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Abstract  

 
 

Lightweight structures became widespread along the years in several industrial 
frameworks. Being characterized by a pretty rich basket of design parameters 
lightweight structures can be tailored exactly to the specific requirement. As main 
drawback, this class of structures tend to vibrate easily inducing undesired noise. 
Better performances can be obtained considering sandwich panels with foam core. 
The metallic skins, usually in Aluminium, provide bending resistance while the core 
material and structure can be selected to obtain the desired vibration damping and 
noise reduction performance. Therefore, a reliable vibroacoustic numerical model 
becomes a powerful designing tool. The aim of the current research is to develop an 
integrated numerical/experimental procedure to predict the vibroacoustic 
performances of a sandwich foam core panel. The innovative feature of the 
proposed methodology is the integration among all the relevant aspects for 
vibroacoustic structural behavior evaluation: material parameter identification, 
vibroacoustic numerical modelling and experimental validation of the modelling 
strategy. In literature, research works are typically focused either in material 
characterization or in numerical modeling. Conversely, the current research work 
considers the whole workflow required for a reliable vibroacoustic prediction. Each of 
the abovementioned aspects has been studied and designed. A dedicated 
experimental activity has been designed and carried out to obtain the material 
parameters required for the numerical model implementation. The panel core is a 
viscoelastic material that requires a specific identification procedure. The structural 
dynamic response has been evaluated through a Finite Element model while the 
coupled vibroacoustic problem has been tackled via a combined Finite Element - 
Boundary Element model. The model prediction capability has been assessed in 
terms of either vibration damping or sound transmission reduction performance. 
Dealing with lightweight structures makes the experimental activity more challenging, 
especially in terms of dynamic characterization. As a result few literature works 
present dynamic models of lightweight structures together with experimental 
validation. In the current research work instead the numerical/experimental 
comparison has been considered of fundamental importance for the assessment of 
the modeling strategy reliability. 
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CHAPTER1 
 

Chapter 1 gives the framework of the current 
dissertation. Specific attention is paid to the importance of the 
selected topic and to the motivations at the basis of the work. 
The structure of the thesis is described as well. 

 

1. Introduction 

 

During the last years energy efficiency become one of the most challenging topics. 
The global warming has been an issue for the international community since the 
beginning of the 90s. In 1992 the Rio de Janeiro Summit, to which 154 nations took 
part, drafted the United Nations Framework Convention on Climate Change 
(UNFCCC). The main goal of the UNFCCC was to reduce the greenhouse gases 
(GHG) emission and to stabilize their level by the year 2000, though without any 
formal duty for the signing nations. The next important step was the Kyoto Protocol 
in 1997. It states the will of reducing the GHG emissions of the 8% in the years 
2008-2012. Focusing on the European Union (EU), the 15 nations that committed to 
reduce their emissions according to the Kyoto Protocol statement are well on their 
path.In 2011, the latest year for which comprehensive data are available, EU-15 
emissions stood 14.9% below their level in Member States' chosen base years 
(Figure 1).  
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Figure 1 GHG emissions reduction Kyoto Protocol bas e-year /2011 (source: European 
Environment Agency). 

The next target for EU is 2020. The EU has made a unilateral commitment setting 
three key objectives: 

• A 20% reduction in EU greenhouse gas emissions from 1990 levels; 

• Raising the share of EU energy consumption produced from renewable 
resources to 20%; 

• A 20% improvement in the EU's energy efficiency. 

Energy efficiency enhancement will then play a core role in 2020 horizon. The two 
strategic areas are transportation and housing. In EU, nearly 40% of final energy 
consumption is in houses, public and private offices, shops and other buildings [1]. 
As Figure 2shows, in residential homes, two thirds of this is for space heating. 
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Figure 2 - Energy consumption in residential homes (source: European Commission). 

A straightforward way to improve building energy efficiency is to reduce heating 
dissipation. This result is achieved by interposing layer of low thermal conductivity 
material between the exterior and the interior wall or under the building roof. The 
same can be done for the construction of the building front doors. An ideal solution is 
represented by structures that can give both structural and thermal resistance 
avoiding overload. This necessity results in an additional application field for 
composite materials, typically used in aerospace and automotive industry. 

Composite materials 

Composite materials have been subject of intensive interest since the beginning of 
XX century. The goal for composite development has been to achieve a combination 
of properties not achievable by any of the elementary materials. They are basically 
made by a material, the matrix, that is reinforced by a second one, called 
reinforcement. The matrix is a homogeneous phase, it controls the shape of the 
material, transfers load to the reinforcement and protects it, giving cohesion to the 
whole part. Conversely, the reinforcement givesstiffness and mechanical resistance 
to the material, bearing the bigger part of the load. Typical reinforcements are fibers 
(short or long) and particles (Figure 3). Orienting long fibers along the load direction 
gives the possibility to exploit at best the composite characteristics. Using short 
fibers randomly oriented results in a globally isotropic material. Layers of composites 
material, called plies, are then usually bonded together to made a composite macro-
material. Polyester materials are widely used as matrix in commercial products, due 
to their low cost. Polymeric resins are instead used for applications that require high 
mechanical performances. 
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Figure 3 - Schematic example of composite materials . 

A special class of composite material, the one widely used in building construction, is 
structural sandwich. The structural sandwich normally consists of two facings, called 
skins, of relatively thin, hard, durable material which are bonded to a relatively thick 
core of lightweight and less stiff material, named core (Figure 4). Different materials 
can be used for the facings (metals, plywood, hardboard...) and for the core (foam, 
wood, honeycomb...). The typical adhesives are synthetic resins, such as epoxy and 
phenol formaldehyde. 

 

Figure 4 - Schematic example of sandwich panel. 

Building sandwiches are asked to perform a number of functions beyond strength 
and stiffness. The exterior facing must withstand sunlight, rain and snow, wind 
pressure and abrasion thus specific coatings or paintings are often applied. The 
interior facing must instead withstand the normal wear of the interior of a building. A 
central role is played by the core characteristics that should provide the for instance 
whole thermal insulation capability of the panel. 
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2. Building certifications 

 

The EU directives lead towards a nearly - zero impact building configuration. This 
can be achieved moving to renewable energy sources, like solar panels, and 
designing the building with particular attention to orientation and balance between 
open and closed surfaces. For instance, a huge window south oriented can provide 
light and warmth without energy consumption. Beside the design strategies, also the 
global mentality should be oriented toward an "energy saving" concept. A Class A 
house can be expensive and the benefits may not be evident in the short period. As 
well as we are used to see with household appliances, higher initial investment may 
lead to real saving considering the whole building lifetime. The idea behind the 
certification process is enabling the client to make more informed decisions. Different 
parameters are taken into account for building energy certification as: extension, 
number and kind of windows, heating system kind and insulation type and quality.  

The choice of the insulation materials plays a fundamental role for a second 
certification procedure. The acoustic performance certification has become 
mandatory in Italy in 2011 [2]. This certification takes in account the noise 
transmission either from outdoor to indoor or from one room to the other. The 
strategies to insulate from noise are exactly the same than to reduce heat 
dissipation. An acoustic transmission problem can be depicted like in Figure 5. 

 

Figure 5 - Acoustic problem.  

A central role is played by the path the sound wave travels between the noise source 
and the environment to protect. Thus the interposal of a layer of suitable material 
comes again to the fore (Figure 6). 

  

Source 

Receiver 

Path 
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Figure 6 - Sound insulation strategy - example. 

Moreover, noise pollution is often not due to a real sound source but by wall or 
surface vibrations and their reflection on adjacent surfaces. This is a frequent 
problem in industrial framework dealing with big machineries or, for instances, huge 
fridges. There is a strong connection between noise and vibration thus noise 
insulation cannot neglect, from a general point of view, vibration transmission 
reduction. The vibration attenuation is again achievable by modifying the vibration 
path with layers of suitable materials. The peculiar structure of sandwich panels 
makes them suitable to perform many varied function. It is possible to combine a 
potential infinite number of materials obtaining panels exactly tailored to a specific 
application. The appealing idea of a multifunctional panel becomes achievable by 
tuning and optimizing the design parameter that characterizes sandwich panels. 
Despite these appealing characteristics lightweight structures have the main 
drawback of poor noise and vibration mitigation performances. A full understanding 
of the noise and vibration performances becomes a key factor as well as the 
availability of a helpful designing tool. 

 

3. Research Objectives 

 

The goal of the present dissertation is to develop a combined 
numerical/experimental methodology able to predict the global vibroacoustic 
response of a sandwich panel. The panel behaviour is defined in terms of dynamic 
response to incoming broadband vibration and sound transmission loss in the 
acoustic frequency range. The final aim is to obtain a reliable model to be used for 
panel design purposes. Given the application field, different panel solutions can be 
evaluated and tailored to optimize the structural sandwich according to the specific 
situation. Particular attention has been paid to accurately structure a complete 
procedure: starting from material properties identification to the extraction of the 
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predicted vibroacoustic properties. The steps of the whole chain have been 
designed. Firstly, material properties have been characterized through a dedicated 
experimental campaign. The modeling block, made by a Finite Element (FE) model 
and a coupled Finite Element - Boundary Element (BE) model, has been designed 
and tuned to lead to reliable results. The numerical model has been developed using 
a commercial code. Avoiding the development of a specific routine using a 
programming language makes it a wider exploitable tool. Finally, an important part of 
the work is related to the model validation.  

An extended and dedicated experimental activity is needed to define the model 
reliability. Standard and non standard experimental techniques have been applied to 
characterize different aspects of the panel vibroacoustic performance such as 
damping factor, natural frequencies and Insertion Loss. The effectiveness of the 
proposed modeling strategy has been further investigated checking the 
modelpredictive capability. The numerical model validated on a given panel has 
been used to simulate the dynamic response of a panel characterized by a different 
planar extension. The latter has been experimentally investigated to assess the 
validity of the obtained results. The experimental campaign pointed out the 
challenges related to dealing with lightweight structure. Load effect of sensors and 
excitation as well as test boundary condition definition have been carefully studied. 
As side objective of the present work, an experimental evaluation of the dynamic role 
of the adhesive layer has been carried out. 

4. Dissertation Outline 

 

This thesis builds on the field vibroacoustic modeling and specifically addresses the 
problem related to the numerical modeling of sandwich foam core panels. The thesis 
is organized in six chapters, of which the first is represented by the current 
introduction and the last contains the conclusions. A chapter-by-chapter brief outline 
is presented hereafter. 

Chapter 2 introduces the topic of vibroacoustics and describes all the relevant 
aspects helping to understand the significance of the topic itself. An overview on 
numerical modeling techniques is provided highlighting how dynamic and acoustic 
modeling can be coupled. The current work deals mainly with structural sandwich 
panel having foam core. In this framework a literature review of wave propagation in 
porous materials is provided as well as a basic description of viscoelastic material 
behavior. 
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Chapter 3 gives a brief overview on the adopted numerical methods together with an 
essential description of their mathematical basis. Particular attention has been paid 
to the viscoelastic behavior modeling. The potential and drawbacks of the most 
common models are presented. Keeping in mind the aim of the numerical modeling, 
the modeling choice are illustrated. Chapter 3 ends with the description of the 
equivalent model adopted to obtain results in a wider range of frequency. 

Chapter 4 gives detailed description of the experimental activity that has been 
carried out to validate the proposed numerical strategy. The adopted techniques for 
data acquisition and post processing are detailed. The results are presented for 
either the dynamic or the vibroacoustic behavior identification. Particular attention 
has been paid to the characterization of the core material behavior and the related 
parameters. 

Finally, Chapter 5 collects the obtained results. The chapter focuses on the 
comparison between the numerical and experimental results. Either the dynamic or 
the vibroacoustic numerical prediction are validated through the experimental results 
described in Chapter 4. Particular attention is paid to the assessment of the dynamic 
model predictive capability. 
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CHAPTER2 
 

Chapter 2 introduces the topic of vibroacoustics and 
describes all the relevant aspects helping to understand the 
significance of the topic itself.its significance. An overview on 
numerical modeling techniques is provided highlighting how 
dynamic and acoustic modeling can be coupled. The current 
work deals mainly with structural sandwich panel having foam 
core. In this framework a literature review of wave 
propagation in porous materials is provided as well as a basic 
description of viscoelastic material behavior. 

 

1. Sound and Vibration 
 

In everyday life it is common to experience various manifestations of the interaction 
between fluid and solid structures. Traffic noise heard through the windows or 
plumbing system noise are examples of undesirable aspects of this interaction 
(Figure 7). The same phenomenon may be exploited for good use: vibrations of 
musical instruments, microphone diaphragms and loudspeakers. The study of the 
physical interaction between sound and vibration is known as vibroacoustics. As a 
consequence of the vibroacoustic interaction large number of sound sources is 
nothing but the action of vibrating solid surfaces upon the surrounding fluid. The 
subject of sound radiation from vibrating surfaces has a great practical importance. It 
is a key factor for instance in loudspeaker and industrial machinery design, though 
with opposite aims. The former should be tuned to obtain a good radiation while the 
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latter must take into account the community noise limits fixed by standards and 
regulations.  

 

Figure 7 - Example of sound wave induced by structu ral vibration. 

Many different structures can radiate sound but the mechanism is common to all of 
them. In the current dissertation, attention is confined to elastic structures that take 
the form of plates; for these thickness is much smaller than the dimensions defining 
the surface. Such structures tend to vibrate in a direction normal to the surface. This 
characteristic enables a mechanism of compressing and displacing of the 
surrounding fluid. As a result, similar structures are effectively able to radiate, 
transmit and respond to sound. A key point for understanding the fluid-structure 
interaction is the analysis of the forms and characteristics of the principal types of 
waves that can propagate through solids and fluids. The nature of the supporting 
media influences that of the propagating wave. On the other hand, the wave nature 
plays a role in determining the efficiency of the mutual interaction. 

Given an incident sound source, only a part will be transmitted through the structure. 
Each impinging wave will be, in fact, partially reflected, partially absorbed and only 
the remaining part will be transmitted (Figure 8).  
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Figure 8 - Incident, absorbed, reflected and transm itted sound. 

The reduction of the transmitted sound may be achieved acting on two distinct 
phenomena: the sound absorption and the sound emission due to vibration, thus the 
structural vibration reduction. 

Aiming to design a structure effectively able to reduce the sound transmission, the 
historical rule of thumb "the heavier the better" is still valid. Increasing the mass of a 
structure leads to a better sound insulation. Anyway, in many application fields 
lightweight is a strict design constraint. Recent developments in material sciences 
along with the older concept of composite structures allow theovercoming of this 
difficulty.  

The backbone of the current dissertation is depicted in Figure 9. Focusing on 
reducing sound transmission, sandwich structures are identified as a possible 
solution since they may satisfy the strictest lightweight design requirements.  
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Figure 9  - Conceptual schema. 

 

Lightweight structures usually exhibit poor noise and vibration reduction 
performances: they vibrate easily and with high vibration levels. However, composite 
structures allow the combination of different materials to exploit at best their 
characteristics. Among the others, an appealing solution for sound reduction is 
represented by sandwich structures with foam core. The structural resistance is 
given by the thin face sheets while an accurate choice of the core leads to interesting 
vibroacoustics properties.  

Porous materials, like foams, are an excellent choice for sound absorbing purposes 
and can help insulation. Several mechanisms of absorption are at work. Among them 
two are of great importance: the viscous loss of air that is pumped through the 
cellular structure and the intrinsic damping in the material. The former is a direct 
consequence of the random microstructure that characterizes porous materials. The 
latter is related to the nature of the porous material. The material damping is 
generally low for metallic materials but it reaches high levels in polymer and foams. 
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This is due to the viscoelastic nature of the foam frame material. Viscoelasticity 
increases viscous losses and leads to hysteretic mechanical energy dissipations if 
the material is subjected to cyclic loads. As a result, viscoelastic materials efficiently 
reduce structural vibrational levels improving sound transmission reduction.  

The sound transmission capability of a structure is typically characterized by the 
Sound Transmission Loss (TL) index. The analysis of the TL curve trend vs 
frequency allows one to identify the structural properties to be modified in order to 
optimize the structure performances. One of the most important phenomena related 
to fluid - structure interaction is coincidence. If the structural bending wavespeed and 
the free wavespeed in air, for a given incidence angle, correspond the structure acts 
as totally transparent to the impinging sound wave. The TL curve shows a deep dip 
at that frequency, testifying the structure tendency to become a perfect radiator.  

 
The sound radiation and transmission properties are highly influenced by the 
structure cross sectionconfiguration and material. One of the major advantages of 
sandwich structures is that they can be tailoredexactly to specific requirements. The 
concept of multilayered structures releases many designconstraint enlarging the 
basket of available engineering solutions. This freedom highlightsthe need of a 
reliable numerical tool to evaluate the efficiency of different practical solutions. An 
accurate prediction of the structural dynamic response plays a key role in the study 
of the mutual interaction between structural vibration and sound propagation. The 
determination of the structural transfer function, for instance between the structural 
displacement and the force acting on the structure, allows the prediction of the 
response to any kind of excitation including the acoustic one. Subsequently, the 
pressure field in the fluid surrounding the structure can be evaluated by applying 
suitable numerical techniques.  
Several analyticaltheories and numerical methods have been developed through the 
last part of this chapter is devoted to the review of the available modeling techniques 
to tackle the coupled vibroacoustic problem and to predict either vibration damping 
or sound transmission performances for the analyzed solutionyears, giving the 
designer the capabilityof choosing an efficient and effective modeling strategy to 
predict the vibroacoustic performances of a structure. 
 
In the first part of this chapter the basics of wave propagation in solids and fluids are 
reviewed together with one of the most relevant aspects in sound structure 
interaction: the coincidence effect. Subsequently, attention is focused on the 
advantages of adopting sandwich structures with foam core with respect to 
homogeneous structures. In particular both the sound propagation modeling of 
porous materials   and porous materials viscoelastic behavior are described. The  
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2. Sound radiation by vibrating planar structures 
 

The study of the interaction between plate/type structures and the surrounding fluid 
is important for many engineering applications, particularly for structure borne sound 
analysis. Acoustic vibrations essentially involve the propagation of waves throughout 
the supporting media. The nature of the considered media influences the kind of 
waves that can propagate and not all the waves are relevant from a vibroacoustic 
point of view. 

2.1. Waves in fluids and solids 
 

The wave equation for the propagation of small acoustic disturbance through 
homogeneous, inviscid, isotropic, compressible fluid in its two dimensional form is 
known as the Helmholtz equation: 

 

22 2
2

2 2

p p
p k p

x y c

ω∂ ∂  + = − = − ∂ ∂  
 (2.1) 

Equation (2.1)[3] only involvesvariations in two orthogonal directions  in association 
with a harmonic time dependence. The pressure is denoted by p, c is the frequency 
independent speed of sound related to the mean fluid pressure, the mean fluid 
density and the adiabatic bulk modulus of the fluid. k is the wavenumber and 
expresses the phase change for unit distance. 

Equation (2.1) governs the wave propagation in fluids. In an unbounded solid instead 
different kinds of waves can propagate:  

• longitudinal waves, that become quasi - longitudinal considering a solid 
unbounded only in the direction of the wave propagation, 

• shear waves , 

• bending waves. 
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Figure 10 - Deformation patterns of different type of waves in flat plates and bars. 

(a) quasi longitudinal wave, (b) shear wave (c) ben ding wave [3]. 

 

2.1.1. Sound waves and solid structures 

 

Among the various type of waves that can propagate in bars, beams and plates 
bending waves are those of greatest importance in the process of fluid - structure 
interaction. The reason is that they involve displacement in a direction transverse to 
that of propagation that can interfere effectively with the adjacent fluid. In addition, 
the structure impedance able to carry bending waves may be of the same order of 
magnitude of that of the surrounding fluid, thus the energy exchange between the 
two systems is facilitated. As a result, the bending stiffness of the medium is a 
fundamental parameter from the vibroacoustic point of view. Generally speaking, the 
bending stiffness of a homogeneous structure is a constant value depending upon 
the geometrical and the material parameters. Thin structures vibrate easily than 
thicker ones being more efficient in sound radiation; loudspeakers membranes are in 
fact very thin.  

Dealing with layered structures, the effective bending stiffness for free bending wave 
propagation results to be frequency dependent. At low frequencies the vibrational 
behavior of a sandwich panel is dominated by the overall section bending stiffness. 
The core acts as an ideal spacer distributing stresses between the outer layers and 
coupling the skins together, giving maximum bending stiffness. As the vibrational 
frequency increases, the bending stiffness decreases and it is controlled by the 
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propagation of shear waves in the core. At higher frequencies, the bending stiffness 
is asymptotic to a constant value approximately equal to the sum of the skins 
bending stiffness [4].  

Bending waves are the main actors in the sound and vibration interaction process. If 
it were possible to construct plates favoring the propagation of shear waves instead 
of the bending ones, those plates would be great insulators. Unluckily, it is almost 
impossible to obtain homogeneous plates with high bending and low shear stiffness. 
The first research that pointed out the utility of sandwich panels with respect to 
homogeneous plates to increase the sound insulation was from Kurtze and Watters 
[5]. Bending of such a structure would require the extension/compression of the 
skins while shear requires shear of the core material and bending of the thin plates. 
Considering, for example, a plate consisting of soft but incompressible core 
sandwiched between two metal skins, such a structure can be considered stiffer in 
bending than in shear. As a result, it can be expected shear waves to propagate 
easily with respect tobending one and such a structure can be used for sound 
insulation purposes [5]. 

2.2. Critical and coincidence frequency 
 

Bending waves in plates are the major responsible of sound radiation. However, 
radiation efficiency depends on the excitation, respectively mechanical or acoustic, 
and the inducedwave characteristics, acoustic or mechanical, respectively. The most 

important parameter is the ratio between the surface displacement wavelength, Bλ , 

and the corresponding acoustic wavelength λ . Considering an undamped, infinite 
plate mechanically forced to carry a plane bending wave of constant amplitude and 

propagation speed Bc , the plane radiated sound wave is characterized by a 

wavelength λ  equal to: 

 sin sinB
B

c

f
λ λ ϑ ϑ= =  (2.2) 
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Figure 11-  Sound radiation by an infinite plate [6 ]. 

As a consequence, sound radiation implies an acoustic wavelength equal or shorter 
than the bending wavelength (Figure 11). Both wavelengths are equal when the 
wavespeeds in both media are equals. This occurs at a particular frequency called 

critical frequency crf . Thus only above the critical frequency the free waves in a 

mechanically excited infinite plate can radiate sound efficiently [6]. 

The phenomenon of equality between acoustic and bending wavelenghts can be 
analyzed also considering acoustic excitation. At the critical frequency speed of the 
acoustic wave in air matches the speed of free bending wave. Under this condition, 
the structure acts as a perfect radiator. It can be shown [7] that for a thin plate the 
critical frequency can be analytically determined and is given by: 

 
2 4 /cr sc Dω ρ=  (2.3) 

where c is the speed of sound of the medium, sρ  is the plate mass per unit area and 

the bending stiffness is D . D is defined in terms of material Young modulus E , 
plate thickness h and material Poisson ratio ν : 

 ( )
3

212 1

Eh
D

ν
=

−
 (2.4) 

The vibration response of a panel to an acoustic field is the highest around the 
critical frequency. As depicted by Figure 11 ,the sound radiation characteristics are 
highly dependent on whether the excitation frequency is above or below the critical 
frequency. Aiming to design an efficient sound attenuating structure, the design 
parameter should be tuned so that the speed of the bending wave in the plate is 
lower than that of the speed of sound in free air. Otherwise, the fluid - structure 
interaction becomes efficient. Only for thin, heavy, isotropic plates the coincidence 
frequency assumes such a high value that is out from the frequency range of 
interest. [5] 
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A way to locate the value of the critical frequency is the study of dispersion curves. 
This means displaying the variation of the wavenumbers of the different wave kinds 
against the frequency and comparing it with the one of the wave propagation of the 
considered surrounding fluid. 

 

Figure 12- Dispersion curves [3]. 

In Figure 12 a generic plot of dispersion curves for various waveforms is reported. 
The wavenumbers associated to longitudinal waves (kl), quasi longitudinal waves in 
bars (kl

') and plates (kl
'') and with shear waves (ks) are linearly frequency dependent, 

as well as the one related to the wave propagation in the surrounding fluid (k). 
Instead the bending waves wavenumber kb  is function of the square root of the 
frequency and intersects the air wavenumber exactly at the critical frequency [3]. The 
critical frequency is the equality of the free bending wavespeed and the speed of 
acoustic wave in air. This frequency is also termed lowest coincidence frequency [3]. 
If a structure is excited acoustically, the coincidence frequency is the 
correspondence of the forced bending wavespeed in the structure and the free 
bending wavespeed [7]. It can be shown that critical and coincidence frequencies are 
directly related [7].The concept of coincidence in flat panels has been developed at 
first by Cremer [8] who stated that at coincidence a plate excited to vibrate by sound 
waves acts as if it is totally transparent and the incident sound waves are freely 
transmitted. 
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2.3. Coincidence effects in layered structures 
 

The core of a sandwich structure can be of every kind of material. A work of Ford, 
Lord and Walker [9] showed that the sound radiation from a sandwich panel having 
compressible core is dependent on bending and dilatational modes of vibration 
(respectively i and ii in Figure 13). Studies performed by Dym and Lang [10] pointed 
out how for symmetric panels symmetric (dilatational) and antisymmetric (bending) 
motions are uncoupled leading to a simpler problem analysis. 

 

 

Figure 13 - Fundamental mode of vibration of a laye red panel having compressible 
core: (i) Flexural and (ii) Dilatational [9]. 

Core compressibility causes transverse motion of the panel faces. This acts as a 
disturb for the surrounding fluid as well as the bending vibrations. According to [9], 
for low wavenumbers values the dilatational vibration mode can affect significantly 
the panel insulation properties. Three layered structures exhibit two values of 
impinging wave frequency that transform the layered structure in a perfect radiator: 

• one related to the antisymmetric motion of the skins 

• one related to their symmetric motion, so called double wall frequency 

Sound radiation is higher near the coincidence frequency, due to the equality 
between forced bending wavespeed and free bending wavespeed. As described in 
paragraph 2.2, the same peak of sound radiation happens at the critical frequency or 
lowest coincidence frequency. Aiming to study a sandwich structure vibroacoustic 
behavior to optimize the performance, either for sound radiation or sound absorption, 
the knowledge of critical and coincidence frequencies values becomes of primary 
importance.  

  

ii i 
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3. Porous core sandwich panels: relevant characteristics 
 

Sandwich structures are characterized by a pretty rich basket of possible skin/core 
combination. This allows the tailoring of the structure exactly to the best required 
performance. Porous material, like mineral wool or polymeric foams, are an 
appealing option as core material. Their peculiar random microstructure gives them 
higher damping and specific acoustic characteristics. Focusing on polymeric foams, 
they are generally characterized by low shear modulus that enhances sound 
reduction performances (Figure 14).  

 

Figure 14 - Sandwich panel: stainless  steel skins,  polymeric foam core. 

The vibration damping performances, higher with respect to bulk materials of the 
same thickness, are mainly due to the viscoelastic behavior. From a dynamic point of 
view the porous material can be considered as an "equivalent solid" since the 
wavelength of mechanical excitation is generally larger than the characteristic length 
of the porous media [11]. This hypothesis is no more satisfied in case of acoustic 
excitation. As a result, particular attention should be paid to porous material acoustic 
behavior. 

3.1. Polymeric foams: stress - strain relationship 

 

Due to its increased use in engineering application, many research have been 
devoted to different aspects of the foam behavior: from the chemical composition 
and structure to the microscale properties and from the microscale properties to the 
macroscale ones. Generally speaking, foam is a non-linear, viscoelastic, material 
whose static and dynamic behavior are different  and sensitive to many variables, 
like the level of compression or amplitude/frequency of excitation.  
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A viscoelastic material combines the characteristics of purely elastic and purely 
viscous materials, i.e it has two asymptotic behaviors: (i) the elastic solid and (ii) the 
viscous liquid. The response to imposed strain of elastic, viscoelastic and viscous 
materials is qualitatively shown in Figure 15.  

 

Figure 15 - Qualitative comparison among different material behavior. 

The elastic solid has a defined shape and its stress-strain behavior is governed by 
the Hooke law that, for the case of uniaxial load is: 

 ( ) ( )t E tσ ε=  (2.5) 

The stressσ  is immediately induced by the applied strainε  and they are related by 

E , the Young modulus. Once the load is removed the stress goes back to zero 
(Figure 15). 

The viscous fluid, instead, is governed by the Newton law: 

 ( )t
t

εσ η ∂=
∂

 (2.6) 

This means that the stress σ is related to the strain velocity through viscosity η . The 

main actor in this case is time. In fact, a high loading instantaneously applied may 
leave the material unchanged while small loading constantly applied in time may 
lead to irreversible strain due to internal creep. 

A viscoelastic material presents an intermediate behavior between purely elastic and 
purely viscous materials. If subject to a time constant varying strain the resulting 
stress will not be neither directly proportional as for an elastic material nor constant 
as for a viscous material but slowly varying with a small amplification. Conversely, if 
subject to a constant strain the resulting stress would be constant for an elastic 
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material, zero for a purely viscous one and slowly decaying for a viscoelastic 
material (Figure 15).  

The viscoelastic material behavior may be characterized in two ways: 

• Time varying relaxation modulus or its dual, the time varying creep 
compliance 

• Frequency dependent complex modulus 

Relaxation is one of the most important consequences of the material viscoelastic 
nature. It expresses the decrease of loading under constant applied strain. The 
relaxation test is performed applying a constant strain to the specimen and 
measuring the resulting stress. The ratio between the stress and the imposed strain 

gives the relaxation modulus ( )E t  as a function of time (Figure 16). 

 

0

( )
( )

t
E t

σ
ε

=  (2.7) 

 

 

Figure 16 - Qualitative strain and stress trend dur ing a relaxation test [12]. 

 

Creep is the relaxation dual phenomenon. As in the case of  several elastic materials 
at high temperatures, creep is the increase of strain under constant loading. The 
creep test is performed applying a constant stress to the specimen and measuring 
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the resulting strain. The ratio between the strain and the imposed stress gives the 
creep compliance ( )J t  as a function of time (Figure 17). 

 

0

( )
( )

t
J t

ε
σ

=  (2.8) 

 

 

Figure 17 - Qualitative strain and stress trend dur ing a creep test [12]. 

The viscoelastic material may be characterized also by the reaction to a sinusoidal 
strain like ������. The resulting stressis amplified and delayed with respect to the 
imposed strain due to the viscoelastic nature of the material. The delay is due the 
viscous losses of the material as a result of the internal friction. 
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Figure 18–Qualitative strain and stress trend durin g dynamo mechanical test. 

The stress -strain relation can be described by the following expression: 

 ( ) ( )' ( )
0''i t i tt e E iE eω ω δσ ε −= +  (2.9) 

The component E' or storage modulus, is related to the strain in-phase component 
and to the elastic side of the material while the component E'' or loss modulus is 
related to the viscous properties of the material and the 90° out of phase component 
of the strain. Storage and Loss modulus together are called complex modulus. The 
ratio of the loss modulus to the storage modulus expresses the phase delay of the 
stress with respect to the strain and is related to the material damping factor. All 
these quantities are frequency dependent. It is possible to define as well a complex 
compliance as frequency varying analogous of the creep compliance(2.8).  

As creep compliance and relaxation modulus also relaxation modulus and complex 
modulus are different ways to express the material behavior. All linear viscoelastic 
material functions are mathematically equivalent and contain the same rheological 
information of the material. However, depending on the input excitation, the use of a 
certain material function can be more advantageous than another. If stress is 
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specified as input the creep compliance may be the preferred choice as well as the 
complex modulus if the problem deals with steady state harmonic input. Each 
material function has a specific testing protocol but, since they are all related to the 
same material, there are analytical relations enabling the conversion among those 
parameters. The conversion between creep compliance and relaxation modulus is 
based on the Laplace transform while the conversion between time and frequency 
dependent moduli exploits the Prony series or convolution integral properties [13, 
14]. 

Considering, for instance, the conversion between relaxation and complex modulus 
the starting point is the Boltzmann superposition integral(2.10), that expresses a 
convolution.  

 ( ) ( ) ( )
0

t d
t E t d

d

ε τ
σ τ τ

τ
= −∫  (2.10) 

The Boltzmann superposition integral can be applied until the material exhibits linear 
behavior. This is the case of viscoelastic materials subject to acoustic excitation. 
Small deformations are implied by the impinging pressure wave. As a result the 
material can be considered in the linear regime. 

Equation (2.10) enables to predict the resulting stress, given the strain history, once 
the relaxation modulus is known. The relaxation modulus can be expressed as a 
constant value, the long term elastic modulus E∞ , and a time dependent one: 

 ( ) ( )E t E E t∞= +
∼

 (2.11) 

The constant value may be seen as the value to which the relaxation modulus settles 
itself at infinite time once the imposed strain is removed. Considering a sinusoidal 
strain and the relaxation modulus as defined in (2.11), (2.10) becomes: 

 ( ) ( ) ( ) ( )0 0
i it td e d e

t E d E t d
dt dt

ωτ ωτε ε
σ τ τ τ∞

−∞ −∞

= + −∫ ∫
∼

 (2.12) 

The lower integral limit has been set as minus infinite since the sinusoidal strain is a 
periodical signal. Then, solving the first integral and changing variable, from (t - τ) to 
t', the following  is obtained: 

 ( ) ( ) '' '
0 0

0

i t i tt e E i E t e dtω ωσ ε ωε
∞

∞

 
= + 

 
∫
∼

 (2.13) 
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Transforming the (2.13) using the polar representation of exponential function in the 
integral function it becomes: 

( ) ( ) ( ) ( ) ( )0

0 0

' sin ' ' ' cos ' 'i tt e E E t t dt i E t t dtωσ ε ω ω ω ω
∞ ∞

∞

 
= + + 

 
∫ ∫
∼ ∼

 (2.14) 

Comparing now (2.14) and (2.9) it is possible to explicit the relation between 
complex and relaxation moduli [13]: 

 

( ) ( ) ( )

( ) ( ) ( )

0

0

' ' sin ' '

'' ' cos ' '

E E E t t dt

E E t t dt

ω ω ω

ω ω ω

∞

∞

∞


= +



 =


∫

∫

∼

∼

 (2.15) 

Viscoelastic materials mathematical modeling 

Different mathematical models for the viscoelastic behavior have been developed 
starting from the end of the XIX century. This kind of material is characterized by an 
intermediate behavior between purely elastic and purely viscous material. It is then 
justified the choice of a combination of springs to represent the elastic part and 
dashpots to represent the viscous one (Figure 19). These models have been 
developed in the rheology framework, i.e. the study of the flow of the matter. 

 

Figure 19 - Basic elements for rheological models. 

The spring and dashpot parameters, respectively K and R , are not directly the 
material constant. It is though  therefore possible to derive them from the material 
experimental data through data fitting procedures. 
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The more simpleviscoelastic models are based on the series or parallel connection 
of springs and dashpots [13]: 

− Maxwell model 

− Kelvin Voigt model 

Maxwell model 

Maxwell model has been one of the first developed one. It is made of a spring and a 
dashpot connected in series (Figure 20). 

 

Figure 20 - Maxwell model. 

If a load F  is applied, both element, spring and dashpot, undergo the same 
stresstensionσ . The time derivative of the final strain is given by the summation of 
the time derivatives of the strain of the two elements: 

 
K R

σ σε = +
ɺ

ɺ  (2.16) 

Among the different experimental strategies to investigate the viscoelastic behavior 
stress relaxation and creep test play a key role. The simulation of such test 
conditions is useful to analyze the coherence of a mathematical model, like 
Maxwell’s, with a real hypothetic viscoelastic material behavior. Viscoelastic behavior 
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is generally complex and the modeling choice should be very accurate in order to 
ensure reliable results. 

• Creep test condition simulation 

Considering the creep test, a constant stress 0σ should be applied to the system. 

According to (2.16) the resulting strain will be: 

 
0 0 0 t

R K R

σ σ σε ε= ⇒ = +ɺ  (2.17) 

The creep compliance, defined as the ratio of the strain to the imposed stress, can 
be written as: 

 ( ) 1
1  with 

t RJ t KK
τ

τ
 = + = 
 

 (2.18) 

• Relaxation test condition simulation 

The relaxation test implies the application of a constant strain to the specimen thus: 

 ( ) 00
t

t K e
K R

τσ σ σ ε
−

+ = ⇒ =
ɺ

 (2.19) 

The relaxation modulus, defined as the ratio of the resulting stress to the imposed 
strain, can be written then as: 

 ( )
t

E t Ke τ
−

=  (2.20) 

The trend of creep compliance and relaxation modulus for the Maxwell model is 
depicted in Figure 21. 
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Figure 21 – Creep compliance and relaxation modulus  for Maxwell model. 

The trend of the relaxation modulus is not representative of the behavior of a real 
viscoelastic solid. In fact, for infinite time, the relaxation modulus tends to zero. This 
means that the resulting stress would be null at infinite time given a fixed value of 
deformation and that is not physically possible for a solid. The creep response is 
irrealistic since the primary creep prediction is a straight line, in contrast with what is 
observed experimentally [13] 

Kelvin Voigt Model 

A different rheological model is the Kelvin – Voigt one, made of a spring and a 
dashpot connected in parallel (Figure 22).  
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Figure 22 - Kelvin Voigt Model. 

In this case both elements are subject to the same strain while the final stress is the 
sum of the stress acting on the spring and the dashpot. 

 K Rσ ε ε= + ɺ  (2.21) 

• Creep test condition simulation 

If a constant stress is applied to the Kelvin Voigt model, as in a creep test, the 
resulting deformation is: 

 0
0 1

t

K R e
K

τσσ ε ε ε
− 

= + ⇒ = − 
 

ɺ  (2.22) 

The creep compliance, obtained as the ratio between the strain and the constant 
applied stress, is: 

 

0

1
1

t

J e
K

τε
σ

− 
= = − 

 
 (2.23) 

• Relaxation test condition simulation 

Applying a constant strain, as for the stress relaxation test, it is immediately possible 
to notice from (2.22) that only the spring element provides a response to the input. 
The stress in the dashpot vanishes immediately while the spring one remains 
constant without relaxing. The relaxation modulus is thus constant and equal to the 
value of the spring parameter K .  

The trend of the relaxation modulus and the creep compliance is depicted in Figure 
23. The Kelvin Voigt model is not able to correctly predict the stress relaxation 
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phenomenon, typical of viscoelastic materials. The creep compliance trend is instead 
more similar to the actual one of a viscoelastic material. 

 

Figure 23 -  Creep Compliance and Relaxation Modulu s for Kelvin Voigt model. 

More refined models have been developed in order to accurately model both creep 
and stress relaxation of a viscoelastic material. One of the simplest models that can 
represent in a more realistic way the viscoelastic behavior is is the Zener model or 
Standard Linear Solid (SLS) model. 

Standard Linear Solid Model 

The SLS model is made by a spring in parallel with a Maxwell model (Figure 24).  
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Figure 24 - Zener or SLS model. 

The stress- strain relationship is given by: 

 0
0

1 1

1
KR

K R
K K

σ σ ε ε
 

+ = + + 
 

ɺɺ  (2.24) 

In order to analyze the validity of the SLS model to predict the behavior of a 
viscoelastic material, the condition of creep and stress relaxation tests are applied to 
the model. 

• Creep test condition simulation 

Applying constant stress, the resulting strain is: 

 
( )

0 1
0 0 0

1 0 0 1 0

1
1 tK K

K R e
K K K K K

κσ ε ε ε σ − 
= + + ⇒ = − +  + 

ɺ  (2.25) 

with 0

0 1 1

1
 

K

K K
κ

τ
=

+
and 1

1
 R

Kτ = . 

The creep compliance for the Zener model is given by: 

 ( )
1

0 0 1 0

1tK
J e

K K K K
κ−= − +

+
 (2.26) 

 



 

33 

 

• Relaxation test condition simulation 

Considering the stress relaxation test, thus constant strain, the resulting stress is: 

 1
0 0 0 1 0

1

t
R

K K e K
K

τσ σ ε σ ε
− 

+ = ⇒ = + 
 
 

ɺ  (2.27) 

The relaxation modulus, expressed as the ratio between the stress and the constant 
strain, is: 

 1
1 0

t

E K e Kτ
−

= +  (2.28) 

The trend of the relaxation modulus and of the creep compliance is depicted in 
Figure 25. The SLS model is one of the simplest one able to combine both the 
meaningful behaviors of a viscoelastic material: the creep and the stress relaxation. 
The relaxation modulus doesn't tend to zero for infinite time allowing the presence of 
a finite value stress consequent to the constant imposed strain and the creep 
compliance is not monotonously increasing but it reaches a plateau as typical for 
viscoelastic materials.  
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Figure 25 -  Creep compliance and Relaxation modulu s for SLS model. 

Figure 25 shows qualitatively the trend of Creep Compliance and Relaxation 
Modulus obtained numerically with a SLS model. In Figure 3-13 the Creep 
Compliance and the Relaxation Modulus of a PMMA specimen are displayed. The 
trends of both quantities agree with the qualitative prediction of the SLS model. 
Therefore, the SLS model can be considered suitable to represent the behavior of a 
viscoelastic materal. 
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Figure 26 Bi - logarithmic plot of Shear creep comp liance and Relaxation Modulus of 
PMMA at 110 °C. 

The viscoelastic material behavior is usually represented as a combination of springs 
and dashpots while the time domain material functions are expressed by a series of 
decaying exponentials [15]. It has been shown that the definition of the relaxation 
modulus using a Prony series, i.e. a series of decaying exponentials, improves the 
numerical code efficiency[14]. The definition of a mathematical model to define the 
viscoelastic material behavior is a fundamental step in the structural numerical model 
development. 
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3.1. Sound propagation in porous materials 
 

The propagation of sound in porous media is a well knownresearch topic though the 
geometry of the pores in ordinary porous material is not so simple [16, 11]. Generally 
speaking the problem of sound propagation in porous materials can be faced in two 
ways: 

1. Porous material having rigid frame 

This approach is optimal for porous materials directly subject to an acoustic 
field.The elastic part of the porous structure can be neglected, being relevant only 
for frequencies close to the resonances of the system.  

2. Porous material having elastic frame 

This approach of considers the frame no more motionless with respect to the fluid 
but with a certain level of elasticity. The simulation of the frame elasticity is really 
important when studying a complex system for which the vibroacoustic behavior 
coupling is fundamental.  

 

3.1.2. Rigid frame porous materials 

 

Considering the frame as rigid implies that the acoustic behavior is affected only by 
the geometrical characteristics of the material and thus t by the obstacles that the 
acoustic wave meets on its path [17].The main condition for the validity of this 
approach is the long-wavelength condition [11]. The wavelength is much larger than 
the characteristics dimension of the pores and the saturating fluid can behave as an 
incompressible fluid at the microscopic scale. Aiming to model the acoustic behavior 
of porous material three approaches can be pursued: (i) Microstructural models, (ii) 
Empirical models, (iii) Phenomenological models 

Microstructural models 

The simplest analytical model of a porous material assumes that the solid constituent 
is rigid and that the behavior of the fluid constituent is equivalent to that of a 
homogeneous, isotropic fluid, taking into account effects of both viscosity and heat 
conduction. Many theories of acoustical wave propagation in porous media are 
derived from an initial conceptual model of a medium containing identical parallel 
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cylindrical capillary pores running normal to the surface the frame of which is 
assumed to be rigid [16].  

 

Figure 27 - Porous material as assembly of parallel  tubes. 

The first attempt to describe sound propagation in cylindrical tubes (Figure 27) is the 
Kirchhoff and Lord Rayleigh one [11, 17, 16]. The theory provides a general 
description of sound propagation in a small circular cross-section tube, including 
visco us and thermal effects. However, this theoryresults to be too complicated for 
many practical applications. Next steps were made by Monna and Scott [16]. The 
former considered that the air in such a structure behaves as if it were an 
homogeneous isotropic fluid. As a consequence the air motion can be described 
exactly by the same differential equation that describes the propagation of sound in 
unconfined air, except for the contribution of an additional damping term related to 
particle velocity. The latter found a way to determine the propagation constant and 
the complex density that characterizes how a plane wave propagates in the material. 
A simplified model has been worked out by Zwikker and Kosten [16] for the case of 
circular cross section. The abovementioned authors have shown that the viscous 
and thermal effect can be included considering a complex density and complex 
compressibility. The validity of this model has been proved in the range of acoustical 
frequencies for pore radius from 10-3 cm to some cm [17] but it's no longer suitable in 
case of pores with a wide cross section variation or in case of  not straight pores. 
Further developments were made by Biot, Stinson and Johnson [18, 17], introducing 
a dynamic shape factor to allow for any form of pore section between the extremes 
of parallel walled slit and circular capillarity. The dynamic shape factor allows to take 
into account not straight pores, including as well viscous effect. However, in the case 
of common porous materials, an analytical description that takes in account the 
complete geometry of the microstructure is almost impossible due to material 
complexity.  

Empirical Models 

Empirical models are widely used for fibrous materials. They allow the calculation of 
the acoustic impedance and the propagation constant considering one or more 
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material parameter. These models are based on dedicated experimental tests so 
that they have limited validity. The Delany and Bazley model [17] is still one of the 
most commonly adopted due to its simplicity. As a drawbackthis model requires the 
knowledge of the flow resistivity from experimental data. Models have been 
developed, able to calculate the flow resistivity as a function of material density as 
the one of Bies and Hansen or Mechel and Ver [17, 19]. These models may be 
unaccurate if applied to materials with fiber diameter different from that studied from 
the abovementioned authors. Several studies have been made to extend this class 
of models to foams, like Dunn - Davern model [17] or Wu Qunli [17]. Due to the 
complex structure of foams, however, monoparametric models as the overmentioned 
one may lead to severe errors [17]. Mechel and Miki [17] introduced empirical 
models with two and three parameters in order to improve the capability of empirical 
models also for porous materials.  

Phenomenological Models 

This class of models distinguishes among viscous friction, inertia and heat transfer 
phenomena introducing the concepts of dynamic density and compressibility for a 
fluid that is considered equivalent to the analyzed porous material. From a qualitative 
point of view the sound propagation is dominated from viscous forces at low 
frequencies and inertia at high frequencies. The air in the pores is expanding and 
contracting in a isothermal manner at low frequencies and in an adiabatic way at 
higher frequencies due to particle velocity [16, 17]. The most important model for 
porous material is the Johnson-Champoux- Allard model [17, 11]. It relates the 
equivalent quantities dynamic density and compressibility to five physical parameters 
of the material: flow resistivity, porosity, tortuosity, viscous and thermal characteristic 
length. This model shows high reliability for materials that present high porosity while 
for low porosity materials the model proposed by Attenborough [17] is to prefer 
although it requires the challenging experimental determination of some parameters. 

 

3.1.3. Elastic frame porous material 

 

Whenever the porous material is set between two elastic plates (Figure 28) the 
frame, i.e. the porous material, vibration is induced by the vibration of the plates 
itself. As a consequence, the air and the frame move simultaneously.  
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Figure 28- Porous material set between two elastic shells. 

The earliest attempt to describe this phenomenon has been made by Kosten et 
al.[16, 20] that at first noticed that both media takes part to vibration. The most well 
known model for wave propagation in porous media having an elastic frame is 
provided by the Biot theory [18]. Generally speaking, in the Biot theory the 
deformations of the structure are related to wave propagation and are supposed to 
be similar to those of an elastic solid, i.e. in a representative volume there is no 
dispersion of the velocity in the solid part in contrast to the velocity in the air [11]. 
Although appearing fifty years ago, this theory is still the reference one. It is based 
on the derivation of the stress - strain relations from the potential energy of 
deformation in a Lagrangian model [11]. It allows one to consider the propagation of 
elastic waves in the material structure distinguishing between transversal and 
longitudinal compression waves, or so called slow and fast waves. A fine description 
of Biot theory has been developed by Allard [11] based on the coupling of the 
displacement of the frame and the fluid, so called u-u formulation. In this formulation 
the stress tensors of both fluid and frame are related to both displacement 
considering mass coefficients.Taking into account the fact that the flow through the 
pores may not be uniform, the interaction between inertia forces of fluid and solid 
phase is expressed through a coefficient function of the tortuosity of the material. A 
damping term is considered to take in account viscous interaction forces between 
frame and fluid [17]. The u-u formulation is widely exploited in numerical modeling of 
wave propagation in porous materials having elastic frame though it can lead to high 
computational cost. To overcome these difficulties, Atalla [21] proposed a mixed u-p 
formulation in which the coupling is no longer considered between displacement of 
frame and fluid but between frame displacement and fluid pressure. Basically, in this 
formulation, it is assumed that the porous material properties are homogeneous and 
that the displacement of the fluid can be expressed in terms of fluid pressure in 
pores [17]. The basic hypotheses of the Biot theory are: isotropic, quasi-
homogeneous medium; uniform porosity; impervious pore walls and pore size 
concentrated around an average value [16]. The pore size is assumed to be much 
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smaller than the wavelength of interest. As a consequence of the last assumption the 
validity of this theory is restricted to the case in which the travelling wave wavelength 
is obviously larger than the characteristics dimension of the volume of 
homogenization [22]. Further developments of the initial theory of Biot [18] that 
implies laminar flow and no friction has been made by Biot himself to include 
anisotropy, viscoelasticity and solid dissipation [23]. A recent extensionto the case 
where the medium frame is made of not compressible material was made by Dazel 
[11]. 

 

4. Sound transmission 
 

The sound transmission and/or radiation by finite panels excited by incident, diffuse 
sound waves is made up of two components, respectively a resonant and non 
resonant response. The former is due to the resonance of the modes having their 
frequency within the excitation frequency range. The latter arises from the waves 
that are forced to propagate in the partition at a speed imposed by the speed of 
sound in air and by the incidence angle. The non resonant waves tend to transmit 
most of the sound at frequencies below the critical frequency, i.e. the 
correspondence between the structural free bending wavespeed and the acoustic 
wavespeed in air. The resonant frequencies below the critical frequency have very 
low radiation efficiency and bending wave lengths smaller than the incident wave 
one. Thus they are very poor sound transmitters. Below the critical frequency the 
mass of the panel controls the sound transmission since there is no appreciable 
effect of the structural modes resonance. Above the critical frequency, instead, 
resonant modes are most responsible for the sound transmission.  

Different indicators have been defined to experimentally characterize the sound 
transmission. Among the others, Transmission Loss (TL) is of great importance and 
common use. 

4.1. Transmission Loss 
 

The TL is an index used to quantify the sound transmission capabilityof a partition 

 ( ) 10log incident

transmitted

TL f
Π=

Π
 (2.29) 



 

41 

 

The calculation of TL following (2.29) means the logarithmic ratio between incident 
and transmitted sound power. TL value is frequency dependent and varies between 
two asymptotic behaviors: a perfectly reflective material having infinite TL and an 
opening being characterized by TL equal to zero. 

The sound power flowing through a surface Π is defined as the dot product between 

sound intensity integrated over the surface ( ){ }I t and the considered surface area 

A. The sound intensity expresses the magnitude and direction of the instantaneous 
sound power per unit area.  

 

Figure 29 - Sound Intensity, schematic interpretati on. 

The instantaneous sound intensity is given by the product of the instantaneous 

particle velocity ( ){ }v t  and the instantaneous sound pressure p : 

 { } { }( ) ( ) ( )I t p t v t=  (2.30) 
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The TL, as expressed in (2.29), is generally frequency dependent. The characteristic 
Transmission Loss of a bounded homogeneous panel is showed in Figure 30:  

 

Figure 30 - Typical TL trend of a bounded homogeneo us single panel. 

Four regions can be identified [6]: 

Stiffness controlled 

At frequencies well below the first natural frequency, the stiffness of the panel 
dominates its sound transmission characteristics. In this region there is a -6 
dB/octave slope of TL. 

Resonance controlled 

Increasing the frequency the modal behavior of the panel influences its sound 
transmission properties. Dips appear in the TL curve in correspondence of the 
resonance frequencies of the structure. The importance of resonant modes is higher 
for mechanically excited panels. In such a case, addition of suitable damping 
material increases the TL. If the panel is acoustically excited, the forced bending 
wave at the excitation frequency dominates the sound transmission and the resonant 
modes are of relative importance. 

Mass controlled 

Above the first natural frequencies but below the critical frequency the panel mass 

per unit area sρ  controls the sound transmission. This region is characterized by a 6 

dB/octave slope. The same increase is given by doubling the mass. Damping and 
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stiffness are irrelevant on the sound transmission and the TL is said to follow the 
Mass Law. For an impinging sound wave of given incidence ϑ , travelling in a 
medium of density ρ with speed c , the sound transmission loss can be evaluated 

as: 

 ( )mass law

2
( , ) 20log cos

2
sf

TL f
c

π ρϑ ϑ
ρ

 =  
 

 (2.31) 

 

Coincidence controlled 

At regions in proximity to the critical frequency there is a sharp drop in the sound 
transmission loss curve. Below coincidence the disturbance induced by the structural 
bending wave in the surrounding fluid is local. The flexural wavelength is smaller 
than the acoustic one hence no sound waves are radiated and only a near field 
exists [6]. Above coincidence frequency the bending wavelength is greater than the 
acoustic one and the radiation becomes efficient. At coincidence the acoustical and 
the forced structural wavelengths are equal and the panel becomes completely 
transparent to sound transmission. For infinite, homogeneous plates, the 
coincidence frequency for a given incidence angle ϑ  can be evaluated in terms of 
plate structural parameters: 

 

2

2 sin
s

c

c
f

D

ρ
π ϑ

=  (2.32) 

The coincidence frequency is  a function of the incidence angle [7]. The coincidence 
minimum frequency called critical frequency occurs for grazing incidence. Above 
critical frequency damping, stiffness and mass contribute to sound radiation. 

Below coincidence frequency resonant modes have very poor radiation properties 
but particular attention should be paid to the presence of discontinuities. Adjacent 
plate region cancel each other leaving only uncancelled volume velocities in regions 
close to structural constraint (Figure 31).  
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Figure 31 -  Interregion cancellation and edge effe ct [3]. 

Even modes radiate less than odd modes since the remaining volume velocity zones 
are antisymmetric (Figure 31). 

 

5. Vibroacoustic modeling techniques 
 

The main advantage of using sandwich structures is given by their adaptation 
feature. In fact, they are characterized by a rich basket of designing parameter and 
options that allows the structure to be tailored to the specific application case and 
field. For instance, given the application field and the frequency range of interest it is 
possible to combine core and skin materials and microstructure to obtain the 
structure best performance. A key role in the design phase is thus played by the 
numerical modeling tools. A reliable model allows the investigation of different panel 
parameters combination and to evaluate the global panel performance. In the 
vibroacoustic framework, the numerical model should be able to predict both 
dynamic and acoustic behavior as well as the coupling of them. 

5.1. Dynamic modeling 
 

Mechanically excited structures radiate sound mainly at frequencies corresponding 
to their structural resonances. In this condition the structure becomes a perfect 
radiator. In addition, resonances amplify incoming vibrations. As a result, a detailed 
knowledge of the so called structure modal behavior, i.e. resonances frequencies 
and mode shapes, plays a fundamental role in the design step. Aiming to reduce the 
vibration transmission and the consequent sound radiation, thedesigner has to tune 
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structural parameters to reduce the number of resonant modes within the excitation 
frequency range. The availability of a reliable dynamic model for predicting the 
structure behavior becomes then a fundamental point [24]. 

One of the most powerful tools in engineering is the Finite Element Method (FEM). 
This discretization method is based on the idea that a structure can be approximated 
by replacing it with an assemblage of discrete elements (Figure 32).The 
displacement field within each element and on its boundaries is expressed as 
function of the nodes of the elements, using unique suitable interpolating functions 
called "shape functions". 

 

 

 

 

 

 

Thanks to the elasticity theory, the displacement functions uniquely define the state 
of strain within each element. Exploiting the constitutive law of the structure material 
it is possible to define the stress state of each element as function of strain. In this 
way a continuum problem is reduced to a finite number of unknows, the nodes 
displacement. The same unknowns are variables in the structure dynamic equation 
to obtain the characteristic mode shapes. The natural frequencies are derived from 
the material parameters and structure geometry. 

Multilayered plates and shell structures (Figure 33) require appropriate modeling to 
handle the complicating effects that arises from their intrinsic in plane and out of 
plane anisotropy.  

 

 

Figure 32 - Continuum discretized with FE. 
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Figure 33 - Sketch of a multilayered structure [25] . 

The literature of the second half of the last century displays a large number of 
analytical and numerical 2D contributions to layered structures. The available 
theories may be subdivided in three main groups: 

(i) Equivalent Solid Layer (ESL) Approach 

This group of theories arises from the basic Kirchhoff plate theory. The 
composite structure is considered as an integral equivalent layer. ESL gives 
sufficiently accurate global laminate response but they are inadequate if 
stresses at ply level are required. In addition, they may lead to inaccurate 
results in case of high anisotropy or localized loads. 

(ii) Layer Wise (LW) Approach 

The composite structure is thought as an aggregate of independent layers. 
This approach, mandatory for a full 3D description of the stress – strain state 
in laminates introduces anyhow some errors. The description of the cross 
sectional deformation of each layer may be inaccurate and normally the 
continuity of transverse shear stresses among layers is not satisfied a priori. 
However these errors are much less than the one introduced by ESL 
theories, originating upon the construction of a kinematic model of the entire 
packet of layers [26]. 

(iii) ZigZag Theory 

This approach aims to overcome some inaccuracy of the ESL approach 
avoiding the high computational cost of LW one. The basic concept behind 
this theory is that the equilibrium between adjacent layers implies the out of 
plane stresses to be equal at the interface. These stresses can be thought of 
as a combination of strain multiplied by some coefficient that is material 
dependent. Each layer may be of a different material thus different strains are 
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required to ensure equilibrium. The strains are related to the derivative of the 
displacement hence the displacement field exhibits different slopes along the 
structure cross section. Thus continuity of the stresses leads to discontinuity 
of the displacement first derivative. This effect is called “zigzag form of the 
displacement” [27]. 

ESL theories: overview 

The first developed equivalent single layer theory is the Kirchhoff Love [28]. This 
theory lies on the Classical Lamination Theory (CLT). The so called thin plate theory 
is based on the assumptions of Kirchhoff in late XIX century [29]. Basically, it is 
possible to represent the state of deformation based on the displacements of the 
middle surface and a rotation of the normal. As a result, transverse shear and normal 
strains are considered to be negligible with respect to other strains. Thes assumption 
is legitimate only in the case of thickness negligible with respects to other 
dimensions. This may not be the case for sandwich materials in which the 
deformation involves often shear stresses in the core.  

Starting from CLT First order shear deformation theories (FSDT) have been 
developed to include shear strains. FSDT provide a balance between computational 
efficiency and accuracy for the global structural behavior of thin and moderately thick 
plates. These theories have been widely employed to analyze free vibrations of 
composite laminated plates and are simply the extension of the so-called Reissner-
Mindlinn model to layered structures [30]. A simple but significant improvement of 
this theory was carried out by Vlasov [30] permitting the fulfillment of the 
homogeneous conditions for the transverse shear stresses in correspondence to the 
top and bottom shell/plate surface. Anyhow, Equivalent solid layer models (ESLM) 
can undergo difficulties in analyzing thick multilayered plates. This class of models 
leads to a very poor description of the transverse normal stresses that cannot be 
neglected in those kind of plates. Reissner's mixed approach [30] has been used in 
some ESLM, see as example [30], but have shown deficiency in treating arbitrarily 
laminated plates [30].   

This last issue has been faced structuring Higher order theory (HOT). HOT includes 
both transverse shear and normal strains, as the Hildebrand, Reissner and Thomas 
theory [30]. The comparison between the displacement field considered in FSDT and 
HOT is shown in Figure 34. 
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Figure 34 -  Displacement field: FSDT vs HOT [31]. 

ESLM may lead to inaccurate results if the analyzed structure presents significant 
variation in thickness and/or properties among skins and core. Determining the 
effective properties of the whole sandwich structure becomes indeed very 
challenging. As experienced in early three dimensional elasticity analysis [30] the 
variation of mechanical properties in the thickness direction of layered structures, 
leads to the so-called zigzag form of displacement field. ZigZag displacement field 
and interlaminar continuity for the transverse stressed has been summarized in the 
term C0

z requirement i.e. displacement and transverse stress field must be C0 
continuous function in the z direction. Among the ESL theories only the HOT theories 
allow partial fulfillment of the C0

z requirement [30]. 

 

Layer Wise theories: overview 

ESLM approach remains insensitive to individual layers. If a detailed response of the 
individual layers is required or there is a significant variation of the displacement 
among layers the kinematics of each single layer should be described. Layer Wise 
Models (LWM) come then to the fore. The LWM assume separate displacement field 
expansions within each material layer, providing indeed a correct representation of 
the strain fields in discrete layer laminates and allowing accurate ply-level stresses to 
be determined. The accuracy is greater than ESLM but the computational cost is 
also increased. Many LWM simply arise from the application of CLT or FSDT to each 
single layer. Generalizations of those approaches were proposed where 
displacement variables are expressed in terms of Lagrangian polynomial. Normally, 
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in LWM do not take in account a priori transverse stresses continuity between 
adjacent layers [31]. The displacement field considered in LWM is depicted in Figure 
35: 

 

Figure 35 - LWM displacement field [31]. 

 

ZigZag theories: overview 

Both approaches ESL and LW do not fulfill the C0
z requirementa priori. This can be 

achieved applying the ZigZag theories. The basic idea behind this theory is to 
assume a certain displacement and/or stress model in each layer then to use 
compatibility and equilibrium conditions at the interface to reduce the number of 
unknown variables. ESL approaches can be developed introducing a ZigZag 
displacement function ZZF, like the one developed by Murakami [32]. The resulting 
displacement field is sketched in Figure 36. The simplicity of ESL approach is then 
improved by considering the ZigZag effect without introducing the LWM high 
computational cost. 
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Figure 36 -  ZZF and ESL approach combination [32].  

Generally speaking it is possible to distinguish among three independent ZigZag 
approaches: (i) Lekhnitskii - Ren approach (ii) Ambartsumian - Whitney - Rath - Das 
approach and (iii) Reissner - Murakami - Carrera approach. A brief description of the 
methods is given in [30]. Approach (i) is based on the Lekhnitskii work [30] that 
proposed a method able to describe zigzag effects, both for in plane and through 
thickness displacements, and also interlaminar continuous transverse stress. 
Lekhnitskii applied the method to 3D problem of plane stress of a cantilever beam 
then Ren extended the work to orthotropic and anisotropic plates. Approach (ii) has 
been extended both to plates and to shells and has the peculiarities of preserving the 
same number of unknown variables as FSDT approaches. The Ambartsumian - 
Whitney - Rath - Das theory has been the milestone for dozens of simplified theories 
appeared over the last decades although for historical reasons most of these does 
not refer to the work of Ambartsumian or Whitney, Rath and Das but to the one of 
Cho and Parmeter [30]. The approach (iii) is based on a paper of Reissner in which a 
mixed formulation is presented considering displacement and transverse stress 
variables as independent [30]. 
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5.2. Numerical analysis of sound fields 
 

At present, the main numerical prediction techniques for acoustic behavior rely on 
element-based deterministic method, as well as the dynamic behavior modeling. The 
validity of this family of techniques is limited to the low frequency range. Moving 
towards higher frequencies the element size should decrease to minimize the 
dispersion error, i.e. the difference between the numerical and exact solution that 
increases with frequency. This leads to such large models that require almost 
unreasonable computational times. In addition, at high frequency the response of the 
system becomes very sensitive to changes in the system parameters that are 
generally known with a certain level of uncertainty. As a result, the system response 
predicted by a deterministic approach, that uses nominal parameter values, is no 
longer significant. To overcome these difficulties, probabilistic techniques such as 
Statistical Energy Analysis have been developed. The resulting model size is 
substantially smaller than the one obtained with element based. Anyhow, one of the 
basic assumption of statistical methods, i.e. high modal density, limits their 
application region to high frequencies. In between high and low frequency there is a 
mid frequency range for which specific methodology have been developed. 

5.2.2. Deterministic methods 

 

At present, most commonly used deterministic prediction techniques for sound 
radiation problems are Finite Elements Method (FEM) and Boundary Element 
Method (BEM)  

Finite Elements Method 

The Finite Elements Method is usually applied for the analysis of sound field in 
bounded or nearly bounded domains, i.e. a finite domain of fluid [3]. The basic 
concept of FEM in acoustics is exactly the same than in structural analysis. The 
domain is divided in contiguous elements substantially smaller than the highest 
frequency of interest. The original problem of determining the pressure field at any 
position in the fluid domain is reduced to determining the pressure values at some 
discrete position of the domain (Figure 37). Within each element the pressure is 
approximated as a polynomial expansion in terms of suitable shape functions. The 
main drawback is related to the problem size. In fact to obtain sufficient accuracy at 
least 10 elements per acoustic wavelength are required leading to very large model 
sizes. In addition, derived secondary field variables like fluid velocities or acoustic 
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intensities are characterized by lower accuracy than primary field variables, i.e 
acoustic pressure. 

 

Figure 37 - (a) acoustic cavity (b) finite elements  mesh [3]. 

An alternative to FEM is the Finite Difference Analysis (FDA)[3]. The fluid region is 
still divided in elements and field values are assigned to the elements nodes. In FDA 
the derivatives, in the partial difference equations that describe the problem, are 
represented by finite difference approximation. The result obtained for any given 
point involves values of the surrounding points. An initial set of field values is 
assumed and a systematic iteration provides a stable solution. The main drawbacks 
with respect to FEM are that FDA deals not so well with arbitrary volumes of fluid 
which boundaries does not conform the grid line pattern and is much more sensitive 
to local error of field representation [3]. 

Extension of FEM to unbounded domains 

FEM is most practicable for bounded interior problems but there are different ways to 
extend it to exterior radiation problems. In this framework an artificial boundary 
surface is introduced at some distance from the original boundary. As a 
consequence the original unbounded domain is split in a bounded and unbounded 
region (Figure 38). The new bounded domain is now suitable for FE discretization 
and the artificial boundary should ensure that all acoustic waves propagate towards 
infinity and any wave is reflected (Sommerfeld radiation condition).  
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Figure 38 - FE model with artificial boundary. 

Several approaches can be pursued to ensure this condition, among others:  

− A coupling with a an approximated pressure field in the unbounded domain 
through the use of Infinite Elements. Each Infinite Element contains a part of 
the artificial boundary and it is infinitely extended away from it. The pressure 
within the Infinite Element is expressed in terms of shape function with a 
amplitude decay and wave like variation to model outgoing waves. The size 
of the new bounded volume is strongly related to the accuracy of the 
considered shape functions. Different kind of elements has been 
implemented [33].  

− The definition of the specific acoustic impedance of freely propagating waves 
as impedance boundary condition. In order to make the non – reflectivity 
effective, it is necessary to put the artificial boundary at a very large distance 
from the initial problem boundary surface. Thus, the new formed boundary 
domain is still very large and it may yield to a computationally expensive 
FEM. To overcome these difficulties, Bayliss et al. [33] proposed a family of 
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higher order boundary condition that are able to limit the extension of the new 
bounded domain.  

Boundary Element Method 

A valuable modeling option when dealing with unbounded domains is represented by 
the boundary element method (BEM). This method approximates the Kirchhoff – 
Helmoltz equation by a summation over a number of small surface elements. The 
basic concept is to relate field variables in the continuum domain to boundary 
variables on the boundary surface of the domain. As in FEM, boundary variables are 
approximated by suitable functions locally defined over the set of small elements in 
which the boundary has been discretized. The original problem then goes back to a 
discrete set of equation in terms of sound pressure and velocities at the nodal 
position of the mesh.  

 

Figure 39 - Surface discretized with linear BE [34] . 

Two version of this method have been proposed: 

− Direct collocational BEM 

Direct BEM can deal only problems with exterior/interior problems with closed 
boundaries. This approach relates the pressure at any point of the acoustic 
field to the pressure and normal velocity distribution on the boundary surface 
through the direct integral formulation. The problem of determining the 
boundary variable distribution is switched to a set of prescribed nodal shape 
function for pressure values and normal velocities. The direct integral 
formulation does not include spatial derivatives of boundary pressure or 
normal velocities thus the convergence is ensures also in presence of 
discontinuities among elements.  
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− Indirect variational BEM 

Indirect BEM is suitable for combined interior/exterior problems or acoustic 
problems with open boundary surface. In the same way of Direct BEM the 
boundary variables are approximated by a set of nodal shape functions. The 
pressure in any point of the acoustic domain is related to single and double 
layer potential on the boundary surface through the indirect boundary integral 
formulation. The single layer potential is defined as the difference in normal 
pressure gradient between both sides of the boundary surface. The double 
layer potential instead is the pressure difference between both sides of the 
boundary surface.  

 

Compared to FEM, BEM offers several advantages: no accuracy loss for velocity 
prediction in comparison to pressure prediction, problem size substantially smaller 
since only the boundary of the problem is discretised and BEM can easily handle 
unbounded domains. As drawbacks it deals with complex, frequency dependent, 
fully populated matrices, it brings to a non symmetric problem, may lead to 
singularity when approaching the closed boundary, non uniqueness of the solution 
for exterior problems with closed boundary surfaces  when the excitation frequency 
coincides with an eigenfrequency of an associated interior problem. Different 
techniques have been proposed to overcome this last problem [33]. 

Coupled vibroacoustic problem in the low frequency range 

When dealing with coupled vibro -acoustic problems an acoustic and a structural 
problem must be solved. The mutual interaction between the fluid pressure and the 
structural deformation in order to define the acoustic performances of the considered 
structure should be analyzed. 

One of the most efficient techniques, in the low frequency range, to model the 
coupled vibro acoustic problem is to apply the FEM to predict the structural response 
and the BEM to predict the acoustic one (Figure 40). Considering for instance a 
cavity in which the top face is not a rigid wall but a flexible plate the acoustic field in 
the cavity is influenced by the motion of the plate and the vibration of the plate is 
perturbed by the fluid pressure loading. Thus an acoustic BEM is used for modeling 
either the sound scattering/radiation in the exterior fluid domain or in the interior one 
while the structural FEM is used for modeling the displacements of the structure. 
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Figure 40 - Coupled FE BE model [3]. 

It is possible also to couple two FE models if the aim is to analyze a coupled 
vibroacoustic bounded problem (Figure 41). 

 

Figure 41 - Coupled FE FE model [3]. 

In this case, a FEM foresees a three dimensional mesh of the cavity and a two 
dimensional mesh of the plate. The acoustic mesh should be constructed in such a 
way that the upper face of the elements facing the plate matches its elements. As a 
consequence the transverse displacements of the plate elements produce volumetric 
acoustic excitation acting on the corresponding cavity element in the same way the 
vibration of the plate influences the cavity acoustic field.  
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The FE/FE model offers several advantages like: acoustic sparsely populated 
matrices, likely with a banded structure, symmetrical matrices if dealing with 
uncoupled problems, real and frequency independent stiffness and mass matrices 
thus natural frequencies can be obtained solving a standard eigenvalue problem, 
easily adaptable to inhomogeous acoustic domain.  

Comparing the coupled FE/BE to a coupled FE/FE the main issue is related to the 
computational aspect of the problem. The smaller size of the acoustic domain in a 
FE/BE model is not an advantage when dealing with interior problem due to the fully 
populated, complex and frequency dependent matrices. The computational efficiency 
may be improved using a frequency interpolation technique that avoids the 
construction of the matrices at each frequency step [33]. This may anyhow lead to an 
additional prediction error. In addition, considering coupled problems, the size of the 
structural FE model is usually comparable to the size of the acoustic one. Major 
advantages of a coupled FE/BE model are evident for coupled vibro – acoustic 
problems with an unbounded acoustic domain. The coupling between the two 
methods is expressed through the equality of the transverse structure velocity and 
the normal component of the fluid particle velocity over the surface of concurrent FE 
and BE elements.  

 

5.2.3. Mid - frequency methods 

 

In the world of numerical modeling there is a mid-frequency gap for which both 
deterministic and energy methods fail. Research on suitable mid - frequency 
prediction techniques divide them in three categories [35, 36]:  

• Deterministic techniques with better computational performances if compared 
to FEM, so that the upper limiting frequency can be shifted towards higher 
frequencies. Different approaches have been developed, for example: (i) 
Replacement of the polynomial shape function with direct wavelike solution of 
the equation of motion (partition of unit FEM, discontinuous enrichment 
method and variational theory of complex rays, Trefftz methods like the wave 
based method) (ii) Equation of motion approximation by smoothing the short 
wavelength response in certain frequency bands (Complex envelope 
vectorization) 

• Energy methods with relaxed assumption with respect to SEA, so that the 
lower limiting frequency can be shifted towards lower frequencies. Examples 
are the statistical modal distribution analysis and the energy distribution 
methods 
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• Hybrid approach in which deterministic and energy methods are combined. 
Applying this techniques each part of the problem is modeled using the 
suitable approach, FE or SEA, based on the own kind of behavior in the 
frequency range of interest. Examples are the spectral FEM in which special 
elements are developed and the Wave/FE approach. 

5.2.4. Statistical methods 

 

According to the Statistical Energy Analysis (SEA) the system is divided in a set of 
subsystems and the frequency range in a set of frequency bands. For each 
subsystem an energy balance should be written stating that the energy input should 
equal the transferred and dissipated energy. Dissipations are characterized by loss 
factors and transfer of energy by coupling factors among subsystems. SEA models 
are usually smaller than the models obtained using other techniques. Their use is 
legitimated by high modal density thus they are significant only in the high frequency 
range. Since the majority of the TL calculations have been based on a simplified 
equivalent layer model, according to Sokolinsky et al. [37], the use of this kind of 
model does not take in account thickness stretch vibration modes. SEA doesn't allow 
the prediction predict the symmetric coincident frequencies that are instead of great 
importance when dealing with sandwich structures. 

2.3. Equivalent modeling 
 

The main drawback of abovementioned numerical acoustics techniques is the limited 
frequency range that can be explored due to increasing computational cost and 
model uncertainties. So full models of moderately complex structures can be reliable 
up to few hundred Hz when it's possible that the frequency range of interests spans 
some kHz. The ultimate goal of the acoustic analysis is the prediction of the 
transmission loss of the panel in a wide frequency range. The description of the 
sound propagation in a multilayered medium involving elastic, porous and fluid layers 
can become very challenging. One of the most exploited methods to analyze a wide 
frequency range as the acoustical one is the Transfer Matrix Method.  
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Figure 42 - Plane wave impinging on a multilayered domain [11]. 

A complete description of the method can be found in [11]. The TMM considers a 
bidimensional problem and defines the relations among pressure and stresses on 
both faces of he considered layer according to the layer nature (Figure 42). So, it 
defines a different transfer matrix considering a fluid, poroelastic or solid layer, taking 
in account the kind of wave that can propagate in the considered medium. Modified 
TMM has been proposed for investigating the frequency range above the decoupling 
frequency, i.e. the frequency domain in which the coupling between the solid and 
fluid phase is so weak that the frame can be considered motionless or to take in 
account the finite extent of small panels [11].  

A different strategy that can be pursued, dealing with sandwich structures, is the 
study of the surface impedances. Examples can be found in [38]. The basic concept 
of this approach is that the dynamic behavior of a symmetric sandwich structure 
having identical face sheets and homogeneous core material can be easily 
described in terms of symmetric and antisymmetric impedances. The most important 
behavior of these impedances is related to the zeroes of impedance that 
corresponds to resonances of the composite panel, mainly related to the normal 
displacement of the skins. Moore and Lyon extended the approach of Ford et al [9] 
to symmetric panel configuration developing a formulation of the TL in terms of panel 
impedances thus allowing the prediction of the location of coincidence frequencies 
simply looking at when the impedances go to zero. A simplified expression of the TL 
as function of impedance neglecting the dilatational term in the expression of the 
core axial displacement, is proposed by Dym and Lang [10]. J.A. Moore and R.H. 
Lyon showed, starting from the analysis of the panel impedances, how at low 
frequencies symmetric motions are controlled by the stiffness so they do not 
propagate freely, even with zero impedance, while they do at higher frequencies in 
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correspondence of the double wall resonance, i.e. the mass of the skins in 
resonance against the stiffness of the core [38]. 
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CHAPTER3 
 

Chapter 3 gives a brief overview on the adopted 
numerical methods together with an essential description of 
their mathematical basis. Particular attention has been paid 
to the viscoelastic behavior modeling. The potential and 
drawbacks of the most common models are presented. 
Keeping in mind the aim of the numerical modeling, the 
modeling choice are illustrated. Chapter 3 ends with the 
description of the equivalent model adopted to obtain results 
in a wider range of frequency. 

 

1. Vibroacoustical numerical modeling 
 

Numerical modeling plays an important role in engineering world. The availability of a 
reliable model allowsthe designer to perform two fundamental steps in the designing 
procedure: the design parameter tuning and the verification and validation of the 
proposed engineering solution. Sandwich structures offer an almost infinite variety of 
skin/core combinations and finding the best trade off among different technical 
requirements can be very challenging. An accurate numerical prediction of the 
structure performances may help to identify the optimal structure configuration.  

Focusing on vibroacoustics, a correct modeling strategy of the structural response 
requiresconsidering all the relevant physical aspects involved in the phenomenon of 
sound - structure interaction. The flow chart of the proposed numerical modeling 
strategy is reported in Figure 43 . 
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Figure 43 - Conceptual connection among modeling te chniques. 

 

The proposed numerical model has to take in account both dynamic and acoustic 
structural behavior. In fact, the interaction between sound and vibration is highlighted 
by the connection between the structural dynamic behavior and the sound 
transmission performances. The acoustic transmission through a structure is 
influenced by its forced and free response with different importance whether the 
excitation nature is mechanical or acoustical. If a structure is mechanically excited 
tends to radiate sound due to all the resonant modes comprised in the excitation 
frequency range [6]. Finite structures always exhibit natural frequencies and 
associated mode shapes. The natural frequencies are influenced by the structural 
material parameters, the boundary conditions and the geometry. These latter 
parameters also affect the associated mode shapes that are independent from the 
material properties. Generally speaking, the lower is the excited mode the less is the 
radiated sound. The efficiency with which a structure can radiate sound at a given 
vibration level is given by the radiation ratio σ . The radiation ratio of a structure is 

defined as the ratio of the acoustic power radiated by the vibrating structure structΠ to 

the acoustic power that would be radiated by a circular piston having the same 
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surface area A  and vibrating at the same r.m.s velocity 2v  surrounded by a 

medium characterized by density ρ  and sound speed c : 

 
2

struct

c v
σ

ρ
Π=  (3.1) 

The radiation ratio provides a useful relation between structural response and 
radiated power. The surface vibration level, obtained theoretically or experimentally, 
is sufficient to determine the resulting structure sound radiation. Higher frequencies 
are typically characterized by higher radiation ratios. The radiation ratios of structural 
modes in fact generally increase with frequency. A limit situation can arise in which 
higher non resonant modes may radiate more sound than the lower resonant ones. 
However, the vibrational level of non resonant modes is reduced with respect to the 
resonant one [6]. As a result, the acoustic response of a mechanically driven 
structure is determined by the overlap of the excitation frequency range with the 
structural natural frequencies. The capability to predict the importance and relevance 
of this overlap is fundamental for the vibroacoustic performance evaluation of a 
structure.  

A different situation arises when a structure is acoustically excited. The vibrational 
response of the structure and its consequent capability of radiating sound comprises 
two contributions: a resonant and a forced one. The former contribution is totally 
equivalent to that experienced for mechanically driven structures. The latter is 
instead related to the forced bending wave that is induced in the structure by the 
impinging sound wave. The forced response tends to transmit most of the sound but 
the evaluation of the structural vibroacoustic behavior cannot completely disregard 
the resonant modes contribution. 

Aiming to identify the optimal solution for sound and vibrations insulation purposes, a 
double modeling problem should be faced. As a result, different modeling steps have 
to be considered. The first step should be devoted to the investigation of the dynamic 
structural behavior in terms of natural frequencies and mode shapes. The 
subsequent one should instead be addressed to the determination of the resulting 
pressure field in the surrounding fluid, taking into account the previously determined 
structural modal behavior.  

The first part of the chapter is dedicated to the description of the adopted numerical 
technique to solve the structural problem. The central part describes the strategy to 
model the coupled vibroacoustic problem. A last part is devoted to the description of 
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an equivalent modeling strategy used to evaluate the acoustic performance on a 
wide range of frequency. 

2. Structural model 
 

The identification of the dynamic response is a key point for the analysis of the 
vibrational and vibroacoustic behavior. The sound radiation is indeed influenced by 
the response to mechanical excitation. The structural displacement induces the 
vibration of the surrounding fluid generating sound waves. Considering a 
mechanically driven structure, the amplitude fofthe resulting displacement strongly 
depends on the overlap of the excitation frequency range with that of the resonant 
structural modes. As a result, a model able to reproduce the transfer function 
between the incoming excitation and the resulting displacement becomes 
fundamental to evaluate the structure performance. 

Finite element method (FEM) is a well established method in engineering. It is a 
numerical procedure widely applied in analyzing continua which modeling can be too 
cumbersome. The FEM discretizes the problem domain in a large but finite number 
of small elements (Figure 44) 

 

Figure 44 -  Continuum divided into a set of elemen ts [29]. 
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The whole amount of unknowns, potentially infinite, is reduced to a finite number, the 
degrees of freedom (DOFs) of the element nodes. The displacement of any point 
inside the element can be expressed in terms of simple polynomial functions 
dependent on the nodes DOFs. The choice of the element type and dimensions 
depends on the physical problem under investigation and seriously influences the 
reliability and quality of the results. 

2.1. Dynamic behavior modeling 
 

The dynamic response of a generic structure is the result of the superposition of two 
components: the structure free vibration and the response to the excitationforce. A 
finite system vibrates freely in one or more specific pattern. Each of these patterns is 
called mode shape and it is associated to a specific constant frequency called 
natural frequency. Natural frequencies are related to the system properties such as 
inertia and stiffness while mode shapes are dependent on the geometry and the 
boundary conditions. The excitation of external forces induces forced vibrations in a 
structure. Forced vibrations occur at the excitation frequency, independently from the 
system natural frequencies. 

The phenomenon of resonance arises from the coincidence between the excitation 
frequency and a natural frequency. When a structure is excited in resonance the 
resulting vibration is amplified and, as a consequence, the fluid structure interaction 
is powered. Aiming either to sound radiation enhancement or to sound transmission 
reduction as well as to vibration attenuation, the knowledge of the relative position of 
the excitation frequency band and natural frequencies is fundamental. 

The equation that governs the dynamic response of a structure can be expressed in 

terms of the displacement{ }u [39]: 

 { } { } { } { }extu u u R+ + =M C Kɺɺ ɺ  (3.2) 

The resultant of external forces { }extR in (3.2) includes applied loads, body forces 

and prescribed surface tractions. 

Considering a FEM approach, the considered continuum is discretized in a set of 
elements defined by a certain number of nodes (Figure 44). The original problem 
variables are brought back to nodal degrees of freedom. Thus, the displacement at 

any point within each element { }u is related to the element nodal variables vector 
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{ }a  i.e. the element nodes DOFs, through the shape functions N (3.3) The shape 

functions are function of space only and nodal variables are function of time only.  

 { } { }u a= N  (3.3) 

Considering for instance the triangular element of Figure 45 the displacement 

{ } { },u u v=  of any point within the element can be expressed as function of the 

displacements of the nodes 1,2,3: 

 

Figure 45 - Triangular element [40]. 

The matrices of mass M , damping C  and stiffness K in equation (3.2) are square 
matrix defined by assembling the mass, damping and stiffness matrices related to 
each single element. A detailed description of the standard assembling procedure 
can be found in [29]. The matrices are of the form: 

 

ii ij in ii ij in ii ij in

ni nn ni nn ni nn

     
     = = =
     
          

M M M C C C K K K

M C K

M M C C K K

⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

 (3.4) 

Each submatrix is obtained assembling the corresponding submatrices of each 
element: 
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 , , ,
1 1 1

m m m

ij ij e ij ij e ij ij e
e e e= = =

= = =∑ ∑ ∑M M C C K K  (3.5) 

Considering the mass and damping matrices, each element submatrix is function of 
material density ρ and of the material viscosity parameter η  respectively: 

 , ,ij e i j ij e i jV V
dV dVρ η= =∫ ∫M N N C N N  (3.6) 

The stiffness matrix ,ij eK is instead function of the material elastic properties and it is 

derived through the definition of the static elastic problem for the single element.  

 ( ) ( ),

TT
ij e i j i j

V V

dV dV= =∫ ∫K B DB SN D SN  (3.7) 

Matrix D is the elasticity matrix and it defines the stress-strain relationship. MatrixS
expresses the relation among strains and displacement according to the solid 
mechanics theory. Both matrices are dependent on the hypothized stress state, for 
instance plane strain or plane stress. A more detailed definition of the stiffness 
matrices related to the investigated problem, i.e. structural dynamic analysis of a 
sandwich panel, is given in the following paragraphs. 

Each term of the (3.2) has been defined and related to the respective structural 
parameters by equations (3.6) and (3.7). Following modal approach, the structural 
modal parameters, natural frequencies and mode shapes, are obtained solving a 
standard eigenvalue problem derived from the (3.2): 

 ( ){ }2 0α α φ+ + =M C K  (3.8) 

where α is the eigenvalue, and { }φ are the eigenvectors. Eigenvalues are in general 

complex numbers while eigenvectors are real for real structures. From a physical 
point of view, the imaginary part of the eigenvalues can be interpreted as the system 
natural frequencies while the eigenvectors are related to mode shapes. 

The evaluation of the structural dynamic performances in terms of structural 
response to the incoming excitation can be performed on the basis of the structure 
modal parameters. This strategy results to be particularly time efficient but does not 
allow the consideration of non linear effects. Conversely, the direct solution of the 
finite element approximation to equilibrium allows the consideration of non linear 
effects such as material frequency and temperature dependent parameters. In 
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particular, itconsiders in an accurate way the material viscoelasticity. The latter can 
be obtained through [41].  

 { } { } { } 0u I P+ − =M ɺɺ  (3.9) 

At each time step, the equation (3.9) is solved in terms of acceleration of the nodal 
variables vector. The first term of the equation takes in account the d'Alembert 

forces. { }I and{ }P  are the internal and external force vector respectively. In 

particular, the internal force vector is related to the stress state of the analyzed 
structure. A detailed mathematical description of the solution procedure can be found 
in [41]. 

The choice of the modeling strategy, i.e. the choice of the number and type of 
element, depends on the analyzed problem. Generally speaking, a static, stress 
strain analysis requires a finer mesh than a dynamic problem. The element 
dimension for a dynamic problem is strongly dependent on the maximum frequency 
of interest. As a rule of thumb, at least 10 elements are required for each 
wavelength. The element in-plane dimension l (Figure 46) can be evaluated as 
function of the maximum frequency of interest and the structure characteristics. 

 

Figure 46 - FE discretization: element in plane dim ension. 
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In case of plate dynamic analysis, the maximum in-plane element dimension is given 
in terms of material density ρ , plate thickness h  and plate bending stiffness D (2.4) 

 

4

1 2

12 12
l

h

D

λ π
ρω

= =  (3.10) 

The element dimension on the cross section is instead based on a trade off between 
the model accuracy and the computational cost. Generally speaking, a more refined 
mesh is required in case of discontinuities or concentrated loads.  

The element type is determined by the structure geometry and its stress - strain 
problem type. A structure subjected to acoustic waves impinging on the surface 
undergoes mainly bending and plane strain state. In addition, the thickness 
difference among different layers of a sandwich structure implies a different modeling 
strategy to optimize the numerical efficiency and results accuracy., The core can be 
modeled as a 3D continuum but a full 3D approach for the face sheets may lead to ill 
conditioned equation due to the small thickness of the skins compared to other 
dimensions. 

2.1.1. Finite Element Modeling of skins 

 

The strain stress state and the small thickness compared to the in plane dimensions 
lead to the choice of shell elements for the skin modeling. Shell elements combine 
pure bending and membrane stresses (Figure 47) modeling accurately the structure 
behavior without increasing the computational cost, if compared to the number of 
solid elements necessary to obtain the same result accuracy.  



 

70 

 

 

Figure 47 -  Bending and in plane (membrane) deform ations [29]. 

Plate bending condition modeling 

 

The bending of plates and its extension to shells has been widely studied and it was 
one of the first cases to which the FEM was applied in the early sixties. Many 
structures, for instance airplane wings, can be idealized as plates. In various 
practical cases, the main load is applied in transverse direction and results in a 
bending action. Figure 48 displays the plate bending condition and defines the 
displacement directions. 
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Figure 48- Plate subjected to transverse action res ulting in bending deformation [40]. 

Two different approaches are available for plate bending stress strain state 
modeling: 

– Mindlinn approach or thick plate theory 
– Kirchhoff approach or thin plate theory 

The main difference relies on shear stresses consideration. Analyzing thin plates is 
in fact possible to neglect the shear stresses. The Kirchhoff theory of thin plates can 
be considered as a particular case of Mindlinn theory for thick plates simply 
considering the shear modulus equal to infinite [29].  

The definition of variables to mathematically state the plate bending problem is 
represented in Figure 49. 
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Figure 49 -  Variables definition [39]. 

The concept of finite element modeling is to express the strain – stress state within 
each element in terms of nodal variables, i.e. element nodes rotation and translation, 
by means of suitable shape functions. From a mathematical point of view it is first 
necessary to state the stress – strain problem for plate bending and subsequently to 
discretize it. 

A plate, like a straight beam, supports transverse load by bending actions. The 
Figure 49 displays the stresses on the cross section of an elastic homogeneous 

plate. Normal stresses xσ  and yσ  vary linearly with z and result from the bending 

moments xM  and yM . Shear stress xyτ  is also linearly variable with  z  and it is 

related with the twisting moment xyM . The normal stress zσ  is considered negligible 

with respect to the others. Transverse shear stresses yzτ  and zxτ  vary quadratically 

with the z direction. External load q  may include both mass and surface forces. 

"Plate bending" usually means that there are no component of external loads parallel 

to the xy plane and that on the midsurface normal stresses xσ   and yσ and shear 

stress xyτ  equal zero.  
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On the basis of solid mechanics theory to define a so called stiffness relationship 
relating the external loads to the nodal displacements. It is possible to show that 
strains ε and γ  are related to displacement through differential operators [39], in 

particular: 
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 (3.11) 

{ }, ,u v w are the displacement directed as in Figure 48. A qualitative graphical 

representation of (3.11) is displayed in Figure 50 and Figure 51. Figure 51 displays 

the relations for xyγ , the representation of the relations for shear strains yzγ and zxγ  

can be obtained in analogous way. 

 

Figure 50 Relation among strains in x and y directi ons and displacements. 
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Figure 51 Relation among shear strain  and displace ments. 

 

The displacement in the x and y direction, u and v respectively, can be expressed in 
terms of rotation of lines normal to the plate midsurface (Figure 52): 

 
x

y

u z

v z

θ
θ

= −
= −  (3.12) 

 

Figure 52 - Thick plate element after loading [39].  



 

75 

 

Combining (3.11) and (3.12), the expression for the deformation vector of thick 

plates is obtained as function of the rotation vector { }θ  and of the out of plane 

displacement w : 

 

{ } { } { }

{ } { }

0

0
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xy

xz x

yz y

x

z z
y

x y

w

x
w

w

y

ε
ε ε θ θ

γ

γ θ
γ θ

γ θ

 ∂
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 (3.13) 

The face sheets of structural sandwiches are typically very thin. As a result, it is 

possible to neglect transverse shear forces and resulting stresses and strains { }γ
[29]. The second equation of (3.13) becomes: 

 { }0 wθ= − + ∇  (3.14) 

The moments acting on the structure can be related to the rotation vector introducing 
appropriate constitutive relations among stresses and strain through the elasticity 

matrix bD : 

 { } { }
x

b
y

xy

M

M M

M

θ
 
 = = 
 
 

D L  (3.15) 

In equation (3.15) the matrix bD is function of plate thickness h  and material 

parameters, Young modulus E and Poisson ratio ν : 

 ( )
3

2

1 0

1 0
12 1

1
0 0

2

b Eh
ν

ν
ν ν

 
 
 =  −
 −
 
 

D  (3.16) 
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The thin plate formulation for plate bending analysis can be stated in terms of 
displacement adding the equilibrium relations[29]: 
 

 ( )T b w q∇ ∇ − =L D L 0  (3.17) 

The thin plate approximation (3.17) expressed in terms of displacement is irreducible 
and a typical example of displacement formulation. Irreducible formulation does not 
allow the reduction of the number of dependent unknows by suitable algebraic 
operation, still leaving a solvable problem [29]. 

The displacement approach can be seen as a minimization of the total potential 
energy. It can be shown that in stable elastic situations the total potential energy is 
not only stationary but it is a minimum. The finite element process then seeks this 
minimum within the constraint of an assumed displacement pattern [29].  

In the case of plate bending of thin plates the total potential energy is given by: 

 ( ) ( )1
boundary terms

2
T b Twd w qd

Σ Σ
Π = ∇ ∇ Σ − Σ +∫ ∫L D L  (3.18) 

The first term of (3.18) represents the bending energy and Σ  is the considered 
domain. 

Once the problem has been stated, it should be discretized to enable the definition of 
stress strain within each element in terms of nodal variables. Using either the 
Galerkin method and integration per parts or the virtual work principles the 
discretized equation can be obtained. The standard linear displacement 
approximation equation is expressed as follows: 

 { } { }b b b
exta f=K  (3.19) 

The vector { }ba  includes the rotations and lateral displacement of the nodes and is 

related to the discretized displacement field through appropriate shape functions N : 

 { } { }bw a= N  (3.20) 

The stiffness matrix components are obtained introducing the discretized 
displacement field in equation (3.18): 

 ( )( ) ( )Tb b d
Σ

= ∇ ∇ Σ∫K L N D L N  (3.21) 
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The vector { }b
extf in equation (3.19)is related to the external forces and the boundary 

terms. 

 { } { }b T
ext bf qd f

Σ
= Σ +∫ N  (3.22) 

The boundary conditions that can be imposed are:  

i. traction boundary: stress resultants, both moments and shear forces, are 
given prescribed values 

ii. fixed boundary: displacements conjugate with the stress resultants are 
specified 

iii. mixed boundary conditions: both tractions and displacements can be 
specified. A typical example is the simply supported edge. 

In the case (i) { }bf  includes moments and shear actions prescribed on the boundary 

Γ , irrespectively of thick or thin plate condition: 

 { } � � ɶ( )T T T
n nsb n sf M M S d

Γ
= + + Γ∫ N N N  (3.23) 

where the terms� nM , � nsM and ɶS  are respectively the prescribed moments and shear 

while nN and sN  are, for thin plates, the partial derivatives of the shape functions 

with respect to n  and s directions in Figure 53.  

 

Figure 53 - Boundary tractions [29]. 

The whole static elastic problem is then reduced to an appropriate selection of the 
shape functions N . The shape function is strongly related to the choice of element 
shape and order used to discretize the considered domainΣ . Two approaches are 
available to solve the previously stated problem: the method of weighted residuals 
(or Galerkin procedure), and the determination of the variational functionals for which 
stationarity is sought. As shown in [29] the two approaches are totally equivalent. 
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Plane stress condition modeling 

 

The mode shapes associated with the plate natural frequencies induce a complex 
strain state in the plate. The plate in fact undergoes both in plane and out of plane 
strains. The out of plane action has been described in the previous section, 
discussing the plate bending modeling. 

Considering only the in plane actions (plane stress condition) the state of strain can 
be described uniquely in terms of the u  and v displacement of each node of the 
considered element defined in Figure 54.  

 

Figure 54 - An element in plane stress [29]. 

 { } { } { }( ) { }

0

0
x

p p
y

xy

x
u

u a a
vy

y x

ε
ε ε

γ

 ∂
 ∂  

 ∂  = = = = =    ∂     
  ∂ ∂ 

 ∂ ∂ 

S S N B  (3.24) 

The vector { }pa includes the nodal displacements and N includes instead the shape 

functions that relate element displacements to the nodal ones. 
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Considering null the initial strain, the stresses can be expressed as follows: 

 { }
( )

{ } { }2

1 0

1 0
1

0 0 1 / 2

x
p

y

xy

E
σ ν

σ σ ν ε ε
ν

τ ν

   
   = = =   −   −  

D  (3.25) 

The minimization of the potential energy leads to the following stiffness matrix: 

 
p T p d

Σ
= Σ∫K B D B  (3.26) 

Leading to an expression similar to the one obtained for the plate bending, (3.19): 

 { } { }p p p
exta f=K  (3.27) 

Combining the expressions (3.19) and (3.27) the equation to define the behavior of a 
shell element can be obtained: 
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 (3.28) 

The stiffness matrix of equation (3.28) is the one to be inserted in equation (3.2) to 
completely define the equation of motion for the structure face sheets. 

2.1.2. Finite Element Modeling of the core 

 

Dealing with multilayered structures all the layers undergo the same solicitation. 
Anyway, each layer may present different characteristics in terms of geometry and 
material parameters. Focusing on sandwich structures, usually they present three 
layers: two thin face sheets and a thick core. The different layers fulfill different 
functions. The thin face sheets give the main part of the structural resistance and 
bending stiffness to the structure. As a result, they easily can be dealt with the plate 
theory exposed in paragraph 2.1.1. The core is usually thicker than the skins and 
performs different non – structural functions, i.e. thermal insulation or vibration 
softening. From a structural point of view it carries the whole shear load acting on the 
structure. This last assumption together with the non negligible thickness with 
respect to in plane dimensions lead to a solid elements modeling. Following the 
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same approach previously adopted for the shell element it is possible to derive a 
formulation totally equivalent to the (3.28). 

 

Figure 55 - Displacement definition for a solid the traedrical element [40]. 

Considering full 3D strain – stress state condition, the strain vector { }ε has six 

components and may be expressed as function of the three displacement of the 

element { } { }, ,u u v w= directed as the nodal one in Figure 55 

 { } { } { }

x

y

z

xy

yz

zx

u

x
v

y

w

z
u u

u v

y x

v w

z y

w v

x z

ε
ε
ε

ε
γ
γ
γ

∂ 
 ∂
 ∂ 

   ∂
   ∂   
   ∂= = =   ∂ ∂   +

∂ ∂   
   ∂ ∂   +

∂ ∂ 
 ∂ ∂
 +

∂ ∂ 

S  (3.29) 



 

81 

 

The element displacement field can then be discretized and expresses as function of 

nodal displacement vector { }sa  through suitable shape functions N , as well as in 

the (3.20) and (3.24): 

 { } { }su a= N  (3.30) 

The stiffness matrix for a solid element to be introduced in the (3.2) can be obtained 
using the same integral of the (3.26). Considering an isotropic material, the matrix D
,that relates strain and stresses, is expressed as follows: 

 ( ) ( ) ( )
( )

( )

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1 2 / 2 0 01 1 2

0 0 0 0 1 2 / 2 0

0 0 0 0 0 1 2 / 2
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ν ν ν
ν ν ν
ν ν ν

νν ν
ν

ν
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 − 
 −

=  −+ −  
 −
 

−  

D (3.31) 

The core of a sandwich structure addressed to vibroacoustic insulation is typically a 
porous material. Their peculiar random microstructure is the responsible of their 
vibroacoustic damping capability. On the other hand, random microstructure may 
imply inhomogeneity and from transverse isotropic to fully anisotropic behavior. In 
addition, the bulk material from which the porous material is derived typically exhibits 
a viscoelastic behavior. This characteristic increases the vibration softening 
capability of the material but leads to a more complex material modeling, due to the 
frequency dependence of the material parameters. 

Viscoelastic material modeling 

 

The simplest model able to represent in a sufficiently accurate way either the 
relaxation or the creep material behavior is the Standard Linear Solid Model 
(Chapter 2). However, in a real viscoelastic material the creep and relaxation 

phenomenon do not occur with a single characteristic time constant 1τ . Due to 

internal phenomena (for instance short polymer segments relax differently from the 
long one) the real relaxation modulus or creep compliance curves may show 
changes in the slope because the whole material doesn't react at the same moment 
to the imposed stress or strain. To take into account this, generalized models have 
been developed starting from the basic model previously described. In this 
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dissertation a generalized model based on Zener model has been considered for the 
capability of SLS to predict the material characteristic behavior.  

 

Figure 56 -  Generalized Standard Linear Solid (GSL S) model. 

The GSLS model (Figure 56) consists of m Maxwell elements connected in parallel 
and a single spring.  

The relaxation modulus associated with this model configuration is: 

 ( )
1

i

tm

i
i

E t E E e τ
−

∞
=

= +∑  (3.32) 

The series expression in (3.32) is often referred as a Prony series. E∞  is the 

equilibrium or long term modulus, iE  and iτ  are respectively the relaxation moduli 

and the relaxation costants. All the parameters are positive constants. The 
computational efficiency of Prony series is double sided: (i) It can be proved that all 
the material function, i.e. relaxation modulus, creep compliance, complex modulus, 
are numerically inter-convertible using the same Prony series coefficient and (ii) the 
efficiency of numerical method of structural analysis using incremental stepped 
procedure, as the one used to extract the response of the structure to known inputs, 
is aided using Prony series representation of viscoelastic functions [14]. The material 
definition is based on Prony coefficient evaluation also in the considered FE 
software, Abaqus. 

Generally speaking, viscoelastic material parameters are temperature and frequency 
dependent. An important parameter to characterize the material frequency behavior 
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is the complex modulus. Through a dedicated experimental campaign the foam 
complex modulus over the whole acoustic frequency range has been determined. 
Further details on the experimental setup and test conditions will be given in Chapter 
4. 

Each viscoelastic material function contains exactly the same quantity of information 
concerning the material behavior. As a result, complex modulus, complex 
compliance, relaxation modulus and creep compliance are all interconvertible. Park 
and Shapery showed in [14] how it is possible to derive from (3.32) the expression of 
the complex modulus Prony series through Laplace transform: 
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The Prony series parameters, included the number m of Maxwell elements, can be 
determined through a data fitting procedure on the experimental data. Once the 
parameters of the (3.33) are obtained the material is fully defined for the finite 
element analysis. 

3. Coupled problem modeling 
 

It is experience of everyday life the existence of mutual interaction between sound 
and vibrations. This coupled effect can be modeled exploiting suitable numerical 
tools. The numerical model should provide information both on the effect of structural 
displacement on surrounding fluid and on the sound transmission capability of the 
considered structure.  

Sound radiation from vibrating surface is influenced by different phenomenon if the 
structure is mechanically or acoustically driven. In the former case, the main part of 
sound is due to resonant modes. In the latter case, forced vibrations are the main 
responsible for sound radiation. Intuitively, if a forced wave exhibits the same 
wavelength of a free bending one the structure becomes a perfect radiator. Aiming to 
design a structure either for sound radiation or insulation purposes, the knowledge of 
the possible overlap between excitation and natural frequency range is a key point. 
The information about free structural vibrations are provided by the structural finite 
element model. Natural frequencies and related mode shapes are in fact obtained 
solving the eigenvalue problem of equation (3.8). Coupling these information with a 
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numerical procedure able to define uniquely the acoustic pressure field in the fluid 
domain that surrounds the structure, the vibroacoustic problem is fully defined. 

3.1. Acoustic problem modeling 
 

The steady state acoustic pressure p in a fluid domain Ω due to a time harmonic 

external source g  of frequency 2f ω π= is governed by the second order Helmoltz 

equation: 

 ( ) ( ) ( )2 2
0, , , , , ,p x y z k p x y z j g x y zρ ω∇ + = −  (3.34) 

where /k cω= is the acoustic wavenumber, c is the speed of sound and 0ρ is the 

medium mass density. In case of vibroacoustic coupling the forcing term is related to 
structural transverse displacement. 

A powerful numerical tool to solve the Helmoltz equation in bounded or unbounded 
fluid domains is the Boundary Element Method (BEM). The BEM is based on the 
boundary integral formulation of the problem. Different BEM approaches have been 
developed to deal with the various possible acoustic problems. The radiation and 
transmission of sound through partitions can be classified as a combined 
interior/exterior acoustic problem. This definition is strongly dependent on the 
experimental technique for theidentification the acoustic structural behavior. The 
adopted method and test rig will be explained in Chapter 4. The interior/exterior class 
of problems foresees the existence of two fluid domain: a bounded one that should 
satisfy the (3.34) and an unbounded one (Figure 57).  
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Figure 57 - Schematic representation of fluid domai ns for a combined interior/exterior 
problem. 

The pressure field in the unbounded fluid domain must as well satisfy the (3.34) 

along with the Sommerfeld radiation condition at the boundary surface ∞Ω , located 

at infinity: 

 lim 0
r

p
r jkp

r→∞

 ∂ + = ∂ 
�

�
�  (3.35) 

The (3.35) ensures that all acoustic waves propagates freely towards the infinity and 
that no reflection occurs at this boundary as in a real unbounded fluid domain. 

The (3.34) defines an inhomogeneous acoustic problem. The resulting total pressure 

p  may be expressed as the superposition of the homogeneous pressure field ap  

and an inhomogeneous pressure field bp .  

 a bp p p= +  (3.36) 

The pressure field bp represents the free – field pressure due to the source 

distribution q . An analytical solution for this pressure field can be obtained seeing 
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the source distribution as a combination of acoustic point sources. The pressure field 

ap  instead is the solution of the homogeneous Helmoltz equation.  

 ( ) ( )2 2, , , , 0p x y z k p x y z∇ + =  (3.37) 

The boundary conditions are derived from the original acoustic problem and the 
numerical solution procedure is needed only for the homogeneous subproblem. As a 
result the discussion of the BEM may be confined only to the homogeneous acoustic 
problems without loss of generality. 

The direct boundary formulation can only deal with acoustic problems having a 
closed boundary. For combined interior/exterior acoustic problem having an open 
boundary an alternative indirect boundary integral formulation has been derived [33]. 

 

Figure 58 - Problem definition. 

Considering at first a position r
�

in the interior domain V − (Figure 58) is it possible to 
apply the direct integral formulation obtaining: 
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 ∂ ∂ = − Ω ∈  ∂ ∂ 

∫

∫

� � �
� � � � � �

� � �
� � � � �

 (3.38) 

 where ( )aG r,r
� �

is the Green's kernel function. The plus and minus related to the 

pressure are defined by the normal direction n that has a positive orientation into the 
unbounded fluid domain. 

Considering then a position r
�

in the exterior domain V + : 

 

Figure 59 - Problem definiton. 
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 (3.39) 

Adding the equations (3.38) or (3.39) a general indirect boundary formulation can be 
obtained: 

 ( ) ( ) ( ) ( ) ( ) ( )
a

a
a a a a

G r,r
p r r r G r,r d r r V

n
µ σ

Ω

∂ 
= − Ω ∈ ∂ 
∫

� �
� � � � � � �

 (3.40) 

The integral indirect boundary formulation relates the pressure in any point of the 
acoustic field to the distribution of a single layer potential and a double layer potential 

on the boundary surface aΩ .  

The single layer potential ( )arσ � is the difference in normal pressure gradient 

between both sides of the boundary surface aΩ : 

 ( ) ( ) ( )a a

a

p r p r
r

n n
σ

+ −∂ ∂
= −

∂ ∂

� �
�

 (3.41) 

This distribution can be regarded as a distribution of monopole sources on the 
boundary surface. 

The double layer potential ( )arµ � is instead defined as the pressure difference 

between both sides of the boundary surface aΩ : 

 ( ) ( ) ( )a a ar p r p rµ + −= −� � �
 (3.42) 

and represents a distribution of dipole sources on the boundary surface. 

The term indirect indicates that the boundary variables, i.e. the monopole and dipole 
distribution, do not represent any physical quantity of the pressure field. It is possible 
to show that equation (3.40) is valid also in the case of exterior acoustic problems 
with open boundary surface. 

The boundary conditions to complete the problem definition can be prescribed 
values of pressure, normal velocity and normal impedance. Under the hypothesis of 
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thin boundary surface the prescribed normal impedance is considered equal on both 
side 

Similarly to the FEM the boundary surface is discretized in a number of small 

subsurfaces, 
eσΩ and 

eµΩ , and a number of nodes, respectively nσ and nµ , defined 

at some particular location in each element. Within each element the problem 
variable, i.e single and double layer potentials, are approximated as expansions in 
terms of a number of suitable shape functions only defined within the element 
domain.  

 

( ) � ( ) ( ){ }

( ) � ( ) ( ){ }
1
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=
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∑

� � � �

� � � �
 (3.43) 

Most common BE type are triangular or quadrilateral and the nodes are defined at 
each corner point: for each boundary variable one degree of freedom is specified per 

node. Each shape function 
i

eNσ and 
i

eNµ is designed to have unit value at node i and 

zero at all the others node locations. The contributions 
i

aσ and 
i

aµ in the (3.43) 

represents respectively the approximated single layer potential and double layer 
potential at the location i. Starting from the (3.43) which are locally defined within a 

single element, it is possible to derive global shape functions Nσ and Nµ , defined 

respectively on the whole boundary surface 

The solution technique for the integral (3.40) relies on a variational formulation that 
leads to regular integrals and ensures symmetry of the resulting boundary element 
model. In analogy with the Finite Element Method displacement formulation the 
solution in terms of singular and double layer potential leads to the stationarity of a 
suitable functional J [33]. Subsequently, the pressure at any position r

� in the 

acoustic domain, not on the boundary aΩ  is obtained from the indirect integral 

boundary formulation (3.40), using the surface single and double layer potential 
results. from the previous step.  

3.2. Coupling of structural and acoustic models 
 

The mutual interaction between sound and vibration activates a mechanism in which 
the structural displacement is excited by sound waves and induces waves in the 
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surrounding fluid. The numerical model of the problem should be able to handle this 
phenomenon in order to obtain reliable results. The coupled problem can be tackled 
connecting the structural numerical model described in paragraph 2.1 and the 
acoustic model detailed in paragraph3.1.  

The transmission of sound through structures has been classified as a combined 
interior/exterior vibroacoustic problem. This means that an elastic structure, whose 
both sides are in contact with a fluid, is part of a closed boundary surface. In this 

case there are two separate acoustic domains: a bounded domain interior to aΩ and 

an unbounded one exterior to it. For each of these domains a Helmoltz equation like 
the (3.37) with its boundary condition has to be formulated. The displacement field of 
the elastic structure is governed by a dynamic equation like (3.2) where the forcing 
term becomes a pressure loading term related to the pressure difference between 
both sides of the structure. 

As described in the paragraph2.1the steady state dynamic displacement of the 
considered plate can be expressed in terms of only nodal variables. Assuming a 
synusoidal-like excitation, as in case of acoustic excitation, for a generic element i 
the (3.2)can be rewritten as: 

 ( ){ } { }2
i sj a Fω ω+ − =K C M  (3.44) 

the vector{ }sF contains the terms in the constrained degrees of freedom, prescribed 

forces and moments contributions and the contributions from the external pressure 
load. 

The elastic structure is assumed to be entirely comprised in the boundary surface 

aΩ . On the common part of the boundary surface the continuity of the normal 

velocity between the acoustic and structural domain is imposed. In the remaining 
boundary surface a prescribed normal velocity may be imposed. The discretization of 
the acoustic domain is generally coarser with respect to the structural one if 
considering the same maximum frequency. A rule of thumb determines the maximum 
element length as one tenth of the acoustic wavelength in air corresponding to the 
maximum frequency of interest: 

 
10a

c
l

f
=  (3.45) 
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The theory behind the (3.45) is exactly the same of the (3.10). To accurately capture 
either the structural or the acoustic behavior the element dimension has to be 
significantly smaller than the characteristic length of the investigated phenomenon.  

The nodes in the BE discretization can be divided into two groups: a group 
1an

located on the fluid structure coupling interface sΩ  and a group 
2an located on the 

remaining boundary surface. The previously determined information about the 
structure dynamic behavior have to be transferred to the acoustic model. In 
particular, mode shapes have to be projected from the structural to the acoustic 
mesh. 

The force loading of the acoustic pressure on both side of the elastic plate results in 
an additional normal load. An additional term, discretized according to the (3.43), 
must be added to the structural FE model (3.44): 

 ( ){ } �{ } { }2
c sj a Fω ω µ1+ − + =K C M L  (3.46) 

the vector �{ }µ1 contains the pressure degrees of freedom along the coupling 

interface while the coupling matrix is defined as: 

 { }
1

1

e

e

n
T e

c
e

n dµ
= Ω

 
= Ω 

 
 

∑ ∫L N N  (3.47) 

where en  is the number of flat plate elements eΩ in the structure discretization, { }en

is a unit vector normal to a plate element. Structural and acoustic normal vectors on 
the boundary surface are assumed to have the same positive orientation. The 

pressure degrees of freedom �{ }µ 2  does not appear in the (3.46) since their global 

shape function are zero on the coupling interface [33]. 

Solving the coupled problem defined by the (3.46) it is possible to predict the 
vibroacoustic performances of the considered structure. The structural model 
provides information on the structural resonant response in terms of modal shapes 
and related normal displacement relevant for the sound transmission at low 
frequencies. The solution of the interior acoustic problem defines the additional 
loading term resulting from the pressure field induced by the sound source while the 
solution of the exterior acoustic problems defines the external pressure field due to 
the effective sound transmission through the investigate structure. As a result, such 
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a model is a powerful numerical tool to evaluate the vibroaocustic performances of 
different engineering solutions.  

4. Sound Transmission Loss prediction for higher 

frequencies 
 

The evaluation of structural vibroacoustic performances can be summarized with the 
evaluation of the Sound Transmission Loss (TL) in the frequency range of interest. 
The graph of the TL towards frequency gives with a quick glance the capability to 
evaluate the suitability of the proposed solution to the considered practical case. 

The main drawback of the coupled numerical approach presented in paragraph 3 is 
the limited frequency range that can be investigated. The coupled FEM/BEM 
approach is in fact based on deterministic methods that find their optimal range of 
applicability in the low frequency range. The meaning of "low" is related to the 
characteristic length of the investigated problem.  Typically, the low frequency range 
spans a couple of kHz. Element based techniques encounter several problems 
moving towards high frequencies. The element size should decrease to maintain a 
sufficient level of model reliability leading to higher computational costs. A bigger 
model is also more sensitive to numerical errors like the interpolation or pollution one 
and to uncertainties in structural parameter. The analysis of vibroacoustic 
performances in the high frequency ranges, e.g. above 4000 Hz, can be pursued 
applying different numerical modeling techniques like Statistical Energy Analysis. 
The majority of the TL calculation done with SEA for multilayered structures have 
been based on equivalent layer modeling of the structure [37]. This simplification, 
although justified, hides a peculiarity of sandwich structures having soft core. The 
structure deformations are in this case a combination of symmetric and 
antisymmetric components due to the spring-like behavior of the porous soft core. 

A sandwich structure having two stiff thin skins with a soft, light and shear bearing 
core can be approximated as a two degrees of freedom mechanical system, a mass-
spring-mass system (Figure 60): 
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Figure 60 - Mass-spring-mass equivalent system [42] . 

A system like the one of Figure 60 is characterized by two vibration modes: (i) one 
with both masses moving in the same direction, (ii) one with masses moving in the 
opposite directions. A sandwich structure behaves exactly in the same way. It is 
possible to identify two fundamental modes of vibration: (i) symmetric mode or 
dilatational mode due to core shear (ii) anti-symmetric mode or flexural mode due to 
skin bending (Figure 61). 
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Figure 61- symmetric and anti-symmetric modes [42].  

Different studies [43, 10, 38, 42] have pointed out how the panel dynamics and the 
TL can be expressed in terms of panel impedances taking properly in account the 
phenomena of symmetric and antisymmetric resonances. 

The considered excitation is a downward plane travelling wave incident on the panel 
from an angle θ with respect to the normal to the plane of the panel, x3 direction, and 
the azimuthal angle φ. The latter is defined as the angle made by a plane containing 
the  x3 axis with respect to the vertical plane defined by the  x3 and  x1 axis. (Figure 
62) 
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Figure 62 -  Problem geometry [42]. 

The sandwich structure is symmetric, with identical face sheets and homogeneous 
core material. The incident acoustic plane wave is characterized by the radiant 
frequency ω and the wavenumbers k1, k2, k3. The wavenumbers are related to the 
speed of sound as follows: 

 

2

2 2 2 2
1 1 3 0

0

k k k k
c

ω 
+ + = =  

 
 (3.48) 

The wavenumbers are defined as: 
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In hypothesis of steady state conditions the response to the incident plane wave can 
be formulated in terms of reflected wave from the top skin and radiated plane wave 
resulting from the normal displacements of both skins. The TL is usually defined as 
the ratio of the transmitted to the incident sound power. A different formulation can 
though be adopted relating the TL to the average transmission coefficientτ : 
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 ( )110logdBTL τ=  (3.50) 

The transmission coefficient τ is defined as the ratio of the transmitted acoustic 

intensity transI  the incident acoustic intensity incI . The transmitted acoustic intensity 

is a result of the combination of the incident wave transmission through the panel 
and the normal displacements of the bottom face sheet. 

 ( ) Transmitted intensity
,

Incident intensity
τ ϑ ϕ =  (3.51) 

Generally speaking, the transmission coefficient is a function of both angles θ and φ. 
Under the justified hypothesis of in plane isotropy of face sheets and isotropy of the 
core of the composite panel, τ  is independent of the azimuthal angle φ. 

The (3.51) can be reformulated in terms of panel impedances: 

 ( )
( )

2

0

0 0

cos

cos cos

sym asym

asym sym

c
Z Z

c c
Z Z

ρ
ϑτ ϑ
ρ ρ

ϑ ϑ

−
=
  + +  
  

 (3.52) 

The symmetric and anti symmetric panel impedances, respectively symZ  and asymZ , 

are defined as ratio between the corresponding forces per unit area and normal 
velocities. The latter descend directly from the prescribed normal displacement while 
the former can be derived from the acoustic pressure disturbances due to the 
incident sound wave. The acoustic pressure disturbance on the top face sheet is due 
to either the reflected sound wave or the pressure wave due to the motion of the top 
face sheet. The acoustic pressure disturbance on the bottom face sheet instead is 
only due to the motion of the bottom face sheet. The symmetric pressure disturbance 
is then obtained by the half sum of both disturbances while the anti symmetric one is 
expressed as the half difference. The global symmetry of the panel makes the 
symmetric and antisymmetric motions uncoupled and thus the solutions to the two 
problems may be obtained separately and then linearly superimposed.  

The expression for the impedances depends on the material properties of face 
sheets and core, the frequency and the wavenumber. The whole detailed procedure 
to determine the panel impedances starting from the description of skins bending 
and in plane deformation and core shear and dilatational wave propagation can be 
found in [42]. 
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In many applications the sound waves are not impinging on the structure with a 
single angle. It is more common to have soundwaves coming from different 
directions and hitting the surfaces with different orientations angle. The directional 
distribution of impinging waves is usually unknown and diffuse field model is 
commonly adopted [44]. The diffuse field model implies plane waves incident from all 
directions with equal probability and random phase. A suitable transmission 
coefficient can be evaluated weighting the (3.51) according to the directional 
distribution of directional intensities and then integrating over angle of incidence. 
This weighting leads to the following expression for the diffuse field transmission 
coefficient: 

 

( )
lim

lim

0

0

cos sin

cos sin

d

d

ϑ

ϑ

τ ϑ ϑ ϑ ϑ
τ

ϑ ϑ ϑ
=
∫

∫
 (3.53) 

The incidence angle is supposed to vary from zero to limϑ to 78° for coherence with 

experimental results [44]. 

 

The application of the (3.52), (3.53) and (3.51) leads to the numerical evaluation the 
panel acoustic performances over a wider range of frequencies with respect to 
FEM/BEM approach, highlighting also the phenomenon of both symmetric and 
antisymmetric coincidence. Sandwich structures, in fact, exhibit two fundamental 
modes of vibration and consequently two frequencies that lead to the equality 
between impinging acoustic and free structural wavelength. 

The capability of evaluating the TL on a wide range of frequency allows the 
exploration of different panel configuration and to tailor structure characteristics to 
the current application requirements. The expression of the transmission coefficient 
does not predict the TL oscillations due to the structural modal behavior in the low 
frequency range. The TL in the frequency range where the modal behavior is 
relevant can be predicted accurately applying the deterministic techniques described 
in paragraph 3. 
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CHAPTER4 
 

 
Chapter 4 gives detailed description of the experimental 

activity that has been carried out to validate the proposed 
numerical strategy. The adopted techniques for data 
acquisition and post processing are detailed. The results are 
presented for either the dynamic or the vibroacoustic 
behavior identification. Particular attention has been paid to 
the characterization of the core material behavior and the 
related parameters. 

 

1. Experimental investigation role in vibroacoustics 
 

Along with numerical modeling, experimental investigation plays a fundamental role 
in engineering practice. The availability of a number of reliable experimental data 
allows one to assess the chosen numerical modeling strategy. In fact, two of the 
most important characteristics of a numerical modeling procedure, i.e. the efficiency 
and the reliability, can be defined and evaluated only through dedicated experimental 
activities. In addition, several model parameters which are an input to the problem 
can often be retrieved through experimental data analysis. 

The model detailed in Chapter 3 is developed to predict the structural performances 
in terms of either the vibration attenuation or sound transmission reduction. A 
dedicated experimental activity has been designed to accomplish two main tasks: (i) 



 

100 

 

provide all the required information to develop the numerical model and (ii) check the 
whole modeling procedure reliability and efficiency.  

As a result, the testing campaigns involve three main tracks: 

− Identification of the material parameter 
− Dynamic behavior characterization of the investigated panel 
− Acoustic transmission performances evaluation 

An efficient prediction of the structural dynamic behavior is in fact the starting point 
towards the global vibroacoustic behavior simulation. The FE model developed to 
extract the vibrational performances of the panel takes as input the problem 
geometry and the material properties. A correct identification of the material 
parameters is thus fundamental. In particular, the sandwich panel core is made of a 
non standard material that requires a specific testing procedure. The properties that 
identify the foam behavior are frequency dependent. A dedicated experimental 
campaign has been designed and carried out to obtain reliable material parameter to 
include in the FE model. 

The proposed dynamic model returns the structural behavior in terms of frequency 
response function and modal parameters. The assessment of the reliability of this 
modeling step requires then the experimental identification of the structure modal 
behavior to be able to validate the obtained numerical results. Consequently, the 
dynamic properties have been obtained through experimental modal analysis. The 
post processing of the experimental frequency response functions allowed the 
extraction of natural frequencies and mode shapes of the panel. 

Structural modal parameters are the fundamental input to evaluate the acoustic 
performances through a coupled vibroacoustic model. The global vibroacoustic 
performance is typically quantified through Sound Transmission Loss (TL) or Sound 
Insertion Loss (IL)evaluation. Both indexes give a quick overview of the structure 
vibroacoustic behavior. As well as the TL, the IL index allows the identification of the 
parameters that mainly influence the acoustic behavior in the different frequency 
ranges. According to the theory, the low frequency range is dominated by the 
structural modal behavior. Moving towards higher frequencies instead, it is the mass 
that drives the acoustic performances. A more detailed explanation has been given 
in Chapter 2. The experimental identification of TL foresees the fulfillment of specific 
requirements either on sample size or on the acoustic field in the testing 
environment. The IL index is instead easier to measure through sound intensity 
measurements. As a main drawback it carries some information on the testing 
environment while the TL is a property of the tested object only. Further details are 
given in the paragraph 4 of the current chapter. Exploiting a specific test 
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rigdeveloped at KU Leuven, the IL of the investigated panel has been experimentally 
identified. The availability of IL experimental data allows not onlythe evaluationof the 
reliability of the coupled model but also of the efficiency of the whole proposed 
modeling procedure. 

Generally speaking, each of the performed experimental campaigns can be 
subdivided in three fundamental steps: 

• Test set up definition 
• Data acquisition 
• Data post processing and analysis 

Each step presents peculiar difficulties and the final adopted solution is always a 
trade off among the final goal of the experimental activity, hardware availability and 
time requirement. Several experimental techniques have been developed along 
years either in the dynamic or in the acoustic framework. In the current chapter, all 
the three steps involved in the experimental activity are detailed either for dynamic or 
acoustic behavior investigation starting from the test definition condition to the results 
interpretation. In particular, a specific paragraph is devoted to the description of the 
experimental activity that has been carried out to identify the viscoelastic material 
behavior. 

The first part of the chapter focuses on the description of the experimental 
characterization of the panel materials parameters. Subsequently, the structural 
dynamic behavior characterization is described. Two sandwich panels have been 
tested: one of size A2 and one of size A4. Both panels have the same cross section 
configuration in terms of either materials or layer thickness. The experimental data 
obtained for the big panel will be used explicitly for dynamic model validation 
purposes. The data of the small panel instead will be used to check the capability of 
the proposed numerical technique to predict the behavior of a different structure. 
Finally, the last paragraph details the experimental campaign for the identification of 
the structure IL and thus the characterization of the structural vibroacoustic 
performances. 
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2. Panel materialscharacterization 
 

An accurate and reliable identification of the material properties is the starting point 
of the whole vibroacoustic modeling procedure. 

The panel under investigation is a three layered sandwich structure with Aluminum 
skins and polymeric foam core (Figure 63). 

 

Figure 63 - Panel crossection: detail . 

The Aluminum of which the skins are made is not pure but an alloy characterized by 
an elastic modulus equal to 70 GPa and a mass density of 2670 kg/m3. The acoustic 
excitation is generally a small oscillation around the ambient pressure value. As a 
result, the magnitude of the loading acting on the panel is small; thus the 
deformation of skin material can be considered within the elastic range. The elastic 
behavior of skin material can then be characterized by simply using the alloy nominal 
values without any dedicated characterization.  

Conversely the core is made of a viscoelastic material, in particular a closed cell 
polymeric foam (Figure 64). Viscoelastic materials properties are frequency 
dependent as described in Chapter 2. The material parameters have to be 
characterized through a dedicated experimental procedure in the whole frequency 
range of interest.  
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Figure 64 - Foam core: detail 

The material data are an input of the developed numerical model that aims to 
replicate the dynamic response of the investigated panel. The frequency range of 
interest for the panel FE model spans from 0 Hz to few kHz. The width of the 
investigated frequency range is determined by the upper frequency limitation typical 
of modeling deterministic techniques as FE. The foam stress strain relationship has 
then to be characterized in the frequency range of interest. Given the magnitude of 
the acoustic excitation, the foam can be considered working. in the linear elastic 
range, as well as the Aluminum alloy of the skins. 

One of the most common methods to characterize the viscoelastic material behavior 
as a function of frequency is the Dynamo Mechanical Analysis [45]. The basic 
principle of this experimental technique is represented in Figure 65. A sinusoidal 
strain is applied to the specimen and the resulting sinusoidal stress is measured. 
The scale factor between stress and strain represents the Storage Modulus while the 
phase delay between stress and strain is related to the Loss Modulus. In particular, it 
represents the phase of the Complex Modulus. The Complex Modulus and its 
meaning has been defined in Chapter 2. 
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Figure 65 - Qualitative DMA test. 

The test instrument that has been considered for the characterization of the foam 
under investigation is the DMA RSA3 of TA Instruments (Figure 66). 

 

Figure 66 - DMA testing machine. 
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The test typology that has been considered for the foam is the compression one. A 
sinusoidal strain is imposed on a cubic specimen of foam. The consequent 
sinusoidal load is measured with a load cell and the resulting stress is computed. 
The specimen is in fact under uniaxial load condition, thus the stress can be 
computed as the ratio of the load to the specimen area. A detail of the specimen 
clamping is shown in Figure 67 

 

Figure 67- Clamped foam specimen. 

A cubic foam specimen has been chosen to avoid bulge effect that may appear with 
a parallelepiped shaped specimens. The characteristic dimension has been taken 
exactly equal to the thickness of the foam layer in the sandwich panel. 

Preliminary tests have been carried out to evaluate the role of the preload and the 
degree of anisotropy of the foam [46]. The latter has been quantified carrying out 
static compression test on a cubic specimen. Three different tests have been 
performed. In each of them the specimen has been oriented such has the imposed 
load was directed along one of the three directions depicted in Figure 68. 1 and 2 are 
the in plane directions while 3 is the direction corresponding to the thickness of the 
panel. 



 

106 

 

 

Figure 68 - Foam specimen: directions. 

 

 The obtained stress strain curves are displayed in Figure 69. According to the 
obtained results, the foam can be considered as transversally isotropic. The tests 
performed applying the load along the directions 1 and 2 gave the same result while 
the stress strain curve obtained in direction 3 is substantially different.  

 

Figure 69 - Stress strain curves foam specimen 
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A quick and simplified identification of the Elastic Modulus based on the linear 
interpolation of the initial slope returned the values reported in Table 1. The 
estimated elastic modulus in direction 3 is around 50 % more than that in directions 1 
and 2. This difference may be attributed to the foam manufacturing process. 

Direction  Elastic Modulus [MPa]  

1 15.8 

2 16.4 

3 28.8 

Table 1 - Estimated elastic moduli. 

During the DMA test a preload has to be imposed to the specimen to prevent from its 
sliding between the clamps the test. A preliminary evaluation of the effect of the 
preload entity on the foam has been carried out. Quick tests have been done 
spanning from 0.1 Hz to 10 Hz imposing different preloads. The results are reported 
in Figure 70. The preload proportionally affects the estimated storage modulus: the 
higher the preload, the higher the resulting modulus value. To better evaluate the 
condition under which the foam works constrained between the Aluminum skins, the 
same test has been done on a panel specimen (skin -foam -skin). The sandwich 
specimen has been tested with a low preload value. The value has been chosen to 
ensure a correct test execution and the lowest interfering effect. The blue circles in 
Figure 70 represent the storage modulus obtained for the panel specimen. As a 
rough estimation, the foam is preloaded by the Aluminum skins by a load of 
approximately 20kPa (red solid line in Figure 70). As a result, the mechanical 
properties on the whole frequency range of interest have been determined imposing 
a preload of 20kPa on the specimen.  
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Figure 70 -  Preload sensitivity analysis: foam spe cimen (solid line) and panel 
specimen (circles). 

The foam properties are a fundamental input for the numerical model that aims to 
predict the structural dynamic response. Given the Complex Modulus typical 
frequency dependence, it has to be characterized over the whole frequency range of 
interest. Determination of material properties over a wide range of frequency may be 
challenging. Each experimental method in fact covers few frequency decades. For 
certain type of materials it is possible to infer the stress strain behavior over a wide 
range of frequency from experiments carried out at different temperatures [45]. This 
class of material is called thermorheologically simple materials. An example is the 
polymeric foam under investigation. For this class of materials a change in 
temperature is equivalent to a shift in the behavior on the frequency or time axis, 
following the time-temperature superposition principle. The viscoelasticity of these 
materials arises from a molecular rearrangement process which occurs under stress. 
For such materials a change in temperature stretches or shrinks the effective time 
scale [45]. As a consequence, experiments conducted in the same range of 
frequency, let's say from 0 Hz to 50 Hz, but at different temperatures result to be 
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equivalent to experiments conducted over a frequency range that can be extended 
up to GHz. The behavior of the material is then described by a curve built up by 
shifting the single curves obtained at different temperatures. This curve is called 
master curve and it is built horizontally shifting the experimental curve for 
temperatures above or below the curve at a chosen reference temperature until they 
overlap [45]. Despite an upper frequency limit of the testing machine set around 50 
Hz, it has been possible to build the material master curve of the material up to 
10kHz (Figure 71). 

 

Figure 71 - Foam specimen Master Curve. 

 

The obtained material data are a fundamental input for the structural model. A 
specific post processing of these data is necessary prior to the material definition in 
the FE model. As detailed in Chapter 3the most common numerical software 
requires the definition of the viscoelastic material function as Prony series. This 
programming choice is mainly due to the improvement of the numerical efficiency 
given by the use of this kind of series [14]. A minimization procedure between the 
series mathematical expression and the experimental data led to the evaluation of 
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the series parameter necessary to numerically define the material behavior. The 
frequency range has been limited to the one explored with the numerical model. The 
comparison between the experimental data and the prediction given by the 
calibrated Prony series is reported in Figure 72. The maximum errors between the 
experimental data and the numerical estimation are lower than 8% either for the 
Storage Modulus or for the Loss Modulus as displayed in Figure 73. 

 

Figure 72 - Foam Material data (blue solid line) vs Prony series approximation (red 
circles). 
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Figure 73 - Estimation Errors. 

The definition of the parameters to numerically estimate the material behavior 
completes the set of input data required to develop the structural dynamic model.The 
reliability of the latter will be checked through experimental data obtained according 
to a procedure detailed in the next paragraph. 

3. Dynamic identification procedure 
 

The dynamic behavior of a structure can be described in terms of its modal 
parameters. The natural frequencies along with the associated mode shapes and 
damping factors define how a structure reacts to the input forces. The problem can 
be tackled either from a theoretical or from an experimental point of view. The former 
is the background of the available numerical modeling techniques. Starting from the 
knowledge of the system boundary conditions, structure geometry and material 
characteristics it is possible to derive the equation of motion as function of the 
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stiffness system distributions are expressed in terms of mass, damping and stiffness 
matrices: 

 { } { } { } { }( ) ( ) ( ) extu t u t u t f+ + =M R Kɺɺ ɺɺ  (4.1) 

The modal analysis theory shows that the matrices of equation (4.1) are enough to 
derive the structural modal parameters and that these parameters allows the 
description of the structure dynamic behavior [47, 48]. 

The experimental approach instead starts from the measurements of both the input 
force and the output response on the investigated structure. Usually these 
measurement sets are transformed into sets of frequency response functions (FRF), 
i.e. the ratio of the output response to the input force. An accurate postprocessing of 
the obtained FRFs leads to the determination of the structural modal parameters  

3.1. Test case: Sandwich panel with foam core 
 

The investigated structure is a sandwich panel with aluminum skins and polymeric 
foam core (Figure 74).  

 

Figure 74 -  Investigated panel. 

Sandwich structures highlight several issues in the experimental identification 
procedure. In fact the lightweight of these structures makes the testing strategy and 
setup more challenging. Particular attention should be paid to the selection of sensor 
type and position to avoid the so called load effect, i.e. the modification of the system 
modal parameters due to the presence of the instrumentationon the structure. The 
excitation itself plays an important role. The dynamic response of a mechanically 
driven structure is composed of a resonant and a forced response. The latter is given 
by the steady state response of the structure to the incoming excitation. With linear 
systems, if the input is a harmonic wave, the structure will vibrate at the same 
frequency but with an amplitude determined by the structural damping and the 
possible overlap of the excitation frequency with a resonance. If the excitation 
frequency is close to a resonant one the resulting vibrational level will be amplified. 
The resonant response dominates the transient structure behavior. For instance, if 
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the excitation is a white noise, thus able to transfer to the structure the same input 
level on a wide range of frequency the structure, will mainly respond according to the 
superposition of the resonant modes in that frequency range.  

3.1.1. Suspended panel modal analysis 

 

The final aim of the structural dynamic characterization is the evaluation of the 
correlation with the developed FE model in terms of modal parameters. The effective 
test condition should match the boundary condition of the FE model. Often, the first 
condition to be investigated is the free free one. In this scenario ideally no 
connection between the environment and the tested structure exists. This allows the 
extraction of only the structure dynamic behavior. A FE model able to reply the bare 
structure dynamic will be theoretically capable to reply the structural behavior in any 
condition, if these conditions are accurately reproduced. 

In practice, the free free boundary condition is replicated hanging the investigated 
structure with very soft springs that minimize the influence of the suspension system. 
In the suspension system design two aspects have to be carefully considered: the 
rigid body resonances and the suspension points. These latter should be nodal point 
for almost all the investigated mode shapes to avoid any system dynamic 
modification. The soft suspension system shifts slightly the rigid body resonances to 
frequencies higher than the theoretical zero. The resulting frequencies have to be 
way lower than the first structure resonant system. In a nutshell the suspension 
system has not to interfere with the system dynamics. The free free boundary 
conditions for the investigated structure have been replied as shown in Figure 75. 
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Figure 75 -  Suspended panel. 

Several different methods are available to excite a structure. They basically can be 
divided into two main categories: contacting and non contacting techniques. The 
former involves the connection of the exciter to the structure throughout the whole 
test and the excitation can be transient or continuous. The non contacting techniques 
include devices that are either out of contact or in contact only for the short time the 
excitation is given [47]. The major advantage of this latter class of excitation 
techniques is evident dealing with lightweight structure. The non contact techniques 
avoid the undesirable mass loading effect to the structure that can significantly 
modify structural modal parameters. Among the different non contacting techniques 
one of the most widely applied for its ease of application is the impact hammer 
testing. The device consists in an impactor, Figure 76, with a set of different tips and 
heads to modify the level and the frequency content of the excitation.  
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Figure 76 - Impact Hammer [47]. 

Embedded in the impactor a force gauge measures the magnitude of the force 
detected by the impactor, typically equal and opposite to the one which is the input of 
the structure. The magnitude of the excitation is mainly controlled by the impactor 
mass while the excitation frequency content is controlled by the stiffness of the tip 
and the mass of impactor head. When the hammer impacts on the structure, this 
latter undergoes a pulse excitation. The typical time history and frequency spectrum 
of this kind of excitation is displayed in Figure 77. The useful excitation frequency 
range is defined as the frequency interval in which the frequency spectrum remains 
flat. It can be proved that there is an inverse proportionality between the time width 
of the pulse and the useful frequency range. The narrower the pulse,the wider the 
excitation frequency content [47]. 



 

116 

 

 

Figure 77 - Typical impact hammer pulse: time histo ry (left) and frequency spectrum 
(right) [47]. 

The pulse duration in the time domain is mainly related to the stiffness of the contact 
between the tip and the surface of the tested object. Generally speaking, the stiffer 
contact the shorter the impact. In the same way the lighter the impactor the shorter 
the impact, thus the broader the excited frequency range [47]. Focusing on the 
investigated panel, the modal analysis has been performed applying the rowing 
hammer technique. The sensors position has been fixed while the excitation point 
was moved during the test on the different points defined in Figure 78.The choice of 
the measuring grid plays a key role in the effectiveness of the experimental 
campaign. The grid should be dense enough to capture the relevant mode shapes 
and the sensor position should not be a node for any of the modes of interest. A 
preliminary FE model can be very helpful in the test design process.  
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Figure 78 - Suspended panel: measurement grid (Squa res: excitation points, Circles 
accelerometers). 

Results and data analysis 

In Figure 79 the obtained FRF for a point in the top right quarter of the panel is 
displayed. The explored frequency range has been limited to 1kHz considering the 
final goal of the testing campaign. This frequency range is narrower than the one 
considered for the material properties identification. The aim is to carry out a 
dedicated experimental activity to obtain reliable data to validate a numerical model. 
The choice of deterministic methods to simulate the vibroacoustic panel behavior 
limits the frequency range that can be explored (Chapter 2). The 1kHz range has 
been chosen as a compromise among computational costs limits and meaningful 
modal identification for the investigated structure. 
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Figure 79 - Frequency Response Function  free free boundary conditions. 

The extraction of the modal parameters, i.e. natural frequencies, damping ratios and 
mode shapes, has been performed applying a self developed numerical code that 
applies the Polyreference Least Squares Complex Frequency Domain Method (p-
LSCF). A description of the method can be found in [49].P-LSCF method is a 
Multiple Input Multiple Output modal parameter identification method that performs a 
minimization of the difference between the estimated and experimental FRF. The 
functional to minimize is written in such a way that leads to a non linear expression in 
terms of the unknown modal parameters.  

The basic assumption of the modal analysis is that the response of the analyzed 
system can be expressed as the sum of responses of its individual modes. This 
assumption is well satisfied if the damping can be expressed as linear combination 
of local mass and/or stiffness (Rayleigh damping). A large proportion of real physical 
system does not conform the Rayleigh idealization. The FRFs of those system 
exhibit different forms according to the frequency range. In the "low" frequency 
range, the system response can actually be expressed as the superposition of 
resonant individual modes. Typically, the "low" frequency range includes the first ten 
structural modes. In the "high" frequency range it is not possible to identify individual 
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modes that dominate the system response and the FRF exhibits broader peaks. The 
peak does not represent anymore the response of a resonant single mode. The 
broader peaks represent the sum of the responses of all the modes having 
resonance frequency close to the frequency correspondent to the maximum of the 
peak [44]. The system under investigation follows exactly this description. Looking at 
the Amplitude of the FRF of Figure 79, reported in Figure 80, it is possible to 
distinguish between two macro frequency ranges: a low one up to around500 Hz and 
a high one that spans from 500 Hz to 1000 Hz. The former is characterized by 
narrow peaks that indicate the resonant modes contributions. The latter instead 
exhibits larger less separated peaks. 

 

 

Figure 80 - FRF Amplitude free free conditions. 

As a direct consequence of the higher modal density in the "high" frequency range, 
the extraction of modal parameters has been limited to the "low" frequency range.  

In order to have a quick information about the resonant modes in the explored 
frequency range a simple way is to have a look at the summation of all the measured 
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FRFs. The different contributions are summed in terms of complex numbers as in the 
(4.2) [48]: 

 ( ) ( )Re Imsum ij ij
i j i j

H H i H= +∑∑ ∑∑  (4.2) 

In this way all the information carried by the different FRFs are globalised in one 
curve. The result for the suspended panel of Figure 75 is displayed in Figure 81.  

 

Figure 81 - Sum of FRFs - Amplitude. 

The natural frequencies and damping ratios that have been identified with sufficient 
accuracy in the investigated frequency range are summarized in Table 2. The 
damping ratios are higher than the typical values of metallic materials (less than 1%) 
to testify the influence of the viscoelastic layer on the dynamic performances. 
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Mode # Natural f requency [Hz]  Damping ratio [%]  

1 120.37 2.03% 

2 162.8 0.73% 

3 245.8 1.83% 

4 258.98 1.18% 

5 296.7 1.84% 

6 341.9 1.55% 

7 392.5 1.25% 

8 399.5 1.88% 

9 492.7 1.79% 

10 521.7 1.32% 

11 559.1 1.05% 

12 595.94 1.72% 

Table 2 - Suspended panel: natural frequencies and damping ratios. 

The "non Rayleigh" damping that characterizes the investigated structure does not 
only affect the FRF shape but has a second important consequence related to mode 
shapes. Each natural frequency is associated to a particular distribution of vibrational 
amplitude known as mode shape. If the excitation frequency matches exactly a 
natural frequency the structure will deform exactly according to that vibrational 
pattern. Mode shapes typically consist in region of vibration of uniform phase 
separated by nodal lines from cells of vibration characterized by opposite phase. 
Nodal lines are characterized by zero amplitude of vibrations [44]. Only systems 
whose damping is distributed proportionally to local mass and stiffness exhibit real 
modes characterized by points vibrating either in phase or in opposite phase. Any 
other damping distribution leads to complex modes in which the phase is 
continuously varying and no pure nodal lines appear [44]. Any region can be 
considered completely in phase or out of phase with the adjacent one. The phase is 
position dependent and the mode shape varies throughout a period [44].  
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The nature of the core material induces a damping that cannot be considered 
asdistributed in a proportional way. In fact, viscoelastic material typically induces 
hysteretical damping. In principle hysteresis is nothing but a lag between cause and 
effect. This can clearly be observed for viscoelastic materials subjected to sinusoidal 
load (Chapter 2). As a consequence, the damping introduced by the viscoelastic 
layer cannot be considered as linear combination of local mass density and/or 
stiffness. This results in the identification of complex mode shapes for the 
investigated structure.  

Anyhow, for the sake of completeness in describing the panel modal behavior, the 
equivalent real modes have been extracted. The identified mode shapes up to the 
eleventh mode are reported in Figure 82: 

 

Figure 82 - Mode shapes free free conditions. 
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3.1.2. Clamped panel modal analysis 
 

Beside the numerical model validation, the experimental activity may be addressed 
to the characterization of the structure under operating conditions. This means that 
the experimental set up boundary conditions have to reproduce the structure working 
conditions. The panel under investigation has to be designed essentially to provide 
sound and vibration transmission reduction. Irrespectively of the source of the noise 
and vibration source, it is very likely that the panel will be installed by clamping it 
along the edges. For this reason, a second experimental modal analysis has been 
carried out to evaluate the panel response in its possible operational conditions. 

The panel has been set between two steel frames and clamped along its edges with 
a set of bolts. 

 

The excitation is given with the impact hammer due to its simplicity and immediacy. 
As for the case of the suspended panel, the impact has to be narrow enough to 
ensure the excitation of the whole frequency range of interest.  

Concerning the measurement grid, it has to be refined with respect to that defined for 
the suspended panel. The typical mode shapes of a clamped panel are 
characterized by an higher number of halfwaves with respect to the homologous 
mode shapes of a suspended panel. As a result, more measurement points are 
required to identify with sufficient accuracy the mode shapes of interest. The 
measurement grid for the clamped panel conditions is displayed in Figure 83. In this 
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case too the rowing hammer technique is applied. The sensors position is fixed and 
the excitation point is moved to cover the whole testing area. 

 

Figure 83 -  Clamped conditions : measurement grid (Squares: excitation points - 
Circles: accelerometers). 

Results and data analysis 

 

InFigure 84 an example FRF of the clamped panel is displayed. The global 
investigated frequency range spans from 0 Hz to 1 kHz in agreement with the 
experimental campaign carried out on the suspended panel.The frequency region in 
which it is possible to identify the single resonant modes contribution is limited to 
around 500 Hz. Above that frequency the modal density and the effect of damping is 
such any individual mode dominates the structural behavior. As a consequence, the 
identification of modal parameters has been limited to the 0 Hz - 600 Hz range. 
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Figure 84 - Clamped Panel: FRF. 

The sum of the FRF is calculated according to (4.2) and displayed in Figure 85. The 
analysis of the FRF sum highlights the fact that the structural behavior can be 
approximated as sum of single resonant modes only up to around 600 Hz.  
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Figure 85 - Clamped panel : FRF sum. 

Figure 85 exhibits one of the typical phenomena that occurs in analyzing the 
clamped structure. Focusing on the first peaks, in the frequency range 200 Hz - 450 
Hz (Figure 86), three modes can be expected in that range. The identification of 
mode shapes for all the three peaks leads to exactly the same structural 
deformation, although slight asymmetry can be observed comparing the first and 
third mode shape. The FRF phase, see for instance Figure 84, points out a clear 
transition in correspondence of the biggest peak, testifying the existence of a 
structural mode. The phenomenon of "peak splitting" is mainly related to clamping 
imperfections. It can be demonstrated, that a not uniform distribution of the stiffness 
results in extra peaks close to the one corresponding to real structural modes[50]. 
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Figure 86 -  Clamped panel: FRF sum (zoom on 250 Hz  - 400 Hz). 

The acquired data have been analyzed with the p-LSCFD method. The natural 
frequencies and damping ratio that have been identified with sufficient accuracy are 
reported in Table 3. The damping ratios are higher than 1% to testify the effect of the 
viscoelastic layer on vibration damping. 

Mode # Frequency [Hz]  Damping ratio %  

1 337.56 1.10 % 

2 569.81 1.20 % 

Table 3 - Clamped panel: frequencies and damping ra tios. 

As explained in paragraph 3.1.1, the viscoelastic layer leads to a damping 
distribution that cannot be approximated as a linear combination of local mass 
density and local stiffness. As a result, the mode shapes of the clamped panel are 
not real but have an imaginary part that is not negligible. For the sake of 
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completeness, the equivalent real mode shapes have been calculated and are 
displayed in Figure 87. 

 

Figure 87 - Clamped panel: Mode shapes. 

A dedicated testing campaign has been carried out to evaluate the effect of the 
boundary conditions. The bolts have been closed with two different but uniform 
torques, 30 Nm and 50 Nm. The FRFs obtained for a point situated in the low left 
quarter of the panel are displayed in Figure 88. The non linear behavior induced by 
the presence of the viscoelastic layer results in a shift of the peaks of the FRF and in 
a change of the width of the peaks.The difference among the two test conditions 
influences as well the obtained results. 
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Figure 88 - Clamped panel: comparison between diffe rent clamping torques. 

The experimental campaign carried out with clamped edges conditions highlighted 
the high sensitivity of the investigated structure to the boundary conditions. As a 
result, the better strategy to identify the panel dynamic behavior is the modal testing 
in free free boundary conditions. In these conditions the interference of the testing 
setup and the tested structure results to be minimum. As a result the test conditions 
do not affect the structural behavior and it is possible to accurately extract the 
dynamic behavior of the investigated panel. 

3.1.2.1. Investigation of the adhesive layer dynamic effect 

 

A more detailed analysis of the sandwich panel of Figure 74 reveals the presence of 
two viscoelastic layer. The structure manufacturing, in fact, implies the insertion of an 
adhesive layer among the core and the skins to bond together the different panel 
components. The adhesive layer is made by an epoxy resin that typically exhibits 
viscoelastic behavior [51]. A dedicated experimental campaign has been carried out 
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in order to evaluate the influence of this second viscoelastic material on the global 
panel behavior. 

In order to evaluate the effect of the adhesive material on the structural dynamic 
behavior the test has been performed using simple Aluminum plates and free free 
boundary conditions. In this way all the possible causes of non linearity have been 
eliminated, besides the glue layer. The excitation device is the impact hammer and 
the measurement grid has been designed to capture the first ten modes of the plate, 
identified on the basis of a simple finite element model. The accelerometer mesh can 
be seen in Figure 89. The sensors and excitation points are fixed. The latter is 
situated in the top left corner of the plate rear side. 

 

Figure 89 – Adhesive layer dynamic effect evaluatio n: testing setup. 

 

The test has been performed on two different structures:  

− A twelve mm Aluminum plate 
− Two six mm Aluminum plate bonded together with a layer of glue provided by 

the panel manufacturer 

The co located FRFs of both investigated structure are displayed in Figure 90. 
The global function shape is the same in both cases. A slight shift of the natural 
frequencies can be observed. This has been considered as an effect of the 
different stiffness of the two structures. 
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Figure 90 -  Comparison among FRF single 12 mm plat e - glued plates. 

 

Besides the effect on natural frequencies, the effect on damping ratios has to be 
carefully investigated. The main consequence of adding a viscoelastic layer to a 
structure is the enhancement of the structural vibration damping capability. The 
damping ratios of both structures have been determined applying the p-LSCFD 
method to the measured FRF data. The values are reported in Table 4and their 
comparison underlines the absence of additional damping by the adhesive layer. The 
differences among the values are in the uncertainty range that characterizes the 
damping estimation. 
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Mode 
# 

Double Thickness 
plate damping ratio 

% 

Glued 
Plates 

Damping 
ratio % 

1 0.25 % 0.32 % 

2 0.23 % 0.26 % 

3 0.28 % 0.35 % 

4 0.53 % 0.81 % 

5 0.56 % 0.62 % 

Table 4 - Aluminum plates: damping values compariso n. 

The presence of a viscoelastic adhesive material has been considered negligible 
from a dynamic point of view also for the sandwich panel under investigation. This 
conclusion has been drawn based on the results obtained on the test with Aluminum 
plates but in particular considering the effective thickness of the glue layer in the 
sandwich structure. The characteristic dimension of the adhesive layer is way lower 
than the thickness of core and skins. As a result, the whole damping effect due to 
viscoelastic material insertion is given by the foam core. 

3.2. Test case: Sandwich panel with foam core – A4 size 
 

The experimental campaign described in paragraph 3.1 aims to obtain reliable data 
to validate the numerical model. The reliability of a numerical model has to be 
assessed in terms of its predictive capability. The model has to be able to mimic the 
structural dynamic behavior in a reliable way although the structure has different 
parameters compared to the one used for the model validation. In this framework a 
second test case has been investigated. A second experimental campaign has been 
carried out on a panel having different dimensions with respect to the one chosen for 
the model validation. Either the skins or the core materials are the same of the panel 
described in paragraph 3.1 but the dimensions are smaller. In particular the in plane 
dimensions are 210 mm x 300 mm where the panel of paragraph 3.1 is 860 mm x 
660 mm. 
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Figure 91 - Small panel. 

The small panel has been tested using the impact hammer and considering free free 
boundary conditions. The excitation and the measurement points remained fixed 
during the tests. The small sandwich panel has been tested using the same testing 
setup as the Aluminum plates of paragraph 3.1.2.1. The measurement grid, 
designed to capture the first ten structural mode shapes, is displayed inFigure 89. 
The top left corner of the rear side of the panel has been chosen as excitation point.  

The lightweight of this small panel with respect to the big one leads to a slight 
modification of the testing protocol. Among others, the width of the useful frequency 
range is a key parameter in choosing the impactor. This is particularly important 
dealing with lightweight structures that exhibits the first natural frequency towards the 
1kHz region. The impact frequency spectrumhas to be flat in the whole frequency 
range of interest to guarantee the excitation of the investigated modes [47]. As 
mentioned in paragraph 3.1.1, the characteristics of the impactor play an important 
role in determining the quality of the excitation. Whether used to excite the small 
panel, the impact hammer commonly used to test medium sized structures leads to a 
auto power spectrum that can be considered flat for less than 1kHz (Figure 92, left). 
The input given to the structure is thus almost meaningless above around 600 Hz. 
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The choice of a smaller impact hammer for testing the "small" panel leads instead to 
a frequency spectrum that can be considered flat for more than 2kHz. 

 

Figure 92 - Comparison between different hammer pow er spectra. 

The co located FRF is reported in Figure 93. The small panel is lighter with respect 
to the of Figure 75. As a consequence the natural frequencies are shifted towards 
higher values, thus the investigated frequency range is expanded to 2 kHz. As 
noticed analyzing the “big” panel, the FRF can be divided in two zones: a “low ” 
frequency range in which it is possible to identify the contribution of single resonant 
modes and an “high” frequency range in which the modal density and the damping 
are such that any mode is predominant on the others. In the case of the small panel 
the "low" frequency range spans from 0 Hz to 1000 Hz and only two modes can be 
clearly identified. 
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Figure 93 - FRF Sandwich panel small. 

The obtained FRF data have been analyzed with the p-LSCFD method. The 
obtained natural frequencies and damping ratios are reported inTable 5. Although 
the frequencies are significantly different with respect to the one identified for the big 
panel (Table 2), the damping ratios are of the same order of magnitude. The values, 
around 1% or higher, are a consequence of the presence of a viscoelastic layer. 

Mode # Frequency [Hz]  Damping Ra tio %  

1 596.74 1.16 % 

2 727.89 1.71 % 

Table 5 - Small panel: natural frequencies and damp ing ratios. 

The mode shapes associated with the frequencies of Table 5are displayed in Figure 
94. The viscoelasticity of the core leads to the identification of complex mode shapes 
as well as in the big panel test case. In Figure 94 the equivalent real modes are 
displayed. 
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Figure 94 - Small panel: Mode shapes. 

The test performed on the big panel showed a significant sensitivity of the panel to 
the torque applied to the bolts (Figure 88). Given the lightweight and the smaller 
dimension, the same can be expected for the small panel. A preliminary test has 
thus been carried out to check the panel reaction to the clamping system. Different 
torques have been applied to the screws and nuts in a uniform way.  

 

Figure 95 - Small panel: clamped conditions. 
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In Figure 96 the comparison of the obtained FRFs is displayed. Not only the small 
panel exhibits sensitivity to the magnitude of the clamping torque but it is barely 
possible to individuate a frequency range in which the panel response is given by 
single resonant modes. As a consequence, any mode can be identified with 
sufficient reliability applying a classical modal analysis theory. 

 

Figure 96 - Small panel: comparison among different  torques. 

The dynamic of both panels, big and small, is strongly influenced by the 
viscoelasticity of the core material. As a consequence, an accurate identification of 
the core material properties, as described in paragraph 2, becomes even more 
important to lead to a reliable dynamic numerical model. The reliability of the latter is 
crucial to obtain an accurate prediction of the structure vibroacoustic characteristics. 
Modal parameters are in fact the main input of the coupled FE-BE model. The 
accuracy of the vibroacoustic behavior prediction will be checked comparing the 
numerical results with the experimental data obtained through a dedicated testing 
campaign that will be detailed in the next paragraph. 
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4. Vibroacoustic behavior identification 
 

The vibroacoustic numerical model validation is the final aim of the whole 
experimental activity that has been carried out. The performances of the panel 
shown in Figure 74 have been investigated either from a dynamic or from a acoustic 
point of view. 

The dynamic behavior has been characterized in terms of modal parameters, such 
as natural frequencies and mode shapes, and frequency response function. The 
typical index that is used for the experimental identification of the structural acoustic 
behaviour in terms of sound transmission performances is the Transmission Loss 
(TL) described in Chapter 2and defined as the ratio of the incident sound power and 
the transmitted power (4.3): 

 ( ) 10log incident

transmitted

TL f
Π=

Π
 (4.3) 

Measurements standards, as the ASTM E90 [52], define the procedure to evaluate 
the TL of a structure. The methodology is called “two room method”. Generally 
speaking, it prescribes the measurement of the space and time averaged sound 
pressure levels in two adjacent reverberant rooms divided by a partitioning wall that 
hosts the object under investigation (Figure 97). 

 

Figure 97 - Two rooms sound TL test rig. 
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Typical sound TL suites requirevery big volumes resulting to be not easy to 
implement and they require samples with a minimum dimension of the order of 2.5 m 
(except for the thickness). Strict requirements are imposed on the sound field 
characteristics in both rooms. In particular, the configuration with two reverberant 
rooms requires the presence of a diffuse field, i.e. the acoustic energy is uniformly 
distributed in the room volume. This condition is reached in an easier way 
considering a big room volume and highly reflective room surfaces. A different 
technique has been proposed to partially overcome these last requirements. It can 
be proved that the direct measurement of the sound intensity on the receiving side 
provides enough information to calculate the Transmission Loss, provided that the 
sound field in the source room is diffuse. The condition of diffuse field in the source 
room is the only requirement for this technique and it is more likely to be satisfied 
over a wide range of frequency [53]. 

In many practical cases, a different index to evaluate the sound transmission 
performances of a structure is considered more significant: the Sound Insertion Loss 
(IL). The IL defines the change in sound power radiated by a sound source with and 
without the test object. Mathematically, the IL is defined as the ratio of the sound 
power without the object and the one with the object: 

 ( ) 10log open

closed

IL f
Π

=
Π

 (4.4) 

The TL is generally considered a more fundamental index with respect to the IL 
since this latter depends upon factors not strictly related to the object properties such 
as the amount of absorption in the receiving space[54]. Anyhow, the analysis of the 
IL trend towards frequency allows one to identify all the relevant vibroacoustic 
features as well as the TL curve analysis described in Chapter 2. The evaluation of 
the sound power, and thus IL, through intensity measurement,releases the constraint 
of calibrating the absorptivity of the receiving room. Actually not such a room is 
necessary [54]. Given the future application of the investigated structure, the usage 
of the IL index instead of the TL one is considered more significant. The final aim is 
indeed to evaluate the change in terms of acoustic insulation with the proposed 
solution with respect to the "bare" condition. 

The IL index is easy to evaluate experimentally using equation (4.4). Considering an 
enclosure with an opening, the IL is simply computed comparing the radiated sound 
power with and without the test object placed at the opening and fully closing the 
enclosure (Figure 98). 
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Figure 98 - Sound IL measurement procedure [55]. 

The panel of Figure 74has been tested using a particular test rig developed by 
Katholieke Universiteit Leuven. The test rig is a small reinforced concrete cabin, with 
no parallel walls, designed to give a uniform distribution of acoustic natural 
frequencies. The facility, displayed in Figure 99, allows to test samples of different 
sizes thanks to the availability of several mounting frames. Approximately, it is 
possible to test panels from A1 to A4 standard dimensions. The cabin is equipped 
with a speaker and microphones that can be placed in several configurations (Figure 
99). In addition, the set up is insulated from the ground vibrations by means of air 
springs. A detailed description of the construction steps and test rig characteristics 
can be found in [55]. 

 

Figure 99 - PMA Sound Box: exterior (left), interio r (right). 

The testing procedure evaluates the IL starting from intensity measurements. The 
application of sound intensity measurement to evaluate the transmitted power has 
been extendedly studied and is demonstrated by Cops and Minten [54, 56]. The 
transmitted sound intensity distribution is measured using a p-p intensity probe on a 
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surface parallel to the partition for the both cases of open and closed window (Figure 
100). 

 

Figure 100 - Intensity distribution measurement, op en and closed  window 
configuration. 

The p-p probe is a device in which two nominally identical high quality sound 
pressure transducers are placed close one to each other in a support designed to 
minimize the diffraction of the incident sound field. The distance between the two 
microphones determines the upper frequency limit in the probe application. In 
particular, the shorter the spacer the higher the frequency limit. A commercial 
example of sound intensity probe is displayed in Figure 101. 

 

Figure 101 - P-P intensity probe. 
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A white noise signal has been used for the investigation of the vibroacoustic 
behavior of the panel. The sound intensity has been recorded at the central point of 
each square of Figure 83.The analysis of the IL curve towards frequency allows the 
identification of the regions in which either the modal behavior of the panel or the 
mass or the coincidence effects dominates the vibroacoustic response. In analogy 
with the TL curve description detailed Chapter 2, each region is analyzed 
separatelyhereafter. 

Low frequency range - Modal region 

 

In the low frequency range the modal panel behavior dominates the global 
vibroacoustic response. The spacer between the microphones is 50 mm to limit the 
measurement range between 20 Hz and 1.25 kHz. The experimental IL is displayed 
in Figure 102. Two main drops are clearly visible but only the second one is related 
to the panel behavior. The drop around 150 Hz is mainly due to a resonance of the 
cavity itself [55]. Instead the drop around 300 Hz is dependent on the modal panel 
behavior. According to the identified mode shape at 337 Hz, Figure 87, the panel 
becomes a perfect radiator leading to a poor sound transmission reduction. The 
other modes below 1kHz are less effective on the panel sound IL. 
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Figure 102 - Experimental IL: narrow band (blue das hed line), third octave band(green 
solid line). 

Figure 103 displays the comparison of sound IL values between the investigated 
panel and a bare Aluminum panel 3 mm thick (data courtesy of KUL). The thickness 
of the Aluminum panel is exactly the same as the sandwich panel skins together. 
The sandwich panel exhibits a greater sound IL below its first natural frequency. 
After that frequency the addition of a viscoelastic layer doesn't increase the sound 
transmission reduction performances. This is due to the choice of viscoelastic 
material. The closed cell foam helps in damping vibrations but it is characterized 
usually by poor acoustic properties [57, 58]. 
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Figure 103  - Sound IL comparison:  sandwich panel (blue circles) vs 3 mm Aluminum 
panel (green squares) (courtesy of KUL). 

The pressure map corresponding to the drop in the IL graph is displayed in Figure 
104. The measured pressure values confirm the tendency of the panel to radiate 
sound according to its first mode shape (Figure 87). 
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Figure 104 - Pressure map: third octave band center ed on 315 Hz. 

Mid - high frequency region - Mass control and coincidence effects 

 

The vibroacoustic behavior in the midfrequency range is controlled by the panel 
mass. The probe set up has been modified inserting a spacer of 8.5 mm to extend 
the measurement range to 7.1 kHz. The measured sound IL is reported inFigure 
105.  
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Figure 105 - Sound IL mid - high frequency range: n arrow band (blue dashed line), 
third octave band (red solid line). 

The sound IL exhibits the linear trend towards logarithmic frequency scale that is 
typical of the mass controlled region. The analysis of the narrow band trend of the IL 
highlights two dips not clearly visible in the third octave trend due to the width of the 
third octave bands at high frequencies. Figure 106 gives a clearer view of the 
presence of the dips. The red dashed lines have no relation with the measured data, 
they are simply visual aids to highlights the change in the sound IL slope that is due 
to the presence of a dip. 
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Figure 106 - Sound IL : dips in the mid high freque ncy range. 

The first dip occurs around 3 kHz. This drop in the sound IL trend can be attributed 
to a coincidence phenomenon. According to equation (2.3), the coincidence for a 
homogenous 3 mm thick Aluminum panel occurs around 3900 Hz. The analyzed dip 
is around 3200 Hz. The shift towards lower frequency may be due to the addition of 
the soft core layer. The foam core increases the stiffness in a way that is 
proportionally higher than the resulting weight increase. As a result, the coincidence 
frequency sets at lower values than the one of an Aluminum panel of equal thickness 
than the panel skins. 

The second dip occurs around 7.5 kHz. Considering the type of structure a second 
coincidence effect can be expected (Chapter 2). The symmetric sandwich motion 
implies the out of phase displacement of the two face sheets towards the soft core 
(Figure 107).  
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Figure 107 - Symmetric (top) and anti - symmetric ( bottom) motion of a sandwich 
panel[59]. 

The so called "double wall frequency", proper of the symmetric panel motion, can be 
estimated roughly through the (4.5): 

 

1 2

1 1 1

2
c

DW
c f f

E
f

t m mπ
 

= +  
 

 (4.5) 

where cE and ct are respectively the Young Modulus and the thickness of the core 

and 1fm and 2fm are the surface mass of the face sheets, equal in the investigated 

panel. The Young Modulus of the core is frequency dependent thus the (4.5) cannot 
be directly applied. Considering the average value of this parameter, around 63 
MPa, and approximation of the double wall frequency is 7060 Hz. 

The symmetric motion phenomenon has been investigated through a dedicated 
experimental campaign. Ten accelerometers have been placed on both sides of the 
clamped panel of Figure 83 according to the two measurement configurations of 
Figure 108. The central point acceleration has been measured in both configurations 
depicted respectively by blue and red squares in Figure 108. 
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Figure 108 - Double wall motion investigation: meas uring grids. 

A white noise signal was sent to the speaker to excite the panel. The response of all 
the accelerometers in both configurations have been recorded and the relative phase 
has been analyzed. Around 7200 Hz the phase shift of all the accelerometers is 
approximately 180° corresponding to a symmetric dis placement of the phase shift. 
This trend has been confirmed analyzing the mode shapes in the identified dip 
region. The mode shape at 7270 Hz is reported in Figure 109. The arrows highlight 
how the core behaves as a spring inducing an out of phase movement of the two 
skins. 

 

Figure 109 - Double wall mode shape. 

The identification of the double wall frequency can be used to retrieve the foam 
elastic modulus. The inversion of the (4.5) leads to the identification of 67 MPa as 
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core material Young Modulus. The value isapproximately 15% greater with respect 
to the one identified through DMA procedure for a frequency of 7000 Hz. The 
retrieved foam Young modulus will be used for model updating purposes. 

The whole experimental campaign led to the availability of a huge amount of data 
that play a key role in the development of a reliable numerical model. The foam 
properties characterization is a fundamental input of the model itself while the 
dynamic and acoustic characterization of the big panel are suitable to assess the 
model prediction capability. The dynamic tests performed on the small panel instead 
will be used to verify the model predictive capability. 
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CHAPTER5 
 

Chapter 5 focuses on the comparison between the 
numerical and experimental results. Either the dynamic or the 
acoustic numerical prediction are validated through the 
obtained experimental results. Particular attention is paid to 
the assessment of the dynamic model predictive capability. 

1. Numerical and experimental data correlation 

relevance 
 

Computer Aided Engineering (CAE) methods have become a standard engineering 
procedure during last years. Dealing with sandwich panels it is possible to combine 
different material properties to reach the best panel performances. This freedom 
brings to the fore the need for a reliable modeling tool. The aim of the current 
dissertation is to develop a model that can predict the vibroacoustic performances of 
different engineering solutions. To do so a double numerical model has been faced 
(Chapter 3). The dynamic of the panel has been modeled through a FE approach 
while the sound transmission performances have been extracted developing a 
coupled FE-BE model.  

A crucial point in the development of numerical models is the model validation. The 
assessment of the model reliability is in fact fundamental aiming to develop a 
valuable designing tool. The agreement, within reasonable confidence interval, of the 
numerical outcome of the model with the corresponding experimental results is a 
good estimator of the model efficiency. As a result, dedicated experimental tests 
have been designed to obtain reliable experimental data to use for model validation 
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purposes. The whole experimental campaign has been extensively described in 
Chapter 4. The conceptual schema behind this fundamental step is displayed in 
Figure 110. The comparison among experimental and numerical data often implies a 
subsequent procedure of model updating, focused on the improvement of the model 
efficiency. 

 

Figure 110 - Experimental and numerical results int eraction :Conceptual schema . 

The first part of the chapter describes the dynamic model of both tested panels and 
display the numerical - experimental correlation. Particular attention is drawn on the 
model predictive capability. Subsequently the vibroacoustic model validation is 
presented in terms of Insertion Loss comparison. 

2. Dynamic model validation 
 

The first step towards the vibroacoustic behavior analysis is the development of a 
numerical model able to reproduce the modal behavior of the investigated structure. 
The fundamental outcome of this first step will be the natural frequencies and the 
associated modal shapes. Due to the modeling choice, this two parameter sets are 
necessary to reach the aim to evaluate numerically the panel sound transmission 
performances.  

The structural modal parameters are obtained through a FE model of the 
investigated panel. The panel has been modeled adopting a multilayer approach. 
The skins and the core have been modeled separately and the three layers have 
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been connected imposing a tie at the interfaces. The in plane element dimension has 
been set to 10 mm in order to be able to capture accurately the panel behavior up to 
at least 5000 Hz according to the (3.10). A screenshot of the adopted model is 
reported in Figure 111. Free free boundary conditions have been imposed in 
agreement with the experimental tests described in Chapter 4. 

 

Figure 111 - Finite Element model. 

The Aluminum skins have been modeled with shell elements. The material has been 
considered as linear elastic and the nominal values of that specific alloy have been 
adopted for density and Young Modulus, respectively 2650 kg/m3 and 70 GPa. The 
core has instead been modeled using solid elements. The foam of which the core is 
made is a viscoelastic material. As a consequence, a Prony series expansion of 
shear and bulk modulus have been introduced in the numerical model to take in 
account the viscoelastic effects. As detailed in Chapter 4, a Prony series of suitable 
order has been fitted on the experimental data to obtain the input model parameter. 
The adopted FE software requires the definition of the parameters according to the 

formulas in (5.1). 'G  and ''G  are respectively the Storage and the Loss Shear 

Moduli, as well as 'K and ''K  represent the Storage and Loss Bulk Moduli. 
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0G  and 0K are the instantaneous Shear and Bulk Moduli representative of the 

material behavior at extremely high frequencies. Bulk and Shear Complex Moduli 
have been derived from the Complex Modulus experimentally determined through 
DMA testing (Chapter 4). According to solid mechanics the conversion among these 
material parameters can be made with the formulas (5.2), where ν is the Poisson 

Ratio and E the Young modulus: 

 ( ) ( )2 1 3 1 2

E E
G K

ν ν
= =

+ −
 (5.2) 

A first, simple, comparison among experimental and numerical data is the one 
among natural frequencies. This comparison is of particular relevance since it allows 
one to assess in a quick glance the correct choice of the material parameter and the 
appropriate geometric modeling. The data reported in Table 6 show good agreement 
among experimental and numerical frequencies. 
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Mode # 
Experimental  

Frequency [Hz]  

Numerical  

Frequency [Hz]  
Error [%]  

1 120.37 117 2.5 

2 162.8 157 3 

3 245.8 242 1.2 

4 258.98 253 2.3 

5 296.7 290 2.03 

6 341.9 338 0.88 

7 392.5 388 1,02 

8 399.5 397 0.5 

9 492.7 473 3.8 

10 521.7 500 4 

Table 6 - Experimental and numerical frequency corr elation. 

Along with natural frequencies, the correlation among mode shapes is of 
fundamental relevance from a vibroacoustic point of view. In the low frequency range 
in fact the panel modal behavior dominates the sound radiation and/or transmission 
performances. The radiation ratios related to the structural natural frequencies are 
dependent on the mode shape related to the specific frequency. Consequently, the 
capability of correctly predicting the structural mode shapes plays a key role aiming 
to develop an efficient vibroacoustic model. The correlation among numerical and 
experimental mode shapes can be evaluated through the Modal Assurance Criterion 
(MAC) index. This index expresses the correlation among numerical and 
experimental modes. If the MAC between two modes is unity both modes are 
identical, if the MAC is zero no relation exists between the two mode shapes. The 
MAC index is typically computed as follows: 
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=  (5.3) 

{ },i numA  and { },j expA  are vectors containing the modal constant proper of, 

respectively, the experimental and numerical mode shapes.  

The MAC index has been calculated for the first ten modes of the investigated 
structure. The result is reported in Figure 112. The correlation is good for the 
majority of the analyzed modes. This result is a further indication of the efficiency of 
the modeling strategy, in particular in terms of element kind and dimensions.  

 

Figure 112 - Modal Assurance Criterion: Suspended P anel. 

 

An additional comparison to evaluate the model reliability is the one in terms of FRF. 
The experimental and numerical FRFs are compared in Figure 113. The two curves 
show a reasonable match up to 200 Hz. Moving towards upper frequencies the trend 
and order of magnitude of the FRFs show still close agreement. However, damping 
predicted by the numerical model is significantly higher than the experimental one. 
This can be addressed to a prediction error of the core Loss Modulus through Prony 
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series. Errors on the Storage Modulus are less likely due to the match among natural 
frequencies. 

 

Figure 113 Panel big: FRF numerical-experimental co mparison. 

The identification of the panel modal parameters, i.e. natural frequencies and mode 
shapes, leads one step ahead towards the vibroacoustic coupled behavior modeling. 
Although damping correspondences are to be achieved in dynamic modeling, the 
effect on the coupled modeling is of less incidence. The structural damping results to 
be less influent than mode shapes and natural frequencies on the low frequency 
coupled behavior prediction [44]. 

 

2.1. Model predictive capability assessment 
 

The predictive capability is a fundamental requirement for a model meant to be used 
as diagnostic tool. The procedure of model validation assesses the model reliability 
on a specific test case. The final aim of the developed mode is to allow the 
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evaluation of different engineering solution. As a consequence the model has to be 
able to perform an efficient prediction of the dynamic behavior of structure different 
from the one used for model validation purposes. In the current dissertation, the 
model validated on the big panel has been adopted to predict the vibrational 
behavior of a smaller panel. The model of the small panel considers exactly the 
same material properties of the model described in paragraph 2. The element type 
are shells for the skins and solid for the core. The first comparison, in terms of 
natural frequencies, has been made only on the first two modes (Table 7). This is 
due to the high damping that flattens the panel FRF and does not allow the 
extraction of further stable poles. (Chapter 4). 

 

Mode # 
Experimental  

Frequency [Hz]  

Numerical  

Frequency [Hz]  
Error [%]  

1 596.74 584 2 

2 727.89 720 0.96 

Table 7 - Small Panel: Natural frequencies comparis on. 

The errors are lower than 5 % for all the considered modes. The comparison in 
terms of mode shapes show good agreement as highlighted by the MAC in Figure 
114. 

 

Figure 114  - MAC small panel. 

1 2
1

2

Experimental Modes

N
um

er
ic

al
 M

od
es

 

 

0

10

20

30

40

50

60

70

80

90

100



 

159 

 

The comparison in terms of FRF is reported in Figure 115. The numerical and 
experimental data show good agreement as further confirmation of the proposed 
numerical strategy reliability. In particular, the structure damping capability is well 
predicted by the numerical model despite the uncertainty on the core material 
parameters. As for the model of the big panel the numerical FRF exhibits higher 
damping with respect to the experimental one. 

 

Figure 115 - Numerical - Experimental comparison. 

The validation of the dynamic model on two different test cases assesses the 
dynamic modeling strategy reliability. Both the adopted material model and the 
modeling choices in terms of element kind and dimension result to be suitable to 
predict the investigated sandwich panel modal behavior. 
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3. Vibroacoustic modeling 
 

The aim of the developed numerical - experimental procedure is to predict the global 
dynamic and vibroacoustic performances of a sandwich structure. While the vibration 
damping capability has been studied through a FE model, the coupled vibroacoustic 
problem has been tackled with a coupled FE-BE modeling technique.A typical way to 
characterize the acoustic structural performances is the Sound Insertion Loss 
identification (Chapter 4). Given a source emitting sound through an opening, the IL 
index, quantifies the change in the radiated power due to a structure closing the 
opening. The sound IL is mathematically expressed as the logarithmic ratio of the 
radiated power in the two cases ((4.4)). This index is easy to evaluate from an 
experimental point of view through sound intensity measurements. Anyhow, along 
with the structural performances information the sound IL carries also some 
characteristics of the testing rig and testing environment. Whether an experimental 
campaign is carried out to validate the simulation results, the numerical model has to 
reproduce both the investigated structure and the testing setup.  

The experimental procedure chosen to determine the IL of a structure foresees the 
coupling of the investigated panel with a small concrete soundbox (Chapter 4 ). 
Sound intensity measurements are then performed with and without the structure 
closing the soundbox opening. A numerical model of the testing rig has been 
developed and extendedly validated by KUL. This model has been provided to the 
author and exploited to numerically investigate the acoustic behavior of the 
investigated panel. The model parameters have been set in order to extract the 
acoustic power radiated at the opening in both configurations (i) without panel and 
(ii) with panel (Figure 116). In configuration (ii) the modal parameters, i.e. natural 
frequencies and mode shapes, of the panel in clamped edge conditions have been 
imported into the couple model. The panel modal parameters have been extracted 
from the FE model described in the previous chapter. The FE model boundary 
conditions have been modified from free free to clamped edges. A acoustic source 
has been placed in the soundbox top right rear corner (Figure 116). The mesh 
dimension is set to predict the acoustic power correctly up to 1kHz. Above this 
frequency the influence of the modal behavior on the acoustic performances is less 
significant. In addition, the computational cost due to a more refined mesh makes the 
modeling strategy less efficient.  
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Figure 116 -Coupled vibroacoustic model. 

The outputs of the coupled numerical model are the acoustic power with and without 
panel. A first model validation step has been made comparing the numerical and 
acoustic power trends toward frequency. Regardless of the difference among 
numerical and experimental acoustic powers values, the trend results to be the same 
in both open and closed cavity cases. 
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Figure 117 - Comparison among numerical and experim ental acoustic powers (third 
octave band). 

The amplitude values difference is due to the choice a unitary sound source in the 
numerical model. This does not affect the results in terms of Insertion Loss Index. 
Roughly speaking, the IL evaluates in fact the radiated power through a structure 
due to a certain sound source power with respect to the sound source power itself. 
As a result, the only requirement on the equality of the sound source power in the 
two test conditions: with and without the structure. The numerical /experimental 
comparison in terms of Sound Insertion Loss in the frequency range up to 1 kHz is 
reported in Figure 118. The comparison between numerical and experimental IL 
assess the predictive capability of the whole modeling strategy. As shown in Figure 
118, the data agree pretty well in the explored frequency range. 
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Figure 118 - Sound IL: numerical -experimental comp arison. 

This last comparison highlights the potentiality of the proposed procedure as 
powerful designing tool. The reliability of the modal parameters extracted from the 
dynamic model described in paragraph 2 allows the accurate prediction of the 
vibroacoustic behavior of the whole structure.  

4. Acoustic behavior prediction at higher frequencies 
 

The proposed coupled modeling approach allows the prediction with sufficient 
accuracy of the sound IL in the low frequency range (Figure 118). Moving towards 
higher frequencies the computational cost and the uncertainties of the deterministic 
techniques reduce the reliability of this kind of approach. Several methods are 
available in literature to evaluate the structural acoustic performances at high 
frequencies, e.g. SEA (Chapter 2). 
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The majority of the models done with SEA for multilayered structure are based on 
equivalent layer modeling. This approximation, although justified, does not highlight 
a phenomenon typical of sandwich panel with soft core: the double wall resonance. 
The mode shape associated with this frequency exhibits the out of phase movement 
of the two skins (Chapter 4).This mode shape is obviously not highlighted by a 
modeling strategy that considers a single equivalent layer. At the double wall 
frequency the panel becomes a perfect radiator. Whatever sound performance index 
is considered, either Sound Insertion Loss or Sound Transmission Loss, the double 
wall resonance is characterized by a dip in the index trend towards frequency. The 
experimental investigation carried out on the considered panel highlights the 
existence of a dilatational mode around 7200 Hz (Chapter 4). It is important to 
localize the double wall frequency in the design of a structure to optimize the sound 
transmission reduction.  

An impedance based sound TL prediction has been chosen in the current research 
work to identify the presence of the double wall frequency. The comparison among 
the experimental IL and the estimated TL is reported in Figure 119. Sound TL and 
sound IL both quantify the variation of power radiated by a sound source due to the 
presence of an object. Although they present the same theoretical trend towards 
frequency (Chapter 2) they cannot be compared in absolute value. The TL value is 
strictly dependent on the object while the IL is influenced also by the adopted testing 
procedure. An empirical relation among this two index has been identified resulting in 
a simple shift of the TL towards lower values [9]. This relation has a validity limited to 
the specific test case analyzed by the authors. Regardless of the exact value of IL 
and TL, the comparison displayed in Figure 119 highlights a good prediction of the 
vibroacoustic performance trend towards the frequency axis. 

Regardless the exact value of IL and TL, this comparison is anyhow significant 
aiming to localize the double wall frequency. The numerical prediction is based on 
the problem geometry and the experimentally identified material data and it 
estimates the double wall frequency at 7400 Hz. A coherent value can be obtained 
through the analytical formula (4.5) using the material parameters identified through 
DMA analysis. 
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Figure 119- Experimental Sound IL  - Estimated Soun d TL comparison. 

Structures for sound transmission reduction are typically designed to work in the 
mass law region. The impedance method gives an idea of the optimal working 
frequency range. This method is characterized by a lower computational cost and 
allows the prediction of the TL trend on a wider range of frequency with respect to 
other techniques. In addition, it highlights the existence of symmetric and 
antisymmetric coincidences (the latter does not exist for the investigated panel [7]). 
This aspect of the method helps to optimize the final structure design avoiding 
undesired resonance in the working frequency range. 
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CHAPTER6 
 

Chapter 6 sums up the whole research work. The 
relevance of the dissertation is highlighted recalling its 
backbone. Conclusions are drawn considering the achieved 
results. To conclude, some possible further developments are 
proposed in the field of vibroacoustics. 

1. Conclusions 
 

The current dissertation is focused on the development of a combined 
numerical/experimental procedure to predict vibroacoustic behavior oflightweight 
structures. Lightweight structures became widespread along the years. Among 
them,sandwich panels offer a potentially infinite number of engineering solutions. 
Being characterized by a pretty rich basket of design parameters, sandwich 
structures can be tailored exactly on a specific requirement. Lightweight structures 
typically exhibit poor noise and vibration performances. They tend to vibrate easily 
generating undesired sound. Better performances can be achieved considering 
sandwich panels with foam core. The porous core, in fact, increases the vibration 
damping capability of the structure. If optimally tuned, a porous core can improve 
also sound transmission reduction. Therefore, a reliable vibroacoustic numerical 
model becomes a powerful designing tool.  

The aim of the current research is to develop an integrated numerical/experimental 
procedure to predict the vibroacoustic performances of a sandwich foam core panel. 
At the current state of the art, few works are available reporting a methodology that 
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considers all the relevant aspects for vibroacoustic structural behavior evaluation.In 
literature, research works are typically focused either in material characterization or 
in numerical modelling.Conversely, the current research work considers the whole 
workflow required for a reliable vibroacoustic prediction: material properties 
characterization, numerical modeling and experimental testing of lightweight 
structures.The innovative feature of the presented work is the integration of these 
three main blocks in a structured procedure with particular attention to the model 
validation through experimental data. A dedicated experimental activity has been 
designed and carried out to obtain the material parameters required for the 
numerical model implementation. The panel core is a viscoelastic material that 
requires a specific identification procedure. At the current state of the art, the 
nominal values of the material parameters are typically taken as starting point for 
numerical modeling procedures. Dedicated experimental campaigns are usually 
neglected. The current research defines insteada general procedure starting from 
the experimental identification of material parameters to the numerical fitting on a 
suitable mathematical model. This strategy allows the reduction of the uncertainty on 
material parameters and leads to a more reliable numerical results  

The identified material parameters are the input of the developed modeling strategy. 
The numerical model foresees a two step schema: a FE model to predict the 
structural dynamics and a coupled FE-BE model to tackle the vibroacoustic problem. 
The first modeling step, the FE model, aims to estimate the response of the structure 
to the incoming excitation. On the other hand the FE model allows the extraction the 
structural modal parameter, i.e. natural frequencies and mode shapes, that are 
required for the coupled FE - BE model. The latter gives as output the structure 
vibroacoustic performances in terms of Insertion Loss trend towards frequency. 
Vibroacoustic numerical modeling is based on well known numerical techniques like 
FE and BE. Typically, these kind of problems are addressed developing ad hoc 
numerical algorithms, especially if they involve viscoelasticity effects. Implementing a 
specific algorithm requires a deep knowledge of the theory of the selected numerical 
method. The choice of using commercial software, respectively Abaqus for the FE 
model and VirtualLab for the coupled model, increases the modeling strategy 
versatility. 

In addition, few works are presented in literature that reports an extended 
experimental validation of both dynamic and acoustic numerical model. This aspect 
has instead been considered fundamental in the current dissertation.  

Reliability is a fundamental requirement for a numerical procedure used for 
prediction purposes. The assessment of the numerical procedure reliability is 
typically made through numerical/experimental correlation.  
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Concerning the dynamic model, at the current state of art, the validation is typically 
presented in terms of mode shaped and natural frequencies. A comparison in terms 
of Frequency Response Function is often neglected, although being of particular 
significance. In the current thesis the FE dynamic model numerical/experimental 
correlation has been reported in terms of natural frequency, mode shapes and 
Frequency Response Function.In addition, two case study have been considered for 
the validation of the dynamic model.  

Dealing with lightweight structures makes more challenging the characterization of 
the structure dynamic behavior. The structure results to be very sensitive to load 
effect given by sensors and/or excitation. Considering an impact test technique, the 
lighter the panel the lighter has to be both sensors and impactor. The choice of the 
latter has to be careful to ensure a significant excitation in the whole range of 
frequency of interest. An experimental modal analysis has been carried out on two 
panels characterized by different in plane extension. The numerical/experimental 
data agree quite well in terms of natural frequency and mode shapes. The 
comparison in terms of FRFs shows a numerical FRF characterized by higher 
damping with respect to the experimental one. 

The coupled FE - BE model has been validated comparing numerical and 
experimental Insertion Loss data. The data agree quite well in the considered range 
of frequency as confirmation of the reliability of the proposed modeling technique. A 
second methodology based on the calculation of panel impedances has been 
applied to identify the panel double wall frequency. The numerical prediction agrees 
with the experimental identified value. 

To conclude, a structured integrated numerical /experimental procedure has been 
developed to predict the vibroacoustic performances of a sandwich panel with foam 
core. The workflow includes the design of the experimental campaign required to 
characterize the viscoelastic core, the development of a numerical model either for 
structure dynamics or for vibroacoustic interaction and the experimental validation of 
the proposed numerical technique. The numerical results agree pretty well in terms 
of structural modal parameters and sound transmission reduction performances 

 

Different aspects can be further investigated. For instance an inverse estimation 
procedure can be adopted for determining core material parameters through 
dynamic-acoustic measurements The experimental identification of the double wall 
frequency with different panel configurations, i.e. adding additional face sheets to 
increase the mass of the skin, may lead to a better identification of the Young 
Modulus parameter of the foam that is the core of the investigated panel. Other 



 

170 

 

possible developments are mainly related to the structure design and tuning in order 
to optimize the vibroacoustic performances. The use of a numerical optimization 
performance to analyze the predicted data and investigate the performance trend 
according to parameters' change will lead to a better performing panel. It may be 
interesting also to extend of the numerically investigated frequency range to the mid-
frequency range, using suitable numerical techniques, to give a more complete 
acoustic characterization 
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