APPLICAZIONE DEL PROCESSO BIOLOGICO ANAMMOX PER LA RIMOZIONE DELL’AZOTO DA DIGESTATI AGRO-ZOOTECNICI

Relatore: Dott. Ing. Davide Scaglione
Correlatore: Dott. Ing. Elena Ficara

Tesi di:
Viola Corbellini
Matricola 782193

ANNO ACCADEMICO 2012-2013
Sommario

1. INTRODUZIONE .. 8
 1.1 Il ciclo dell’azoto .. 8
 1.2 Processi convenzionali di rimozione biologica dell’azoto .. 10
 1.3 La problematica dell’azoto nei reflui agro-zootecnici .. 12
 1.4 Processo Anammox ... 16
 1.4.1 Stechiometria e cinetica ... 16
 1.4.2 Inibizione dell’attività anammox ... 18
 1.5 Applicazione del processo anammox a piena scala ... 22

2. SCOPO DELLA TESI .. 24

3. MATERIALI E METODI ... 25
 3.1 Metodi analitici ... 25
 3.1.1 Analisi delle forme azotate e COD ... 25
 3.1.2 Analisi dei solidi sospesi ... 26
 3.2 Reattore a sequenza di fasi SBR ... 28
 3.2.1 Funzionamento SBR .. 31
 3.2.2 Caratteristiche dell’influente .. 34
 3.2.3 Gestione e monitoraggio del reattore SBR .. 36
 3.2.4 Prove di attività della biomassa anammox .. 37
 3.3 Prove manometriche .. 40
 3.3.1 Elaborazione e trattamento dati .. 47
 3.4 Preparazione soluzioni .. 48
 3.4.1 Preparazione alimento al reattore SBR ... 48

4. RISULTATI E DISCUSSIONE ... 51
 4.1 Risultati della gestione del reattore SBR .. 51
 4.1.1 Andamenti dell’attività batterica anammox .. 51
 4.1.2 Andamento dei rapporti di consumo .. 54
 4.1.3 Caratteristiche dell’effluente .. 58
 4.1.4 Andamento del COD solubile .. 60
 4.1.5 Andamento dei solidi sospesi .. 62
 4.1.6 Prove granulometriche ... 65
 4.2 Risultati delle prove manometriche ... 68
 4.2.1 Risultati della prova I .. 68
 4.2.2 Risultati della prova II ... 73
 4.2.3 Risultati della prova III .. 77
5. CONCLUSIONI ... 82
RINGRAZIAMENTI .. 85
RIFERIMENTI .. 87
SINTESI

Il presente lavoro di tesi si inserisce in un più ampio progetto di ricerca del Dipartimento di Ingegneria Civile e Ambientale del Politecnico di Milano denominato BRAIN (Biotecnologie per la Riduzione dell'Azoto dai digestati con processi IINnovativi).

Esso ha come obiettivo quello di dimostrare la fattibilità tecnica ed economica di un processo biologico avanzato che sfrutta la biomassa anaerobica ammonio-ossidante anammox (ANaerobic AMonium OXidation) per rimuovere l'azoto ammoniacale dalla frazione liquida dei digestati.

In particolare, questo progetto propone il trattamento completamente autotrofo della frazione liquida derivante dalla digestione anaerobica di un reflu agrozootecnico (refluo suinicolo, pollina e scarti di mais) tramite una configurazione di reattori a doppio stadio:

- un reattore SBR (Sequencing Batch Reactor) di ossidazione parziale ad opera di biomassa autotrofa (PARNIT, PARtial NITrification) che converte il 50% circa dell’ammonio in nitrito (rapporto finale circa 1:1);
- un secondo reattore di tipo SBR, contenente biomassa autotrofa anammox ammonio ossidante in grado di produrre azoto molecolare a partire da ammonio e nitrito.

Gli obiettivi specifici del presente studio possono essere riassunti nei seguenti punti:

- Gestione e monitoraggio di un reattore di laboratorio SBR con processo anammox a diverse condizioni di alimentazione, come modello per il reattore pilota in campo, con lo scopo di semplificare il processo e renderlo applicabile a più ampia scala;
• messa a punto ed applicazione di un protocollo di prova in batch di tipo manometrico per valutare l'inibizione di substrati o sostanze contenute nell'influente che possano interferire con l'attività della componente microbica anammox.

Nel corso di precedenti lavori di tesi il reattore SBR di laboratorio è stato testato in diverse condizioni di alimentazione, con diluizioni a partire dal 25% fino a giungere al 100% nel corso di nove mesi.

Il presente lavoro sperimentale si è inserito nella fase di ricerca che giungeva al termine e si è operato in condizioni di matrice PARNIT non diluita.

Dal monitoraggio quotidiano delle concentrazioni dei substrati, solidi sospesi volatili e COD in entrata ed in uscita dal reattore a sequenza di fasi, si sono potute trarre importanti indicazioni circa la fattibilità del processo in vista di una applicazione a piena scala: dopo un tempo di acclimatazione più o meno variabile, a seconda della diluizione, la biomassa autotrofa anammox si è mostrata adatta a trattare reflui da digestati agro-zootecnici con percentuali di rimozione medie del 97%.

In aggiunta alle diverse attività di gestione del reattore SBR di laboratorio, sono state allestite e monitorate delle prove manometriche in bottiglie equipaggiate con una testa Oxitop® in grado di rilevare la variazione di pressione. Questa metodica permette una più semplice gestione e controllo rispetto alle prove di laboratorio, con i reattori in continuo, proprio per la semplicità sia dell’apparato sia della conduzione delle prove. Con il sistema Oxitop® si sono valutate alcune possibili interazioni fra le sostanze contenute nella matrice reale e l’attività della biomassa anammox. Nello specifico si sono effettuate 3 diverse tipologie di prove.
La prima era volta a valutare l’interazione tra l’attività della biomassa anammox a diverse condizioni di diluizione della matrice reale, riproponendo in scala minore la progressione già seguita con il reattore SBR da laboratorio.

I risultati analitici hanno mostrato come, così come avvenuto nel reattore di laboratorio, all’aumento della percentuale di influente reale corrisponda una proporzionale diminuzione dell’attività microbica, pari al 33% per matrice reale al 75% e del 77% per matrice reale al 100%.

La seconda prova aveva l’obiettivo di valutare separatamente la tipologia di attività batterica della biomassa contenuta nel reattore SBR di laboratorio; separatamente attività anammox ed attività eterotrofa denitrificante (con aggiunta di carbonio esterno) con l’intento di fornire una stima della percentuale delle due tipologie di biomassa presente.

Analisi hanno permesso di stabilire una presenza di attività eterotrofa contestuale a quella autotrofa anammox variabile in funzione del carbonio organico presente nella matrice PARNIT.

Infine sono state svolte prove di inibizione da shock salino, con NaCl, a diverse concentrazioni utilizzando due biomasse autotrofe di tipo anammox acclimatate e non rispetto al contenuto salino.

Il risultato di questa prova ha mostrato come la biomassa anammox mostri una inibizione variabile rispetto alla concentrazione salina contenuta nell’influenze.

In particolare per una biomassa anammox, acclimatata a reflui salini, la riduzione di attività risulta meno marcata rispetto ad una biomassa non acclimatata per la quale lo shock salino ha provocato l’inibizione dell’80% dell’attività nell’arco di due giorni.

Questo aspetto conferma che la biomassa anammox per un impiego ad ampia scala ha la necessità di essere acclimatata rispetto al refluo reale influente.
1. INTRODUZIONE

1.1 Il ciclo dell’azoto

L’azoto è uno degli elementi più diffusi in natura e riveste un ruolo rilevante per gli esseri viventi in quanto costituente fondamentale delle proteine e del DNA. Le trasformazioni che l’azoto subisce nei diversi comparti sono riassunte nel ciclo biogeochimico riportato in Figura 1.1.

L’intervento dell’uomo genera importanti immissioni di azoto nei comparti acqua e suolo, portando a modificare il ciclo naturale e causando problemi ambientali, quali l’eutrofizzazione, l’inquinamento delle falde e dei corpi idrici superficiali. Nel tempo si è quindi reso indispensabile il controllo dell’introduzione di azoto di natura antropica.

Figura 1.1 Il ciclo dell’azoto
L’uso eccessivo di fertilizzanti in campo agricolo e l’allevamento di bestiame tramite le deiezioni animali, sono due cause di introduzione di azoto che provocano alterazioni del naturale ciclo biogeochimico. In Figura 1.2 viene riportato il dell’azoto in cui viene introdotto il ruolo dell’allevamento e della coltivazione.

Figura 1.2 Interferenze antropiche nel ciclo dell’azoto

Per far fonte all’impatto ambientale associato a questa problematica, la normativa europea ha emanato una direttiva comunitaria nota come “Direttiva nitrati” (91/676/CEE). Principale strumento della direttiva è stata l’introduzione di aree sensibili dette ZVN (Zone Vulnerabili da Nitrati di origine agricola) e la regolamentazione dell’utilizzazione agronomica dei reflui zootecnici.
Il recepimento italiano di questa norma, ha di fatto fissato il limite di azoto, derivante dagli effluenti agro-zootecnici trasferibile sul terreno agricolo a 170 chilogrammi annui per ettaro.
Tale vincolo comporta la necessità di disporre di una Sau (Superficie agricola utile) generalmente maggiore rispetto alle disponibilità di molti allevamenti della Pianura Padana.
Tuttavia, una deroga (2011/721/Ue) permette alle aziende agricole di Lombardia, Emilia Romagna, Piemonte e Veneto, con almeno il 70 % di colture con stagioni di crescita prolungate e con grado elevato di assorbimento di azoto, di innalzare tale limite a 250 chilogrammi annui per ettaro.

1.2 Processi convenzionali di rimozione biologica dell’azoto

Nell’ambito dei trattamenti per la rimozione specifica dell’azoto organico e ammoniacale negli impianti di trattamento di reflui civili, si opera prevalentemente un processo di tipo biologico di nitrificazione/denitrificazione. Sono inoltre possibili anche trattamenti quali la precipitazione chimica e lo strippaggio dell’ammoniaca.
In particolare il processo biologico di rimozione dell’azoto ammoniacale opera le trasformazioni presenti nei cicli naturali: una fase ossidativa di nitrificazione con formazione di nitriti e quindi nitrati, seguita da una fase riduttiva di denitrificazione ad azoto molecolare.
La nitrificazione avviene ad opera di due diverse specie di batteri autotrofi aerobici obbligati, i primi appartenenti ai generi Nitrosomonas per l’ossidazione dell’ammoniaca a nitriti, i secondi appartenenti ai generi Nitrobacter che ossidano i nitriti a nitrati.
I due stadi si svolgono in serie secondo le seguenti reazioni:

- \(\text{NH}_4^+ + 3/2 \text{O}_2 \rightarrow \text{NO}_2^- + 2\text{H}^+ + \text{H}_2\text{O} \) \(\text{(Nitrosomonas)}\)
- \(\text{NO}_2^- + 1/2 \text{O}_2 \rightarrow \text{NO}_3^- \) \(\text{(Nitrobacter)}\)

E complessivamente tenendo conto anche della sintesi batterica:

\[\text{NH}_4^+ + 1,86 \text{O}_2 + 0,1\text{CO}_2 \rightarrow 0,02 \text{C}_5\text{H}_7\text{O}_2\text{N} + 0,98 \text{NO}_3^- + 1,98\text{H}^+ + 0,94\text{H}_2\text{O} \]

Si può osservare che per ogni grammo di azoto ammoniacale rimosso si impiegano 4,2 g di \(\text{O}_2\), si producono 0,16 g di nuove cellule, si consumano 7,14 g di alcalinità come CaCO\(_3\) e 0,308 g di \(\text{CO}_2\).

Il passo successivo per la rimozione biologica dell’azoto è la denitrificazione operata generalmente da batteri eterotrofi dei generi \textit{Pseudomonas} che utilizzano i nitriti ed i nitrati come accettori di elettroni nell’ossidazione biologica dei composti organici biodegradabili.

La rimozione avviene per stadi, a partire dagli ioni nitrato passando per gli ioni nitrito, all’ossido nitrico, all’ossido nitroso, porta infine all’azoto gassoso:

\[\text{NO}_3^- \rightarrow \text{NO}_2^- \rightarrow \text{NO} \rightarrow \text{N}_2\text{O} \rightarrow \text{N}_2\]

Contrariamente al processo di nitrificazione, che consuma alcalinità, il processo di denitrificazione eterotrofa produce 3,57 g \(\text{CaCO}_3\) di alcalinità per ogni grammio di \(\text{NO}_3^-\) ridotto, reintegrandone così circa la metà di quello consumato in nitrificazione.

Per la denitrificazione quindi è necessario una apporto di carbonio organico che può essere:

- carbonio esterno prontamente degradabile (metanolo, acido acetico, miscelle idroalcoliche);
- carbonio interno, ossia già presente nel refluò tal quale;
• carbonio endogeno costituito dalla componente organica biodegradabile risultante da fenomeni di lisi cellulare, mantenuto in condizioni endogene.

L’efficienza di rimozione è quindi governata dalla presenza di carbonio prontamente biodegradabile; il cui rapporto con l’azoto richiesto è variabile rispetto al tipo di carbonio utilizzato.

Solitamente, questo processo biologico, che vanta buona stabilità, affidabilità e costi moderati, viene impiegato nel trattamento di acque reflue con concentrazioni di azoto relativamente basse (meno di 100 mg N L\(^{-1}\)) ottenendo rimozioni dell’azoto del 90%.

1.3 La problematica dell’azoto nei reflui agro-zootecnici

Nel caso di reflui molto concentrati (uno o due ordini di grandezza in più rispetto ai reflui urbani), come quelli derivanti dall’ambito agro-zootecnico, i principali trattamenti operati sul refluo prevedono l’utilizzo della digestione anaerobica dei fanghi.

La digestione anaerobica è il trattamento che più si presta alla stabilizzazione dei fanghi particolarmente concentrati grazie anche al bilancio energetico positivo connesso e alla mancanza di aerazione e alla produzione di biogas.

Il fango digerito, che in gergo tecnico è detto “digestato”, proveniente da reflui agro-zootecnici è caratterizzato da concentrazioni di azoto di circa uno o due ordini di grandezza superiori a quelle tipiche dei reflui civili e da un contenuto di sostanza organica biodegradabile in genere non sufficiente a sostenere la denitrificazione convenzionale come trattamento per la rimozione dell’azoto.
La recente maggiore diffusione della digestione anaerobica, e della conseguente necessità di trattarne i reflui, ha stimolato lo sviluppo di soluzioni alternative, indicate per reflui molto concentrati, che limitassero i costi legati all’aerazione ed al dosaggio di soluzioni idroalcoliche necessarie alla denitrificazione convenzionale.

Nello specifico il contenuto di azoto presente nel fango digerito non risulta variato rispetto a quello del refluo influente alla digestione, in quanto l’azoto subisce solo una piccola trasformazione ad ammoniaca gassosa. Sostanzialmente vi è un aumento della frazione ammoniacale rispetto al contenuto di azoto organico, in misura variabile rispetto al contenuto inizialmente presente.

Nell’ambito della ricerca di soluzioni alternative alla denitrificazione convenzionale per il trattamento dei reflui di digestione, si inserisce il progetto “BRAIN” (Biotecnologie per la riduzione dell’Azoto dai digestati con processi Innovativi) per promuovere la sostenibilità economica e ambientale della produzione del biogas, 2011-2012) coordinato dal Politecnico di Milano e finanziato dal Ministero delle Politiche agricole alimentari e forestali con lo scopo principale di valutare sperimentalmente la fattibilità tecnica ed economica di processi biologici innovativi per la riduzione dell’azoto dal digestato.

Il progetto di ricerca è focalizzato sull’analisi e lo sviluppo delle tecnologie biologiche innovative in grado di ottenere contestualmente riduzione del contenuto di azoto nel digestato e abbattimento dei costi attraverso lo studio di diverse possibili alternative.

Il presente lavoro di tesi fa parte della sperimentazione che prevede l’utilizzo di un processo innovativo di rimozione di azoto dal digestato proveniente da un allevamento suinicolo presso l’azienda agricola Cortegrande Srl a Casaletto di Sopra (Cr).
L’allevamento dell’azienda agricola consta di circa 2000 suini con una produzione variabile tra 150 e 400 m³/d di refluo zootecnico. L’impianto di trattamento, il cui schema è riportato in Figura 1.3, prevede una preliminare separazione solido/liquido, la cui frazione liquida è inviata ad un processo di trattamento convenzionale, il quale prevede una flottazione ed un processo a fanghi attivi per la rimozione biologica dell’azoto ad opera di biomassa eterotrofa in pre-denitrificazione e autotrofa per la nitrificazione.

I fanghi derivanti dal trattamento primario di flottazione sono invece inviati a digestione anaerobica. Una volta digeriti subiscono una separazione solido/liquido in centrifuga. Il surnatante della centrifugazione è reinviato in testa all’impianto di trattamento per rimuovere il carico inquinante, mentre la frazione solida è utilizzata come ammendante agricolo.

Figura 1.3 Schema di funzionamento dell’impianto di trattamento delle acque dell’azienda Agricola Cortegrande
La frazione liquida del digestato a valle della centrifugazione è in parte inviata alla sezione pilota dedicata al progetto BRAIN, Figura 1.4.

Figura 1.4 Particolare dell’impianto e localizzazione della sezione pilota

La sezione pilota dell’impianto prevede due fasi di trattamento:

- un reattore SBR (Sequencing Batch Reactor) di ossidazione parziale dell’azoto ammoniacale a nitroso con il processo PARNIT (che porta ad avere un effluente con rapporto tra le due forme azotate circa 1:1;
- la rimozione degli ioni ammonio e nitrito dall’effluente operata dalla biomassa autotrofa anammox in un ulteriore reattore SBR.

Questi processi presentano notevoli vantaggi rispetto a quelli tradizionali tra cui la riduzione dei costi di gestione fino al 90%, la riduzione della produzione di fanghi del 90%, la riduzione di oltre il 60% della richiesta di ossigeno (assente per il processo anammox) e l’assenza della richiesta di carbonio organico.

In questo lavoro di tesi è stato analizzato in particolare il processo di rimozione anaerobica autotrofa anammox applicato all’effluente del reattore SBR PARNIT a scala di laboratorio.
1.4 Processo Anammox

1.4.1 Stechiometria e cinetica

La scoperta dei batteri anammox avvenne all'interno di un impianto di denitrificazione nel quale si osservò la scomparsa di ammonio in ambiente anaerobico. Il processo venne poi monitorato e tramite esperimenti la rimozione fu attribuita ad un processo biologico (Kuenen, 2008). La stechiometria accettata per il processo anammox è stata sperimentalmente proposta da Strous et al. nel 1998.

Dall’analisi dei bilanci di massa si ha che i batteri anammox utilizzano anidride carbonica CO$_2$ come fonte di carbonio per produrre biomassa (CH$_2$O$_{0.5}$N$_{0.15}$) e ione nitrito NO_2^- non solo come accettore di elettroni per l’ossidazione dell’ammonio NH_4^+ ma anche come donatore di elettroni per la riduzione dell’anidride carbonica secondo la reazione:

$$NH_4^+ + 1.32 NO_2^- + 0.066 HCO_3^- + 0.13 H^+ \rightarrow 1.02N_2 + 0.26 NO_3^- + 2.03 H_2O + 0.066CH_2O_{0.5}N_{0.15}$$

In questa reazione, circa l’89% dell’azoto in ingresso sia in forma di ammonio che di nitrito viene convertito in azoto gas N$_2$, mentre il restante 11% viene ossidato a nitrato per produrre gli elettroni equivalenti richiesti per la sintesi di nuova biomassa (Strous et al., 1998). Secondo l’equazione è necessaria una fonte di nitrito e di ammonio per soddisfare il rapporto molare 1,32 mol NO_2^-/mol NH_4^+.

Tale richiesta viene assolta anteponendo al processo anammox una fase di nitritazione parziale regolata in modo tale da ottenere l’ossidazione aerobica dell’azoto ammoniacale a nitrito con un rapporto in uscita circa 1:1.
Attraverso la combinazione del processo di nitritazione parziale e processo anammox, si ha una riduzione del fabbisogno di ossigeno del 60% rispetto al processo convenzionale di rimozione nitrificazione/denitrificazione, a causa della necessità di ossidare solo la metà dell’azoto ammoniacale e di ossidare questo a nitrito anziché a nitrato. Altro aspetto peculiare è l’assenza di richiesta di una fonte di carbonio organico per operare la denitrificazione (Jetten et al. 1998). E’ necessario quindi che per operare il processo anammox il rapporto C/N si mantenga su bassi valori, per evitare l’eccessiva crescita di biomassa eterotrofa denitrificante.

In Figura 1.5 viene riportato il precorso seguito dal processo anammox a confronto con il processo convenzionale di rimozione dell’azoto. Il processo anammox permette di ridurre l’azoto ammoniacale a gassoso percorrendo una via più breve e più economica.

![Diagram of comparisons between anammox and conventional deammonification processes](image.png)

Figura 1.5 Comparazione del processo anammox e della denitrificazione convenzionale

I microrganismi anammox sono inoltre caratterizzati da una lenta crescita il cui tasso è proposto essere 0,065 d⁻¹ (Strous et al. 1998), il che porta ad una duplicazione alla settimana. Analogamente al tasso di crescita, anche la costante
di decadimento dei batteri anammox risulta essere piuttosto lenta, si riportano in letteratura stime di 0,0048 d⁻¹ a 35° (Scaglione et al. 2009). L’attività specifica anammox è fortemente influenzata dal pH e dalla temperatura. Valori di pH ottimali sono compresi tra 6,7 e 8,3 unità e riguardo alla influenza della temperatura, l’intervallo di attività è compreso fra i 30° e i 40°C (Strous et al., 1999), con un valore di massima attività nel range compreso tra 35° e 40°C.

1.4.2 Inibizione dell’attività anammox

Il processo biologico anammox è inibito da diversi fattori quali i substrati stessi (ammonio e nitrito), la sostanza organica (tossica e non tossica), sali, metalli pesanti, fosfati e solfati in misura variabile in relazione alle condizioni di funzionamento, durata dell’esposizione e struttura fisica (granulare, sospesa o adesa).

Inibizione da Ammonio

La concentrazione di ammonio non risulta particolarmente inibente l’attività, in letteratura se ne riportano diversi valori. Hu et al. (2013) indicano che una concentrazione di 980 mg L⁻¹ per una durata di esposizione di più di una settimana di non abbia apportato significative perdite di attività. Dapena-Mora et al. (2007) riportano invece un valore IC₅₀ di 770 mg L⁻¹.

La componente legata all’ammonio sulla quale molti studi concordano essere la reale specie inibente è l’ammoniaca libera FA (free ammonia) con un valore IC₅₀ 38 mg FA L⁻¹ per prove di lunga di esposizione, ed un IC₅₀ minore nel caso di brevi esposizioni in ragione di 20-25 mg FA L⁻¹ (Fernández et al., 2012, Jin et al., 2012). Concentrazioni maggiori, variabili nel range di 35-40 mg FA L⁻¹ causano una inibizione totale dell’attività anammox, inoltre si riporta una tossicità intrinseca della FA per valori anche molto bassi pari a 1.7 mg FA L⁻¹, questo valore ampiamente minore di quelli sopra riportati fa ipotizzare che siano le
condizioni di prova e la tipologia di processo (biomassa sospesa, adesa o granulare) ad incidere fortemente sui risultati ottenuti.

Inibizione da nitrito

Numerosi studi si sono effettuati sull’inibizione dovuta al nitrito, confermando che sia questo il substrato che incide significativamente sulla stabilità del processo anammox in relazione alla concentrazione ed al tempo di esposizione. Studi poco recenti, Strous et al. (1999), riportano una inibizione completa per valori maggiori di 1 mg NO₂⁻N L⁻¹, peraltro reversibile dosando idrazina e idrossilammina. Lotti et al. (2012) suggeriscono che sia il tempo di esposizione ad incidere significativamente sull'inibizione. In apparenza gli studi sembrano essere discordi sul valore minimo incidente sull’attività riportando range molto variabili tra i 5 ed i 280 mg NO₂⁻NL⁻¹ operando tuttavia in condizioni estremamente diverse tali da non rendere confrontabili i risultati. Generalmente basse concentrazioni non inibiscono l’attività in condizioni di alimentazione continua e Strous et al.(1999) suggeriscono che la biomassa aggregata in granuli venga totalmente inibita da una concentrazione di 100 mg NO₂⁻N L⁻¹. Inoltre Dapena Mora et al. (2007) indicano un IC₅₀ pari a 350 mg NO₂⁻NL⁻¹. Data la variabilità dei dati di letteratura, non risulta ancora chiaro quale sia il valore esatto di inibizione (reversibile) e di tossicità (irreversibile) legato al contenuto di nitrito, in quanto questi risultano strettamente dipendenti dal tempo di esposizione e dalle caratteristiche del refluo influente.

Inibizione da COD

Il ruolo della sostanza organica sull’attività anammox può essere in ambito di ricerca uno spunto interessante circa la valutazione di applicabilità del processo anammox al trattamento di rimozione biologica contestuale di azoto e sostanza
organica. Relativamente al contenuto di COD Jin et al. (2012) indicano che concentrazioni superiori a 300 mg COD L\(^{-1}\) in condizioni di alimentazione continua portano ad una inibizione totale della attività anammox. Molinuevo et al. (2009) che operavano su refluo suino diluito indicano che un valore maggiore di 237 mgCOD L\(^{-1}\) ha inibito totalmente l’attività anammox, rendendo predominante la presenza di biomassa eterotrofa a scapito della più lenta attività autotrofa anammox.

Inibizione da contenuto salino

I trattamenti biologici sono generalmente inibiti dalla salinità a causa dello stress osmotico indotto sulla biomassa. Riguardo questo aspetto il processo anammox si trova ad essere un trattamento promettente nel caso di acque reflue ad alto contenuto salino per il fatto che la biomassa anammox sia attiva in ambiente marino (Murray et al. 1995).

Jin et al. (2012) affermano che una media concentrazione nel range di 3-15 g NaCl L\(^{-1}\) stimoli la formazione di biomassa granulare anammox, fissando di fatto un limite oltre il quale si evidenziano fenomeni di inibizione.

Maggiori concentrazioni inibiscono la biomassa in misura variabile della tipologia di sale testato. In particolare rispetto allo NaCl non si hanno effetti inibenti fino ad una concentrazione di 8.78 g L\(^{-1}\), mentre si comincia ad avere perdita di attività batterica per valori superiori a 7.45 g L\(^{-1}\) di KCl e 7.10 g L\(^{-1}\) di Na\(_2\)SO\(_4\).

Dapena Mora et al.(2007) valutano la concentrazione IC\(_{50}\) (corrispondente ad un dimezzamento dell’attività massima) relativa a tre diversi sali Na\(_2\)SO\(_4\), NaCl, e KCl rispettivamente in 11.36 g L\(^{-1}\), 13.46 g L\(^{-1}\) e 14.9 g L\(^{-1}\).
Risultando inoltre che l’inibizione dipenda oltre che dalla concentrazione, dall’adattamento della biomassa stessa a trattare reflui con carico salino.

Un aspetto interessante è dato dalla possibilità di acclimare progressivamente la biomassa ad operare con elevate concentrazioni saline, in particolare si possono ottenere valori di attività paragonabili a quelli in reflui dolci, acclimatando progressivamente la biomassa fino ad una concentrazione di circa 30 g L\(^{-1}\) con un limite massimo di 45 g L\(^{-1}\).

Gli autori riportano a tal riguardo che uno shock salino di 30 g NaCl/L causa di perdita di attività specifica anammox del 67.5% per una biomassa anammox non acclimatata, viceversa che una biomassa anammox adattata ha mostrato una riduzione 45.1%.

Jin et al. (2012) riportano che si è individuata nella specie \textit{Candidatus Kuenenia stuttgartiensis} la migliore capacità di adattamento operando con una concentrazione complessiva di 30 g/L comporta al 90% di NaCl e 10% KCl.

\textit{Inibizione da Antibiotici}

Gli antibiotici ad uso umano ed animale si ritrovano spesso nei relative reflui prodotti, in relazione alla presenza di questi, molti studi confermano l’inibizione sulla attività anammox.

Jin et al. (2012) hanno testato l’influenza diverse tipologie di farmaci, tra i quali Cloramfenicol con una inibizione del 98% in ragione di una concentrazione di 200 mg L\(^{-1}\), sulla penicillina mostrando una riduzione dell’attività del 36% per una concentrazione di 100 mg L\(^{-1}\) ed infine per l’ampicillina una concentrazione di 800 mg L\(^{-1}\) ha portato una riduzione di attività del 94%.
1.5 Applicazione del processo anammox a piena scala

Nonostante le potenzialità, questo processo ha incontrato diversi ostacoli per l’applicazione a piena scala. Primo fra tutti il lento tasso di crescita della biomassa, che a scala di laboratorio è stato ovviato utilizzando la tipologia di reattore a sequenza di fasi SBR.

Il primo impianto a scala reale è stato implementato per il trattamento di acque di rifiuto a Sluisjedijk, Rotterdam, in Olanda nel 2002. Più tardi in Austria, a Strauss, si è progettato e utilizzato un reattore monostadio in cui la parziale nitrazione ed il processo anammox avvengono nello stesso rettore in condizioni di O₂ limitante.

Attualmente la rimozione dell’azoto con processo anammox è applicata in circa 40 impianti a piena scala per il trattamento reflui municipali ricchi di azoto ammoniacale, in reattori operanti in condizioni mesofile.

Risultati incoraggianti si sono avuti anche per reflui di diversa natura, ad esempio nel trattamento del digestato e reflui farmaceutici (Hu et al. 2013, Scaglione et al 2012). L’applicazione del processo anammox su scala industriale, necessita di un accurato studio caso-specifico associato alla natura e quindi alle caratteristiche del refluo da trattare.

In generale ci sono due differenti strategie per ottenere la presenza di due substrati, ammonio e nitrito in rapporto 1:1, necessari all’utilizzo della tecnologia anammox. Il nitrito può essere prodotto in un reattore aerobico separato e successivamente trattato con biomassa anammox, come ad esempio il reattore SHARON-Anammox (Single reactor High activity Ammonia Removal Over Nitrite). Alternativamente è possibile realizzare il trattamento in un reattore unico in condizioni di O₂ limitante come ad esempio il reattore CANON.
Nella pratica esistono diverse denominazioni dei reattori, ma si riferiscono sempre a queste due tipologie di applicazione mono o bi-stadio.
Un'altra caratteristica che differenzia il processo è la natura aggregativa della biomassa anammox utilizzata, che in base a dove si è sviluppata la tecnologia ed il tipo di reattore può trovarsi in diverse conformazioni. In particolare si ritrova in forma sospesa in Svizzera ed Austria, di tipo granulare in Olanda, adesa su supporto in Svezia e Belgio ed in reattori di tipo ibrido in Austria. Le diverse terminologie utilizzate in relazione alla tipologia di biomassa sono riportate in Tabella 1.1.

Tabella 1.1 Elaborazione di tabella tratta da Hu et al. (2013)

<table>
<thead>
<tr>
<th>TIPOLOGIA DI BIOMASSA</th>
<th>NOME DEL REATTORE</th>
<th>NRR [Kg N/m3 d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sospesa</td>
<td>Single suspended-growth SBR</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>NAS</td>
<td>0.26</td>
</tr>
<tr>
<td>Granulare</td>
<td>CANON</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>SHARON-anammox</td>
<td>0.6</td>
</tr>
<tr>
<td>Ibrida</td>
<td>DEMON</td>
<td>1.1</td>
</tr>
<tr>
<td>Adesa</td>
<td>ANITA-Mox</td>
<td>0.3-0.4</td>
</tr>
<tr>
<td></td>
<td>DeAmmon</td>
<td>0.05 [g N/m2 d]</td>
</tr>
<tr>
<td></td>
<td>OLAND</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>Aerobic deammonification</td>
<td>0.31-0.45</td>
</tr>
<tr>
<td></td>
<td>SNAP</td>
<td></td>
</tr>
</tbody>
</table>
2. SCOPO DELLA TESI

L’obiettivo di questo lavoro sperimentale è di valutare la stabilità del processo di rimozione di azoto con biomassa anammox in relazione ad una matrice reale non diluita, derivante da digestato agro-zootecnico.

Per la valutazione della stabilità del processo si sono monitorati i principali parametri chimico-fisici (pH, temperatura, contenuto di solidi volatili) e misure dell’attività batterica SAA (Specific Anammox Activity), con lo scopo di verificare l’efficienza di rimozione in relazione al quantitativo di azoto caricato e alla eventuale interferenza della matrice influente.
Nel contempo si è ricercata, attraverso prove in batch con misura manometrica, la presenza di agenti inibitori della SAA.

In particolare si è valutata l'inibizione in relazione alla decrescente diluizione della frazione solubile della matrice reale e l'interazione tra l'attività batterica per diverse concentrazioni di sale.
Sono infine state effettuate prove per stimare la presenza di biomassa eterotrofa nel reattore denitrificante in competizione con la biomassa anammox.
3. MATERIALI E METODI

3.1 Metodi analitici

In questo paragrafo vengono riportate la metodica e gli standard operativi che si sono seguiti nello svolgere le analisi chimiche o fisiche inerenti alla gestione del reattore SBR allo svolgimento delle prove manometriche.

3.1.1 Analisi delle forme azotate e COD

Per la determinazione delle concentrazioni di ione ammonio \(NH_4^+ - N \), ione nitrito \(NO_2^- - N \), ione nitrato \(NO_3^- - N \) e COD si sono utilizzati i test in kit con lettura spettrofotometrica. In particolare si sono utilizzati i kit commerciali (Hach Lange GmbH, Dusseldorf, Germany) con misura su spettrofotometro (Lange Xion500).

La procedura di misurazione prevede innanzitutto la filtrazione del campione, su filtro in acetato di cellulosa a porosità 0,45 μm, atta a rimuovere la frazione sospesa che rende problematica la misura di tipo ottico. Successivamente, in base al valore di concentrazione attesa, si opera una diluizione tale da far cadere il valore entro il range di rilevabilità specifico di ogni kit.

Infine si può leggere la misura con lo strumento ottico; più nello specifico mentre per i campioni delle specie azotate la rilevazione con lo spettrofotometro può essere effettuata rapidamente (circa 10-15 min), il kit per la misurazione del COD prevede una fase di predigestione a 148 °C per 2 ore e solo a campione raffreddato, può avvenire la lettura.

In Tabella 3.1 vengono riportate le specifiche dei kit utilizzati con il relativo range di rilevabilità.
Tabella 3.1 Elenco dei kit test utilizzati con relativo range di rilevabilità

<table>
<thead>
<tr>
<th>PARAMETRO CHIMICO</th>
<th>NOME KIT</th>
<th>RANGE MISURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_2^-$-N</td>
<td>Lange LCK 341</td>
<td>0,015 ÷ 6,0 mgN L$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Lange LCK 342</td>
<td>0,6 ÷ 6,0 mgN L$^{-1}$</td>
</tr>
<tr>
<td>NH$_4^+$-N</td>
<td>Lange LCK 304</td>
<td>0,015 ÷ 2,0 mgN L$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Lange LCK 303</td>
<td>2 ÷ 47 mgN L$^{-1}$</td>
</tr>
<tr>
<td>NO$_3^-$-N</td>
<td>Lange LCK 339</td>
<td>0,23 ÷ 13,5 mgN L$^{-1}$</td>
</tr>
<tr>
<td>COD</td>
<td>Lange LCK 314</td>
<td>15 ÷ 150 mg COD L$^{-1}$</td>
</tr>
</tbody>
</table>

Per le misure di azoto nitrico e del COD si è rilevata, in precedenti sperimentazioni, una interferenza dovuta alla presenza di nitritio che porta a sovrastimare la concentrazione delle due specie.

In particolare dovendosi rilevare la concentrazione di azoto nitrico in un campione in cui vi era la presenza di una concentrazione non nulla di azoto nitroso si dosava una quantità stechiometrica di acido solfammico NH$_2$HSO$_3$ che reagisce con il nitrito a dare solfato secondo la reazione:

\[
NO_2^- + 2 NH_2HSO_3 + 4H^+ \rightarrow 2N_2 + 4H_2O + HSO_3O^-
\]

Mentre per quanto riguarda l’interferenza sulla misura di concentrazione del COD si ha che ogni mgN – NO$_2^-$/L apporta un contributo di 1,19 mg COD/L; valore che quindi deve essere sottratto alla misura finale del COD.

3.1.2 Analisi dei solidi sospesi

Per la determinazione di solidi sospesi (totali e volatili), si è utilizzata la metodica standard APAT IRSA 2090.
I solidi sospesi totali presenti in un campione di volume noto vengono raccolti per filtrazione su un apposito filtro carta GF/C dalla porosità di 0,45 μm, precedentemente essiccato e pesato.

Ultimata la filtrazione si pone il filtro in forno ad una temperatura di 103-105°C per un’ora, una volta raffreddato si pone in essiccatore e si procede alla pesatura dei soliti sospesi totali (SST) che rapportati al volume forniscono la concentrazione:

\[\text{SST} \left(\frac{mg}{L} \right) = \frac{(M_1 - M_0)}{V} \cdot 1000 \]

Dove:
- \(M_1 \) (mg) è il peso del filtro e del residuo rilevato dopo essiccamento;
- \(M_0 \) (mg) è il peso del filtro;
- \(V \) (ml) è il volume del campione filtrato.

Successivamente il medesimo filtro con residuo viene incenerito in un forno a muffola ad una temperatura di 550°C per un'ora. Dopo il raffreddamento e l’essiccamiento si pesa nuovamente il filtro e si determina il residuo fisso ossia i solidi sospesi non volatili (SSNV).

Infine per differenza tra il peso dei solidi sospesi totali ed il residuo fisso si calcola il contenuto di solidi sospesi volatili presenti, rapportando la massa al volume del campione filtrato si ottiene:

\[\text{SSV} \left(\frac{mg}{L} \right) = \frac{(M_1 - M_2)}{V} \cdot 1000 \]

Dove:
- \(M_1 \) (mg) è il peso del filtro e del residuo rilevato dopo essiccamento;
- \(M_2 \) (mg) è il peso del filtro e del residuo rilevato dopo incenerimento;
- \(V \) (ml) è il volume del campione filtrato.
La misura dei solidi volatili è uno strumento di fondamentale importanza nella gestione di una reattore biologico. Esso è utilizzato per fornire in maniera più o meno precisa la quantità di biomassa presente nel volume campionato.

3.2 Reattore a sequenza di fasi SBR

Il reattore a scala di laboratorio, prodotto dall’azienda Pharmaring, è composto da tre unità fondamentali:
- il fermentatore
- l’unità elettromeccaniche
- l’unità logica;

in costante comunicazione tra loro.

Il controllo sul processo viene esercitato principalmente attraverso il touch-screen montato sull’unità elettromeccanica e secondariamente attraverso un PC connesso all’unità logica.

Il fermentatore, della capacità di 4 litri, è avvolto da una camicia esterna nella quale è in circolo acqua riscaldata alla temperatura costante di 35 °C. Inoltre come è possibile notare in Figura 3.2, al fermentatore è stato applicato un rivestimento di alluminio al fine di riparare il mixed liquor, la miscela di biomassa e surnatante, dalla luce onde evitare una indesiderata crescita algale.

L’unità meccanica consta delle seguenti apparecchiature:
- 5 pompe peristaltiche adibite alle funzioni di scarico, scarico di emergenza da un troppopieno, carico, dosaggio di acido e dosaggio di base per il controllo del pH;
- 2 elettrovalvole, adibite scopo di insufflare una miscela gassosa (95% N₂ e 5% CO₂) atta a mantenere le condizioni anaerobiche
- 5 sonde che monitorano in continuo, rispettivamente potenziale redox, temperatura, pressione, concentrazione di ossigeno disciolto e pH;
• il miscelatore meccanico ad asse verticale a velocità regolabile fra i 100 e 1000 rpm, costituito da 3 ordini di palettature rettangolari montate a differenti altezze su di un asse, collegato all’esterno del reattore ad un motore elettrico.

All’esterno sono poi fondamentali:
• il contenitore ermetico di materiale plastico collassabile contenente l’alimento, ed il contenitore adibito ad accogliere lo scarico;
• la bombola contenente la miscela gassosa (95% N₂ e 5% CO₂);
• un sistema di controllo della sovrappressione del gas nella testa del reattore;
• costituito da uno sfiato immerso sottobattente in un cilindro, così da mantenere una sovrappressione di circa 20 millibar;
• 2 bottiglie contenenti acido (HCl 0,1N) e base (NaHCO₃ 1N) utilizzate per il controllo del pH.

In Figura 3.1 è riportato il dettaglio della testa del fermentatore con in evidenza tutte le connessioni utili alla gestione ed al monitoraggio del reattore.

Figura 3.1 Componenti della testa del fermentatore
In Figura 3.2 viene invece riportata una fotografia della struttura completa del reattore SBR dove sono poste in evidenza le unità di controllo precedentemente descritte.

Il reattore SBR di laboratorio contiene biomassa granulare, inoculata il 4 maggio del 2012 (Figura 3.3) proveniente dal reattore anammox a scala reale dell'impianto di depurazione di Rotterdam, Dokhaven-Sluisjesdijk (Olanda).
3.2.1 Funzionamento SBR

Il reattore SBR è caratterizzato dall’operare le diverse fasi di trattamento in un unico stadio, in particolare la successione avviene secondo una separazione temporale e non spaziale come avviene nei processi ad alimentazione continua.

Un ciclo completo di funzionamento consiste in 5 fasi:

- **carico (fill)**, l’influenza da trattare viene caricato, operando contestualmente la miscelazione per permettere lo sviluppo immediato della reazione; in questa fase viene inoltre operato un flussaggio dall’alto con miscela gassosa (al 95% N₂ ed al 5% CO₂) onde evitare indesiderate infiltrazioni di O₂.
- **reazione (react)**, il mixed liquor è mantenuto in condizioni di miscelazione completa;
• **sedimentazione (settle)**, condotta in condizioni di quiete permette la sedimentazione della biomassa sul fondo per permettere che la successiva fase di scarico non operi dilavamento della stessa;
• **scarico (draw)**, il surnatante viene scaricato in condizioni di quiete fino ad un livello prestabilito;
• **inattività (iddle)**, il mixed liquor viene flussato dal basso per permettere lo strippaggio dell'azoto gassoso prodotto.

Il reattore SBR a scala di laboratorio è impostato per effettuare 3 cicli completi al giorno da 8h l'uno; la durata di ogni singola fase è riportata in **Figura 3.4**.

![Figura 3.4 Suddivisione della fasi del ciclo durante la sperimentazione](image)

La scelta di una fase di carico così lunga (5h e 30 min) rispetto alle altre è dettata dalla necessità di mantenere un’alimentazione il più graduale possibile senza causare effetti di inibizione dovuti all’instaurarsi di elevate concentrazioni di nitrito (potenzialmente inibente come riportato nel paragrafo 1.4.2).

La presente sperimentazione è stata condotta alimentando matrice PARNIT al 100%. Tuttavia nel periodo finale della sperimentazione, a causa di un black out elettrico, che ha di fatto interrotto la miscelazione ed il flussaggio del gas atto a mantenere condizioni di anaerobiosi, è seguita una inibizione della biomassa a causa di una probabile infiltrazione di O₂.
Per tale motivo, si è dovuto diluire la matrice reale PARINT con una matrice sintetica per permettere una lenta ripresa della normale attività, si è terminato il lavoro sperimentale con una percentuale di matrice PARNIT del 50%.

La gestione del reattore SBR è stata organizzata in maniera tale da avere ogni settimana il dato aggiornato della massima attività specifica anammox (SAA) il quale ha permesso di impostare il carico volumetrico di azoto NLR (Nitrogen Loading Rate).

Durante la sperimentazione i valori del carico di azoto NLR, riportati in Figura 3.5 sono variati, in relazione alla variazione dell’attività specifica e alla percentuale di matrice PARNIT, da un minimo di 0,062 gN L\(^{-1}\)d\(^{-1}\) ad un massimo di 0,65 gN L\(^{-1}\)d\(^{-1}\). Definito il valore del NLR compatibile con la capacità di rimozione da parte della biomassa anammox, la preparazione dell’alimento veniva effettuata aggiustando con sali di NaNO\(_2\) e NH\(_4\)Cl al fine di portare ai valori desiderati.

In particolare le concentrazioni di nitrito e ammonio venivano corrette impostando il rapporto \(NO_2^-/NH_4^+\) uguale a 1,3 secondo la stechiometria anammox.

![Figura 3.5 Valori di NLR e percentuale di refluo reale applicato durante la sperimentazione](image-url)
Infine in Figura 3.6 sono riportate le concentrazioni in ingresso di $N - NO_2^-$, $N - NH_4^+$ e N_{TOT} nel tempo, espresse in g N/L.

![Figura 3.6 Concentrazioni di $N-NH_4$, $N-NO_2$ E N_{TOT} nel tempo](image)

Figura 3.6 Concentrazioni di $N-NH_4$, $N-NO_2$ E N_{TOT} nel tempo

3.2.2 Caratteristiche dell’influente

Nel corso di questa sperimentazione si è alimentato il reattore SBR con matrice reale PARNIT prevalentemente al 100% (ovvero senza diluizione), questa matrice proveniente dal reattore SBR PARNIT sito nell’azienda agricola di CorteGrande,(CR) ha avuto nel tempo contenuti variabili di ammonio, nitrito, nitrato e CODs.

Il contenuto di ammonio e nitrito alimentato al reattore SBR di laboratorio è poi stato modificato in base alla differenza tra il predefinito carico in alimentazione e quello del refluo tal quale.

La matrice reale PARNIT è settimanalmente prelevata dall’impianto di Cremona ove avviene il processo di trattamento di nitritazione parziale, trasferita e stoccata in cella frigorifera a 4 °C.
Si procede quindi alla analisi delle forme azotate, del COD e dei solidi per permettere la preparazione dell’alimento secondo i parametri fissati di carico e rapporto stechiometrico NO_2^-/NH_4^+. In Tabella 3.2 si riportano le statistiche di base per la matrice PARNIT alimentata nel corso della sperimentazione.

Tabella 3.2 Statistiche di base dei principali parametri dell’influente PARNIT

<table>
<thead>
<tr>
<th>PARAMETRO</th>
<th>UNITA’ DI MISURA</th>
<th>VALORE MINIMO</th>
<th>VALORE MAX</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrazione N-NH$_4^+$</td>
<td>mg N /L</td>
<td>170</td>
<td>681</td>
<td>456 ± 163</td>
</tr>
<tr>
<td>Concentrazione N-NO$_2^-$</td>
<td>mg N /L</td>
<td>280</td>
<td>674</td>
<td>511 ± 174</td>
</tr>
<tr>
<td>Concentrazione N$_{Tot}$</td>
<td>mg N /L</td>
<td>450</td>
<td>1355</td>
<td>967 ± 321</td>
</tr>
<tr>
<td>Concentrazione CODs</td>
<td>mg COD$_s$/L</td>
<td>994</td>
<td>1847</td>
<td>1459 ± 162</td>
</tr>
<tr>
<td>Rapporto NO$_2^-$/NH$_4^+$</td>
<td>-</td>
<td>0,9</td>
<td>1,6</td>
<td>1,2 ± 0,3</td>
</tr>
</tbody>
</table>

Il processo con biomassa autotrofa anammox si caratterizza per la buona rimozione dell’azoto in relazione al basso rapporto C/N.

Il rapporto C/N nella matrice PARNIT alimentata al reattore SBR di laboratorio deriva quindi dal rapporto tra il CODs (corretto sottraendo l’influenza della concentrazione di nitrito presente nel campione) e la concentrazione di Ntot calcolata come somma delle concentrazioni di ione ammonio, nitrito e nitrato. Come si nota dalla Figura 3.7 il rapporto si è mantenuto costante per buona parte della presente sperimentazione in ragione di 0,6, è andato poi ad assumere un valor medio maggiore con un rapporto C/N di 1,6.

L’aumento del rapporto carbonio su azoto, comporta lo sviluppo di biomassa eterotrofa denitrificante, la cui presenza è stata valutata attraverso una delle prove manometriche.
3.2.3 Gestione e monitoraggio del reattore SBR

La gestione del reattore è stata programmata eseguendo nell’arco della settimana tipo le seguenti attività:

- Lunedì: analisi chimica delle forme azotate, COD e solidi sospesi (volatili e totali) sul campione di uscita cumulata (venerdì- lunedì);
- Mercoledì: saggio di attività batterica SAA;
- Giovedì: analisi chimica delle forme azotate, COD e solidi dell’uscita cumulata (lunedì-giovedì) e caratterizzazione chimica del refluò PARNIT;
- Venerdì: preparazione dell’alimento in base ai dati caratteristici del matrice PARNIT e del dato aggiornato del NLR_{max}.

Inoltre nel periodo di sperimentazione sono state eseguite due prove di analisi granulometrica della biomassa presente nel reattore. Lo strumento utilizzato per l’analisi è il modello CILAS 1180 che consente in la misura delle particelle tra 0,04 e 2.500 micron. Le particelle sottili sono misurate mediante diffrazione con il metodo Fraunhofer, mentre le particelle grossolane sono misurate con un real-
time Fast Fourier Transform dell’immagine ottenuta con una fotocamera CCD, dotata di un’unità di elaborazione digitale.

3.2.4 Prove di attività della biomassa anammox

Le prove di attività rivestono un ruolo cruciale nella conduzione del lavoro sperimentale.

Esse permettono di determinare sia il carico di azoto NRR_{max} (maximum Nitrogen Removal Rate) che rappresenta la massima capacità di rimozione della biomassa complessivamente presente, sia il rapporto di consumo tra nitrito e ammonio indice della stechiometria della reazione.

La prova di attività prevede l’immissione istantanea (spike) di una quantità nota di N-NO_2 e N-NH_4 che ne realizzi un rapporto tra le quantità di 1.3. L’immissione è condotta forando con una siringa il setto posto in testa al fermentatore mantenendo il reattore in completa miscelazione.

Passati 5 minuti si permette alla biomassa di sedimentare e appena possibile si estrae un campione di surnatante, collegando una siringa alla tubazione di uscita. In particolare la procedura corretta prevede di eliminare il primo volume estratto per permettere la completa pulizia delle tubazioni di uscita e l’avvinamento della siringa.

In seguito, ad intervalli regolari, si effettuano altre 2 o 3 campionamenti; le concentrazioni di ammonio e nitrito analizzate, vengono riportate in funzione del tempo.

Dal calcolo della retta di regressione si ricava la pendenza che fornisce il valore di NRR_{max} espresso in mg N L$^{-1}$min$^{-1}$. In Figura 3.8 viene riportato un esempio di un grafico ricavato dalla prova di attività.
Le rette di regressione in Figura 3.8 rappresentano il consumo di azoto nitroso, ammoniacale e totale in funzione del tempo.

Moltiplicando il valore del NRR\(_{\text{max}}\) per il volume del reattore è possibile calcolare il carico di azoto NRR\(_{\text{max}}\) espresso in (gN/d) rimuovibile. Questo valore viene rapportato al carico di azoto applicato al reattore NLR, per avere una stima percentuale del carico che si sta applicando rispetto a quello massimo applicabile.

\[
NRR_{\text{max}} = \frac{NRR_{\text{max}} \left(\frac{g}{L \cdot \text{min}} \right) \cdot 60 \left(\frac{\text{min}}{h} \right) \cdot 24 \left(\frac{h}{d} \right) \cdot V (L)}{1000 \left(\frac{mg}{g} \right)}
\]

\[
\text{Carico applicato (\%)} = \frac{NLR}{NRR_{\text{max}}}
\]
L’altra informazione ricavabile dalla elaborazione dei risultati della prova è il rapporto di consumo NO_2^-/NH_4^+. Esso permette di stabilire se vi siano o meno reazioni concomitanti rispetto alla attività anammox. Dal valore del rapporto di consumo misurato rispetto a quello stechiometrico della biomassa anammox pari a 1,32 è possibile dare una valutazione di massima della tipologia di reazione concomitante intervenuta. In particolare un valore del rapporto maggiore di 1,32 indica un consumo di azoto nitroso da parte della biomassa eterotrofa, mentre un valore inferiore è possibile attribuirlo ad un maggiore consumo di azoto ammoniacale da biomassa AOB. Essa in teoria a causa della assenza di ossigeno, non dovrebbe essere in grado di operare nel reattore. Per tale motivo il valore del carico NRR$_{max}$ viene calcolato in base al solo consumo di azoto ammoniacale, essendo il consumo di questo substrato nelle condizioni anaerobiche mantenute nel reattore a differenziare l’attività anammox da quella denitrificante ad opera di biomassa eterotrofa. La correzione del dato del NRR$_{max}$ si opera attraverso la seguente relazione:

$$NRR_{max} \left(\frac{gN}{L \cdot d} \right) = NH_4RR \left(\frac{gN}{L \cdot d} \right) + NH_4RR \left(\frac{gN}{L \cdot d} \right) \cdot 1,32 \left(\frac{gNO_2^-}{gNH_4^+} \right)$$

Si procede poi la stima dell’errore standard SE commesso nel calcolo del NRR$_{max}$. In particolare l’errore è calcolato se i punti di campionamento risultano essere maggiori o uguali a 3, applicando la seguente relazione:

$$SE = \frac{\sigma}{n}$$

dove:

σ è la deviazione standard;

n è il numero di campionamenti.
3.3 Prove manometriche

Le prove manometriche per la determinazione dell’attività biologica sotto diverse condizioni, sono state eseguite con lo strumento Oxitop® Measuring Head con la metodica specifica per la biomassa anammox introdotta da Dapena-Mora et al. (2007) e poi modificata da Scaglione et al. (2009).

Il metodo manometrico prevede la conduzione di prove in batch in cui viene misurata a intervalli regolari la sovrappressione che si genera all’interno di un recipiente ermeticamente sigillato.

Partendo dall’ipotesi che la miscela sia saturata di N₂ e che la quantità di gas prodotta durante la prova non si disciolga nel liquido (ossia ne venga totalmente misurata la corrispondente pressione esercitata sulla testa) la sovrappressione generata è direttamente riconducibile alla produzione di gas da parte della biomassa attraverso la nota legge dei gas perfetti.

\[P \cdot V_{testa} = n \cdot R \cdot T \]

Dove:
- P è il valore di pressione misurato dalla testa (atm)
- \(V_{testa} \) è il volume dello spazio di testa della bottiglia (L)
- n sono le moli di azoto in fase gassosa (mol)
- R è la costante universale dei gas (0,0821 L atm K⁻¹ mol⁻¹)
- T è la temperatura della bottiglia (K)

Nella equazione sopra riportata, sono a priori noti i valori di temperatura, la costante universale di gas ed il volume di testa.

Attraverso il valore di pressione fornito dal controller, si è quindi in grado di calcolare il numero di moli di azoto prodotte in fase gassosa.

\[n \ (mol) = P \cdot V_{testa} / R \cdot T \]
Si determina poi il volume (ml) di N\textsubscript{2} prodotto semplicemente moltiplicando il numero di moli per il volume molare corrispondente alle condizioni effettive di temperatura e pressione:

\[V \text{ (ml)} = n \text{ (mol)} \cdot \frac{V_{\text{eff}} \left(\frac{L}{mol} \right)}{1000} \]

Con questa procedura è possibile calcolare il volume di azoto per ogni dato di pressione ed il rateo complessivo di consumo.

Per una generica prova si allestiscono diverse bottiglie contenenti la biomassa ed il refluo, una delle quali ha il ruolo di bianco di prova, mentre nelle altre si effettuano modifiche e test a seconda della finalità della prova.

Una volta riempite, per mantenere le condizioni di anaerobiosi si opera un flussaggio del mixed liquor (con miscela di gas 95\% N\textsubscript{2} e 5\% CO\textsubscript{2}); si chiude la
bottiglia e tramite un rubinetto si flussa anche lo spazio di testa. Successivamente vengono poste in un termostato alla temperatura costante di 35°C e mantenute in agitazione continua tramite un agitatore magnetico. L'arco di durata di una prova completa è di circa una settimana, in cui ogni giorno si procede con l'iniezione tramite spike di concentrazioni note di ammonio e nitrito.

Passate 24h si procede a scaricare gli andamenti di pressione nel tempo di prova attraverso il controller OxiTop; successivamente si prelevano con una siringa piccoli volumi (2-5 ml) di surnatante da tutte le bottiglie e si determinano le concentrazioni delle forme di azoto solubili di interesse (N-NH₄, N-NO₂ e N-NO₃).
Nello specifico si usa effettuare le prove in condizioni di limitazione da nitrito, questo permette di visualizzare graficamente l’esaurimento di tale specie.

Una volta terminata la prova, si aprono le bottiglie e si preleva un campione di mixed liquor, mantenuto in agitazione, di circa 15ml per eseguire la stima dei solidi sospesi volatili attraverso i quali si calcola l’attività specifica della biomassa anammox (SAA).

Tramite questa metodica sono state effettuate 3 diverse prove volte a valutare:

I. L’inibizione dell’attività batterica anammox al variare della percentuale di matrice PARNIT presente; riproponendo in scala minore la progressione di diluizione già seguita con il reattore SBR da laboratorio;

II. l’attività batterica della biomassa contenuta nel reattore SBR; separatamente attività anammox ed attività eterotrofa;

III. l’inibizione da salinità; effettuata con NaCl, a diverse concentrazioni con due biomasse anammox, una acclimatata ad un contenuto salino, ed una non acclimatata (di seguito indicata con NNA).

Nella prova I si è indagata la diminuzione di attività batterica anammox allestendo 4 bottiglie contenenti la stessa quantità di biomassa ma differenziate per la percentuale di matrice PARNIT con cui la biomassa è stata posta a contatto (0% 50%, 75% e 100%).

Nello specifico, la matrice PARNIT è stata preliminarmente trattata con biomassa eterotrofa per la rimozione totale del nitrito in essa contenuto. La rimozione del nitrito è condizione strettamente necessaria alla conduzione delle prove in batch, in quanto queste sono effettuate sempre in condizioni nitrito limitante. Successivamente sull’effluente dal trattamento della matrice PARNIT
si è operata una centrifugazione spinta a 5000 g per 15 minuti per rimuovere la frazione sospesa (centrifuga tipologia Biofuge primo R Heraeus). Con questa procedura si è ottenuta una matrice PARNIT a concentrazione di nitrito nulla, assenza di sospesi e contenuto di azoto ammoniacale dell'ordine dei 200 mg/L.

Una volta effettuata la prima prova relativa ai bianchi per ogni diluizione, si è proceduto a sostituire i surnatanti. La biomassa anammox utilizzata per questa prima prova è una biomassa stoccata in laboratorio con la caratteristica principale di non essere mai entrata in contatto con la matrice PARNIT. Questo fatto ha permesso di investigare l’inibizione su di una biomassa non acclimatata al trattamento di tale matrice reale.

Le bottiglie denominate con le lettere A, B C e D erano così composte:

- **A bianco (0%)**: 30ml di biomassa anammox, 700 ml di refluo sintetico con spike di ammonio, nitrato e nitrito limitante;
- **B (50%)**: 30 ml di biomassa anammox, 350 ml refluo sintetico + 350 ml di refluo PARNIT con spike di ammonio, nitrato e nitrito limitante;
- **C (75%)**: 30 ml di biomassa anammox, 125 ml refluo sintetico + 525 ml di refluo PARNIT con spike di ammonio, nitrato e nitrito limitante;
- **D (100%)**: 30 ml di biomassa anammox, 700 ml di refluo PARNIT con spike di ammonio, nitrato e nitrito limitante.

Nella prova II si sono allestite in totale 4 bottiglie contenenti la biomassa operante nel reattore SBR di laboratorio, con il fine di quantificare la presenza relativa delle due specie presenti: colonie autotrofe anammox ed eterotrofe denitrificanti, sviluppatesi nel tempo a causa della presenza (seppur limitata) di carbonio degradabile presente nell’influenente (PARNIT).
Attività anammox

La prova per valutare l’attività specifica della biomassa anammox, è stata effettuata minimizzando l’interferenza dei batteri denitrificanti. Si è usata matrice sintetica (COD nullo) e si sono effettuati spike di ammonio, nitrito e nitrato. Le concentrazioni iniziali erano per le due bottiglie di 63mg NH$_4$N/L, 63 mg NO$_2$-N/L e 38 mg NO$_3$-N/L. Il valore di attività è stato ricavato dalla elaborazione delle curve di pressione ottenute suddivise per la concentrazione di SSV della bottiglia.

Attività denitrificante

Si è valutata l’attività denitrificante dosando acetato di sodio, come fonte di carbonio prontamente degradabile, in difetto. Ciò permette di valutare anche l’attività endogena. Inoltre sono state verificate le due possibili vie utilizzate dai batteri denitrificanti; dosando in una bottiglia solo nitrito, e nell’altra solo nitrato. Inoltre in entrambe le bottiglie è stata utilizzata della soda in pasticche, inserite in una apposita capsula all’interno della bottiglia, per operare l’assorbimento della CO$_2$ generata nel corso della denitrificazione. Questa procedura permette di considerare la sovrappressione misurata dalla testa Oxitop come produzione di solo N$_2$.

Le bottiglie denominate SBR1, SBR2, NO2, NO3 erano così composite:
- SBR1: 30 ml di biomassa dell’SBR 700 ml refluo sintetico con spike di ammonio 63 mg/l, nitrato 37 mg/l e nitrito limitante 63 mg/L;
- SBR2: 30 ml di biomassa dell’SBR 700 ml refluo sintetico con spike di ammonio 63 mg/l, nitrato 37 mg/l e nitrito limitante 63 mg/L, nitrato e nitrito limitante;
• NO2: 30 ml di biomassa dell’SBR 700 ml refluo sintetico + acetato di sodio in difetto (50% stehiometrico) 232 mg/L, spike di nitrito 63 mg/L;
• NO3: 30 ml di biomassa dell’SBR 700 ml refluo sintetico + acetato di sodio in difetto (50% dello stehiometrico) 385 mg/L, spike di nitrato 63 g/L.

Nella prova III si è valutata l’eventuale inibizione dell’attività anammox dovuta alla salinità.

Si sono allestite 5 bottiglie, delle quali 3 contenenti biomassa anammox contenuta nel reattore SBR, nelle restanti la biomassa anammox non acclimatata.

Per tutte le bottiglie si è utilizzato refluo sintetico e si è dosato NaCl per valutare l’inibizione in concentrazione pari all’IC50 e una concentrazione corrispondente alla metà del valore IC50 per la biomassa anammox del reattore, e il solo valore IC50 per la biomassa non acclimatata.

L’IC50 è la concentrazione tale per cui l’attività batterica specifica SAA si riduce del 50%, Dapena Mora et al. (2007) indicano un valore specifico per la biomassa anammox di 13,46 g NaCl/L.

Le diverse bottiglie sono state così allestite:
• SBR BIANCO: 25 ml di biomassa del reattore SBR + 700 ml di refluo sintetico;
• SBR IC50/2: 25 ml di biomassa del reattore SBR + 700 ml di refluo sintetico + 7 g NaCl;
• SBR IC50: 25 ml di biomassa del reattore SBR + 700 ml di refluo sintetico + 13,5 g NaCl;
• ROT. BIANCO: 25 ml biomassa NNA + 700 ml di refluo sintetico;
• ROT. IC50/2: 25 ml biomassa NNA + 700 ml di refluo sintetico + 7 g NaCl.
3.3.1 Elaborazione e trattamento dati

I dati di sovrappressione misurati dal controller OxiTop devono subire una elaborazione atta a ricavare informazioni ed interpretare il risultato.

Figura 3.11 Esempio dell’andamento nel tempo della produzione di N$_2$ elaborata dai dati OxiTop

In Figura 3.11. è riportato un esempio di andamento della produzione di N$_2$ ottenuto elaborando i dati di pressione scaricati dal controller Oxitop.

In questo modo si ricava si è calcolato il volume di N$_2$ lordo (in blu nella figura). E’ una considerata produzione lorda, poichè una quota della del gas prodotto è dovuta alla contestuale attività eterotrofa denitrificante. Per calcolare la produzione netta di N$_2$ da parte della sola biomassa anammox, si è proceduto ad una ulteriore elaborazione del dato.

Andando ad analizzare l’andamento della curva si possono osservare tre tratti con diversa pendenza: un piccolo tratto iniziale di acclimatazione, dovuto al riscaldamento della bottiglia a fenomeni non biologici e sviluppo della tensione
di vapore, un secondo tratto rettilineo caratterizzato da un’intensa attività batterica, poi un netto cambio di pendenza (“ginocchio”) a cui segue un tratto di natura rettilinea. Il punto in cui la pendenza diminuisce marcatamente indica l’esaurimento del nitrito dosato per tutte le prove in concentrazione limitante rispetto all’ammonio.

È proprio l’ultimo tratto che si deve associare alla produzione di N$_2$ relativa alla denitrificazione eterotrofa che utilizza il nitrato presente, frutto della produzione dell’attività anammox in piccola parte e da quello dosato ad inizio prova. Sottraendo quest’ultima pendenza ai volumi di N$_2$ precedentemente calcolati, si ottiene una nuova serie di dati dei volumi N$_2$ netti (nel grafico in verde). Infine per calcolare il rateo di rimozione, si rapporta la pendenza del solo tratto centrale, relativo alla sola biomassa anammox, per la concentrazione degli SSV della miscela.

\[
Rateo \left(\frac{g \ N_2}{g \ SSV \ \text{d}} \right) = \frac{pendenza \left(\frac{g \ N_2}{L \ d} \right)}{SSV \left(\frac{g \ SSV}{L} \right)}
\]

3.4 Preparazione soluzioni

3.4.1 Preparazione alimento al reattore SBR

Per la maggior parte del periodo di questa sperimentazione, il refluo alimentato al reattore di laboratorio è stato l’effluente del reattore PARNIT al 100% (non diluito).

A scadenza settimanale si effettuava la caratterizzazione del refluo PARNIT, proveniente dall’azienda agricola di CorteGrande (Cr) sopracitata, analizzando le specie azotate ed il COD solubili e si procedeva alla preparazione dell’alimento. Avendo fissato il carico di azoto ed il volume da alimentare venivano aggiunte:
• le soluzioni di micro e macro nutrienti specifiche per la biomassa anammox
• sali di NaNO₂ e NH₄Cl in base alle caratteristiche del refluo PARNIT atti ad aggiustare le concentrazioni in ragione del rapporto stechiometrico applicato;
• 1 g bicarbonato di sodio per ogni litro di alimento preparato.

Per la gestione del reattore SBR si sono preparate diverse soluzioni concentrate in particolare:

• soluzione di refluo sintetico di micro e macro nutrienti (Mineral medium, Sol I e Sol II);
• soluzioni saline per la prova manometrica di inibizione da salinità (NaCl);
• soluzioni di substrato azotato ($NH_4^+ - N, NO_2^- - N, NO_3^- - N$).

<table>
<thead>
<tr>
<th>Tabella 3.3 Composizione chimica Mineral medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral Medium</td>
</tr>
<tr>
<td>NaHCO₃</td>
</tr>
<tr>
<td>KH₂PO₄</td>
</tr>
<tr>
<td>CaCl • 2 H₂O</td>
</tr>
<tr>
<td>MgSO₄ • 7 H₂O</td>
</tr>
<tr>
<td>HCl • 1N</td>
</tr>
<tr>
<td>Soluzione I</td>
</tr>
<tr>
<td>Soluzione II</td>
</tr>
</tbody>
</table>
Tabella 3.4 Composizione chimica delle soluzioni I e II

<table>
<thead>
<tr>
<th>Soluzione I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA bisodico</td>
<td>5 g/L</td>
</tr>
<tr>
<td>FeSO₄</td>
<td>5 g/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soluzione II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA bisodico</td>
<td>15 g/L</td>
</tr>
<tr>
<td>ZnSO₄ • 7 H₂O</td>
<td>0,43 g/L</td>
</tr>
<tr>
<td>CoCl₂ • 6 H₂O</td>
<td>0,24 g/L</td>
</tr>
<tr>
<td>MnCl₂ • 4 H₂O</td>
<td>0,99 g/L</td>
</tr>
<tr>
<td>CuSO₄ • 5 H₂O</td>
<td>0,25 g/L</td>
</tr>
<tr>
<td>NaMoO₄ • 2 H₂O</td>
<td>0,22 g/L</td>
</tr>
<tr>
<td>NiCl₂ • 6 H₂O</td>
<td>0,19 g/L</td>
</tr>
<tr>
<td>NaSeO₃ • 10 H₂O</td>
<td>0,16 g/L</td>
</tr>
<tr>
<td>H₃BO₄</td>
<td>0,014 g/L</td>
</tr>
</tbody>
</table>
4. **RISULTATI E DISCUSSIONE**

4.1 **Risultati della gestione del reattore SBR**

In questo paragrafo si riportano gli andamenti delle principali variabili di interesse relative alla gestione del reattore SBR a scala di laboratorio.

4.1.1 **Andamenti dell’attività batterica anammox**

Nel corso dell’intero progetto partito nel maggio 2012, il reattore di laboratorio SBR è stato alimentato con diluizioni progressivamente decrescenti della matrice PARNIT.

In Figura 4.1 viene riportato l’andamento del NRR$_{\text{max}}$ comprensivo dei dati ottenuti nel corso delle diverse sperimentazioni in relazione alle diverse diluizioni della matrice PARNIT.

![Figura 4.1 Andamento del NRRmax e della percentuale di matrice PARNIT nel tempo](image-url)
A partire dalle prime diluizioni di matrice reale PARNIT si nota una progressiva acclimatazione della biomassa alla matrice reale, con valori di attività crescenti. A cui segue un periodo di attività stabile intorno al valore di 3,5 g N L\(^{-1}\)d\(^{-1}\) (27 nov. 2012) corrispondente al 50% di reflu reale.

Raggiunto questo risultato costante di massimo rateo di rimozione, si è quindi proceduto ad alimentare al 100% (28 feb. 2013). Si evince dall'andamento il marcato decadimento dell'attività che raggiunge il minimo intorno al 27 marzo con un valore di 0,33 g N L\(^{-1}\)d\(^{-1}\).

Vi è poi una lenta ripresa dell'attività fino ad una valore di 1,18 g N L\(^{-1}\) d\(^{-1}\) (12 giu. 2013), bruscamente interrotta, nell'ultimo periodo di sperimentazione, a causa di problemi di natura elettrica, intervenuti nel laboratorio, a causa dei quali la biomassa nel reattore SBR ha subito una inibizione da nitrito perdurata tre giorni a causa di una concentrazione accumulata di circa 500 mg NL\(^{-1}\).

L'accumulo da nitrito è stato ovviato effettuando un lavaggio della biomassa contenuta nel reattore. Nello specifico si è lasciata sedimentare la biomassa e si è conseguentemente scaricato il surnatante carico di nitrito tramite la pompa peristaltica. Si è riportato a volume il reattore utilizzando acqua di rete, operando un contestuale flussaggio della miscela gassosa (95% N\(_2\) e 5% CO\(_2\)) per riportare le condizioni di anaerobiosi. Questa procedura applicata due volte, ha permesso di abbattere rapidamente la concentrazione di nitrito.

A seguito del lavaggio si è proceduto ad alimentare il reattore in condizioni di PARNIT diluito al 10%. A seguito di questo inconveniente l'attività ha mostrato ratei di rimozione in lenta ripresa.

Questo andamento nel tempo permette di stabilire tre importanti aspetti:

- la biomassa anammox è in grado di rimuovere azoto della frazione liquida di digestato agro-zootecnico pretrattato con un processo di nitritazione parziale;
• l’attività è fortemente influenzata dalla percentuale di refluo reale alimentato;
• la biomassa è in grado di acclimatarsi nel tempo alla matrice reale PARNIT;
• si può ipotizzare che una inibizione da alte concentrazioni di nitrito di circa 500 mg/L prolungata per circa 72h possa essere reversibile effettuando un lavaggio della biomassa

Per permettere una buona gestione del reattore ed avere rimozioni di azoto costanti, andando a considerare l’andamento del valore di attività e del NRRmax, si è nel tempo adeguato il carico di azoto da applicare al sistema(NLR). In Tabella 4.6 si riporta l’andamento del rapporto NRRmax/NLR parziale, calcolato considerando solo le rimozioni di ammonio e nitrito, a confronto con il valore di NLR applicato in funzione alla percentuale di diluizione della matrice PARNIT.

![Figura 4.2 Andamento del rapporto NRR/NLR nel tempo a confronto con il relativo NLR applicato](image-url)
Come si può notare in Figura 4.2 il rapporto tra NRR/NLR considerando solo ammonio e nitrito, si è mantenuto piuttosto costante al variare della % di matrice PARNIT in ingresso. In Tabella 4.1 si mostrano i valori medi del rapporto NRR/NLR ed il relativo NLR al variare della diluizione operata.

Tabella 4.1 Parametri statistici di NRR/NLR e NLR in funzione della percentuale di refluo PARNIT

<table>
<thead>
<tr>
<th>% REFLUO REALE</th>
<th>NRR/NLR (NH₄⁺N₀₂)</th>
<th>NLR [gN/ Ld]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>98±4%</td>
<td>0,49±0,1</td>
</tr>
<tr>
<td>10%</td>
<td>101±5%</td>
<td>0,06</td>
</tr>
<tr>
<td>25%</td>
<td>102±7%</td>
<td>0,06±0,14</td>
</tr>
<tr>
<td>50%</td>
<td>105±1%</td>
<td>0,12±0,14</td>
</tr>
</tbody>
</table>

Il confronto tra il valore del NLR applicato ed il rapporto NRR/NLR permette di valutare se la quantità di azoto, come somma di ammonio e nitrito, è consumata dal processo anammox e quindi se il sistema è correttamente dimensionato.

Nel corso del periodo di sperimentazione, il valore NRR/NLR è risultato oscillante per i primi 40 giorni, fra 0,85 e 0,95 indice di un NLR leggermente elevato rispetto alla capacità della biomassa di rimuoverlo.

Successivamente tra i giorni 40 fino alla fine della presente sperimentazione si sono avuti valori del rapporto NRR/NLR medio del 100% per un NLR inferiore.

4.1.2 Andamento dei rapporti di consumo

I rapporti molari di consumo di NO_2^-/NH_4^+ e NO_3^-/NH_4^+ relativi alla stechiometria anammox valgono rispettivamente 1,32 e 0,26.
In Figura 4.3 ed in Figura 4.4 sono riportati gli andamenti dei rapporti misurati nel corso di questa sperimentazione posti a confronto con il relativo valore stechiometrico.

In Figura 4.3 si può notare l’andamento del rapporto molare misurato dal primo giorno di questa sperimentazione di alimentazione con matrice PARNIT al 100%. L'andamento mostra fino al giorno circa 40, un rapporto di consumo maggiore del valore stechiometrico. Questo fatto può essere attribuito ad una fase di acclimatazione della biomassa posta a contatto la matrice PARNIT non diluita.

Questa spiegazione può di fatto trovare conferma dall’andamento assunto dal giorno 40. Si nota infatti un rapporto di consumo molto aderente al valore reale, indicando quindi che la contestuale presenza di biomassa eterotrofa sul lungo periodo non tende a non modificare i rapporti di consumo del nitrito rispetto all’ammonio.
Figura 4.4 Confronto tra l’andamento del rapporto NO3/NH4 misurato e stechiometrico

Per quanto riguarda l’andamento del rapporto NO\textsubscript{3}/NH\textsubscript{4} riportato in Figura 4.4 si possono notare tre distinti tratti con valore piuttosto costante. Il primo periodo con qualche valore piuttosto variabile indice di una acclimatazione che sembra durare 20 giorni. Un primo valore costante sovrastechiometrico di 0,3.

Un secondo tratto della durata di 40 giorni circa con un valore piuttosto costante di circa 0,15 e infine un altro tratto con valore medio di 0,05. I tratti relativi a valori sottostechiometrici del rapporto molare indicano una presenza di attività relativa a biomassa eterotrofa denitrificante, che consumando nitrato, tende a ridurre il rapporto stechiometrico caratteristico della biomassa anammox. Questo fatto induce a ritenere che nel tempo si è operato un progressivo aumento della percentuale di biomassa eterotrofa denitrificante.

Questo aspetto è piuttosto importante, una piccola presenza di biomassa eterotrofa porta nel complesso ad una rimozione globale di azoto maggiore che se vi fosse esclusivamente biomassa autotrofa anammox.

In merito alla valutazione del rapporto molare e della attività denitrificante si riporta in Figura 4.5 l’andamento del rapporto molare di NO\textsubscript{3}/NH\textsubscript{4} contestualmente alla concentrazione di CODs nella matrice PARNIT.
Dal grafico si può notare come la presenza di CODs sia abbastanza costante con un valore di concentrazione di circa 0,9 g CODs L$^{-1}$, unica eccezione un breve periodo in cui il valore medio è di circa 1,6 g CODs L$^{-1}$.
Questo andamento nel tempo non permette di correlare in maniera, visibile in un grafico, il contenuto di CODs al consumo di nitrato, causa di questo aspetto è probabilmente legata allo sfasamento temporale occorrente tra la presenza di CODs, che deve essere rapidamente degradabile (il COD misurato è una stima globale del CODs, non diversificato in rbCOD, sbCOD o nbCOD) ed il conseguente sviluppo dell’attività eterotrofa denitrificante.

![Diagramma](image.png)

Figura 4.5 Andamento nel tempo del rapporto molare NO$_3$/NH$_4$ e della concentrazione di CODs nell’influente

Per quanto riguarda l’interazione del contenuto di COD con l’efficienza di rimozione dell’azoto del processo anammox, si riporta in letteratura che un rapporto C/N fino a 0,5 g COD/g N (Hu et al., 2013) possa permettere alla biomassa anammox di convivere con successo con biomassa eterotrofa. Dato che tramite il processo anammox si è in grado di rimuovere ammonio e nitrito con la produzione di 0,26 mol di NO$_3$ per ogni mol di NH$_4$ rimossa, un processo di
trattamento con sola biomassa anammox si ha una (seppur limitata) concentrazione di azoto nell’effluente dovuta alla produzione di nitrato, di conseguenza l’eventuale presenza di biomassa eterotrofa, garantita dal suddetto rapporto C/N può portare il beneficio di aumentare il rendimento globale di rimozione e la relativa diminuzione del rapporto molare osservata sperimentalmente.

4.1.3 Caratteristiche dell’effluente

Le caratteristiche dell’effluente del reattore SBR sono la chiave della valutazione di stabilità del processo anammox. Dalle analisi effettuate nel tempo di sperimentazione, con alimentazione prevalente al 100% di matrice PARNIT, si sono avuti gli andamenti di concentrazione in uscita a confronto con quelli in ingresso riportati in Figura 4.6.

Figura 4.6 Andamento nel tempo delle concentrazioni di NH4,NO2,NO3 in ingresso ed uscita al reattore SBR
Per i primi 40 giorni di alimentazione al 100% PARNIT le concentrazioni in uscita di ammonio piuttosto variabili tra lo 0,1 e 0,25 g/L indicano una fase di acclimatazione della biomassa al refluò reale.

Successivamente e per tutto l’arco della durata della sperimentazione si sono avute rimozioni di nitrito ed ammonio variabili tra il 90 ed il 100%. Per quanto riguarda il nitrato, esso è dalla stechiometria anammox un prodotto di reazione contestuale alla produzione di N₂.

Risulta quindi normale aspettarsi un valore concentrazione in uscita leggermente incrementato rispetto al valore in ingresso. Nello specifico si nota dalla figura come per i primi giorni si sia avuta una rimozione parziale della specie nitrato, che si giustifica con una denitrificazione eterotrofa dell’azoto. Successivamente alla stabilizzazione della biomassa anammox avvenuta dal giorno 40, si nota come la rimozione eterotrofa del nitrato risulti meno marcata.

In Tabella 4.2, sono riportati la media, il massimo, il minimo delle concentrazioni in uscita delle tre specie azotate e i due rapporti NRR/NLR.

<table>
<thead>
<tr>
<th></th>
<th>NH₄OUT</th>
<th>NO₂ OUT</th>
<th>NO₃ OUT</th>
<th>NRR/NLR (NH₄+NO₂)</th>
<th>NRR/NLR (NH₄+NO₂+NO₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/L</td>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>MEDIA</td>
<td>0,03</td>
<td>0,02</td>
<td>0,07</td>
<td>100%</td>
<td>97%</td>
</tr>
<tr>
<td>MAX</td>
<td>0,26</td>
<td>0,16</td>
<td>0,13</td>
<td>110%</td>
<td>105%</td>
</tr>
<tr>
<td>MIN</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>80%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Si evince dalla tabella che il rapporto NRR/NLR (carico di azoto rimosso rispetto a quello applicato) calcolato tenendo conto solo delle specie ammonio e nitrito risulti mediamente superiore a quello calcolato tenendo in considerazione anche il nitrato. Ciò è attribuibile alla produzione di nitrato data dalla stechiometria
anammox. I valori percentuali dei rapporti indicano rimozioni medie tra il 97 ed il 100% per tutto l’arco della sperimentazione. I valori del NRR/NLR superiori al 100% indicano un consumo giornaliero di azoto maggiore rispetto al carico alimentato, ovvero dato dal consumo dell’azoto residuo del precedente ciclo.

4.1.4 Andamento del COD solubile

Alcune considerazioni sulla presenza del CODs per la valutazione di stabilità del processo sono già state parzialmente indicate nei precedenti paragrafi. Questo parametro permette avere una stima di larga massima della stabilità di un processo biologico. In generale una concentrazione in uscita maggiore di quella in entrata potrebbe indicare un decadimento cellulare interno al reattore. Viceversa una forte diminuzione rispetto all’ingresso porta invece ad ipotizzare la presenza di attività eterotrofa.

In Figura 4.7 è mostrato l’andamento della concentrazione di CODs in ingresso ed uscita al reattore, mentre in Tabella 4.3 sono mostrati i valori medi. Considerando gli andamenti si nota che vi è una forte variabilità del valore del CODs in ingresso con un valore minimo di 0,6 g/L (giorni 51-54) ed un massimo di 1,77 g/L (giorno 100), determinato dalla variabilità della composizione della matrice PARNIT, mentre per l’uscita si hanno un minimo di 0,4 g/L (giorno 97) ed un massimo di 1,23 g/L (giorno 21).

Inoltre si hanno solo pochi punti di campionamento in cui il valore in uscita risulta maggiore di quello in ingresso peraltro con valori piuttosto confrontabili che rientrano nell’errore strumentale, valutabile attorno al 10%.
Tabella 4.3 Valori medi del CODs in ingresso ed uscita dal sistema

<table>
<thead>
<tr>
<th>PARAMETRO STATISTICO</th>
<th>CODs IN [g/L]</th>
<th>CODs OUT [g/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALORE MEDIO</td>
<td>0,9</td>
<td>0,7</td>
</tr>
<tr>
<td>DEVIAZIONE STANDARD</td>
<td>0,2</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Inoltre andando ad escludere i valori per cui la concentrazione in uscita è maggiore di quella in entrata, indice di un leggero accumulo, si è calcolata l’efficienza di rimozione del CODs.
Il risultato dell’elaborazione dei dati ha portato a stimare una valore di rimozione medio del 29% con un minimo del 2% (giorni 86-92) ed un massimo del 73% (giorno 100). Risulta lecito attribuire la rimozione di carbonio organico alla presenza di biomassa eterotrofa.

Figura 4.7 Andamento del COD solubile
4.1.5 Andamento dei solidi sospesi

Nel tempo si è mantenuta in costante monitoraggio la concentrazione dei solidi sospesi volatili e totali in ingresso ed uscita al sistema. Come si nota dagli andamenti riportati in Figura 4.8, ed i valori medi riportati in Tabella 4.4, gli SST in ingresso ed in uscita sono stati mediamente confrontabili ma con un valore in uscita leggermente inferiore. Ciò indica che vi siano stati piccoli accumuli di sospesi nel reattore. Anche per quanto riguarda la frazione volatile si ha che in ingresso la concentrazione risulta mediamente più alta che in uscita. I sospesi volatili in ingresso sono da attribuirsi alla biomassa sfuggita ai trattamenti precedenti. Si rileva inoltre che relativamente al giorno 100 si possono notare delle concentrazioni più elevate di sospesi, rispetto all’andamento medio, sia in ingresso che in uscita. Una spiegazione a questo fatto si può ritrovare nella incertezza data dal campionamento e dall’aver eseguito la stima in singolo. Per quanto riguarda il valore medio di 0,07 g SSV /L in uscita, esso indica una lieve fuoriuscita di biomassa dal sistema. Questo aspetto può essere considerato una capacità del sistema di selezionare granuli di biomassaa caratterizzati da dimensioni tali da avere una buona sedimentabilità (sedimentabili nel tempo adibito a tale fase) e caratterizzati da una maggiore resistenza ad agenti possibilmente tossici o inibenti l’attività offerta dalla dimensione stessa del granulo. Nel paragrafo successivo vi è una possibile conferma di tale selezione da parte del sistema, data dal riscontro delle prove di distribuzione granulometrica dei granuli di biomassa.
Figura 4.8 Andamento dei solidi totali e volatili in ingresso ed uscita al sistema

Tabella 4.4 Valori medi delle concentrazioni di solidi sospesi, totali e volatili in ingresso ed uscita

<table>
<thead>
<tr>
<th></th>
<th>SST [g/L]</th>
<th>SSV [g/L]</th>
<th>SSV/SST [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGRESSO</td>
<td>0.14</td>
<td>0.13</td>
<td>92%</td>
</tr>
<tr>
<td>USCITA</td>
<td>0.09</td>
<td>0.07</td>
<td>98%</td>
</tr>
</tbody>
</table>

Inoltre nell’arco della sperimentazione si sono prelevati due campioni di mixed liquor per valutare la concentrazione di solidi sospesi e totali all’interno del reattore. Questo parametro permette di dare una stima della biomassa presente.

Determinando la concentrazione di biomassa è possibile dare una stima di larga massima dello sludge retention time (SRT). Esso indica il tempo di ritenzione medio della biomassa all’interno del reattore. Il valore di SRT si calcola come rapporto tra la quantità su base secca di biomassa presente nel volume e la quantità di biomassa allontanata dal reattore nel tempo. La biomassa allontanata è data dalla somma di quella prelevata durante i campionamenti mixed liquor, durante le prove di attività e quella che viene richiamata in uscita durante la fase
di scarico del surnatante alla fine di ogni ciclo e misurata nello scarico cumulato settimanalmente.

\[SRT \ (d) = \frac{(x \cdot V)}{(q \cdot x_e + v \cdot x /1000)} \]

Dove:

- \(x \) è la concentrazione di biomassa [g SSV/L];
- \(V \) è il volume del liquido nel reattore SBR [L];
- \(q \) è la portata giornaliera alimentata in [L/d];
- \(v \) è il volume di mixed liquor estratto durante le prove di attività ed i campionamenti per la misura della concentrazione di biomassa [ml];
- \(x_e \) è la concentrazione di biomassa in uscita media settimanale [g SSV/L].

Avendo effettuato solo due campionamenti di mixed liquor si è potuta dare una stima solo di due valori dello SRT del sistema che risulta essere medio settimanale (data la misura settimanale dei solidi nell’uscita).

In Tabella 4.5 sono riportate le concentrazioni di SST e SSV relative ai due campionamenti di mixed liquor (M.L. 1 e M.L.2) ed il valore stimato di SRT medio settimanale. In particolare si nota anche un aumento nel tempo della percentuale di volatili sul totale della frazione sospesa.

I valori delle concentrazioni dei SS e quindi del relativo valore di SRT sono affetti da molta incertezza data dalla difficoltà prelevare un campione omogeneo di mixed liquor dal reattore e dal fatto di operare la prova in singolo. Per tale motivo le concentrazioni di SSV ed il relativo SRT calcolato sono da considerarsi delle stima di massima.
Tabella 4.5 Esiti dei campionamenti del mixed liquor e SRT medi calcolati

<table>
<thead>
<tr>
<th></th>
<th>SST [g/L]</th>
<th>SSV [g/L]</th>
<th>SSV/SST [%]</th>
<th>SRT medio [d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Liquor (3 apr-2013)</td>
<td>2,9</td>
<td>2,4</td>
<td>82%</td>
<td>29</td>
</tr>
<tr>
<td>Mixed Liquor (7 mag-2013)</td>
<td>1,9</td>
<td>1,6</td>
<td>88%</td>
<td>30</td>
</tr>
</tbody>
</table>

4.1.6 Prove granulometriche

Per la caratterizzazione della biomassa granulare contenuta nel reattore SBR, sono state effettuate due prove di analisi granulometrica.

In Figura 4.9 sono riportate le distribuzioni granulometriche relative alle due prove effettuate a distanza di 3 mesi durante l’alimentazione di matrice PARNIT non diluita (4 aprile e 4 luglio, 2013).

Si nota dalla figura come entrambi i campioni abbiano distribuzioni bimodali, una moda per granuli di piccolo diametro compreso tra 0 e 500 μm, l’altra per granuli di maggior dimensioni comprese tra 500 e 2500 μm.

Un altro aspetto che si evince bene dal confronto è che il campione relativo al 106° giorno di lavoro (4 luglio) mostri una minore dispersione al valor medio rispetto al campione prelevato 3 mesi prima.

In particolare il campione del 4 luglio ha frequenze relative più alte per un range ristretto tra i 1100 e 1200 μm, mentre il campione del 4 aprile mostra frequenze relative simili per un più ampio range tra gli 800 ed i 1500 μm.

Questa evidenza potrebbe come precedentemente analizzato, essere attribuibile alle condizioni operative del reattore SBR, le quali potrebbero aver permesso di selezionare, nel tempo, un ben preciso range di granuli con diametro di circa 1000 μm.
Inoltre, dai percentili riportati in Tabella 4.6 si evince che per entrambi i campioni di biomassa, le più alte frequenze sono relative a particelle con diametro compreso tra i 500 e i 2500 μm.

Per classi di diametro superiore le due curve presentano frequenze diverse, Come si nota anche dai i percentili il campione del 4 luglio presenta valori del 10° e 50° percentile di poco superiori, mentre il 90° percentile assume valore simile.

Tabella 4.6 Percentili relativi alle distribuzioni granulometriche

<table>
<thead>
<tr>
<th>PERCENTILE</th>
<th>15° giorno di lavoro (4-apr 2013)</th>
<th>106° giorno di lavoro (4 lug 2013)</th>
<th>UNITA' DI MISURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°</td>
<td>66,68</td>
<td>245,17</td>
<td>μm</td>
</tr>
<tr>
<td>50°</td>
<td>891,62</td>
<td>1092,98</td>
<td>μm</td>
</tr>
<tr>
<td>90°</td>
<td>1690,14</td>
<td>1693,93</td>
<td>μm</td>
</tr>
</tbody>
</table>
Il campionamento e la misura della distribuzione granulometrica nel tempo permette di valutare se le condizioni operative del reattore SBR riguardo alla tipologia di agitazione meccanica applicata alla miscela siano tarate in maniera tale da non portare alla disgregazione del granulo.

Dalle evidenze sperimentali si evince che le condizioni siano piuttosto favorevoli al mantenimento di una classe granulometrica di circa 1000 μm ed altresì permettano un ulteriore accrescimento delle dimensioni che rende il singolo granulo atto a resistere maggiormente alla presenza degli agenti inibitori presenti nella matrice reale influente.
4.2 Risultati delle prove manometriche

In questo paragrafo si riportano i risultati ottenuti dalle prove effettuate in batch con metodo manometrico presentate nel paragrafo 3.3.

4.2.1 Risultati della prova I.

Nella prova I si è indagata la diminuzione di attività batterica anammox preparando 4 bottiglie contenenti la stessa quantità di biomassa e differenziate dalla diversa diluizione della matrice PARNIT (0%, 50%, 75% e 100%). Come già riportato nel paragrafo 3.3 la biomass anammox utilizzata per questa prova era una biomassa stoccata in laboratorio, quindi non acclimatata a trattare matrice PARNIT.

In particolare si ricorda che la matrice PARNIT è stata preliminarmente trattata con biomassa eterotrofa per la completa rimozione del nitrito, poi centrifugata per la rimozione della frazione sospesa. La matrice PARNIT effluente da questo trattamento preliminare presenta una concentrazione di azoto ammoniacale di circa 187 mg NH₄-N/L.

La prova si è svolta in 5 giorni e sono stati somministrati in totale 4 spike. Il primo giorno di prova si sono allestite le bottiglie, alimentate con refluo sintetico per ottenere il bianco di prova relativo ad ogni diluizione ed effettuato il primo spike di nitrito e nitrato in ragione di 63 mg NO₂-N/L e 37 mg NO₃-N/L.

Il secondo giorno si è effettuato il cambio del surnatante su tutte le bottiglie; in particolare per il bianco si è sostituita la matrice sintetica con nuova matrice sintetica e per le altre bottiglie si è effettuata la diluizione desiderata (50%, 75% e 100%). Si è poi effettuato il secondo spike per riportare la miscela alla concentrazione iniziale di nitrito in base ai diversi consumi intervenuti per le diverse bottiglie. Per i due giorni seguenti si è effettuato il campionamento di
fine prova e lo spike giornaliero per riportare le concentrazioni di nitrito al valore iniziale.

Nella Tabella 4.7 sono riportati per ogni giorno di lavoro, i consumi di ammonio e nitrito ed il relativo rapporto di consumo, l'attività specifica anammox ed il valore percentuale delle attività rilevate per le diverse bottiglie, rapportandole al valore di attività massimo, ovvero al valore di attività determinato sul bianco di prova.

Tabella 4.7 Dati relativi alle analisi e elaborazioni della prova di inibizione della matrice PARNIT

<table>
<thead>
<tr>
<th>GIORNI</th>
<th>BOTTIGLIE</th>
<th>Δ NH₄ [mg/L]</th>
<th>Δ NO₂ [mg/L]</th>
<th>Δ NO₂/ΔNH₄</th>
<th>SSA [gN₂/gSSVd]</th>
<th>% Sul Bianco</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bianco 0% PARNIT</td>
<td>11,5</td>
<td>59,7</td>
<td>5,19</td>
<td>0,10</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>BIANCO 50% PARNIT</td>
<td>75,0</td>
<td>60,6</td>
<td>0,81</td>
<td>0,10</td>
<td>93%</td>
</tr>
<tr>
<td></td>
<td>BIANCO 75% PARNIT</td>
<td>75,0</td>
<td>59,8</td>
<td>0,80</td>
<td>0,11</td>
<td>111%</td>
</tr>
<tr>
<td></td>
<td>BIANCO 100% PARNIT</td>
<td>67,5</td>
<td>61,0</td>
<td>0,90</td>
<td>0,11</td>
<td>107%</td>
</tr>
<tr>
<td></td>
<td>SOSTITUZIONE SURNTANTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bianco 0% PARNIT</td>
<td>88</td>
<td>65,3</td>
<td>0,74</td>
<td>0,10</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>50% PARNIT</td>
<td>14</td>
<td>64,4</td>
<td>4,60</td>
<td>0,10</td>
<td>108%</td>
</tr>
<tr>
<td></td>
<td>75% PARNIT</td>
<td>24</td>
<td>65,2</td>
<td>2,72</td>
<td>0,01</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>100% PARNIT</td>
<td>nd¹</td>
<td>nd</td>
<td>nd</td>
<td>0,02</td>
<td>16%</td>
</tr>
<tr>
<td>2</td>
<td>Bianco 0% PARNIT</td>
<td>34,5</td>
<td>62,5</td>
<td>1,81</td>
<td>0,10</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>50% PARNIT</td>
<td>69,15</td>
<td>62,5</td>
<td>0,90</td>
<td>0,11</td>
<td>114%</td>
</tr>
<tr>
<td></td>
<td>75% PARNIT</td>
<td>20</td>
<td>60,75</td>
<td>3,04</td>
<td>0,06</td>
<td>59%</td>
</tr>
<tr>
<td></td>
<td>100% PARNIT</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0,02</td>
<td>24%</td>
</tr>
<tr>
<td>3</td>
<td>Bianco 0% PARNIT</td>
<td>29,65</td>
<td>62,5</td>
<td>2,11</td>
<td>0,11</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>50% PARNIT</td>
<td>11,95</td>
<td>62,5</td>
<td>5,23</td>
<td>0,10</td>
<td>93%</td>
</tr>
<tr>
<td></td>
<td>75% PARNIT</td>
<td>1,5</td>
<td>64,25</td>
<td>42,83</td>
<td>0,07</td>
<td>67%</td>
</tr>
<tr>
<td></td>
<td>100% PARNIT</td>
<td>25</td>
<td>77,5</td>
<td>3,10</td>
<td>0,03</td>
<td>23%</td>
</tr>
</tbody>
</table>

Dalla tabella si evince come i rapporti molari di consumo tra ione nitrito e ione ammonio siano piuttosto diversi dal valore stechiometrico relativo alla biomassa anammox.

¹ Nd sta per non determinato. Nello specifico la misura analitica, a causa di un possibile errore umano, ha portato ad ottenere un valore considerato non corretto, di conseguenza non viene riportato neanche il consumo relativo al giorno 3.
Questo fatto è da ricondursi alla presenza di biomassa eterotrofa che porta ad una riduzione del rapporto molare NO_2/NH_4 relativo alla stechiometria anammox. Si riporta inoltre che, da ulteriori prove in batch qui non riportate, è emersa la possibilità che la biomassa anammox stoccata in laboratorio ed utilizzata per questa prova avesse la tendenza a rilasciare nel tempo ione ammonio. Questo aspetto può essere attribuito ad una degradazione della biomassa a causa dello stazionamento in condizioni di stoccaggio troppo prolunugate.

Questo aspetto non permette di ritenere attendibili le misure analitiche relative allo ione ammonio per questa prova, ma di indicare solo una misura qualitativa. In Figura 4.10 sono riportati gli andamenti della attività specifica per le diverse bottiglie. Dopo la sostituzione del surnatante, la diluizione al 50% non mostra significativi cali di attività rispetto al valore del bianco, mantenendo per tutti i giorni di prova, una attività specifica piuttosto costante variabile tra 0,9 e 0,11 g N$_2$ (g SSV d)$^{-1}$. Diversamente è accaduto per la diluizione al 75% e per la bottiglia contenente matrice PARNIT al 100%. Per entrambe le bottiglie si è avuto un brusco calo di attività non appena poste in contatto con la matrice reale PARNIT. Successivamente si ha una ripresa dell’attività della bottiglia 75% PARNIT fino a giungere ad un valore di circa 0,7 g N$_2$ (g SSV d)$^{-1}$. Ciò indica un lieve acclimatamento alla matrice stessa. La bottiglia con matrice PARNIT al 100% mostra una ripresa meno intensa fino al valore di 0,03 g N$_2$ (g SSV d)$^{-1}$.
Figura 4.10 Attività specifica della biomassa delle diverse bottiglie nei giorni di prova

Data l’incertezza dovuta al rilascio di ammonio nel valutare i consumi ed i rapporti stechiometrici di consumo dalle analisi chimiche, si può avere una misura qualitativa della diversa inibizione sulla attività della biomassa indotta dalle diverse diluizioni della matrice PARNIT dalla elaborazione dei dati di pressione. Si riporta a tal proposito l’andamento dei volumi di azoto prodotti nel tempo per le diverse bottiglie per la prova dei bianchi, e l’andamento relativo al terzo spike di prova.

Figura 4.11 Produzione di azoto relativa alla prova dei bianchi
Come si evince dalla Figura 4.11 tutte le bottiglie mostrano andamenti della produzione di azoto confrontabili tra loro nella prova dei bianchi.

![Figura 4.12 Azoto prodotto nel terzo giorno di prova](image)

Diversamente, nella Figura 4.12 relativa al terzo giorno di prova, si nota come solo la bottiglia con diluizione al 50% mostri una produzione di azoto confrontabile con il bianco ma con pendenza nettamente superiore. Relativamente a questo ultimo aspetto, non sono chiare le cause che abbiano determinato questa maggiore attività. Peraltro dalla prova dei bianchi non erano emerse particolari differenze nell’attività, fatto che permetteva di ipotizzare condizioni iniziali del tutto confrontabili.

Nel tempo di prova di circa 20 ore la biomassa contenuta nelle bottiglie relative alle diluizioni 75% e 100% PARNIT, non sono state in grado di completare la rimozione dei substrati dosati, portando a concludere che la riduzione dell’attività della biomassa anammox non acclimatata sia effettivamente correlabile alla percentuale di refluo reale influente. In particolare dopo tre giorni di contatto, solo la bottiglia con diluizione al 50% ha mantenuto una
attività confrontabile con quella relativa al bianco di prova; mostrando una riduzione di attività del 7%. Le bottiglie con maggiori percentuali di refluo reale, con 75% e 100% PARNIT hanno invece avuto riduzioni complessive di attività rispettivamente del 33% e 77%.

Questa progressiva riduzione percentuale crescente con % di matrice reale, porta a dare conferma che la biomassa anammox sia inibita dalla matrice PARNIT. In particolare avendo operato, a monte della prova, una denitrificazione ed una centrifugazione spinta della matrice PARNIT, si ipotizza che l’agente o gli agenti inibenti l’attività anammox siano da ricercarsi nella frazione disciolta del PARNIT.

4.2.2 Risultati della prova II.

La seconda prova con metodo manometrico ha previsto l’allestimento di 4 bottiglie contenenti la biomassa operante nel reattore SBR posta in condizioni favorevoli a valutare distintamente l’attività eterotrofa e anammox.

Per quanto riguarda la prova effettuata in condizioni favorevoli alla attività anammox, si è operato in doppio per una durata di due giorni.

In Figura 4.13 sono riportati gli andamenti della produzione di N₂ relativi ai due spike per le due diverse bottiglie.
Figura 4.13 Produzione di N₂ della biomassa dell’SBR posta in condizioni favorevoli ad attività anammox

In Tabella 4.8 si riportano le concentrazioni influenti dosate tramite spike, e quelle misurate analiticamente al termine di ogni prova.

<table>
<thead>
<tr>
<th>BOTTIGLIE</th>
<th>CONCENTRAZIONEIn</th>
<th>CONCENTRAZIONEOut</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NH₄</td>
<td>NO₂</td>
</tr>
<tr>
<td></td>
<td>mg NH₄-N/L</td>
<td>mg NO₂-N/L</td>
</tr>
<tr>
<td>SBR1 (1° SPIKE)</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>SBR2 (1° SPIKE)</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>SBR1 (2° SPIKE)</td>
<td>50</td>
<td>63</td>
</tr>
<tr>
<td>SBR2 (2° SPIKE)</td>
<td>45</td>
<td>63</td>
</tr>
</tbody>
</table>

In Tabella 4.9 sono invece i dati relativi al consumo delle specie azotate di interesse: ammonio, nitrito e nitrato unitamente ai rapporti molari di consumo calcolati ed il rateo di produzione.
Come si nota in tabella i rapporti moliari di consumo NO$_2$/NH$_4$ e NO$_3$/NH$_4$ risultano essere aderenti al valore stechiometrico della cinetica anammox. In particolare il rapporto molar relativo al nitrato risulta negativo in quanto è un prodotto di reazione della cinetica anammox, ed essendo il rapporto una misura derivata dal consumo delle due specie risulta anch'esso negativo.

Nella prova di attività denitrificante si è dosato in due bottiglie acetato di sodio come fonte di carbonio prontamente degradabile pari al 50% del fabbisogno teorico relativo al substrato dosato.

Il fabbisogno stechiometrico relativo al nitrito è di 6,64 g NaCH$_3$COOH/g NO$_2$-N, mentre il corrispettivo stechiometrico rispetto al nitrato è di 11 g NaCH$_3$COOH/g NO$_3$-N. Si è poi calcolato il valore di COD corrispondente all’acetato dosato considerando un valore di 0,78 g COD/g NaCH$_3$COOH. Le concentrazioni in ingresso ed uscita alla prova sono riportate in Tabella 4.10.

Tabella 4.9 Consumi, rapporti moliari e rateo relativo alla attività anammox

<table>
<thead>
<tr>
<th>BOTTIGLIE</th>
<th>CONSUMO</th>
<th>RAPPORTI MOLARI DI CONSUMO</th>
<th>RATEO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ NH$_4$</td>
<td>Δ NO$_2$</td>
<td>ΔNO$_3$</td>
</tr>
<tr>
<td>SBR1 (1° SPIKE)</td>
<td>53</td>
<td>63</td>
<td>-10,5</td>
</tr>
<tr>
<td>SBR2 (1° SPIKE)</td>
<td>53</td>
<td>63</td>
<td>-4,6</td>
</tr>
<tr>
<td>SBR1 (2° SPIKE)</td>
<td>48</td>
<td>62</td>
<td>-7,2</td>
</tr>
<tr>
<td>SBR2 (2° SPIKE)</td>
<td>44</td>
<td>62</td>
<td>-9,2</td>
</tr>
</tbody>
</table>
In Figura 4.14 si sono riportati gli andamenti della produzione di N₂ relativi alla prova di attività denitrificante, come si può notare per entrambe le curve vi è un tratto iniziale di intensa attività, poi una fase di fermo e poi una rapida ripresa di attività. Le curve ottenute indicano quindi nel primo tratto la produzione di N₂ data dalla attività eterotrofa denitrificante.

L’attività denitrificante è stata calcolata sulla base della pendenza del primo tratto di curva rapportata alla concentrazione di SSV presenti nella miscela.

Tabella 4.11 Consumi ed attività della prova di denitrificazione

<table>
<thead>
<tr>
<th>BOTTIGLIA</th>
<th>Δ NO₂</th>
<th>Δ NO₃</th>
<th>Δ CODs</th>
<th>RATEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROT. NO₂</td>
<td>33</td>
<td>-8</td>
<td>96</td>
<td>0,05</td>
</tr>
<tr>
<td>ROT. NO₃</td>
<td>-4</td>
<td>27</td>
<td>193</td>
<td>0,04</td>
</tr>
</tbody>
</table>

Dalla Tabella 4.10 in cui sono riportate le concentrazioni in ingresso e in uscita dei substrati, e messi a confronto con gli andamenti di produzione di N₂, Figura 4.14 si può notare che il primo tratto relativo all’attività denitrificante sia data dal consumo di CODs prontamente degradabile dosato. Come ci si aspettava un dosaggio pari al 50% del fabbisogno, ha portato ad una concentrazione residua di substrati pari al 50% del valore iniziale.

Tuttavia, in via teorica, la concentrazione di CODs in uscita sarebbe dovuta essere nulla. Il valore del CODs residuo misurato analiticamente può essere attribuito ad una possibile degradazione della biomassa posta in condizioni endogene. A tal proposito le prove di denitrificazione andrebbero ripetute per consentire di valutare correttamente l’andamento nel tempo del CODs, ed ottenere una migliore caratterizzazione della attività eterotrofa all’interno del reattore SBR di laboratorio.

76
Dall’andamento delle curve si può solo supporre che il CODs dosato in condizioni limitanti, sia effettivamente stato consumato nell’arco delle prime 5 ore e che durante la fase di fermo di attività la biomassa abbia avuto modo di trovare una fonte alternativa (carbonio derivante da lisi cellulare) di substrato per riprendere l’attività denitrificante.

![Figure 4.14 Andamenti della produzione di N2 della prova di denitrificazione](image)

I risultati ottenuti, dato l’andamento peculiare delle curve ed le misura analitiche non hanno permesso di valutare il consumo endogeno da pare della biomassa eterotrofa, sarebbe quindi opportuno ripetere questa tipologia di prova, concentrandosi sulla possibilità di dare anche una stima della percentuale di batteri eterotrofi presenti sulla biomassa totale contenuta nel reattore.

4.2.3 Risultati della prova III.

Nella prova III si è indagata la risposta della attività della biomassa anammox ad uno shock variabile di salinità.
Nel particolare si è testata la risposta dell’attività della biomassa anammox acclimatata ad un modesto contenuto salino (operante da più di un anno nell’SBR di laboratorio) su tre bottiglie indicate di seguito con SBR BIANCO, SBR IC₅₀/2 ed SBR IC₅₀ che corrispondono rispettivamente al contenuto salino della matrice sintetica, ad una concentrazione pari alla metà del valore IC₅₀ indicato in letteratura pari a 6,73 g NaCl/L, ed infine ad una concentrazione pari all’IC₅₀ di 13,46 g NaCl/L. Il contenuto salino della matrice sintetica è stato valutato sperimentalmente con misura di conduttività elettrica. Il valore di conducibilità elettrica di un fluido è una misura indiretta della concentrazione salina. Le quantità di sale dosato nelle prove è da considerarsi al lordo del contenuto salino della matrice sintetica. L’IC₅₀ è la concentrazione tale per cui l’attività batterica specifica SAA si riduce del 50% indicato in letteratura da Dapena Mora et al. (2007). Per valutare la risposta di una biomassa non acclimatata si è testata su due bottiglie indicate di seguito con ROT. BIANCO e ROT. IC₅₀/2 la risposta al contenuto salino della matrice sintetica e dell’IC₅₀/2 pari a 6,73 g NaCl/L su di una biomassa non acclimatata.

In Figura 4.15 si mostra l’andamento di produzione di N₂ relativa alla prova dei bianchi relativa cioè alla prova in cui si valuta l’attività massima relativa alla biomassa dosata e sulla quale si confrontano i successivi valori di attività.

Figura 4.15 Andamento della produzione di N₂ per i bianchi di prova
In Tabella 4.12 e Tabella 4.13 sono riportati rispettivamente i valori dell’attività specifica separatamente per le due diverse biomasse. In particolare si nota come per la biomassa acclimatata si hanno diminuzioni dell’attività media del 68% per un contenuto salino pari a metà dell’IC$_{50}$ indicato in letteratura, mentre si riscontra una diminuzione media del 74% per il valore pari all’IC$_{50}$.

La maggiore diminuzione dell’attività rispetto al valore indicato in letteratura, ovvero del 50% rispetto al bianco, può essere attribuito alle diverse condizioni rispetto a cui si è valutato in letteratura tale valore soglia.

Risulta tuttavia significativo che nell’arco di 4 giorni le riduzioni medie di attività delle prove effettuate con la biomassa operante nel SBR, siano piuttosto confrontabili nonostante le diverse concentrazioni saline, l’una pari al doppio dell’altra.

Questo fattore è sintomo di una buona capacità da parte della biomassa acclimatata a non risentire particolarmente dello shock salino per il range di concentrazioni testate. Per quanto riguarda la biomassa non acclimatata si sono avuti risultati diversi, in particolare il confronto tra le due biomasse può essere operato sul valore pari alla IC$_{50}$/2, essendo questa prova effettuata solo per quella concentrazione.

<table>
<thead>
<tr>
<th>GIORNI</th>
<th>SBR BIANCO</th>
<th>SBR IC 50/2</th>
<th>SBR IC 50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g N2/g SSV d</td>
<td>g N2/g SSV d</td>
<td>perdita attività % sul BIANCO</td>
</tr>
<tr>
<td>1</td>
<td>0,15</td>
<td>0,12</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>0,14</td>
<td>0,06</td>
<td>57%</td>
</tr>
<tr>
<td>3</td>
<td>0,13</td>
<td>0,03</td>
<td>80%</td>
</tr>
<tr>
<td>4</td>
<td>0,15</td>
<td>0,05</td>
<td>66%</td>
</tr>
<tr>
<td>MEDIA</td>
<td>0,14</td>
<td>0,05</td>
<td>68%</td>
</tr>
</tbody>
</table>
Tabella 4.13 Attività specifica per la biomassa non acclimatata a confronto con il bianco di prova

<table>
<thead>
<tr>
<th>GIORNI</th>
<th>ROT. BIANCO</th>
<th>ROT. IC50 /2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g N2/g SSV d</td>
<td>g N2/g SSV d</td>
</tr>
<tr>
<td>1</td>
<td>0,02</td>
<td>0,03</td>
</tr>
<tr>
<td>2</td>
<td>0,02</td>
<td>0,008</td>
</tr>
<tr>
<td>3</td>
<td>0,02</td>
<td>0,00</td>
</tr>
<tr>
<td>4</td>
<td>0,02</td>
<td>0,003</td>
</tr>
</tbody>
</table>

Come si evince dalla Tabella 4.13 ad una concentrazione di circa la metà dell’IC$_{50}$ la biomassa indicata con ROT IC$_{50}$/2 ha mostrato una riduzione di attività media del 86%, valore che risulta superiore a quello relativo alla bottiglia SBR IC$_{50}$/2. Da questo confronto è possibile validare l’idea generale che la biomassa anammox sia in grado di operare in presenza di sali disciolti, va tuttavia previsto un determinato tempo per permettere l’acclimatazione della biomassa al contenuto stesso. In Figura 4.16 si riporta il grafico relativo al terzo giorno di prova, in cui è particolarmente evidente il calo di produzione di attività data dallo shock salino.

![Figura 4.16 Andamento nel tempo della produzione di N$_2$ relativamente al terzo giorno di prova](image-url)
Sarebbe opportuno effettuare ulteriori prove di più lunga durata per valutare e confermare le evidenze preliminari. Dai risultati ottenuti in questa prova è risultato che una biomassa non acclimata al contenuto salino abbia bisogno di un tempo di acclimatazione dipendente dalla concentrazione di sale con la quale viene posta in contatto. Ulteriori prove potrebbero permettere una stima del tempo necessario alla biomassa di acclimarsi dopo l’iniziale ed immediata riduzione di attività determinata dallo shock salino.
5. CONCLUSIONI

Durante questo lavoro sperimentale si è valutato il processo biologico anammox di rimozione dell’azoto della frazione liquida di digestato agro-zootecnico pretrattato da un reattore di nitritazione parziale.

Si è perseguito l’obiettivo di valutazione attraverso la gestione per circa 130 giorni di un reattore SBR a scala di laboratorio e l’utilizzo di prove in batch con metodo manometrico.

Il carico medio di azoto applicato durante la fase di alimentazione non diluita è stato di 0,5 g N L\(^{-1}\) d\(^{-1}\), con efficienza media di rimozione delle forme azotate solubili del 97%, dimostrando una capacità massima di rimozione pari a 0,65 g N L\(^{-1}\) d\(^{-1}\).

Inoltre la concentrazione di SSV in rapporto ai SST della biomassa presente nel reattore SBR è in media risultata essere pari all’80%, indice di una buona presenza di volatili.

La messa a punto del metodo manometrico ha permesso di valutare l’inibizione della matrice PARNIT per diverse diluizioni per una biomassa anammox non acclimatata a trattare tale matrice.

Si è quindi dimostrato che la frazione solubile della matrice PARNIT inibisce istantaneamente l’attività della biomassa anammox per diluizioni maggiori del 50%. Ottenendo una riduzione di attività del 33% per matrice PARNIT al 75% e del 77% con matrice non diluita.

Questo risultato permette di stabilire che la biomassa anammox è in grado di rimuovere le forme azotate da tale matrice se sufficientemente acclimatata.

Sempre con metodo manometrico si è cercato di stimare l’eventuale inibizione della attività da shock salino.

Si sono avute riduzione dell’attività diversificate per biomassa anammox acclimatata e non al contenuto salino. Nello specifico la biomass operante, ovvero una biomassa anammox mediamente acclimatata ad un contenuto
salino) nel reattore mostra una riduzione di attività media del 68% se esposta per 4 giorni ad una concentrazione di circa 7gNaCl/L, mentre per una biomassa non acclimatata operante nelle stesse condizioni la riduzione media di attività è stata dell'86%. Questo fatto indica la capacità di operare con un discreto contenuto salino, e conferma altresì la capacità di adattamento della biomassa anammox.

La stabilità del processo con influente PARNIT non diluito permette di affermare che l’applicazione del trattamento bi-stadio, processo PARNIT di nitritazione parziale e processo anammox sia una soluzione globalmente vantaggiosa dal punto di vista economico per il trattamento della frazione liquida dei digestati agro-zootecnici, dato il risparmio nella fase di parziale nitrificazione e dalla natura autotrofa della biomassa anammox.

Tra gli aspetti che possono incidere sulla stabilità del processo biologico anammox si segnala la variabilità delle caratteristiche della matrice PARNIT. In un eventuale processo a scala reale operato in reattori bi-stadio, la caratteristica variabilità dell’effluente PARNIT potrebbe essere minimizzata anteponendo al processo anammox una vasca di accumulo in modo da permettere una alimentazione continua al processo anammox di refluo PARNIT con caratteristiche più omogenee limitando quindi l’interferenza sulla stabilità ed efficienza conseguibili.

Si evidenzia la necessità di effettuare nuove prove con metodo manometrico in merito alla valutazione della attività eterotrofa denitrificante, poiché dai risultati non è stato possibile riuscire ad effettuare una stima percentuale della biomassa eterotrofa presente nel reattore SBR. Inoltre le ulteriori prove potrebbero permettere di calibrare la presenza di biomassa eterotrofa (in relazione al contenuto di COD naturalmente presente) in modo da rendere massima l’efficienza complessiva di rimozione dell’azoto.

Per quanto riguarda invece le prove effettuate sull’inibizione da salinità, si segnala la necessità di valutare il tempo necessario alla biomassa anammox ad
adattarsi in relazione alla concentrazione di sale influente con test in batch di più lunga durata.
Tutti gli aspetti di ricerca sugli agenti possibilmente inibenti e la relativa risposta della biomassa, risultano fondamentali per meglio caratterizzare il processo nel suo insieme e renderlo applicabile a scala reale.
RINGRAZIAMENTI

Nel corso di questi 5 anni sono tante le persone che mi sento di ricordare nei miei ringraziamenti, il percorso è stato lungo ma sono davvero orgogliosa di aver intrapreso questa avventura.

I primi ringraziamenti sono per coloro che mi hanno permesso di svolgere questo lavoro sperimentale: in particolare la Prof.ssa Malpei per avermi messo a conoscenza dell’interessante progetto di ricerca.

Ad Elena e Davide per avermi arruolato e seguito durante questi brevi ma intensi mesi di ricerca. Siete una bella squadra e mi avete insegnato ad apprezzare il lavoro di ricerca in tutte le sue sfaccettature.

Un ringraziamento a Fabio e Daniela con i quali ho condiviso divertentissimi momenti di lavoro in laboratorio...

Ringrazio inoltre i tecnici ed analisti del laboratorio Laura, Enrico e Roger che, ancora una volta, si sono mostrati nei miei confronti pazienti e cordiali, in particolare Glauco, grazie per le chiacchierate!

A tutti i miei amici e colleghi che mi hanno accompagnato negli anni in questo lungo, a volte difficile, ma mai noioso percorso“politecnico”. In ordine di apparizione grazie a Bruno, Viviana, Valeria, Edoardo G., Edoardo T., Pistorius, Spugni, La Fede, Scotti, Mario... è stato bello condividere con voi gioie e dolori!

A mio fratello Filippo devo un ringraziamento particolare per la infinita pazienza avuta nell’ascoltare i miei, altrettanto infiniti, discorsi sugli anammox... Agli altri fratelli Giorgio ed Alberto per avermi insegnato ad avere il coraggio e la voglia di fare sempre meglio.

Ad Angelo ed agli animaniacs, per aver reso questo intenso periodo spensierato e ricco di bei momenti...
Infine alla mia famiglia tutta, va il ringraziamento più sentito, per il sostegno, l'entusiasmo e la passione che mi avete trasmesso.
Riferimenti

- Bonomo Luca, Trattamenti delle acque reflue, McGrow-Hill.
- Van de Graaf A.A., Peter de Bruijn, Lesley A. Robertson, Mike S. M. Jetten and J. Gijs Kuenen, Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. August 1996 Microbiology vol. 142 no. 8 2187-2196