
POLITECNICO DI MILANO

Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

Scaling feature selection algorithms using

MapReduce on Apache Hadoop

AI & R Lab

Artificial Intelligence and

Robotics Laboratory

of Politecnico di Milano

MLG

Machine Learning Group

Université Libre de Bruxelles

Supervisor: Prof. Andrea Bonarini

Co-supervisor: Prof. Gianluca Bontempi

Candidate:

Claudio Reggiani, 771198

Academic Year 2012-2013

To my parents, who always supported and pushed me

into pursuing my academic and life goals.

Abstract

Domains such as internet algorithms, computational biology or social link

analysis deal with very large datasets, also called Big Data. In these sce-

narios, single machine learning algorithms cannot handle easily the entire

data to produce models and MapReduce emerged as new paradigm to query

data in distributed systems. Apache Hadoop is the result of the open source

community in letting this technology available for everyone.

There is a huge amount of information locked up in databases and these

information can be exploited with machine learning techniques, which aim

to find and describe structural patterns in data. Our work focused on fea-

ture selection algorithms because they generalize prediction models reducing

the noise in input. We implemented two state-of-the-art feature selection

algorithms (Ranking and mRMR) according to the MapReduce program-

ming paradigm and we made them available to the open source Big Data

community.

In order to visualize and model the scalability of the approach, we ran

several and extensive performance tests at the university computing center,

where we first built a user friendly service which dynamically deploys Apache

Hadoop in the cluster. The results mostly matched our expectations and

theoretical analysis, when algorithms ran over large datasets.

I

Extended abstract

In questa tesi esaminiamo quali sono le limitazioni dei tradizionali Database

Management Systems nel gestire grandi collezioni di dati. Questi sono stati

in passato la soluzione di riferimento per salvare in modo organizzato i dati,

tuttavia nei sistemi distribuiti non rappresentano la migliore soluzione, a

causa della complessità e dei vincoli introdotti. Con l’avvento del Big Data

è stato necessario un nuovo paradigma per immagazzinare e interrogare i

dati per superare i limiti di tali architetture. Le nuove applicazioni emerse

sono state raggruppate sotto il termine NoSQL.

Nel 2003 e 2004, Google ha pubblicato due articoli, Google file system

e MapReduce, che sono le fondamenta del nuovo modo di immagazzinare e

interrogare i dati. Apache Hadoop è il risultato della communità open source

nel rendere tale tecnologia disponibile a tutti e un intero nuovo ecosistema di

software proprietari e open è nato con lo scopo di arricchirne le funzionalità.

Noi eravamo interessati nello studiare e implementare algoritmi di ma-

chine learning in MapReduce nel contesto del Big Data. Si parla di Big

Data per esempio in biologia computazionale, analisi di social network e

text mining, dove gli algoritmi tradizionali eseguibili localmente su singole

macchine non riescono a produrre modelli in tempi ragionevoli. Abbiamo

posto la nostra attenzione sugli algoritmi di feature selection per due mo-

tivi: perché sono tecniche per ridurre il rumore e informazioni irrilevanti dal

dataset, permettendo una migliore generalizzazione del modello di predi-

zione e perché non sono disponibili nei software open source, come Apache

Mahout.

Abbiamo implementato gli algoritmi di mRMR e Ranking in MapReduce

come una libreria Java integrabile ad Apache Mahout e rilasciato il codice

open source su GitHub. Il nostro scopo è stato quello di studiare la scala-

bilità di tali algoritmi e considerare quanto l’overhead di Apache Hadoop, nel

gestire il cluster, incide nel tempo totale di esecuzione. Nonostante le ridotte

risorse a disposizione, in relazione ad altre ricerche, abbiamo potuto fare le

seguenti considerazioni: per piccoli dataset o nel caso in cui i parametri

III

del cluster siano male impostati, l’overhead condiziona in modo significa-

tivo il tempo finale. Con grandi dataset i risultati sono stati coerenti con

le nostre aspettative, ovvero che il tempo di esecuzione è proporzionale alla

dimensione dell’input e inversamente proporzionale alla quantità di risorse

computazionali disponibili, i.e al numero di nodi e core nel cluster.

I test sono stati condotti utilizzando il centro di calcolo (HPC) univer-

sitario, nel quale abbiamo esplorato le possibili alternative per integrare

Apache Hadoop nel cluster. Abbiamo deciso di sviluppare un servizio sul

modello di Amazon Elastic MapReduce, user friendly e disponibile per qual-

siasi utente. Tale servizio, in modo automatico e dinamico, installa e con-

figura Apache Hadoop sui nodi ed esegue il job sottomesso. Gli unici

parametri che l’utente deve impostare sono il numero di nodi del cluster

e definire quale job eseguire.

Acknowledgements

Many people contributed to this experience. First of all, I am very grate-

ful to my mother and father for supporting me during this journey since

the beginning, even when the earthquakes that struck in May 2012 heavily

affected the village we live in and our lifes.

I want to thank Professor Andrea Bonarini for giving me the opportunity

to spend the master thesis abroad and Professor Gianluca Bontempi for

hosting me in the Machine Learning Group (MLG)1 at Université Libre de

Bruxelles (ULB). During the year they steadily followed my research and

gave me important feedbacks. Furthermore I got the opportunity to present

my research to enterprises and to attend local and international conferences.

Among MLG members a special thank goes to Yann-Aël Le Borgne and

Andrea Dal Pozzolo for advices and guidance.

This thesis is the last chapter of a great adventure in Politecnico di

Milano, which would not have been the same without all the volleyball

players and coursemates I met during the master program, especially Fabio

Forghieri with whom I started the journey.

This research project won Spinner2 grant for innovative projects and

ideas devoted to people in collaboration with universities, research centers

and enterprises in Emilia Romagna. This achievement has been possible

with the collaboration of AIRLab3, MLG, DataRiver4 and ATOS World-

line5.

1http://mlg.ulb.ac.be/
2http://www.spinner.it/
3http://airlab.ws.dei.polimi.it
4http://www.datariver.it/
5http://atosworldline.be

VII

Contents

Abstract I

Extended abstract III

Acknowledgements VII

1 Introduction 1

1.1 Big Data and NoSQL . 1

1.2 Technology overview . 2

1.3 Machine Learning . 5

1.4 Work description and contributions 7

1.5 Thesis Structure . 8

2 State of the art 9

2.1 Database management systems 9

2.1.1 ACID Properties . 9

2.1.2 Why sharding a database 10

2.1.3 How sharding a database 10

2.1.4 Problems in sharding 11

2.1.5 CAP Theorem . 12

2.1.6 Changing paradigm 12

2.2 Apache Hadoop . 13

2.2.1 HDFS Overview . 14

2.2.2 HDFS architecture and Data Replication 14

2.2.3 Robustness . 16

2.2.4 Web interface . 16

2.3 MapReduce . 17

2.3.1 Parallel paradigms . 17

2.3.2 Data type . 18

2.3.3 Core components . 18

2.3.4 Word count example 19

IX

2.3.5 MapReduce data flow 20

2.3.6 Combiner . 22

2.3.7 Distributed cache . 22

2.3.8 Reading and writing 23

2.3.9 MapReduce architecture in Apache Hadoop 25

2.3.10 Language support . 26

2.4 Analytics with Big Data . 27

2.4.1 Apache HBase . 27

2.4.2 Apache Hive . 28

2.4.3 MLbase . 29

2.4.4 R programming language 30

2.5 Apache Mahout . 31

2.5.1 Apache Mahout and Apache Hadoop 31

2.5.2 Tools and algorithms 31

2.5.3 Alternatives to Apache Mahout 34

3 Feature Selection algorithms in MapReduce 35

3.1 Introduction to feature selection 36

3.1.1 Dependence and correlation 37

3.1.2 Mutual Information 37

3.1.3 Algorithm categories 38

3.1.4 Minimal Redundancy Maximal Relevance 40

3.2 Feature selection in MapReduce 41

3.3 Contributions . 42

3.3.1 Mutual information Implementation 43

3.3.2 Ranking implementation 43

3.3.3 mRMR implementation 45

4 Deployment 49

4.1 Amazon Elastic MapReduce 49

4.2 Hydra, the computing center 51

4.2.1 Hydra as batch system 52

4.2.2 User jobs in Hydra . 53

4.2.3 Torque and Moab . 54

4.2.4 Deploying Apache Hadoop on Hydra 56

4.3 Contributions . 57

4.3.1 Job submission . 58

4.3.2 Automatic deployment 58

4.3.3 Considerations . 59

4.3.4 How to use the service 59

5 Performance tests and results 63

5.1 Datasets . 63

5.2 Tests and considerations . 65

5.2.1 Apache Hadoop setup 66

5.2.2 Retrieving information 66

5.3 mRMR MapReduce job . 67

5.3.1 Parallelism tests . 67

5.3.2 Overhead tests . 67

5.3.3 Scalability tests . 70

5.4 Best feature MapReduce job 72

5.5 Ranking MapReduce job . 75

5.5.1 Parallelism tests . 75

5.5.2 Scalability tests . 75

6 Future works and conclusions 79

Glossary 81

List of variables 83

Bibliography 85

A Apache Mahout tools 91

A.1 Preprocessing . 91

A.2 Algorithms . 92

A.3 Postprocessing . 94

A.4 Utilities . 94

B Mutual Information for MapReduce 97

C mRMR in MapReduce 101

D Ranking in MapReduce 105

E Tests 107

Chapter 1

Introduction

“I was not thinking about challenging database technologies at all”

Doug Cutting, Apache Hadoop founder

1.1 Big Data and NoSQL

With the cost of a gigabyte decreased from $10 in 2000 down to $0.10 in

2010, more and more companies are investing in commodity hardware to

store an increasing amount of data over time. In 2012, data accounted for

more than 30 billion pieces of content added each month on Facebook, 1

petabyte of content processed everyday by Zynga, 2 billion videos watched

everyday on YouTube, 32 billion searches performed each month on Twitter.

The traditional database systems, such as relational databases, have been

pushed to the limit and when data exceeds their processing capacity these

systems are facing Big Data issues. There is no official definition of Big Data

and we refer to three terms that are commonly used to characterize it [35]:

• Volume: volume presents the most immediate challenge to conven-

tional structures. It calls for scalable storage, and a distributed ap-

proach to querying. Many companies have already large amounts of

archived data, perhaps in the form of logs, but not the capacity to

process it.

• Velocity: it is the rate at which data flows into an organization. It

includes both the inflow data (the input from different sources) and

outflow data (batch processing).

• Variety: Big Data is any type of data, it can be structured, semistruc-

tured and unstructured data such as text, sensor data, audio, video,

click streams, log files and more.

To tackle the challenges of Big Data, a new breed of technologies has

emerged. Many of these new technologies have been grouped under the

term NoSQL, which stands for “Not Only SQL” and it groups a subset of

storage software that is designed with the intention of increasing optimiza-

tion for high-performance operations on large dataset. These technologies

provide a mechanism for storage and retrieval of data in order to achieve

horizontal scaling (see Glossary) and higher availability. Graphs, time series

and genomics data cannot be modeled well in traditional database systems

and different approaches and solutions emerged. It is worth noticing that

differences between NoSQL databases are bigger than between SQL ones and

the best solution depends specifically on the project properties and goals.

NoSQL technology allows us to capture and store vast quantities of data.

If data are recorded facts, then information is the set of patterns that under-

lies the data. There is a huge amount of information locked up in databases

and this information can be exploited with machine learning techniques,

which aim to find and describe structural patterns in data [61]. The kind of

descriptions found can be used for prediction, explanation, and understand-

ing. Some applications focus on prediction: forecasting what will happen in

new situations from data that describes what happened in the past. When

the new database system replaces the traditional one the algorithms have

to be reshaped to fit the new system.

The goal of the thesis is to understand what is the state of the art

technologies that managed Big Data and in which ways it is possible to make

use of machine learning algorithms on such distributed systems. Both closed

and open source solutions are available and the whole ecosystem is growing

over time because an increasing amount of companies are shifting from the

traditional model to the new one. The main research contribution of the

thesis is the design and implemention of state-of-the-art machine learning

(specifically feature selection) algorithms in the Big Data framework.

1.2 Technology overview

Data processing problems can be grouped in two main categories: computa-

tion intensive and data intensive. In computation intensive problems, such

as π calculation, computational resource demands are high even though the

amount of data loaded is low and a mainframe retrieves all data from differ-

ent sources in the main memory for processing. The mainframe has usually

high computational and system resources in order to run jobs efficiently.

On the other hand, data intensive problems apply few calculations on data.

When it comes to Big Data, it is not feasible anymore to move and load all

2

Google project Open Source project

Google File System Apache Hadoop

MapReduce

BigTable Apache HBase

Pregel Apache Giraph

Dremel Apache Drill

Table 1.1: Google projects and their counterparts open source

data in the main memory, the solution is to move computation where data

resides. This latter paradigm affects the way algorithms are implemented

and they have often to be reshaped to fit the new system.

Since 2003, Google have published researches in large distributed data-

intensive applications and its contributions led the development of open-

source technologies. Table 1.1 sums up Google projects and their open source

counterparts. The research papers regarding Google File System [21] and

MapReduce [14], published in 2003 and 2004 respectively, are the cornerstone

to tackle Big data problems, as they provide a scalable way to store and

query data and they were followed by high level projects such as Bigtable

[8] and Pregel [42]. On the open source side, a whole ecosystem is growing

around Apache Hadoop1 and it provides both advanced and high-level tools

to approach data intensive problems with Big Data. Some examples are

database-like solutions, system monitoring or high-level language for data

analysis. Figure 1.1 is an overview of some tools developed on top of Apache

Hadoop.

Companies can leverage Apache Hadoop ecosystem in three different

ways: getting full expertise in deploying Apache Hadoop and building data

analytics tools, relying on external cloud infrastructures such as Amazon

Elastic MapReduce (EMR)3 which provides an optimized Apache Hadoop

cluster, or getting full support from companies like Cloudera4, Hortonworks5

and Greenplum6 which provide ad-hoc all-in-one platform to meet enterprise

needs.

The Big Data landscape is broader than the sole Apache Hadoop ecosys-

tem. Since NoSQL covers a wide range of technologies, one way to distin-

1http://hadoop.apache.org/
2http://www.stanford.edu/class/ee380/Abstracts/111116-slides.pdf
3http://aws.amazon.com/elasticmapreduce/
4http://www.cloudera.com
5http://www.hortonworks.com/
6http://www.greenplum.com

3

Figure 1.1: Apache Hadoop ecosystem2

guish NoSQL applications is by understanding what type of data structure

they store. These categories are described in the following list:

1. Key-values stores: data is stored and indexed based on its key. This

model is the simplest one, but it is inefficient with high complexity

data. Examples are Voldemort7 and Riak8.

2. Column Family Stores: data is stored column-wise instead of record-

wise for better compression. Here keys point to multiple columns,

arranged by column family. Examples are Apache HBase (Section

2.4.1) and Apache Cassandra9. Column oriented Relational DBMS,

such as C-Store [56], apply the same concept but data is still organized

in tables.

3. Document Databases: they are essentially the next level of key-values,

allowing nested values associated with each key. Examples are CouchDB10

and MongoDB11. In contrast to RDBMS and their notions of relations

(or tables), these systems are designed around an abstract notion of a

Document.

7http://www.project-voldemort.com
8http://basho.com/riak/
9http://cassandra.apache.org/

10http://couchdb.apache.org/
11http://www.mongodb.org/

4

4. Graph Databases: a flexible graph model is used instead of tables

of rows and columns and the rigid structure of SQL. Examples are

Neo4j12 and FlockDB13. In graph databases, the relationships are

stored at the individual record level, while in a RDBMS they are de-

fined at a higher level (the table definitions).

In NoSQL applications schema (see Glossary) can be defined at read-time

and this flexibility is a crucial property to deal with semi and unstructured

data, while in DBMS schema must be defined before any data is loaded.

Besides the hype related to Big Data, there is no one-over-all winner

between DBMS and NoSQL technologies. According to its properties, each

specific problem best fits with one solution or the other14.

1.3 Machine Learning

Machine learning is a branch of Computer Science which studies how systems

learn tasks. The definition of learning in this context is quite broad and we

consider the one provided by Tom Mitchell in his book “Machine Learning”

[46]:

“A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if

its performance at tasks in T, as measured by P, improves with

experience E.”

There are three general classes of tasks in machine learning: supervised

learning wants to predict an output when given an input, reinforcement

learning learns to select an action to maximize payoff and unsupervised learn-

ing discovers a good internal representation of the input.

In each class we want to find a model that approximates the real un-

derlying structure of the data, so that it will also approximate the target

function well over other unobserved examples. We measure the model per-

formance when it runs over both training and test dataset. If the model

performs well with the former but not with the latter it overfits data, which

means it explains the training dataset too accurately but it is not general

enough to be accurate for previously unseen data.

Overfitting occurs when a model mistakenly fits noise along with the sig-

nal. There are several approaches to prevent it such as cross-validation and

12http://www.neo4j.org/
13https://github.com/twitter/flockdb
14http://www.stanford.edu/class/ee380/Abstracts/111116-slides.pdf

5

regularization terms. In the former the whole dataset is splitted into train-

ing set, which is used to build the model, and validation set, for parameter

optimization; in the latter some coefficients are used to penalize complexity.

In this document, we focus on how to get rid of irrelevant features in order

to reduce the variance of the model and the overfitting risk.

Curse of dimensionality

In applied mathematics, the curse of dimensionality refers to the problem

caused by the increasing in volume associated with adding extra dimensions

to a mathematical space. It might be difficult to work with high dimensional

data since adding new features can increase the noise and it requires more

observation to get good estimates. In the Big Data scenario it is easy to

store as much data as possible, even lots of features.

In predicting the desired output, some features only might be relevant,

others might be completely irrelevant or correlated. Performance of deci-

sion tree algorithms (such as ID3, C4.5, and CART) and instance-based

algorithms (such as IBL) are affected by irrelevance, while Naive-Bayes per-

formance is affected by redundant features [31].

Dimensionality reduction

One way to address the curse of dimensionality is by means of dimensionality

reduction techniques. There are several benefits in projecting the original

data into a lower dimensional space, such as measurement and computation

costs, model generalization, interpretation of the model, visualization of data

and understanding key features of the data.

Figure 1.2: Classification error as a function of the number of feature selected15.

15http://www.slideshare.net/NikhilSharma6/curse-of-dimensionality

6

The ultimate goal of those techniques is to provide the optimal feature set

through which the data is best expressed. Figure 1.2 shows the classification

error, which arises when the number of features is either less or more than

the optimal one. In the first case we are missing important features that

express data, while in the second case some inputs are superfluous.

Algorithms for dimensionality reduction are grouped in two main cate-

gories:

• Feature selection: it selects a subset of the existing features without a

transformation. Examples are mRMR [51] and CFS [27] (see Section

3.1.3 for details).

• Feature extraction: it transforms the existing features into a lower

dimensional space. Examples are PCA [28] and ICA [30].

In Chapter 3 we describe feature selection only, since the algorithms we

implemented in MapReduce belong to that category.

1.4 Work description and contributions

The master thesis work is divided into two main parts. First, we introduce

the context of the work, exploring Big Data framework and higher-level

tools. Second, we describe our contributions both for Big Data and machine

learning, which are summed up in the following list (more details at the

relative chapters):

• Analyze and design filter feature selection algorithms in MapReduce.

Release their implementation as a public Java library available for

Apache Mahout on GitHub16 (Chapter 3).

• Develop a user friendly service for dynamic deploying of Apache Hadoop

for the ULB high-performance computing center, based on a simpler

model of Amazon Elastic MapReduce17 (Chapter 4).

• Run performance tests of implemented algorithms in MapReduce for

assessing their scalability and level of parallelism (Chapter 5).

We created several datasets to understand Apache Hadoop scaling be-

haviour and we ran massive and extensive performance tests on clusters of

different size: 4, 6 and 8 nodes. Our theoretical analysis confirmed that

16https://github.com/Nophiq/Mahout
17http://aws.amazon.com/elasticmapreduce/

7

execution time increases as the dataset grows in size, while it decreases as

the cluster has more computational resources, i.e. nodes. Our results agreed

with our expectations.

We faced several challenges during our research. We were first in de-

veloping the Apache Hadoop service on the ULB computing center, so we

could not rely on any documentation and we got the expertise on the way.

We needed to study and reshape machine learning algorithms to fit MapRe-

duce paradigm, with accurate designing choices. Finally, even though our

extensive performance tests agreed with our expectations, we were heavily

limited by computational resources available. On the basis of our current

results some future perspectives are opened:

• There are several feature selection algorithms besides the ones imple-

mented. The Apache Mahout extension library could be enriched with

new algorithms such as those listed in [47].

• There are several ways to tune Apache Hadoop or the cluster. Setting

different parameters will enrich the comprehension of the algorithm

workloads. The final goal then will be to build a performance model

in order to predict what is the best Apache Hadoop configuration and

cluster size based on the algorithm and the dataset.

• Additional extensive tests can be run over clusters with more compu-

tational resources.

• Reimplement our MapReduce algorithms with different design choices.

Run new tests and compare the results.

1.5 Thesis Structure

The thesis is structured as follows. In Chapter 2 we will introduce the state

of the art of technolgies: MapReduce paradigm, Apache Hadoop, Apache

Mahout, database-like solutions for Big Data and how R programming lan-

guage can be combined with Apache Hadoop. In later chapters, we de-

scribe limitations of the current state of the art, what motivated us in going

through this master thesis work and our contributions: Chapter 3 introduce

feature selection and our implemented algorithms: mRMR and Ranking;

in Chapter 4 we describe the ULB computing center architecture, its limi-

tations for Apache Hadoop and how we developed an user friendly service

available for every user; in Chapter 5 we show and comment performance

results. Finally, we provide our conclusions and future works in Chapter 6.

8

Chapter 2

State of the art

“The biggest hurdle was training our brains to think MapReduce”

Alex Holmes, author of Hadoop in Practice

In this chapter we describe the technology used during the master thesis.

We start with a review of database management systems (DBMS), introduc-

ing the properties that made them successful and what are their limits. In

distributed systems, they were forced to fit new constraints and some trade-

offs were made. From one side the expertise gained over the years was still

relevant, but on the other side the complexity of the system increased.

We review NoSQL technology and the scienfitic research that led the

development of MapReduce, a new paradigm built to overcome scalability

issue of DBMS, implemented in the open source project Apache Hadoop.

A whole new ecosystem of closed and open sourced software is built on top

of Apache Hadoop for different goals: analytics, visualization, management,

monitoring, etc... For the purpose of the master thesis we focused on Apache

Mahout, as analytics tool.

2.1 Database management systems

In these section we describe database management systems (DBMS) with

its ACID properties and how they increased in complexity to deal with

scalability. The aim is not to provide a fully description of DBMS but to

emphasize the limits which allowed NoSQL applications to emerge.

2.1.1 ACID Properties

A database management system (DBMS) is a software system to manage,

define and query databases. Each operation that modifies the database or

its content is handled by the DBMS in a reliable way by means of database

transactions, the execution of which must satisfy some properties referred

with the acronym ACID [26]. The ACID properties are described as follow:

• Atomicity: whenever a database transaction starts either all or none

operations involved are executed successfully. If one operation fails

before the transaction ends, the valid system status before that trans-

action began has to be restored.

• Consistency: each transaction brings from one database valid state to

another one, where each defined constraint is satisfied.

• Isolation: the DBMS manages transactions as if they were executed

sequentially and it is in charge of managing concurrent transactions.

• Durability: once a transaction has been committed its effects are stored

in such a way they will permanently stay.

2.1.2 Why sharding a database

When the DBMS wants to both serve an increasing amount of clients and

guarantee ACID properties, the service response time is not reasonable and

the computational resources are no more sufficient. At this point, it is time

to scale the architecture. There are two approaches: scaling-up increases

the disk storage, memory capacity, I/O performance and the other general

computational resources of a single controller for processing, while scaling-

out distributes performance and capacity among several controllers.

The scale-up approach offers simple and central configuration of the main

architecture, but as data grows its performance is limited by the capabili-

ties of its components, whose price increases as their requirements become

higher. If the service has lots of operations regarding the storage system and

the main memory, then the primary bottleneck will likely be I/O. In such

cases, managing a single server in charge of all the workload is not affordable

and a different approach has to be embraced. The scale-out approach pro-

vides a cost-saving solution by sharding (see Glossary) the database at the

cost of increasing the complexity of the architecture, and it is the solution

usually adopted.

2.1.3 How sharding a database

There are different ways to break up a single database into multiple ones.

They could be grouped in three broad categories1:

1http://www.startuplessonslearned.com/2009/01/sharding-for-startups.html

10

• Vertical partitioning: data related to a specific feature of the product

is stored in the same machine. For instance, partitioning Twitter

data could be done in the following way: user information is stored in

the first server, user posts in the second one and followers in a third

one. Note that each feature could have different tables, in the Twitter

example both tweets and direct messages belong to the same feature.

• Key or hash based partitioning: data is partitioned based on a key

(or hash value), which is used at query time to determine where the

entity is in the cluster of servers. In the Twitter example, the user

unique identifier is the input of an hash function, which output shows

in which server the user information is stored.

• Directory-based partitioning: information about how the data is shared

across the cluster in store in a lookup table. There are two main

drawbacks, first the machine that stores the lookup table becomes the

single point of failure, second there is a performance cost since each

query consults the lookup table.

2.1.4 Problems in sharding

Sharding introduces complexity in the architecture in terms of new con-

straints. These constraints are related to operations that involve multiple

tables or instances that are not in the same server. Some of these constraints

are here described.

A distributed join is the most expensive distributed data analysis opera-

tion. Once a database is sharded across multiple servers, the join operation

has to query all databases in which the tables or instances are stored. This

is an inefficient solution, since it could dramatically decrease performance

of the system. A workaround is to denormalize (see Glossary) the database,

duplicating data across servers in order to reduce join operations. This in-

troduce even more complexity in the system because data inconsistency here

has to be taken into account.

Integrity controls become more complicated in a sharded system due to

distribution. We need to define where integrity rules are stored and which

tables are affected or referenced by those rules. The introduced overhead

is proportional to the number of shards and data replication [52]. Even

though performance improvements have been achieved [18], enforcing data

integrity constraints such as foreign keys in a sharded database can become

a significant development cost to the service.

Rebalancing is an issue that arises when the sharded schema has to be

11

changed. It could happen because the company grew over time and it has

different needs. In such situations data has to move according to the new

schema over different servers and the system has to go down time.

2.1.5 CAP Theorem

Besides the problems described in Section 2.1.4, the Brewer’s conjecture

says it is possible to achieve at most two out of three desired properties in

a distributed system: consistency, availability and partition tolerance. This

conjecture has been formalized and proved by Gilbert and Lynch [22] and

it is well known as the CAP theorem. In such theorem the properties are

reported as follow:

“[With consistency] there must exist a total order on all opera-

tions such that each operation looks as if it were completed at a

single instant.”

“[With availability] every request received by a non-failing node

in the system must result in a response.”

“[With partition tolerance], the network will be allowed to lose

arbitrarily many messages sent from one node to another.”

An example of a network partition is when two nodes cannot talk to

each other, but there are clients able to talk to either one or both of those

nodes. In a distributed system sharding the database makes the system

tolerant to networks partitioning. The choice is then between availability

and consistency. In a system which is not available, a request could not

receive a response and it can create significant real-world problems. There-

fore, NoSQL databases relax consistency in favor of availability (Figure 2.1)

and, rather than supporting full ACID, they rely upon different consistency

models [19, 34, 20, 24, 16, 17].

2.1.6 Changing paradigm

CAP theorem, denormalization, data replication, increasing complexity in

query execution and schema constraints are trade-offs made by DBMS when

it comes to deal with a growing database. DMBS were not meant to address

these issues at the beginning, but the expertise on these systems and the

architecture legacy pushed them to fit under those new constraints.

12

Figure 2.1: CAP Theorem: in a distributed system it is possible to achieve at most two

out of three desired properties: consistency, availability and partition tolerance. NoSQL

databases relax consistency property.

With the coming of Big Data a paradigm change was required. A new

way in storing and querying data emerged to tackle these limits and the

applications were grouped under the term NoSQL. Here we will focus on

the technology described in two Google papers, regarding the Google file

system [21] and MapReduce [14], and their open source implementation

Apache Hadoop.

In the following sections we describe into detail Apache Hadoop and

Apache Mahout.

2.2 Apache Hadoop

Apache Hadoop is a scalable fault-tolerant distributed system for data stor-

age and processing (open source under the Apache license). It is composed of

two main subsystems: Hadoop Distributed FileSystem (HDFS) and MapRe-

duce. In this section we describe the whole architecture and the HDFS

component while MapReduce is explained in detail in Section 2.3. Figure

2.2 shows how they relate to others tools in the Apache Hadoop ecosystem.

The following documentation about Apache Hadoop components are re-

lated to software version 1.1.2.

2http://blogs.ejb.cc/archives/4290/hadoop-technical-manuals-a-the-hadoop-

ecosystem/tumblr lbbwggcer71qappj8

13

Figure 2.2: Apache Hadoop stack. Apache HBase improves and provides new function-

ality to HDFS. High-level tools such as Apache Hive, Apache Pig or Hcatalog rely on

HDFS as storage system and they eventually take advantage of MapReduce to query

data2.

2.2.1 HDFS Overview

HDFS is a distributed filesystem designed to store a very large amount

of data (terabytes or petabytes) and to provide fast, scalable access to it.

Computational and storage power should scale according to the number of

machines in the cluster, the more the nodes the more clients are served.

Reliability is a major concern and if individual machines in the cluster mal-

function, data should still be available.

These design choices let HDFS be very scalable, but some trade-off were

made with this architecture:

• HDFS is optimized to perform long sequential streaming reads from

files, while it is not for random reads.

• Caching is not adeguated since the overhead is great enough that data

should be re-read from HDFS source.

• Updating operations to existing files are restricted to appending only.

As HDFS is not a native Unix filesystem, standard Unix file tools do

not work. However Apache Hadoop provides a set of command line utilities

to interact with the environment, including file and filesystem management

and cluster monitoring.

2.2.2 HDFS architecture and Data Replication

Each file is stored in HDFS as a metadata file and a collection of blocks.

While blocks store the content, the metadata file records blocks location

14

and replication. Default configurations set the block size at 64MB and

the replication parameter at three, which means that each block is stored

three times across the cluster. For performance or reliability reasons these

parameters could be tuned by means of xml configuration files (Apache

Hadoop website provides a full customizable parameter list3).

The HDFS architecture in Figure 2.3 illustrates the master-slave solu-

tion to handle nodes availability, workload balancing and replication. The

NameNode is the master component of the architecture and it stores meta-

data information, such as where each block is stored and how many times

the block is replicated, and tracks DataNodes, which actually store the data.

If it detects one failure it will restore the lost blocks and create the miss-

ing copy. If the NameNode fails, the BackupNode (also called Secondary

NameNode) takes its place.

Figure 2.3: HDFS architecture. The NameNode manages DataNodes in storing files.

In this picture a file has been partitioned in 5 blocks (not represented) and each block is

depicted in a square box with a specific color and stored three times across the cluster4.

3http://hadoop.apache.org/docs/r1.1.2/hdfs-default.html
4http://simranjindal.com/2011/10/17/remote-attendees-reflections-sqlpass-2011-day-

3-keynote-by-dr-david-dewitt/

15

2.2.3 Robustness

The three common types of failures are NameNode failures, DataNode fail-

ures and network partitions.

The NameNode, which manages the activities in the cluster, faces both

DataNode failures and network partitions using heartbeat messages. During

normal operations DataNodes send lightweight messages (heartbeats) to the

NameNode to confirm that it is operating and the blocks it hosts are still

available. The default interval is three seconds. If there is not any new in-

coming heartbeat after a timeout of ten minutes, the NameNode considers

the DataNode to be out of service and it starts the recovering procedure

of the lost data blocks, replicating those blocks from and to the available

DataNodes. Heartbeats also carry information about the general activity

and storage status of the DataNode. These statistics are used for the Na-

meNode block allocation and load balancing decisions. Finally as already

mentioned, if the NameNode fails the BackupNode takes its place until it

recovers.

Because of possible faults in storage devices, network or unreliable soft-

ware, data fetched from DataNodes could arrive corrupted. A checksum

(see Glossary) system is implemented to recognize such problems. For each

stored block the DataNode creates an hidden checksum file. When a HDFS

client requests a block it receives both the content and the associated check-

sum file. If there is not match between the local calculated checksum and

the one fetched from the DataNode, the client can opt to retrieve that block

from another DataNode that has a replica of that block.

2.2.4 Web interface

Apache Hadoop provides a web interface [33] to monitor the health of the

cluster and the current status of submitted job through logs.

By default Namenode is reachable using port 50070 and from its inter-

face it is possible to browse the HDFS filesystem or determine the storage

available on each individual node.

The JobTracker (Section 2.3.9) is reachable at port 50030. Here, detailed

information about the ongoing and completed MapReduce job is available,

such as which node performed which tasks and the time or resources required

to complete each task.

16

2.3 MapReduce

MapReduce is a programming paradigm designed to analyze large volumes

of data in a parallel fashion. Its goal is to query data in a scalable way,

typically stored in HDFS, without any constraints about the cluster size.

Architectures such as MPI (Section 2.3.1) where data is shared arbitrarily

between nodes, for synchronization for instance, are not reliable because the

overhead due to the network traffic could drammatically affect perfomance.

Programs written in MapReduce are able to scale with the cluster size, i.e.

the same program will properly run with both tens and hundreds of nodes.

In Section 2.3.1 we compare MapReduce with other parallel paradigms.

In later sections we describe its most important features related to the devel-

opment of the master thesis, such as core components, data flow and some

advanced components. For a fully detailed description of the paradigm, we

suggests books [33, 60] as references.

2.3.1 Parallel paradigms

To understand the differences between MapReduce and Pthreads (POSIX

standard for threads [49]) we consider the two systems they rely on: HDFS

and POSIX5 respectively. The latter is a set of standards specified by

IEEE for maintaining compatibility between operating systems. In the way

MapReduce paradigm works, all the operations on files supported by POSIX

are not required. HDFS does not support file modification after they are

closed and writes to a single file by multiple clients. In its workflow, MapRe-

duce always creates new files and does not change contents of existing files.

Furthermore, Pthreads version lacks fault tolerance and load balancing6.

MapReduce has been compared to Message Passing Interface (MPI)7 be-

cause they both provide distributed programming environments for cluster

level parallelism [37]. MPI is the dominant model used in high-performance

computing but its current implementations do not support easy fault toler-

ance8, unlike Apache Hadoop and its HDFS which provide data redundancy

as core feature. Other differences between the two paradigms are reported

in Table 2.19.

Finally, OpenMP10 completely differs from MapReduce since it relies on

5http://standards.ieee.org/develop/wg/POSIX.html
6http://courses.cs.vt.edu/cs5204/fall10-kafura-BB/Presentations/MapReduce.pdf
7http://www.mcs.anl.gov/mpi
8http://www.open-mpi.org/faq/?category=ft
9http://courses.cs.vt.edu/cs5204/fall10-kafura-BB/Presentations/MapReduce.pdf

10http://openmp.org/wp/

17

MPI MapReduce

What they are General parallel A programming paradigm

programming paradigm and its associated

execution system

Programming Message passing Restricted to MapReduce

model between nodes operations

Data organization No assumptions Files can be sharded

Execution model Nodes are indipendent Map/Shuffle/Reduce

Usability Difficult to debug Simple concept,

could be hard to

optimize

Key Selling Point Flexible to accomodate Flow through large

various applications amount of data with

commodity hardware

Table 2.1: MPI and MapReduce comparison

a shared memory architecture instead of a distributed system.

2.3.2 Data type

MapReduce deals with every kind of data type, such as integer, text, bi-

nary (i.e. image and video) or even custom defined ones. In the following

examples we consider text only for better explaining concepts.

In Apache Hadoop, each data type is handled through a wrapper class,

because wrappers implement functionalities to efficiently manage data through-

out the process. Examples are (data type – wrapper) long – LongWritable,

int – IntWritable and String – Text.

2.3.3 Core components

MapReduce programs transform lists of input data elements into lists of

output data elements. This process happens twice in a program, once for

the map step and once for the reduce step. Those two steps are executed

sequentially, the reduce begins when the map is completed.

In the map step the data elements are provided as list of key-value ob-

jects. Each element of that list is loaded, one at a time, into a function called

mapper, which transforms the input and outputs any number of interme-

diate key-value objects. It is worth stressing that the original data is not

modified and the mapper output is a list of new objects, because in DBMS

18

database content changes over time, while with MapReduce and according

to Section 2.2.1 input does not change.

In the reduce step, intermediate objects that share the same key are

grouped together and they are the input of a function called reducer. The

reduce function is invoked as many times as the number of different keys

and its value is an iterator over the related grouped intermediate values.

MapReduce input typically comes from files loaded into HDFS. These

files are distributed across all nodes. Mappers and reducers run on many or

all of the nodes in the cluster in a isolated environment, i.e. each function is

not aware of the other ones and they their task is equivalent in every node.

Each mapper loads the set of files local to that machine and processes it.

That design choice allows the framework to scale without any constraints

about the number of nodes in the cluster.

2.3.4 Word count example

The common example reported in books and online to explain a MapReduce

program is the word count example11. The purpose of the program is to list

unique words in a document corpora and shows how many times each word

is present. In Listings 2.1 and 2.2 we provide the pseudo code for the mapper

and reducer respectively.

Listing 2.1: Word count mapper

1 mapper(key, value) {

2 // key is not important

3 List words <- splitAndNormalizeLine(value);

4 foreach(word in words) {

5 output(word, 1);

6 }

7 }

Listing 2.2: Word count reducer

1 reducer(key, iterator<values>) {

2 counter <- 0;

3 foreach(value in values) {

4 counter <- counter + 1;

5 }

6 output(key, counter);

7 }

11http://wiki.apache.org/hadoop/WordCount

19

In this example the mapper input is a line in the text document. In

key-value terms the key is the line offset in the document and the value is

the line itself. The mapper outputs an intermediate key-value object each

time a word is read, where the key is the word itself and the value is the

constant integer 1. The reducer groups intermediate objects by word, it

sums up how many times the word has been read by mappers and outputs

the counting. Function splitAndNormalizeLine in Listing 2.1 line 3 splits

the line according to an empty space delimiter and normalizes each words,

i.e. punctuation is removed and every word becomes lower case.

Other simple and complex examples are described into details in books

[33, 60], such as the patent citations, average, reduce-side join.

2.3.5 MapReduce data flow

This section introduces the MapReduce data flow from a high level view.

In Figure 2.4 data in the storage system is split in small chuncks, depicted

as grey rectangular boxes, each one is the mapper input in key-value for-

mat. In this example three mappers are shown that transform the input in

intermediate output objects, yellow boxes.

Figure 2.4: High level view of MapReduce data flow12.

When the mapping phase is completed, the intermediate objects must

12http://developer.yahoo.com/hadoop/tutorial/module4.html

20

be exchanged between machines to send all values with the same key to a

single reducer. The reduce tasks are spread across the same nodes in the

cluster as the mappers. This is the only communication step in MapReduce,

completely handled by the Apache Hadoop platform and guided by the

different keys associated with values.

Though the user does not manage the network traffic, he can customize

its behavior. Between map and reduce steps, Apache Hadoop lets the user

customize how data is partitioned across nodes and how it is sorted be-

fore being read from reducers. These steps are called partition and sort,

respectively.

The partition is managed by the Partitioner class, which pseudo code

interface is reported in Listing 2.3. The getPartition function receives the

intermediate key-value objects, one at a time, and the number of partitions

to split the data across. It has to return an integer value in the range

between 0 (included) and numPartitions (excluded). There are usually as

many partitions as nodes. The default partitioner computes a hash value

for the key and assigns the partition based on this result.

Listing 2.3: Partitioner interface

1 interface Partitioner {

2 getPartition(key, value, numPartitions);

3 }

Custom partitiong is useful to address skewness of data. An unbalanced

distribution of intermediate objects (based on keys) will affect MapReduce

performance, because the reducer with most workload will slow down the

entire job while the already completed reducers will stay idle. If the unbal-

anced distribution of keys is known a priori, the custom partition could split

data according to that knowledge.

For example, suppose there are five partitions and keys are in the range

[0, 9]. With balanced distribution each partition takes data related to two

keys and the workload is equally distributed. An example of data skew is

when intermediate objects related to key 0 is one fifth of the whole data

(instead of one tenth). To better distribute the workload across reducers,

one partition is in charge to load objects with key 0 only, while the others

do the rest.

After partitioning, the next step is sorting. The set of intermediate keys

on a single node is automatically sorted by Apache Hadoop before they are

presented to the reducer. Several MapReduce jobs do not require an ordered

input to reducers and it will be more efficient to remove that step to increase

21

performance. The sorting operation is not about enforcing the sorted order

of the reducer input, but sorting is an efficient way to group all records of

the same key together [33].

A custom sorting is injected by extending the class of the key toWritable-

Comparator class and implement compare function. In Listing 2.4 we report

the pseudo class implementation.

Listing 2.4: Extending WritableComparator class

1 class MyKey extends WritableComparator {

2 compare(obj1, obj2) {

3 cmp = 0;

4

5 // compare obj1 and obj2 according to their

6 // definition and set cmp variable

7

8 return cmp;

9 }

10 }

2.3.6 Combiner

The combiner is an optional functionality in MapReduce. It has been in-

troduced to process and aggregate intermediate objects before the partition

step begins to reduce the network traffic across nodes. In Figure 2.5 is shown

the combiner in the MapReduce data flow.

The combiner interface is the same of the reducer one, but it operates

only on data generated by one machine. In the Word Count example the

combiner could be applied to decrease the amount of intermediate objects

sent across the network. In one partition, suppose the mapper outputs 10

times the object (“house”, 1), meaning the word “house” has been read

ten times in the locally stored data. Without the combiner all those ob-

jects are sent to another node, while with the combiner the objects are first

aggregated in (“house”, 10) and then only a single object is sent.

2.3.7 Distributed cache

DistributedCache [33] is a facility provided by the MapReduce framework to

share read only files globally with all nodes on the cluster. Files are copied

to all local machines before the job runs and they can be texts, libraries or

executable code in general.

13http://developer.yahoo.com/hadoop/tutorial/module4.html

22

Figure 2.5: Combiner step inserted into the MapReduce data flow13.

2.3.8 Reading and writing

In Figure 2.6 a more detailed data flow is shown, introducing the interaction

between MapReduce and HDFS related to inputs and outputs.

Files in the HDFS have typically size of gigabytes of terabytes. They are

split in smaller chunks, called in Apache Hadoop terminology input splits,

which are processed in parallel. Each chunck is the input of a mapper

function, so it should not be both too large to outfit the main memory and

too small that the overhead of starting and stopping the processing of a split

becomes a large fraction of the execution time. The default chunk size is

64MB.

Input splits are a logical division of the file in HDFS, in relatively rare

situations it could happen a mapper input is physically partitioned into two

or more nodes. The process of fetching the data is managed by Apache

Hadoop and it is transparent to the user, by the way some overhead occurs.

InputFormat provides a way to read the file (i.e. there is no constraints

about the file format, so a custom reader has to be defined if necessary),

defines how files are broken into chuncks and how to load the data from

its source and convert it into (key, value) pairs suitable for reading by the

mapper, by means of RecordReader (RR). Popular InputFormat classes are

reported in the following list (taken from [33]):

14http://developer.yahoo.com/hadoop/tutorial/module4.html

23

Figure 2.6: Detailed Hadoop MapReduce data flow14.

• TextInputFormat: each line in text files is a record read. Key is the

byte offset of the line, and value is the content of the line.

• KeyValueTextInputFormat: each line in text files is a record read.

The first separator character divides each line. Everything before the

separator is the key, everything after is the value. The separator is set

customizable and the default is the tab character.

• SequenceFileInputFormat<K,V>: an InputFormat for reading Sequence-

Files, which is an Apache Hadoop specific compressed binary file for-

mat. It is optimized for passing data between the output of one

MapReduce job to the input of some other MapReduce job. Key and

value are user defined.

• NLineInputFormat: same as TextInputFormat, but each split is guar-

anteed to have exactly N lines. The number of lines is customizable

and its default value is one.

24

Apache Hadoop defines outputs of MapReduce jobs by OutputFormat

and it works likewise the InputFormat. OutputFormat validates the output-

specification of the job, i.e. it checks that the output directory does not

already exist and provides a way to write out job output files, which are

typically stored in the HDFS. Popular OutputFormat classes are reported

in the following list ([33]):

• TextOutputFormat: writes each record as a line of text. Keys and

values are written as strings and separated by a custom character (tab

character is the default one).

• SequenceFileOutputFormat: writes the key value pairs in Apache Hadoop

SequenceFile format. It works in conjunction with SequenceFileInput-

Format.

• NullOutputFormat: outputs nothing.

2.3.9 MapReduce architecture in Apache Hadoop

In Section 2.2.2 we described how data is managed by a master-slave ar-

chitecture by means of a NameNode and several DataNodes. The same

approach is applied to MapReduce jobs, Figure 2.7. Each MapReduce job

submitted by a client is managed by the JobTracker, which determines the

execution plan, assigns nodes to different tasks and monitors the execution.

The TaskTracker is in charge of executing the tasks the JobTracker as-

signs. In the cluster there is one master JobTracker only and as many Task-

Tracker as the number of slaves. Since multiple MapReduce jobs could run

simultaneously on the cluster, the JobTracker assigns tasks from different

jobs to the same TaskTracker.

The communication protocol design between JobTracker and TaskTracker

aims both to monitor the jobs status and to recover after a node failure. The

principle is the same described in Section 2.2.3, related to the robustness

of HDFS architecture. The JobTracker receives periodic heartbeats from

each TaskTracker. If JobTracker does not receive any heartbeat from one

TaskTracker after a period of time (1 minute by default) it will assume the

TaskTracker in question has failed and it will resubmit the corresponding

tasks to other nodes in the cluster.

Having described how Apache Hadoop handles data and jobs, the overview

of the entire architecture is in Figure 2.8.

25

Figure 2.7: JobTracker and TaskTracker interaction. The JobTracker partitions the

workload of the client submitted job to different TaskTrakers [33].

2.3.10 Language support

Java is the native language in Apache Hadoop to program in MapReduce,

however Apache Hadoop Streaming15 is a versatile tool that interacts with

Unix environment and allows the developer to use arbitrary programs as

mapper and reducer, receiving and sending data through stdin and stdout

(see Glossary) in text format only. In a single machine Unix environment

that process is like executing Unix commands in pipeline. Listing 2.5 shows

the pseudo code.

Listing 2.5: Pseudo code using Unix command line notation

1 cat [input_file] | [mapper] | sort | [reducer] >

[output_file]

With Apache Hadoop Streaming the job is distributed across the cluster

and programs can be written in any script language such as bash, python,

perl, or another language of choice, provided that the necessary interpreter

is present on all nodes in the cluster.

[33, 60] contain examples of Apache Hadoop Streaming usage from com-

mand line, mappers and reducers written in script languages.

15http://hadoop.apache.org/docs/stable/streaming.html

26

Figure 2.8: Apache Hadoop master-slave architectures for handling data and MapRe-

duce jobs [33].

2.4 Analytics with Big Data

In Big Data scenario, data analysts used to work with DBMS should rewrite

the algorithm implementations in MapReduce fashion. From a business

perspective, besides the high cost required both in employee training and

in converting data analytics tool in MapReduce, all the technical expertise

(especially the SQL-like) would be lost.

High-level tools purposefully emerged to overcome some Apache Hadoop

shortcomings, allowing complex business tasks and increasing productivity

in MapReduce. In the following sections four products are described, each

one provides analytics in different ways. Apache Mahout provides machine

learning tools for Big Data and it is described in detail in Section 2.5 because

it is a core component of the master thesis.

2.4.1 Apache HBase

Apache HBase is a type of NoSQL database (in Section 1.1 it has been listed

under Column Family Stores group). It provides a way to store data, rather

than to create a database, because it lacks many of the features available in

DBMS, such as typed columns, secondary indexes, triggers, and advanced

query languages. Considering the trade-off made with HDFS in Section

27

2.2.1, some feature of note are:

• It is built on top of HDFS and provides fast record lookups (and

updates) for large tables.

• It supports caching and bloom filters [4] for high volume query opti-

mization.

• Tables are distributed on the cluster via regions, and regions are au-

tomatically split and re-distributed as data grows.

• MapReduce could use Apache HBase as both source and sink.

• It provides strongly consistent reads/writes and random, realtime read/

write access to data.

Apache HBase is a middle layer between Apache Hadoop and other high-

level softwares, which actually deliver data analytics tools. It could be

accessed by means of Java API, REST/HTTP, Apache Thrift16 or Apache

Hive (Section 2.4.2).

2.4.2 Apache Hive

Apache Hive17 is a data warehouse system for the analysis of large datasets

stored in Apache Hadoop compatible filesystems. The core component is

the SQL-interface called HiveQL, which allows the developer to abstract

relational-like structure on top of non-relational or structured data. The

engine could be improved by plugging in custom Mappers and Reducers,

when it is inconvenient or inefficient to express this logic in HiveQL.

Figure 2.9 introduces Apache Hive architecture (green blocks) and its

relation with Apache HBase (golden blocks). The software can be accessed

through command line, a web interface or by means of an Apache Hive

Client, linked to Thrift server:

• The command line is a shell utility which can be used to run Apache

Hive queries in either interactive or batch mode.

• The web interface is an alternative to using the Apache Hive command

line. It visualizes metadata information such as database and tables.

16http://thrift.apache.org/
17http://hive.apache.org/
18http://www.slideshare.net/hortonworks/integration-of-hive-and-hbase-

12805463?from search=12

28

Figure 2.9: Apache Hive architecture and its integration with Apache HBase18.

• The Apache Hive Client supports different kinds of clients, such as

JDBC, Python, PHP, etc...

The Driver is the component which receives the queries. The subcompo-

nents Parser, Planner, Execution and Optimizer work together to parse the

query, do semantic analysis on the different query expressions and generates

an execution plan, using metadata information retrieved from the metas-

tore. The plan is a directed acyclic graph (DAG) of stages, composed by

MapReduce jobs and HDFS commands, which dependencies are managed

by the execution engine.

Apache Hive is introducing Apache Hadoop technology to a wider audi-

ence of analysts and other nonprogrammers. As of August 2009, Facebook

counts 29 percent of its employees as Apache Hive users, more than half of

whom are outside of engineering, i.e. they come from distinct groups like

sales, human resources, and finance19.

2.4.3 MLbase

MLbase [32] aims to simplify accessibility to machine learning algorithms in

a distributed environment. The system itself manages load balances, data

partitioning among cluster nodes and provides built-in common algorithms

such as SVM [13]. It is possible to extends the algorithm set through a

custom high level language.

19https://www.facebook.com/notes/facebook-data-science/distributed-data-analysis-

at-facebook/114588058858

29

There are several systems that already provide the functionalities de-

scribed above [32], such as Apache Hadoop combined with Apache Mahout

as detailed in Section 2.5, but major MLbase contribution is the optimizer

component which selects automatically the best model for the committed

task with related parameters. MLbase uses down-sampled data to speedup

the evaluation of different learning algorithms applicable to the specific task.

After exploration, the best model is trained with the larger dataset.

The system is still an early prototype, but the first public version will

have tools for common machine learning tasks such as collaborative filtering,

dimensionality reduction and data visualization.

2.4.4 R programming language

R20 is a free software programming language and a software environment

for statistical computing and graphics. The R language was built by statis-

ticians for developing statistical software and data analysis. According to

Bo Cowgill (ex Google employee), R is the most popular statistical package

at Google21.

R environment was not built for Big Data analytics because it is memory-

bound, but the combination of R and Apache Hadoop could be a solution

to bring analytics in Apache Hadoop. There are some challenges that need

to be addressed. First, analytics is often an iterative process. This is what

makes R such a powerful tool, a good environment for performing such

analysis. Apache Hadoop on the other hand is batch oriented where jobs

are queued and then executed, it may take minutes or hours to run these

jobs. Second, R is designed to have all of its data in memory, while programs

in Apache Hadoop (MapReduce jobs) work independently and in parallel on

individual data slices.

The most common way to link R and Apache Hadoop is to use HDFS

(potentially managed by Apache Hive or Apache HBase) as the long-term

store for all data, and use MapReduce jobs to encode, enrich, and sam-

ple datasets from HDFS into R. Data analysts can then perform complex

modeling tasks on a subset of prepared data in R.

For a full integration between R and MapReduce, the R landscape pro-

vides some useful libraries and it is possible to group them in two categories.

In the first group the goal is providing a simple and usable interface that

allows specification of both map and reduce functions in R. R program-

mers might have to rethink the approach to how algorithms can realized

20http://www.r-project.org/
21http://dataspora.com/blog/predictive-analytics-using-r/

30

and implemented, but the underlying optimization should justify the addi-

tional effort. In R, functions or calculations that fit nicely into MapReduce

model are the apply operation family, quantiles, crosstabs and stochastic

calculations (like Monte Carlo simulations). R libraries such as RHadoop22,

RHIPE23 and ORCH24 belong to this category.

In the second group, the MapReduce execution is fully transparent to

the developer and RHive25 belongs to this categoty. RHive is an R exten-

sion facilitating distributed computing via Apache Hive query and provides

an easy to use execution of R functions and objects through Hive Query

Language.

2.5 Apache Mahout

Apache Mahout is a Java library which goal is to provide scalable machine

learning algorithms. In this section we explore high level functionalities

available for end-users and reusable code to create custom tools. We con-

sidered Apache Mahout stable version 0.7.

2.5.1 Apache Mahout and Apache Hadoop

Apache Mahout primary goal is to provide scalable machine learning li-

braries. It can run in standalone mode, but it can take advantage of Apache

Hadoop if both software are running in the same machine or cluster.

All implemented algorithms run in a single machine, and some of them

are implemented in distributed mode using MapReduce paradigm. In the

following sections we introduce a detailed description of which of them are

in both fashions or just the sequential one.

2.5.2 Tools and algorithms

The documentation related to the functionalities in Apache Mahout is in-

cluded in the book “Mahout in Action” [50], in the online documentation26

and the source code, downloadable from the website27. The functionalities

available could be grouped in four categories:

22https://github.com/RevolutionAnalytics/RHadoop
23http://www.datadr.org/
24https://blogs.oracle.com/R/entry/introduction to oracle r connector
25http://cran.r-project.org/web/packages/RHive/
26https://cwiki.apache.org/confluence/display/MAHOUT/Mahout+Wiki
27http://mahout.apache.org/

31

Classification

Algorithm MapReduce

Logistic regression no

Adaptive logistic regression no

Naive bayes yes

Random forest yes

Table 2.2: Classification algorithms in MapReduce on Apache Mahout.

• preprocessing: the majority of the algorithms require the dataset in

an intermediate format to run properly. A raw dataset is converted

in a vectorized format, where data is organized in a vector format for

better performance.

• algorithms: algorithms are described in Appendix A and they are

grouped in classification, clustering and recommendation.

• postprocessing: these tools convert the vectorized data or the output

of Apache Mahout jobs in a human-readable format.

• utilities: a pool of different tools that helps the development and man-

agement of custom tools.

The end user can exploit all functionalities as a black box, because each

tool can be invoked by a command line interface. Executing an algorithm

from the command line with the related parameters properly set is the easiest

way to use Apache Mahout. The online documentation and the software

itself describe a detailed list of parameters for each functionality.

More complex and custom functionalities could run on top of Apache

Mahout. In such situations, the user has to develop Java code and leverage

the library interface. Every functionality has an interface, so a set of algo-

rithms (even custom ones) could be chained sequentially to run a complex

job.

A detailed description of Apache Mahout tools is reported in Appendix

A, while in Tables 2.2, 2.3, 2.4 and 2.5 we summurize which functionalities

are implemented in MapReduce fashion, besides the sequential one. It is

worth noticing that there are few classification algorithms in MapReduce

fashion.

32

Clustering

Algorithm MapReduce

Canopy yes

Top down yes

Dirichlet yes

Eigencuts yes

Fuzzy k-means yes

K-means yes

MinHash yes

Mean Shift yes

Spectral k-means yes

Table 2.3: Clustering algorithms in MapReduce on Apache Mahout.

Recommendation

Algorithm MapReduce

K-nearest neighbors no

Threshold-based neighborhood no

Item Based Recommendation yes

Table 2.4: Recommendation algorithms in MapReduce on Apache Mahout.

Other

Tools MapReduce

Frequent Pattern Mining yes

ALS-WR Factorization Matrix yes

Row Similarity yes

SVD yes

SSVD yes

Viterbi yes

CVB yes

Baum Welch yes

Table 2.5: Other tools in MapReduce on Apache Mahout.

33

2.5.3 Alternatives to Apache Mahout

There are three other frameworks worth mentioning, as Apache Hadoop and

Apache Mahout alternatives:

• AMPLab researchers, at UC Berkeley, released Spark [62] which was

developed to reduce latency data sharing in iterative algorithms, com-

mon in machine learning and data mining fields. The research group

achieved the goal introducing a memory abstraction called Resilient

Distributed Datasets, which is extensively described in [62].

• Graphlab [39], developed at UC Berkeley, is a graph-based, high perfor-

mance, distributed computation framework written in C++. The goal

was to achieve excellent parallel performance on large scale problems.

• Vowpal Wabbit [1]: it is a project started at Yahoo! Research and

continuing at Microsoft Research. The general goal is to create a very

fast, efficient, and capable learning algorithm.

Even though they overcome in different ways some issues related to

Apache Hadoop, they are not fully compliant with the research purposes:

Spark is a completely separate codebase from Apache Hadoop, Graphlab

implements a modified version of MapReduce while Vowpal Wabbit is fo-

cused on online learning. We chose Apache Mahout as a machine learning

library because it is a general framework for MapReduce machine learning

algorithms and it can be deployed on top of Apache Hadoop, leveraging the

full scalability it provides.

34

Chapter 3

Feature Selection algorithms

in MapReduce

“[Feature selection] objective is to select the minimal subset of features ac-

cording to some reasonable criteria so that the original task can be achieved

equally well, if not better”

Huan Liu, author of Feature Selection for Knowledge Discovery and Data

Mining

The prediction task is heavily affected by the quality and quantity of

features it relies on. Considering irrelevant features will introduce noise,

possibly leading to overfitting and increased computational complexity. Con-

versely, excluding important features can deprive the algorithm of important

information.

The goal of feature selection algorithms is to select the best subset of

features in terms of accuracy or other parameters. This task is more difficult

and complex as datasets have high dimensions, which is the standard nowa-

days in real-world applications. Scaling algorithms in a distributed system

is one more concern in the Big Data scenario.

Large scale and high dimension datasets are used in applications such

as internet algorithms, computational biology or social link analysis [54].

Traditional single machine algorithms may no longer be feasible to produce

models in reasonable time. For these reasons we considered feature selection

algorithms in MapReduce for distributed systems, which are not available

in popular open source tools such as Apache Mahout (Section 2.5).

In this chapter we introduce feature selection algorithms (Section 3.1),

the challenges we faced to reshape and redesign them in MapReduce (Section

3.2) and finally we present our contributions (Section 3.3).

Throughout the document we are coherent regarding the annotation

used, which is reported in the Annotation chapter.

3.1 Introduction to feature selection

Before describing feature selection algorithms it is important to introduce

some terminology and convention. We consider a dataset as a collection of

data organized in a table fashion. An instance is the single result of an event

we are interested in and it is organized as a table row, while each column

defines a measured property of that event and we call it feature. In super-

vised learning there is an additional column that classifies the instance, the

target feature, where its possible values are called target classes (or classes

only). For simplicity, we consider this situation only from now on.

For example, in the healthcare domain, the physician gathers data from

its patients about a disease and related symptoms, where each instance has

data related to a single patient. Each feature is linked to a single symptom

and the target feature collects whether the patient has (or not) the tracked

disease. The target classes in this example are two: yes, the patient has

the disesase, no, he has not. Based on the collected data, the goal of the

physician is to predicted whether a new patient has (or not) the disease,

given a set of symptoms. The algorithm that helps in the classification

process is called induction algorithm.

There are some domains of interests with hundreds to tens of thousands

of features. All those features were tracked to better understand the behav-

ior of the target class, but some of them could provide no useful information

and actually harm during the prediction analysis. Applying feature selec-

tion techniques to datasets with large number of features has some benefits:

facilitate data visualization and data understanding, reducing storage re-

quirements, reducing training and utilization times, defying the curse of

dimensionality and overfitting to improve prediction performance [25]. Do-

mains which exploit feature selection techniques include text processing of

internet documents, gene expression array analysis and combinatorial chem-

istry.

Feature selection algorithms could be applied both in supervised and

unsupervised learning. In the first case, we want to determine feature rel-

evance according to the target class, while in the second case we do not

have classes and the target concept is usually related to the structures of

the data. In reinforcement learning problems, feature selection is used for

instance to determine which subset of all inputs fed to the agent should be

included to generate the best performance.

36

3.1.1 Dependence and correlation

In statistics, dependence refers to any relationship between two random vari-

ables or two sets of data. In probabilistic terms, those variables are indipen-

dent. Measuring the relationship between features and the target objective

is a way to discover the underlying structure of the data and build models for

prediction. A frequently used quantity to measure dependence is correlation

[36].

The Pearson correlation is the most common among all the other types

of correlation [5]. It is a number between -1 and 1 that meausures the

tendency of two series of numbers, paired up one-to-one, to move together.

For every pair, if both numbers are either very high or very low at the same

time, then the correlation is close to 1; if they are high in module but differ

in sign, then they move in opposite direction and their correlation is close

to -1. When there appears to be little relationship at all, the value is near

to zero.

Formally, Pearson correlation coefficient, ρ, between two random vari-

ables is defined as the covariance of the two variables divided by the product

of their standard deviations (Formula 3.1).

ρX,Y = corr (X,Y) =
cov (X,Y)

σXσY
=

E [(X − µX) (Y − µY)]

σXσY
(3.1)

If we have a series of n measurements of X and Y written as xi and yi

where i = 1,2,...,n, then Formula 3.2 can be used to estimate the Pearson

correlation between X and Y .

rxy =

∑n
i=1

(xi − x̄) (yi − ȳ)

(n− 1) sxsy
=

∑n
i=1

(xi − x̄) (yi − ȳ)
√

∑n
i=1

(xi − x̄)2
∑n

i=1
(yi − ȳ)2

(3.2)

Correlation coefficients detect linear dependence only [36]. Other mea-

sures were developed to be more sensitive to nonlinear relationships, such

as the mutual information.

3.1.2 Mutual Information

Mutual information is a measure of the dependence between two random

variables [36]. It is zero if the variables are indipendent, it is large if one

is a function of the other. The mutual information is non-negative, i.e.

I (X;Y) ≥ 0, and symmetric, i.e. I (X;Y) = I (Y ;X).

37

Formally, the mutual information of two continuous random variables X

and Y can be defined as

I (X;Y) =

∫

Y

∫

X

p (x, y) log

(

p (x, y)

p (x) p (y)

)

(3.3)

where

• p (x, y) is the joint probability density function of X and Y .

• p (x) is the marginal probability density function of X.

• p (y) is the marginal probability density function of Y .

In the discrete case, the definition is the following:

I (X;Y) =
∑

y∈Y

∑

x∈X

p (x, y) log

(

p (x, y)

p (x) p (y)

)

(3.4)

where

• p (x, y) is the joint probability distribution function of X and Y .

• p (x) is the marginal probability distribution function of X.

• p (y) is the marginal probability distribution function of Y .

3.1.3 Algorithm categories

Feature selection algorithms navigate the features space looking for subsets

of features that best support the given goal. A score function which mea-

sures each subset of features is used to compare different possibile solutions.

The simplest algorithm is to test each possible subset finding the one which

minimises the error rate. This is an exhaustive search of the space, but

the total number of possibile subsets is 2m where m is the number of fea-

tures. This is computationally intractable for all but the smallest of feature

sets. Besides that approach, feature selection algorithm are grouped in three

categories [25].

Filter methods for subset selection rank each feature according to some

metric and select the highest ranking features. The scoring should reflect the

discriminative power of each feature. These methods easily scale to high-

dimensional datasets and are fast to compute but they consider features

individually only, indeed they cannot detect inter-feature-depencencies. In

the XOR example, reported in Figure 3.1, neither the first nor the second

feature alone helps to determine the class of the example, only both features

38

together contain enough information about that. Another drawback of filter

methods is their total ignorance about the effects of the selected feature

subset on the performance of the induction algorithm [31]. Because of these

disadvantages, they are often used in the preprocessing step to reduce space

dimensionality and then apply more complex algorithms afterwards.

Figure 3.1: XOR example. The conditional density classes overlap when projected

to the axes. Therefore, individual variables have no separation power, but variable

combination provides good class separability [25].

Wrapper methods take into account the induction algorithm perfomance

as a black box, so only the interface is required and no knowledge about the

implementation is needed. The role of the induction algorithm is to lead the

wrapper in searching the feature space by means of an accuracy measure.

In such situations the wrapper could perform the search as a brute force

algorithm, exploring all the possible subsets but, as already explained, it is

not feasible and some search strategies and heuristics are considered, such

as hill-climbing and best-first search [31]. The goal of the search is to find

the subset with the highest evaluation, using an heuristic function to guide

it, at cost of increasing the complexity of the algorithm and its performance

time.

There are three approaches in order to build the feature subset in wrap-

per methods. Forward selection starts with zero (or few) feature selected

and at each iteration a new one is added according to an evaluation measure;

on the other hand, backward elimination begins at the full set of features

and deleting those features that helps improving the performance [15, 45].

39

Combining these previous two approaches yields to nested subset, where at

each iteration a feature can be added as well as removed from the selection.

Stepwise regression [29] is an example of wrapper method.

Embeddedmethods are less computationally intensive than wrapper meth-

ods because feature selection and the induction algorithm cannot be sepa-

rated. The complexity of the method decreases, but on the other hand the

embedded method is specific to the given learning machine. This is a differ-

ent approach with respect to the previous methods described. Filters do not

incorporate any induction algorithm, while in wrappers the feature selection

is not integrated into the learning machine implementation.

3.1.4 Minimal Redundancy Maximal Relevance

Minimal Redundancy Maximal Relevance (mRMR) [51] is a feature selection

algorithm based on mutual information belonging to filter category. As the

name suggests, it relies on two metrics: the maximal relevance between

candidate features and target class, the minimal redundancy between the

selected features.

In maximal relevance, features are ranked in descent order according to

their mutual information with the target feature. Given the target class

c, for each feature xi the value I (xi; c) is calculated and those values are

ordered from the largest to the smallest value.

Building a predicting model based on maximal relevance criteria only

does not guarantee good performance. As explained in Section 1.3, redun-

dant selected features could affect model performance. mRMR wants to

combine both maximal relevance and minimal redundancy criteria.

Definition

The maximal relevance criterion is described as maximizing the mean value

of all mutual information values between individual feature xi, in the feature

selected set S, and class c:

maxD (S, c) , D =
1

|S|

∑

xi∈S

I (xi; c) (3.5)

The minimal redundancy criterion is described as minimizing the mutual

information between the selected features:

minR (S) , R =
1

|S|2

∑

xi,xj∈S

I (xi;xj) (3.6)

40

Minimal redundancy maximal relevance criterion combines these two

contraints with the operator Φ (D,R) and optimizing D and R simultane-

ously:

maxΦ (D,R) , Φ = D −R (3.7)

Incremental search method can be used to find features defined by Φ (.).

Suppose we already have Sm−1, the feature set with m − 1 features. The

task is to select the mth feature from the set {X − Sm−1}. This is done

by selecting the feature that maximizes Φ (.). The respective incremental

algorithm optimizes the following condition [51]:

max
xj∈X−Sm−1



I (xj ; c)−
1

m− 1

∑

xi∈Sm−1

I (xj ;xi)



 (3.8)

3.2 Feature selection in MapReduce

In this section we describe the challenges faced in developing algorithms in

MapReduce. In the Big Data scenario, it is important to remark that it is not

possible to reuse Java libraries available for computing the algorithm since

they require as input the entire vector of feature data, the main memory is

usually not big enough to store all the data. Algorithms have to be reshaped

using mapper and reducer functions.

Related works focused on developing a parallel programming method

that can be applied to many different learning algorithms in a multicore

system [10], analyzing the design and the performance of machine learning

algorithms [23], and describing a framework in distributed environment with

MapReduce for matrix computation [53], tasks commonly used for statistical

calculations. Another related work [54] developed a set of feature selection

algorithms for MapReduce framework, in which the infrastructure used is

based on Google system. Unfortunately, we were not able to implement

algorithms explained in [54] because their reduce step read values more than

once, which is not possible in Apache Hadoop. To our knowledge, we are

the first one implementing feature selection algorithms for Apache Hadoop.

During the implementation step our major challenge faced was prop-

erly designing the algorithm. There were several possibile solutions, briefly

described as follows:

• It is possible to design the algorithm as a single MapReduce job, where

all the information required is outputted and properly tagged from the

41

map step and analyzed in the reduce step. It is not always possibile to

follow this approach because the set of all possibile feature subset is

exponential to the number of features, i.e. it is not feasible to manage

all intermediate objects through the network. The alternative is to use

a sequence (or an iteration) of MapReduce jobs.

• The algorithm can be fed with a dataset by rows or by columns. In

the latter there is eventually a preprocessing step in which the dataset

is trasposed.

• Through Apache Hadoop it is possible to leverage the Distributed-

Cache (Section 2.3.7) as a little shared memory across nodes. Here

the design choice is to select what information should be shared and

in which format.

• Choosing between feeding the algorithm with a dataset either in the

original format or optimized for Apache Hadoop (SequenceFile, Sec-

tion 2.3.8). With the latter there is a preprocessing step in which the

data is copied in the SequenceFile format in the distributed storage.

The trade-off is between that step and better performance.

• Take advantage of custom data types in handling data.

3.3 Contributions

In this section we describe in detail what are our contributions in feature

selection algorithms. We developed a mutual information calculation for

MapReduce and two filter feature selection algorithms in MapReduce (Rank-

ing based on Pearson correlation coefficient and mRMR). The Java code is

an extension of Apache Mahout and it is publicly available on GitHub1.

For both algorithm designs, we chose to read the original dataset by rows,

so no preprocessing step was required, scalability over rows is achieved in

the map step and scalability over columns in the reduce step (this concept

is explained in details in the following sections). Related to data types, we

opted to use the ones already provided by Apache Hadoop since we managed

simple data structures.

The DistributedCache is used to share across nodes basic information

about the dataset, such as the number of rows, the number of columns,

which column is the target feature. In mRMR it is also used to share what

features are selected after iterations.

1https://github.com/nophiq/mahout

42

Finally we provide a complexity analysis of the implemented algorithms.

Here we take into account the algorithm only and not the complexity in-

troduced by Apache Hadoop. However, in Chapter 5 we show the Apache

Hadoop overhead in managing the entire architecture, which affects the over-

all performance.

3.3.1 Mutual information Implementation

Java libraries for mutual information, such as JavaMI2, require the full array

of observations of both variables as input. This interface is not affordable

in Big Data scenario where the observation array could not fit in the main

memory.

For the thesis, we developed an implementation for mutual information

measure for MapReduce. The first step was to store observations in a cus-

tom data structure, which logically is a dynamic co-occurence matrix. It

increases both in row and column sizes as soon as new values are given.

The second step was to implement a Java class able to calculate the mutual

information given that custom data structure. This implementation works

with discrete values only and Appendix B reports the code in Java.

3.3.2 Ranking implementation

Ranking calculates a coefficient, based on the Pearson correlation, between

each feature and the target one. The best features are the ones with highest

coefficients.

In this algorithm, we required column-normalized data as input, which

means each feature vector is modeled as a gaussian distribution with zero

mean and variance equals to one. In such situation, the Pearson coefficient

between two features xi and yi with n samples is given by the Formula 3.9.

rx,y =
1

n

n
∑

i=1

xiyi (3.9)

This is a nice property for a MapReduce job, the final rx,y value is calcu-

lated in the reduce step, but partial sums can be locally determined with the

combiner, significantly reducing the amount of data moved through the net-

work. The ranking coefficient based on the Pearson correlation estimation

is shown in Formula 3.10.

coeff = −
1

2
log
(

1− r2x,y
)

(3.10)

2http://www.cs.man.ac.uk/ pococka4/JavaMI.html

43

The MapReduce job has the pseudo code in Listing 3.1, 3.2 and it consists

of two steps:

• Map step (parallel over records): iterate over the training records.

For each feature x an intermediate key-value object is outputted where

the key is the feature index and the value is the product of the feature

and target values.

• Reduce step (parallel over features): for each candidate feature the

reducer collects data to calculate the ranking coefficient. It basically

sums up all the value and output the final value for ranking, Formula

3.10.

Listing 3.1: Map step of ranking algorithm in MapReduce

1 FOR each x ∈ feature set:

2 i <- feature index

3 v <- target feature value

4 value <- v ∗ x

5 output(i, value)

Listing 3.2: Reduce step of ranking algorithm in MapReduce

1 // The reducer input is composed by a key i and a list

2 // of intermediate objects, referenced as "objects" in

3 // the pseudo code

4 sum <- 0

5 FOR each (value) ∈ objects:

6 sum <- sum + value

7

8 r <- sum / n

9 coeff <- −0.5 ∗ log
(

1− r2
)

10 output(i, coeff)

In the implementation the combiner is used to aggregate locally the

data outputted by the mappers. Finally, a post-processing step is required

in order to sort the result and eventually filter it by the number of required

feature.

Complexity analysis

For the complexity analysis we define first the variables used. The dataset

has m features (the target feature is not taken into account here) and n rows

or instaces. The number of nodes in the cluster is b.

44

Ranking algorithm is composed by one MapReduce job only. Afterwards

a post-process step is required to sort the ranking in descending order. We

describe the MapReduce job complexity analysis:

• Mapper: mappers read the dataset by rows only once. For each row

and for each feature, mappers output an intermediate object. This task

can be run in parallel across nodes. The complexity of the mapper is

as follows:

O
(n ·m

b

)

(3.11)

• Reducer: all reducers read mappers output. For each feature reducers

output a record with its ranking value. So the final output has n

records. The complexity of the reducer is as follows:

O
(n ·m

b

)

(3.12)

The workload of the first MapReduce job (both mappers and reducers)

is evenly distributed across nodes, so the algorithm is not affected by the

skewness of data, i.e. a non uniform distribution in a dataset.

The complexity of the entire job is the sum of the mapper and reducer

steps:

O
(n ·m

b
+

n ·m

b

)

= O
(n ·m

b

)

(3.13)

The performance time should increase as the dataset grows and decrease

as more parallelism is introduced in the system. In Chapter 5 we show

results and comments.

3.3.3 mRMR implementation

In this section we introduce how mRMR algorithm has been implemented

in MapReduce fashion, from high level point of view up to the Java code

reported in the Appendix C.

mRMR is an iterative and greedy algorithm, which means for ten selected

features there are ten iterations and once a feature has been selected it

will not be removed later on. Each iteration aims to select one feature

among all the candidate features, i.e. those not yet selected, by means of

two MapReduce jobs. The first one calculates the mutual information for

each candidate feature, while the second one simply selects the best feature

according to the highest value of mutual information.

Each record of the training dataset is a set (x̄i, ci), where x̄i is the input

feature vector and ci is the target class. The input vector is partitioned in

45

candidate and selected features, labeled respectively as x̄ic and x̄is (x̄ic ∪

x̄is = x̄i). At the first iteration there is no feature selected, x̄is = ∅ and

x̄ic = x̄i.

Given this description, the first MapReduce job has the pseudo code in

Listing 3.3, 3.4 and it consists of two steps:

• Map step (parallel over records): iterate over the training records

(x̄ic , x̄is , ci). For each candidate feature xk ∈ x̄ic and for each selected

feature xj ∈ x̄is an intermediate key-value object is outputted where

the key is k and the value is a tuple of value of features k and j.

Furthermore, for each xk the mapper outputs one more object, where

key is k and value is a tuple composed by feature value and target

value.

• Reduce step (parallel over features): for each candidate feature the

reducer collects data to calculate the mutual information and mRMR

value through the custom data structure explained in Section 3.3.1.

Listing 3.3: Map step of mRMR algorithm in MapReduce

1 // The mapper input is (x̄ic , x̄is , ci)

2 FOR each xk ∈ x̄ic:

3 v <- ci

4 output(k, (xk, v))

5

6 FOR each xj ∈ x̄is:

7 v <- xj

8 output(k, (xk, v))

46

Listing 3.4: Reduce step of mRMR algorithm in MapReduce

1 // The reducer input is composed by a key k and a list

2 // of intermediate objects, referenced as "objects" in

3 // the pseudo code.

4 FOR each (xk, v) ∈ objects:

5 if v is target_class:

6 // store into the custom data structure

7 storeTarget(xk, v, target)

8 else

9 index = <index_of_feature_v>

10 // store into the custom data structure

11 storeFeature(xk, v, index)

12

13 // calculate mRMR of the candidate feature

14 mrmr <- retrieveMRMR()

15 output(k, mrmr)

storeTarget and storeFeature are functions able to store data into dy-

namic co-occurence matrix (Section 3.3.1), from which retrieveMRMR cal-

culate the mRMR of the candidate feature.

Complexity Analysis

For the complexity analysis we define first the variables used. The dataset

has m features (the target feature is not taken into account here) and n

rows or instaces. s is the number of feature to select and b is the number of

nodes in the cluster.

mRMR is an iterative algorithm and at each iteration two MapReduce

jobs are executed. Therefore we show the complexity of each mapper and

reducer. Considering the i-th iteration we have:

• First MapReduce job, mapper: mappers read the dataset by rows

only once. For each row and for each candidate feature, mappers

output intermediate objects once with the target and for each selected

feature values. This task can be run in parallel across nodes. The

complexity of the mapper is as follows:

O

(

n · (m− i+ 1) · i

b

)

(3.14)

• First MapReduce job, reducer: all reducers read mappers output.

For each candidate feature reducers output a record with its mRMR

47

value. So the final output has m − i + 1 records. The complexity of

the reducer is as follows:

O

(

n · (m− i+ 1) · i

b

)

(3.15)

• Second MapReduce job, mapper: there is only one map running

that copies and paste the input to the output. The complexity is the

following:

O (m− i+ 1) (3.16)

• Second MapReduce job, reducer: only one reducer is running

which scans all the mRMR values given as input and outputting the

highest one. The complexity is:

O (m− i+ 1) (3.17)

The workload of the first MapReduce job (both mappers and reducers)

is evenly distributed across nodes, so the algorithm is not affected by the

skewness of data, i.e. a non uniform distribution in a dataset.

What affects the algorithm performance is the first MapReduce job,

which is run s times. Therefore, the complexity of the entire job is the

following:

O

(

1

b

s
∑

i=1

[n · (m− i+ 1) · i+ n · (m− i+ 1) · i]

)

= O

(

2
1

b

s
∑

i=1

[n · (m− i+ 1) · i]

)

= O

(

2
1

b

s
∑

i=1

[

n ·m · i− n · i2 + n · i
]

)

= O

(

2
1

b

[

n ·m
s (s+ 1)

2
− n

s (s+ 1) (2s+ 1)

6
+ n

s (s+ 1)

2

])

= O

(

n ·m · s2

b

)

In the last transformation, we considered that s is always less or equal

to m by definition. For this reason, the first term is leading the complexity.

We expect an increasing performance time as either the dataset or the

number of feature to select grows. Introducing more parallelism in the sys-

tem the time should decrease. In Chapter 5 we show results and comments.

48

Chapter 4

Deployment

Amazon provides a user friendly service to run MapReduce jobs on their

cloud infrastructure. As for every service its costs depends on the quality

and quantity of the required resources. Machines with lots of resources are

more expensive than the basic ones and short term jobs are cheaper and the

long term ones.

Some professors and researchers at Université Libre de Bruxelles are

already facing Big Data issues in their research. Their number is intended

to increase in the next few years and rely on third-party cloud infrastructure

could be too expensive. On the other hand an high performing computing

center (HPC) is available for university members.

For these reasons, we developed an Apache Hadoop user friendly service

on top of the HPC to meet researcher needs, similar to Amazon EMR with

simpler features.

4.1 Amazon Elastic MapReduce

The first deployments were done on Amazon Elastic MapReduce (Amazon

EMR)1 because it provides Apache Hadoop as a service and we focused on

the algorithm implementation only. Through a friendly user interface and

a guided setup it is possible to easily configure cluster size, node types and

submit custom jobs.

Amazon EMR is a webservice built on top of Amazon EC22, which

offers scalable virtual machines, and Amazon S33, designed to be the storage

system for cloud applications. Every time a new job is committed, the

1http://aws.amazon.com/elasticmapreduce/
2http://aws.amazon.com/ec2/
3http://aws.amazon.com/s3/

Figure 4.1: Amazon EMR, step 1: defining job name, Apache Hadoop version and

submitted job

system launches as many virtual machines as specified nodes, prepares the

environment with Apache Hadoop and moves the original data from S3

storage to the HDFS. When the job finishes, the output is copied in the S3

storage for later analysis.

We review the six-steps process for submitting an Apache Hadoop job

on Amazon EMR in the following list:

1. Define job flow (Figure 4.1): each submitted job on Amazon is called

job flow and it is identified by a name. In this step the user selects

which version of Apache Hadoop to use, between the original ver-

sion4 and the one provided by the software company MapR5. Finally

it is possible to submit five different kind of jobs: Apache Hive (Sec-

tion 2.4.2), Apache Hadoop Streaming (Section 2.3.10), Apache Pig6,

Apache HBase (Section 2.4.1) and a custom job compressed as jar file.

2. Parameters (Figure 4.2): the user specifies where is the job and

what are the related parameters. Every time there is a reference to

a filesystem location, the user must refer to the S3 storage (“s3n://”

prefix). The Amazon system automatically converts the S3 prefix in

the HDFS one when data moves to or from the local HDFS.
4https://hadoop.apache.org/
5http://www.mapr.com/
6http://pig.apache.org/

50

Figure 4.2: Amazon EMR, step 2: defining job parameters

3. Configure EC2 instances (Figure 4.3): in Amazon an instance is a

virtual machine running on the cloud infrastructure. In this step the

user defines the kind of instances for both master and slaves. Several

instance types are possible7 depending on the job requirements.

4. Advanced options: among the advanced options available it is use-

ful to setup the log path. Through the command line is possible to

submit jobs and track its progress status. In Amazon EMR the user

can redirect the output to an external file identified in the S3 storage

system.

5. Bootstrap: in this step the user can customize Apache Hadoop or the

global environment before the job is actually submitted in the cluster.

6. Review: an overview of the parameters set before confirming the job

flow.

4.2 Hydra, the computing center

Hydra8 is the dedicated high performing computing center at Université

7http://aws.amazon.com/elasticmapreduce/#instance
8https://cc.ulb.ac.be/hydra/

51

Figure 4.3: Amazon EMR, step 3: defining instance type for both master and slaves

Libre de Bruxelles9 (ULB) and Vrije Universiteit Brussel (VUB)10. It is also

in the context of the Vlaams Super Computer11 and the Consortium des

Equipement pour le Calcul Intensif12.

4.2.1 Hydra as batch system

Hydra is designed as a batch system, in which the distributed resources

(storage systems, networks, software licences) are abstracted as a single

entity. The concept behind this approach is related to the cluster utilization:

resources are better exploited if the system is considered as one entity rather

than a set of computers. Batch systems have four different components:

• Master node: the master node manages the resources and jobs in

the cluster. One node is usually dedicated to this task only.

• Submit or interactive nodes: these nodes are the entry point for

users to manage their workloads. From here they can submit and

monitor jobs.

• Computer nodes: computer nodes are the workhorses of the system.

Their role is to execute submitted jobs and to communicate with the

9http://www.ulb.ac.be/
10http://www.vub.ac.be/
11https://vscentrum.be/
12http://hpc.montefiore.ulg.ac.be/

52

master node.

• Resources: it is the collection of resources available in the compute

nodes, such as networks, storage systems, license managers and so

forth.

Hydra is a balanced cluster, i.e. suitable for batch, multi-cores (SMP)

and multi-nodes (MPI) jobs13. Each node runs CentOS 6.4 operating system

with Linux version 2.6.32-279.el6.x86 64 and it is connected into the cluster

with 1Gb ethernet and 10Gb Infiniband networks14. The total disk space

available to store the jobs output is 5.2TB. The Java version used to run

Apache Hadoop jobs is 1.6.0 27.

There are two master nodes running several services such as the MOAB

cluster management system. Their specifications are the following:

• 2x AMD Opteron 6100 2.3GHz with 8 cores each.

• 16GB DDR3 RAM 1.333Ghz.

• 2x 146GB HDD SAS 10K RPM in RAID1.

• 1x Gb Ethernet connection.

• 1x HP 4X QDR Infiniband connection on a PCI express 2x card.

• 2x power supply units with UPS protection.

In the system, 64 computer nodes execute submitted jobs by the users

with a total of 1024 cores:

• 2x AMD Opteron 6100 2.3GHz with 8 cores each.

• 64GB DDR3 RAM 1.333GHz.

• 2 x 500GB SATA 7.2k in RAID0 with a 1GB RAM controller.

• 1x Gb Etherner connection.

• 1x HP 4X QDR Infiniband connection on a PCI express 2x card.

• Redundant power supply units with UPS protection.

4.2.2 User jobs in Hydra

Users access to Hydra through ssh15 with their credentials provided by the

computing center. All actions are executed through the shell. Many stan-

dard general purpose applications are directly available in the working envi-

ronment, while custom or specific tool versions can be plugged in as modules.

13https://cc.ulb.ac.be/hydra/documentation.php
14http://en.wikipedia.org/wiki/InfiniBand
15http://en.wikipedia.org/wiki/Secure Shell

53

Every job submitted by users is defined by the programs to be executed,

the resources required for the execution, the environment in which the pro-

grams are executed and the credentials associated with the user and the job.

This information is handled by two core softwares on Hydra: Torque and

Moab (Section 4.2.3).

The life cycle of a job can be divided into four stages:

1. Creation: a script is used to specify all the information related to

required resources and the instructions to execute. Some resource

parameters include the job name, how long a job should run (walltime)

and how many cores are necessary.

2. Submission: once a job is submitted, the policies set dictates its

priority.

3. Execution: when the job gets the resource required it starts its exe-

cution and the user can monitor its status.

4. Finalization: at the end of the execution stdout and stderr (see Glos-

sary) streams are copied to the user working directory.

Further constraints or specifications about resources can be collected

through queues. Some queues are already defined in Hydra for instance to

limit the execution to a compute node subsets.

4.2.3 Torque and Moab

Torque [55] is a resource manager software that provides control over batch

jobs and distributed computing resources16. It is an open source project

able to handle large clusters with tens of thousands of nodes and jobs. It

provides a fault tolerant system and can be integrated with Moab workload

manager17 to improve overall utilization, scheduling and administration on

a cluster.

Torque, like other resource managers, provides low-level functionality to

start, hold, cancel, and monitor jobs. Thereby there are three main tasks,

and relative command line tools, in Torque:

• Job submission: it is accomplished using the qsub command, which

takes job information and instructions through a dedicate file or stdin

16http://www.adaptivecomputing.com/products/open-source/torque/
17http://www.adaptivecomputing.com/products/hpc-products/moab-hpc-basic-

edition/

54

(see Glossary). If the user wants to submit the same job a large number

of times, Torque provides multiple job submission functionality. In the

system, each executing job is uniquely identified.

• Monitoring jobs: Torque allows users to monitor submitted jobs

with qstat command.

• Cancelling jobs: With qdel command, Torque will kill the running

processes. The only parameter accepted is the ID of an executing job.

At a high level, Moab [12] applies policies and extensive optimizations to

jobs, services, and other workload across the cluster. It increases the system

resources availability providing a fault tolerant system, a diagnostic service

and visualization tools for statistics, reporting and charts.

As job scheduler, Moab dynamically matches jobs to nodes to better

take advantage of cluster resources. Achieving fairness and optimal usage of

compute resources is complex and the scheduler has to to determine when,

where, and how to run jobs to optimize the cluster. Scheduling decisions

can be categorized as follows [12]:

• Traffic control: the scheduler must prevent different jobs contending

for the same resources, otherwise cluster performance decreases and

jobs might even fail. Tracking which resources are assigned to jobs

handles this issue.

• Policies: it defines rules regarding who is able to use what resources.

• Optimizations: when resource demand exceeds supply, intelligent

scheduling decisions facilitate job completions and reduce queue time.

Moab can optimize different workload types within the same cluster si-

multaneously. In the following we introduce the four workload types man-

aged by Moab [12]:

• Batch workload: required resources and execution environment for

the job are described in a file. With a batch job, the job is submitted

to a job queue, and it is run somewhere on the cluster as resources

become available.

• Interactive Workload: interactive workloads provide immediate re-

sponse to submitted instructions. These jobs are typically routed into

the cluster via a web or other graphical terminal.

55

• Calendar workload: this type of workload executes the submitted

job at a particular time and eventually at a regular basis. Here time

contraints can be rigids or flexibles.

• Service workload: Moab can also respond to externally generated re-

quest for service running inside the cluster. For example, a third-party

service can query data in a parallel database deployed and running in

the cluster, Moab executes the request and returns the response.

For the purpose of our master thesis all our workloads for performance

tests belonged to the batch type.

4.2.4 Deploying Apache Hadoop on Hydra

Hydra computing center did not have Apache Hadoop installed in the clus-

ter. These are the challenges we faced in order to successfully deploy Apache

Hadoop on Hydra:

• Credentials: we had simple user privileges only. We were not able to

change directly cluster or node configurations according to our needs.

• Working directory: We needed to install Apache Hadoop in a local

directory of the node. In Hydra architecture all directories are shared

but the temporary one, located at “/tmp”, which is automatically

cleaned up every 24h. It was then not possible run long-term jobs

more than one day. As shown in Chapter 5 some tests required much

longer running time.

• Assigning jobs to disjoint nodes: in Torque it is not possible

to submit two different jobs to two disjoint node sets, limiting the

deploying flexibility of our contributions (explained in Section 4.3).

• Testing: We run our jobs on a shared environment, which means

there were other jobs competing with us for the resources and this

slowed down testing. Furthermore, the only way to login on Hydra

is through ssh, making impossible accessing the Apache Hadoop web

interface (Section 2.2.4) to check job status online.

• Hydra downtime: scheduled or unexpected downtime let Hydra not

available for testing.

• Concurrent jobs: Apache Hadoop allows multiple jobs running on

the same cluster, but it is not possible to run two different installa-

tions of the software in the nodes. Here the problem is related to the

56

communication between master and slaves, because messages are sent

through some ports that identify the service on a host and two differ-

ent services cannot rely on the same port to communicate. Changing

the port number for each deployment is not good solution and it does

not scale well.

One final challenge was the several Apache Hadoop releases published

during master thesis work. For every new release some maintenance was

required. The first version adopted was 0.20 and it was a thoughtful choice

because the software supports two API interfaces, the deprecated one and

the current one. This choice let the entire literature and code available be

useful in our first approach into Apache Hadoop.

Amazon Elastic MapReduce supports Apache Hadoop version 1.0.3. To

avoid compatibility issues between the two different software versions we

adapted our MapReduce algorithm for the cloud infrastructure.

Finally, the Apache Hadoop version deployed on Hydra was 1.1.2 (re-

leased in February 201318), which fixed some major bugs about long-term

jobs, the ones we were interested in to run to understand the scalability of

our algorithms.

4.3 Contributions

In this section we present our contributions in deploying Apache Hadoop on

a computing cluster. We developed a user-friendly service which dynami-

cally deploys Apache Hadoop on cluster of different sizes and runs the job

submitted by the user.

The registered user on Hydra interacts with the service by command

line and a set of script files. We designed the system based on how Amazon

Elastic MapReduce works, i.e. the user setup the most important parameters

and the service manages the rest. The number of required nodes and the job

to submit is the only information to provide. Apache Hadoop installation,

configuration and job submission is automatically managed by the service.

In Sections 4.3.2 and 4.3.1 we describe in detail how this service works and

how we overcame the limitation reported in Section 4.2.4.

The service is composed of a set of scripts, grouped in two categories.

One is meant to deploy Apache Hadoop on the available resources (Section

4.3.2) and the other is customizable by the user to provide job information

(Section 4.3.1).

18https://hadoop.apache.org/releases.html

57

4.3.1 Job submission

Every user that wants to access the service through Hydra has to customize

two scripts.

The most important script is the submission script, which is the one

submitted to the system through the qsub command (Section 4.2.3). It is in

charge of executing several tasks:

• Setting torque parameters, such as the walltime and the number of

nodes for the cluster.

• Retrieving information about the assigned resources, such as node

identifiers. Every nodes has an unique host identifier, composed by

a fixed prefix string and a number, examples are nic42 and nic64. In

configuring the cluster architecture we decided to assign the master

role to the node which has the lowest number, the slave role to all the

others. Since the maximum cluster size used during the test was 8, we

decided to setup the master also as a slave.

• Connecting to each node by ssh to run Apache Hadoop automatic

deployment (Section 4.3.2).

• Start the cluster on the master node, executing the job script and stop

the cluster (Section 4.3.2).

The job script configures the environment variables and contains all the

information and instructions to execute the job itself.

4.3.2 Automatic deployment

Each node receives some parameters related to the cluster configuration,

such as the role (master or slave), the working directory and job id. With

this information it runs two scripts in sequence:

• Installation: the installation script takes care to clean up the environ-

ment if some old hanging job are still running purposeless, eventually

freeing ports necessary for the communication between master and

slaves. Finally it installs Apache Hadoop on a dedicated local node

directory. Since “/tmp” did not fit our needs, we asked the computing

center support to create a directory specifically for Apache Hadoop

(“/hadoop”).

• Configuration: based on the node roles, the script properly config-

ures Apache Hadoop configuration files.

58

The master node only executes two other scripts: once the configuration

is done it starts the cluster, when the submitted job is completed it stops

the cluster and clean up the environment.

4.3.3 Considerations

Since we had simple user privileges only, we could not deployed a stable

and always running Apache Hadoop on Hydra. The solution we adopted

allows to run Apache Hadoop clusters on several and disjoint subsets of

nodes. If nodes of two different deployments overlap then both system will

crash. To run tests in parallel, we setup three fixed disjoint cluster with the

collaboration of the computing center support: with 4, 6 and 8 nodes, each

one identified by a queue. We could have run tests sequentially, but with

this approach the testing phase were faster. Fixing the nodes increases the

queue time for the jobs, since resources on exactly those nodes have to be

available, but actually it did not affect significantly tests.

Though the scripts were tested on Hydra only, they rely on an environ-

ment mainly based on open source software: the operating system in each

node is Linux and the combination of Torque and Moab is a popular among

HPC. So we are confident that, eventually with small changes, the scripts

could run in other cluster centers.

4.3.4 How to use the service

In this section we describe how to use the service on Hydra. We designed the

service to have a simple interface, such as the Amazon Elastic MapReduce

one, in which the user sets the most important information about the cluster

and the job.

In this example we suppose the user has already logged in the system

through its credentials and it wants to submit a job in a 4 nodes Apache

Hadoop deployment. As explained in Section 4.3.1 and 4.3.2 the first file

the user has to modify is the submission script, whose excerpt is reported

in Listing 4.1.

59

Listing 4.1: Excerpt of the submission script, where Torque parameters are set

1 #PBS -o out

2 #PBS -e err

3 #PBS -N hadoop4

4 #PBS -l mem=19gb

5 #PBS -l nodes=4:ppn=1

6 #PBS -l walltime=1:00:00

7

8 JOB_FULLPATH=/<path>/<to>/job_script

In the script we defined the filename of the output and error log file,

respectively out and err; the job name, hadoop4; the main memory for each

node, 19GB; the walltime for the script. The number of nodes and the

number of cores per node are fixed, because of the constraints imposed on

the resources. For a complete documentation about Torque parameters see

[55].

In Listing 4.2 we report an excerpt of the job script. The user has to first

load the dataset into HDFS, execute the job and finally copy the results from

HDFS to a local directory. In this example we are running mRMR algorithm

over dataset.csv input, which has 10∧7 rows and 100 features. At the end of

the job 5 features are selected and the job result is stored in output directory.

[33, 60, 50] report a full description of Apache Hadoop and Apache Mahout

command line tools and parameters.

Listing 4.2: Excerpt of the job script, for the job submission

1 ${HADOOP_CMD}/hadoop fs -put

/<local>/<path>/<to>/dataset.csv dataset.csv

2

3 ${MAHOUT_HOME}/bin/mahout hadoop jar

/<path>/<to>/<lib>/mahout_feature.jar

org.apache.mahout.feature.mrmr.MRMRDriver -i

dataset.csv -o output -t 1 -nr 10000000 -nc 100 -nf 5

4

5 ${HADOOP_CMD}/hadoop fs -get output

/<local>/<path>/<to>/output

Finally, from Hydra command line the user submits the job on the system

through the qsub command (Section 4.2.3). Without any options in qsub,

Apache Hadoop can be deployed on every node, but for our performance

tests we needed to run three clusters in parallel, where each node set is

60

disjointed from the others. This constraint is introduced by using three

different queues: hadoop4, hadoop6, hadoop8. They specify the cluster with

4, 6 and 8 nodes respectively.

In our example we submit the job to the cluster with four nodes (Listing

4.3).

Listing 4.3: Submitting job to Hydra

1 $ qsub -q hadoop4 subsmission_script

Through qstat command (Section 4.2.3) the user can check the status of

the job on Hydra.

61

62

Chapter 5

Performance tests and

results

In Big Data scenario the dataset has a very large number of instances and

features. A properly designed algorithm for MapReduce runs in a reasonable

time if there is a fair amount of computational resources in the cluster.

This chapter shows that our implemented algorithms scale in Apache

Hadoop context. We were interested in understanding the level of paral-

lelism and scalability of our feature selection algorithms and the overhead

introduced by Apache Hadoop in managing jobs and cluster.

5.1 Datasets

We built three groups of artificial datasets in order to run tests with different

input size.

The first group is a set of six datasets, all of them with the same number

of columns: 10∧2 features and 1 target feature. Each one has a different

number of rows: 10∧1, 10∧2, 10∧3, 10∧4, 10∧5, 10∧7. Globally, the dataset

sizes vary from about 2KB to 2GB. Values are discrete and each feature has

three possible alternatives: -2, 0 and 2, while the target feature is either

0 or 1. The dataset structure has been taken from bioinformatics, where

typically each feature expresses a gene regulation and the target feature

values represent different experiment conditions. Some real datasets with

the same structure are available online1.

The R code generating the data is reported in Listing 5.1. In line 10, we

decided to set the vector of probability weights for obtaining the sampled

elements to better represent the real sparsity of bioinformatics datasets.

1http://penglab.janelia.org/proj/mRMR/

Listing 5.1: R code to generate discrete values. Each feature has three possible

values: -2, 0 and 2, while the target feature is a binary value: 0, 1.

1 library(MASS)

2

3 nRows <- <NROWS>

4 nFeatures <- <NCOLS>

5 out <- file(<FILENAME>, "w")

6 outputRows <- <OUTPUT_NROWS_AT_A_TIME>

7

8 classValues <- c(0,1)

9 featureValues <- c(-2,0,2)

10 featureProb <- c(0.15,0.7,0.15)

11

12 loops <- as.integer(nRows/outputRows)

13

14 for(i in 1:loops) {

15 matrix <- sample(classValues, outputRows, replace=T)

16 for (i in 1:nFeatures) {

17 matrix <- c(matrix, sample(featureValues, outputRows,

replace=T, prob=featureProb))

18 }

19

20 dim(matrix) <- c(outputRows, nFeatures+1)

21

22 write.table(matrix, file=out, sep=",",

col.names=FALSE, row.names=FALSE)

23 }

24 close(out)

The second group is a set of three datasets of continuous values. They

have 99 features and 1 target feature. The number of rows is 10∧5, 10∧6 and

10∧7. Since these datasets are supposed to run with the Ranking algorithm,

each feature has to be sampled from a normal distribution with mean equals

to zero and variance to one. The R code generating the data is reported in

Listing 5.2.

64

Listing 5.2: R code to generate continuous values. Each feature (column) has

to be sample from a normal distribution with mean equal to zero and variance

to one.

1 nrows <- <NROWS>

2 ncols <- <NCOLS>

3 filename <- <FILENAME>

4

5 alldata <- c()

6

7 for (i in 1:ncols) {

8 alldata <- c(alldata, rnorm(n=nrows, m=0, sd=1))

9 }

10 d <- matrix(alldata, nrow=nrows, ncol=ncols)

11 write.table(d, file=filename, sep=",", row.names=FALSE,

col.names=FALSE)

The third group is a set of three datasets of discrete values. Here the

number of rows is fixed at 10∧2 and the number of columns is 10∧3, 10∧4

and 10∧5. Values are arranged as the first group and the R code generating

the dataset is reported in Listing 5.1, with parameters properly set.

5.2 Tests and considerations

MapReduce is a well-accepted framework for data intensive applications over

computing clusters. Researches related to Apache Hadoop, benchmarking or

scalability of the paradigm focused on three categories: testing the software

over different infrastructures [7], modeling MapReduce performance [38] or

studying the scalabity of new algorithms [54, 58, 40, 44, 59]. Our work

belongs to the last category.

We first verified each algorithm works accurately and then we ran exten-

sive tests to figure out the scalability and parallelism of MapReduce feature

selection algorithms. Further tests were run to understand the overhead

Apache Hadoop introduces in running jobs.

For mRMR, from authors website2 tools and some small datasets are

available. For each dataset the output of our algorithm and the one provided

by the authors matches. As described in Section 3.3.3, at each iteration

the best feature is selected through two MapReduce jobs, the first assigns

the mRMR value to each candidate feature and the second filters the best

feature. In Section 5.3 we discuss the performance of each job.

2http://penglab.janelia.org/proj/mRMR/

65

For Ranking, the output of our distributed algorithm in MapReduce

matches the one from an R script which executes the same job. In Section

5.5 we discuss the performance of the MapReduce job.

In parallelism tests (Section 5.3.1 and 5.5.1), we proved that there is

a real benefit in increasing the number of working units in executing jobs.

In all clusters we forced first the algorithm to run with one map task only,

which means there is one node working and the job is executed sequen-

tially. The performance is compared with the one in which Apache Hadoop

automatically decides the number of map tasks, i.e. the level of parallelism.

In overhead tests (Section 5.3.2) we were interested in showing that

Apache Hadoop spends time in managing and setting jobs and tasks. This

overhead is significant when the MapReduce job runs over a small dataset

or Apache Hadoop parameters are not well set.

There were some issues in forcing the number of map tasks in jobs.

mapred.map.tasks is a parameter that could be set by command line or the

Java code, but it is actually not taken into account from Apache Hadoop.

We solved this problem using NLineInputFormat (Section 2.3.8), setting the

number of lines per map task equals both to the number of rows and to 1,

for parallelism and overhead tests respectively.

5.2.1 Apache Hadoop setup

We ran several tests in clusters with 4, 6 and 8 nodes. For each node, one

core was reserved for the jobs. We used Apache Hadoop 1.1.2 and the default

configurations excepts for the following:

• dfs.replication: we set the block replication parameter at 2. Each block

is stored twice in the HDFS.

• mapred.child.ulimit: we set the maximum virtual memory, in KB, of a

process launched by the MapReduce framework at 16777216.

• mapred.child.java.opts: we set the Java opts for the task tracker child

processes at -Xmx512m

We changed the replication parameter to decrease the load time of the

dataset, while we fixed memory limits related to the job to better control

the environment under which the MapReduce jobs were executed.

5.2.2 Retrieving information

Apache Hadoop logs provide data about the number of records and bytes in

input and output in mappers, reducers and eventually combiners. Further-

66

more it is reported the number of map and reduce tasks, information about

the memory used and other deatils.

What is missing is the amount of time spent in executing the map and

reduce steps, the ones we were interested in for performance tests. These

quantities can be obtained indirectly from the job progress logs. Thereby,

we developed for our tests a custom tool that parsed the job logs to retrieve

execution time information.

In all figures related to mRMR, but Figure 5.5, the vertical axis rep-

resents the execution time to select the i-th feature only and not the time

required to select up to the i-th feature. The latter can be derived by sum-

ming up the time of current and previous iterations.

5.3 mRMR MapReduce job

5.3.1 Parallelism tests

In Figure 5.1, we report performance tests to prove that increasing the

level of parallelism reduces the running time in Apache Hadoop context, as

expected from the complexity analysis in Section 3.3.3. This concept is very

important for the purpose of the thesis, because it proves that when the

feature selection algorithm is fed with a Big Data dataset it is possible to

add more nodes (or cores) to run the job in a reasonable time.

The difference between the two settings increases as the algorithm selects

more features because the workload is higher. We show and discuss in other

tests (Section 5.3.3) that this benefit increases as the dataset size grows. For

this reason we show here tests with the largest dataset, while the full range

of tests is reported in Figure E.1, E.2 and E.3.

5.3.2 Overhead tests

In Figure 5.2, we report performance tests to show the overhead introduced

by Apache Hadoop in each MapReduce job. Every time a map task starts,

the Java Virtual Machine (JVM) takes few seconds to set the environment

up. The more map tasks are executed the more is the overhead. The

overhead is clear even with small datasets. Figure 5.2 shows tests with

dataset of 10∧4 rows, the full range of tests is reported in Figure E.4, E.5

and E.6.

There are several parameters the user can set345 and in this section

3http://hadoop.apache.org/docs/r1.1.2/core-default.html
4http://hadoop.apache.org/docs/r1.1.2/hdfs-default.html
5http://hadoop.apache.org/docs/r1.1.2/mapred-default.html

67

Figure 5.1: mRMR: parallelism tests in each cluster using the dataset of 10∧7 rows.

The red dashed line represents tests with one map task running (sequential execution),

while the blue solid one the number of map tasks is decided by Apache Hadoop (parallel

execution).

68

Figure 5.2: mRMR: overhead tests in each cluster using the dataset of 10∧4 rows. The

red dashed line represents tests with the maximum number of map task running, while

the blue solid one the number of map tasks is decided by Apache Hadoop.

69

Figure 5.3: mRMR: scalability tests with 6 nodes. The number of map tasks is set by

Apache Hadoop.

we showed that even one of them badly set could really affect the overall

performance. Finding the best tuning for all parameters is an important

step in running MapReduce jobs on Apache Hadoop.

5.3.3 Scalability tests

In Figure 5.3 we show the results of scalability tests, where the number of

map tasks is set up by Apache Hadoop. Since we ran several tests for each

situation, we show with an empty dot the average of the results and with a

bar the range of values (from minimum to maximum). Tests report that as

the dataset grows the execution time increases, agreeing with our analysis

(Section 3.3.3).

70

Figure 5.4: mRMR: comparing performance time across cluster size. The blue solid

line is Apache Hadoop with 4 nodes, the red dashed line with 6 nodes and the green

dotted line with 8 nodes.

Furthermore, in these plots we can observe that with few instances (less

than 10∧4 rows) selecting the 5th feature almost takes as much as time as

selecting the 1st one, because the time overhead related to the JVM and

managing the cluster heavily bias the performance. Here we provide tests in

cluster with 6 nodes, we had similar results in the other clusters (see Figure

E.7 and E.8).

In Figure 5.4 we compare performance time over different cluster sizes.

We expected the time decreases as the cluster size increases, but results show

differently. In Figure 5.4 (a), (b), (c) and (d) the 8 nodes cluster performs

worse than the others, because of Apache Hadoop overhead in managing

a bigger cluster with small data. The most valuable observations come

71

Figure 5.5: mRMR: the performance time increases exponentially with respect to the

number of feature to select. The dataset has 10∧7 rows and 10∧2 columns.

from Figure 5.4 (e) and (f): even with 2GB dataset all clusters performed

almost the same. As explained in [54], it is because the dataset is still small

and a more suitable one should be at least one hundred times more bigger.

Unfortunately, with the resources available (8 nodes with one core per node

only), scalability tests with that dataset is unfeasible. In [58] the cluster

relied on 416 core distributed in 52 nodes.

In Figure 5.5 we show the time required to execute mRMR up to the

i-th in all clusters. According to our complexity analysis (Section 3.3.3) the

performance time is exponentially proportional to the number of feature to

select.

Finally, we fed the algorithm with datasets where the number of rows

was fixed and the number of columns increased. As expected from the

complexity analysis (Section 3.3.3), the time increases as the number of

dataset columns grows, Figure 5.6.

5.4 Best feature MapReduce job

In mRMR the output of the first MapReduce job is a set of key-value records,

where the key is the candidate feature index and the value is its mRMR.

The second MapReduce job filters this set to get the best candidate and,

according to the theoretical complexity analysis provided in Section 3.3.3,

the performance time should increase with the number of columns, but our

tests over datasets with 10∧4 and 10∧5 columns do not agree with our ex-

pectations, Figure 5.7. As already described in Section 5.3.3 that is related

72

Figure 5.6: mRMR: scalability tests as the dataset size increases by the number of

features. The number of rows is fixed at 10∧2. The blue solid line represents a dataset

with 10∧3 features, while the red dashed line 10∧4 features.

73

Figure 5.7: Best feature: scalability tests as the dataset size increases by the number of

features. The number of rows is fixed at 10∧2. The blue solid line represents a dataset

with 10∧3 features, while the red dashed line 10∧4 features.

to the dataset size (small) and unfortunately it was not possible to run

the algorithm over bigger datasets because not feasible with the resources

available.

Comparing the execution times of both MapReduce jobs, the best feature

is much faster than the mRMR. However, in MapReduce the former still

takes around 2 or 3 minutes to complete, which is a lot for its kind of job.

In a sequential way it is likely to perform better even in a real context

scenario, but in Apache Hadoop it is not possible to execute some jobs in

MapReduce fashion and others in sequential way.

In Figure E.9, E.10 and E.11 we ran the algorithm with different datasets

where the number of columns were fixed and the number of rows varied. As

74

Figure 5.8: Ranking: parallelism tests in 4 and 8 clusters. The blu line represents tests

with one map task running (sequential execution), while the red dashed one the number

of map tasks is decided by Apache Hadoop (parallel execution).

expected, performance tests are not significantly different, since the execu-

tion time of the algorithm depends on the number of features and not on

the number of rows.

5.5 Ranking MapReduce job

In this section we show the performance tests ran with Ranking. We pro-

ceeded assessing the level of parallelism and the scalability of the algorithm,

leaving out overhead tests since it has been strongly shown in tests for

mRMR.

5.5.1 Parallelism tests

The results shown in Figure 5.8 agree with those reported in mRMR. In-

creasing the level of parallelism reduces the running time, as expected from

the complexity analysis in 3.3.2.

5.5.2 Scalability tests

Results related to scalability agree with our expectations, when the dataset

used is the largest one. In Figure 5.9 it is shown that increasing the number

75

Figure 5.9: Ranking: scalability tests in cluster with 4 and 8 nodes, the blue solid and

red dashed lines respectively.

of nodes in the cluster decreases the execution time, and in Figure 5.10 the

number of features affects the performance.

From these tests we see the two algorithms fit differently the MapReduce

paradigm. In Ranking the Apache Hadoop overhead does not affect the

execution time as much as in mRMR. Furthermore, the workload of Ranking

and mRMR at first iteration is similar, but the time differs of about one order

of magnitude (about 600 seconds and 6000 seconds respectively), Figure 5.3

and 5.9. This is an insight to better investigate, but our guess is related to

the use of combiner in Ranking, which reduces the amount of data moved

through the network and read by reducers.

76

Figure 5.10: Ranking: scalability tests as the dataset size increases by the number of

features. The number of rows is fixed at 10∧2. The datasets used had 10∧3, 10∧4 and

10∧5 features.

77

78

Chapter 6

Future works and conclusions

In this document we reviewed limitations that Database Management Sys-

tems have in handling very large dataset. They were the solution usually

adopted as data storage system, but their archicture does not scale well

in a distributed system because complexity and constraints are introduced.

With the coming of Big Data a paradigm change was required and the new

way in storing and querying data emerged to tackle these limits and the

applications were grouped under the term NoSQL.

Google contributed in overcoming DBMS issues publishing two papers,

the Google file system [21] and MapReduce [14], which are cornerstones in

the new way of storing and querying data. Apache Hadoop is the result of

the open source community in letting this technology available for everyone

and a whole new ecosystem of closed and open sourced software is built on

top of it for different goals.

We were interested in how to design and implement machine learning

algorithms in MapReduce, because in domains in which Big Data is common

such as internet algorithms, computational biology or social link analysis,

traditional single machine algorithms may no longer be feasible to produce

models in reasonable time. Our focus was on feature selection algorithms

because they provide a way to reduce noise and remove irrelevant features

from the dataset, leading to a better generalization of prediction models.

For these reasons we considered feature selection algorithms in MapRe-

duce for distributed systems, which are not available in popular open source

tools such as Apache Mahout. We designed and implemented two feature

selection algorithms: mRMR and Ranking and we released the code as a

public Java library for Apache Mahout available online. At the ULB com-

puting center we developed an user friendly service, which dynamically de-

ploy Apache Hadoop on the nodes and runs MapReduce jobs on top of it.

Though the service ran on very limited computational resources with re-

spect to those used in related works, our extensive performance tests let us

understand the scalability of our algorithms and the overhead introduced

by Apache Hadoop in managing jobs and the cluster. Furthermore, working

with small datasets showed insignificant insights for our main goals, results

with larger input only matched our scalability expectations.

There are different directions to go further in this work. In this doc-

ument we took into account mRMR and Ranking algorithms, but there

are other feature selection algorithms to explore, implement and compare

in MapReduce; all researchers and enterprises will benefit in enriching the

Java library with those algorithms. Furthermore each implemented algo-

rithm is the result of some design choices and the implementation affects

the performance.

Our performance analysis were limited to changing few parameters only,

a broader analysis can be done taking into account all the possible settings

of Apache Hadoop, the cluster and nodes. This research will detailed ex-

plore what is the best configuration for the given algorithm and dataset,

eventually predicting ahead the amount of execution time. The model can

also define the computational resources required by the job and estimate its

cost, providing useful insights and information.

Finally, we were first in deploying Apache Hadoop on the computing

center. The computational resources assigned to our tests were not always

enough to show our theoretical analysis. Next step is demanding more re-

sources to run more extensive tests and deploying Apache Hadoop on a

dedicated environment.

80

Glossary

• Checksum: it is a small piece of content computed from any digital

data to detect errors. When an user retrieves a piece of content from

a service it receives the related checksum. Locally, the user computes

the checksum and compares it with the one got from the service, if

they do not match some errors occured during the transmission.

• Denormalization: it is the process through which data becomes re-

dundant in the database to improve the performance of the system.

• Horizontal scaling or scale out: it usually refers to tying multiple

independent computers together to provide more processing power. In

Relational DBMS it splits one or more tables by row within a single

instance of a schema.

• Schema: a database schema defines the structure of a database in a

formal language.

• Sharding: sharding is a concept related to horizontal scaling, but

the partition is across multiple instances of the schema, improving the

performance at read time.

• Stdin, stdout, stderr: they are standard streams through which a

computer program is connected while it executes. The first is data

going into a program, the second is the sink for output data and the

last one collects error messages or diagnostics.

82

List of variables

Here we list the variables used throughout the document:

• n: number of records or instances of the dataset.

• m: number of features or columns of the dataset.

• c: it defines the target class.

• S: set of feature selected.

• s: number of feature to select.

• b: number of nodes in the cluster.

84

Bibliography

[1] Alekh Agarwal, Olivier Chapelle, Miroslav Dudḱ, and John Langford.

A reliable effective terascale linear learning system. 2011.

[2] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A

maximization technique occurring in the statistical analysis of proba-

bilistic functions of markov chains. The Annals of Mathematical Statis-

tics, 41(1):pp. 164–171, 1970.

[3] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet

allocation. J. Mach. Learn. Res., 3:993–1022, March 2003.

[4] Burton H. Bloom. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM, 13(7):422–426, July 1970.

[5] Sarah Boslaugh and Paul Andrew Watters. Statistics in a nutshell - a

desktop quick reference. O’Reilly, 2008.

[6] Andrei Z. Broder. On the resemblance and containment of documents.

In In Compression and Complexity of Sequences (SEQUENCES’97,

pages 21–29. IEEE Computer Society, 1997.

[7] Jeff Buell. A benchmarking case study of virtualized hadoop perfor-

mance on vmware vsphere 5. Technical report, VMware, Oct 2011.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-

rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and

Robert E. Gruber. Bigtable: A distributed storage system for struc-

tured data. Technical report, Google Inc., 2006.

[9] Chakra Chennubhotla and Allan D. Jepson. Half-lives of eigenflows for

spectral clustering. pages 689–696, 2002.

[10] Cheng T. Chu, Sang K. Kim, Yi A. Lin, Yuanyuan Yu, Gary R. Bradski,

Andrew Y. Ng, and Kunle Olukotun. Map-reduce for machine learn-

85

ing on multicore. In Bernhard Schölkopf, John C. Platt, and Thomas

Hoffman, editors, NIPS, pages 281–288. MIT Press, 2006.

[11] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach

toward feature space analysis. pages 603–619, 2002.

[12] Adaptive Computing. Moab workload manager. http://docs.

adaptivecomputing.com/mwm/mwmAdminGuide-7.2.3.pdf.

[13] Corinna Cortes and Vladimir Vapnik. Support-vector networks. In

Machine Learning, pages 273–297, 1995.

[14] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-

cessing on large clusters. Technical report, Google Inc., 2004.

[15] Pierre A. Devijver and Josef Kittler. Pattern Recognition: A Statistical

Approach. Prentice Hall, January 1982.

[16] Michel Dubois and Christoph Scheurich. Memory access dependen-

cies in shared-memory multiprocessors. IEEE Trans. Softw. Eng.,

16(6):660–673, June 1990.

[17] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access

buffering in multiprocessors. In 25 years of the international symposia

on Computer architecture (selected papers), ISCA ’98, pages 320–328,

1998.

[18] Stéphane Gançarski, Claudia León, Hubert Naacke, Marta Rukoz, and

Pablo Santini. Integrity constraint checking in distributed nested trans-

actions over a database cluster. CLEI Electron. J., 9(2), 2006.

[19] Kourosh Gharachorloo and et al. Performance evaluation of memory

consistency models for shared-memory multiprocessors.

[20] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gib-

bons, Anoop Gupta, and John Hennessy. Memory consistency and event

ordering in scalable shared-memory multiprocessors. In In Proceedings

of the 17th Annual International Symposium on Computer Architecture,

pages 15–26, 1990.

[21] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google

file system. Technical report, Google Inc., 2003.

[22] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibil-

ity of consistent available partition-tolerant web services. In In ACM

SIGACT News, 2002.

86

[23] Dan Gillick, Arlo Faria, and John Denero. Mapreduce: Distributed

computing for machine learning, 2006.

[24] James R. Goodman. Cache consistency and sequential consistency,

1989.

[25] Isabelle Guyon and André Elisseeff. An introduction to variable and

feature selection. J. Mach. Learn. Res., 3:1157–1182, March 2003.

[26] Theo Haerder and Andreas Reuter. Principles of transaction-oriented

database recovery. ACM Comput. Surv., 15(4):287–317, December

1983.

[27] Mark A. Hall. Correlation-based feature selection for machine learning.

Technical report, 1998.

[28] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts

and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 3rd edition, 2011.

[29] R. R. Hocking. The analysis and selection of variables in linear regres-

sion, 1976.

[30] Aapo Hyvarinen and Erkki Oja. Independent component analysis: al-

gorithms and applications. Neural Networks, 13:411–430, 2000.

[31] Ron Kohavi and George H. John. Wrappers for feature subset selection.

Artif. Intell., 97(1-2):273–324, 1997.

[32] Tim Kraska, Ameet Talwalkar, John C. Duchi, Rean Griffith, Michael J.

Franklin, and Michael I. Jordan. Mlbase: A distributed machine-

learning system. In CIDR, 2013.

[33] Chuck Lam. Hadoop in Action. Manning, December 2010.

[34] L. Lamport. How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Trans. Comput., 28(9):690–691,

September 1979.

[35] Douglas Laney. 3D data management: Controlling data volume, veloc-

ity, and variety. Technical report, February 2001.

[36] Wentian Li. Mutual information functions versus correlation functions.

Journal of Statistical Physics, 60:823–837, 1990.

87

[37] Jimmy Lin and Chris Dyer. Data-intensive text processing with mapre-

duce. In Proceedings of Human Language Technologies: The 2009 An-

nual Conference of the North American Chapter of the Association

for Computational Linguistics, Companion Volume: Tutorial Abstracts,

NAACL-Tutorials ’09, 2009.

[38] Xuelian Lin, Zide Meng, Chuan Xu, and Meng Wang. A practical

performance model for hadoop mapreduce. In CLUSTER Workshops,

pages 231–239, 2012.

[39] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos

Guestrin, and Joseph M. Hellerstein. Graphlab: A new framework for

parallel machine learning. 2010.

[40] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. Efficient process-

ing of k nearest neighbor joins using mapreduce. Proc. VLDB Endow.,

5(10):1016–1027, June 2012.

[41] J. B. MacQueen. Some methods for classification and analysis of mul-

tivariate observations. In Proc. of the fifth Berkeley Symposium on

Mathematical Statistics and Probability, volume 1, pages 281–297. Uni-

versity of California Press, 1967.

[42] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.

Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel:

a system for large-scale graph processing. In Proceedings of the 2010

ACM SIGMOD International Conference on Management of data, SIG-

MOD ’10, pages 135–146. ACM, 2010.

[43] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient cluster-

ing of high-dimensional data sets with application to reference match-

ing. In Proceedings of the sixth ACM SIGKDD international conference

on Knowledge discovery and data mining, KDD ’00, pages 169–178,

2000.

[44] Ahmed Metwally and Christos Faloutsos. V-smart-join: a scalable

mapreduce framework for all-pair similarity joins of multisets and vec-

tors. Proc. VLDB Endow., 5(8):704–715, April 2012.

[45] Miller and Alan. Subset Selection in Regression. Chapman and Hall,

1990.

[46] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., 1997.

88

[47] Luis Carlos Molina, Llúıs Belanche, and Àngela Nebot. Feature selec-

tion algorithms: A survey and experimental evaluation. In Proceedings

of the 2002 IEEE International Conference on Data Mining, ICDM ’02.

IEEE Computer Society, 2002.

[48] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clus-

tering: Analysis and an algorithm. In ADVANCES IN NEURAL IN-

FORMATION PROCESSING SYSTEMS, pages 849–856. MIT Press,

2001.

[49] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads

programming. O’Reilly & Associates, Inc., 1996.

[50] Sean Owen, Robin Anil, Ted Dunning, and Ellen Friedman. Mahout in

Action. Manning, October 2011.

[51] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based

on mutual information: criteria of max-dependency, max-relevance, and

min-redundancy. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 27(8), 2005.

[52] Saeed K. Rahimi and Frank S. Haug. Distributed Database Management

Systems: A Practical Approach. Wiley, August 2010.

[53] Sangwon Seo, Edward J. Yoon, Jaehong Kim, Seongwook Jin, Jin-Soo

Kim, and Seungryoul Maeng. Hama: An efficient matrix computation

with the mapreduce framework. In Proceedings of the 2010 IEEE Second

International Conference on Cloud Computing Technology and Science,

CLOUDCOM ’10, pages 721–726. IEEE Computer Society, 2010.

[54] Sameer Singh, Jeremy Kubica, Scott Larsen, and Daria Sorokina. Par-

allel large scale feature selection for logistic regression.

[55] Garrick Staples. Torque resource manager. In Proceedings of the 2006

ACM/IEEE conference on Supercomputing, SC ’06. ACM, 2006.

[56] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong

Chen, Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin,

Samuel R. Madden, Elizabeth J. O’Neil, Patrick E. O’Neil, Alexander

Rasin, Nga Tran, and Stan B. Zdonik. C-store: A column-oriented

dbms. In VLDB, 2005.

[57] Yee Whye Teh, David Newman, and Max Welling. A collapsed varia-

tional bayesian inference algorithm for latent dirichlet allocation. 2006.

89

90 Chapter 6. Future works and conclusions

[58] Abhishek Verma, Xavier Llorà, David E. Goldberg, and Roy H. Camp-

bell. Scaling genetic algorithms using mapreduce. In Proceedings of the

2009 Ninth International Conference on Intelligent Systems Design and

Applications, ISDA ’09, pages 13–18. IEEE Computer Society, 2009.

[59] Guozhang Wang, Marcos Vaz Salles, Benjamin Sowell, Xun Wang,

Tuan Cao, Alan Demers, Johannes Gehrke, and Walker White. Behav-

ioral simulations in mapreduce. Proc. VLDB Endow., 3(1-2):952–963,

September 2010.

[60] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.

[61] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learn-

ing Tools and Techniques, Second Edition (Morgan Kaufmann Series in

Data Management Systems). Morgan Kaufmann Publishers Inc., 2005.

[62] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker,

and Ion Stoica. Resilient distributed datasets: A fault-tolerant ab-

straction for in-memory cluster computing. In Proceedings of the 9th

USENIX conference on Networked Systems Design and Implementa-

tion, NSDI’12, 2012.

[63] Hongyuan Zha, Xiaofeng He, Chris Ding, Horst Simon, and Ming Gu.

Spectral relaxation for k-means clustering. pages 1057–1064. MIT Press,

2001.

[64] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan.

Large-scale parallel collaborative filtering for the netflix prize. In Proc.

4th Int’l Conf. Algorithmic Aspects in Information and Management,

LNCS 5034, pages 337–348. Springer, 2008.

Appendix A

Apache Mahout tools

This appendix describes by categories all the available tools in Apache Ma-

hout.

A.1 Preprocessing

arff.vector converts ARFF (Attribute-Relation File Format) file in vector-

ized format. It describes a list of instances sharing a set of attributes and it

is widely used in Weka software1 for data mining.

seq2encoded generates encoded sparse vector from text sequence files.

seq2sparse generates sparse vector from text sequence files. This com-

mand converts SequenceFile intermediate data into vectorized data. This

is basically one of the most used tool available to handle data and it’s usu-

ally run after a command that converts your raw data into SequenceFile

intermediate data. For text-based data it automatically does the following

actions: compute dictionary, compute feature weights and create vector for

each document using word-integer mapping and feature-weight.

seqdirectory generate sequence files of text from a directory. Since it

doesn’t run in MapReduce it cannot handle big single dataset. A patch has

been suggested2 and integrated in future release.

seqmailarchives creates SequenceFile from a directory containing gzipped

mail archives.

seqwiki creates SequenceFile from Wikipedia xml dump.

1http://www.cs.waikato.ac.nz/ml/weka/
2https://issues.apache.org/jira/browse/MAHOUT-833

92 Appendix A. Apache Mahout tools

A.2 Algorithms

baumwelch refers to Baum-Welch algorithm for unsupervised HMM train-

ing [2].

canopy execute canopy cluster algorithm [43], a technique for clustering

large, high-dimensional datasets regardless the number of cluster of interest.

To reduce the computational cost, the idea is to use a fast approximate

distance metric which outputs overlapping subsets of data, called canopies.

Then clustering is performed by measuring exact distances only between

points that occur in a common canopy.

cleansvd verifies the svd command output checking related eigenvectors

and eigenvalues.

cvb applies latent Dirichlet allocation [3] via Collapsed Variation Bayes

[57]. It is a generative probabilistic model for collections of discrete data

such as text corpora. The implemented algorithm in Apache Mahout is a

variational algorithm which models the dependence of the parameters on

the latent variables in an exact fashion, assuming mutually independency of

latent variables.

cvb0 local run cvb in local memory.

dirichlet performs Bayesian mixture modeling. The idea is to use a prob-

abilistic mixture of a number of models that explains some observed data.

The non-parametric nature of this model makes it a candidate for clustering

problems where the distinct number of clusters is unknown beforehand.

eigencuts performs eigencuts spectral clustering [9].

evaluateFactorization computes RMSE and MAE of a rating matrix fac-

torization against probes.

fkemans performs fuzzy k-means, an extension of K-Means. While k-means

discovers hard clusters (a point belong to only one cluster), Fuzzy K-Means

discovers soft clusters where a particular point can belong to more than one

cluster with certain probability.

fpg performs frequent itemset for association rules. It uses an efficient

compressed dataset representation, which retains the itemset association

information, from which it mines association rules.

hmmpredict generates random sequence of observations by given HMM

(Hidden Markov Model). Unfortunately, there is no exhaustive documenta-

tion regarding this tool.

A.2. Algorithms 93

itemsimilarity computes the item-item-similarities for item-based collab-

orative filtering.

kmeans performs k-means clustering technique [41], which partitions the

dataset in k cluster and each data belongs to one cluster only.

meanshift performs mean shift clustering [11], is a nonparametric clustering

technique which does not require prior knowledge of the number of clusters,

and does not constrain the shape of the clusters.

minhash performs k-means clustering technique [6]. Minhash clustering

performs probabilistic dimension reduction of high dimensional data. The

essence of the technique is to hash each item using multiple independent

hash functions such that the probability of collision of similar items is higher.

Multiple such hash tables can then be constructed to answer near neighbor

types of queries efficiently.

parallelALS performs Alternating Least Squares with Weighted λ Regu-

larization (ALS-WR) [64], a parallel algorithm for collaborative filtering,

designed for the Netflix Prize3.

recommendfactorized computes recommendations using the factorization

of a rating matrix.

recommenditembased computes recommendations using item-based col-

laborative filtering.

rowsimilarity computes the pairwise similarities of the rows of a matrix.

runAdaptiveLogistic scores new production data using a trained and

validated AdaptivelogisticRegression model (see trainAdaptiveLogistic com-

mand).

runlogistic runs a logistic regression model against CSV data.

spectralkmeans performs spectral k-means clustering [63, 48].

ssvd stands for Stochastic SVD, which outputs the reduced rank Singu-

lar Value Decomposition. It uses at most 3 MapReduce sequential steps

(map-only + map-reduce + 2 optional parallel map-reduce jobs) to produce

reduced rank approximation of U, V and S matrices4.

svd performs Lanczos Singular Value Decomposition.

testnb tests a Naive Bayes classifier.

3http://www.netflixprize.com/
4https://cwiki.apache.org/confluence/display/MAHOUT/Stochastic+Singular+Value+Decomposition

94 Appendix A. Apache Mahout tools

trainAdaptiveLogistic trains an AdaptivelogisticRegression model.

trainlogistic trains a logistic regression using stochastic gradient descent.

trainnb trains a Naive Bayes classifier.

validateAdaptiveLogistic validates an AdaptivelogisticRegression model

against hold-out data set.

viterbi performs Viterbi algorithm which is known as inference algorithm

(synonyms: segmentation, decoding etc) for Hidden Markov Model which

finds the most likely sequence of hidden states by given sequence of observed

states.

A.3 Postprocessing

clusterpp helps in executing a top down hierarchical clustering. Each clus-

ter technique outputs a description of the points and information about

the clusters. Clusterpp command riorganizes the output in order to further

analyze each group of point with a cluster algorithm.

clusterdump dumps cluster output to text.

cmdump dumps confusion matrix in HTML or text formats.

matrixdump dumps matrix in CSV format.

vectordump dumps vectors from a sequence file to text.

A.4 Utilities

cat prints a file or resource as the logistic regression models would see it.

lucene.vector generates vectors from a Lucene5 index.

matrixmult executes the product of two matrices.

regexconverter converts text files on a per line basis based on regular

expressions. It is useful for converting things like log files from one format

to another.

split creates training and holdout set with a random 80-20 split of the

dataset.

splitDataset works as split command but here the user defines the ratio

between training and probe sets.

5http://lucene.apache.org/core/

A.4. Utilities 95

rowid it maps datasets in SequenceFile<Text, VectorWritable> format to

{SequenceFile<IntWritable, VectorWritable>, SequenceFile<IntWritable,

Text>}. This command is usually chained with the transpose job [50].

transpose takes the transpose of a matrix.

96 Appendix A. Apache Mahout tools

Appendix B

Mutual Information for

MapReduce

This Appendix shows the implementation of mutual information for MapRe-

duce. The mutual information is calculated in the reduce step, where each

pair of observation is read one at a time and stored in a custom data struc-

ture which logically represents a dynamic co-occurence matrix, implemented

as MatrixList class (Listing B.1). The basic component of the co-occurence

matrix is RowElement (listing not reported) which stores how many times

the pair row-column value has been observed. Finally MutualInformation

(Listing B.2) class reads the data structure to calculate the mutual infor-

mation.

Listing B.1: Dynamic co-occurence matrix implementation

1 package org.apache.mahout.feature.common.correlation;

2

3 import org.apache.mahout.feature.common.correlation.RowElement;

4

5 import java.util.ArrayList;

6 import java.util.Iterator;

7

8 public class MatrixList {

9

10 protected String name;

11

12 protected ArrayList<RowElement> elements;

13 protected ArrayList<RowElement> uniqueRows;

14 protected ArrayList<RowElement> uniqueCols;

15

16 protected long occurrences;

98 Appendix B. Mutual Information for MapReduce

17

18 public MatrixList() {

19 elements = new ArrayList<RowElement>();

20

21 uniqueRows = new ArrayList<RowElement>();

22 uniqueCols = new ArrayList<RowElement>();

23

24 this.occurrences = 0;

25 }

26 public String getName() {

27 return this.name;

28 }

29 public void setName(String name) {

30 this.name = name;

31 }

32 public void store(int a, int b) {

33 this.storeElement(a, b);

34 this.storeUniqueRow(a);

35 this.storeUniqueCol(b);

36

37 this.occurrences = this.occurrences + 1;

38 }

39 private void storeElement(int row, int col) {

40 boolean isNew = true;

41 for (RowElement e: elements) {

42 if (e.getRow() == row && e.getCol() ==

col) {

43 isNew = false;

44 e.increaseOccurrence();

45 break;

46 }

47 }

48 if (isNew) {

49 elements.add(new RowElement(row, col));

50 }

51 }

52 private void storeUniqueRow(int row) {

53 boolean isNew = true;

54 for (RowElement e: uniqueRows) {

55 if (e.getRow() == row) {

56 isNew = false;

57 e.increaseOccurrence();

58 break;

59 }

60 }

99

61 if (isNew) {

62 uniqueRows.add(new RowElement(row, -1));

63 }

64 }

65 private void storeUniqueCol(int col) {

66 boolean isNew = true;

67 for (RowElement e: uniqueCols) {

68 if (e.getCol() == col) {

69 isNew = false;

70 e.increaseOccurrence();

71 break;

72 }

73 }

74 if (isNew) {

75 uniqueCols.add(new RowElement(-1, col));

76 }

77 }

78 public Iterator elementsIterator() {

79 return elements.iterator();

80 }

81 public long getOccurrences() {

82 return this.occurrences;

83 }

84 public long getRowOccurrences(int row) {

85 for (RowElement e: uniqueRows) {

86 if (e.getRow() == row) {

87 return e.getOccurrences();

88 }

89 }

90 return -1;

91 }

92 public long getColOccurrences(int col) {

93 for (RowElement e: uniqueCols) {

94 if (e.getCol() == col) {

95 return e.getOccurrences();

96 }

97 }

98 return -1;

99 }

100 }

Listing B.2: Mutual information calculation

1 package org.apache.mahout.feature.common.correlation;

2

100 Appendix B. Mutual Information for MapReduce

3 import org.apache.mahout.feature.common.correlation.MatrixList;

4 import org.apache.mahout.feature.common.correlation.RowElement;

5

6 import java.util.Iterator;

7

8 public class MutualInformation {

9

10 private int instanceNumber;

11

12 public MutualInformation() {}

13

14 public double computeResult(MatrixList matrix) {

15

16 long tot = matrix.getOccurrences();

17 Iterator<RowElement> iterator =

matrix.elementsIterator();

18

19 double mi = 0.0;

20 while (iterator.hasNext()) {

21 RowElement e = iterator.next();

22

23 double pxy = (double) e.getOccurrences()

/ tot;

24 double px = (double)

matrix.getRowOccurrences(e.getRow()) /

tot;

25 double py = (double)

matrix.getColOccurrences(e.getCol()) /

tot;

26

27 if (pxy > 0.0) {

28 mi = mi + (pxy * (Math.log(

pxy/(px*py)) / Math.log(2)));

29 //mi = mi + (pxy * (Math.log(

pxy/(px*py))));

30 }

31 }

32

33 return mi;

34 }

35 }

Appendix C

mRMR in MapReduce

This Appendix reports code excerpts of mapper (Listing C.1) and reducer

(Listing C.2) of mRMR in MapReduce.

Listing C.1: mRMR mapper

1 // targetIndex is the index of the target feature

2 // columnNumber is the total number of columns

3 // selected is the set of already selected features

4 public void map(LongWritable index, Text record, Context

context) throws IOException, InterruptedException {

5

6 String[] values = record.toString().split(",");

7 for (int i=0; i<columnNumber; i++) {

8 // i is the index of the candidate feature

9 if (selected.contains(""+i) || i == targetIndex)

continue;

10

11 keyOut.set(i);

12 textOut.set(values[i]+","+values[targetIndex]+",t");

13 context.write(keyOut, textOut);

14

15 for (int j=0; j<columnNumber; j++) {

16 // j is the index of the already selected

feature

17 if (!selected.contains(""+j)) continue;

18

19 keyOut.set(i);

20 textOut.set(values[i]+","+values[j]+",f,"+j);

21 context.write(keyOut, textOut);

22 }

23 }

102 Appendix C. mRMR in MapReduce

24 }

Listing C.2: mRMR reducer

1 public void reduce(IntWritable index, Iterable<Text> items,

Context context) throws IOException, InterruptedException {

2

3 MatrixList target = new MatrixList();

4 ArrayList<MatrixList> features = new

ArrayList<MatrixList>();

5

6 for (Text item: items) {

7 String[] values = item.toString().split(",");

8

9 int candidateValue = Integer.parseInt(values[0]);

10 String type = values[2];

11

12 if (type.equals("t")) {

13

14 int targetValue =

Integer.parseInt(values[1]);

15 target.store(candidateValue, targetValue);

16

17 } else if (type.equals("f")) {

18

19 int featureValue =

Integer.parseInt(values[1]);

20 String featureName = values[3];

21

22 boolean isNew = true;

23 for (MatrixList matrix: features) {

24 if

(matrix.getName().equals(featureName))

{

25 isNew = false;

26 matrix.store(candidateValue,

featureValue);

27 break;

28 }

29 }

30 if (isNew) {

31 MatrixList matrix = new

MatrixList();

32 matrix.setName(featureName);

103

33 matrix.store(candidateValue,

featureValue);

34 features.add(matrix);

35 }

36

37 }

38 }

39

40 MutualInformation mi = new MutualInformation();

41

42 double sum_features = 0.0;

43 for (MatrixList f: features) {

44 sum_features = sum_features + mi.computeResult(f);

45 }

46

47 double sum_target = mi.computeResult(target);

48

49 double coefficient = 1.0;

50 if (features.size() > 1) coefficient = (1.0 / ((double)

features.size()));

51 double correlation = sum_target - (coefficient *

sum_features);

52

53 context.write(new LongWritable(0), new

Text(index.get()+","+String.format("%.5f",

correlation)));

54 }

104 Appendix C. mRMR in MapReduce

Appendix D

Ranking in MapReduce

This Appendix reports code excerpts of mapper (Listing D.1), combiner

(Listing D.2) and reducer (Listing D.3) of Ranking algorithm in MapReduce.

Listing D.1: Ranking mapper

1 public void map(LongWritable index, Text record, Context

context) throws IOException, InterruptedException {

2

3 String[] values = record.toString().split(",");

4 double targetValue =

Double.parseDouble(values[targetIndex]);

5

6 for (int i=0; i<columnNumber; i++) {

7 if (i == targetIndex) continue;

8

9 double candidateValue =

Double.parseDouble(values[i]);

10

11 keyOut.set(i);

12 valueOut.set(targetValue*candidateValue);

13

14 context.write(keyOut, valueOut);

15 }

16 }

Listing D.2: Ranking combiner

1 public void reduce(IntWritable index, Iterable<DoubleWritable>

items, Context context) throws IOException,

InterruptedException {

2

3 double partial_rho = 0.0;

106 Appendix D. Ranking in MapReduce

4 for (DoubleWritable item: items) {

5 partial_rho = partial_rho + item.get();

6 }

7

8 context.write(index, new DoubleWritable(partial_rho));

9 }

Listing D.3: Ranking reducer

1 public void reduce(IntWritable index, Iterable<DoubleWritable>

items, Context context) throws IOException,

InterruptedException {

2

3 double rho = 0.0;

4 for (DoubleWritable item: items) {

5 rho = rho + item.get();

6 }

7 rho = rho / rowNumber;

8

9 double mionc = - 0.5 * Math.log(1 - (rho*rho));

10

11 context.write(index, new Text(""+mionc));

12 }

Appendix E

Tests

In this Appendix we report all performance tests run to understand sev-

eral aspects of both Apache Hadoop and the feature selection algorithms

implemented. Each figure provides a description of itself.

108 Appendix E. Tests

Figure E.1: mRMR: parallelism tests with 4 nodes. The red dashed line represents tests

with one map task running, while the blue solid one the number of map tasks is decided

by Apache Hadoop.

109

Figure E.2: mRMR: parallelism tests with 6 nodes. The red dashed line represents tests

with one map task running, while the blue solid one the number of map tasks is decided

by Apache Hadoop.

110 Appendix E. Tests

Figure E.3: mRMR: parallelism tests with 8 nodes. The red dashed line represents tests

with one map task running, while the blue solid one the number of map tasks is decided

by Apache Hadoop.

111

Figure E.4: mRMR: parallelism tests with 4 nodes. The red dashed dashed line repre-

sents tests with the maximum number of map task running, while the blue solid one

the number of map tasks is decided by Apache Hadoop.

112 Appendix E. Tests

Figure E.5: mRMR: parallelism tests with 6 nodes. The red dashed line represents tests

with the maximum number of map task running, while the blue solid one the number

of map tasks is decided by Apache Hadoop.

113

Figure E.6: mRMR: parallelism tests with 8 nodes. The red dashed line represents tests

with the maximum number of map task running, while the blue solid one the number

of map tasks is decided by Apache Hadoop.

114 Appendix E. Tests

Figure E.7: mRMR: scalability tests with 4 nodes. The number of map tasks is set by

Apache Hadoop.

115

Figure E.8: mRMR: scalability tests with 8 nodes. The number of map tasks is set by

Apache Hadoop.

116 Appendix E. Tests

Figure E.9: Best feature: scalability tests with 4 nodes. The number of map tasks is

set by Apache Hadoop.

117

Figure E.10: Best feature: scalability tests with 6 nodes. The number of map tasks is

set by Apache Hadoop.

118 Appendix E. Tests

Figure E.11: Best feature: scalability tests with 8 nodes. The number of map tasks is

set by Apache Hadoop.

