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Abstract

A temperatura ambiente EuTiO3 è una perovskite con un ordinamento ma-
gnetico di lungo raggio, che appare al di sotto della temperatura di Néel
(TN = 5.5 K). Gli ioni magnetici sono gli atomi di Eu, i cui momenti magnetici
si allineano in un un struttura di tipo G. A causa del forte assorbimento
dell’europio naturale, gli esperimenti di diffrazione da neutroni risultano estre-
mamente difficoltosi e la qualità dei dati è limitata. Infatti i dettagli della
struttura magnetica di EuTiO3 sono stati rivelati solo di recente attraverso
diffrazione risonante da raggi X. Al di sotto di TN EuTiO3 mostra proprietà
magnetoelettriche (ME), quali la dipendenza della costante dielettrica dal
campo magnetico applicato. I meccanismi microscopici dell’accoppiamente
ME sono ancora materia di dibattito. Inoltre una transizione strutturale al
di sotto della temperatura ambiente è stata osservata e sulla base misure di
magnetometria sono stati sollevati dubbi sulla struttura magnetica determi-
nata attraverso i raggi X. Un nuovo diagramma di fase, che evidenzia uno
spin-flop a temperature prossime a TN , è stato proposto. In questo panorama
era necessaria un’indagine sistematica della struttura magnetica di EuTiO3.
Questo è lo scopo della tesi e per raggiungerlo si è optato per l’utilizzo della
tecnica di diffrazione neutronica da polveri spingendo la tecnica al limite.
Per questo le misure sono state realizzate con il diffrattometro ad alta risolu-
zione D2B a ILL ed un codice per la correzione per assoribimento dei dati
è stato sviluppato. I raffinamenti della struttura con il metodo Rietveld, il
metodo sperimentale e le strategia di correzione vengono presentati. Sono
inoltre discusse l’influenza dell’incertezza sperimentale sulla correzione per
assorbimento e le procedure di raffinamento adottate. Sulla base di quanto
presentato possiamo affermare che i momenti di spin in EuTiO3 giacciano nel
piano (a, b) in tutto l’intervallo di temperature analizzato. Infine vengono
discussi i valori del momento magnetico ricavati, più alti rispetto a quelli
precedentemente riportati.

xi



xii



Abstract

At room temperature (RT) EuTiO3 is a prototypical perovskite with a long
range magnetic order appearing below TN = 5.5 K. The magnetic moments
are provided by the Eu ions which arrange in a G-type structure. Due to the
strong absorption of natural Eu neutron diffraction experiments on EuTiO3

are difficult, data quality is limited and details of the magnetic structures
(moment directions) have been refined only very recently, by resonant x-ray
diffraction. Below TN magnetoelectric (ME) properties appear in the EuTiO3

dielectric constant dependence versus applied magnetic field. Although no long
range order of the electric polarisation is realized, in EuTiO3 the microscopic
mechanisms source of the ME coupling are still matter of debate. In parallel, a
structural phase transition just below RT has been detected and macroscopic
magnetic measurements have questioned the magnetic structure deduced by
x-rays, proposing a new magnetic phase diagram characterised by a spin-flop
state at temperatures close to TN . Clearly, in this panorama a systematic
investigation of the magnetic structure of EuTiO3 by a microscopic technique
with great thermal stability was necessary in order to suitably clarify the
background for the ME properties development. This is the aim of this
thesis. In order to achieve our goal we exploited neutron powder diffraction
(NPD) technique as an investigation tool, by pushing the technique to its
limits. For this reason specific NPD experiments were performed at the very
high-resolution diffractometer D2B of the ILL in a special configuration and a
new Python code was develop to finely correct the data. Solution of EuTiO3

structures by Rietveld methods are presented together with the experimental
methods employed and the correction strategies developed. An extensive
investigation of the influence of absorption correction uncertainties due to
experimental parameters and specific procedures implemented are discussed.
As a result of our work we can confirm that EuTiO3 spin moments always
lies in the a, b-plane over the temperature range investigated. We finally
discuss the magnitude of the magnetic moment found higher than the values
previously reported.
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Prefazione

Le proprietà magnetoelettriche nascono dall’interazione tra i gradi di liber-
tà strutturali, magnetici ed elettrici. Questa interazione tra spin, carica e
parametri strutturali apre la via a future possibili applicazioni nei sensori,
nelle memorie e nella spintronica. Questo è il motivo per cui la comunità
scientifica mostra un grande interesse per la famiglia dei materiali magne-
toelettrici. La comprensione delle ragioni microscopiche di tali fenomeni sta
spingendo la ricerca con lo scopo di ampliare la conoscenza dei meccanismi di
accoppiamento. Questo è un prerequisito per ogni futura applicazione.

Effetti magnetoelettrici possono essere presenti sia in materiali bulk, che
in film sottili così come in eterostrutture più complesse. Recentemente un
crescente interesse è sorto verso il titanato d’europio (EuTiO3). Questo ma-
teriale mostra un particolare meccanismo di accoppiamento tra le proprietà
dielettriche e quelle magnetiche. La comprensione di questi fenomeni richie-
de prima di tutto una corretta determinazione della struttura cristallina e
magnetica di tale composto, strutture che sono ad oggi materia di dibattito.

Nel capitolo 1 gli aspetti fondamentali dei materiali magnetoelettrici sono
presentati e messi in correlazione con la famiglia dei materiali multiferroici,
dei quali si introduce la differenza tra propri ed impropri.

Nel capitolo 2 viene discusso il EuTiO3. Questo composto possiede
la struttura di una perovskite ed ha un ordinamento antiferromagnetico
al di sotto della temperatura di Néel (TN = 5.5 K). Agli inizi degli anni
2000 l’effetto magnetoelettrico è stato osservato sperimentalmente in questo
materiale: a basse temperature il valore della costante dielettrica è funzione del
campo magnetico applicato. Le proprietà magnetoelettriche sono presentate,
mostrando che non solo le proprietà magnetiche possono essere controllate
attraverso il campo magnetico, ma anche che la magnetizzazione possa essere
controllata attraverso l’applicazione di un campo elettrico.

La struttura del cristallo viene presentata, richiamando che il cristallo
sia cubico a temperatura ambiente, mentre appartenga ad un gruppo di
spazio tetragonale a basse temperature. La struttura tetragonale in questione,
a causa di ragioni di simmetria, è compatibile con due soli ordinamenti
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antiferromagnetici: un ordinamento bidimensionale in cui i momenti magnetici
giacciono nel piano a, b ed un ordinamento unidimensionale in cui i momenti
magnetici giacciono lungo l’asse c.

Diversi autori hanno studiato il problema della determinazione della
struttura magnetica della fase antiferromagnetica del EuTiO3. Attraverso
l’utilizzo della diffrazione risonante da raggi X, è stato dimostrato che a 2 K
i momenti magnetici giacciono nel piano e con la diffrazione neutronica da
polveri non sono state notate differenze tra la configurazione a 2 K e quella
a 3 K. Altri autori hanno invece utilizzato tecniche macroscopiche, quali
misure di magnetizzazione, e proposto un diagramma di fase magnetico più
complesso; che contempla l’ordinamento nel piano per temperature inferiori a
3 K e l’ordinamento lungo l’asse c tra 3 K e la temperatura di Néel. Abbiamo
di conseguenza deciso di studiare la struttura magnetica a 1.6 K e 3.5 K
nell’intento di verificare quale dei due modelli proposti sia corretto a 3.5 K.

Per determinare la struttura cristallina e magnetica del EuTiO3 abbiamo
utlizzato la tecnica di diffrazione neutronica da polveri, ma utilizzando un
set-up sperimentale che permettesse di raggiungere una risoluzione più elevata
rispetto a quanto già fatto. La tecnica, presentata nel capitolo 3, permette
di determinare la struttura cristallina grazie all’interazione tra i neutroni e
le forze nucleari, infatti a causa della loro neutralità i neutroni attraversano
un materiale senza interazioni, a meno che non giungano in prossimità dei
nuclei e vengano da essi respinti. D’altro canto anche le strutture magnetiche
possono essere studiate. Infatti i neutroni posseggono un momento di spin e
pertanto possono interagire con il campo magnetico generato dal momento
angolare o di spin degli elettroni del cristallo. La teoria dell’interazione
nucleare e magnetica viene presentata con lo scopo di ottenere le formule
delle cross-section di tali interazioni. Le cross-section sono strettamente
legate alle quantità misurate in un esperimento di diffrazione e contengono
le informazioni sulle posizioni degli atomi e sui momenti magnetici. Sono
pertanto il collegamento tra ciò che viene misurato e le informazioni strutturali
che stiamo ricercando.

I neutroni vengono prodotti attraverso la fissione nucleare (fasci continui)
o la spallazione nucleare (fasci pulsati). Gli esperimenti di diffrazione da
neutroni qui presentati sono stati svolti all’Istituto Laue-Langevine (ILL) in
Grenoble (F). ILL é, nel momento in cui stiamo scrivendo, il più potente
reattore nucleare per scopi scientifici al mondo, con più di 50 strumenti.

Viene quindi introdotto il metodo Rietveld. Questo metodo permette di
determinare la struttura del composto studiato direttamente dal profilo di
intensità dei neutroni diffratti. Si applica direttamente al profilo d’intensità a
differenza di altri metodi che richiedono il calcolo delle intensità integrate di
ogni riflessione. L’applicazione di questo metodo richiede l’assunzione di un
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modello di partenza. Infatti il gruppo di spazio cristallino e le operazioni di
simmetria del gruppo di spazio magnetico devono essere dichiarati e, sulla
base di questi, il metodo raffina i parametri liberi attraverso un processo di
minimizzazione. Questa soluzione è più che adeguata per il nostro caso, in
cui la struttura cristallina è nota e due differenti strutture magnetiche devono
essere tra loro comparate.

Molte applicazioni sono state sviluppate per il metodo Rietveld qui viene
presentato FullProf un programma estremamente versatile sviluppato
ad ILL. FullProf è stato scelto, tra il software disponibile, anche perchè
permette l’introduzione di speciali fattori di correzione, in funzione dell’angolo
di scattering. Questa possibilità è di estrema importanza nel nostro caso.
A causa dell’elevata cross-section di assorbimento degli atomi d’europio, il
EuTiO3 assorbe fortemente i neutroni. Questo comporta che il segnale di
diffrazione sia molto debole e la durata delle misure elevata. Per ovviare
a queste difficoltà abbiamo optato per l’utilizzo di un contenitore in cui
il campione potesse disporsi a formare un cilindro cavo. Questa soluzione
riduce i tempi di conteggio, ma introduce una distorsione nella dipendenza
angolare dei picchi di riflessione che non è implementata in FullProf. Di
conseguenza abbiamo sviluppato un nuovo codice Python che generasse i
fattori di correzione per questa particolare geometria e quindi utilizzato tali
fattori per eseguire i raffinamenti. Il codice, i fattori di correzione ed il loro
utilizzo vengono presentati.

Nel capitolo 4 il processo di misura ed i risultati sono discussi. Prima
di tutto il raffinamento di una misura di diffrazione da polveri da raggi X a
temperature ambiente è presentata. Questa misura permette di concludere che
a temperatura ambiente la struttura cristallina del campione è coerente con la
struttura del EuTiO3 riportata in letteratura. Quindi, attraverso delle misure
di caratterizzazione magnetica, vengono identificate la fase antiferromagnetica,
la temperature di Néel ed il momento magnetico degli ioni di europio. Dopo
queste misure di caratterizzazione, vengono presentati i dati da diffrazione
neutronica da polveri ottenuti presso la beamline D2B di ILL. Le misure sono
state realizzate a 1.6 K e 3.5 K. Come sopra riportato, mentre tutti gli autori
concordano sull’ordinamento bidimensionale al di sotto di 3 K, soltanto alcuni
fra essi propongono la presenza di un ordinamento monodimensionale tra 3 K
e la temperatura di Néel.

I risultati mostrano che, attraverso l’utilizzo della correzione per assorbi-
mento, i raffinamenti Rieltveld possono essere svolti con successo anche in
presenza di un forte assorbimento di neutroni. Infatti, prima di tutto, otte-
niamo un buon accordo tra i dati sperimentali e la struttura cristallografica
già determinata con altre tecniche. Secondo, siamo in grado di distinguere
tra le due strutture magnetiche proposte, grazie ai fattori di accordo del
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raffinamento ed all’analisi di alcune riflessioni significative. Infatti, a 1.6 K,
abbiamo trovato, come d’altronde atteso, un miglior accordo tra l’ordinamen-
to bidimensionale e, a 3.5 K, nuovamente l’ordinamento nel piano meglio
si adatta ai risultati sperimentali. Pertanto concludiamo che non abbiamo
trovato alcun indizio di una configurazione monodimensionale degli spin.

Infine discutiamo a riguardo del modulo del momento magnetico ottenuto
attraverso i raffinamenti e della sua dipendenza con la temperatura. Abbiamo
trovato che il momento magnetico presenti valori più elevati rispetto a quelli
riportati in letteratura. Tuttavia i valori ottenuti sono consistenti con il valore
teorico del momento magnetico dello ione di europio Eu++ nonché con le
misure di magnetometria.



Preface

The magnetoelectric properties derives from the interaction between the struc-
tural, electrical and magnetic degrees of freedom. The interplay between the
spin, charge and structural parameters paves the way for future applications
in sensors, data storage and spintronic. This is why the scientific community
shows a great interest in the class of magnetoelectric. The understanding of
the microscopical reasons of these phenomena is pushing the research with the
purpose of a better knowledge of the coupling system. This is a prerequisite
for any application.

The magnetoelectric effects can be observed both in bulk material, in thin
films and in complex heterostructures. Recently an increasing interest has
been raised on EuTiO3, which shows an unusual coupling between dielectric
and magnetic properties. The comprehension of such phenomena requires
first of all the determination of the crystallographic and magnetic structure
of such system, which is still matter of debate.

In chapter 1 the definitions of multiferroic and magnetoelectric materials
are presented, along with a few examples. The distinction between proper
and improper multiferroics is outlined.

In chapter 2 we introduce the magnetoelectric EuTiO3. This compound
is a perovskite which shows an antiferromagnetic phase under the Néel
temperature (TN = 5.5 K). At the beginning of the century magnetoelectric
effects in EuTiO3 was observed through the magnetic field dependence of the
dielectric constant at very low temperature. The magnetoelectric properties
of the compound are then discussed, showing not only that the electrical
properties can be controlled via magnetic field, but also the magnetization
can be controlled through an applied electric field.

The crystal structure determination is revisited, recalling that the crystal,
cubic at room temperature, belongs to a tetragonal space group at low
temperature. This low-temperature structure is compatible, due to symmetry
reasons, with only two antiferromagnetic spin ordering: a two-dimensional
ordering in which the magnetic moments lie in the a, b-plane and a one-
dimensional in which the magnetic moments lie along the c-axis.

xix
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Different authors studied the problem of the determination of the magnetic
structure of the antiferromagnetic phase of EuTiO3. By the use of RXD it has
been shown that at 2 K the magnetic moment are in-plane and by neutron
powder diffraction that the magnetic moment are still in-plane at 3 K. Other
authors by the use of macroscopic techniques, e.g. dc magnetization and
torque magnetometry measurements, proposed a more complicated magnetic
phase diagram: a, b-plane ordering below 3 K and c-axis ordering between
3 K and the Néel temperature. We therefore decided to contribute to the
discussion investigating the magnetic structure at 1.6 K and 3.5 K, with the
intent of deciding which of the two proposed model is correct at 3.5 K.

To solve the crystallographic and magnetic structure of EuTiO3 we decided
to use neutron powder diffraction, but with an higher resolution in respect
to what previously done. This techniques, presented in chapter 3, allows to
determine the crystal structure due to the interaction between the neutrons
and the nuclear forces, in fact owing to their neutral electric charge these
particles slightly interact with matter. Therefore they almost pass through a
crystal without any interaction unless they come really close to the nuclei. On
the other hand, also magnetic structure can be determined. In fact neutrons
have a spin and therefore can interact with the spin moment of electrons
or the magnetic field generated by their motion. The theory of nuclear and
magnetic scattering is presented in order to obtain the formula for the cross-
section of the diffraction processes. These cross-sections are strictly related,
through the form factor, to the quantity actually measured in a scattering
experiment and contain the information on the atoms in the system and on
their displacements. The cross-sections are therefore the link between what
measured and the structural information we are looking for.

Neutrons are obtained through nuclear fission (continuous beam) or spal-
lation (pulsed beam). We performed our experiment at the Institute Laue-
Langevine (ILL) in Grenoble (F), which, at the time we are writing, is the
most powerful reactor for research purpose with more than 50 instruments.

The Rietveld refinement method is then introduced. This method allows
to determine the structure of the compound starting from the diffraction
intensity profile of a powder diffraction experiment. It directly applies to the
profile intensity instead of other methods dealing with integrated intensity.
The application of a such a method requires the assumption of a model. In
fact the crystallographic space group and the symmetry operations of the
magnetic space group must be defined and then, through a minimization
process, the method returns the value of the optimal parameters, within
the constrains imposed by the symmetry. This method perfectly applies to
our case in which the crystal structure is known and two different magnetic
structure have to be compared.
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Many applications have been developed for the Rietveld method, here
we present FullProf an extremely versatile program developed at ILL.
FullProf has been chosen, among the available software, also because it
allows to introduce special correction factors as functions of the scattering
angle. This tool is fundamental in our case. Due to the large absorption
cross-section of europium atoms, EuTiO3 strongly absorbs neutrons. This
causes a very weak signal and accordingly high counting time. To overcome
this problem we used an annular cylindrical sample holder. This reduces
the counting time, but introduces an angular dependence of the scattered
peaks which is not implemented in FullProf. Therefore we developed a
new Python code to generate the correction factors for such a geometry and
then used these corrections factors to perform the refinement. The code, the
correction factors and their usage are presented.

In chapter 4 the measurements and the experimental results are outlined.
First of all a refinement performed on XPD data at room temperature is
presented. This measurement let us conclude that the room temperature crys-
talline structure of our sample is consistent with EuTiO3 structure reported
in literature. Secondly, through a magnetic characterization, we recognize
the antiferromagnetic phase, the Néel temperature and the magnetic mo-
ment of the europium atoms. After these characterization measurements
we present the neutron powder diffraction data collected at the D2B beam-
line at ILL. The measurements were performed at two different temperature
1.6 K and 3.5 K. As previously discussed, while all the authors agree on a
two-dimensional spin ordering below 3 K, only some of them suggest the
presence of a one-dimensional spin configuration between 3 K and the Néel
temperature.

The results presented show that, by the usage of the absorption correction,
Rietveld refinement can be successfully carried out also under strong neutron
absorption. In fact, first of all, we obtain a good agreement between the
experimental data and the crystallographic structure, which has been already
determined with other techniques. Secondly, we are able to distinguish
between the two proposed magnetic configuration, due to the agreement
factors and to the analysis of the peaks. In fact, at 1.6 K, we found, as
expected, a better agreement with the two-dimensional ordering and, at 3.5 K,
we again found a better agreement with the in-plane ordering. Therefore
we conclude that we did not find any evidence of the one-dimensional spin
configuration.

Finally we discuss the magnetic moments magnitude, obtained through
the refinements, and their temperature dependence. We found magnetic
moment’s values higher than those reported in literature, but consistent with
the theoretical value of the magnetic moment of europium ion Eu++ and the
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magnetometry measurements.



Chapter 1

Multiferroics and
magnetoelectrics

1.1 Multiferroics

If a magnetic field is applied to a material, this can show three different
types of response. The material is called diamagnetic if the applied magnetic
field induces a magnetic field within the material which is antiparallel to
the applied field itself. This contribution is added to the external field thus
reducing the total magnetic field in the material. The material is called
paramagnetic if the total magnetic field within the material is higher with
respect to the applied field. This is due to a magnetization which induces a
magnetic field parallel to the applied one. The material is called ferromagnetic
if it is capable to show a magnetization also without any applied magnetic
field and the magnetization can be switched hysteretically by an applied
magnetic field.

Similar behaviour can be shown also by electric field and electrical polar-
ization. In the presence of an electric field an electric polarization is produced
into a neutral crystal. The positive and negative charges within the material
are separated and a dipolar moment is induced. In the regime of small
applied electric field the polarization induced can be proportional to the field
itself and along the same direction of the applied field. If the polarization
is antiparallel to the external field the material is called dielectric. If the
polarization is parallel to the external field the material is called paraelectric.
A material is called ferroelectric if it shows a spontaneous polarization also in
absence of an external electric field and if an external electric field is capable
to reverse the polarization. These behaviours are formally similar to the
magnetic behaviours of material.

1
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Figure 1.1: Phase control in ferroics and multiferroics. The electric field
E, magnetic field H, and stress σ control the electric polarization P , mag-
netization M and strain ε, respectively. In a ferroic material, P , M or ε
are spontaneously formed to produce ferromagnetism, ferroelectricity, or fer-
roelasticity, respectively. In a multiferroic, the coexistence of at least two
ferroic forms of ordering leads to additional interaction. In a magnetoelectric
multiferroic, a magnetic field may control P or an electric field may control
M (green arrows). Figure from Ref. [10].

It is important to point out the relation existing between the ferroelectric
properties and the crystal structure. In fact the lack of a centre of inversion
is a necessary condition for the ferroelectric order to develop. Let us consider
a crystal with an inversion symmetry, in which the point A = (x, y, z) is
transformed, under the inversion symmetry, into the point A′ = (x̄, ȳ, z̄). If any
polarization is present at the position A, an equal and opposite polarization
will be present at the position A′ resulting in a net contribution to polarization
equal to zero[9]. Because this holds for each point within the unit cell, the
net polarization of such a cell will be zero, and null will be the polarization of
the whole crystal. Although the absence of inversion symmetry is a necessary
condition for ferroelectricity, it is not a sufficient condition.

Ferroelectricity and ferromagnetism belong to the so called ferroics prop-
erties. Also ferroelasticity, which is the capability of a system to display a
spontaneous deformation that is stable and can be switched hysteretically by
an applied stress, is a ferroic property. Many ferroelectrics are also ferroelastic.
That is because a change in their polarization is accompained by a change in
their shape. Such materials, which combine two or more ferroic properties
(see figure 1.1) in the same phase, are known as multiferroics.

Trend toward device miniaturization hs led to increased interest in combin-
ing electronic and magnetic properties into multifuncional materials, so that a
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Figure 1.2: The relationship between multiferroic and magnetoelectric materi-
als. Ferromagnets (ferroelectrics) form a subset of magnetically (electrically)
polarizable materials such as paramagnets and antiferromagnets (paraelectrics
and antiferroelectrics). The intersection (red hatching) represents materials
that are multiferroic. Magnetoelectric oupling (blue hatching) is an indepen-
dent phenomenon that can, but need not, arise in any of thhe materials that
are both magnetically and electrically polarizable. Figure from Ref. [11].

single device component can perform more than one task. Ferromagnetic ferro-
electric multiferroics are particularly appealing not only because they have the
properties of both parent compounds, but also because interaction between
the magnetic and electric polarization leads to additional functionalities. For
example, the magnetoelectric effect (the induction of a magnetization by an
electric field, or of a polarization by a magnetic field) could yield entirely new
device paradigms, such as electric field-controlled magnetic data storage.

In figure 1.2 the overlap between ferroic and magnetoelectric properties is
shown. On one hand the existence of ferromagnetic and ferroelectric orders in
the same compound does not mean that this orders are necessarily coupled.
On the other hand, magnetoelectric effect can occur also in material that
are neither ferromagnetic or ferroelectric. This is, for example, the case of
EuTiO3 which is a paraelectric antiferromagnet.1

1.2 Magnetoelectric effect

The coupling between magnetism and electric conduction in metals gives
rise to various interesting phenomena, such as colossal magnetoresistant in

1Structure and properties of EuTiO3 will be presented in chapter 2.
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perovskite maganites[12]. In this class of compounds, itinerant carriers are
strongly coupled with localized spin by Hund coupling and the properties of
itinerant carriers, such as their effective mass, depend on the configuration of
the localised spins. In such a situation, electric conduction can be controlled by
magnetic field via the coupling with localised spins, leading to large negative
magnetorestistance. In a similar manner, the coupling between magnetism
and dielectric properties in magnetic insulators would be possible where the
dielectric properties depend on the configuration of localised spins and the
dielectric constant can be controlled by magnetic field via the coupling with
localised spins. The mutual control of electric and magnetic properties is of
fundamental importance and significant interest for application in magnetic
storage media and spintronics.

The magnetoelectric effect was first presumed to exist by Pierre Curie[13],
and subsequently attracted a great deal of interest in the 1960s and 1970s. In
1957, the magnetoelectric effect was predicted to occur in Cr2O3[14] and then,
in the 1960s, was experimentally observed[15] below the Néel temperature of
307 K.

The magnetoelectric effect is traditionally described[16] in Landau theory
by writing the free energy F of the system in terms of an applied field
H, whose i-th component is denoted Hi, and an applied electric field E,
whose i-th component is denoted Ei. Let us consider a non-ferroic material
where both the temperature-dependent electrical polarization Pi(T ) and the
magnetization Mi(T ) are zero in the absence of applied fields and there is
no hysteresis. The free energy for an infinite, homogeneous and stress-free
medium can be written as

−F (E, H) =
1

2
ε0εijEiEj +

1

2
µ0µijHiHj + αijEiHj +

+
βijk
2
EihjHk +

γijk
2
HiEjEk + . . . (1.1)

The first term on the right hand side describes the contribution resulting from
the electrical response to an electric field, where the permittivity of free space
is denoted ε0, and the relative permittivity εij(T ) is a second-rank tensor that
is typically independent of Ei in non-ferroic materials. The second term is the
magnetic equivalent of the first term, where µij(T ) is the relative permeability
and µ0 is the permeability of free space. The third term describes linear
magnetoelectric coupling via αij; the third-rank tensor βijk(T ) and γijk(T )
represent higher-order magnetoelectric coefficients.

In the present scheme, all magnetoelectric coefficients incorporate the field
independent material response functions εij(T ) and µij(T ). The magnetoelec-
tric effect can then easily be established in the form Pi(Hj) or Mi(Ej). The
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former is obtained by differentiating F with respect to Ei, and then setting
Ei = 0. A complementay operation involving Hi establishes the latter. One
obtains

Pi = αijHj +
βijk
2
HjHk + . . . (1.2)

and
µ0Mi = αjiEj +

γijk
2
EjEk + . . . (1.3)

In ferroic materials, the above analysis is less rigorous because εij(T ) and
µj(T ) display field hysteresis.

A multiferroic that is ferromagnetic and ferroelectric is liable to display
large linear magnetoelectric effects. This follows because ferroelectric and
ferromagnetic materials often (but not always) possess a large permittivity
and permeability respectively, and αij is bounded by the geometric mean of
the diagonalised tensors εii and µjj such that

α2
ij ≤ ε0µ0εiiµjj (1.4)

Equation 1.4 is obtained from equation 1.1 by forcing the sum of the first free
terms to be grater than zero, that is, ignoring higher-order coupling terms. it
represents a stability condition on εij and µij, but if the coupling becomes so
strong that it drives a phase transition to a more stable state, then αij, εij
and µij take on new values in the new phase.

The nonlinear magnetoelectric coupling appears when the material have
small values of either εij or µij or both, so the linear magnetoelectric effect
will also be small, given equation 1.4. However, no such restriction applies to
higher-order couplings, such as those described by βijk and γijk. For example,
in some materials term such as βijkHjHk can dominate the linear term αijHj

in equation 1.2, as first shown experimentally at low temperatures in the
piezoelectric paramagnet NiSO4 · 6H2O[17].

So far, our discussion of linear and higher-order magnetoelectric coupling
has ignored the effects of strain (indirect magnetoelectric coupling). Such
effects could be significant or even dominant. For example, the inclusion of
piezomagnetism2 or magnetostriction3 would generate cross terms in equation
1.1 that are proportional to strain and depend by Hi. Analogous expression
would arise from piezoelectricity or electrostriction. Furthermore, mixed
terms involving products of strain, Hi and Ej have been predicted[18].

2Piezomagnetism describes a change in strain as a linear function of applied magnetic
field, or a change in magnetization as a linear function of applied stress.

3Magnetostriction describes a change in strain as a quadratic function of applied
magnetic field.
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1.3 Proper and improper multiferroics

We can know better investigate the relationships between ferroics properties
and magnetoelectric effect. Most ferroelectrics are transition metal oxides, in
which the transition ions have empty d shells (d0). These positively charged
ions like to attract one (or several) of the neighbouring negative oxygen atoms.
This collective shift of cations and anions inside a periodic crystal induces
bulk electric polarization. The mechanism of the covalent bonding (electron
pairing) in such molecules is the virtual hopping of electrons from the filled
oxygens shell to the empty d shell of a transition metal ion. Magnetism,
on the contrary, requires transition metal ions with partially filled d shells,
as the spins of electrons occupying completely filled shells add to zero and
do not participate in magnetic ordering. The exchange interaction between
uncompensated spins of different ions, giving rise to long range magnetic
ordering, also results from the virtual hopping of electrons between the ions.
In this respect the two mechanism are not so dissimilar, but the difference in
filling of the d shells required for ferroelectricity and magnetism makes these
two ordered states mutually exclusive, this is the so called "d0 paradigm"[19].

This essentially prevents the two conditions to be fulfilled on the same ion,
for example the B site of a perovskite structure (ABO3.) Therefore in a large
number of compounds the electric and magnetic ordering are associated with
different ions in the unit cell, these compounds are called proper multiferroics.
For example compounds, such as BiMnO3 or BiFeO3, with magnetic Mn3+

and Fe3+ ions, are ferroelectric. Here, however, it is the Bi ion with two
electrons in the 6s orbital that moves away from the centrosymmetric position
in its oxygens surrounding inducing the polarization[20]. BiMnO3 shows a
ferroelectric transition at TFE ∼ 800 K and a ferromagnetic transition at
TFM ∼ 110 K, below which the two orders coexist[21]. BiFeO3 shows both
electric and magnetic ordered phases above room temperature. However
because the ferroelectric and magnetic and magnetic orders in these materials
originate in physically different part of the cell, the coupling between them is
weak. In the case of BiMnO3 the dielectric constant ε shows only a minute
anomaly at TFM and is fairly insensitive to magnetic fields: even very close
to TFM the change in ε produced by a 9 T field does not exceed 0.6%[19].

Nowadays both experimental[22] and theoretical[23] work have relaxed
the so called "d0 paradigm". Interestingly, strong magnetoelectric effects is
not forbidden in d0 pervoskite oxides when A site contributes to magnetism
(typically by a rare earth). This is, for example, the case of EuTiO3.

On the other hand, if the polarization is only a part of a more complex
lattice distortion or if it appears as an accidental by-product of some other
ordering, the ferroelectricity is called improper. For example, the hexagonal
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manganites RMnO3 (R = Ho-LU, Y) show a lattice transition which enlarges
their unit cell. An electric dipole moment, appearing below this transition is
induced by a nonlinear coupling to nonpolar lattice distortions, such as the
buckling of R-O planes and tilts of manganese-oxygens bipyramids (geometric
ferroelectricity)[24, 25]. Although fascinating from the fundamental point of
view, these materials have very limited applications due to their extremely
low ordering transition temperature and/or tiny electric polarization.

Another group of improper multiferroics are charge-ordered insulators. In
many narrowband metals with strong electronic correlations, charge carriers
become localised at low temperature and form periodic superstructures. An
example is Fe3O4, which undergoes a metal-insulator transition at T ∼125
K with a complex pattern of ordered charges of iron ions[26]. When charges
order in a non-symmetric fashion, they induce electric polarization.

1.4 Two-phases magnetoelectrics
The single-phase multiferroics, described so far, are very attractive for the
understanding of the mechanism leading to magnetoelectric coupling. How-
ever these material do not combine large and robust electric and magnetic
polarization at room temperature. This difficulties can be overcome through
the two-phase magnetoelectric system, which will not be studied in this thesis
but are here presented for completeness.

In these materials the coupling between the magnetic and electric proper-
ties is made indirectly, via strain[27]. For example, the coupling can be done
by forming two-phase composite multiferroics that consist of a ferroelectric
constituent (such as PbZr1−xTixO3) and a ferromagnetic constituent (such as
Tb1−xDyxFe2)[28]. In such composites, the magnetoelectric effect arises from
the interaction of the elastic components of the ferromagnetic and ferroelectric
constituents. For instance, an electric field induces strain in the ferroelectric;
this strain is passed on the ferromagnet, where it causes magnetization. The
magnetoelectric effect is large if the coupling at the interface is large; there-
fore, composites with large surface area (such as multilayered thin films) and
strongly ferroelastic constituents are particularly effective.
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Chapter 2

Europium Titanate

2.1 Magnetoelectricity in EuTiO3

EuTiO3 belongs to the tetravalent perovskite titanates (ATiO3) family. The
rare earth ion produces a long range magnetic ordering at very low temperature.
On the other hand no spontaneous polarization has been observed. This lack
of a bulk polarization has been propose to be due to zero-point vibrations of
ions. Therefore EuTiO3 is a quantum paraelectric system. Although EuTiO3

has been known as a G-type antiferromagnet below TN = 5.5 K since the
1960s[29], its magnetoelectric properties were only revealed in 2011 by 7%
drop in the dielectric constant at TN under an applied magnetic field[30].
The presence of the magnetoeletric effect in EuTiO3 have been studied by
Wu and Shen[1]. Their model, in accordance with experimental data, has
demostrated magnetoelectric effect by the mutual dependence of electric and
magnetic properties. This dependence is revealed by the variation of the
electric-field-induced polarization with the applied magnetic field as well as
the change of magnetic-field-induced spin moments under the application of
an electric field.

In figure 2.1 the variation of the dielectric properties of EuTiO3 under
applied magnetic field are shown. The filled square in figure 2.1(a) represents
the experimental values of the dielectric constant at different temperature
and magnetic field. In absence of the magnetic field, the dielectric constant
shows a sharp decrease due to the antiferromagnetic ordering below the Néel
temperature. For increasing magnetic fields the dielectric constant at low
temperature gradually increases and the phase transition indicated by the
sharp peak occurs at lower temperature and eventually disappers. In figure
2.1(b) the dielectric constant is depicted as a function of the magnetic field at
2 K. The variation of the dielectric properties is coherent with the presence of

9
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Figure 2.1: (a) Temperature-dependent dielectric constant at 1 kHz in EuTiO3

under various magnetic field. (b) The normalized magnetic field dependence
of the dielectric constant to the zero field value in EuTiO3 at 2 K. The
experimental data are shown by filled squares and the theoretical reasults by
solid curves. Figure from Ref. [1].

an antiferromagnetic ordering. In fact the dielectric constant increases with
the magnetic field up to 7%, until the field reaches the saturation value of
around 1.5 T, and the antiferromagnetic ordering is completely destroyed. The
continous line in figure 2.1 are calculated by a theoretical model for diluited
magnetic quantum paraelectric by considering a proper coupling mechanism
as presented in Ref [31]. Because the model proposed well reproduces the
experimental data, the authors used this model to further investigate the
magnetoelectric effect in EuTiO3. If the variation of the dielectric constant
due to the magnetic field has been shown, results reported in figure 2.2 (a)
and 2.2 (b) manifest the variation the magnetization as a function of the
applied electric field, for different values of external magnetic field. The
results presented have been calculated for 2 K. In the left panel of figure
2.2 the electric field profile of the spin moment along z-axis (〈Sz〉) is shown,
whereas in the centre panel the profiles are reported normalised to their values
for zero electric field. The magnetization does not show any electric field
dependence in two case: zero magnetic field, and saturation magnetic field.
In the first case the antiferromagnetic ordering remains unperturbed by the
electric field and the magnetization is zero, whereas in the second case the
spin parallel alignement remained unperturebated by the electric field and
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Figure 2.2: (a) Electric-field dependence of the spin momentum along z-
axis under various magnetic fields at 2 K. (b) The normalised electrical
field dependence of the magnetization to the zero field value in various
magnetic field at 2 K. (c) Magnetic-field dependence of the electric-field-
induced polarization in EuTiO3 at 2 K. Figure from Ref. [1].

the magnetization is saturated. In the other cases the magnetization is not
null for zero electric field and increseas with it, approaching a saturation
value which depends by the applied magnetic field. If the magnetic field is
greater than 0.85 T the magnetization saturation value is coherent with the
parallel alignement of the magnetic moment. In such a case the saturation
occurs for an applied electric field of around 400 V/µm. This effect can be
explained taking into account the nature of antiferromagnetic ordering in
EuTiO3. The presence of a magnetic ground state in this oxide is due to
the superexchange interaction. The exchange interaction, which minimizes
the energy of the system by the arising of an antiferromagnetic ordering, is
not direct, but it is mutuated by the oxigen atoms, through the mediation
of their 2p state. Therefore under electrical field parallel to the magnetic
field, O ion will be displaced from its equilibrium, resulting in the reduction
of the antiferromagnetic coupling, which is proportional to the square of
the electric polarization. As a result, except for the ferromagnetic ordering
induced by the saturation magnetic field, an additional electric-field-induced
ferromagnetic ordering will appear and increase with the electric field due
to the antiferromagnetic exchange energy reduction as a consequence of the
increasing polarization.

As shown in figure 2.2 (b), at low magnetic field (below 0.85 T), it is
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Figure 2.3: Temperature dependence of (a) the magnetic susceptibility χm
and (b) the magnetoelectric susceptibility χme under various electric fields.
(c) Electric-field dependence of the magnetoelectric susceptibility χme under
various magnetic fields at 2 K. Figure from Ref. [1].

clearly that the magnetization, almost independent of magnetic field, will be
significantly enhanced under an applied electric field. However, above 0.85 T,
the normalised magnetization decreases with increasing magnetic field due to
the saturation of magnetization favoured by the electric field and off course
become constant for H > 1.5 T . The results presented provide clear evidence
that the magnetization in EuTiO3 can be controlled by the electric fields.

In addition to the dielectric properties, tha magnetic field has an effect on
the electric-field-induced polarization in the presence of applied electric field,
as shown in figure 2.2 (c). Therefore the results given in figure 2.2 give clear
evidence fo the magnetoelectric coupling in the magnetic quantum paraelectric
EuTiO3 system. Finally Wu e Shen discuss the magnetoelectric effect in
EuTiO3 in relation with the magnetic field, electrical field and temperature.
Figure 2.3 (a) and (b) shows the temperature dependance of the magnetic
suceptibility χm and magnetoelectric susceptibiliy χme under various electric
fields. The magnetoelectric susceptibility is given by

χme =
∂ 〈SZ〉
∂E

(2.1)

The experimental magnetic susceptibility without the electric applied field [30]
has been depicted in figure 2.3 (a). The model proposed well reproduces the
experimental data and can predict the magnetic susceptibility behaviour in
different circumstances. In case of applied electric field, the Néel temperature,
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evidenced by the rapid change of susceptibility, is shifted to lower values and
the susceptibility of the antiferromagnetic phase is increased. This can be
explained by the fact that the antiferromagnetic ordering will exist in narrow
temperature ranges due to the reduction of the antiferromagnetic coupling,
which consequently favors the ferromagnetic ordering parallel to the magnetic
field. This reduction is again caused by the electric-field-induced polarization
which displaces the oxigen atoms from their equilibrium position.

The magnetoelectric susceptibily which is represented in figure 2.3 (b)
shows an interesting behaviour. Above TN , the magnetoelectric effect tends to
vanish, indicating that the thermal perturbation will cause a disordered spin
arrangement and an evident decrease of the magnetoelectric effect. Beside
that, magnetoelectric susceptibility in the antiferromagnetic phase does not
display monotonic behaviour with the applied electric field. In the (c) panel
of figure 2.3 the electric-field dependence magnetoelectric susceptibility is
investigated under various magnetic fields at 2 K. For 0 T the system does
not show any magnetoelectric effect. With increasing magnetic field the effect
arises and vanishes again for field approching the saturation magnetic field
(1.5 T). On the other hand, for a fixed magnetic field (nor zero or the saturation
field), the magnetoelectric susceptibility shows a maximum in function of the
applied electric field. This effect is the result of the competition between the
electrical polarization and the dielectric susceptibility. The increasing electric
field enhances the electrical polarization, which increases the magnetoelectric
response. But further increase of the electrical field will decrease the dielectric
susceptibility, reducing the magnetoelectric effect.

EuTiO3 can also be deposited as high quality epitaxial films [32], which
is a prerequisite for any pratical application in functional devices. More-
over EuTiO3 was predicted to exhibit strong ferromagnetism (sponstaneous
magnetization of around 7 µB per Eu ion) and strong ferroelectricity (sponta-
neous polarization of around 10 µC cm−2) simultaneously under large biaxial
compressive strain [33]. These values are orders of magnitude higher than
those of any known ferroelectric ferromagnet and rival the best materials that
are solely ferroelectric or ferromagnetic. Lee et al. in absence of a suitable
substrate to provide the desired compressive strained, turned to tensile biaxial
strain and showed both theoretically and experimentally the emergence of a
multiferroic state with such a low strain required to be compatible with the
growth of thick high-quality crystalline film [34].
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Figure 2.4: Specific heat of EuTiO3 as a function of temperature in the
temperature range around thhe phase transition. The insets shows (a) the
low temperature region around TN and (b) the specific heat anomaly ∆Cp of
SrTiO3 around the 105 K transition. Figure from Ref. [2].

2.2 Crystallographic Structure

At room temperature, EuTiO3 is isostructural to SrTiO3 (cubic space group
Pm3̄m, with lattice parameter a = 3.905 Å[35, 36]). The cubic cell lattice
parameter of EuTiO3 is a = 3.904 Å[37]. In this cell the Wickoff position of the
atoms are: Ti on 1a (0, 0, 0), Eu on 1b (1

2
, 1

2
, 1

2
) and O on 3d (1

2
, 0, 0). Recently

Bussmann-Holder et al. reported of a structural transition around 280 K[2].
In figure 2.4 the specific heat measurements are reported. The anomaly, which
is clearly visible at TA = 282(1) K, suggests that EuTiO3 undergoes to a cubic-
to-tetragonal transition at such a temperature, as SrTiO3 does at Tc = 106 K.
In the insect (b) is reported, for comparison, the variation of the specific heat
of SrTiO3. In insect (a) is reported the specific heat of EuTiO3 near the
Néel temperature, clearly identifying the transition to the antiferromagnetic
phase. Among the possible mechanism for the structural transition Allieta
et al.[3] proposed the tilting of corner-linked BO6 octahedral units[38, 39].
The authors searched among the subgroups of the high-temperature cubic
group and found consistent with simmetry constrains and X-rays powder
diffraction data only the space group I4/mcm[3]. In this group the Wickoff
position of the atoms are: Ti at 4c (0, 0, 0), Eu at 4b (0, 1

2
, 1

4
), O1 at 4a
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Figure 2.5: Reduced lattice parameters of EuTiO3 and SrTiO3 as a function
of temperature. The full and opened circles are the a and c axes of EuTiO3.
Full and opened circles are the a- and c-axis values of SrTiO3. The continous
lines are guides to the eye. Figure from Ref. [3].

(0, 0, 1
4
), and O2 at 8h (x, x + 1

2
, 0) with x ∼ 1

4
. In figure 2.5 the reduced

lattice parameters of EuTiO3 and SrTiO3 are reported. From the Rietveld
analysis of XPD data the authors conclude that a transition takes place at
T ∗ ∼ 235 K and proposed that the difference between T ∗ and TA is due to the
correlation length scale evolution of the structural phase transition. In fact
the outcome of the PDF analysis at 240 K shows how the correlation length
of the tetragonal I4/mcm phase remains confined at the nanoscopic scale
(∼ 20 Å). At the same temperature the XPD data imply that the structure
is cubic. The proposed explanation implies that the tilting of the octahedra
changes randomly from one nanoregion to the adjacent one. Anyhow all the
measurements agree on the fact that at very low temperature, as in the region
in which the antiferromagnetic ordering appears, the transition is completed
and the symmetry of the crystal belongs to tetragonal I4/mcm space group.
The crystal structure is reported in figure 2.6.
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Figure 2.6: EuTiO3 crystal structure. Oxygen atoms are depicted in red,
within the oxygens octaedra in blue the titanium atoms, europium ones are
in magenta.

2.3 Magnetic structure

2.3.1 Low temperature scattering results

Assumed that at very low temperature the crystallographic structure of
EuTiO3 belongs to tetragonal space group I4/mcm, Scagnoli et al.[4] per-
formed a symmetry analysis using the method of Bertaut[40], as implemented
in the Basireps program[41], to determine which magnetic configuration is
compatible with the given space group. Through the Rietveld refinement of
a neutron powder diffraction pattern1 performed above and under the Néel
temperature, the authors found the crystal structure consistent with the re-
ported space group. Under the Néel temperature they observed the magnetic
reflections. Those peaks was found consistent with the propagation vector
k = (0, 0, 0). This information, together with the localization of the magnetic
moment on the Eu ion located at the 4b Wyckoff position (0, 1

2
, 1

4
), allowed

to perfomed the Bertaut analysis. The result was that only two antiferromag-
netic ordering (irreducible representations) are allowed by Wyckoff position of
europium atoms in space group I4/mcm, with (0, 0, 0) propagation vector:
Γ6 and Γ9. Γ6 is a representation of a one dimensional ordering, in which the
magnetic moments lie along th c-axis, whereas Γ9 is a representation of a two
dimensional ordering, in which the magnetic moments lie in the a, b-plane.
Both the proposed configurations are G-type configurations. In this type of
antiferromagnets starting from one of the magnetic atoms and moving to the
nearest neighbors the spin direction is always opposite. By neutron powder

1Neutron powder diffraction experiment and Rietveld refinement method are presented
in chapter 3.
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Figure 2.7: Simulation of the neutron diffraction pattern of EuTiO3, the
profiles for the two proposed magnetic structure are reported, a focus on the
region in which the two differ is shown.

diffraction experiment it is in general possible to distinguish between the two
ordering because the magnetic scattering depends on the angle between the
magnetic moment and the scattering vector, especially it occurs only if the
scattering vector has a component perpendicular to the magnetic moment
directon. As an example, the absence of a (00l) reflection would suggest the
c-axis ordering, whereas its presence would suggest the a, b-plane ordering.
Vice versa, the absence of a (hk0) reflection would suggest the a, b-plane or-
dering, whereas its presence would suggest the c-axis ordering. Unfortunately
the reflections belonging to both {00l} and {hk0} are forbidden by the space
group. The refinement of the neutron powder diffraction data with both the
proposed structure did not lead to a final conclusion. The difference between
the neutron diffraction pattern expected from the two structure is very little,
and it is restricted to the position of the Bragg reflections around 64◦ and
74◦ as clearly by the simulation shown in figure 2.7. The resolution provided
by the experimental set-up used was not high enough.

To resolve the structure different techniques are available: very high-
resolution neutron powder diffraction, neutron single crystal diffraction and
resonant X-rays diffraction. Scagnoli et al. decided for a RXD experiment.

The magnetic cross-section for X-rays scattering is very weak, but nowa-
days with synchrotron radiation the magnetic scattering is a widely used
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technique, especially in its resonant version. When the incoming photons have
an energy resonant with the energy of one of the atomic transitions of the
element of the sample, the attention can be focused on a particular electronic
shell. In this conditions the atomic scattering factor shows its tensorial nature
allowing the appearance of forbidden reflection in non-symmorphic space
groups. Therefore the technique has a high sensitivity to the symmetry of
the shell investigated. In suitable conditions, focusing on the outer electronic
shell, the magnetic properties of the compound studied can be determined.
The magnetic sensibility of the resonant diffraction is clearly expressed by
the resonant X-rays cross section for the dipole-dipole transition

fE1
ε′, ε = (ε′ · ε)F (0) − i(ε′ × ε) · ẑnF (1) (2.2)

where the first term corresponds to the charge contribution and the second
to magnetic diffraction. ẑn is a unit vector in the direction of the magnetic
moment of the n-th ion, and ε̂, ε̂′ represent the polarization of the incoming
and scattered X-rays beam, respectively. In the case of study advantages
had been taken by the enhancement of the forbidden reflections arising from
tuning the X-rays energy to the Eu L2 edge (7.612 keV). At this energy a
2p electron is excited to the 5d empty states and reemits a photon in the
decay process. This excitation is sensible to the magnetic motif of the Eu
ions due to the hybridization between the 4f (partially filled shell) and 5d.
The X-rays magnetic cross section depends on the direction between the
magnetic moment and the polarization of the X-rays. This dependence can
be investigated through the so-called azimuthal scan. This scan is performed
rotating the sample around the scattering vector, while the incident beam is
polarized.

For the two proposed magnetic structure (Γ9 and Γ6) the magnetic cross
section of equation 2.2 can be calculated and the profile of the azimuthal
scan can be simulated and compared with the experimental data at 2 K.
The intensity observed and calculated is reported in figure 2.8, which clearly
proves that the magnetic moment lies in the a, b-plane (compatible with
Γ9 representation). Therefore Scagnoli et al. concluded that the magnetic
ordering is the one depicted in figure 2.9 at 2 K.

2.3.2 Phase diagram

Petrovic et al. studied the magnetic structure of EuTiO3 below the Néel
temperature[5]. First of all they perfomed direct current magnetization
measurements on a single crystal. The results are shown in figure 2.10. The
magnetization and the magnetic susceptibility have been measured along the
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Figure 2.8: Azimuthal angle dependence of the (341) magnetic reflection. The
continuos line represents a fit to the data with the magnetic moments along
the [110] direction. The dotted line represents a fit with moments along the
[100] direction. Measurements were performed in the vicinity of the Eu L2

edge. The azimuthal angle equals zero when the [001] direction is in the plane
perpendicular to the scattering plane. The measurement were performed at 2
K. Figure from Ref. [4].
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Figure 2.9: The G-type magnetic structure of EuTiO3 as determined by
neutron and X-ray magnetic diffraction. Big (black) spheres represent teh
Eu ions, small (light blue) spheres represent the Ti atoms. Oxygen atoms
are not shown for clarity. The black arrows illustrate the direction of the Eu
magnetic moments. Figure from Ref. [4].

Figure 2.10: DC magnetization along the crystal axes and spin flop transition
in χ for field parallel to each axis. Figure from Ref. [5].
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Figure 2.11: Torque experimental schematic, (a) in the case of spin along
c-axis, (b) in the a, b-plane. In red are depicted the moment directions for
zero applied field, in green the moment directions for the applied field H
(blue arrow). Figure from Ref. [5].

three crystallographic directions: [100], [010] and [001]. In the left panel of
figure 2.10 the magnetization is shown. In the three crystallographic direction
measured, the magnetization saturates at similar value of the magnetic field
(around 1 T), with a moment µ = 7.08 ± 0.2 µB/unit cell. The anisotropy,
which is shown in the insect, is due to the anisotropy of the g tensor in
this tetragonal sistem. In fact is the magnetization along the c-axis which
mainly differs from the two other axis. Looking at the left panel the authors
identifies a spin-flop transition. They start form considering the theoretical
form of the magnetic susceptibility of an antiferromagnet. In this phase
the temperature dependence of the magnetic susceptibility has a well know
behaviour. In fact, if the magnetic field is applied parallel to the spin alignment
the magnetic suscpetibility is expected to decrease to zero with decreasing
temperature (under the Néel temperature), whereas if the magnetic field is
applied perpendicular to the spin alignment the magnetic susceptibility should
remain constant. However in this latter case, above a certain field threshold,
a spin-flop transition can occur and the magnetization rapidly increases. In
the right panel of figure 2.10 the authors identify a spin-flop transitions along
all the three crystallographic axis, and this is possible only if the magnetic
moments could be aligned both in the a, b-plane and c-axis direction. They
conclude that a multiple configuration of the magnetic moment is possible
under TN .

After the direct current magnetization measurement, the authors per-
formed a torque magnetometry measure. By this technique the magnetic
anisotropy of the crystal may be determined by rotating a crystal within a
constant magnetic field and tracking the temperature dependence of both
the amplitude and periodicity of the generated torque signal. In figure 2.11
(a) is outlined the experiment in the case of a one-dimensional AF ordering,
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Figure 2.12: Temperature dependence of the torque // [001] for H = 0.05 T.
Rotating the field in the (100) and (010) planes gives similar results. Figure
from Ref. [5].

whereas in 2.11 (b) is outlined the experiment in the case of a two-dimensional
AF ordering. If the magnetic moment lies on the c-axis, the torque will be
proportional to the sin(2φ) when the field rotates in a plane containing the
c-axis. On the other hand, if the magnetic moment lies in the a, b-plane,
the torque will be proportional to the sin(4θ). Anysotropic paramagnetism
above TN will also generate a sin(2φ) signal. In figure 2.12 the results of
the torque magnetometry experiment are shown. The transition from the
sin(2φ) behaviour to sin(4θ), when the antiferromagnetic phase occurs, is
clearly visible. Fitting the curves with a function

τ(α) = A sin(2α) +B sin(4α) (2.3)

Petrovic et al. obtained the fitting parameter A and B whose temperature
dependence are shown in the left panel of figure 2.13. As expected B only
appears under the Néel temperature and increases rapidly below 3 K, ac-
cordingly with a drop in A. This behaviour is explained with a change from
the one-dimensional to the two-dimensional ordering structure. On the right
panel is shown a spin-flop transition occuring from a a, b-plane ordering at
2 K, confirming that at this temperature the the magnetic structure is Γ9.
Finally we present the phase diagram proposed by Petrovic et al. in figure
2.14. The (a) panel is the experimentally determined diagram phase, which
shows that for zero applied-magnetic-field between 2.75 K and the Néel tem-
perature the one-dimensional magnetic ordering is favoured with respect to
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Figure 2.13: (l)Temperature dependence of the separated sin(2α) and sin(4α)
contributions to the total torque shown in figure 2.12.(r) Field evolution of
the effective susceptibility χ(α) = τ(α)/H2 revealing the spin flop transition
at T = 2 K. Figure from Ref. [5].

the two-dimensional magnetic ordering. In panel (b) and (c) are presented
the calculated phase diagram from a two-sublattices mean field theory with
magnetic field applied along the [100] and [001] directions.

2.4 Sample synthesis
Polycristalline EuTiO3 powder was prepared by solid-state reaction. A
stechiometric mixture of Eu2O3 (99.9% purity; Metall Rare Earth Limited)
and TiO2 (99%-100%; Sigma-Aldrich) was ball-milled and reacted for 10 h at
1000◦C under a flowing mixture of 5% H2 in Ar (100 ml/min). The resulting
phase purity waws checked by laboratory x-ray powder diffraction. Part of
the powder was reground and pressed into bars (13 x 2 x 2 mm) using 104

Pa uniaxial pressure. Finally the bars were sintered for a further 10 h at
1000◦C under a reducing atmosphere (100 ml/min of 5% H2 in Ar). A small
fragment was used to measure the specific heat and the result were found to
be consistent with the literature.
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Figure 2.14: (a) Experimentally determined magnetic phase diagram of
EuTiO3. (b) and (c) Two-sublattice mean-field phase diagrams for H //
[100] and [001]. ab-AF refers to zero-field AF order laong the [110] or [11̄0]
axis, while c-AF describes AF order along [001]. For the spin-flopped AF
I phase, the spins order in the a, b-plane with the staggered component
of the magnetization perpendicular to the applied field. In contrast, spin-
flopped AF II corresponds to AF ordering along [110] or [11̄0], with a uniform
magnetization component along the c-axis. The emergence of orthogonal
domains at low temperature in EuTiO3 implies that our experimentally
determined diagram (a) should be superposition of (b) and (c). Figure from
Ref. [5]



Chapter 3

Techniques

In order to study the crystallographic and magnetic structure of EuTiO3 we
performed a neutron powder diffraction experiment. Neutron scattering and
diffraction are among the most powerful and versatile experimental methods
to study the structure of materials on the nanometer scale. Neutron can be
produced in a number of ways, e.g. as by-products of cosmic radiation or
radioactive decay of heavy nuclei. More recently, neutrons have been produced
in a laboratory experiment, using a piezoelectric crystal to accelate ions of
deuterium to high energies. Neutron sources with flux adequate for neutron
scattering investigations of materials are based on one of two principles, also
illustrated in figure 3.1:

• Fission. A high continuous flux of neutrons is produced in the core of a
conventional fission reactor. For neutron scattering purposes, research
reactors with compact cores are used rather than the more abundant
nuclear power plants.

• Spallation. By bombarding target of heavy elements with high-energy
particles (typically protons), a very large number of neutrons can be
produces. Spallation sources are typically pulsed, but can also be
pseudo-continuous, depending on the proton accelerator.

Once produced the neutrons are being moderated to thermal velocities close
to the source and then transported to the neutron scattering instruments
in neutron guide systems. Different moderators and guiding systems can
be implemented in order to select the velocity and the energy resolution
required (e.g. short wavelength for high resolution structural experiment and
long wavelength for magnetic structure investigation). Both types of neutron
sources are built as dedicated facilities, each hosting tens of instruments.
Among the reactor sources Insitute Laue-Langevin in Grenoble (France) is
the leading one, with its 58 MW of power and more than 50 instruments.

25
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Figure 3.1: The two different ways of neutron production. Left: traditional
nuclear reactors make use of production of neutrons for maintaining the chain
reaction; extra neutrons can be used for neutron scattering. Right: protons
accelerated into the GeV regime can split heavy nuclei with a large neutron
surplus, creating free neutrons as a part of the reaction products. Figure from
Ref. [6].

The power of neutron scattering techniques can be understood by studying
the physical processes involved in the interaction between a neutron and a
scattering system. The theory of the neutron scattering, briefly summarised
in the following section, can be found in Ref. [42].

3.1 Neutron scattering
Consider a beam of thermal neutrons travelling along the z-axis, all with the
same energy E, incident on a scattering system. Suppose we set up a neutron
counter, of area dΩ, and measure the number of neutron scattered in a given
direction as a function of their energy E ′. Let the direction of the scattered
neutrons be θ, φ, where θ is the polar angle and φ is the azimuthal angle.
The partial differential cross-section is defined by the equation

number of neutrons scattered per second into a
d2σ

dΩ dE ′
= small solid angle dΩ in the direction θ, φ with final (3.1)

energy between E ′ and E ′ + dE ′/Φ dΩ dE ′

where Φ is the flux of the incident neutrons. Suppose we do not analyse the
energy of the scattered neutrons, but simply count all the scattered neutron
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into the solid angle dΩ, despite of their energy. In this case the corresponding
cross-section is called differential cross-section and is defined by

dσ

dΩ
=

∫ ∞
0

(
d2σ

dΩ dE ′

)
dE ′ (3.2)

The total scattering cross-section is obtained integrating over all direction.
This calculation is particularly simple in the case that the partial cross-section
does not depend on φ

σtot =

∫ π

0

dσ

dΩ
2π sin θ dΩ (3.3)

The cross-sections could be actually measured in scattering experiments.
Therefore in order to analyse the results of such experiments we have to
be able to relate these quantities to the internal structure of the scattering
system and the nature of the interaction between the neutron and the system.

Consider a neutron-nucleus system. Let be E the energy of the incoming
neutron and k its wave vector. Let be the z-axis along the k direction and
the nucleus fixed in the origin. The wavevector of the incoming particle is
then

ψinc = exp (ikz) (3.4)

and if we can consider the range of the forces responsible for the interaction
short compared to the wavelength of the neutron, the wavevector of the
scattered particle can be written as

ψsc = − b
r

exp (ikr) (3.5)

where b is a constant (which depends from the nucleus spin) and it is called
scattering length. The wavevector of the incoming and of the out-coming
neutron are of the same magnitude. In fact if the nucleus is fixed, it cannot
change its kinetic energy. Besides that the energy of a thermal neutron is too
low to modify the internal state of the nucleus, therefore the interaction, in
this case, must be elastic.

3.1.1 Nuclear scattering

We now start to evaluate the differential cross-section defined in equation
3.1 for the case of the nuclear scattering. Consider a transition in which the
scattering system state changes from λ to λ′ and the neutron state (which
is a plane wave) changes from k to k′. The state of the scattering particle
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is now fully defined by its wavevector because in this section we will neglect
any magnetic interaction. Using the relation known as the Fermi’s golden
rule we can write(

d2σ

dΩ dE ′

)
λ→λ′

=
k′

k

( m

2π~2

)
| 〈k′λ′|V |kλ〉 |2δ(Eλ − E ′λ + E − E ′) (3.6)

where m is the mass of the neutron and V is the potential describing the
neutron-nucleus interaction. The δ-function ensures the energy conservation.
We begin evaluating the matrix element | 〈k′λ′|V |kλ〉 |2 in equation 3.6, this
means that a form to the potential V must be given. The nuclear interaction
is short-range, therefore we can model it with a sum of δ-functions each
centered in the nuclei positions. Let be r the neutron position and Rl the
position of the l-th nucleus. V can be written in the form

V =
∑
l

Vl (r −Rl) =
2π~2

m

∑
l

blδ (r −Rl) (3.7)

Using 3.7 and performing the integration over the neutron position in equation
3.6, we obtain(

d2σ

dΩ dE ′

)
λ→λ′

=
k′

k

∣∣∣∣∑
l

bl 〈λ′| exp(iκ ·Rl)|λ〉
∣∣∣∣2δ(Eλ−E ′λ +E −E ′) (3.8)

where we introduced the scattering vector κ = k−k′. In k′-direction we count
all the neutrons regardless to the nucleus transition involved: the conservation
of energy is the only constrain. Therefore we have to evaluate the right-side
of 3.8 summing over all final states λ′, keeping the initial state λ fixed, and
then averaging over all λ.(

d2σ

dΩ dE ′

)
=

k′

k

1

2π~
∑
ll′

blbl′

∫ ∞
−∞
〈exp{−iκ ·Rl′(0)} exp{iκ ·Rl(t)}〉

× exp (−iωt) dt (3.9)

where ω is defined by
~ω = E − E ′ (3.10)

and we introduced the Heisenberg operator Rl, given by

Rl(t) = exp (iHt/~)Rl exp (−iHt/~) (3.11)

Equation 3.9 is the basic expression for the partial differential cross-
section for nuclear scattering. It is a compact expression and it can be
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directly measured. However it is far from being simple. In fact the knowledge
of the eigenstates |λ〉 of the scattering system is still required for using this
formula, they are simply hidden in the Heisenberg operator which contains
the Hamiltonian describing the system.

Consider a scattering system of a single element in which the scattering
length bl varies from one nucleus to another owing to nuclear spin or the
presence of isotopes or both. The partial cross-section sperimentally measured
is an average over all these values of b present in the system. If we assume
that no correlation exists between the values of the scattering length for any
two nuclei, the partial cross-section can be split in two terms, the first known
as coherent and the second as incoherent scattering cross section, defined as(

d2σ

dΩ dE ′

)
coh

=
σcoh
4π

k′

k

1

2π~
∑
ll′

∫ ∞
−∞
〈exp{−iκ ·Rl′(0)} exp{iκ ·Rl(t)}〉

× exp (−iωt) dt (3.12)

(
d2σ

dΩ dE ′

)
inc

=
σinc
4π

k′

k

1

2π~
∑
l

∫ ∞
−∞
〈exp{−iκ ·Rl(0)} exp{iκ ·Rl(t)}〉

× exp (−iωt) dt (3.13)

where
σcoh = 4π(b̄)2, σinc = 4π{b2 − (b̄)2} (3.14)

We see from equation 3.12 that the coherent scattering depends on the
correlation between the positions of the same nucleus at different times, and
on the correlation between the position of different nuclei at different times.
It therefore gives interference effects. The incoherent scattering, defined in
equation 3.13 depends only on the correlation between the position of the
same nuclei at different times. It does not give interference effects. In the
following sections we will focus only on the coherent part of the scattering
cross-section, because is the one of interest in a diffraction experiment.

3.1.2 Nuclear diffraction

Up to now we did not put any constrains to the position of the nuclei in the
scattering system. However, if neutron scattering is used to study a crystal,
the generic position of nucleus can be written as

Rl = l + ul (3.15)
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where l is a lattice vector and ul the displacement of the l-th nucleus from its
equilibium position (l), due to thermal motion. Consequently the Heisenberg
operator of equation 3.11 becomes

Rl(t) = l + ul(t) (3.16)

where ul(t) is an operator and l is a constant. We assume that the potential
describing the inter-atomic forces in the crystal is harmonic. For such potential
the displacements ul can be expressed as a linear combination of the normal
modes of vibration of the crystal. The periodicity of a Bravais lattice let us
simplify the summation over l and l′ in equation 3.12, in fact, for each value
of l′ the summations over l are identical and therefore∑

ll′

〈exp{−iκ ·Rl′(0)} exp{iκ ·Rl(t)}〉

= N
∑
l

exp(iκ · l) 〈exp{−iκ · u0(0)} exp{iκ · ul(t)}〉 (3.17)

where N is number of scattering centres in the system. The form and the
properties of the normal modes are well known and combined with equation
3.17, allow us to express the differential cross-section as(

d2σ

dΩ dE ′

)
coh

=
σcoh
4π

k′

k

N

2π~
exp 〈U2〉

∑
l

exp(iκ · l)

×
∫ ∞
−∞

exp 〈UV 〉 exp (−iωt) dt (3.18)

where

U = −iκ · u0(0) (3.19)
V = iκ · ul(t) (3.20)

Let’s focus our attention on the integrand of right term of equation 3.18.
If we expand the exponential term we obtain

exp 〈UV 〉 = 1 + 〈UV 〉+
1

2!
〈UV 〉2 + . . .+

1

p!
〈UV 〉p + . . . (3.21)

The first term of right-hand side represents the elastic process, in other words
a process in which the state of the scattering system remains unchanged. The
second term represents the one-phonon process, and the p-th term gives the
cross-section for all p-phonons processes.
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If we consider only the elastic scattering, the sum over l can be written,
due to the Bravais lattices’ properties, in the form∑

l

exp (iκ · l) =
(2π)3

v0

∑
τ

δ(κ− τ ) (3.22)

where τ is a reciprocal lattice vector and v0 is the volume of the crystallo-
graphic cell.

Finally, integrating 3.18, considering 3.22 and the only the first term in
right-hand side of 3.21, with respect to energy E ′, we get(

dσ

dΩ

)
coh el

=
σcoh
4π

N
(2π)3

v0

exp (−2W )
∑
τ

δ(κ− τ ) (3.23)

which is the cross-section fo elastic coherent neutron scattering, where

2W = −〈U2〉 (3.24)

is known as Debye-Waller factor. The δ-functions in 3.23 tell us that a
reflection occurs only if

κ = k − k′ = τ (3.25)

The Debye-Waller factor is related both to the scattering vector and to the
motion of the nuclei from their equilibrium positions. For a cubic crystal can
be proved that

2W = 1
3
κ2 〈u2〉 (3.26)

where u is the modulus of the displacement of a nucleus from the lattice
point, and the average is performed over all nuclei. For non-cubic crystal
equation 3.26 does not apply but still it is a good approximation. The
vibrations of nuclei usually extent for very short distances and, especially at
low temperature, the Debye-Waller factor is approximately constant, unless
the lattice is undergoing a transition, e.g. a melting transition. We can
generalise the results above to the case of crystal with a basis (more than one
atom per unit cell). The position of the scattering center can be written as

Rld = l + d+ u

(
l

d

)
(3.27)

where l+ d is the equilibrium position of d-th atom in the cell centred in l
and u

(
l
d

)
is the displacement from equilibrium. In this case the the scattering

cross-section for elastic processes is given by(
dσ

dΩ

)
coh el

= N
(2π)3

v0

∑
τ

δ(κ− τ )|FN(κ)|2 (3.28)
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where
FN(κ) =

∑
d

b̄d exp (iκ · d) exp (−Wd) (3.29)

FN (κ) is known as the nuclear unit-cell structure factor, and Wd is the Debye-
Waller factor of the d-th atom, and is still related to the scattering vector and
the mean squared displacement of the atom from its equilibrium position.

Different methods had been developed for measuring the cross section of
equation 3.28: the Laue method, the rotating crystal method and the powder
or Debye-Scherrer method[43]. All these techniques, firstly developed for
X-rays, immediately applied to the neutron case. In the powder method,
which is the one we actually used, the incoming neutron beam needs to be
monochromatic and the scattering sample is a powder made of crystallites on
the order of a micron. Because small crystal are present in all orientations in
the sample, the net effect is a series of ring of scattering peaks, corresponding
to every reciprocal lattice vector of magnitude less than twice that of the
incoming beam. The the cross-section for each ring is

σtotτ =
V

v2
0

λ3

4 sin θ

∑
τ

|FN(τ )|2 (3.30)

where the sum over τ is the sum over all reciprocal lattice vectors with the
same value of |τ |, and V is the sample volume.

3.1.3 Magnetic scattering

We now consider the cross-section due to magnetic interaction between the
neutron and the crystal. Whereas the nuclear scattering occurs because of the
short-range nuclear forces and so is always present, the magnetic scattering
occurs because of unpaired electrons in the atoms of the crystal. As done in
the nuclear scattering description, we can apply the Fermi’s golden rule to
the case of magnetic scattering, leading to(

d2σ

dΩ dE ′

)
λ→λ′

=
k′

k

( m

2π~2

)
| 〈k′σ′λ′|Vm|kσλ〉 |2δ(Eλ − E ′λ + ~ω) (3.31)

where the interaction potential can be written as

Vm = −µn ·B (3.32)

and µn is the magnetic dipole moment of the neutron given by

µn = −γµnσ (3.33)
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where
µn =

e~
2mp

(3.34)

and σ is the Pauli spin operator for the neutron. The magnetic field in
equation 3.32 is generated from the electrons and can be expressed as the
sum of two terms. The first describing the magnetic field generated from the
spin of the electrons and the second from its orbital motion. Their sum is
given by

B = BS +BL =
µ0

4π

{
∇×

(
µe × R̂
R2

)
− 2µB

~
p× R̂
R2

}
(3.35)

where
µe = −2µBs (3.36)

is the magnetic moment of an electron, associated to its spin angular momen-
tum and µB = e~

2me
is the Bohr magneton. The right-hand term of 3.31 can

now be developed and we have for the magnetic cross-section

d2σ

dΩ dE ′
=

(γr0)2

2π~
k′

k

∑
αβ

(δαβ − κ̂ακ̂β)
∑
l′d′ld

1
4
gd′gdF

∗
d′(κ)Fd(κ)

×
∫ ∞
−∞
〈exp{−iκ ·Rl′d′(0)} exp {iκ ·Rld(t)}〉

× 〈Jαl′d′(0)Jβld(t)〉 exp (−iωt) dt (3.37)

where

r0 =
µ0

4π

e2

me

(3.38)

α and β stand for x, y and z, δαβ is the Kronecker delta, κ̂α is the α-component
of a unit vector in the direction of κ, gd is the Landé factor of the d-th atom,
Fd(κ) is the magnetic form factor, and Jβld is the operator corresponding to
the α-component of total angular momentum for the ion l, d. The expression
we have presented is valid under a few restrictions. First we assumed that the
scattering system is a crystal, and the unpaired electrons are localised close
to the equilibrium positions of the ions, this is the reason why in the equation
appeared the Heisenberg operators Rld(t). This is known as Heitler-London
model. Secondly we assume LS coupling and the angular momentum of the
ion is therefore specified by the total angular momentum operator J = L+S.

The magnetic form factor is related to the distribution of the unpaired
electrons, for the simple case in which the scattering is due only to spin
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(L = 0, or angular momentum quenched as in 3d metals) it is given by

Fd(κ) =

∫
ρd(r) exp (iκ · r) dr (3.39)

where the scalar function ρd(r) is the normalised density of the unpaired
electrons in the ion d. Equation 3.39 is the Fourier transform of the normalised
density of unpaired electrons. A more general result have been given by
Johnston[44], and is presented in section 3.3.

3.1.4 Magnetic diffraction

As done in the nuclear case we can apply equation 3.37 to a magnetically
ordered crystal such as an antiferromagnet and only consider the elastic scat-
tering processes. Let’s describe such material as the sum of two ferromagnetic
sublattices. Denote the mean spin direction in the two sublattices by ±η̂.
Let be 〈Jη〉 the mean total angular momentum along η-direction of one of
the sublattices (the mean total angular momentum of the other sublattice
will be opposite, giving a vanishing average over all ions in the crystal). The
expression for the cross-section is thus(

dσ

dΩ

)
el

= (γr0)2Nm
(2π)3

v0m

∑
τm

|FM(τm)|2 exp (−2W )

×{1− (τ̂m · η̂)2
av}δ(κ− τm) (3.40)

where
FM(τm) = 1

2
g 〈Jη〉F (τm)

∑
d

σd exp (iτm · d) (3.41)

In these equation Nm is the number of magnetic cells, which is half the
number of crystallographic cells, v0m is the volume of magnetic cells, which
is double the number of crystallographic cells, τm is a reciprocal magnetic
lattice vector and τ̂m a unit vector along τm-direction.

∑
d means sum

over the ions in the magnetic unit cell and σd has the value ±1 for ions
with mean total angular momentum direction ±η̂ respectively. Comparing
equations 3.28 and 3.40, we can appreciate the differences between nuclear
and magnetic scattering. Firstly, in nuclear scattering, reflections can occur
only when the scattering vector belongs to the nuclear reciprocal lattice,
whereas in magnetic scattering reflections can occur when the scattering
vector belongs to the magnetic reciprocal lattice. Secondly the magnetic
scattering is strongly temperature dependent, in fact 〈Jη〉 falls rapidly to
zero when approaching Néel temperature (TN ), whereas the only temperature
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Figure 3.2: D2B seen from behind the detector. Figure from Ref. [7].

dependence of nuclear scattering is given by the Debye-Waller factor (which
is approximately constant in suitable conditions). Thirdly the magnetic form
factor quickly decreases when increasing |τm|. In fact the magnetic form
factor is, in the case presented in equation 3.39, the Fourier transform of the
electron density and therefore as the spatial displacement of the electron is
comparable with the neutron wavelength the magnetic form factor decreases
with κ. On the other hand, the nuclei displacement is very little, compared
with the neutron wavelength, and its Fourier transform is approximately
constant in κ.

3.2 D2B beamline at ILL

Through the cross-sections and the form factors we can relate the scattered
intensity to the structural information we are looking for. Here we describe
the instrument used for measuring the scattering intensity. We performed
our neutron powder diffraction experiment at D2B (figure 3.2) beamline at
ILL[45, 46, 7]. D2B is a very high-resolution powder diffractometer designed
to achieve the ultimate resolution, limited only by powder particle size
(∆d
d
∼ 5 · 10−4). The layout of the instrument is Debye-Scherrer in the sense

that it uses a cylindrical sample with transmission geometry. This instrument
has four main applications:
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Figure 3.3: Schematic representation of D2B beamline. Figure from Ref. [8].

• the structural chemistry of non-rigid molecules;

• ab-initio structure solution from powders;

• crystal and magnetic structure determination of powder compounds
(even small sample);

• dependance in temperature/pressure/magnetic-field structural (or mag-
netic) studies for powder.

Low temperature measurements are possible due to the liquid He cryostat,
which can be used to achieve sample temperatures as low as 1.5 K.

The term high-resolution refers not to the smallest peak width in the
powder diffraction pattern, but to the fact that the instrumental resolution
function results in narrow peaks at high scattering angle (2θ). This is achieved
by having large monochromator take-of angles as shown in figure 3.3, which for
this instrument is 135◦ (Ge monochromator). Six different neutron wavelength
can be selected by a simple rotation of the monochromator within the [hhl]
plane. The large value of the monochromator angle is required so that the
wavelength dispersion, ∆λ, of the incident beam is kept small. In order to
achieve high resolution, the instrument must be able to count neutrons with a
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very precise Bragg angle. For this reason Soller collimators are placed in front
of each detector. Finally, given the relatively low flux available at neutron
sources, instrument efficiency is greatly imporoved by using many detectors
at the same time: the large multi-detector collects the neutrons scattered
at all angles. It is made by 128 high resistive linear wire detectors, which
are 30 cm height. The 128 linear detectors collect bidimensional images of
the scatterd neutron. An example of these images is shown in figure 4.4,
where the diffraction rings are clearly visible. The bidimensional image allows
correction for curvature of the diffraction cone. A complete diffraction pattern
is obtained after about 25 steps of 0.05◦ in 2θ, since the detectors are spaced
at 1.25◦ intervals. Such scans take typically 30 minutes and they are repeated
to improve statistics. The bidimensional images are integrated over the rings
and avereged. The result is the profile intensity as function of 2θ (see for
example figure 4.5).

3.3 Rietveld Refinement

Rietveld refinement is a method of determination of the structure of a com-
pound. It does not use the integrated intensities, but it directly applies
to profile intensity of a powder diffraction experiment[47]. In the case of
neutron powder diffraction experiments, nuclear as well magnetic structures
can be refined. To apply this method, first of all we must assume a model
describing the sample: the crystallographic and magnetic phases present and
their symmetries. Then, through a minimization process, the model is fitted
onto the observed data and the optimal value of the refinable parameter (e.g:
lattice constant and atoms’ position) are returned. In the following sections
we will present the software used to perform the Rietveld refinement and a
more general formulation of the form factors which is necessary to deal with
the EuTiO3 case.

3.3.1 Fullprof suite for Rietveld refinement

Several programs have been developed in the past decades to perform Rietveld
refinements, among these we chose FullProf[48].1

Due to the finite size of the detectors the diffraction profile is discretize in
n steps, as a function of the scattering variable 2θ. The observed profile can
be modeled using the calculated counts yc, i at the i-th step by summing the

1In the this section the notation will be slightly changed to be consistent with FullProf
manual[49].
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contribution from the neighboring Bragg reflections plus the background

yc, i =
∑
φ

Sφ
∑
h

Iφ, hΩ(2θi − 2θφ, h) + bi (3.42)

The vector h = H + k labels the Bragg reflections, where H identifies the
crystallagraphic reflections and k is the propagation vector, which indicates
the magnetic reflections2. The subscript φ labels the phase and vary from
1 up to the number of existing phase in the model. Sφ represents the scale
factor of phase φ, Iφ, h is the integrated intensity of h reflections owed to
phase φ, Ω is the reflection profile function that models both instrumental
and sample effect, centred in the angular position of the Bragg reflection
2θφ, h for phase φ. The general expression of the integrated intensity is

Iφ, h = {LAPCF 2} (3.43)

where L contains the Lorentz, polarisation and multiplicity factors, A is the
absorption correction, P is the preferred orientation function, C includes
special corrections and F is the structure factor3.

The absortion correction A takes into account the neutron absorption,
but only in the case of a simple cylindrical sample holder. The preferred
orientation function P corrects the calculated profile when the distribution
of the crystallites is not isotropic. For example plate-like crystallites have
a tendency, at least in part of the sample, to align their normals along the
axis of sample holder. C allows the user to manually control the calculated
pattern if special correction are needed. This possibility is crucial in our case.
In fact, due to the strong neutron absorption of europium atoms we did not
use the simple cylindrical sample holder, but the double walled sample holder.
The absorption correction for such a geometry cannot be controlled through
the A factor and therefore we used the C factor.4

The Rietveld method consists of refining crystallographic and magnetic
structures minimising the weighted squared difference between the observed
intensities and the calculated pattern, against the parameter vector α =
(α1, α2, . . . , αp), where p is the number of refined parameters. The function
minimized in the method is

χ2 =
n∑
i=1

wi{yi − yc, i(α)}2 (3.44)

2The propagation vector is discussed in the following section.
3The general formulation of the structure factor is presented in section 3.3.2.
4The determination of the C factor is discussed in section 3.4.
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with wi = 1
σ2
i
, being σ2

i the variance of the observation yi, calculated supposing
a Poissonian distribution.

The quality of the agreement between observed and calculated profiles is
measured by a set of conventional factors

• Profile factor
Rp = 100

∑n
i |yi − yc, i|∑n

i=1 yi
(3.45)

This factor simply measures the agreement between the observed profile
and the calculated profile.

• Weighted profile factor

Rwp = 100

[∑n
i wi|yi − yc, i|2∑n

i=1wiy
2
i

]1/2

(3.46)

The weighted profile factor corrects the profile factor taking into account
the Poissonian distribution, the contribution of the peaks is therofore
moderated with respect to RP .

• Expected weighted profile factor

Rexp = 100

[
n− p∑n
i wiy

2
i

]1/2

(3.47)

• Reduced χ2

χ2
ν =

[
Rwp

Rexp

]2

=
χ2

n− p
(3.48)

where n is the number of 2θ step observed and n − p the number of
degrees of freedom of the refinement. This factor allows the comparison
among refinements of the same structure, performed with the same
model, but with a different number of refinable paramenters. Moreover
χ2
ν is proportional to the function χ2 minimized in the method.

• Bragg factor

RB = 100

∑
h |Iobs, h − Icalc, h|∑

h |Iobs, h|
(3.49)

With the exception of the last item in the list, all the agreement factors
presented are calculated using all the observed and calculated points, whereas
the Bragg factor is calculated only using those points where there are Bragg
contributions taken into account, moreover the Bragg factor is calculated



40 CHAPTER 3. TECHNIQUES

separately for each phase included in the model. The observed integrated
intensities Iobs, h are not actually observed, in fact they are calculated using
the Rietveld formula

Iobs, h = Icalc, h
∑
i

{
Ω(2θi − 2θh)(yi − bi)

(yc, i − bi)

}
(3.50)

3.3.2 Structure factor

With respect to the formula presented in section 3.1.3, here we present a more
general result for the structure factor, which is the one used by FullProf. It
can be expressed as the sum of the crystallographic and the nuclear component:

F 2
h = F 2

c, h + J2
m, h (3.51)

The crystallographic structure factor Fc, h is calculated by using the formula

Fc, h =
n∑
j=1

Ojfj(h) exp (−Bj|h|/4)
m∑
s=1

Tjs(h) exp
{

2πi
(
hTSsrj + hT ts

)}
× exp {−Bov|h|/2} (3.52)

where n is the number of atoms in the asymmetric unit, m is the number of
the reduced set of symmetry operators of the crystal space group. Oj is the
occupation number factor, fj(h) is the scattering length, Bj is the isotropic
temperature parameter and rj is the position vector of atom j. Tjs(h) is
the anisotropic temperature factor. Bov is the isotropic overall temperature
parameter.

The magnetic phase Jm, h is calculated using the general formula of Halpern
and Johnson

J2
m, h =

(
|Fm(h)|2 − (e · Fm(h))2) exp {−Bov|h|/2} (3.53)

where Fm(h) is the magnetic structure factor, e is the unit vector along
the scattering vector h and Bov is the isotropic overall temperature factor.
The magnetic structures that can be refined with FullProf must have a
distribution of magnetic moments that can be expanded as a Fourier series

µlj =
∑
k

Skj exp {−2πikRl} (3.54)

where l labels the cell within the crystal, j the atoms in the crystallographic
unit cell, k is the propagation vector, Skj is the kj Fourier component and
Rl is the position fo the l-th cell. In the case of the antiferromagnetic phase of
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EuTiO3 the magnetic unit cell is the same as the chemical cell and therefore
the translational symmetry of the magnetic structure is identical to that of the
crystal structure. In such a case the propagation vector is k = (0, 0, 0) = 0.
The Fourier coefficients are real and can be identified to magnetic moments
directly:

mlj = S0j exp (−2πi0Rl) = S0j = m0j (3.55)

Back to the general case, if we also consider thermal motion and the the
simmetry relations for coupling the different Fourier component Skj are
established, we obtain the general expression of the magnetic structure factor

Fm(h) =
γr0

2

n∑
j=1

Ojfj(h) exp (−Bj|h|/4)

×
∑

sMjsSkjTjs exp {2πi [h {S|t}s rj − ψkjs]} (3.56)

The largest part of terms in equation 3.56 has been already explained. Here
we focus on Mjs and ψkjs. Mjs is the symmetry operators which transforms
the Fourier component of the atom j1 suitably in all the equivalent position
(labeled with s)in the crystallographic space group. The phase ψkjs has two
component

ψkjs = Φkj + φkjs (3.57)

Φkj is a phase factor that is not determined by symmetry. It is a refinable
parameter and it is significant only for an independent set of magnetic atoms
with respect to another one. φkjs is a phase factor determined by symmetry,
in fact the Fourier component k of the magnetic moment of atom j1, Skj, is
transformed to

Skjs = MjsSkj exp {−2πiφkjs} (3.58)

3.4 Absorption correction
Due to the presence of Europium, EuTiO3 strongly absorbs neutrons(σEu

abs =
4530 b). This represents the very first challenge, which has to be overcome,
to our experiment and to the following data treatment. Absorption leads
to high counting time, in order to have intense reflections, and also distorts
the intensities of reflections, introducing a particular angular dependence.
Consider two different neutrons which scatter in the sample, the first being
back-scattered and the second forward-scattered. On average, the forward-
scattered neutron has an higher probability of being absorbed, owing to
its longer path through the sample. Therefore the intensity of a peak at a
given angle is affected from absorption, and the intensity of two peaks at two
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Figure 3.4: Schematic representation of the annular cylindrical sample holder.

different angles could be correctly compared only taking this into account.
The absorption problem could be solved using enriched Eu instead of natural
Eu, but the process of enrichment would be too expensive.

In order to increase the intensity of the signal, compatibly with the
allowed experimental time, we decided to use a double walled sample holder,
shown in figure 3.4, which decreases the neutrons path within the sample,
decreasing then the absorption. The double walled sample holder is an
experimental geometry not implemented in FullProf, which is only able
to treat absorption in a simple cylindrical sample holder. The software
accepts, as an input, a correction file in which we can write the correction
for absorption, as two arrays, the first containing the angles and the second
the correction factors for the given angles. Unfortunately, the absorption
as a function of the diffraction angle in the case of a double walled sample
holder (but also in the case of a simple cylindrical sample holder) cannot be
written in an analytical form. Therefore we have to calculate numerically
these correction factors.

3.4.1 Transmission factor

Transmission factors for neutron powder diffraction have been tabulated for
several geometry situations, in particular for spherical, simple cylindrical and
annular cylindrical sample holder[50, 51, 52].

Generally speaking the transmission factor is defined as

A (2θ) =
I (2θ)

I0

(3.59)
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where I0 is the intensity of the incident neutron beam, I (2θ) is the intensity
of the diffracted neutron beam and θ is the Bragg angle. A is given by the
integral

A =
1

V

∫
V

exp (−µl) dv (3.60)

where µ is the linear absorpion coefficient, V the total volume of the sample
and l the total path of neutron through it. For diffraction in the equatorial
plane from a cylinder of radius R, the transmission factor can be exactly
calculated for only 2θ = 0◦ and 180◦[50]. For other values of 2θ, it must be
obtained by numerical integration. The numerical integration is a fortiori
required for the case of the double walled sample holder. In both cases (simple
and annular cylindrical) can be found that the transmission factor at a given
angle only depends from two parameters: µR (here R is the radius of the
outer cylinder) and ρ, the ratio between radius of the inner and the outer
cylinders[51, 52]. Schmitt and Ouladdiaf reported the transmission factor
calculated for different Bragg angles, for integer values of µR ranging from 1
to 30 and for ρ = 0.8, 0.85, 0.90 and 0.95[52]. However the values reported in
literature does not fit our case (which is presented is section 3.4.2). Thereafter
we developed a new Python code capable to perform the integral of equation
3.60, for any values of µR, ρ and 2θ. We checked the results of the new code
and found coherent with those reported in literature. Finally we used the
code for the case of interest. The most important task for such calculation
is the determination of the total path length for a given Bragg angle θ. For
each integration point, the actual neutron path in the annular cylinder is
obtained by subtracting from the total path within the outer cylinder, the
path corresponding to the inner cylinder if needed. In order to decide if
this latter contribution must be subtracted, four cases must be considered,
combining the possibilities for a neutron to go through the inner cylinder
before and after the scattering event.

Because the purpose of this code is to arrange a useful tool for treating
the data of a neutron diffraction powder experiment, we are interested in
having a correction curve for 2θ ranging from 0◦ to 180◦, for given µR and
ρ. Although it is in principle possible to calculate the correction factors for
an arbitrarily high number of angles in the range of interest, we decided to
generate the correction curves interpolating twenty calculated points between
0◦ and 180◦, making a trade-off between accuracy and computational time.
We verify the sustainability of such restriction comparing a transmission curve
interpolated starting from twenty points to one interpolated starting from two
hundreds points. The maximum relative difference between the two curves, in
the range of interest, is lower than 10−4. This difference is acceptable for our
case, because other measured parameters, e.g. the dimensions of the double
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Quantity
Cylinder outer radius R 0.54(1) cm
Cylinder inner radius r 0.40(1) cm
Cylinder length L 6.1(4) cm
EuTiO3 mass m 3.83(1) g
Volume of the sample Vsample 2.59 cm3

Eu atoms per unit cell nEu 4
Ti atoms per unit cell nTi 4
O atoms per unit cell nO 12

Cell parameters a = b 5.507 Å
c 7.813 Å

Volume of the unit cell Vcell 237 Å3

Eu absorption cross section σEu 4530 b
Ti absorption cross section σTi 6.09 b
O absorption cross section σO 0.00019 b
Density of EuTiO3, crystal dEuTiO3, crystal 6.95 g/cm3

Table 3.1: List of physical and geometrical quantities needed to calculate the
absorption parameters.

walled sample holder, have higher relative uncertainty5.

3.4.2 Europium titanate absorption parameters

The code developed for dealing with every possible case of double walled
sample holder, of course, could be used for the case of interest. Considering
that only tho parameters µR e ρ define the absorption function, we have to
calculate those parameters starting from the geometry of the sample holder
and the mass of EuTiO3. What is needed is listed in table 3.1.

First of all we can calculate the linear absorption coefficient of EuTiO3 in
the crystalline phase µcrystal from

µcrystal =
nEuσEu + nT iσT i + nOσO

Vcell
(3.61)

where nx is the number of x atoms in the unit cell of volume Vcell and σx its
absorption cross-section. Secondly we have to consider that the sample is not
an EuTiO3 single-crystal, but it has been powdered, therefore, in order to

5For the measured parameters see table 3.1 on page 44.
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calculate µR we have to take into account the packing fraction f given by

f =

mEuTiO3

Vsample

dEuTiO3, crystal

(3.62)

where mEuTiO3 is the mass of powdered sample insert in the sample holder,
Vsample its volume and dEuTiO3, crystal the density of EuTiO3 in the crystalline
form. Multiplying equations 3.61, 3.62 by the external radius R of the sample
(which is the internal radius of the sample holder), we finally get the parameter
of interest

µR = fµcrystalR (3.63)
Whereas ρ is simply given by:

ρ =
r

R
(3.64)

where r is the internal radius of the sample. From equations 3.63 and 3.64
and the data in table 3.1, we get µR = 8.826 and ρ = 0.738.

As all the parameters measured are affected by uncertainty, also µR and
ρ will be uncertain. In figure 3.5 all the parameters but one are kept fixed
to their nominal values, the last is varied within its uncertainty region as
declared in table 3.1.

The mass of EuTiO3 (blue line) and the length of the sample holder
(light-blue line) only act on the packing fraction of the sample, therefore they
do not change the ρ value. To higher values of the mass correspond higher
values of µR, whereas to higher values of sample holder’s length correspond
lower values of µR. The external radius R (green line) and the internal radius
r (red line) influence both the µR and ρ in a form which seems to be similar,
but by higher values of R we move downward along the green line and by
higher values of r we move upward along the red line.

Of course this is a raw model because it let vary only one parameter
keeping fixed the others, but allows us to understand that the variation of
the mass of EuTiO3 is negligible. So we can develop an analysis which allows
all parameters varying within their uncertainty regions at the same time, but
in this analysis we can neglect the contribution of the mass uncertainty. The
result of this analysis is reported in figure 3.6. The twenty seven blue points
sample the region of the µR-ρ space which is compatible with the uncertainty
of the measured quantities. As shown the absorption parameters could vary
up to a 4% for ρ and up to a 15% for µR from their nominal values.

3.4.3 Transmission curve of interest

In figure 3.6 we reported twenty seven points. For each of those we calculated
the corresponding transmission curves. As explained in section 3.4.1, in order
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Figure 3.5: Dependence of the absorption parameters µR and ρ from the
measured parameters, m, R, r and L, compatible with their uncertainty. For
each of the parameters varying the others are kept fixed to their nominal
values.

Figure 3.6: Sampling of the µR-ρ space compatible with the uncertainty on
the measured parameters.



3.4. ABSORPTION CORRECTION 47

Figure 3.7: Normalised transmission curve compatible with the uncertainty
on the measured parameters.

to obtain a single curve a non negligible computational time is required,
therefore we choose only these twenty seven points to investigate the whole
region of interest. The corresponding transmission curves are depicted in
figure 3.7. From these curves we can extract the correction files FullProf needs
to treat correctly EuTiO3 absorption in our case. The curves are normalised:
for each of them the transmission at 2θ = 0◦is 1. The code developed for
the calculation of these curves usually returns a non-normalised curve, in
which the value of the transmission could be interpreted as the probability
for a neutron, scattered at a given angle, to be not absorbed during his path
through the sample. The reason why the curves are presented normalised is
related to the way FullProf refines the data. In FullProf the very first
parameter which is refined is a scale factor which uniformly applies at the
model at all scattering angle. Let’s assume that two transmission curves only
differ for a multiplying constant, then if they are used for a refinement, the
two results will be equivalent. The only difference would be the scale factor.
For this reason what matter for the refinements is not the absolute value
of transmission, but the relative value of the transmission at two different
angles. Considering that all the curves are normalised at 2θ = 0◦, we can



48 CHAPTER 3. TECHNIQUES

Figure 3.8: Non normalised transmission curve compatible with the uncer-
tainty on the measured parameters.

distinguish the curves by the transmission at 2θ = 180◦. We can observe
that there are two extreme correction which correspond to the same value
of ρ (0.74) and two different values of µR (8.40 and 9.32). The transmission
curves of these two corrections are colored in figure 3.7. The green line (at
the top) represents the curve for the higher value of µR, whereas the red line
(at the bottom) represents the curve for the lower value of µR. Of course
for higher values of µR the absorption is stronger as can be seen in figure
3.8, where the transmission curves are displayed non-normalised. The correct
information that can be derived from figure 3.7 is only that for higher values
of µR the neutrons scattered at higher angles are less absorbed with respect
to those scattered at lower angles. This as expected from the relative path
through the sample, longer for smaller diffraction angles. It is important
to point out that both the extreme corrections are obtained for the same
values of ρ. Therefore in order to explore all the possible corrections within
the µR-ρ space, compatible with the uncertainty on the parameters, we can
reduce the investigation to different points with ρ = 0.74, which actually
is only 0.4% higher than the nominal value, and µR varying between the
values allowed for the given ρ. The points selected are shown in figure 3.9.
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In the previous simulation (figure 3.6) there are three points for the ρ of
interest (0.74) with µR between 8.40 and 9.32. In figure 3.9 there are seven
points with µR between 8.16 and 9.61, plus a point for µR = 7.70 for reasons
which will be clear in the next chapter. To these eight points correspond the
eight transmission curves which are shown in figure 3.10. These curves can
be considered a good representation of all the possible transmission curves
compatible with the uncertainty on µR and ρ, therefore these will be used to
generate the correction files needed for the refinements.

3.5 Data and calculated profile correction

At the beginning of the current section, we introduced the purpose of the
calculation of the correction factor: provide a correction file which can be
used by FullProf. Generally speaking two options are available. First,
it is possible to correct the collected data for absorption and perform a
Rietveld refinement, supposing a non-absorbing sample. Second, to perform
the refinement of raw data, specifying to the program how to correct the
calculated model, to take into account absorption. In figure 3.11 we investigate
the differences between the two procedures. In the upper left panel, the raw
data are presented. The behaviour of an absorbing sample is evident due to
the increasing intensity of the diffracted peaks with the Bragg angle. To make
this behaviour even more evident should be considered that the very first
peak is not a reflection, but are counts corresponding to the diffusion (air and
sample environment) of the direct beam, and that the intense peak around
40◦, it is not due to EuTiO3, but to the sample environment. Actually it is a
Bragg reflection due to the crystallites of the vanadium sample holder. In
the upper right panel is shown the simulation of the diffraction pattern of a
fictitious non-absorbing EuTiO3 sample. The lack of the absorption is testified
by the flat behavior of the reflections. In the left lower panel the absorption
correction is directly applied to the measurements. The inconsistency of
the solution is self-evident. The background is strongly enhanced at low
angle and, on the other hand, the reflections for large scattering vectors
are still too low (with respect to the theoretical pattern shown in the right
upper panel). A better result can be obtained subtracting before a linear
interpolated background and then applying the correction. However due to
the impossibility of an exact subtraction of the background, its variance is still
increased, and the best solution is to apply the correction to the calculated
pattern, as shown in the right lower panel.

Giving the correction file as an input to FullProf, let us to manually
control the C factor of equation 3.43, applying the correction Bragg peaks,
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Figure 3.9: Points of interest within the region compatible with the parameters’
uncertainty. The correction curves corresponding to the points enclosed in
the green rectangle can be considered a good representation of all the possible
transmission curves compatible with the uncertainty on µR and ρ can be
considered a good representation of all the possible transmission curves
compatible with the uncertainty on µR and ρ.

Figure 3.10: Normalised transmission curves corresponding to the points of
interest within the region compatible with the parameters’ uncertainty.
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but not to the background, which is added to the model after the correction,
as defined in equation 3.42.



Chapter 4

Measurements and results

4.1 Sample preparation and characterization

The sample was grinded directly at Institute Laue-Langevin in Grenoble
(France), where the measurements have been performed. EuTiO3 was always
kept in controlled atmosphere during all the processes. We were concern of
preventing oxidation or contamination of the compound during its delivery,
and its preparation. A fraction of the EuTiO3 available was insert in the
double-walled sample holder in a glove-box. This sample was used for the neu-
tron powder diffraction experiment (presented in section 4.2), the remaining
for other characterization measurements.

Among these characterization measurements we performed X-rays powder
diffraction at ID15 beamline at ESRF in Grenoble[53]. Those measurements
were performed at several temperature between 90 K and 400 K. The purpose
was to check that the crystalline structure at room temperature and at low
temperature is the one reported in literature. Cubic space group Pm3̄m
above 282 K, and tetragonal space group I4/mcm under 235 K1. For each
temperature a series of images of the diffracted photons were collected with a
two-dimensional detector. One of these images is shown in figure 4.1. The
rings of the Bragg reflections are clearly visible.

The methods of analysis of powder diffraction experiment usually apply
to a one dimensional profile. In this profile the diffracted intensity is reported
versus the scattering angle. Therefore starting from the image of figure
4.1, we performed azimuthal integrations over the rings, in order to obtain
the 2θ-dependency of the diffraction peaks and use the PDF method to
solve the structure. The azimuthal integrations were performed using a new
Python package called PyFAI[54]. Those data are still in the process of

1The crystal structure of EuTiO3 is discussed in section 2.2.

53
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Figure 4.1: Image of diffraction rings of EuTiO3 collected at ID15 beamline
at ESRF.

Figure 4.2: Diffraction patterns collected at room temparature of EuTiO3 at
ID31 beamline at ESRF. Black symbols are the experimental data, the red
line is the calculated pattern and the blue line is the difference between the
two.
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being analysed, but a room temperature measurement has been performed
at ID31 beamline at ESRF by our collaborators to our EuTiO3 project from
Università degli Studi of Milan.

The collected data and the Rietvield refinement are depicted in figure 4.2.
The room temperature structure of this sample has been found consistent
with the sample studied in Ref. [3]. Therefore we concluded that the room
temperature of our sample is Pm3̄m, and reasonbly assumed the low temper-
ature structure to be I4/mcm. The figure shown let us briefly discuss the
difference between X-ray powder diffraction and neutron powder diffraction,
whose results are represented in figure 4.5.

Firstly neutrons interact with the nuclei in the scattering system, whereas
X-rays interact with electrons. This leads to a different Bragg-angle depen-
dence of the diffracted intensities of the two techniques, because the form
factor contains the Fourier transform of the scattering system. If we deal
with nuclear scattering, the physical dimension of a nucleus is little compared
with the wavelength of the incoming nuetron and the form factor will be a
constant; whereas if we deal with electron scattering, the Fourier transform
of the electron density (whose displacement is much larger than the nuclear
one), and consequently the Bragg peaks, will decrease with 2θ. Secondly,
neutrons, due to their spins, are sensitive to the magnetic moments of the
atoms of the sample, and can therefore be used to solve magnetic structures2.
Thirdly figure 4.2 let us appreciate the instrumental advantages of X-rays.
The dinamical range is impressively high: very intense peaks are superimposed
to a very low background. The very-high resolution provides extremily sharp
reflections. The high flux of synchrotrones sources allows to collect diffraction
patterns with counting time lower than neutron case.

A small quantities of the sample was also measured by SQUID (Supercon-
ductive QUantum Interference Device) in Dipartimento di Fisica e Scienze
della Terra "Macedonio Melloni" of the Università di parma, PaRMA group.
The measurements are shown in figure 4.3. In panel (a) the antiferromagnetic
phase is revealed by the temperature dependence of the magnetization at
very low temperature and the Néel temperature, TN = 5.5 K, is identified by
the clearly visible anomaly. Panel (b) focuses on the paramagnetic phase of
EuTiO3. Fitting the blue points (from T 65 K ÷ 300 K) with a function of
the form

1

χ
=

1

C
(T − TW ) (4.1)

we get C = 3.6(0.3)·10−2 emuK/g and TW = 3.1(1.5) K. TheWeiss tempereture
2Actually X-rays magnetic scattering is nowaday a widely used tecniques in syn-

chrotrones, but the magnetic signal cannot be detected in the experimental setup used at
ID31.
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Figure 4.3: Magnetic characterization of EuTiO3 sample. (a) Magnetization
temperature dependence and (b) reciprocal of the magnetic susceptibility
temperature dependence.

is uncertain due to the fact that the interpolation is perform far away from the
transition, but it is consistent with the Néel temperauture previously identified.
The Curie constant let us to evaluate the magnetic moment of europium atoms
as µ = 8.4 µB, which is actually higher than the values reported in literature
around 7 µB[29]. However, in spite of the values reported in literature, the
theoretical value, compatible with the expected electronic configuration of
the free ion Eu++ is µ = g

√
J(J + 1) = 7.93 µB and it compare well with

our experimental result. In fact Eu++ normally has bigger magnetic moment
due to its electronic perculiarities.

4.2 Measurements

The neutron measurements have been performed at D2B beamline at the
Insitute Laue-Langevin in Grenoble, France. D2B is a high-resolution powder
diffractometer whose resolution is limited only by powder particle size (∆d

d
∼

5 · 10−4). Such a high resolution was needed in order to resolve between the
two proposed antiferromagnetic structures of EuTiO3 (described in section
2.3). Four measurements have been perfomed. The neutron wavelength was
set at λ = 1.595 Å for the entire data set. A preliminary measurement in the
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Figure 4.4: Image of a single scan collected on EuTiO3 sample at D2B
beamline at ILL. The scan has been cut into three slices for printing need.

high flux mode (107 neutrons/s), at 3.5 K, was taken to check the powder for
the presence of contaminants and the actual absorption of the sample in order
to determine the measurement time for the following acquisitions. Thereafter
a set of three measures at very high-resolution were taken. Slits 200 were
introduced. The slits reduces the angular dispersions of the neutron beam
improving the resolution but reducing the flux (106 neutron/s). This set-up
was chosen as a trade-off between the requirement of high resolution and
time constrain. Priority was given to the set-up ensuring highest resolution
at low angles were the magnetic contribution is stronger, and were the peaks
discriminating between to proposed magnetic structures are localized. The
first measure was performed at 3.5 K, then the second at 1.6 K, and the last
at 3.5 K again. All the measurements in high resolution mode took roughly 24
hours, no more temperature points were then compatible with the available
experimental time. In figure 4.4 the image of single scan collected on EuTiO3

is shown. The detector height is approximately 30 cm. In order to improve
the resolution the integrations of the diffraction rings3 were performed only
on the central 10 cm of the detector. Then all the single scans of a single
measure were averaged and the results are shown in figure 4.5. The two
different measures at 3.5 K, one before and the other after the one at 1.6 K,
were carried out in the possibility of the existence of an hysteresis cycle in the
phase diagram (if two different antiferromagnetic phase exists). However the
two measurements at 3.5 K does not show any relevant differences, therefore
there is not any evidence of an hysteris cicle. This can be evicend looking
at the difference between the two measurements (blue line in figure 4.5).
This let us consider the two different measures describing the same phase,

3Actually due to the height of the detector only archs are visible.
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therefore we averaged them. The averaged data at 3.5 K correspond to an
equivalent measurement of roughly 48 hours. This lead to an improvement of
the signal-noise ratio, important at this temperature for two main reasons.
Firstly because the magnetic signal is lower at higher temperature due to the
decrease of the mean value of the magnetic moment approaching TN . Secondly
because the measure at 3.5 K is crucial to the purpose of our investigation,
because it is at this temperature that doubts have been raised on the magnetic
structure of EuTiO3.

In figure 4.6 is shown the difference between the measure at 1.6 K and
the measurement at 3.5 K. The peaks corresponds to reflections changing
their intensities with temperature. This identifies the magnetic reflections, or
at least the reflections with a magnetic contribution, especially at low angle
where the magnetic scattering is stronger.

4.3 Refinements

We recall that this analysis has been done in order to contribute to the deter-
mination of the crystallographic and magnetic structure of EuTiO3. Within
all the information which can be obtain by Rietveld refinement, we are focused
on the determination of the orientation of the spins localised on Eu atoms.
To perform a Rietveld refinement an hypothesis of the structure is required.
This made the method adequate to our case. In fact the crystallagraphic unit
cell have been proved to belongs to I4/mcm space group below 235 K, after
the cubic to tetragonal transition. The antiferromagnetic ordering is reported
to be Γ9 (spin moments in the a, b plane) at 1.6 K by all the authors and
reported to be Γ9 from Scagnoli et al. and Γ6 (spin moments slong the c-axis)
from Petrovic et al. at 3.5 K. The strategy is therefore to refine the data
with both the proposed structure at both temperature. From the refinement
at 1.6 K we will be capable to see whether the resolution is sufficient to
distinguish the two structure. If so, from the refinement of 3.5 K data we
will be capable to determine which of the two magnetic structure is in better
agreement with the experimental data.

4.3.1 Preliminary

It is first of all necessary an evaluation of the background. FullProf provides
different solutions: determination from refinable background functions, or
linear interpolation between manually selected points. We chose the second.

Secondly we have to consider that the neutrons measured by the counters
are not only due to the scattering processes which take place in EuTiO3
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T = 1.6 K T = 3.5 K
2θi 2θf 2θi 2θf
-0.10 10.00 -0.10 15.00
39.20 48.75 39.20 49.65
68.00 68.91 68.00 68.91
123.23 124.22 123.23 124.22
145.00 180.00 145.00 180.00

Table 4.1: Region excluded from the refinements.

sample. Neutrons can reach the detector without any reflection or after being
scattered by other materials in the sample environment. Contributions can
be found from the sample holder or from contaminants accidentally drop in
the sample holder. Therefore, before performing the refinements, it is crucial
to identify these contributions and neglect the corresponding regions during
the refinement process. Through a first refinements at both temperature, we
detected these contributions, that can be located far from the EuTiO3 peaks,
or in the worst case in the same position. Table 4.1 presents the list of the
excluded regions for the two temperatures.

The first excluded region is related to the neutrons of the incident beam,
which go through the sample without scattering. This region extends up to
10◦, due to the size of the beam spot. The other regions, but the last, are owed
to the vanadium and alluminium Bragg peaks. These materials are present
because constitute the sample holder. The last region has been excluded
because of the vanadium and alluminium contributions become dominant
with respect to EuTiO3 peaks.

4.3.2 1.6 K

We first see the results of refinements at 1.6 K with Γ9 as magnetic structure.
The refinements have been performed using the correction factors obtained
as described in section 3.4.3 from curves depicted in figure 3.10. For each
possible correction different combinations of parameters have been refined.

In FullProf the crystallographic and the magnetic structure are de-
scribed as two separated phases. Although there are significant differences
between the declaration of structural phases from magnetic ones, we can state
that for each phases the following parameters are defined:

• space group and related symmetry operations;
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Peak shape Biso Bov

zero same same none
tp diffent same none
biso different different none
1bov different none same
2bov different none different

Table 4.2: Refinement combinations description.

• atoms within the cell: position, thermal motion parameters (Biso) and
magnetic moment (in magnetic phases only);

• scale factor;

• overall thermal motion parameter Bov;

• peak shape parameters (U, V, W, X, Y );

• lattice parameters (a, b, c, α, β, γ).

Other parameters describing strain, preferred orientation of the crystallites
within the powder and asymmetry in the peak shape can be declared, but
we neglected these effects in our analysis. With the exception of the first
item in the list (the space group and its related symmetry operations) all
the other items are parameters that can be refined, accordingly to the space
group constrains. The refinements of crystallographic and magnetic phase
are performed at the same time, but no constrain is imposed by the software
between the two phases, if any is required it must be given by the user. By
constrain we mean, for example, that two refinable parameters belonging to
the two phases have to be refined to the same value. We forced to the same
values between the two phases the atoms’ positions, the scale factor and the
lattice parameters for all the refinements perfomed. For the other parameters
we tested different possible configuration summurised in table 4.2. In zero
combination the peak shapes and the Biso between the two phases are forced
to be the same.4 In tp combination only the Biso are forced to be the same.
In biso all the parameters are free between the two phases. In these three
combinations no use of Bov has been made, because its usage is alternative
to Biso. In 1bov and 2bov, same and different Bov, respectively, have been
used, different peak shape parameters and Biso have been kept to zero.

4Actually in the magnetic phase only the europium atom is present.
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The agreement factors for the described refinements are presented in figure
4.7. In the upper panel the reduced χ2

ν is presented. This factor decreases with
µR for all the combinations presented. The highest values of χ2

ν , which means
the worst agreement between the observed and the calculated profiles, are
shown by the 1bov combination, whereas the best agreement is shown by biso
combination. This is far from being surprisingly because the biso combination
leaves to FullProf the highest degree of freedom for the refinement, while
the 1bov combination leaves the lowest.

The central and the bottom panel show the Bragg Factor RB for the
structural and magnetic phases. The Bragg factor for the structural phase
remains in a range between 8.30 and 8.70 for all the combinations. On
the other hand the Bragg factor for the magnetic phase shows a greater
dependence from the combination chosen. For 1bov this agreement factor
ranges from 34 to 38, wheras for biso it ranges from 20 to 24. The quality of
the refinement of the magnetic phase strongly influences the quality of the
overall refinement. In fact the worst magnetic agreements coincide with the
worst global agreements and the best magnetic agreements coincide with the
best global agreements.

However the agreement factors alone cannot suggest the strategy and
indicate the best refinements. In figure 4.8 are shown the values of the
individual isotropic thermal parameters for all the atoms in the cell. The
values returned by the refinements are mostly non-sense values. First of all
these parameters must be positive and secondly they usually are no greater
than 5 · 10−1 for temperature of a few Kelvin. For these reasons we decided
not to refine Biso and we restricted the description of the thermal motion to
Boverall. In figure 4.9 the values of Boverall for the 1bov and 2bov combinations
are presented. The blue points correspond to 1bov, whereas the green and
blue points correspond respectively to the crystallographic and magnetic
Bov of 2bov combination. The data show too high values for the Bov of the
magnetic phase, therefore we must opt for the 1bov configuration for all the
refinements, despite of the fact that, among the ones proposed, is the one
which leads to the worst agreement between the data and the refined profile.
We particularly refer to the Bragg factor of the magnetic phase, because the
variation of χ2

ν is less then a 5%.
Further information can be found in the thermal parameters behaviour.

Let us consider the µR dependence of those parameters, they all increase with
the increase of the correction parameter µR. This can be explained comparing
the dependence of the correction factor and the Debye-Waller factor from
the scattering vector. For higher Bragg angles (larger scattering vectors)
the Debye-Waller factor decreases, reducing the form factor. For higher µR
the correction factor amplifies more the calculated profile at higher Bragg
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Figure 4.7: Agreement factors of the Rietveld refinements at 1.6 K for the
absorption corrections proposed.
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Figure 4.8: Refined individual thermal motion parameters at 1.6 K for the
absorption corrections proposed.

angles with respect to lower Bragg angles. Therefore the most the correction
enhances, for large scattering vectors, the calculated profile, the most the
thermal parameters counteract this effect. The crystallographic phase is less
sensible to this effect than the magnetic phase. In fact the structural Bragg
factor for the 2bov combination is even higher than the one for the 1bov
combination. On the other hand the magnetic phase is strongly affected by
the binding of the overall thermal parameters between the two phases.

Let us consider the information on the thermal motion parameters together
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Figure 4.9: Refined overall thermal motion parameters at 1.6 K for the
absorption corrections proposed.

with the behaviour of the magnetic moment depicted in figure 4.10. All the

Figure 4.10: Refined magnetic moment at 1.6 K for the absorption corrections
proposed.

combination are presented and for all of them the magnetic moment increases
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with µR. This is coherent with the description above, in fact for higher µR
the correction factor reduces the intensity of the peaks at low angles and
higher magnetic moments counteact this effects. But if an higher magnetic
moment is used to improve the quality of the refinement at low angles, then
higher thermal motion parameters have to be used to improve the quality of
the refinement at high angles.

The magnetic moment raises our attention also for its values. We must
remember that the magnetic moment which is determined with a diffraction
experiment is the mean value within the sample. In the case of an antiferro-
magnet the moment measured is referred to the average one on one of the
two ferromagnetic sublattices which build the antiferromagnet.
The average magnetic moment is strongly temperature dependent. In fact it
falls rapidly to zero when temperature approachs the Néel temperature, which
is TN = 5.5 K. We can calculate the expected value of the magnetic moment
for T between 0 K and the Néel temperature with the critical exponent
model[55]. The magnetic moment is given by

µ(T ) = µ(0)

(
1− T

TN

)α
(4.2)

We assume to be correct the value at 0 K proposed in literature[29] (µ = 7.0
µB) and set α = 1/3 (which is the value experimentally observed[55]). The
magnetic moment at 1.6 K shoud be 6.24 µB, which is actually lower than the
refined values which ranges from 7 µB to 8.2 µB. Looking at figure 4.10 is also
clear the reason we decided to calculate the correction factor and perfomed
the refinements for µR = 7.7, although this value is hardly compatible with
the experimental uncertainty. The attemp was to bring the magnetic moment
value closer to its theoretical value, however this leads to negative value the
overall thermal motion parameters.

The value of the magnetic moment of the europium ion have been reported
by several authors[29, 5], therefore we performed refinements in which the
magnetic moment have been fixed to its theoretical value at 1.6 K. However
with this constrain FullProf cannot reach the convergence. The result,
for the nominal correction, is shown in figure 4.11. The red points are the
observed intensities, the black line is the refined profile and the blue line
is the difference between the observed and the calculated intensities. The
peak at 2θ = 20◦ , which is purely magnetic, is strongly underestimated by
a model in which the magnetic moment is not refinable. Due to the lack of
convergence we let the magnetic moment refine.

We can now look at the main issue: compare the two possible magnetic
structure. In figure 4.12 the refinement with Γ9 magnetic structure is reported,
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Figure 4.11: Rietveld refinement at 1.6 K with magnetic moment fixed to
its theoretical value. The convergence is not reached and the magnetic
contribution is underestimated as shown by the difference (blue line) between
the observed intensities (red points) and the refined profile (black line).

whereas in figure 4.13 the refinement with Γ6 magnetic structure is reported.
Table 4.3 compare the most relevant refined paramenters. Both refinements
are performed within the constrains defined previously: 1bov combination,
magnetic moment refined, nominal correction. The agreement factors (global,
crystallographic and magnetic) show a better agreement of Γ9 representation
than Γ6 one. We can focus our attention to the magnetic Bragg factors,
Rmag(Γ

9) = 37.9 and Rmag(Γ
6) = 35.7 which indicate a better agreement

between the data and the spin ordering in plane. As explained in section 2.3,
the differences between the intensity profile expected from the two different
magnetic structure are mainly restricted to peaks located at 64◦ and 74◦.
In figure 4.14 and 4.15 the reflections of interest are shown. Consider the
positions of the peaks at 64◦. In the simulation presented in section 2.3 on
page 16 it is shown that in the two proposed structures the positiosn of those
peaks are shifted. In the case of spin ordering along the c-axis the peak is
shifted on the left with respect to the case of a,b-plane ordering. Comparing
the two refinements can be seen that in the Γ6 representation the calculated
profile is sistematically on the right with respect to the experimental data.
This combined with the agreement factors analysis suggest that we are able
to distinguish between the two magnetic structure. Moreover the results are
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Figure 4.12: Rietveld refinement on EuTiO3 powder diffraction at 1.6 K and
Γ9 ordering.

Figure 4.13: Rietveld refinement on EuTiO3 powder diffraction at 1.6 K and
Γ6 ordering.
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Figure 4.14: Rietveld refinement on EuTiO3 powder diffraction at 1.6 K and
Γ9 ordering, enlargement on the region critical for the distinction between
the two ordering model.

Figure 4.15: Rietveld refinement on EuTiO3 powder diffraction at 1.6 K and
Γ6 ordering, enlargement on the region critical for the distinction between
the two ordering model.
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Magnetic structure Γ9 Γ6

a (Å) 5.5069(3) 5.5077(4)
c (Å) 7.81298(5) 7.8141(5)

Biso (Å2) 0.12(3) 0.12(3)
µ(µB) 7.35 7.34

RB(cryst) 8.48 8.60
RB(mag) 35.7 37.9

χ2
ν 1.83 1.88

Table 4.3: Refined structural and magnetic data of EuTiO3, obtained from
neutron powder diffraction at 1.6 K.

consistents with those reported in literature which all declare Γ9 representation
at 1.6 K.

4.3.3 3.5 K

We now discuss the 3.5 K data. In order to performe the refinements,
we adopted the same strategies described for 1.6 K. We chose the 1bov
combination and the nominal correction. The attempt of refining the data with
the magnetic moment fixed at the value reported at 3.5 K failed (µ = 5.00µB)5.
As shown in figure 4.16 the magnetic contribution is underestimated also at
this temperature, therefore we let FullProf refine the magnetic moment.
The Rietveld analysis has been performed for both the proposed spin ordering.
In figure 4.17 and 4.18 the results are shown, whereas in table 4.4 the most
important refined parameters are reported.

The overall agreement factor χ2
ν shows a better agreement between the

data and the Γ9 model. The Bragg factor for the magnetic phase is lower
for a, b-plane spin ordering than c-axis ordering. The bragg factor for the
crystallographic phase are almost identical. The magnetic moment also in
this case is higher than the expected value. Focusing again on the reflection
located around 64◦ and 74◦, shown in figure 4.19 and 4.20, we can see the
better agreement between the calculated profile and the observed intesities in
the case of Γ9 model.

5The value of the magnetic moment at 3.5 K has been calculated as previously reported:
assuming a critical exponent model and a value at 0 K equal to 7 µB
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Figure 4.16: Retvield refinement at 3.5 K with magnetic moment fixed to
its theoretical value. The convergence is not reached and the magnetic
contribution is underestimated as shown by the difference (blue line) between
the observed intensities (red points) and the refined profile (black line).

Magnetic structure Γ9 Γ6

a (Å) 5.5056(3) 5.5063(4)
c (Å) 7.8110(5) 7.8120(5)

Biso (Å2) 0.17(3) 0.16(3)
µ(µB) 6.86 6.87

RB(cryst) 6.17 6.18
RB(mag) 23.6 25.7

χ2
ν 1.46 1.49

Table 4.4: Refined structural and magnetic data of EuTiO3, obtained from
neutron powder diffraction at 3.5 K.
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Figure 4.17: Rietveld refinement on EuTiO3 powder diffraction at 3.5 K and
Γ9 ordering.

Figure 4.18: Rietveld refinement on EuTiO3 powder diffraction at 3.5 K and
Γ6 ordering.
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Figure 4.19: Rietveld refinement on EuTiO3 powder diffraction at 3.5 K and
Γ9 ordering, enlargement on the region critical for the distinction between
the two ordering model.

Figure 4.20: Rietveld refinement on EuTiO3 powder diffraction at 3.5 K and
Γ6 ordering, enlargement on the region critical for the distinction between
the two ordering model.
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Figure 4.21: Refined and theoretical average magnetic moment as a function
of temperature. Continuos lines are depicted assuming the value at zero
temperature equal to the theoretical value (7.93µB) and dashed lines assuming
the value measured by SQUID (8.4µB).

4.4 Magnetic moment temperature dependance

As previously discussed the magnetic moment obtained through the refine-
ments are not consistent with those reported in literature. We systematically
found values not compatible with a value of 7 µB at zero temperature. Despite
of this, the magnetic characterization, reported at the beginning of the present
chapter and the theoretical value calculated assuming a 4f 7 configuration
for the Eu ions with S = 0 and J = 7

2
, are consistent with the refined

value. In figure 4.21 the comparison between the refined and the theoretical
values are shown. The value of the magnetic moment at 0 K is set to 7.93µB
(theoretical value - continous line) and to 8.4µB (SQUID value - dashed line),
the Néel temperature (TN ) to 5.5 K. The curves of the magnetic moment are
calculated for all the values between zero temperature and Néel temperature,
accordingly to a critical exponent model. Two values for the critical exponent
have been chosen: α = 1/2 (mean field theory) and α = 1/3 (experimentally
observed)[55]. The black points indicates the refined values for the magnetic
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moment at the two temperature studied. The refined values show a decrease
of the magnetic moment with increasing temperature. While the magnetic
moment at 1.6 K is in accordance with the model, the value at 3.5 K is higher.
Only two points are unsufficient to determine the temperature dependence of
the magnetic moment, but let us conclude that the value at zero temperature
is around 8µB, and not, as previously reported, around 7µB.



Chapter 5

Conclusion and Prospect

EuTiO3 raised our attention due to its magnetoelectric properties and a better
understanding of these properties led us to study its magnetic phase diagram
and especially to determine the magnetic structure in the case of zero applied
magnetic field.

Neutron powder diffraction is still nowadays the most widely used tech-
nique to reveal the magnetic ordering in crystal, but in the case of our system
the strong neutron absorption of Eu atoms had raised doubt on the possibility
of using this technique. Despite of this we showed that NPD successfully
allowed to determine the crystallographic and magnetic structure of EuTiO3.

To overcome the absorption challenge, and reducing the counting time, we
opted for a particular sample holder: the annular cylindrical sample holder.
This geometry reducing the neutron path through the sample reduces the
absorption and increases the signal detected. However this solution affects
the intensity of the Bragg reflections with an angular dependence which is
not implemented in the software used to solve the structure. This required
the determination of a series of correction factors (as a function of the Bragg
angle), which let the software correctly refines the data.

The absorption correction had been already studied and the results were
known. The corrections were tabulated for discrete values of the absorption
and geometrical parameters of the double walled sample holder, but the
reported values does not fit our case. Therefore the correction factors tabulated
had to be extended. We developed a new Python code able to calculate the
correction factors for absorption for any values of the parameters defining
the case of the annular cylindrical sample holder. The code also generates a
correction file which can be directly used as a FullProf input.

The code had been successfully applied to the case of EuTiO3. However
further developments can be suggested. The main limits of the solution we
adopted are the computational time limit and the absence of an analytical form

77



78 CHAPTER 5. CONCLUSION AND PROSPECT

of the correction as a function of the Bragg angle. Of course we performed
a numerical calculation because the integration (which is the core of the
absorption correction) cannot be carried out analytically. Despite of this
the correction curves presented suggest the possibility of finding a suitable
function which approximates the calculated correction. The code can now be
used to investigate this possibility.

The absorption corrections obtained let us to perform a Rietveld re-
finements of the crystallographic and magnetic structure of EuTiO3. We
performed refinements using different correction curves compatible with the
uncertainty on the parameters. We observed that a relatively small change
in the absorption parameters could lead to a non negligible variation in the
refined parameters, especially for those which strongly influence the angular
dependence of the diffraction pattern, e.g. magnetic moment and thermal
motion parameters. Therefore we conclude that the use of the correction for
absorption must be done carefully. In order to reduce the uncertainty on the
refined parameters it is crucial to reduce the uncertainty of the geometrical
parameters of the double walled sample holder.

The Rietveld refinements on the neutron powder diffraction data confirm
the crystal structure reported in literature (space group I4/mcm, at low
temperature). The magnetic structure was investigated at 1.6 K and 3.5 K, in
order to find confirmation of the proposed magnetic phase diagram. We found
the data in agreement with a in-plane spin ordering at both temperature. We
did not found any evidence of a spin ordering along the c-axis at 3.5 K.

The magnetic moment have been found higher than the value reported in
literature, however the value obtain for T = 1.6 K is consistent both with the
theoretical electronic configuration of Eu++ ion and the magnetic moment
measured by SQUID.

We therefore showed that with the calculated absorption correction factors,
the neutron powder diffraction technique, in a very high resolution mode, can
be used to solve crystallographic and magnetic structure, also in the case of
strongly neutron-absorbing sample.
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