

POLITECNICO DI MILANO

Facoltà di Ingegneria Industriale

Corso di Laurea in

Ingegneria Meccanica

Realization of a soft-real-time automotive simulator

with human interaction

Relatore: Prof. Umberto CUGINI

Co-relatore: Dott. Francesco FERRISE

Co-relatore: Ing. Marco GUBITOSA

 Tesi di Laurea di:

 Nicolai BENI Matr. 783207

Anno Accademico 2012 - 2013

“The starry heavens above me and the moral law within me”

“Il cielo stellato sopra di me, la legge morale dentro di me”

Immanuel Kant, 1788

Ringraziamenti

Desidero ringraziare il professor Umberto Cugini, mio relatore, e il dottore Francesco

Ferrise, mio correlatore presso il Politecnico di Milano, per avermi offerto la possibilità

di svolgere il mio lavoro di tesi presso l’azienda LMS
®
 International

1
.

Uno speciale ringraziamento va all’ingegnere Marco Gubitosa, mio relatore presso LMS
®

International, per avermi seguito e aiutato in questi sei mesi.

Infine ringrazio i miei genitori che mi hanno sostenuto durante questo percorso.

1
 LMS

®
 International: a Siemens Business leading partner in test and mechatronics simulation in the

automotive, aerospace and other manufacturing industries.

I

Index

Abstract ... 7

Sommario .. 9

Riassunto ... 11

Chapter 1 Automotive Simulator ... 19

1.1 Vehicle simulator state of art ... 19

1.2 Structure of a standard vehicle simulator ... 23

Chapter 2 Virtual Simulator ... 27

2.1 Open Source Virtual Simulator Research and Analysis ... 30

2.1.1 vDrift .. 32

2.1.2 Torcs and Speed Dreams .. 34

2.1.3 Racer .. 36

2.2 Open Source Virtual Simulator Choice .. 38

2.3 Multi-Body Virtual Simulator Architecture ... 39

2.4 Open Source Virtual Simulator Editing ... 44

2.5 Multi-Body Vehicle Implementation ... 49

2.5.1 Steering Co-simulation... 53

2.5.2 Driveline Co-simulation ... 55

2.5.3 Tire Co-simulation ... 59

2.5.4 Auxiliary Co-simulations ... 64

2.6 Real Time Data Plot ... 65

II

Chapter 3 Motion Simulator .. 69

3.1 Steering Force Feedback ... 70

3.2 Motion Simulator Basic Concepts ... 73

3.3 Motion Cueing Algorithm ... 75

3.3.1 Classical Approach .. 76

3.3.2 Optimal Approach ... 81

3.3.3 Adaptive Approach ... 82

3.3.4 Lateral Lane Position Approach .. 83

3.3.5 Driving Task Adaptive Motion-Cueing Algorithm with Dynamic Scaling 84

3.4 Vestibular Human System ... 86

3.5 Motion Platform Design .. 88

3.5.1 Preliminary sizing ... 89

3.5.2 From the simulated acceleration to the actuators position 91

3.5.3 From the actuator position to the multi-body model ... 95

3.5.4 Basic optimization ... 98

3.5.5 Proposed platform ... 103

Conclusion .. 107

References .. 109

III

Figures

Figure 1.1. The "Antoniette Learning Barrel" simulator, 1910.. 20

Figure 1.2. The VIRTTEX simulator, 1994 ... 21

Figure 1.3. The BMW 6DOF simulator, 2003 ... 22

Figure 1.4. The NADS-1, 2002 .. 22

Figure 1.5. Toyota Driving Simulator, 2007 .. 23

Figure 1.6. Standard simulator signals’ crossing ... 25

Figure 2.1. Standard virtual simulator's architecture ... 28

Figure 2.2. Proposed virtual simulator's architecture ... 29

Figure 2.3. vDrift's architecture ... 33

Figure 2.4. vDrift's Screenshot ... 34

Figure 2.5. Torcs' and Speed Dreams' architecture .. 35

Figure 2.6. Torcs' screenshot .. 36

Figure 2.7. Speed Dreams' screenshot ... 36

Figure 2.8. Racer's architecture .. 37

Figure 2.9. Racer's screenshot .. 37

Figure 2.10. Multi-body virtual simulator's architecture ... 39

Figure 2.11. Coupled simulation structure ... 41

Figure 2.12. Co-simulation structure ... 42

Figure 2.13. Real-Time Co-simulation structure ... 42

Figure 2.14. Real-Time Co-simulation processes flow [25] .. 43

Figure 2.15. Speed Dreams' vehicle frame of reference .. 46

Figure 2.16. Menu's screenshot before and after the editing .. 49

Figure 2.17. LMS Virtual.Lab
®
 environment and the multi-body model used 50

Figure 2.18. Multi-body model's frame of reference ... 52

Figure 2.19. Ackermann steering geometry [29] ... 53

Figure 2.20. Wheelbase's influence on the wheels' steering angle 54

Figure 2.21. Wheel track's influence on the wheels' steering angle 55

Figure 2.22. Driveline Co-simulation functions flow .. 56

Figure 2.23. BMW engine 335i torque curve .. 57

IV

Figure 2.24. Vertical tire model ... 60

Figure 2.25. Vertical reaction forces due to an initial vehicle’s adjustment 61

Figure 2.26. Pacejka Magic Formula longitudinal slip and slip angle influence 64

Figure 2.27. Example of real-time plotting implemented with Gnuplot 66

Figure 2.28. Developed automotive virtual simulator screenshot .. 67

Figure 2.29. Developed automotive virtual simulator workspace .. 67

Figure 3.1. Screenshot of the application developed for the steering wheel force feedback 73

Figure 3.2. The classical motion cueing approach ... 76

Figure 3.3. To generate constant longitudinal and lateral forces, the gravity force is used in

the tilt coordination method [41] .. 78

Figure 3.4. Typical response of the classical filter to a step-input linear acceleration 79

Figure 3.5. Filter output with nonlinear gain to anticipate and reduce false cues 80

Figure 3.6. The structure of the optimal control... 81

Figure 3.7. The optimal control W(s) block ... 82

Figure 3.8. Driving Task Adaptive Motion-Cueing Algorithm with Dynamic Scaling

structure .. 85

Figure 3.9. Otolithic membrane ... 86

Figure 3.10. Semicircular channel and cupula ... 87

Figure 3.11. Stewart platform multi-body model ... 89

Figure 3.12. Speed Dreams' track layout used for the simulation .. 92

Figure 3.13. Motion Platform Designer 1.0 r3 enviroment .. 93

Figure 3.14. Longitudinal, lateral and vertical vehicle's acceleration 94

Figure 3.15. Virtual simulator vehicle's and platform behavior under three different

maneuvers .. 96

Figure 3.16. Setup 1 longitudinal, lateral and vertical accelerations comparison 97

Figure 3.17. Setup 2 longitudinal, lateral and vertical accelerations comparison 99

Figure 3.18. Setup 2 longitudinal, lateral and vertical accelerations comparison 100

Figure 3.19. Platform angular accelerations setup 1 .. 101

Figure 3.20. Platform angular accelerations setup 2 .. 102

Figure 3.21. Platform angular accelerations setup 3 .. 102

Figure 3.22. Actuators' performed thrust ... 104

Figure 3.23. Actuators' performed linear velocity .. 105

Figure 3.24. Proposed 6DOF platform design ... 106

V

Tables

Table 2.1. Open source simulators comparison's result ... 38

Table 2.2. UDP header structure .. 40

Table 2.3. Graphical engine required data ... 48

Table 2.4. Bodies with their corresponding linking element ... 51

Table 3.1. Platform dimensions ... 91

Table 3.2. Classical motion cueing parameters .. 95

Table 3.3. Classical motion cueing parameters for the tilt coordination 95

Table 3.4. Setup 2 parameters .. 98

Table 3.5. Setup 3 paramteters ... 100

Table 3.6. 6 DOF platform proposed dimensions .. 106

Table 3.7. Linear Actuator's required features ... 106

Abstract

Demands for better products are at odds with demands for compressed engineering

timetables. The resolution of this conflict lies in improving the efficiency of the

engineering process. An essential step to meet this challenge is the integration of

Computer-Aided (CA) technologies and methods in the product-development

process. Simulated models offer the opportunity to investigate design changes and

perform virtual analysis at reasonable time and low cost, especially when

substantial system modifications and variants are to be considered. Tools such as

Multi-body
2
 and FEM

3
 software are nowadays widely spread in the industrial

design and consulting companies. In this scenario the virtual product is generally

excited independently from the environment and the potential interactions with the

user (the human) are often neglected, thus underestimating the global system

modification due to this loop closure. The potential hazard is accentuated when

considering mechatronic products like in the modern automotive sector: car’s

driving behavior could result modified by one of the many control and safety

devices, which in turn need to react to the driver action. In the current

circumstances it is no longer possible to exclude from the design process the direct

human interaction. As a consequence automotive manufactures have been

promoting Human-In-The-Loop

(HITL) simulation since the first years of the

2000s.

Throughout this thesis the possibility of embedding the multi-body software “LMS

Virtual.Lab
®

 Motion” (real-time module) into a soft-real time vehicle simulator is

investigated. Overall goal is the realization of an automotive simulator able, on one

hand to integrate a multi-body vehicle model, and on the other to realize an

immersive simulation scenario. Hence, firstly an existing vehicle simulator is edited

in order to embed the real-time vehicle simulation and combine it with human

interaction. Than an analysis concerning the motion cues is computed in order to

propose a preliminary design of a small scale 6 Degrees of Freedom (DOF) motion

platform.

2
 Multi-Body software: software able to solve multi-body system used to model the dynamic

behavior of interconnected rigid or flexible bodies, each of which may undergo large translational

and rotational displacement.
3
 FEM software: software that implement the finite element method for solving partial differential

equations or aid in the pre and post-processing of finite element models.

Keywords: Vehicle, Motion, Virtual, Automotive, Simulator, Multi-Body, Human

in the Loop, Real-time, Soft Real-time.

Sommario

Nello scenario industriale odierno la richiesta di prodotti sempre migliori è

contrapposta ai ridotti tempi di progettazione disponibili. La soluzione di questo

conflitto richiede il miglioramento dell’efficienza dei processi di ingegnerizzazione.

L’integrazione di tecnologie Computer-Aided (CA) costituiscono un passo verso

questo miglioramento. Modelli simulati offrono la possibilità di studiare modifiche

nel design del prodotto in tempi ragionevoli e a basso costo, sopratutto quando si

devono tenere conto sensibili modifiche o variazioni. Strumenti come software

Multi-body
4

 e FEM
5

 sono oggigiorno ampiamente diffusi nella progettazione

industriale. Tuttavia, molto spesso, il prodotto virtuale è studiato in maniera

indipendente dall’ambiente e potenziali interazioni con gli utenti (gli uomini) sono

solitamente trascurate. Questa mancanza è accentuata in settori come quello

dell’automotive, in cui il comportamento del veicolo può essere modificato da

diversi controlli e sistemi di sicurezza direttamente dipendenti dalle azioni compiute

dal pilota. In questo scenario non è più quindi possibile escludere la diretta

interazione umana durante la progettazione. Di conseguenza, fin dai primi anni del

duemila, numerose case automobilistiche hanno iniziato ad orientarsi verso

simulazioni Human-in-the-loop (HITL).

In questa tesi viene studiata la possibilità di integrare il software multi-body “LMS

Virtual.Lab
®

 Motion” (modulo real-time) in un simulatore di guida soft real-time.

Scopo finale è la realizzazione di un simulatore di veicoli capace di integrare un

modello di automobile multi-body in uno scenario di simulazione immersivo. In

primis, un esistente simulatore di guida è modificato in modo da combinare la

simulazione real-time di un modello di veicolo multi-body con la diretta interazione

umana. Quindi è condotta un’analisi riguardante le sensazioni inerziali e le

piattaforme di movimento in modo da proporre il design di una piattaforma a 6

gradi di libertà in scala ridotta.

Parole chiave: Veicolo, Movimento, Virtuale, Automotive, Simulatore, Multi-

Body, Human in the Loop, Real-time, Soft Real-time.

4
 Software multy-body: software per la soluzione di sistemi multi-body usato per modellare i

comportamenti dinamici di corpi rigidi o flessibili interconessi tra di loro.
5
 Software FEM: software che implementa il metodo degli elementi finiti per risolvere equazioni

differenziali.

Riassunto

In un simulatore Human in the loop (HITL) il risultato finale di una simulazione è

strettamente dipendente dall’iterazione con l’utente. Il comportamento di una

persona davanti a determinanti eventi è soggettivo e in tal modo lo diventa anche la

simulazione e il conseguente risultato. Per questo motivo bisogna prestare

particolare attenzione al coinvolgimento dell’utente nella simulazione. In campo

automobilistico se il pilota si accorge di trovarsi in un ambiente simulato o poco

realistico i suoi feedback saranno in tal modo poco credibili e conseguentemente la

simulazione perderà di rilevanza. Oltre a questo tipo di problematiche è importnate

considerare l’importante fattore dell’accuratezza del modello numerico interno al

simulatore, inteso, nel campo in oggetto, come modello del veicolo. L’attendibilità

e fedeltà della simulazione giocano quindi un ruolo sostanziale. Particolare

attenzione deve quindi essere posta su questi due aspetti: la realizzazione di un

ambiente che coinvolga totalmente l’utente e lo sviluppo di un modello di veicolo

che riproduca fedelmente le dinamiche del prototipo fisico.

Per quanto riguarda la realizzazione di un ambiente immersivo è necessario

combinare la stimolazione dei sensi umani coinvolti in una manovra di guida. La

vista da sola non è sufficiente a meno che non si voglia realizzare semplicemente un

videogioco. Devono essere quindi introdotte sensazioni sonore e inerziali.

Generalmente in un simulatore il render grafico e quello sonoro vengono svolti

dalla medesima macchina, mentre le sensazioni inerziali vengono riprodotte con

speciali piattaforme a diversi gradi di libertà.

 Per questo motivo da qui in seguito si indicherà con i seguenti termini:

 Simulatore di guida o simulatore di autoveicoli è il simulatore complessivo

di tutti quelle parti necessarie per garantire una corretta simulazione ed

esperienza di guida quanto più simile a quella reale.

 Simulatore virtuale invece è responsabile della simulazione del veicolo e del

render grafico e sonoro.

 Simulatore inerziale è quella parte del simulatore di guida responsabile della

generazione di sensazioni di movimento.

Il simulatore virtuale come inteso in questo progetto è il cuore della simulazione.

Questo può essere visto come l’unione di due grandi motori: quello fisico e quello

Riassunto

12

grafico. Quello fisico è responsabile della simulazione della scena e quindi del

comportamento dell’auto. Quello grafico invece riceve i dati elaborati in quello

fisico e genera output grafici. In questo caso si trasporrà la definizione di motore

grafico estendendolo anche al render di output sonori e all’input dei segnali

provenienti da hardware come un volante o una pedaliera. Una simulazione

standard HITL, considerando solo il simulatore virtuale, funziona in questo modo:

 L’utente comanda hardware di input (volante, pedaliera e leva del cambio)

 I segnali vengono inviati al motore grafico che li tramuta in valori numerici

e li invia al motore fisico.

 Il motore fisico riceve gi input ed esegue la simulazione numeirca (integra le

equazioni del moto per un intervallo di comunicazione)

 I risultati della simulazione (gli stati aggiornati del sistema) vengono inviati

dal motore fisico a quello grafico.

 Il motore grafico codifica gli output e li invia alle periferiche di output.

 Queste periferiche generano output visivi e sonori.

 L’utente riceve questi output e, mediante gli hardware di input, modifica in

maniera soggettiva e personale alcuni parametri della simulazione.

Numerosi simulatori virtuali, classificati spesso come giochi, sono presenti sul

mercato. Questi differiscono tra loro in funzione nella complessità del motore fisico

e nella ricchezza del motore grafico, e alcuni di questi sono free-software oppure

distribuiti con licenza di tipo open source. In questi simulatori il motore fisico e

quello grafico sono integrati in un’unica applicazione. Questo fa si che il computer

deve svolgere sia i calcoli legati alla parte grafica che quelli legati invece a quella

fisica.

La struttura del simulatore proposto in questa tesi differisce da quella di un

simulatore standard in quanto il motore grafico e quello fisico sono gestiti da due

macchine differenti:

 Il computer target, in questo caso con piattaforma Linx RTAI 64 bit

installata, è responsabile della simulazione fisica.

 Il computer host, una piattaforma Windows 7 Enterprise 64 bit, ospita il

motore fisico.

Questi due computer si scambiano dati tramite l’utilizzo di un protocollo UDP,

molto veloce nello scambio di dati ma che non gestisce il riordinamento dei

13

pacchetti spediti ne la ritrasmissione di quelli persi come nel caso del protocollo

TCP.

Per la realizzazione del simulatore proposto ci si è serviti di un simulatore open

source già disponibile sul web. Si è studiata la sua struttura, è stato isolato il motore

grafico ed eliminato quello fisico. Dunque è stato implementato il protocollo UDP e

le routine necessarie per la conversione dei dati provenienti dal nuovo motore

fisico.

Il simulatore open source scelto dopo un’accurata ricerca sul web, studio e analisi

del codice sorgente è Speed Dreams [20]. Questo, fra tutti i simulatori open source

disponibili, è quello con il miglior compromesso tra facilità e organizzazione del

codice sorgente (in linguaggio C++) e qualità grafiche e sonore. Il codice sorgente è

organizzato in diversi sotto progetti e quindi è relativamente facile isolare il motore

grafico ed eliminare quello fisico.

Per quanto riguarda invece quest’ultimo è stato deciso di sfruttare il modulo real-

time del software multi-body LMS Virtual.Lab® Motion. La necessità di introdurre

un software di questo tipo è legata al fatto che la maggior parte dei simulatori

standard disponibili sul mercato hanno forti limitazioni riguardanti la dinamica del

veicolo. Generalmente questi simulatori implementano in linguaggio C o C++ i

diversi componenti di un veicolo approssimandone la loro struttura. Uno dei casi

più evidenti sono le sospensioni. Queste di solito vengono modellate in maniera

molto semplice come una molla-smorzatore in parallelo collegata tra lo chassis e

uno dei semiassi dell’auto consentendo la variazione di pochi parametri.

Sospensioni a geometrie più complesse non vengono di solito implementate vista la

complessità cinematica che talvolta rende difficile scrivere le equazioni del moto e

la loro efficiente integrazione numerica. La possibilità di introdurre un modello

multi-body permette di superare questi tipi di limitazioni. LMS Virtual.Lab
®

Motion offre anche la possibilità di svolgere in parallelo simulazioni, aventi ognuna

il proprio solutore, che comunicano ad intervalli discreti di tempo coordinati da un

master solver che scandisce il ritmo della simulazione globale. Queste simulazioni

in parallelo sono definite come co-simulazioni, sono programmate in linguaggio C e

offrono la possibilità di sviluppare quelle parti della simulazione che il solutore

real-time non implementa. Ad esempio le forze aereodinamiche di un aereo o di un

veicolo possono essere simulate in real-time mediante codice personalizzato a

seconda delle richieste dell’utente. E’ quindi possibile attraverso una co-

simulazione, calcolare le forze aerodinamiche implementando delle apposite lookup

table e quindi applicare le forze calcolate al modello multi-body. Nel caso specifico

del simulatore sviluppato in questo progetto le co-simulazione sviluppate sono sei:

Riassunto

14

 Co-simulazione dello sterzo. Qui è implementato il modello cinematico di

sterzo proposto da Rudolph Ackermann. Si riceve il segnale dello sterzo e si

calcola il valore di angolo di sterzo per ogni ruota anteriore del veicolo.

 Co-simulazione della driveline. Qui è implementato il motore (tipo mappa di

coppia), il cambio, la trasmissione, il differenziale e l’impianto frenante

dell’auto. Da questa simulazione vengono estratti i valori di coppia motrice

da applicare ad ogni ruota del veicolo.

 Co-simulazione degli pneumatici. Diversi modelli degli pneumatici sono

presenti in LMS Virtual.Lab
®
 e per la prima versione del simulatore è stato

utilizzato il modello Simple Tire. Tuttavia tutti questi modelli prevedono la

definizione del circuito o della strada in un formato di file 3D specifico e

differente da quello utilizzato per i tracciati utilizzati in Speed Dreams.

Dunque, se si utilizza uno dei modelli di pneumatico già presenti nel

software multi-body, è necessario convertire e caricare manualmente il

circuito ogni qual volta si seleziona un tracciato diverso in Speed Dreams.

Per poter rendere la simulazione indipendente da questo fattore, è stato

sviluppato il modello di pneumatico basato sulla Magic Formula proposta da

Pacejka in una co-simulazione. Il comportamento in verticale dello

pneumatico è stato modellizzato come una molla-smorzatore in parallelo tra

la strada e il centro di rotazione della ruota. In questo modo ogni intervallo

di tempo da Speed Dreams viene mandato alla co-simulazione l’altezza in Z

della strada. Questa viene inserita come uno spostamento di vincolo imposto

della strada nel modello dello pneumatico. Quindi la reazione vincolare del

terreno viene calcolata. Noti i rimanenti stati della ruota e quindi i relativi

slittamenti,sfruttando il modello proposto da Pacejka vengono calcolate le

forze longitudinale e trasversali e i corrispondenti momenti generati

dall’interazione pneumatico-strada. Infine le forze calcolate vengono

applicate al modello multi-body.

 Co-simulazione UDP-IN. Questa riceve, mediante protocollo UDP, i dati da

Speed Dreams e li manda a LMS Virtual.Lab
®
.

 Co-simulazione UDP-OUT. Svolge il medesimo lavoro di quella UDP in ma

in verso opposto.

 Co-simulazione Master. Scandisce il tempo e il ritmo di tutte le simulazioni.

Genera il segnale di inizio e fine simulazioni.

Infine il modello multi-body proposto risulta essere ancora semplice ed è costituto

da 12 corpi rigidi per un totale di 26 gradi di libertà:

15

 Chassis (6 dof)

 Blocco motore (6 dof).

 Quattro ruote (4 x 1 dof).

 Quattro porta-mozzo (4 x 1 dof).

 Blocco differenziale posteriore (6 dof).

 Corpo globale fisso al “suolo” (0 dof).

Le sospensioni proposte sono implementate come una molla-smorzatore in parallelo

collegata dallo chassis al porta-mozzo. Tuttavia sospensioni più complesse possono

essere sviluppate partendo da questo modello.

Infine al simulatore virtuale è stato implementato un modulo per il plottaggio in

real-time dei parametri richiesti dell’auto. Questo è stato realizzato mediante

l’utilizzo del software open source Gnuplot. Il flusso di dati richiesto viene ancora

una volta spedito da LMS Virtual.Lab
®
 a Speed Dreams mediante UDP e, da

questo, mediante una pipeline di dati, a Gnuplot.

Il simulatore inerziale è responsabile di riprodurre le sensazioni di accelerazione

che il guidatore subisce a bordo di un veicolo. Queste accelerazioni possono essere

viste come forze agenti sul pilota:

 Forza longitudinale. Generalmente generata durante manovre di partenza o

di frenata.

 Forza laterale. Evidenti valori di queste forza si verificano in curva.

 Forza verticale. Principalmente dovuta a variazioni di quota della strada.

 Momenti di rollio. Si genera principalmente in curva.

 Momento di pitch. Durante accelerazioni o decelerazioni oppure in strade in

salita o discesa.

 Momento di yaw. Durante la fase si curva.

 Forza di feedback del volante come resistenza all’input di sterzo.

La forza di feedback dello sterzo è stata realizzata implementando un apposito

programma mediante la Microsoft Windows API DirectInput. Il volante utilizzato è

un Thrustmaster
®
 RGT FFB predisposto per un ritorno di forza. Questo vuol dire

che un motore a corrente continua e l’hardware di controllo sono già presenti. In

questo modo mediante la libreria DirectInput si devono solo richiamare le routine

per rilevare la periferica e per modulare la forza di feedback. Gli effetti

implementati per quanto riguarda il ritorno di forza sono due:

Riassunto

16

 Senza servosterzo. Mediante il modello di pneumatico proposto da Pacejka

si calcola il momenti di allineamento . Quindi questo valore viene scalato

e mandato allo sterzo che attua una forza di ritorno.

 Con servosterzo. La rigidezza dello sterzo aumenta gradualmente con

l’aumento della velocità.

Per quanto riguarda invece le altre forze, queste possono essere riprodotte mediante

l’ausilio di una piattaforma inerziale o piattaforma di movimento. Questa ha lo

scopo di riprodurre le accelerazioni che si verrebbero a verificare durante la guida

del veicolo. Queste accelerazioni sono percepite dall’uomo mediante il sistema

vestibolare che ha sede nell’orecchio. Questo è costituito da due sistemi: gli otoliti e

il canale semicircolare con la cupola. Gli otoliti sono responsabili della percezione

sia delle accelerazioni lineari che di quelle angolari. Il canale semicircolare con la

cupola sono invece responsabili della percezione delle sole accelerazioni angolari.

La percezione di suddette accelerazioni avviene solo quando queste sono superiori

ad una soglia limite che per quelle lineari è stimata a 0.05 m/s
2
 mentre per quelle

angolari è di 0.3 deg/s
2
.

Le piattaforme inerziali spesso sono di dimensioni limitate e quindi in generale non

sono in grado di riprodurre in modo consistente le accelerazioni di un veicolo.

Tuttavia diversi controlli ed espedienti sono stati sviluppati per poter risolvere

questo problema. La minor accuratezza nella riproduzione dei segnali di

accelerazione si verifica quando il veicolo subisce una accelerazione lineare

costante nel tempo. Questa limitazione e’ dovuta al ridotto spazio di lavoro di una

piattaforma statica (ovvero non montata su binari). Per poter generare quindi

accelerazioni costanti uno degli approcci più utilizzati è quello della tilt

coordination. Questo si basa sull’idea di ruotare la piattaforma in modo da sfruttare

la forza di gravità a tale scopo. Ovviamente limiti sulla massima rotazione possibile

vanno rispettati per evitare che l’utente percepisca questa rotazione invece che

un’accelerazione lineare (effetto Aubert).

Diversi algoritmi, noti come cueing algorithms, sono stati sviluppati per gestire le

azioni di controllo sulle piattaforme.

 Approccio classico. Il più semplice fra tutti ed è in feedforward. Le

accelerazioni del veicolo vengono prima scalate e quindi filtrate. Filtri passa

alto vengono utilizzati per generare in maniera diretta le accelerazioni

longitudinali, laterali e verticali ad alta frequenza e solitamente a bassa

ampiezza. Lo stesso viene fatto anche per le accelerazioni di roll, pitch e

yaw. Le accelerazioni a bassa frequenza longitudinali e laterali vengono

17

invece estratte da un filtro passabasso e, mediante l’algoritmo di tilt

coordination, vengono trasformate in un valore di angolo. Quindi attraverso

degli algoritmi detti di washout viene calcolata la posizione della

piattaforma istante per istante e degli attuatori. Non essendo un approccio

feedback è fra tutti gli algoritmi quello meno performante tuttavia ottimi

risultati possono essere ottenuti modificando iterativamente i parametri

principali.

 Approccio ottimo. Molto simile a quello classico nella struttura dei filtri,

differisce per il fatto che le accelerazioni prima di essere processate come

nel caso precedente, vengono moltiplicate da una matrice ottimizzata in

modo da minimizzare l’errore tra le accelerazioni della piattaforma e quelle

del veicolo.

 Altri tipi di approcci in feedback sono descritti nel capitolo 3. In generale

questi prevedono la modifica di alcuni parametri online in modo da

ottimizzare le prestazioni della piattaforma.

Tutti i controlli in feedback prevedono l’utilizzo delle funzioni di trasferimento del

sistema vestibolare. Per questo motivo è anche necessario un modello dinamico

degli otoliti e del canale semicircolare.

Infine è stato svolto il dimensionamento di una piattaforma a 6 gradi di libertà

basata sul layout della piattaforma di Stewart. Si tratta di una piattaforma in scala

ridotta che alloggerà un modello di automobile in scala (1:25). Per quanto riguarda

il dimensionamento è stato proposto un criterio per la scelta degli attuatori lineari

sulla base di scelte preliminari per lo schema di controllo. Prima di tutto è stato fatto

un dimensionamento di massima della piattaforma secondo i seguenti criteri:

 Ingombro massimo della piattaforma e spazio di lavoro.

 Dimensionamento della base inferiore in funzionde della stabilità

complessiva

 Dimensionamento della base superiore per ridurre le singolarità dovute alla

rotazione attorno all’asse orizzontale.

 Strutture di collegamento per incrementare la rigidezza

 Strutture di collegamento per massimizzare l’area di lavoro.

Quindi utilizzando il simulatore virtuale sviluppato, sono stati effettuati diversi giri

di pista su un circuito appositamente scelto. Le accelerazioni del veicolo sono state

quindi estratte da LMS Virtual.Lab® Motion e inserite nel software Motion

Platform Designer 1.0 r3. Questo implementa l’approccio classico di cueing

Riassunto

18

algorithm ed è in grado di trasformare le accelerazioni del veicolo nelle

corrispondenti posizioni della piattaforma e degli attuatori lineari. Trattandosi di un

software basato sull’approccio classico i risultati ottenuti non sono ottimizzati.

Tuttavia forniscono un’indicazione sul “worse case scenario” offrendo qindi un

margine di sicurezza sul dimensionamento degli attuatori.

Con l’obiettivo di minimizzare l’errore tra le accelerazioni del veicolo e quelle della

piattaforma sono state condotte diverse iterazioni sui parametri del controllore. Tre

diversi setup di parametri sono proposti in questa tesi.

Infine le posizioni degli attuatori istante per istante sono importate in un modello

multi-body della piattaforma in LMS Virtual.Lab® Motion e le spinte e le velocità

necessarie sono così calcolate. Infine, tenendo conto di questi valori, è stata

effettuata sul guidata la ricerca degli attuatori più adatti per la piattaforma.

La tesi qui di seguito sviluppa in tre capitoli. Nel primo viene descritto lo stato

dell’arte dei simulatori di guida oggi realizzati ed in uso in diverse case

automobilistiche. Nel secondo viene descritto il lavoro svolto per integrare il

software multi-body all’interno di un motore grafico per la realizzazione del

simulatore virtuale. Infine, nel terzo, vengono descritti i principi fondamentali per

l’integrazione delle sensazioni di movimento in un simulatore di guida e viene

proposto il dimensionamento di una piattaforma in scala ridotta a sei gradi di

libertà.

Chapter 1 Automotive Simulator

An automotive simulator provides an opportunity to reproduce the characteristics of

real vehicles in a virtual environment [1]. It replicates the external factors and

conditions with which a vehicle interacts enabling a driver to feel as if he is sitting

in the cab of his own vehicle. Scenarios and events are replicated with sufficient

reality to ensure that drivers become fully immersed in the experience rather than

simply viewing it as an educational experience.

Driving simulators have a broad range of applications: in the purpose of the

simulation as well as the used type of simulator. Vehicle simulators could be found

at driving schools, psychological research centers, car manufacturers, amusement

parks etc. For each application different fidelity level and accuracy are required.

Target of this project will be high fidelity simulators which could be integrated into

cars’ design process. They could provide a realistic driving experience with the

replication of several cues. For these reason Vehicle simulators provide also cheap

and safe ways of testing new technologies to be afterwards implemented.

1.1 Vehicle simulator state of art

Motion simulator started in the first part of the 20
th

 century with flight simulations.

Importance of training has been recognized since the beginning of manned flight.

The first one was developed in France in 1910 by the company “Antoniette”. The

device, the “Antoniette Learning Barrel”, allowed pilots to be trained to fly their

Antoniette VII monoplane [2].

Automotive Simulator

20

Figure 1.1. The "Antoniette Learning Barrel" simulator, 1910

 Later the first parallel manipulator was developed by Gough in 1948 for the

porpoise of testing tires. It was not until 1962 when D. Stewart reintroduced the

parallel 6DOF (degree of freedom) system consisting of two platforms and 6

actuators [3]. Even so the first driving simulator was built by Volkswagen in the

early 1970 and was 3 degrees of freedom. The motion were driven by a turntable

(yaw) and a roll and pitch mechanism. A single flat screen was mounted in front of

the driver sitting on its seat at a platform.

Inspired by it, Mazda built a 4DOF actuated simulator in 1985 to decrease the

number of traffic accidents, which grew rapidly with the spread of motorization [4].

There half car with a screen fixed in front of it on a motion platform was

accelerated in roll, pitch and yaw on a sway.

The same year the first 6DOF automotive simulator came from Daimler-Benz [5].

A hydraulic hexapod, which was a special design for this simulator, realized the

largest motion envelope at the time. A car or a truck cabin was situated inside a

dome on which six CRT projectors display an 180
o
 field of view.

Chapter 1

21

Figure 1.2. The VIRTTEX simulator, 1994

Throughout the 90s, several 6DOF actuated were built.

Ford introduced VIRtual Test Track EXperiment (VIRTTEX) in 1994, a dome on a

hydraulic hexapod. It was renewed in 2001.

In 2003 BMW developed a 4 m high hydraulic 6DOF platform. This is provided by

a dome and the driver enters the simulator through a tunnel/catwalk, to give the

driver the idea he enters a car and not a simulator.

Automotive Simulator

22

Figure 1.3. The BMW 6DOF simulator, 2003

The real innovation was brought in 2002 by the North American Driving Simulator

presenting NADS-1. At that time it was the most advanced simulator. It was a

9DOF platform consisting of an XY-table on which a hexapod travels. On top the

hexapod, a turntables was mounted, which provides yaw-acceleration. A dome, with

full-size car inside, rotates on top of the turntables.

Figure 1.4. The NADS-1, 2002

Chapter 1

23

In the same ways Renault, SimCar, Tutor and SimuSYS developed their own

vehicle simulator introducing the XY-table.

In 2007 the NADS-I simulator exceeded in size by the Toyota Driving Simulator,

built at Toyota’s Higashifuji Technical Center in Susono City. The design was very

similar to the NADS-I, but then larger, and the main difference was found in the

turntables. At the Toyota Driving Simulator, the car yawed inside the dome,

whereas in the previous one yawed the entire dome, with the care inside of it. The

simulator is nowadays used for driving test that are too dangerous to conduct in the

real world, such as the effect of drowsiness, fatigue, inebriation, illness and

inattentiveness [4].

Figure 1.5. Toyota Driving Simulator, 2007

1.2 Structure of a standard vehicle simulator

High fidelity vehicle simulators are different from standard engineering software

due to the feedback with human interactions. As said in the introduction these kinds

of simulators are Human In The Loop (HITL) model. Therefore in these types of

simulations a human is always part of the simulation and consequently influences

the outcome. In this sense HITL allows the user to change the results of an event

process. For attain reasonable and sensible results is well required that the human

Automotive Simulator

24

could not find any difference between the simulation’s and reality’s scenarios.

Otherwise a perceptible error could afflict the user behavior and change

substantially the simulation’s outcome.

In the specific case of a vehicle simulation, some particular details must be

considered. The vehicle model itself should be as accurate as possible. A strange or

a non-realistic car’s behavior will introduce errors both from the user, who

recognizes it as “video games”, and from the simulation itself. An accurate physical

model could be a good starting point. However, for allowing the user to interact

directly with the simulation, feedbacks must be supplied. This kind of feedback

must be real-time rendered. Firstly a visual feedback is set. In this way the visual

human’s sense is involved. However to close the human-loop is though necessary a

modification of some simulation parameters, again in real time, by the user. Input

devices, such as keyboard or a steering wheel, could be used at this purpose.

Therefore a first human in the loop interaction is set up.

 As computers and virtual realities are even more common in nowadays scenario,

people could not be cheated by just a visual feedback, otherwise the simulator is

recognized as a common “video game” far away from the real world.

During a driving experience, sight is not the only sense able to render information

about the current situation. Mainly, other two senses could not be neglected in this.

Hearing supplies several information. For example engine sound permits user to set

the correct gear as well as yield information about engine current power. Also the

air flow’s sound over car’s body could hand out a sensible speed sensation.

Lastly, but not in importance, the sensation linked to the touch and the vestibular

system. Steering wheel is for instance the car’s component that links the user

“directly” with the tire and the wheel. Even if nowadays cars have very

sophisticated and elaborated steering wheel which decouple it from the road (like

power steering), a dynamic steering stiffness increase the velocity perceived sense

by the driver.

The vestibular system is the human’s apparatus responsible of the equilibrium and

acceleration feeling. The generation of inertial feedback is very important, since

without them, the driver has no detailed information about the vehicle accelerations

and rotations. In a general driving maneuver several lateral, longitudinal and

vertical forces as well as rotations are generated and condition the driver reaction

and driving actions. For these reasons modern vehicle simulator include also this

kind of feedback trying to reproduce these inertial behaviors with the employment

of special motion platform with several degrees of freedom (2DOF, 3DOF, 6DOF,

9DOF).

In a simulation scenario these kinds of feedbacks are called sensory cues. A sensory

cue is a statistic or signal that can be extracted from the sensory input by a perceiver

Chapter 1

25

that indicates the state of some property of the world that perceiver is interested in

perceiving [6]. For a driving simulator, in accordance to what explained before,

these cues could be divided in three types: visual, hearing and inertial. Therefore

standard simulator architecture could be like the one represented in the Figure 1.6.

Figure 1.6. Standard simulator signals’ crossing

However it just gives an overall view on how the signals pass through in a vehicle

simulation. Things are more complex if is considered also the hardware

architecture. High fidelity simulator required very sophisticated algorithm with a

very high computation cost. Therefore several calculators are used during the

simulation. In this thesis is considered the following hardware configuration:

 Linux Real Time Ready Computer as Target PC. It computes the vehicle

model’s simulation

 Windows Portable Computer as Host PC. It receives data result from the

Target PC and coverts it into Visual and Hearing Cues. It also transmits data

from the input devices to the Target PC

 Force Feedback Steering Wheel with gear and pedals. User input command.

 6DOF small scale platform. It transforms Target PC’s outputs into an

Inertial Cues

Automotive Simulator

26

This thesis is focused mostly on the development of a vehicle model able to render

detail outputs which could be correctly interpreted by a specific and properly

hacked graphical and sound engine and vice versa. Then is be implemented also a

feedback force into the steering wheel. Last part of the work is focused on inertial

cueing and motion platform. Here are discussed the most important concepts for a

motion platform design such as motion cueing algorithm and washout filter. It is

also developed a preliminary design for a small scale platform for studying and

academic purposes.

Hereafter are considered the following terms:

 Vehicle Simulator. Overall simulator considering all required parts for a

correct high fidelity simulation.

 Virtual Simulator. Subsystem of the vehicle simulator consists of vehicle

model simulation and visual and sound outputs.

 Motion Simulator. Everything concerning inertial cueing and motion

rendering.

Chapter 2 Virtual Simulator

Virtual driving quite sophisticated simulators are very common and nowadays

available in internet at reasonable prices or sometimes for free. However several of

this simulators lack of some aspects such as real sophisticated suspension models or

a detailed dynamic implementation. Some of them could also be edited and allow

the implementation of new cars model. Nevertheless these changes are superficial

and allow the modification of some constant parameters. In example a huge part of

simulators use Pacejka Magic Formula [7] for tires implementation. Changing type

of car is possible to edit most of magic formula’s coefficient, but, usually, not the

entire models. Things are even worst if suspensions are considered. The most

common layout adopted is the simplest one, such as a spring and damper in parallel

in vertical position between the spindle and the chassis. In all the cases the only

parameters that could be changed are the stiffness and the damping coefficient, and,

sometimes, the caster, camber and toe angles. Nonetheless is not possible to change

completely the kind of suspension such introduce a multi-link or push or pull-road

layout. In the case of open-source
6
 simulator, like the ones considered later, the

source code of the project is available and editable, but it’s quite complicate and

sometimes not possible to introduce sophisticated suspensions’ geometry.

For these reasons the possibility of integrate a multi-body software into a vehicle

simulator scenario could be a good strategy for, one hand improve the fidelity and

the simplicity of the models implementation, and on the other and introduce a

software company like LMS
®
 International into the evolving market of the real time

simulators.

In this project the simulator developed has the following preliminary structure. A

vehicle model is implemented into LMS Virtual.Lab
®
. For this first simulator the

car’s model is quite easy. After all, the goal of this paragraph is to introduce multi-

body software into a real time vehicle simulator. Than the real-time module of that

software is set up to communicate with an open source automotive simulator

previously choose and hacked in order to maintain just its visual and sound module.

The overall virtual simulator should be most flexible as possible allowing future

project to be linked together to realize a detailed vehicle model.

6
 Open-source: refers to something that can be modified because its design is publicly accessible [8]

Virtual Simulator

28

The first is to understand the layout of a standard one and highlight most important

its subsystems.

Figure 2.1. Standard virtual simulator's architecture

A standard virtual simulator, differently from a classical C or C++ program, doesn’t

wait user’s inputs for executing a specific function, but it cycles continuously inside

a loop cycle, which ends only when the simulator is shut down. This cycle is called

main loop. During each loop the simulator executes certain numbers of operations

which simulate the vehicle behavior and renders the input and output signals. Hence

is possible to distinguish three main blocks.

 Physical engine. It is responsible of the vehicle’s dynamic computation.

Here is also implemented the differential equations solver. It could be

specific implemented for the particular simulator or could be realized

including exiting physics solver like Open Dynamics Engine (ODE) [9] or

Bullet Physics Library [10]. Simulators based on these commercial solvers

are more efficient, and modules like the bodies collisions detection are better

implemented. In any case all the solvers used for real time simulators use

Fixed Time Step. That is because simulation’s outputs must be rendered

with a minimal specific frequency in order to guarantee fluent outputs

visualization. For example, in the case of the visual outputs, they must be

rendered with a frequency at least of 30 Hz (higher, 50-60 Hz if the images

visualized change rapidly) to avoid flickering. Usually a standard vehicle

simulator solver works with a frequency of 1000 Hz. However, with a fixed

Chapter 2

29

time step if the solver does not converge in the specific time, no results

could be computed. If it would happen, what should be avoid is that the

simulator crashes. That is why, usually, this kind of simulator are called

soft-real-time computer, because the usefulness of a result degrades after its

deadline, thereby degrading the system’s quality of service. In hard-real-

time computers instead, missing a deadline is a total system failure [11].

 Graphical engine. Commonly consider as a type of computer program

responsible for drawing computer graphics. In this thesis it is considered in a

more extensive way. With the term of graphical engine is considered

everything concerning the realization of visual and hearing cues and the

corresponding outputs hardware control (monitor and stereo). As for the

physics engine, several commercial graphical engine are available on the

web, and most of them are free or open source. All the open source vehicle

simulators use that kind of library to implement their specific graphical

engine. Most used tool of visual and sound renderers are OpenGL [13], Ogre

3D [14] and DirectX Graphics [15]. As explained before, refresh rate is

should stay about 50-60 fps in order to guarantee a fluid visualization.

 Hardware inputs (outputs) devices interface software. This is the simulator’s

subsystem responsible of the hardware’s input signals (in this case a steering

wheel with gearbox and pedal) codification into quantity usable in the

graphical and physical engine.

Proposed virtual simulator substitutes the physical engine of an open source virtual

simulator with the LMS Virtual.Lab
®
 solver.

Figure 2.2. Proposed virtual simulator's architecture

Virtual Simulator

30

Physical engine is now independent from the graphical engine (Figure 2.2). This

implies that a quite large amount of data should be exchanged between two

different software. These data should be correctly synchronized and the stop of one

of the two engines should not affect the other in an irreversible way. TCP UDP

protocol is used and its benefits will be discussed later.

The new architecture proposed, change the role of the open source main loop. Now

it just controls the graphical engine, the input data acquisition and the data sending

to the physical engine. Instead the physical engine is now controlled by the LMS

Virtual.Lab
®
 real-time solver. Corresponding frequencies for data synchronization

are chosen due to the computers’ hardware specification, simulation convergence

and overall amount of data involved in the whole process.

2.1 Open Source Virtual Simulator Research and Analysis

In the lasts ten years several virtual simulators with different purposes have been

developed. A huge number is available on the web for free or at a very reasonable

price. Most of these are simulators with a game purpose. However, a good level of

realism is achieved. Most famous virtual simulators in virtual racing community are

rFactor [16] and iRacing [17]. These are quite complicated vehicle simulators which

try to reproduce several racing experience managing also online competition. These

kinds of simulators could be also easily interfaced with motion platform. Costs are

quite cheap (less than a hundred euro) and several cars and tracks mod are available

for free. However is not possible to hack the source code since it is not available to

the users. For this reasons in this thesis has been chose an open source simulator. In

this case the source code is available and adaptable by users’ preferences under the

condition that the “new” simulator is not used for commercial purpose and, if it is

widely free distributed, its source code has been too.

Several projects are present one the web. Here what has been found after an

accurate internet research.

 vDrift. It is a cross-platform, open source driving simulator made with

racing in mind [18]. It was created in early 2005 by Joe Venzon. Several

releases have been submitted and the last on July 2012.

 Torcs. Acronym of The Open Racing Car Simulator is high portable multi-

platform car racing simulation. It is used as ordinary car racing game, as AI
7

racing game and as research platform [19]. It was created by Eric Espié and

7
 AI: Artificial Intelligence

Chapter 2

31

Christophe Guionneau in 2001. Now it is currently headed by Bernhard

Wymann. Last release on September 2012.

 Speed Dreams. It is an Open Source motorsport simulation (sim) and it is

freely available [20]. This is a fork
8
 of Torcs, aiming to implementing new

features, cars, tracks and AI opponents. Started in 2010 current version was

released on November 2012.

 Racer. It is a free car simulator project (for non-commercial use), using

high-end car physics to achieve a realistic feeling and an excellent render

engine for graphical realism [21]. Started in 2002, it is continually

developed. However source code is not available. There is only one version

available but it is quite old (2004). That is because this project in is not

Open Source. The source code is for the oncoming time copyright of Ruud

van Gaal / Dolphinity BV. The source code is provided for general interest,

and to build platform-specific versions in case the provided binaries don’t

work [21].

Concerning all these simulators, they are programmed in C++ and compiling is

available both Linux and Windows platform. In this thesis for the source code

hacking and compiling is used a windows machine with Microsoft Visual Studio

2010 Professional as integrated development environment. Regarding the graphical

engine, all the projects use the OpenGL library. Even that, graphic detail level and

quality are very different between each simulators.

At this point an accurate analysis has been managed in order to choose which the

most appropriated simulator for the final goal is. For each simulator has been

studied each source code having in minds these main criteria and simulator’s

required features:

 Graphical and Physical Engine Disassembly Aptitude. Source code with

easier facility to divide the physical engine to the graphical engine is

preferred respect to one which is complex and intricate.

 UDP Communication Aptitude. Since data should be transferred from the

open source simulator and LMS Virtual.Lab
®
, the number of data and their

organization inside the source code are important. Well organized data (e.g.

in data structure) should be preferred instead of variable defined without

logic organization.

8
 Fork (software): a project fork happens when developers take a copy of source code from one

software package and start independent development on it, creating a distinct piece of software

Virtual Simulator

32

 Physical Engine Disassembly Aptitude. Physical engine should be replaced

entirely with the multi-body one. However is possible to simulate in parallel

to the LMS Virtual.Lab
®
 solver some other car behavior, called co-

simulation (paragraph 2.3) such as the engine of a car or the steering wheel.

This is very important because allows the user to set specific simulation if

the multi-body software cannot do it. In this simulator some specific car

behaviors are set up in co-simulations and some parts of the code are

revision of the ones present in the open source simulator. In this sense the

physical engine should be easily split in different sub-simulations.

 Quality of the Graphics. Even if is not the main target of the project to

implement a high quality graphic simulators, in order to obtain a sufficient

realistic render, also the level of the graphic’s details is considered.

 New car geometry import. In order to import geometry from the LMS

Virtual.Lab
®
 environment into the real time simulator.

 Code Organization and Simplicity. It just regards the facility of

understanding of the source code.

 Maintenance of the Source Code. How often is updated the original

simulator’s source code.

 Auxiliary System Models’ accuracy. Since some part of the code will be

imported also in co-simulation, better and more detailed implementation of

the physics model will be preferred.

According these criteria the following analysis is managed.

2.1.1 vDrift

vDrift is one of the most popular open source driving simulator. Its graphic render

uses the OpenGL library and for the physical engine it uses Bullet physics. As

regards the car’s simulation it has its own developed physic simulation integrated

into Bullet.

Chapter 2

33

Figure 2.3. vDrift's architecture

According to Bullet physics’ manual [22], this engine works in this way: it starts by

applying gravity, and ending by position integration, updating the world transform.

The entire physics pipeline computation and its data structures are represented in

Bullet by a dynamics world. When performing “stepSimulation” on the dynamics

world, all the above stages are executed. Bullet lets developer choose several parts

of the dynamics world explicitly, such as broad phase-collision detection, narrow-

phase collision detection and constraint solver. However in Bullet is possible to

process some custom physics code inside the physics pipeline (at the level of the

forward dynamics implementation), and is here where the custom vDrift vehicle

dynamic is implemented. Here there is the code for the steering, driveline,

suspensions, tires, aerodynamics simulations. At the end of this pipeline each

simulated body (e.g. the car’s chassis or the tires) has its own computed position.

This information is than communicated through Bullet to the OpenGL graphical

engine which renders the visual output.

Bullet is a high sophisticated graphical engine, strong for its collision detection and

for rigid bodies’ simulation. It is also used in some famous animation movies such

as Megamind 3D, Shrek 3D and How to train your dragon [10]. However this

aspect is not relevant for the final goal because this physical engine must be

replaced with a new one and the collision will not implemented. Furthermore the

use of Bullet implies a more complicated code organization and a more complicate

isolation of the graphical engine. About the vehicles physics implementation the tire

Virtual Simulator

34

model started with the classic Pacejka Magic system and is refined based on the

ideas from B. Beckman’s “Physics of Racing” papers [23].

Figure 2.4. vDrift's Screenshot

2.1.2 Torcs and Speed Dreams

Since Speed Dreams is a fork of Torcs, they will be discussed together since the

main differences concern the graphic quality and the implementation of some

parameters for the vehicle’s physics.

Chapter 2

35

Figure 2.5. Torcs' and Speed Dreams' architecture

The structure is quite linear so the code is quite easy to understand. Physical engine

implemented is called simuv2 (simuv3 is the new experimental one and still not

tested for the releases, but a beta version is available keep Torcs and Speed

Dreams), it integrates differential equations with Euler steps. Time-step is standard

set at 0.002 s (500 Hz) but it editable. Different tests have been performed on a

Windows machine with Intel
®
 Core

TM
i5 2.80 GHz and the simulation is well

performed also with a time step of 0.001 s (1000 Hz). The communication between

the graphical and physical engine is set up sending data organized in a structure

called tCar. Of course this physical engine is less efficient than Bullet, but the great

advantage is the easier code organization and a greater aptitude to split the visual

engine and the physic one. Here the simple Pacejka Magic Tire model is

implemented. About the graphic render, both Torcs and Speed Dreams are still

worse than vDrift. However, big improvements have been done from Torcs to

Speed Dreams.

Virtual Simulator

36

Figure 2.6. Torcs' screenshot

Figure 2.7. Speed Dreams' screenshot

2.1.3 Racer

Even if this is not an open source software, also analysis of the Racer source code is

analyzed for completeness. Since the source code available is quite old (2004) it

should be compiled with Microsoft Visual Studio 6.0. Since it has its own physic

engine the final structure of this virtual simulator is quite close the Torcs’ one.

Chapter 2

37

Figure 2.8. Racer's architecture

Main differences between Torcs and Racer are the code and the data organizations.

Thanks to the more recent source code Speed Dreams and Torcs are better

organized. The whole simulator solution is organized in several sub-projects (e.g.

car simulation, track update, graphic update, etc.) and all the car’s data and

parameters are organized in one structure (tCar). Instead Racer source code is a

whole big solution with several code file (e.g. headers and C++ source files) and the

vehicle’s data are organized and stored in several structure. This lack of

organization is probably linked to the fact that the available source code is one of

the first versions. However the visualization is best implemented and the graphic

render is really good.

Figure 2.9. Racer's screenshot

Virtual Simulator

38

2.2 Open Source Virtual Simulator Choice

After the previous analysis, is possible to choose the simulation more suitable for

the final goal. Here a summary of the criteria used:

 Graphical and Physical Engine Disassembly Aptitude.

 UDP Communication Aptitude.

 Physical Engine Disassembly Aptitude.

 Quality of the Graphics.

 Maintenance of the Source Code.

 Auxiliary System Models’ accuracy.

The overall results are summarized in the Table 2.1.

Table 2.1. Open source simulators comparison's result

DRIVE

SIMULATOR

G&P engine

Disassembly

Aptitude

UDP

Comm.

Aptitude

Physical

Engine

Disass.

Aptitude

Quality

of the

Graphics

Code

Organ.

and

Simplicity

Maint.

Open

Source

Code

Aux.

Systems

Models’

accuracy

vDRIFT
- + + + - + +

RACER
+ + + ++ - -- +

TORCS
++ + + - + + +

SPEED

DREAMS ++ + + + + ++ +

Main difference concerning the Graphical and Physical engine disassembly aptitude

are due to the fact that vDrift use a commercial physics engine and the others three

not. No substantially differences are about the UDP communication aptitude. No

one has this module already implemented in the source code and the overall amount

of data which should be sent / received is not substantially changing between them.

Differences could be found in the quality of the graphics, and Torcs is the one with

the worst one. Racer has big lack in the code organization and in its maintenance

due to the fact that a recent release source code is not available. Speed Dreams

instead is the simulator most updated and a new version 2.0 should be released soon

[20]. According to the criteria the most suitable simulators, for replacing its

Chapter 2

39

physical engine with the one of LMS Virtual.Lab
®
, are Torcs and Speed Dreams.

Since the last one performs better graphics quality, it is preferred.

2.3 Multi-Body Virtual Simulator Architecture

For this simulation, since the split between the physical and graphical engine is

required, is not much more complex to split this two engines into two machines in

order to optimize the performance.

 Linux platform Computer. This is the target computer therefore it hosts

the physical engine. It is a workstation with 3.4 GB of RAM and seven

processor Intel
®

 Xeon
®
 E5620 2.40 GHz. The platform is LINUX

Ubuntu 10.04 with the RTAI
9
 module installed. This module is an

extension for the Linux kernel which allows writing application with

strict timing constraints. However this special module is not used in the

developed simulator yet.

 Windows platform Computer. This is the host pc and performs the

graphical engine. In this project this is a portable computer Intel
®

Core
TM

i5 2.80 GHz equipped. RAM is 8.00 GB and the video board in

a nvidia
®
 Quadro K1000M. System operator is Windows 7 Enterprise

for 64-Bit.

 Steering Wheel. It is a Thrustmaster
®

RGT FFB Clutch, Force feedback

ready with gearbox and pedals.

Figure 2.10. Multi-body virtual simulator's architecture

9
 RTAI: Real-Time Application Interface

Virtual Simulator

40

A deeper analysis is now leaded.

UDP stands for User Datagram Protocol. It is a part of the TCP/IP
10

 and is known

as a stateless protocol, meaning it doesn’t acknowledge that the packets being sent

have been received. Because of these characteristics, UDP is a very efficient

communication transport, but has no reliability [24]. In the current scenario of a real

time virtual simulator is fundamental the speed transfer ratio because a huge amount

of data should be transferred between the target and the host pc. The lack of

reliability is not a big problem since a soft-real-time is used. However to avoid

singularity some expedient could be set during the simulator’s coding.

A UDP datagram is carried in a single IP packet and is hence limited to a maximum

payload of 65,507 bytes for IPv4 and 65,527 bytes for IPv6. To transmit a UDP

datagram, a computer completes the appropriate fields in the UDP header (PCI) and

forwards the data together with the header for transmission by the IP network layer.

Table 2.2. UDP header structure

 Octet
11

 0 1 2 3

Octet Bit 0 --- 7 8 --- 15 16 --- 23 24 --- 31

0 0 16-bit Source port 16-bit Destination port

4 32 16-bit UDP length 16-bit UDP Checksum

The UDP header consists of four fields each of 2 bytes length:

 Source Port. Packets from a client use this as a service access point to

indicate the session on the local client that originated the packed.

 Destination Port. Packets from a client use this as a service access point to

indicate the service required from the remote server.

 UDP length. The number of bytes comprising the combined UDP header

information and payload data

 UDP Checksum. To verify that the end to end data has not been corrupted

by routers or bridges in the network or by the processing in an end system.

This allows the receiver to verify that it was the intended destination of the

packet, because it covers the IP addresses, port numbers and protocol

10

 TCP/IP: internet protocol suite. It is the networking model and a set of communications protocols

used for the internet and similar network
11

 Octet: is a unit of digital information in computing and telecommunications that consists of eight

bits

Chapter 2

41

number, and it verifies that the packet is not truncated or padded, because it

covers the size field.

At the final destination, the UDP protocol layer receives packets from the IP

network layer. These are checked using the checksum and all invalid protocol data

unities are discarded. UDP does not generate any errors reporting if the packets are

not delivered. Valid data are passed to the appropriate session layer protocol

identified by the source and destination port numbers.

As concern the vehicle simulator both target and host pc are servers and clients

since the data transfer is in both the direction.

Another important aspect must be discussed are the co-simulation. Usually when

several simulations should be performed to achieve an overall result two ways are

possible [25]:

 Coupled Simulation or Model Exchange. A single solver is used for the

whole simulation and each application only provides sub-models. This

simulation could not be performed in real-time and is not flexible and high

sensitive to numerical stability.

Figure 2.11. Coupled simulation structure

 Co-Simulation. Different solvers run and communicate at a discrete time

interval. However the final result is less accurate than the coupled

simulation one.

Virtual Simulator

42

Figure 2.12. Co-simulation structure

 Real-Time Co-Simulation. Different solvers run and communicate at

discrete time intervals and the interface programs channel the inputs e

outputs. A master solver can be defined for imposing the simulations

rhythm. This is optimized for simulating different models at the same time

and guarantees a fixed and specific time scan. Here the minimum

requirement is that one simulation time step takes less than one real-world-

time interval.

Figure 2.13. Real-Time Co-simulation structure

The advantages of using a real-time co-simulation, is that is possible to add external

model whenever LMS Virtual.Lab
®
 could not do it. In this thesis several co-

simulations are set up (paragraph 2.5).

Chapter 2

43

Figure 2.14. Real-Time Co-simulation processes flow [25]

In the real-time co-simulation each time step is performed the following way:

 Master interface give the signal to start the co-simulation and starts counting

the time.

 LMS Virtual.Lab
®
 solver sends for each co-simulation their inputs.

 LMS Virtual.Lab
®
 solver performs in parallel all the co-simulations.

 LMS Virtual.Lab
®
 solver receives the data outputs from each co-simulation.

 When the master interface reaches the specific fixed time step gives the

input to start new co-simulations.

 This cycle is repeated until the overall simulation target time is reached.

The whole simulation is correctly computed only if LMS Virtual.Lab
®
 solver

conveys to a solution before the specific real time step is reached. In the current

vehicle simulator the time step is fixed ad 0.001 s (1,000 Hz). That means that the

solver must find a solution in less than 0.001 s to guarantee a correct real-time

simulation. If not the simulation time will be greater than the real-world-time and

the simulation will appear delayed. Another important aspect which should be

considered is that each co-simulation is at least one time step delayed respect the

LMS Virtual.Lab
®

 Motion one. That’s because each co-simulation’s inputs must be

computed by the solver into the LMS Virtual.Lab
®
 motion simulation before they

can be sent. If some co-simulation’s inputs depend also from another co-simulation,

the delay will be of two time step. Usually this is not a big problem since the time

Virtual Simulator

44

step is very small, but in some particular cases where inputs variations are too high

is possible that the simulation doesn’t converge.

All in all, particular attention should be paid at the overall virtual simulator

synchronization. Here the refresh rate for each simulator system:

 Physical Engine: 1,000 Hz.

 UDP sending / receiving: 500 Hz.

 Hardware input data: 500 Hz.

 Graphical Engine: variable 40 – 70 Hz.

In order to avoid instability due to great inputs’ variation, Hardware inputs and

UDP data should have a refresh rate close to the Physical Engine. For the current

host pc’s specification and the large amount of data is not possible to have refresh

rate greater than 500 Hz. However several test simulations have been performed

under different conditions and no instability problem occurs.

2.4 Open Source Virtual Simulator Editing

Editing of Speed Dreams’ source code is divided into two big steps:

 Full analysis of the source code concerning the functions, routines, vehicle

model and track understanding.

 Removing the physics engine and implementation of the interface routines.

The simulator main loop is located into the Visual Studio project speed-dreams.

Here are called the routines required for the initialization of the simulator interface.

However the core of the simulator is inside the function ReUpdate(void), located

into the project client. It first calls the Physics engine, than the Graphical engine.

Physical engine is called in the function ReOneStep(double deltaTimeIncrement)

and deltaTimeIncrement is the fixed time step of the solver. This function loops

until the time step is reached and calls the function SimUpdate(tSituation *s, double

deltaTime, int telemetry), which is actually the real simulation routines and it is

located into the project simuv2
12

. Here is performed everything concerning the car’s

simulation. Concerning the graphical engine, in ReUpdate(void), after the physic

simulation, is called the routine refresh(tSituation *s) to start the graphical engine.

12

 The same works also for the new solver simuv3

Chapter 2

45

Communication between the physics and graphical engine is possible thanks the

definition of a data structure tCar. For each vehicle that is simulated, at the start of

the overall simulation, is defined a tCar structure. Here all the car’s data and

parameters are stored. Main sub-structures in tCar are:

 tCarCtrl: data concerning inputs devices.

 tCarElt: general car’s data elapsed time (previous time step).

 tAxle: everything concerning suspensions and differentials.

 tWheel: dynamic and static data regarding the wheels and tires.

 tSteer: concerning the steering system.

 tBrakeSyst: all about the braking system.

 tAereo: data for the aerodynamics’ simulation.

 tWing: data for car’s front and rear wings (if present).

 tTransmission: gearbox and transmission.

 tEngine: data concerning engine’s simulation.

 tTrkLocPos: position of the vehicle respect the track’s axis system.

Each time step calculated data are stored temporally in the tCar sub-structure, than

are copied into tCarElt. In the following time step these are used as initial inputs for

the simulation. The structure tCarElt is also the structure of communication

between the physics and graphical engine. When the function ReOneStep(double

deltaTimeIncrement) reaches the prefixed time step and the routines

refresh(tSituation *s) starts the graphic engine, that loads the data from the structure

tCarElt and updates the visual and sound cues. For each car, five bodies are

defined: the chassis and the four wheels. For each body its position is defined

specifying the X, Y and Z coordinate respect to the track reference system and the

Yaw, Pitch and Roll rotation. These data are stored in a 4x4 position matrix, carElt-

>pub.posMat, based on the quaternion
13

 annotation. Conversion between the X, Y,

Z, Yaw, Pitch and Roll annotation to the quaternions’ one is done by the function

sgMakeCoordMat4(sgMat4 dst, const sgVec3 xyz, const sgVec3 hpr).

Regarding the sounds update, two parameters are necessary: the current revoilution

per minutes of the engine, engine->rads, and the longitudinal and lateral slip

vectors of the tires, wheel->sx and wheel->sa respectively.

Concerning the frame of reference used by Speed Dreams it is shown in Figure

2.15.

13

 Quaternions: are a number system that extends the complex numbers. It is an element writeable in

the form , where are real number and literal symbols.

Virtual Simulator

46

Figure 2.15. Speed Dreams' vehicle frame of reference

Replacing Speed Dream physical engine with the LMS Virtual.Lab
®
 means that the

data stored in the structure tCarElt should be updated by the new solver. At the

same time, input values from the steering wheel system must be sent from the host

to the target computer. First step is to insert the UDP modules into the Speed

Dreams solution. A new Visual Studio project is created with the name of UDP.

This is organized in the following way:

 ClientRoutines.ccp: here are implemented the client’s function.

InitializeUDPclient(void), talkUDPclient(double *data, int count, double t)

and closeUDPclient(void) are the routines implemented.

 ServerRoutines.ccp: the same of the previous one but concerning the server.

InitializeUDPserver(void), talkUDPserver(double *data, int count, double t)

and closeUDPserver(void) are the functions implemented.

 UDP.h: header file for the keep both server and client.

This project generates a library with the corresponding UDP.obj
14

 and UDP.dll
15

. In

order to use the function implemented in the UDP project, this file should be linked

in the current project. UDP’s initialization should be performed once at the start of

14

 .obj: object file is a file containing object code, meaning relocatable format machine code that is

usually not directly executable.
15

 .dll: dynamic-link library. It is a Microsoft’s implementation of the shared library concept. It is a

library that contains code and data that can be used by more than one program at the same time.

Chapter 2

47

the simulators. The same is for the UDP’s closure, but, this time, when Speed

Dreams is shut down. Therefor UDP’s library is linked in the project speed-dreams,

inside the file main.cpp.

int

main(int argc, char *argv[])

{

 init_args(argc, argv);

 WindowsSpecInit(); /* init specific windows functions */

 GfScrInit(argc, argv); /* init screen */

 GameEntry(); /* init game */

 initializeUDPserver(); /* init UDP server */

 initializeUDPclient(); /* init UDP client */

 glutMainLoop(); /* event main Loop */

 closeUDPserver(); /* close UDP server */

 closeUDPclient(); /* close UDP server */

 return 0;

}

Speed Dreams’ physics engine, located in the project simuv2, contains several

source code file. These file’s name is linked to the car’s behavior simulated in. For

example the file engine.ccp simulates everything concerning the vehicle’s engine,

and the file susp.ccp implements suspensions’ behavior. In the file simu.ccp are

implemented several function, including the function SimUpdate(tSituation *s,

double deltaTime, int telemetry) which is directly called in the game main loop.

Therefore this is the only function which should be used All the files present in the

simuv2 project are excluded. Two other source codes are furthermore added at the

project:

 SimulationClient.cpp: here are implemented all the functions concerning the

data sending from Speed Dreams to LMS Virtual.Lab
®
 using the function

talkUDPclient(double *data, int count, double t). Data exchanged are the

steering, brake and throttle commands, the variation of the road height (Z

coordinate) and a relative friction coefficient between the road and the tire

Virtual Simulator

48

(if the tire is on the road this is 1.00, otherwise if the wheel is, in example,

on the grass it is 0.50). Main function is SimulationClient(tCar *Car).

 SimulationServer.cpp: it receives the data from the external solver and

update tCar and tCarElt structures. Table 2.3 shows the data transferred.

Main routines is SimulationServer(tCar *car, tCarElt *carElt).

Table 2.3. Graphical engine required data

Variable Description

Xpos Chassis X position respect Track frame of reference

Ypos Chassis Y position respect Track frame of reference

Zpos Chassis Z position respect Track frame of reference

Roll Chassis Roll angle

Pitch Chassis Pitch angle

Yaw Chassis Yaw angle

vellX Chassis X velocity respect Track frame of reference

vellY Chassis Y velocity respect Track frame of reference

omegaWheelFR Front Right Wheel angular velocity

omegaWheelFL Front Left Wheel angular velocity

omegaWheelRR Rear Right Wheel angular velocity

omegaWheelRL Rear Left Wheel angular velocity

steeringAngleFR Front Right Wheel steering angle

steeringAngleFL Front Left Wheel steering angle

slipXFR Front Right Wheel longitudinal slip vector

slipAFR Front Right Wheel lateral slip vector

slipXFL Front Left Wheel longitudinal slip vector

slipAFL Front Left Wheel lateral slip vector

slipXRR Rear Right Wheel longitudinal slip vector

slipARR Rear Right Wheel lateral slip vector

slipXRL Rear Left Wheel longitudinal slip vector

slipARL Rear Left Wheel lateral slip vector

engineRPM Engine round per minute

gear Current gear

All the data are updated in according to the convention adopted in Speed Dreams

and LMS Virtual.Lab
®
. Concerning the multi-body software frame of reference is

Chapter 2

49

discussed later (paragraph 2.5). However keep both software use MKS
16

 unit

system.

Functions SimulationClient(tCar *Car) and SimulationServer(tCar *car, tCarElt

*carElt) are directly called into SimUpdate(tSituation *s, double deltaTime, int

telemetry). In this way the vehicle’s data are updated with a frequencies of 500 Hz.

However, if is required and the host computer is sufficiently fast, this refresh ratio

could be increased changing the value of the variable deltaTimeIncrement.

No function regarding the initialization of the car at the simulation’s start is

changed.

At this point if the virtual simulator starts, the vehicle is properly visualized into the

start point of the track. Simulation data are set to zero until the LMS Virtual.Lab
®

real time solver starts.

Lasts Speed Dream’s interface layout is edited with LMS
®
 International’s logo and

aspect.

Figure 2.16. Menu's screenshot before and after the editing

2.5 Multi-Body Vehicle Implementation

LMS Virtual.Lab
®

 is an integrated suite of 3D FE and multi body modeling

software which simulates and optimizes the performance of mechanical systems for

structural integrity, noise and vibration, system dynamics and durability [26]. It

includes different modules. The one used for the vehicle simulator is Motion. This

16

 MKS: meter, kilogram and second.

Virtual Simulator

50

allows building multi-body models that simulate the full-motion be0havior of

complex mechanical system designs. It offers also the possibility to perform some

particular simulation in real time.

The model implemented for the project’s virtual simulator is quite simple. This is

composed by 12 bodies for a total of 26 DOF. The bodies are:

 Chassis

 Engine Housing

 4 Wheels

 4 Spindles

 Differential Housing

 Global fixed to ground body

Figure 2.17. LMS Virtual.Lab® environment and the multi-body model used

These bodies are linked together in the way shown in the Table 2.4.

Chapter 2

51

Table 2.4. Bodies with their corresponding linking element

Body 1 Body 2 Joint / Force

Wheel FR Spindle FR Revolute Joint

Wheel FL Spindle FL Revolute Joint

Wheel RR Spindle RR Revolute Joint

Wheel RL Spindle RL Revolute Joint

Spindle FR Chassis Cylindrical Joint

Spindle FL Chassis Cylindrical Joint

Spindle RR Chassis Translational Joint

Spindle RL Chassis Translational Joint

Engine Housing Chassis Standard Bushing

Differential Housing Chassis Standard Bushing

Here the definition of the used joints (forces) [27]:

 Revolute Joint: allows rotation between two bodies about a common axis.

All the other degrees of freedom are constrained.

 Cylindrical Joint: allows rotation and translation between two bodies about a

common axis.

 Translational Joint: permits two bodies to translate along a shared axis. No

rotation between the bodies is allowed.

 Standard Bushing: defines a six degree-of-freedom force element between

two bodies. A bushing element produces forces along and torques about the

three principal axes of the element attachments. The bushing characteristics

are defined as a combination of stiffness and damping about each degree of

freedom, as well as an additional six actuator force/torques about each

degree of freedom. The spring, damping and actuator forces may be

calculated by using a constant coefficient and/or a curve definition.

Suspensions are realized using the force element TSDA
17

 between the chassis and

each spindle. TSDA simply define a spring-damper-actuator force element between

two bodies. In this case no actuator force is specified, only the Spring Constant, the

Damping Coefficient and the free length spring are. This is a very simple vertical

suspension and allows only vertical displacement between the spindle and the

chassis.

17

TSDA: Translational Spring-Damper-Actuator

Virtual Simulator

52

Concerning the steering, it is realized controlling two cylindrical joints with a Joint

Position Driver. It permits to drive a degree of freedom of a joint. Therefore, the

relative acceleration of the bodies involved in the joint is driven. In this case are

driven the steering angles of the cylindrical joints.

Concerning the frames of reference used in this model the Figure 2.18 shows the

ones adopted.

Figure 2.18. Multi-body model's frame of reference

At this point the model could not be simulated. No torque is applied to the wheels

and no road or track is set up. About the track implementation in LMS Virtual.Lab
®

are implemented several kind of road definitions. For the first test a planar road and

a simple tire model are used. The simple tire element allows modeling the

components of force generated by a pneumatic tire in contact with a road surface.

The calculated forces include lateral force, normal and longitudinal forces. This

model provides the most concise description of a vehicle’s tire. However since the

road is an infinite planar surface the simulation could not performs the real track

shape visualized. So the car behavior simulated and the visualized one are not

exactly the same. For this reason is implemented a co-simulation interface_tire

which simulates the tires.

Engine, gearbox and differential are instead simulated in another co-simulation

called interface_driveline. The same is for the steering in interface_control. Other

three co-simulations are set for the UDP client and server, interface_udp_out and

interface_udp_in respectively and the master one, interface_master. These three co-

simulations, in this project, are called auxiliary one.

Chapter 2

53

In the LMS Virtual.Lab
®
 environment a co-simulation is created with the specific

command Generic co-simulation. For each one must be specified the solver step

size, the function name and where the DLL’s file is located. Than inputs and

outputs nodes should be selected. These are special control elements called control

nodes. For each input and output of the co-simulation must be defined a control

node. One control node could be shared between several simulations if it is used as

output. These control nodes are used also for controlling the steering angle and the

torques or forces values. Co-simulations are written in C code and independently

compiled in order to generate DLL’s files. Than these are linked into LMS

Virtual.Lab
®

 environment in the way explained before.

2.5.1 Steering Co-simulation

It simulates the steering wheel behavior. Input node is the steering value of the

external steering wheel transmitted to Speed Dreams than, using the UDP protocol,

to LMS Virtual.Lab
®
. The outputs are the steering angles which are applied to the

multi-body model using the joint position driver. The steering angle is a double

value between [-1, 1]: -1 means steering all left and 1 steering all right. No steering

angle means a 0 value.

The proposed algorithm for the steering angles calculation is the one developed by

Rudolph Ackermann in 1818 [28].

Figure 2.19. Ackermann steering geometry [29]

Virtual Simulator

54

{

 ()

 (
 ()

 ()
)

 (2.1)

{

 ()

 (
 (| |)

 (| |)
)

 (2.2)

Where is the max steering angle in [rad] and are the wheelbase
18

 and the

wheel track
19

 respectively.

Figure 2.20. Wheelbase's influence on the wheels' steering angle

Increasing the wheelbase value increases external wheel steering’s angle. Usually, if

the wheelbase is increased, the vehicle’s stability increases but the manageability

decreases. That why a higher steering wheel angle is preferred.

18

 Wheelbase: is the distance between the centers of the front and rear wheels.
19

 Wheel track: is the distance between the centers of the front wheels.

Chapter 2

55

Figure 2.21. Wheel track's influence on the wheels' steering angle

If is considered a car driving with a constant steering angle (e.g. long curve) if the

wheel track value increases, also the radius describing the trajectory of the external

front wheel increases. Therefore the steering angle of this wheel should decrease.

Increasing the wheel track decreases the external wheel steering angle.

2.5.2 Driveline Co-simulation

In the simple LMS Virtual.Lab
®
 vehicle’s model no engine or gear box or drive line

are implemented. Co-simulation interface_driveline is used for this purpose. There

are implemented the following functions:

 SimBrakeSystemUpdate: receives the brake command from the pedals

(values [0, 1] and converts it in the wheels’ brake torque.

 SimGearboxUpdate: as input receives 1 if the up gear button is pressed and -

1 if is pressed the low gear button. Than the gear’s value is updated and with

it also the corresponding gear ratio.

 SimEngineUpdateTq: it is a lookup table. Inputs are the throttle signal, from

[0, 1], and the current engine angular velocity. Output is the torque at the

engine’s shaft.

Virtual Simulator

56

 SimTransmissionUpdate: simulates the transmission and the differential.

Main inputs are engine’s torque and the current gear ratio. Outputs are the

torques for each drive wheel.

 SimFreeWheels: updates the braking torque for the free wheels.

In this example a rear-drive vehicle is simulated.

Figure 2.22. Driveline Co-simulation functions flow

For the engine torque calculation the following simplified algorithm is proposed.

Form LMS Virtual.Lab
®
 the current rear wheels angular velocities are computed. A

mean between these two values is calculated and this value is transformed into the

engine current angular speed multiplying it by the current gear ratio.

 (

) (2.3)

The value is limited respecting the engine’s maximum and minimum

angular velocity allowed. Than a first torque values is computed. Engine torque’s

curve is defined by point specifying the torque value at a specific angular velocity.

Chapter 2

57

In the current case the engine torque’s curve used is the one of the BMW 335i

engine [30] (Figure 2.23).

Figure 2.23. BMW engine 335i torque curve

Two vectors of dimension are in this way defined: ̅ and ̅ .

Each time step the current engine’s angular speed is computed. For each

 point the corresponding ̅ () and ̅ () values are set and

the following algorithm is computed.

{

 ̅ ()

 ̅ ()

 ̅ ()

 ̅ ()

 ̅ () (2.4)

Virtual Simulator

58

Than the current engine torque is computed.

 (2.5)

 () (2.6)

However the current torque’s value is the maximum reachable by the engine. It

means that it is driving with full throttle. To modulate it, engine torque is scaled by

a value, [0, 1], directly proportional to the accelerator signal. The real engine

torque is now:

 () (2.7)

Transmission is simulated as a black box. The Input is the , and the output

is the . It is obtained multiplying the engine torque by the gain

.

The differential implemented is a simple free one with no limited-slip or lock. It can

correctly simulate the vehicle’s behavior in long curves maneuvers with low slip.

Though if one wheel spins faster than the other due to high slip, all the engine

torque is transmitted to it and the car will get under control. Nowadays no vehicle

uses this kind of differential. Most common are the Limited Slip Differential (LSD)

and the Locking one. LSD uses a mechanical system that activates under centrifugal

force to positively lock the left and right spider gears together when one wheel spins

a certain amount faster than the other. The Locking differential uses air or

electrically controlled mechanical system, which when locked allows no difference

in speed between the two wheels on the axle.

Like all the co-simulation implemented in this simulator these could be edited and

improved to reach a more realistic behavior.

The simple free differential is implemented calculating the speed ration: .

 (2.8)

{

 ()

 ()
 (2.9)

Chapter 2

59

Brakes torque is computed in the same way for both drive and free wheels. Torque

is applied in the opposite sense of the tire spinning speed. When the wheel’s angular

speed is zero the brake torque must be switched to zero too otherwise the wheel

should start spinning in the opposite direction and the car would start moving in the

opposite direction just pushing the brake pedal. This is obtained implementing a

proportional control on the tire spin velocity. For each tire:

 () () () | | (2.10)

 () | | (2.11)

Torque values computed are set as outputs of the co-simulation and sent to the LMS

Virtual.Lab
®

 and applied to the vehicle model using the One-Body Control Output

element. It transfers a signal from the control system to the mechanism (e.g. force

or torque).

2.5.3 Tire Co-simulation

A lot of tire’s models are available in literature and some of them are implemented

into LMS Virtual.Lab
®
 software. Some of them are Magic Tire model, Complex

Tire model, CD Tire model and TNO tire one. Different model allows achieving

different accuracy level and computational time. These models required the

definition of a road in the data LMS Virtual.Lab
®

 section. Track could be defined in

several ways such as 2D or 3D spline, Road OpenCRG
20

 or Path. In a real-time

virtual simulator is necessary that the track represented by the graphical engine and

the one by the physic engine are the same, otherwise driver feels the simulation like

something unreal. Therefore two ways are possible: convert speed dreams track and

load it in LMS Virtual.Lab
®

, or develop a tire co-simulation which just receives

some road features by UDP communication. This last solution is preferred since is

independent by the track selected in Speed Dreams. In the other case, if in Speed

Dreams one track is switched to another one, it must be also converted into LMS

Virtual.Lab
®

 road format.

Tire co-simulation is divided into two subsections. In the first one is computed the

vertical force due to the tire and the road. In the second one are computed the lateral

and longitudinal forces.

20

 OpenCRG: open file format and tool for the detailed description of road surfaces.

Virtual Simulator

60

Tire vertical behavior is approximated to a spring-damper system linked between

the spindle (the center of the tire) and the road. Superimposed vertical displacement

by the road shape must be applied at this system.

Figure 2.24. Vertical tire model

 Tire’s stiffness and damping are and . Superimposed displacement variation is

 and is measured from the origin of the frame of reference of the track. This

is sent from Speed Dream. Vertical displacement of the wheel’s center is computed

into LMS Virtual.Lab
®

 from the chassis’ frame of reference. Its variation

is . Preload of the tire is . Vertical force is:

 () (̇ ̇) (2.12)

However, tire’s behavior is different from the one described in the equation (2.12).

If for some reasons the tire is detached from the road no vertical force should be

generated. This could be simulated adding in the algorithm the following equation:

 () (2.13)

Chapter 2

61

Vertical forces are applied to the tires of the virtual model always using One-Body

Control Output element.

Figure 2.25. Vertical reaction forces due to an initial vehicle’s adjustment

Tire’s longitudinal and lateral forces are hard to estimate with precision. A vehicle

does not follow the road precisely for a specific steered angle of the wheel, due to

lateral sliding forces. Several tire’s models are available. The one used in this

project is the Pacejka Magic Formula [7], which is actually the model used also in

the Speed Dreams’ physics engine. This is a semi-empirical
21

 tire model to calculate

steady-state tire force and moment characteristics. The forces are generated by the

21

 Semi-empirical: relying to some extent on observation or experiment

Virtual Simulator

62

model as a result of different wheel angles and parameters. Lateral axis is

coincident with the rotation axis of the wheel and the longitudinal axis is

perpendicular to it. Longitudinal force is the reaction force acting among the

longitudinal axis. By pressing the throttle, the wheel speed increases and gets

minimally higher than the current ground speed, so the car accelerates. If the wheel

spins too fast, grip gets lost, resulting in less acceleration. For braking instead, the

same force exists in the opposite direction. This force is linked to the longitudinal

slip of the tire. Lateral force is instead linked to the slip angle which is the

angle between the wheel’s orientation and the actual direction of movement.

Simply, Pacejka Magic Formula, is a function () which compute the force

() given an input (), which is a slip value. Usually three different functions are

used, one for longitudinal force, other for lateral force and the last one for the self-

aligning torque, which is the feedback force that could be experimented on the car’s

steering wheel. Last one is neglected in this first simulator, however could be

simply added in future.

According to the Pacejka Magic Formula [7] simplest model, the function ()

assumes the following expression:

 (((()))) (2.14)

Where:

 : is the stiffness factor.

 : is the shape factor.

 : is the peak value.

 : is the curvature factor.

These variables are function of the wheel load, slip angle, slip ratio and camber.

Different values are between lateral and longitudinal force calculation. Several

formulations for these coefficients are available in literature; however in this

simulation are considerated constant and the values are the one present in

the Speed Dreams physics engine.

Longitudinal slip value is computed in the following way:

 (2.15)

Chapter 2

63

Where:

 : is the wheel’s longitudinal velocity.

 : is the wheel’s angular velocity.

 : is the wheel’s radium.

However, if , longitudinal slip value goes toward infinity. For very slow

longitudinal velocity should be used another model to compute . The one

proposed in this simulator is the following:

(

)

(2.16)

Where:

 : is the threshold velocity usually set to 0.1.

The slip angle, as defined before, is angle between the wheel’s orientation and the

actual direction of movement. Defined as the wheel’s lateral force, is

calculated in the following way:

 (

) (2.17)

Final forces are:

 () (2.18)

 () (2.19)

Virtual Simulator

64

Figure 2.26. Pacejka Magic Formula longitudinal slip and slip angle influence

2.5.4 Auxiliary Co-simulations

These co-simulations are necessary for allow the correct communication between

the target and the host pc. Interface_udp_out and interface_udp_in codes implement

the UDP’s routines exactly the same used in Speed Dreams in the project UDP.

Some differences are due to the fact that Speed Dreams is implemented in C++ and

co-simulations in C code. All the data which should be processed and should be

sent back to the graphical engine are received and sent by these routines using the

UDP protocol. Since the physical engine works with a time step of 0.001s, data are

sent and received with a frequency of 1000Hz which is actually higher than the

communication rate of Speed Dreams (500 Hz). Concerning the interface_master,

here is scanned the time of the physical engine. It counts the time in millisecond and

gives the start and stop signals of the overall simulation. In a Linux platform the

function gettimeofday() is used. It obtains the current time, expressed as

microseconds since the Epoch
22

, and stores it in the timeval structure. If the target

computer is instead a Windows platform is used the function timeGetTime(), which

22

 Epoch: is an instant time chosen as the origin of a particular era. The UNIX epoch is the time

00:00:00 UTC on 1
th

 January 1970.

Chapter 2

65

retrieves the time in milliseconds. The system time is the time elapsed since

Windows was started. The interface_master starts counting the time when the

overall simulation begins. It waits until LMS Virtual.Lab
®

 solver and all the other

co-simulations finish, than compares the time elapsed, if it is less than the time step

it waits until it is reached. When the time step is reached another simulation starts.

Now it is clear why if the simulation does not converge in the time step, the whole

simulation is slower than how should be. In fact the interface_master master co-

simulation has no privilege to stop the LMS Virtual.Lab
®
 solver if it takes too much

time.

2.6 Real Time Data Plot

Driver’s sensation and feedback are fundamental for a high fidelity simulation,

however measurable data should be evaluated for engineering applications. During

the simulation, LMS Virtual.Lab
®
 stores simulation data which could be retrieved

later and plotted and analyzed in an offline mode. LMS Virtual.Lab
®
 allows the off

line evaluation of several parameters. In example for each rigid body data such as

local position, velocity and acceleration are available. For each control input its

value is also stored and other evaluation element could be set as offline outputs.

However, some of this data should be observed real time for a first evaluation or to

see when some particular event occurs. Real time plotting could be developed in

different ways. Since it must perform a visual output, is reasonable to join it into the

physical engine and so in Speed Dreams. Real time data will be sent via UDP form

the target PC will be loaded into Speed Dreams’ environment and so will be plotted.

Several free application and library are available for generate plot. Some of them

could be Koolplot [31], PLplot [32] or wxMathPlot [33] which are C++ library

likeable to the Speed Dreams’ simuv2 project. Real time plotting could be also

developed with OpenGL itself but it requires more developing time and a deep

knowledge of C++ and OpenGL. For this virtual simulator an easier tool is used:

Gnuplot. It is a portable command-line driven graphing utility for Linux, OS, and

Windows. It was originally created to allow scientists and students to visualize

mathematical functions and data interactively, but has grown to support many non-

interactive uses such as web scripting. Gnuplot could be used as standalone

application: it has its own command terminal or it could be programmed also by

DOS. However available C and C++ libraries integrate this program directly into

the source code of an external program. Linking this library to Speed Dreams

allows to manage Gnuplot’s function into the graphical engine and so to implement

easily some real-time plot. Nevertheless a complete integration between Speed

Virtual Simulator

66

Dreams and Gnuplot is not possible because the C++ available library only allows

an automatic remote control of Gnuplot.

Communication between them is possible creating a pipeline. This is a set of data

processing elements connected in series, where the output of one element is the

input of the next one. In this case is implemented a software pipeline: commands

can be written where the output of one operation is automatically fed to the next.

Following step are implemented in Speed Dreams to set up the pipeline with

Gnuplot:

 Create a pipe and start Gnuplot. It is performed using the function

_popen(const char *command, const char *mode). This function creates a

pipe and asynchronously executes a spawned copy of the command

processor with the specified command. The char *command is the one used

to start Gnuplot in the pipeline mode: pgnuplot –persist. The char *mode is

–w, which means that the calling process could write to the spawned

command’s standard input using the returned stream. The function _popen

returns a stream associated with one end of the created pipe. The other end

of the pipe is associated with the spawned command's standard input or

standard output. The stream associated is a FILE type.

 Send the commands which Gnuplot should execute using fprintf (FILE

*stream, const char * format). The FILE *stream is the one created in the

previous step and char * format is the command which Gnuplot must

execute. Also data for the plotting are sent using this function.

 Clean the output buffer of a stream using fflush(FILE *stream).

 Close the stream on the associated pipe with _pclose(FILE *stream).

Figure 2.27. Example of real-time plotting implemented with Gnuplot

Chapter 2

67

Figure 2.28. Developed automotive virtual simulator screenshot

Figure 2.29. Developed automotive virtual simulator workspace

Chapter 3 Motion Simulator

Simulation is the imitation of the operation of real-world process or system over

time [34]. Motion simulator is all about perception. The human body has two inputs

for motion perception: inertial stimulants on the body and the environmental motion

with respect to the body [4]. The inertial stimulation stems from the gravitational

force and the external forces and moments on the body [35]. The vestibular system,

located in the inner ear, is the prominent sense that provides the perceptual system

with information about linear and angular inertial accelerations of the body.

However some other motion sensations could be induced into the body with motion

using the haptic sense. During a car maneuver several forces and moments are

generated into the driver such as an example the lateral and longitudinal forces or

the yaw or pitch moments. However some other cueing are induced into the hands

and the arms of the user by the steering wheel.

For a real driving experience, a motion simulator should at least perform the

following motion cueing:

 Longitudinal Force. Force due to the acceleration or deceleration of the car.

 Lateral Force. Usually force generated while the vehicle is turning.

 Vertical Force. Due to vertical variation of the road.

 Roll Moment. Moment principally generated during curve.

 Pitch Moment. Due to acceleration or deceleration or while is riding a road

going uphill or downhill.

 Yaw Moment. Usually generated while the car is turning.

 Steering Force. In vehicles without the power steering, due to the friction

between the front tires and the road.

Longitudinal, Lateral and Vertical forces and Roll, Yaw and Pitch moments could

be induced into the driver using a motion platform. It is a moveable mechanical

structure with two or more degrees of freedom actuated in order to reproduced

specific accelerations using as input the simulated vehicle’s ones. Steering forces

instead is reproduced applying a torque to the steering wheel.

Motion Simulator

70

3.1 Steering Force Feedback

Implementing steering force feedback into a virtual simulator, means to collect

some specific data from the physical engine, convert it into a specific signal and

send it back to the steering wheel. In the current case the steering wheel used

(Thrustmaster
®
RGT FFB) is feedback ready. That’s mean that a DC motor

23
 with

its control hardware are already present inside the steering wheel. Advantage to that

is the facility to implement a force feedback cueing. However this kind of steering

wheels are developed for game’s purposes so no real indication about the current

steering torque are available. Feedback force of this kind of steering wheel is

usually controlled sending an input signal between a zero value (no torque) and a

maximum value (maximum torque). However, for this steering wheel, what should

be done is to implement a program able to set up the communication between the

PC and the steering wheel and to send to it specific data in real-time. Since the

current structure of the virtual simulator requires that the steering wheel is

connected to the host pc, data could not be sent directly from the target machine to

the input hardware, but should be sent before via UDP to the host pc. For this

reason the program for the feedback force is developed into the windows

environment. The code could be integrated directly into the Speed Dreams code or

in a new standalone application.

Developing a new C++ library to control the steering wheel force feedback will

require a lot of time and a deep knowledge of the code and how Windows platform

manage these devices. For this reason the DirectInput library is used in this project.

DirectInput is a Microsoft API
24

 for collecting input and sending output from and to

a computer user, via input devices such as the mouse, keyboard, joystick or other

game controllers. This library provides several feedback effects already

implemented and allows to customize them if required. It also simply sets up

connection and communication between the hardware and the computer.

Nevertheless DirectInput is not usable inside the Speed Dreams solution since it is a

Microsoft API and the virtual simulator is an OpenGL API. For this reason a

standalone program, called Joystick FFB, is developed.

Before describing how this application works some other words should be spent on

how DirectInput works. Main steps for a simple implementation are the following:

 Create the DirectInput object. This is the main object definition in order to

use its method in the following steps.

23

 DC motor: is a mechanically commutated electric motor powered from direct current.
24

 Microsoft API: is a Microsoft application programming interface.

Chapter 3

71

 Enumerate devices. This is not an essential step if only one input device is

used.

 Create a DirectInput object for each device used.

 Set up the devices. For each device, first set the cooperative level, which

determines the way the device is shared with other applications or the

system. The data format used is set for identifying devices objects, such as

buttons and axes, within data packets. Properties, such as the range of values

returned by joystick axes, could be set.

 Acquire the device.

 Retrieve data. At regular intervals, typically on each pass through the

message loop or rendering loop, get either the current state of each device or

a record of events that have taken place since the last retrieval.

 Act on the data. Use the data to implement particular action.

 Close DirectInput. Before exiting, the application should un-acquire all

devices and release them.

In the current case the force feedback should be implemented so a particular effect

file should be downloaded every time into the devices. It is performed at the step of

the Retrieve data.

The overall structure of the Joystick FFB is not far different from the structure of

the virtual simulator, exception for the data transfer, which works only in way such

as from the target computer to the host machine and to the steering wheel. The

application is implemented in C++ so the implementation of UDP protocol is

exactly the same used in Speed Dreams. Joystick FFB solution is composed in two

projects:

 Joystick. Here is implemented all the code concerning the DirectInput

application.

 UDP. Here are implemented the function concerning the UDP project.

Force feedback effect could be of several types such as constant force, damper,

friction or inertial forces. For the current case, is used a constant force. It means that

a value between [-10000, 10000] is sent to the steering wheels and the

corresponding values of torque is performed until another value is sent.

Concerning the phenomenon which should be performed by the force feedback, two

cases are considered in this simulator. In the first case the force is due to the

aligning moment resulting from the friction between the front tires and the road. In

this case is simulated a car without a power steering. In the second one a power

Motion Simulator

72

steering is implemented and the stiffness of the steering wheel increases due to the

car’s velocity.

For the calculation of the aligning moment the Pacejka Magic Formula [7]

(paragraph 2.5.3) is implemented. The moment expression is:

 (((()))) (3.1)

Where:

 : is the aligning moment .

 : is the slip angle .

 : is the stiffness factor.

 : is the shape factor.

 : is the peak value.

 : is the curvature factor.

Value is send via UDP by interface_tire co-simulation and is normalized

assigning a maximum value of allowed.

Concerning the second possibility, such as implementing a power steering, via UDP

is sent the current vehicle’s velocity. This value is normalized due to the maximum

velocity reachable by the car, and is used to increase the stiffness linearly. The

torque value is eventually limited to a maximum torque value.

While executing the Joystick FFB application two parameters (in both the solution)

are configurable: the maximum torque variation allowed and a gain factor. The

maximum torque variation parameter could assume values [0, 10000], and is used to

avoid rapid and substantial force feedback variations due to possible numeric

instability. The gain parameter instead is used to scale the final torque value to

reach a softer or a stiffness torque feedback.

Chapter 3

73

Figure 3.1. Screenshot of the application developed for the steering wheel force feedback

3.2 Motion Simulator Basic Concepts

Motion Simulator are nowadays more common and several project are available

also online. Special internet forum like X-Simulator [36] or X-SIM [37] provide a lot

information and tutorial about building a homemade quite accurate simulator.

Anyway several of these projects are for platform with 2 or 3 DOF. Indeed motion

simulators with a higher number of DOF are more expensive, so not suitable for

homemade ludic purposes.

Nevertheless 6 DOF platforms could be found for professional purpose and, in

some rare cases also for ludic. Cruden
©

 [38] and Moog
©

 [39] are leader in this

professional scenario.

Advantage of 6 DOF platform, is the possibility to reproduces all the vehicle

degrees of freedom: surge, sway, heave, roll, pitch and yaw. Configuration with less

DOF limits the platform’s direction of movements. Commonly a standard 2 DOF

platform could only reproduce roll and pitch rotation and with some algorithm and

control arrangements (discussed later in this section) also some low-frequencies

acceleration’s components in X and Y direction. The same also for a standard 3

DOF simulator but in this case also the heave could be simulated.

Motion Simulator

74

Since the aim of this thesis is the realization of a high fidelity vehicle simulator the

most suitable platform is the 6 DOF. However a 6 DOF platform could be realized

in several configurations. Most common in the 6 DOF simulator scenario is the

Stewart Platform (1962) layout. A huge number of projects and studying concerning

this platform’s configuration are available in literature; hence the simplicity of

building this configuration instead of developing a new one. In this project is

considered this kind of platform for the development of a small scale simulation

motion.

In general the Stewart platform mechanism, mainly referred to as hexapod, is a

parallel kinematic structure that can be used as a basis for controlled motion with

6DOF, such as manufacturing processes and precise manipulative tasks [40]. The

mechanism consists of a stationary platform (base platform or low platform) and a

mobile platform (up platform) connected by six actuator mounted on universal joint.

The desired position and orientation of the mobile platform is achieved by

combining the lengths of the six struts, transforming the 6 transitional DOF into 3

positional and 3 angular DOF.

Parallel manipulator has received an increasing attention due to the robust

mechanical structure and high base frequencies [40]. On the other and, that

mechanism has relatively small workspace, limited with maximum strut length and

the angles values ate the joints, as well as their dimensions. However, the main

difficulty with parallel manipulators is the complexity of controlling their

movements. As common in all the parallel manipulators the reverse kinematics,

which allow (in this case) computing the stroke length from the mobile platform

position, is solved in closed form. The opposite operation called forward

kinematics, has no known closed form solution and must be solved numerically.

Even if is using a 6 DOF platform, driving generally involves movements that

exceed the platform’s capabilities regarding displacement, velocity and

acceleration, so the motions created by the underlying simulation of the driving

dynamics have to be modified. The modification is achieved through scaling and

filtering of the platform’s inputs in cueing and washout algorithms [42]. The overall

result of this procedure should reproduce the motion cues with the high possible

fidelity, given the constraints of the particular system. For this reason, direct

rendering of the complete simulated car’s maneuvers is not possible in general; a

good behavioral validity is most important, and ultimately facilitated by a good

perceptual one. The driver’s actions in the real world and in simulations are only

similar when the driver perceives just a small or no difference between the real and

the simulated drive. Thus, it is sometimes suggestive to neglect the physical validity

of the motion and allow for differences in the movements. An example for such

Chapter 3

75

artificial movements is the tilt-coordination, which uses the imperfections of the

human motion perception to enrich the simulation’s perceptual validity.

The vestibular system is responsible for the perception of motion because it

measures transient displacement of the human head. It should be noticed that

motions are only perceived as long as they exceed thresholds. It has been argued

that the detection threshold for linear movements is 5 ⁄ and the one for

angular accelerations is 0.3 ⁄ [42].

Low frequency and constant longitudinal and lateral accelerations (e.g. in long

curves) cannot be rendered directly with ordinary driving simulators because it

would be missing without a reasonable work-around. To modulate these condition

exist two basic strategies:

 Down-Scaling of motions: use the non-linearity in human motion

perception.

 Tilt coordination: since the human perception system isn’t capable of

detecting motions below certain thresholds, it is possible to vary the

gravitational vector with respect to the human body to display long

sustained accelerations without perceiving this rotational movement.

However a distortion of the driver’s subjective vertical may occur while

using angles above 20 – 30º [42].

3.3 Motion Cueing Algorithm

The signal calculated by the vehicle dynamics, is not directly inputted to the

simulator to avoid reaching out the workspace but is changed into motions cues that

are admissible to a given simulator trying to minimize the error that the human feels

between the vehicle motion and the simulator motion [44]. This signal process

algorithm is called the motion cueing algorithm.

There are a lot different approach for these algorithms here will be reported the

most common used in motion simulator [42]:

• Classical Approach.

• Optimal Control Approach.

• Adaptive Approach.

• Lateral Lane Position Approach.

• Driving Task Adaptive Motion-Cueing Algorithm with Dynamic Scaling.

Motion Simulator

76

Differences between one model and the other are based on the accuracy of the

result, on the complexity of realization and on the computational cost. The next

section is focused on the main points for each approach.

3.3.1 Classical Approach

The most widely used filter scheme is the classical washout filter. Signal adaption is

divided into the translational and rotational path, with high pass filtering for

simulating transient acceleration and rotation. In order to realize sustaining

acceleration, the low pass filtered specific force is converted to a proportional

platform tilting angle for utilizing the gravitational force [45].

To restore the platform to its equilibrium point is used the human threshold lack.

Figure 3.2. The classical motion cueing approach

This consists essentially of the following parts:

 Scaling block. It is used to reduce the amplitude of the motion signals.

Humans are not able to differ between the real forces affecting them while

driving and the slightly reduced ones presented in the simulator, as long as

the difference is not too large. Therefore, the effects of the limitations in the

simulator capabilities are attenuated, real movements with larger amplitudes

can be presented to the driver. In the classical approach the gain should be

constant value.

 Filtering block. The classical concept is a combination of different linear

filter-strategies used to extract parts of the car’s accelerations produced by a

Chapter 3

77

vehicle simulation. These filter structures limit the directly rendered

movements to the high frequencies. Low-frequency lateral and longitudinal

translations are extracted in a low-pass filter and represented by a tilt of the

simulator. This mechanism is known as tilt coordination.

 To position / angles block. It transforms the modified accelerations and

velocities in position commands and Euler angles via a single or double

integration. The low-frequency components of the linear motions are not

integrated but transformed into suitable angular velocities.

 Washout block. Ensures that the platform returns into the neutral position

when motions are finished.

The most important point to focus on is the filtering block. It consists of empirically

determined high and low-pass filters whose parameters are adjusted off-line in

advance. The block-diagram consists of three paths (Figure 3.2):

 The first one calculates the translational linear accelerations Motion is

simulated from the accelerations calculated by the vehicle simulation. To

avoid saturating the actuators, the original acceleration has to be

modulated. Sustained parts cannot be presented directly to the driver. Thus,

applying only this method is not suitable for driving tests with a road

curvature producing low-frequency accelerations. This is for instance the

case in long turns, when large sustained lateral accelerations affect the

driver. The original acceleration is high-pass filtered and the reference

position is formed by a double integration of the acceleration .

 The low frequencies lateral and longitudinal forces (e.g. in long curves) are

simulated using the tilt coordination approach. So the original acceleration

 is low-pass filtered and rate limited to yield, roll and pitch angles. The

purpose of this artificial tilting movement is to orient the driver relative to

the gravity vector in a way that covers the low-frequency specific forces of

the simulated vehicle that cannot be rendered directly.

Motion Simulator

78

Figure 3.3. To generate constant longitudinal and lateral forces, the gravity force is used in the tilt

coordination method [41]

The force acting along the z-axis of the driver is reduced, but at a not

recognizable level as long as certain threshold is maintained. The tilt

coordination movement has also to be limited in its velocity to guarantee

that only the desired horizontal accelerations are perceived.

 The angular motions of the vehicle simulation are high-pass filtered because

the slow rotary movements of the simulated vehicle cannot be presented to

the driver. This is not crucial since the roll and pitch movements are

predominantly of high frequency nature [42].

As explained the tilt coordination might be used to render low-frequency

accelerations in both longitudinal and lateral direction. Since the human perception

system isn’t capable of detecting motions below certain thresholds, it is possible to

tilt the human body with respect to the gravitational vector to display long sustained

accelerations without perceiving this rotational movement. Fooling the driver is

easy when the center of tilt is located near the vestibular system [43] or above the

head. A position below results in wrong translational accelerations, false cues, when

the platform is shifted from one stationary tilt-angle to another.

In this case, a distortion of the subjective vertical may only occur while using tilt-

angles above 20-30 (called Aubert effect). For this reason it is also state that

the accelerations simulated via tilt coordination should not exceed 0.5 [43].

Another problem consists in the not capability to render precisely some of the mid-

frequency signals (transitional cues). Indeed tilt coordination needs time to build up

whereas the translational accelerations decrease fast to avoid saturating the

actuators. For example, for a step like input that should be presented to the driver, a

Chapter 3

79

depression in the perceived acceleration occurs after some time (Figure 3.4). As

shown, the onset cue is strong, but the perceived acceleration is short-lived as the

actuators of the hexapod quickly reach their full extension and the washout

smoothly takes the translation back to the motion platform’s starting position.

Meanwhile, rotation of the motion platform gradually reaches an angle sufficient to

achieve the same perceived acceleration through tilt-coordination. The combination

of these channels provides the overall perceived acceleration shown in the graph.

Figure 3.4. Typical response of the classical filter to a step-input linear acceleration

Motion Simulator

80

Some modifications are proposed to enhance the classic approach result. Most of

them regard a particular subsystem of the algorithm.

 First order filters are generally not suitable, for the initial incline of the

outputs is too fast. Second order filters are usually sufficient, whereas

nonlinear filters are even better. They produce an output that is the

maximum angular velocity allowed in either positive or negative directions.

This behavior forms a switch-like output when the stationary tilt is reached.

This implies jerks in the motion that might be reduced with additional filters

[46].

 The use of high pass filters can produce disturbing artifacts, for instance

forward sag after finishing a braking maneuver. These effects are also due to

the zero-mean output of linear filters after limited-power inputs. Similar

effects can be observed during lane-change tasks and are interpreted as a

steering instability of the simulated vehicle. To compensate for these

disadvantages, could be introduced modifications of the classical approach.

A non-linear adaptive gain is inserted behind the filters to anticipate artifacts

and compensate for them via a control of the motion output. This process is

critical for reasonable motions might be attenuated in their onset. A reduced

perceptual validity is the result [43] (Figure 3.5).

Figure 3.5. Filter output with nonlinear gain to anticipate and reduce false cues

Chapter 3

81

3.3.2 Optimal Approach

This approach works similarly to the classical washout algorithm, since linear filters

are applied. However, the main difference is that the filter parameters are obtained

in advance through a linear quadratic optimization process, for which the structure

and a functional cost have to be given. The optimal control problem is to select the

input to the motion platform so as to minimize the functional cost that imposes a

cost to the differences between the sensed motion in reality and in the simulator.

Figure 3.6. The structure of the optimal control

 () denotes the motion cueing algorithm to be optimized. The motion sensation

error between the motion perceived in reality and those perceived in a simulator is

minimized in the optimal control problem through a penalization of high values in

the cost function [47].

The time-invariant optimal control problem generates four transfer function

matrices. The one reassembling the first path in the classical approach, , obeys a

high-pass behavior to attenuate the low-frequency translational movements. The

longitudinal and lateral accelerations are fed through a transfer function denoted

 that has the form of a low-pass filter. This path works similar to the tilt

coordination path in the classical structure. The Euler angles are passed through a

filter to generate rotational motions. The filters formed by the optimization

tend to have a unity-structure, at least for the pitch and roll channels. These results

in a direct rendering of the movements in these channels, while scaling and limiting

are neglected. The transfer function from Euler angles to translation is dropped

after the optimization for it produces no benefits [42].

Motion Simulator

82

Figure 3.7. The optimal control W(s) block

The main advantage of this approach is that it uses a model of the human vestibular

system during the optimization in order to minimize the overall motion-sensation

error. However the optimal control approach yields fixed parameters just like the

classical approach does. These are calculated in advance to meet the simulator

capabilities in the motion situations used with the a-priori optimization. Hence, the

motion is not exploiting the performance limitations of the motion platform in

ordinary situations, when worst case situations were used during the design process.

Using the Optimal washout filter requires the manipulation of several weights

connected to states that often do not have a clear physical representation which can

make the tuning task very intricate [48]. However some techniques to minimize

such problem have been developed recurring to genetic algorithms [49]. As last

remark, the final result is the one with best overall fit to several situations, which

does not mean it performs in the best possible way for all the occasions. In order to

improve versatility, the Non-linear filter introduces an online solving whose gains

are a function of an additional online tuned factor.

3.3.3 Adaptive Approach

The adaptive motion cueing algorithm consists of an empirically determined

combination of high and low-pass filters similar to that of a classical algorithm. The

Chapter 3

83

difference is that some coefficients in the transfer functions are varied

systematically according to an online optimization result. This optimization is very

flexible due to the use of a sophisticated vestibular model.

Usually the inputs to this motion algorithm are the forces and the angular velocities.

The first are high-pass filtered with an adaptive gain. The longitudinal and lateral

specific forces are also adaptively scaled and fed to the pitch and roll channels. This

second paths, works analogously to the classical tilt-coordination path. The angular

motion is adaptively scaled and added to the cross-feed part from the second path.

Both signal components are filtered together to yield the simulator’s angles. The

transfer functions for pitch and roll do not show explicitly a high-pass character.

Main advantage of this method is the more realistic behavior of the simulator for

non-worst case situations even if the motion fidelity is only reduced near the system

limits.

However a great disadvantage of this technique is the laborious adjustment process

of the cost functions and the high execution time that is due to the great number of

differential equations that have to be solved in real time. In general that number of

differential equations is about three times higher than for the classical approach

[50]. Anyway, this number depends strongly on the parameters that are varied and

determined in the adaption process, and often the computational cost can be

neglected while using modern computers. Last, this strategy does not take into

account the user sensation of movement because it is focused on reproducing the

vehicle dynamics instead of pointing at duplicate the sensations experienced on the

car.

3.3.4 Lateral Lane Position Approach

It is a motion cueing algorithm able to switch between two different concepts for

the modulation of the motion produced by a vehicle simulation [51]. The

interchange between the two concepts is achieved through a structural change with

a switching parameter that is either 0 or 1. The first concept denoted as the lane

position based approach, uses a static scaling for the lateral motion that is calculated

from the lateral position of the vehicle on the road. The second concept is similar to

the classical approach. Both concepts are superposed for linear movements. Roll

movements are based on the rolling calculated by the driving simulation and the

sustained lateral accelerations presented through the tilt coordination that are due to

road curvature and not due to lane position changes. Additionally parameters of

interest can be switched during the simulation. Parameters used with the classic

Motion Simulator

84

approach and lane position based concept can be changed to new values using linear

ramps. The parameters used for the lane based approach are additionally modified

by a second order filter. Both concepts cannot prevent the occurrence of lateral and

roll motion errors due to the limitations of the platform.

This approach is implemented into the Ford’s VIRtual Test Track EXperiment

(VIRTTEX) [52]. This is based on a 6DOF motion simulator designed to

accommodate a full size and interchangeable vehicle cab. Also vehicles as large as a

full size SUV can be accommodated. The cab includes a steering control loader for

accurate feedback of road and tire forces to the driver [52].

3.3.5 Driving Task Adaptive Motion-Cueing Algorithm with

Dynamic Scaling

As explained, to determine the platform’s actions, one has to compute the prevailing

position of its centroid and the corresponding Euler angles in real time. This is done

by the motion cueing algorithm that calculates those values out of the vehicle

acceleration and angular velocities. In this approach both the longitudinal and

lateral acceleration are scaled down. All other inputs from the vehicle simulation

are not modified through scaling. These values are subsequently passed through the

washout algorithm to obtain the necessary attenuations and integrated over time to

yield position and angles [53]. This approach assumes that the initial segment of the

motion is of great importance regarding the driver’s sensation and should be

simulated as accurately as possible. The restrictions produced by the simulator may

be compensated by augmenting the initial part of the transient response of the

motion platform. The static scaling gains used in washout algorithms to reduce the

motion might be substituted by frequency dependent filters that obey a high-pass

character.

About the scaling is used a lead compensator network of the following form:

 () () (3.2)

Actually this introduces a pole-zero pair into the open loop transfer function. Its

steady state gain should be choose as high as possible to take

advantage of the whole working envelope and thereby improve the fidelity of the

simulator. Usually is determinate experimentally while is adjusted to

achieve a proper steady state gain. However when the filters’ inputs change at high

Chapter 3

85

rate the resulting phase lead constitute some inadequate motion cues. This effect is

reduced by a nonlinear transformation of the filters’ outputs.

Figure 3.8. Driving Task Adaptive Motion-Cueing Algorithm with Dynamic Scaling structure

About the washout filters, there are four each of every path. Filters are: ()for

the longitudinal and pitch motion, () for lateral and roll motion, () for

yaw motion and () for heave motion. The resulting filters are linear. A problem

could be the choice of the parameters used during the optimization of these and the

desirable filter design depends strongly on the current driving task. That is why the

cut-off frequencies should be properly scheduled corresponding to the driving and

the vehicle’s speed. The main design principles attained from the subject

evaluations are [53]:

 The high frequency components of the longitudinal motion should be

presented as realistic as possible.

 The lateral acceleration is more important than the yaw rate at high speed

during a lane change task.

 The yaw rate should be augmented at low speed.

 To render a realistic simulation is possible to introduce a new variable that is

filtered and afterwards used to judge whether the vehicle is making a lateral-

directional maneuver. This variable influences the gain and the cut-off frequencies

Motion Simulator

86

used in the () filter. The velocity of the simulated vehicle affects the yaw

movement as well as the gain of the () filter. Its cut-off frequency depends on

the velocity and the lateral acceleration.

3.4 Vestibular Human System

Visual cues play an important role in the perception of self-motion and the

estimation of an observer’s position within a 3D environment. However, human

visual motion perception is tuned to velocity rather than acceleration [54]. Thus

fixed-base driving simulators, heavily reliant on the quality of their visual system

for the perception of accurate speed cues, are best suited to conditions that remain

relatively constant. Disturbances away from this steady-state are more quickly

recognized by the vestibular system, a sensory organ enclosed in a fluid-filled

cavity within the inner ear, than the visual system. Hence, the specific forces from a

range of acceleration cues can be recreated in the simulation by the utilization of a

device design to mimic such forces as explained in the previous section.

Within the vestibular system, the utricle and saccule are small sacs containing the

minute sensitive hairs which in combination make up the otolith organs. When the

head tilts relative to gravity or is accelerated, the hairs are deflected and the nerve

fibers transmit the perception of acceleration to the central nervous system. The

otoliths perform identically either due to linear acceleration or tilt. Hence, assuming

that the position of the visual display to an observer remains unchanged, a motion

system exploits this ambiguity to create the perception of linear acceleration by

simply changing their tilt angle with respect to the gravitational vector through the

observer [55].

Figure 3.9. Otolithic membrane

Chapter 3

87

The other main functioning organs within the vestibular system are the semicircular

canals. These consist of three-fluid filled circular ducts, fixed approximately in the

three main orthogonal planes. The base of each duct is enlarged forming the

ampulla. Within the ampulla, a gelatinous valve known as the cupula stretches from

its base, the crista, to its roof. The resulting distortion of the cupula elicits

movement of the hair cells of the crista and the perception of angular acceleration is

carried by the nerve fibers.

Figure 3.10. Semicircular channel and cupula

Concerning the Classical approach (paragraph 3.3.1), since it is a forward control,

no vestibular dynamic model is required. However some of the parameters used in

the algorithm, such as the angular rate limit or the maximum tilt rate should be

chosen in accordance to the vestibular behavior in order to avoid fake motion

cueing.

Algorithms such as the Optimal approach (paragraph 3.3.2) and Adaptive approach

(paragraph 3.3.3) requires the vestibular system dynamic model (Figure 3.6).

Vehicle’s acceleration and platform’s acceleration are filtered through the vestibular

system transfer function and the error between them is minimized to obtain real

motion cues. Since the vestibular model is composed by both otoliths and

semicircular channel, two transfer functions should be computed.

Several models have been proposed and some of them evolved from an initial

model built by measuring the subjective indication of direction. In this case are

proposed the results of the model developed by L.D. Reid and M.A. Nahon (1985)

[56].

Concerning the otoliths, the corresponding transfer function is represented in the

equation (3.3).

Motion Simulator

88

 ()

()()

 ̂

 (3.3)

Where and ̂ are respectively the specific force and the felt specific force.

Instead semicircular channels are represented in the equation (3.4).

()()()

 ̂

 (3.4)

Where is the real rotation rate and ̂ is the felt rotation rate.

3.5 Motion Platform Design

The design of a 6DOF simulator, based on the Stewart platform layout, is

something which cannot be computed directly and in a unique way due to the

complexity of the manipulator and the simulator. Hence here is proposed one of the

possible design strategy. Goal of this project is to build a small scale motion high

fidelity motion simulator. Constrain for this project, set by the LMS
®
 International’s

decision, is the overall volume of the platform: at maximum equal to the one of a

cube of side 0.5m. Platform should be quite cheap so, during the design, a lot of

importance is done to the actuators’ required performance.

However the design criterion proposed allows an overall dimensioning of the

platform, but could not be used as optimization purpose. Indeed while developing

this strategy some simplification are done for reducing the project time and the

worst-case studying has been taken in consideration for the actuator choice. For this

reason the proposed platform features are underestimated and could be improved

with future specific analysis.

The platform design steps are the follow:

 Preliminary platform sizing considering constrains imposed.

 Using the virtual simulator previously implemented, perform a vehicle

simulation in order to compute possible standard chassis’ acceleration.

 Filter this data with a motion cueing and washout algorithm in order to

obtain the actuator position for each time step (indeed also the mobile

platform position).

Chapter 3

89

 Import this data into a multi-body model of the platform in LMS

Virtual.Lab
®
 and compute the required linear actuator’s force, speed and

acceleration.

 Reassembly the whole information and propose a possible layout.

3.5.1 Preliminary sizing

The first sizing of the platform is done considering some general criteria concerning

the Stewart platform structure. In general dimensions have to be chosen to satisfy

several contradictory conditions [57]:

 Overall amount of space available.

 Large fixed base to provide stability.

 Small moveable base to avoid singularities due to rotation about a horizontal

axis.

 Short link lengths to provide stiffness and small positioning error.

 Long link lengths to provide a large workspace.

Figure 3.11. Stewart platform multi-body model

Motion Simulator

90

The platform could be defined in several ways. In this case the annotation used is

the following (Figure 3.11):

 [m]: fixed base radius.

 [deg]: fixed base actuators angle.

 [m]: moveable base radius.

 [deg]: moveable base actuators angle.
 [m]: minimum rod length.
 maximum rod length.
 [m]: platform center vertical distance.

The first parameter set is the fixed base radius . Due to the limitation imposed by

the overall amount of space it is set to the maximum value possible: 0.25m.

Concerning the moveable base, it has to include the frame for fixing a car’s model

(scale 1:25). On this base should also be assemble six universal joints for linking

the rods of the actuators. For this reason a minimum dimension of 0.125m has been

considered for the value. The third parameter set is the initial platform center

vertical distance . Considering the maximum volume constraint, it has set to

0.32m. Regarding the actuators angle no initial notable considerations have been

done. As first choice, and are set to 20 . Finally, for the actuators a small market

research is done. Thanks to some forum like X-Simulator and X-SIM some

indications about the actuators’ required features are found. One of the most

important required features is the reachable maximum speed which should be

greater than 200-300mm/s. One of the most common low-cost linear actuator used

for these applications in the homemade scenario is the Dyadic SCN5 model [59]. It

is very often used in this scenario due to the easy set up and interface with a PC,

maximum speed reachable of 400mm/s and the low cost (starting from 340$).

However it has some limitations due to the maximum thrust of only 100 N.

However this linear actuators model is used to set the last two values for the

preliminary sizing of the Stewart platform. Concerning the Dyadic SCN5

specification the minimum rod length is set to 0.3m and the maximum road length

 to 0.4m.

Chapter 3

91

Table 3.1. Platform dimensions

Parameter Value

 0.250 m

 20

 0.125 m

 20

 0.300 m

 0.400 m

 0.320

3.5.2 From the simulated acceleration to the actuators position

A preliminary sizing of the motion platform has been done. However no

information about the actuator is still reached. That is because actuators’

requirements could be different due to different platform’s purposes. For example

different performances should be performed by the actuators if the platform should

support the weight of a human or of a small car’s model. For this project no real

human should be sit on the platform so the overall weight which the platform

should effort is just the one of a small vehicle’s model (scale 1:25). However in this

step the overall weight could be neglected. Indeed here the goal is to reach possible

standard actuators’ configurations due to standard vehicle’s accelerations.

Perform sensate vehicle’s accelerations is possible due to the virtual simulator

already implemented. A standard circuit, with both slow and fast curves, is chosen

from the ones available in Speed Dreams (Figure 3.12) and several laps are

registered. Slow curves with fast direction changing, such as chicane, generate high

frequencies accelerations. Instead long fast curves induce low frequencies

accelerations but with a higher module.

Motion Simulator

92

Figure 3.12. Speed Dreams' track layout used for the simulation

All the simulation data are imported into the LMS Virtual.Lab
®
 and the chassis’

accelerations (keep linear and angular) are extracted and plotted. Than the sixty

seconds with the higher accelerations’ values and variations are chosen. The

actuator features are defined on this data. Hence the actuators should be able to

perform quite all the situation reachable during a simulation.

Now the vehicle’s accelerations are available but these must be converted into

suitable accelerations for the 6 DOF platform. For these reasons a motion cueing

algorithm and a washout filter should been implemented. On the web are available

several software which do this work. Of course is possible to implement a specific

algorithm for doing it, but in order to save time ready software is used. The one

chosen is Motion Platform Designer 1.0 r3 [58]. This is a simple tool for designing,

evaluating and driving 2, 3 and 6 DOF motion system. With it is possible to

compute several mechanical properties of the motion systems:

 The top motion platform position, speed and acceleration.

 Actuators position, speed and acceleration.

Simulation could be done in three possible modes:

 Forward kinematics mode. In this mode the independent actuators positions

are driven by the input signals. Forward kinematics algorithms are employed

Chapter 3

93

to calculate the top platform position and rotation (speed and acceleration)

and actuators speed and acceleration.

 Inverse kinematics mode. In this mode the independent DOF are driven by

the input signals. Inverse kinematics algorithms are employed to calculate

the required actuators positions, speeds and acceleration. The speed an

acceleration of the top motion platform is calculated as well.

 Specific forces mode. In this mode the independent specific forces and

angular velocities are processed by a classical washout filter to produce the

required platform position and rotation. Outputs of the washout filters are

used as an input to the inverse kinematics mode. The position, speed and

acceleration of the top motion platform and the position, speed and

acceleration of the actuators is calculated.

Figure 3.13. Motion Platform Designer 1.0 r3 enviroment

Concerning the motion cueing and the washout algorithm, Motion Platform

Designer 1.0 r3 implements a classical linear cueing algorithm. This is the most

simple and less performing method (paragraph 3.3.1). Hence for a non-optimized

first platform design, projecting considering the worst-case, allows to stay in a safe

position.

A separate configuration page is available for every signal passed through the

algorithm. For the high-pass channels (Surge, Sway, Heave, Roll, Pitch and Yaw)

the gain, the limit and the cut-off frequency can be independently adjusted. The

input signal is multiplied by the gain and after limited by the desired limit value.

After that, the signal is filtered and only the signal frequencies above the cut-off

frequency are passed for further processing to produce the motion platform position

and rotation. The high amplitude with low frequency specific forces for surge and

sway cannot be reproduced by lateral motion movement. In this case is used the tilt

Motion Simulator

94

coordination method. By tilting the platform below the sensing threshold of a

human (paragraph 3.3.1), a part of the gravity component can be perceived as

specific force. After the standard signal shaping, the surge and sway forces are

filtered with the low pass filter and further processed to produce the tilt. The cut-off

frequency of the low pass filter and the max tilt rate and tilt angle can be limited to

produce the optimal cueing taking into account the motion platform mechanical

limitation.

The correct determinations of these parameters are quite complex due to the lack of

a real standard approach to follow for the optimization. For this reason several

simulations with different setup are computed in order to minimize the error

between the platform accelerations and the vehicles accelerations.

Figure 3.14. Longitudinal, lateral and vertical vehicle's acceleration

Chapter 3

95

According with the Figure 3.14 limit values are set considering the maximum

accelerations reached by the vehicles. Gain is unitary for having a direct

correspondence between the platform’s accelerations and the car’s ones.

Considering the tilt coordination, max tilt is set to 20˚ which is the maximum

possible in order to avoid it the Aubert effect (paragraph 3.3.1). Rate limit is

initially 3 deg/s.

Table 3.2. Classical motion cueing parameters

Parameter Surge Sway Heave Roll Pitch Yaw

Gain 1.00 1.00 1.00 1.00 1.00 1.00

Limit Value [m/s
2
] [deg/s] 4.50

6.00

2.00

5.00

4.00

4.00

Cut-off frequency [Hz] 0.50 0.50 0.50 0.50 0.50 0.50

Table 3.3. Classical motion cueing parameters for the tilt coordination

Parameter (Tilt Coordination) Surge Sway

Gain 1.00 1.00

Limit Value [m/s
2
] 7.00

7.00

Cut-off frequency [Hz] 0.50 0.50

Rate limit [deg/s] 3.00 3.00

Max tilt [deg] 20.00 20.00

3.5.3 From the actuator position to the multi-body model

Actuators positions for each time step are computed and these data could be

imported into the LMS Virtual.Lab
®
 environment. Here a multi-body model of the

motion platform is developed. Actuators are controlled using a Joint Position Driver

importing the data previously computed. Than the simulation is computed and the

moving platform displacements here calculated, are compared with the previous

ones. In this way is possible to state the correct correlation between the two

software.

Motion Simulator

96

Figure 3.15. Virtual simulator vehicle's and platform behavior under three different maneuvers

Chapter 3

97

For evaluating the goodness of the motion cueing and washout algorithm, a

comparison between the vehicle’s and platform’s accelerations is computed. Of

course is not expected a perfect correlation between them. That is because of the

platform limits and the algorithm used.

Figure 3.16. Setup 1 longitudinal, lateral and vertical accelerations comparison

Like expected the platform could follow exactly the vehicle’s longitudinal

acceleration. Problems in general occur when the vehicle’s acceleration amplitude

overcome the maximum acceleration reachable by the platform. In a depth analysis

Motion Simulator

98

errors occur when the acceleration’s variation is too high. As shown in Figure 3.16,

between 15s and 20s the vehicle’s lateral acceleration increases strongly but the

platform’s acceleration increases slowly with a consequently phase delay. That is

because the module of the high frequencies component of the acceleration

simulated by the platform is strongly limited due to the platform’s physic limit and

the platform could perform higher acceleration. For this simulation the maximum

rate limit for the tilt coordination is set to 3 deg/s. As shown it is not sufficient for

following the real vehicle’s acceleration.

Considering the longitudinal acceleration between 3s and 4s is possible to state the

Classical approach limit due to the one step input described in the paragraph 3.3.1.

As well as was shown in the Figure 3.4, also here the onset cue is strong, but the

perceived acceleration is short-lived as the actuators of the hexapod quickly reach

their full extension. Meanwhile, rotation of the motion platform gradually reaches

an angle sufficient to achieve the same perceived acceleration through tilt-

coordination. The combination of these two acceleration’s components simulates a

deceleration between two accelerations, instead of a constant and positive one.

In order to obtain better result a basic optimization based on this observation is

following computed.

3.5.4 Basic optimization

Two other setups are proposed to compensate the Classic control and platform

limitations. As explained in the previous paragraph, the main problems are linked to

the rotation rate limit. Hence this value is increased in the following two cases to

reach a better performance. However, elevate rotation velocities and also elevate

platform angular accelerations could affect the realism of the motion cues.

Concerning the second setup the following parameters are used.

Table 3.4. Setup 2 parameters

Parameter (Tilt Coordination) Surge Sway

Gain 1.00 1.00

Limit Value [m/s
2
] 7.00

7.00

Cut-off frequency [Hz] 0.50 0.50

Rate limit [deg/s] 5.00 5.00

Max tilt [deg] 20.00 20.00

Chapter 3

99

Figure 3.17. Setup 2 longitudinal, lateral and vertical accelerations comparison

Figure 3.17 shows better results than the first setup (Figure 3.16). Improvements

could be seen for the longitudinal acceleration. Between 3 s and 5 s no deceleration

is simulated, however the platform acceleration’s ration is still lower than the

vehicle’s one. Better results are visible also for the lateral acceleration even if the

simulated acceleration is still in delay within the real one.

Hence a further simulation with a new setup is performed trying to improve the

platform performances.

Motion Simulator

100

Table 3.5. Setup 3 paramteters

Parameter (Tilt Coordination) Surge Sway

Gain 1.00 1.00

Limit Value [m/s
2
] 5.00

6.00

Cut-off frequency [Hz] 0.50 0.50

Rate limit [deg/s] 10.00 10.00

Max tilt [deg] 20.00 20.00

Figure 3.18. Setup 2 longitudinal, lateral and vertical accelerations comparison

Over increasing the rate limit improves the correlation between the platform’s

acceleration and the vehicle’s ones. However considering the lateral acceleration,

Chapter 3

101

once again is not possible to reach the maximum magnitude value of 4.5 m/s
2

because the maximum roll angle reachable by the platform is of 20˚, so the

maximum constant acceleration reachable is about 3.4 m/s
2
.

Concerning the angular acceleration should take in consideration that higher is that

value, and higher is the tilt perception. The same also for the angle rate value.

Figure 3.19. Platform angular accelerations setup 1

Motion Simulator

102

Figure 3.20. Platform angular accelerations setup 2

Figure 3.21. Platform angular accelerations setup 3

Chapter 3

103

Angular accelerations are pretty high in all the three setups, indeed the human

perceived angular velocity is of 3 deg/s (paragraph 3.2). Hence the maximum value

of 40 deg/s achieved with the third setup could be too high and a compromise

between the two other configurations could be the best trade of between linear and

angular acceleration.

These limitations are, in part, due to the Classical approach and could be solved

using different approach.

However the goal of this project is sizing a small scale 6 DOF motion platform.

That analysis is performed to obtain the required linear actuator’s features and the

third setup is used for this purpose. Indeed this case is the one which reaches the

higher actuator forces and velocities.

3.5.5 Proposed platform

As well as for the platform acceleration, using LMS Virtual.Lab
®

 is possible to plot

the required linear actuators’ thrust and velocity for the current analysis (platform

third setup).

Figure 3.22 shows the performed thrust by each actuator. The overall weight of the

upper platform (in aluminum modular extrusion) and the vehicle model (scale 1:25)

is calculated as 15 Kg. The mean force required is under 60 N with some peaks of

80 N, probably due to numerical instabilities during the analysis computation.

Hence actuators like Dyadic SCN5, with a thrust of 100 N could be suitable for this

application. However the required velocity is still has to be verified.

Motion Simulator

104

Figure 3.22. Actuators' performed thrust

Figure 3.23 shows the performed actuators’ linear velocity. Velocities very rarely

overcame the velocity of 0.2 m/s and for the most of time are lower than 0.1 m/s.

Once again, if consider the Dyadic SCN5 linear actuator which actually perform a

maximum velocity of 0.4 m/s, the required maximum velocity is satisfied.

Chapter 3

105

Figure 3.23. Actuators' performed linear velocity

It is now possible to propose a valid scale model of 6 DOF platform. Summarizing

the main features required, in accordance with the convention adopted (Figure

3.11), the platform dimensions are recapped in the Table 3.6.

Instead the linear actuators required features are summarized in the Table 3.7.

Motion Simulator

106

Table 3.6. 6 DOF platform proposed dimensions

Parameter Value

 [m] 0.250

 [deg] 20

 [m] 0.125

 [deg] 20

 [m] 0.300

 [m] 0.400

 [m] 0.320

Figure 3.24. Proposed 6DOF platform design

Table 3.7. Linear Actuator's required features

Parameter Value

Maximum Thrust [N] 90

Maximum Velocity [m/s] 0.300

Maximum Stroke [m] 0.200

Rest length [m] 0.300

Conclusion

In this dissertation a strategy to realize a (soft) real-time vehicle simulator has been

proposed. The separate contributions of a virtual and a motion simulator are

considered, designing a complete scenario for a driving simulator design.

Human interaction with the numerical model of a vehicle and visual feedback are

implemented in a dual machine communication structure. The vehicle model

adopted is a simplified representation, with the primary objective of showing the

potential and proofing the concept of the virtual simulator. A full multibody model

can in the next steps be adopted empowered by LMS Virtual.Lab
®
 Motions real-

time module.

The proposed vehicle simulator, as it is developed, is a flexible tool to implement

and test new vehicle components and controllers, including the investigation of the

potential interaction with the driver. Since the graphical engine is now split from the

physical engine, new vehicle models could be developed in LMS Virtual.Lab
®
 and

then tested with very limited modifications on the host pc. In the same way further

enhancements of the graphical engine can be applied without the need of editing the

multi-body model. Another advantage of having the graphical and physical engine

separated on two different machines is the possibility to imply physical models with

a high computational cost without affecting the graphical render.

Concerning the motion platform and its algorithm used to render the vehicle

accelerations, an analysis on their main aspects is done. A scaled 6 DOF platform’s

design has been developed conducting structural evaluation with the help of several

simulations performed with the virtual simulator previously developed. The

corresponding vehicle accelerations are processed with the Classic motion cueing

algorithm and a platform multi-body model is developed with LMS Virtual.Lab
®

Motion in order to obtain the required information for the finalization of the design.

An extension to the optimal control approach can be considered in the future, in

combination with the platform design optimization.

References

[1] http://en.wikipedia.org/wiki/Simulation#Automobile_simulator

[2] F. GREENYER “A History of Simulation: Part II – Early Days”, MS&T

Magazine, May 2008

[3] D. STEWART “A platform with six degrees of freedom”, IMechE, 1965

[4] J.J. JELMER “State of Art Driving Simulators, a Literature Survey”,

Department Mechanical Engineering, Eindhoven University of

Technology, Eindhoven, Germany, 2008

[5] J.J. BREUER, W. KAEDING “Contributions of driving simulators to

enhance real world safety”, Tsukuba, 2006

[6] http://en.wikipedia.org/wiki/Sensory_cue

[7] H.B. PACEJKA “Tyre and vehicle dynamics”, Third Edition, Butterworth-

Heinemann, 2012

[8] http://opensource.com/resources/what-open-source

[9] http://www.ode.org/

[10] http://bulletphysics.org/wordpress/

[11] M. BEN-ARI “Principles of Concurrent and Distributed Programming”,

Prentice Hall, 1990

[12] R.M. STAIR “Principles of Information Systems”, Sixth Edition, Thomson

Learning, 2003

[13] http://www.opengl.org

[14] http://ogre3d.org

[15] http://msdn.microsoft.com/en-

us/library/windows/desktop/ee6632749V=VS.85).aspx

[16] http://www.rfactor.net

[17] http://www.iracing.com

[18] http://vdrift.net

[19] http://torcs.sourceforge.net

[20] http:// www.speed-dreams.org

[21] http://ww.racer.nl

[22] E. COUMANS “Bullet 2.80 Physics SDK Manual”, 2012

[23] B. BECKMAN “The physics of Racing”, Burbank, California, USA, 1991

- 2008

[24] J. POSTEL “User datagram Protocol”, RFC 768, 1980

[25] M. GUBITOSA “RT Co-Simulation and multi-physics simulator set up”,

LMS® International, 2013

[26] http://www.lmsintl.com/virtuallab

[27] LMS
®
 Virtual.Lab Online Help, 2013

[28] W.F. MILLIKEN, D.L. MILLIKEN “Race car vehicle dynamics”, SAE

International, 1994

[29] http://en.wikipedia.org/wiki/Ackermann_steering_geometry

[30] https://www.bmw.co.uk/bmw/marketEV/bmw_next/en_DE/new-

vehicles/3/coupe/2010/engines.html#petrol

[31] http://koolplot.codecutter.org/

[32] http://plplot.sourceforge.net/

[33] http://wxmathplot.sourceforge.net/

[34] J. BANKS, J. CARSON, B.NELSON, D. NICOL “Discrete – Event

System Simulation”, Prentice Hall, 2001

[35] F.A.M. VAN DER STEEN “Self-Motion perception”, PhD thesis, Delft

University of Technology, Delft, Netherlands, Jun. 1998

[36] http://www.x-simulator.de

[37] http://www.x-sim.de

[38] http://www.cruden.com

[39] http://www.moog.com

[40] D. JAKOBOVIĆ, L. BUDIN “Forward Kinematics of a Stewart Platform
Mechanism”, Faculty of Electrical Engineering and Computing, Unska,

Zagreb, Croatia, 2002

[41] R. GRAF, R. VIERLING, R. DILLMANN “A flexible controller for a

Stewart platform”, Institute for Realtime System and Robotics, University

of Karlsruhe, Karlsruhe, Germany, 1998

[42] C. WEIß “Control of a Dynamic Driving Simulator: Time-Variant Motion

Cueing Algorithms and Prepositioning”, Institut für Verkehrsführung und

Fahrzeugsteuerung, Braunschweig, Germany, Nov. 2006

[43] G. REYMOND, A. KEMENY “Motion Cueing in the Renault Driving

Simulator”, Vehicle System Dynamics, 34, 249-259, 2000

[44] M.C. HAN, H.S. LEE, S. LEE, M.H. LEE “Optimal Motion Cueing

Algorithm Using the Human Body Model”, JSME International Journal, 2,

487-491, 2002

[45] K. SPRINGER, H.GATTRINGER, H.BREMER “Towards Washout Filter

Concepts for Motion Simulators on the Base of a Stewart Platform”,

Institute for Robotics, Johannes Kepler University Linz, Linz, Austria,

2011

[46] B. RICHTER “Beitrag zum Problem der Beschleunigungssimulierung an

Fahrsimulatoren”, Dissertation, Fachbereich Verkehrswesen der

Technischen Universität Berlin, Berlin, Germany, 1971

[47] R.J. TELBAN “A Nonlinear Motion Cueing Algorithm with a Human

Perception Model”, Technical report, Department of Mechanical

Engineering, State University of New York, Binghamton, 2002

[48] D. BRUNO, A.CORREIA “Motion Cueing in the Chalmers Driving

Simulator: An Optimization-Based Control Approach”, Instituto Superior

Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal, 2009

[49] N. MURGOVSKI “Vehicle modelling and washout filter tuning for the

Chalmers vehicle simulator” Lund University, IEA, 2007

[50] M.A. AHON, L.D. REID “Simulator motion-drive algorithms: A

designer’s perspective”, J. Guidance, Mar. 1990

[51] P. GRANT, B. ARTZ, M. BLOMMER, L. CATHEY, J. GREENBERG

“A Paired Comparison Study of Simulator Motion Drive Algorithms”,

DSC2002, Paris, France, 2002

[52] J.GREENBERG, B. ARTZ, L. CATHEY “The effect of lateral motion
cues during simulated driving”, Ford Motor Company, Dearborn,

Michigan, USA, 2003

[53] J. TAJIMA, K. MARUYAMA, N. YUHARA “Driving Task Adaptive

Motion-Cueing Algorithm for Driving Simulators”, DSC Asia/Pacific,

May, 2006

[54] T. BRANDT, J. DICHGANS, E. KOENIG “Differential effects of central
versus peripheral vision on egocentric and exocentric motion perception”,

Experimental Brain Research, 1973

[55] A. HAMISH, J. JAMSON “Motion Cueing in Driving Simulators for

research Applications”, PhD Thesis, The University of Leeds, England,

Nov. 2010

[56] L.D. REID, M.A. NAHON “Flight simulation motion-base drive

algorithms: Part 1 – developing and testing the equations”, Technical

Report, UTIAS, University of Toronto, Toronto, Canada, 1985

[57] Z. LAZAREVIC “Feasibility of a Stewart Platform with Fixed Actuators”,

Master’s Thesis, Department of Bioengineering, Columbia University,

New York, USA, 2000

[58] http://fly.elise-ng.net/motionplatformdesigner

[59] https://www.miraiintertech.com/home/scn5.php

