Jodry and Jean-Paul Viguier.

Design
The park is built around a central, rectangular lawn of roughly 273 by 85 meters of size. It is embellished with two greenhouse pavilions (hosting exotic plants and Mediterranean vegetation) at the Eastern, urban end, which are separated by a paved area featuring dancing fountains. The South edge of the lawn is bounded by a monumental canal — the "Jardin des Métamorphoses" — composed of an elevated reflecting pool that reaches through granite guard houses, lined by a suspended walkway. On the North side are two sets of small gardens: the six "Serial Gardens", each with a distinct landscape and architectural design, and a "Garden in Movement" that presents wild grasses selected to respond at different rates to wind velocity. A 630-meter diagonal path cuts through the park, which constantly changes in its nature.

Since 1999, the park has been home to a moored gas balloon. It allows visitors to rise above the Parisian skyline, and is currently operated by the Banque Populaire. The balloon is filled with 6000 cubic meters of helium. It is 32 meters high and has a diameter of 22 meters. It is moored to the ground with a hydroelectrically-activated cable. It can rise to an altitude of 150 meters[3] and has a carrying capacity of 30 adults, or 60 children.[4] The balloon provides a view of the Champ de Mars, the River Seine, Basilica of the Sacré Cœur and the Notre Dame de Paris Cathedral.
Part 6
Bibliography

The following references were used and referred in making this Thesis.
URBAN AGE: Urban India, Understanding the Maximum city, Urban Age India Conference 2007

PK DAS AND ASSOCIATES: Open Mumbai: Re-envisioning the city and its open spaces

MCGM: Greater Mumbai revised development Plan 2014-34, Landuse plan, 2012

UDRI: Bombay’s Land: Between the relic and the void, exhibition Venice Biennale

RAHUL MEHROTRA: Study of Eastern Waterfront of Mumbai

SUKEETU MEHTA: Maximum City: Mumbai

BINA C. BALAKRISHNAN: Urban Transportation in Mumbai

RAHUL MEHROTRA: Learning from Mumbai

SHIRISH B. PATEL: Housing policies in Mumbai

VYJAYANTHI RAO: Post Industrial Transition, The speculative future of citizenship in contemporary Mumbai

WALTER ROSSA: Bombay before British, The Indo Portuguese layer

BRITISH LIBRARY: http://www.bl.uk, History of Bombay

TIFR: http://theory.tifr.res.in/bombay/
http://theory.tifr.res.in/bombay/history/reclamation.html

Part 6
Design Sheets