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Abstract

The current state-of-the-art for the design of buildings’ façade relies mainly
on the prescription given by national codes. These prescriptions, even if valid
for ordinary building, are often not detailed enough for the design of building
out of the ordinary. For these buildings, designers that want to have a deeper
knowledge of the wind pressures on the building and on the building elements
can only rely on the wind tunnel tests.

CFD techniques are nowadays not sufficiently reliable for the evaluation
of localised peak pressures. CFD however offers several benefits, such as an
easier analysis of the flow without the need of acquisition instrumentation or
an easier model geometry manipulation. The definition of a reliable stand-
ardised method for the calculation of design loads using CFD would allow to
reduce the building façades oversize; reducing the cladding cost.
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Sommario

Lo stato dell’arte attuale per la progettazione delle facciate degli edifici si affi-
da principalmente alle prescrizioni fornite dalle normative nazionali. Queste
normative, sebbene valide per edifici ordinari, sono spesso non sufficiente-
mente dettagliate per il progetto di edifici di natura straordinaria. Per que-
sti ultimi, il progettista che desiderasse una conoscenza più approfondita
delle pressioni generate dal vento sui singoli elementi può fare affidamento
solamente sulle prove in galleria del vento.

La tecniche CFD, al giorno d’oggi, non sono sufficientemente affidabili per
la valutazione dei picchi di pressione localizzati. La CFD però offre diversi
vantaggi, come un’analisi più facile del flusso senza la necessità di strumenti
di acquisizione o una più facile manipolazione della geometria del modello.
La definizione di un metodo affidabile e standardizzato per il calcolo dei
carichi eolici con la CFD permetterebbe di ridurre il sovradimensionamento
delle facciate, riducendo i costi dei rivestimenti degli edifici.
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Chapter 1

Introduction

The accuracy of wind loading calculations has a considerable effect on the
sizing of many structural elements.

The surface pressures caused by the interaction between the wind and the
structure can lead to many different kinds of collapse mechanism, some local
and some global. For instance, the external surface pressure can be a major
design consideration to determine the glass thickness and glass selection in
façades. The recent trend to cover entire buildings, both high-rise and low-
rise, with glass façades increased the interest in the calculation of the wind
loads on these elements. A façade can be up to 25% of the total building
costs, being the average cost of a façade approximately $700 per m2, possibly
reaching $2500 perm2 for high specification façades. Thus, a failure can cause
considerable economic damages.

In addition, there are various safety implications related to glazing design
such as glass breakage due to imposed dynamic pressures or flying debris and
the possible domino effect in façade failure caused by the breakage of a single
glass panel. Furthermore, windstorms account for about 70% of total insured
losses and a direct link is apparent between major storms and world wide
insurance losses from major natural disasters. It is therefore evident that
an accurate method for determining wind loading on façades is essential for
ensuring a safe and economic glazing design.

Another important issue that has led to several failures and collapses is

5



6 Introduction

the calculation of the internal pressure. In some long span roof buildings,
such as hangars, the sudden or periodic variations of the internal pressure
can cause an important variations of the loading of some structural elements
and lead to the local, or even global, collapse of the whole structure.

However, there are often several discrepancies between the existing guide-
lines available for determining wind loading on façades in different countries.
These codes of practice are based upon generic building geometries and sim-
plified models of wind loading and great accuracy cannot be expected from
them. Because of this, in case of special buildings that cannot be described
using simple geometries or that do not fit in any standard category, the
codes themselves often suggest using proven and/or properly validated meth-
ods. Nowadays these methods are mainly wind tunnel tests. However, they
present various issues.

The first problem is that a proper scaling that allows to reproduce exactly
the same fluid-dynamic condition (same Reynolds number) is not possible as
it would require incredibly fast flows inside the wind tunnel. The problem is
therefore minimized using the fastest velocity that is possible to achieve in the
wind tunnel, assuming phenomena not to be Reynolds dependent. However,
this hypothesis is not always true. Another issue in the wind tunnel is the
ability to reproduce correctly as many details as possible. Small details, such
as gutters or balconies, can heavily alter the flow pattern. Using a large scale
model makes the reproduction of smaller details easier, but might increase the
blockage ratio of the Wind Tunnel to unacceptable levels. A third problem
with the experimental approach is the spatial resolution of the acquired data.
The surface pressure is usually measured by ducting the pressure through
tubes from holes in the surface, known as tappings. This method creates a
knowledge of the surface pressure pattern that is poorly spatially resolved; the
usual density of pressure taps is about one every 10m2. A further problem is
that it has been proven that the surface pressures obtained from wind tunnel
testing are very sensitive to the successful simulation of the natural wind
flow. This involves the artificial "growing" of the Atmospheric Boundary
Layer (ABL) by modelling artificial ground roughness in order to develop
the required turbulence levels.
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Although wind tunnel testing is an established technique widely used in
wind engineering, it is still a simulation prone to error and must therefore
be benchmarked. Comparisons between full-scale tests on existing buildings
and wind tunnel tests have shown good correlation although discrepancies
do exist.

The Computational Fluid Dynamic (CFD) offers little advantage over
experimental tests when overall wind forces for building stability calculations
are required. However, when the detailed and localised flow structure is
required, such as when pressures are required for façade design or when the
flow pattern is important to study the pollution dispersion, the set up used in
experimental techniques becomes complicated and the design loading data
is very sensitive to errors in localised pressures. In such cases, numerical
methods can be useful for determining the detailed flow characteristics, like
pressure and velocity distributions.

Hence, a properly validated CFD method would allow us to overcome
most of these problems. For example, in a CFD simulation the building could
be reproduced with the full-scale dimensions and modelling every small detail
of the building. Moreover, the flow variables are extremely easy to extract
in any point of the domain without affecting the flow pattern in any way.

CFD however presents other problems that are currently being investig-
ated. Unfortunately, in flows above a particular Reynolds number (governed
by fluid density, velocity and viscosity), the fluid motion is turbulent and
apparently random. To correctly reproduce this turbulence the correct simu-
lation of the turbulence power spectrum is needed. It has been proved by the
Russian scientist Andrej Kolmogorov that the viscous contribution shows up
in the smallest turbulence scales that, for civil applications, are in the order
of magnitude of 10−6m. To solve such small scales would require an enorm-
ous computational power. E.g. to simulate the flow around a 100m tall and
30m wide building would require a number of cells with an order of mag-
nitude equal to 1025 or even larger, each one with several variables stored in
it. Such a large number of variables is not nowadays affordable by existing
computers.

In the past decades, the CFD research focused on the investigation of
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turbulence models. These models try to correctly reproduce the larger scale
of the flow - which are relevant for engineering problems, without having
to reproduce the smaller scales. The most common and widely validated
approach is the Reynolds-averaged Navier-Stokes equations’ (RANS) model.
Instantaneous flow velocities are divided into mean and fluctuating compon-
ents, which are replaced into the equations of motion. The mean components
are then solved with the usual Navier-Stokes equations’ while the fluctuat-
ing ones are modelled. Several turbulence models are available, some much
more widely validated than others, such as the k − ε model. Easom (2000)
provides a comprehensive review of different turbulence models relevant to
computational wind engineering. This solution however does not allow to
directly simulate the pressure variations. When only the mean value of the
pressure is required, such approach produces good results. This is the case
when overall wind force on a given surface is required for a quasi-static ana-
lysis, as the effects of localised differences of wind pressure on the building
surface tend to cancel each other.

When the main interest is the peak value or the dynamic variation of the
pressure, the RANS method is unsuitable. An intermediate approach that
allows to reproduce the time-variation of the flow has been developed: the
Large Eddies Simulation (LES) method.

This method allows to directly resolve the fluctuating large turbulent
eddies, while still relying on turbulence models to compute the less significant
small-scale turbulence. The main hypothesis that lies at the base of this
technique is that the small scales turbulent structures are identical for any
flow with any boundary condition. This topic will be discussed in section
3.2.

Another discussed CFD issue is the inlet boundary condition. It has
been demonstrated that CFD results are as sensitive to the inlet boundary
conditions as wind tunnel tests are.

There are two main approaches to this problem. The first approach is
to "attach" to the building domain a rough driver region where the wind
flows above some arbitrary ground roughness to evolve in a correct ABL
profile. This approach is very similar to the one used in the wind tunnel
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placing the artificial roughness on the floor to obtain a correct incoming
flow. The flaw of this method is that it further increases the size of the
domain causing more computational power to be necessary. Some recycle
techniques, such as the Lund (1998) or the Kataoka and Mizuno (2002)
techniques, have been developed to reduce the driver region length. A second
approach is to use an inlet flow with a synthetic overlying turbulence. These
techniques allow to drastically reduce the domain size, but the generation of
the synthetic turbulence has proved to be very tricky. Artificial flows that are
not completely physically correct decay rapidly and then evolve again in a
turbulent flow i.e. if the turbulence is not correctly generated, the boundary
layer is not stable. The correct turbulent inlet condition is proving to be
elusive, but encouraging results have been recently obtained.

The main target for the CFD applied to civil engineering research at the
moment is to produce a proven procedure or a code that allows to thrust a
simulation result without the need of a benchmark. At the moment the AIJ
(Architectural Institute of Japan) is redacting a code for the wind analysis
using CFD method.

With regard to both wind tunnel and CFD tests, a common problem is
that the outputs generated are time-discrete pressure time-history. What the
designer needs to correctly design the façade is a single design value. This
value represent the maximum wind load that is expected to happen during
the lifetime of the structure and that is expected to be tolerated without dam-
age. The determination of this value starting from the time-histories is not
straightforward. The nature of the phenomena makes the probability density
function of the pressure to be non-Gaussian, moreover the definition of peak
itself is not obvious. Provided that these problems have been addressed, the
random nature of the wind makes it necessary to determine the minimum
duration of the test (both experimental or numerical) needed to compute this
maximum value with sufficient accuracy. There have been many proposals
about this topic that will be analysed in Chapter 6; a satisfactory review of
the most used ones has been done by ?.

In the case of glazed façades the problem is even more complex. The
research since the ’80s showed that when glass panels are subjected to high
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loads, the relationship between the applied loads and the resulting stresses
becomes non-linear. They also have shown that the strength of glass varies
with load duration and glass size. The molecular structure of glass cause
damage accumulation phenomena to occur due to the propagation of micro-
scopic cracks on the glass surface. Other phenomena also occur, such as the
healing of cracks with an increase in resistance of the glass component and
the interaction between the molecular structure of glass and the water that
penetrate the cracks. (Haldimann, 2006). These features make the wind load
even more critical and demanding.

The aim of this thesis is a numerical-experimental evaluation inherent
part of the sizing of the façades, aimed at identifying the main critical
points / opportunities offered by High Performance Computing (HPC) tech-
niques applied to a wind-structure interaction case.

Chapter 2 will introduce the study of the wind, from its causes to the
quantities that characterise it. Computation Fluid Dynamic and the numer-
ical techniques, used to simulate the fluids behaviour, are reviewed in chapter
3. Here the main problems in the simulation of the turbulence will be also
summarized together with the present models to workaround these problems.
In chapter 4 the test executed in the Politecnico di Milano Wind Tunnel will
be presented, describing both the test equipment and the obtained results.
Subsequently chapter 5 will show the simulations carried out to reproduce
the Wind Tunnel experiments; in the first part of the chapter the initial
benchmark executed to validate the model will be presented, later on the
wind tunnel and a building simulation are illustrated. Finally, in chapter 6,
an overview of the present methods for the estimation of the peak pressure
is discussed and, then, applied to the CFD and the Wind Tunnel results.



Chapter 2

The wind

The correct simulation of wind load on the elements of the building requires
a quantitative knowledge of the wind. In this part we will introduce briefly
some notions of macro-meteorology and how the winds are generated, and
then focus on their characterization.

2.1 The atmospheric circulation

The atmosphere is a sphere of gas and suspended particles that extends from
the earth’s surface for tens of kilometres. The 99.99997 % of the atmosphere
is located below the altitude of 100 km above sea level called "Karman line"
that is the arbitrary upper limit of the atmosphere.

The inner layer, the troposphere, ranges from ground up to an altitude of
12km ÷ 16Km and contains over 80 percent of the mass of the atmosphere
and almost all of the water vapour, clouds, and precipitation: nearly all
weather phenomena occur there. The source of wind is to be found in the
complex mechanical and thermo-dynamic phenomena that occur within this
layer. All weather phenomena, in general, are caused by heating due to the
action of the Sun, although in an indirect way: contrary to what one might
think, in fact, the caloric radiation that weigh more on them are not the
ones coming from the star but those emitted from the Earth’s surface and
atmosphere as a result of their heating by the first.

11
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Figure 2.1: Single-cell model

The amount of energy emitted depends, however, by the inclination of
the solar rays on the horizon; is clear, therefore, that it is strongly influenced
by latitude. In particular, in the equatorial areas the temperature is higher
than the terrestrial average while in the polar zones it is lower; it follows
that in the first a regime of low pressure is established, while a high pressure
one is established in the latter. If there were no other factors, this situation
would generate an airflow that could be schematised by a single cell that
extend from the Equator to the Pole.(figure 2.1).

Because of the uneven distribution of land and oceans the real phe-
nomenon is actually much more complex and is characterized by the presence
of three cells between equator and pole: the Hadley cell, the Ferrel cell and
the Polar cell 2.2. These cells have an alternating direction of rotation: the
first and the last generating winds from the pole to the equator, while the
Ferrel cell generates winds directed from the equator to the pole. We will
not go further into detail in this thesis and more details can be found in the
specialized literature.

The secondary circulation is the collection of motions that are generated
in response to localized increases and decreases in temperature and pressure
that are called cyclones and anti-cyclones. These phenomena are typically
transient with a time scale ranging from one day to few weeks and a spatial
scale ranging from 100 to 1000 kilometres. The secondary circulation is the
one associated with the local weather.

The motion of the atmosphere can therefore be thought of as the super-
position of interdependent flows, characterized by different dimensions and
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Figure 2.2: Three-cell circulation model

time durations. It can be observed as the duration and size of these phenom-
ena are proportional (Figure 2.3 ).

It is therefore possible to identify three main categories:

• a microscale, which includes the motions having a size not exceeding
20 km and duration lower than one hour;

• a macroscale (or synoptic scale), which includes the motions with size
of at least 500 km and a minimum duration of two days;

• a mesoscale (or convective scale), which includes the motions of con-
vective cells in a planetary scale.

An effective representation of the various phenomena involved in the at-
mospheric circulation is provided by the Van der Hoven’s spectrum. This is
the power spectrum SV (n) of the wind speed as a function of frequency n,
evaluated over a long period of time.

Looking at the spectrum of Van der Hoven (figure 2.4), considered valid
for any site and throughout the development of the boundary layer height,
you can see two distinct harmonic contributions. The first, located in the
area of low frequencies, is the one corresponding to the macro meteorological
phenomena and has two peaks: one at the daily periodicity (i.e. breezes) and
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Figure 2.3: Comparison between the time-scale and the length-scale of at-
mospheric phenomena

the other relating to the storms, the development of which is about four days
(there’s also a third peak, even more to the left, corresponding to the annual
periodicity). The second, localized in the area of high frequencies is due to
phenomena of the duration of 1 - 2 minutes, i.e. to atmospheric turbulence.

In the central area, for periods between ten minutes and one hour, the
spectrum has virtually no harmonic content. This band is called the spectral
gap and provides useful information for the reference speed of the wind at a
given site.

From the above arises the subdivision of the wind speed in two contribu-
tions: the first that expresses the average speed over an interval of 10 minutes
and is characterized by long-term variations, and the second representing the
fluctuating component of the velocity (turbulence) and is characterized by
fluctuations at high frequency with zero mean. Therefore set a Cartesian or-
thogonal reference system (x, y, z) the wind speed at a point can be written
as:

V(t) = u(t)i + v(t)j + w(t)k (2.1)

where i, j, k are versors of the three Cartesian axes. Separating the com-
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Figure 2.4: Van der Hoven’s spectrum of horizontal wind speed

ponents averaged over 10 minutes from the fluctuating components can be
written:

u(t) = U + u′(t)

v(t) = V + v′(t)

w(t) = W + w′(t)

(2.2)

In addition, typically the axis x is assumed coincident with the direction of
the mean wind speed. By making this assumption, the average components
V and W are cancelled and one can write:

u(t) = U + u′(t)

v(t) = v′(t)

w(t) = w′(t)

(2.3)

2.2 The atmospheric boundary layer

As the wind approaches the Earth’s surface, frictional forces caused by the
terrain become more important. Friction slows down the wind and makes
it a turbulent flow that varies in a random way both in space and time.The
height zg where the surface friction effects are zero is called gradient height
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Figure 2.5: The Atmosferic Boundary Layer

2.5. The lowest part of the atmosphere, below the gradient height, is named
Atmospheric Boundary Layer (ABL) and typically extends up to 500−1000m
while the rest of the air in the troposphere is called free atmosphere.The near
earth characteristics are not typical of what we observe in the rest of the
atmosphere because of the dominating influence of the ground on the lowest
layers of the air. This region is extremely important for civil engineering
studies since almost every of the structure is immersed in the ABL.

2.3 Wind characteristics

In order to study and, as in this thesis, reproduce the Atmosphere Boundary
Layer is important to characterize it through quantitative magnitudes.

The knowledge of wind characteristics in the atmospheric boundary layer
that we have nowadays is due mainly to the analysis of large databases of
anemometric records performed in different locations of the world for many
years. Long-term weather stations are present in the airports, in the air
force locations and many interesting points distributed on the ground. By
convention, the weather stations are located at 10m above the ground, but
there are also measurements taken throughout the development of a vertical
from the ground, usually thanks to a weather balloon. Thank to case studies
ranging from islands to mountainous areas it has been possible to characterize
the ABL and identify the main parameters.
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Figure 2.6: Locations of weather stations all over the world (source: NOAA
National Climatic Data Center www.ncdc.noaa.gov)

Looking at the wind data at different heights some preliminary observa-
tions about the atmospheric boundary layer can be made:

• the average wind velocity increases with the height from ground;

• the amplitude of the fluctuations around the mean decreases with in-
creasing altitude;

• there is a similarity in the pattern of gusts across the entire height; this
is indicative of a spatial correlation of turbulence.

Due to the stochastic nature of the wind, it is evident how the variables
that characterize it are statistical. The wind, however, is not a completely
random phenomenon, but it shows spatial and temporal correlation of differ-
ent scales. The following section tries to identify the main parameters that
characterize it.

Nevertheless, the definition of how many and which are the parameters
to fully characterize the ABL is an unresolved issue that manifests itself in
the numeric context in the generation of a synthetic stable ABL.
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2.3.1 Taylor hypothesis

As mentioned earlier, the wind presents coherent spatial structures typical of
turbulent flows. These structures are called eddies and are the main contrib-
utors to the random nature of turbulent flows (this topic will be discussed in
detail in chapter 3.2). Since these structures evolve simultaneously in space
and time, to grasp correctly the turbulence we should be able to simultan-
eously measure the time-history in more points more or less close together
in order to recreate a "photograph" of the space distribution of velocity for
any given instant of time. This involves considerable technical difficulties.
Since the presence itself of the measurement instrumentation alters the flow,
during the experiments the measurements are usually performed in a single
point at a time.

To reconstruct the spatial coherence of the turbulent structures Taylor’s
hypothesis is used. This is to assume that the vortices are frozen in time and
that they are dragged along by the average speed of the flow 2.7. Analytically,
this corresponds to say:

u(xp, t+ ∆t) = u(xp − U∆t, t) (2.4)

With this assumption one can think to know the turbulence along a whole
stream line (assumed straight and parallel to the mean velocity) by measuring
the velocity at a single point.

This hypothesis turns out to be a good approximation of natural wind in
open field.

2.3.2 Mean velocity

Following up what has been previously said in section 2.1 , using the spectral
gap is possible to distinguish between a high-frequency (turbulence) contri-
butions and a low frequency (daily or seasonal variations) ones.
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Figure 2.7: Taylor hypothesis

The average wind speed can then be assumed to be equal to:

U(z) = 1
T

∫ t+T

t
u(z, t) dt where T = 10min...1hour

u(z, t) = U(z) + u′(z, t)
(2.5)

The expression just written is mathematically wrong, because the left-
hand side should still be dependent on the time t. However, considering
a typical structural engineering problem, such member may be considered
constant when studying phenomena whose duration is less than the time T
of the moving average operator width . One can then think of the component
U(z) as the one responsible for the quasi-static effects on the structure and
the component u′(z, t) as the one responsible for the dynamic effects

National codes provide different alternatives for the equation of U(z).
These are generally characterized by the parameter z0 called aerodynamic
roughness length. This parameter can be interpreted as the height at which
the average wind speed is equal to zero. The larger this parameter, the
greater the slowing down of the flow near the ground. z0 is influenced by the
geometric dimensions of the obstacles and their density; typical values of z0

vary from 10−5− 10−4m, respectively for ice and calm seas, to 1m for forests
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Figure 2.8: On the left, the dependency of z0 from the non-dimensional
roughness density. On the right, conceptual streamlines below the critical
density and above the critical density - note the zero displacement plane in
the latter case

and towns. National codes assign a value of z0 depending on the context of
the construction.

It is important to notice that could happen to have different values of z0

depending on the direction of the wind. This is the typical case of coastal
buildings for which you have a small z0 for the wind coming from the sea,
while you may have a very large z0 for the wind coming from the inland.

Is interesting to mention the study by Raupach et al. (1980) in wind
tunnel with regular shaped obstacles. This study shows that above a critical
density the value of z0 decrease as the density increase (figure 2.8.a). This
result, seemingly counter-intuitive, can be understood thinking that if the
obstacles are too close to each other, streamlines are unable to creep between
them and they "behave" as the obstacles were lower than they are. In other
words it is as above the critical density the plane z = 0 is displaced upward
by a value d called zero displacement plane.

The logarithmic profile

Plotting the U(z) profile acquired experimentally on a semi-logarithmic plane
(figure 2.9) is straightforward to see that the lowest part of this profile (up
to 100-200 meters) is well represented by a logarithmic law.

Using the Buckingham pi theorem we can assume that there are only two
dimensionless groups relevant to the description of the velocity profile. These
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Figure 2.9: Mean velocity profile (double logarithmic scale)

can be obtained by considering four quantities:

• the wind mean speed U

• the height from the ground z

• the frictional velocity defined as u∗ =
√
τ0/ρ (where τ0 is the surface

stress and ρ is the air density

• and the roughness length z0)

These can be combined in two dimensionless groups:

π1 = U

u∗
π2 = z

z0
(2.6)

Based on data plotted in Figure 2.9 we might expect a logarithmic relation-
ship between these two groups:

U(z) = u∗
k

ln
(
z

z0

)
(2.7)
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where 1/k is a constant of proportionality. k is named the von Karman
constant and is supposed to be a universal constant that is not a function of
the flow nor of the surface. The value of the constant is about k = 0.4. The
logarithmic relationship has also a physical justification and it is based on
the Prandtl flat plate boundary layer theory.

More sophisticated analytical models are available to extends the equa-
tions through all the ABL up to the gradient height zg. The one proposed
by Deaves and Harris can be found in Cook (1990).

The power law

Another empirical formulation that is used to describe the wind profile is the
power law:

U(z) = Uref

(
z

zref

)α
(2.8)

Where Uref is the wind velocity at the reference height zref and α is the
power law exponent and is related to the terrain type. Typical values of α
ranges from 0.12 to 0.3. The exponent α can be related to the roughness
length z0 by the relationship:

α = (ln(zref/z0))−1 (2.9)

The advantage of this formulation is that it does not require the calculation
of u∗ which can be not immediate. It is also very easy to apply in those cases
where one has a time history recorded at an arbitrary height (usually 10m)
and knows the type of terrain.

The Eurocode profile

Eurocode 1 (Part 1-4) contains a formulation based on the logarithmic law
to describe the velocity profile: U(z) = Urefkr ln

(
z
z0

)
zmin < z < 200m

U(z) = U(zmin) z < zmin
(2.10)



2.3 Wind characteristics 23

Figure 2.10: z0 values proposed by Eurocodice part 1-4

where a reference wind velocity Uref (also named basic wind velocity) and a
terrain factor kr are introduced. The reference wind velocity depends on the
wind climate and is evaluated at 10m above the ground of terrain category
II, for a given return period. The terrain factor is related to the roughness
length by the expression:

kr = 0.19 (20z0)0.07 (2.11)

Below the minimum height zmin the wind velocity is assumed constant.
The value of z0 and zmin recommended by the Eurocode can be seen in

Figure 2.10.

2.3.3 Turbulence intensity

The second more important parameter in a random process is the standard
deviation. To characterize it, it is useful to define a non-dimensional para-
meter called turbulence intensity. For the streamwise component it is defined
as:

Iu = σu(z)
U(z) (2.12)
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where σu(z) is the standard deviation of the turbulence component u and
U(z) is the mean wind velocity, both at height z. In homogeneous terrain
conditions, the standard deviation of wind velocity slowly decreases with
height and is close to zero at the gradient height. In the same way it is
possible to define the lateral and vertical turbulence intensities:

Iv = σv(z)
U(z)

Iw = σw(z)
U(z)

(2.13)

It is interesting to notice that the vertical turbulence intensity approaches
0 close to the ground. This is due to the fact that near the ground there
isn’t the physical space for vertical structures to arise. This is only true for
the vertical component, while streamwise and span-wise components don’t
approaches 0.

For flat terrain and homogeneous roughness the turbulence intensity is
approximately given by:

Iu = 1
ln(z/z0) (2.14)

where z0 is the roughness length. The other two profiles can be obtained as
a fraction of the streamwise one as:

Iv(z) = 0.75Iu(z) Iw(z) = 0.5Iu(z) (2.15)

The Eurocode uses this formulation also. It is possible to observe that the
turbulence increases as the roughness increases; i.e. bigger obstacles gen-
erate more turbulent flows.This formulation doesn’t take into account the
reduction of the vertical turbulence close to the ground mentioned above.

2.3.4 Integral length scales

As said earlier and as will be seen in more detail in Chapter 3.2, turbulence
is not a completely random process as it might appear at a first look: it is
composed by coherent structures. The presence of these structures makes the
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Figure 2.11: Eurocode turbulence intensity profiles

time-history of closely spaced points to be not completely uncorrelated, but
to be somehow similar the more they are close to each other.

Average value and standard deviation measured in one point are not able
to catch this feature. To do it, it is necessary to introduce a new parameter:
the integral length. This parameter represents the mean size of the vortex in
a give direction. There are 9 integral length scales; they are defined as:

Lxj
ui

=
∫ ∞

0
Rui

(xj) dxj with ui = u, v, w and xj = x, y, z (2.16)

where Rui
(xj) is the auto-correlation function of ui measured along the dir-

ection xj with origin in the considered point. The 9 scales are:

Lxu Lyu Lzu

Lxv Lyv Lzv

Lxw Lyw Lzw

(2.17)

E.g. the integral scale Lzv represents the correlation of the velocity component
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v measured along an axis parallel to z.

From this definition, it follows that to compute the integral scales in
one point, one would need to now the three velocity components inside the
entire domain at the same time. Experimentally this is impossible, since the
experimental data is usually spatially discrete. To (partially) work around
this limitation, it is useful to use the Taylor hypothesis: instead of integrate
over space along x (the streamwise direction), it is possible to integrate over
time. Since the temporal resolution is usually far higher than the spatial one,
this allows to have a more precise value of Lxxj

. The resulting equation is:

Lxi =
∫ ∞

0
Rui

(τ)U dτ with ui = u, v, w (2.18)

This equation can only be used for the integral scale Lxu, Lxv e Lxw since the
Taylor hypothesis allow to switch only the streamwise direction with time
(structures are not dragged in the y and z direction).

This equation can be used to compute the integral scales in a given point.
Measuring the integral scales along a vertical axis one can obtain a profile of
the average size of the eddies. Several empirical formulations exists for these
profiles. The Eurocode suggests:

Lxu(z) = 300
(
z

200

)α
α = 0.67 + 0.05 ln(z0)

(2.19)

It has also been proved that the auto-correlation function has an exponential
decay:

Ru(y) = exp (−y/Lxu) (2.20)

The remaining integral scales are usually computed as a fraction of the lon-
gitudinal one:

Lxv ≈ 0.25Lxu Lxw ≈ 0.10Lxu
Lyu ≈ 0.30Lxu Lzu ≈ 0.20Lxu

(2.21)

During post-processing the function Rui
(τ) can happens to be too "noisy".

Theoretically this function should approach 0 as τ grows. What really hap-
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Figure 2.12: Eurocode integral length profiles

pens is that this function keeps oscillating around 0 (figure 2.13). Since the
integral cannot be extended up to infinity, the choice of the upper limit can
significantly alter the value. To overcome this problem, the solution we de-
cided to use is to interpolate the experimental function with the function
2.20 through a best-fitting operation. Doing this the obtained function can
be easily integrated; moreover one can evaluate the integral scale directly
looking at the denominator of the exponent of the interpolating function
without any further calculation.

2.3.5 Power spectrum

We already discussed the fact that the turbulence can be seen as an overlap of
turbulent structures with different size and duration. A good way to visualize
this is using the wind velocity power spectrum. A more detailed discussion
about the turbulence spectrum will be done in section 3.2.

Many equations have been proposed in literature to describe quantitati-
vely the wind spectrum. They are usually function of the wind mean speed
U , the turbulence intensity or the variance σu and the integral length scale
Lxu.
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Von Karman proposed:

f · Su(f)
σ2
u

=
4
(
fLx

u

U

)
[
1 + 70.8

(
fLx

u

U

)2
]5/6 (2.22)

where the left hand term is the non-dimensional spectral density. At the
right hand term appears the non-dimensional frequency:

f ∗ = fLxu
U

(2.23)

A similar expression is proposed in Eurocode 1 Part 1-4:

f · Su(f)
σ2
u

=
6.8

(
fLx

u

U

)
[
1 + 10

(
fLx

u

U

)]5/3 (2.24)

The two different spectra are compared in Figure 2.14. It is to note that
in the high frequency range both spectra has an almost linear trend with a
fixed slope equal to −5/3. This value is absolutely not random, but originates
from the theory of turbulence and the "energy cascade" that we will see in
section 3.2. Another interesting fact is that for both spectra it’s valid
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Figure 2.14: Power spectral density for the streamwise component u

f ∗peak = 1
2π (2.25)

from which can be evaluated:

Lxu = 1
2π

U

fpeak
(2.26)

2.3.6 Conclusions

In this section we presented the main analytical tools that will be used to
study the incoming flow for both the CFD simulation and the wind tunnel
tests. We saw as the turbulent flow is characterised by several parameters
that usually depend by the height above the ground. The plots represent-
ing these values over the height are called profiles and will be compared to
understand if the incoming flow is correctly simulated.

The assumption that the turbulent flow is correctly identified by these
parameters alone is a debated topic. This problem will be resumed in section
5.1 where the inflow condition to correctly reproduce the wind tunnel ABL
will be studied.
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Chapter 3

Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is the analysis of a system that in-
cludes a fluid flow, heat transfers, chemical reactions and other physical
phenomena related to them through a simulation with numerical methods.
This science has several applications in industry and research, such as the
calculation of drag and lift forces of a plane, the fluid-dynamic of the water
around a boat, the mixing of the fuel inside a combustion chamber, etcetera.

In the civil engineering field, CFD can be used for the simulation of the
interaction of air or water flow with a structure. This it is the case of wind
induced instability of a bridge (flutter, buffeting, vortex shedding...), of the
interaction of the wave motion with an off-shore platform’s pile or, as it is in
this thesis, the study of external pressure on the cladding of a building.

The main problem with CFD is the extremely high computational power
that is required. Especially in civil engineering applications, what is relevant
about the fluid-structure interaction is its unsteady component. This lead
to the necessity to run time-depending simulation with very large domains.
Since an analytical solution is infeasible, the domain is discretised both in
time and space. It isn’t uncommon for this kind of problems to have millions
or even billions variables governed by non-linear partial differential equations
that have to be solve millions of times in time domain. It’s therefore clear
as the number of floating point operations to solve the problem can reach
order of magnitude as 1020 ÷ 1022. Such number of operation with existing

31
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computational resources can take weeks or even months to be executed. Just
to give an example: the most powerful super-computer in the world existing
at the moment can execute 33.86 ·1015 floating points operations per second.
The main focus of CFD research in the past years has been to find a way to
reduce the number of operations needed to solve a problem without reduce
(too much) the solution quality. Thanks to this research and the simultaneous
increase of the power of super-computers, such applications have seen for
about a decade now a gradually increasing interest in industrial applications
so that the AIJ, the entity in charge of the drafting of the Japanese regulatory
codes for the building, is drafting legislation dedicated to CFD simulations.

In the next chapter we will see a brief introduction to the Navier-Stokes
equations and to the main techniques used to solve them. This introduction
doesn’t pretend to be exhaustive because of the vastness and complexity
of the topic. For more information, refer to Anderson (1995) ans Versteeg
(2007)

3.1 The governing equations

The governing equations of fluid flow represent mathematical statement of
the conservation laws of physics.

• The mass of a fluid is conserved.

• The rate of change of momentum equals the sum of the forces on a
fluid particle (Newton’s second law F = ma).

• The rate of change of energy is equal to the sum of the rate of heat
addition to and the rate of work done on a fluid particle (first law of
thermodynamics ∆U = Q−W ).

The fluid will be regarded as a continuum. For the analysis of fluid flows at
macroscopic length the molecular structure of matter and molecular motions
may be ignored. Starting from the three statements above, one can obtain
the Navier-Stokes equation (for a detailed derivation seeAnderson (1995)).
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Figure 3.1: Eulerian and Lagrangian reference systems

3.1.1 The reference system and the substantial
derivative

Before starting the derivation of the equations, it’s important to decide which
reference system will be used. There are two options, both valid, that lead
to two different forms of the same equations:

• the Eulerian specification of the flow field is a way of looking at fluid
motion that focuses on specific locations in the space through which
the fluid flows as time passes. In other words, the control volume used
to write down the equation of motions is still in place and the fluid
flows through it (figure 3.1.a).

• the Lagrangian specification is a way of looking at fluid motion where
the observer follows an individual fluid particle as it moves through
space and time. In this case the control volume moves with the flow
through the domain and can change both size and shape, however there
is no flow through the control volume boundaries (figure 3.1.b).

Since the control volumes in the CFD applications, the cells, are still in
place1 the most obvious specification to use is the Eulerian one. However

1the cells of the mesh can move in the case of a moving geometry, such as a rotating
wind turbine or an opening valve
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Figure 3.2: Fluid element moving in the fluid flow for the physical interpre-
tation of the substantial derivative

an interesting physical observation can be done considering the relationship
between these two reference frames.

Lets consider a fluid element moving with the flow (Lagrangian approach)
that at time t = t1 lies at coordinates x1, y1, z1. In addition the scalar
quantity field ϕ(x, y, z) is given (e.g. temperature or density).(Figure 3.2).

Now lets consider the same fluid element at time t = t2 > t1. We can
expand the function of ϕ in Taylor series about point 1, obtaining

ϕ2 = ϕ1 +
(
∂ϕ

∂x

)
1

(x2 − x1) +
(
∂ϕ

∂y

)
1

(y2 − y1) +

+
(
∂ϕ

∂z

)
1

(z2 − z1) +
(
∂ϕ

∂t

)
1

(t2 − t1) + higher-order terms (3.1)

where ϕi = ψ(xi, yi, zi). Dividing by t2− t1 and ignoring higher-order terms,
we obtain

ϕ2 − ϕ1

t2 − t1
=
(
∂ϕ

∂x

)
1

x2 − x1

t2 − t1
+
(
∂ϕ

∂y

)
1

y2 − y1

t2 − t1
+
(
∂ϕ

∂z

)
1

z2 − z1

t2 − t1
+
(
∂ϕ

∂t

)
1

(3.2)
Examine the left side of equation 3.2. This is physically the average time
rate of change in the scalar quantity ϕ of the fluid element. In the limit, as
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t2 approaches t1, this term becomes

lim
t2→t1

ϕ2 − ϕ1

t2 − t1
= Dϕ

Dt
(3.3)

Here, Dϕ/Dt is a symbol for the instantaneous time rate of change of quan-
tity ϕ of the fluid element as it moves through point 1. By definition this
symbol is called the substantial derivative D/Dt. Here, our eyes are locked
on the fluid element as it is moving, and we are watching the quantity ϕ

of the element change as it moves through point 1. This is different from
(∂ϕ/∂t)1 which is physically the time rate of change of density at the fixed
point 1. Thus Dϕ/Dt and ∂ϕ/∂t are physically and numerically different
quantities.

Returning to equation 3.2 , we can replace

lim
t2→t1

x2 − x1

t2 − t1
≡ u

where u is the velocity component directed along x. Doing this with the
other two components and remembering

div ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

equation 3.2 can be written as

Dϕ

Dt
= ∂ϕ

∂t
+ u div ρ (3.4)

Focusing on this equation we can see how the substantial derivative operator
D/Dt, which is physically the time rate of change following a moving fluid
element (Lagrangian approach), is equal to the time rate of change at a fixed
point ∂/partialt, which is called local derivative (Eulerian approach) plus
a convective term U div which is physically the time rate of change due to
the movement of fluid element from one location to another where the flow
properties are spatially different.

This derivation shows the meaning of the convective term that will be
present in almost every Navier-Stokes equation.



36 Computational Fluid Dynamics

Figure 3.3: Control volume used for the physical interpretation of the diver-
gence of velocity

3.1.2 The divergence of the velocity

In the last section we examined the physical meaning of the substantial de-
rivative and the convective term. Now lets try to understand the physical
meaning of the divergence of the velocity div u.

Consider a finite control volume moving with the fluid (Lagrangian ap-
proach) as sketched in figure 3.3. This volume is always made of the same
fluid particles as it moves with the flow; hence, its mass is fixed, invariant
with time. However, its volume V and control surface S are changing with
time as it moves to different regions of the flow where different values of den-
sity ρ exist. Consider an infinitesimal element of the surface dS moving at
the local velocity u, as shown in figure 3.3. The change in the volume of the
control volume ∆V , due to just the movement of dS over a time increment
∆t is, from figure 3.3, equal to the volume of the long, thin cylinder with
base area dS and length (u∆t) ·n, where n is a unit vector perpendicular to
the surface at dS. That is:

∆V = [(u∆t) · n] dS = (u∆t) · dS (3.5)

where the vector dS is defined simply as dS ≡ ndS. Over the time increment
∆t, the total change in volume of the whole control volume is equal to the
summation of ∆V over the total control surface. In the limit as dS → 0, the
sum becomes the surface integral

∆V =
∫∫

S
(u∆t) · dS (3.6)
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If this integral is divided by ∆t, the result is physically the time rate of
change of the control volume, denoted by DV/Dt; that is,

DV

Dt
= lim

∆t→0

1
∆t

∫∫
S

(u∆t) · dS =
∫∫

S
u · dS (3.7)

Note that at the left side there is the substantial derivative of the volume V .
This is because we are dealing with the time rate of change of the control
volume as the volume moves with the flow and this is physically what is meant
by the substantial derivative. Now we can apply the divergence theorem from
the vector calculus to the right side of equation 3.7; we obtain

DV

Dt
=
∫∫∫

V
div udV (3.8)

We can now switch from the control volume V to the infinitesimal volume
dV . We can then assume that div u is constant throughout dV . Therefore

D(dV )
Dt

=
∫∫∫

dV
div udV = (div u)dV (3.9)

or
div u = 1

dV

D(dV )
Dt

(3.10)

From this equation we can understand the physical meaning of the divergence
of the velocity.

div u is physically the time rate of change of the volume of a moving fluid
element per unit volume

3.1.3 The continuity equation

The first equation to be presented is the continuity equation that represents
the conservation of the mass in the flow. How this equation is derived can be
seen in Anderson (1995). We will propose its Lagrangian form and discuss
its physical meaning.
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The continuity equation in the Lagrangian form is:

Dρ

Dt
+ ρ div(u) = 0 (3.11)

here ρ is the fluid density and u the velocity vector.
In this equation appear both the substantial derivative and the diver-

gence of the velocity we’ve seen above. The first term of equation 3.11 is
the substantial derivative of the density. As we’ve seen before in section
3.1.1, this represent the rate of change in the density inside the infinitesimal
element moving with the fluid, hence we don’t care if this happens because
the element moved to a different location or because something evolved in
time. The second term contains the divergence of the velocity. As said in
section 3.1.2, this is physically the percentage increase of the local volume of
the element; multiplied by the density this is the increase of density due to
volumetric dilatation. This equation is therefore saying us that if the den-
sity is increasing inside an element over time, the volume must decrease and
vice-versa.

We decided to use the Lagrangian version of the equation because it’s
easier to understand the physical meaning. Now with very little manipulation
we can obtain the Eulerian form that is:

∂ρ

∂t
+ div(ρu) (3.12)

In subsonic aerodynamic the air is usually considered as an incompressible
fluid. This lead to the equation:

div u = 0 (3.13)

3.1.4 The momentum equation

The second equation to be presented is the one that represent the conserva-
tion of the momentum i.e. the Newton’s second law. F = ma.

The complete derivation is long and tedious. Again we present just the
Lagrangian form and we comment it. Since the momentum is a vector quan-
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tity there are three scalar equations, one for each component. The equation
for the u component is:

D(ρu)
Dt

= −∂p
∂x

+ ∂τxx
∂x

+ ∂τyx
∂y

+ ∂τzx
∂z

+ ρfx (3.14)

In this equation some new unknowns appear. The left side of equation 3.14
is the change of x component of momentum in time. On the right side there
is the net force along x. We can recognise: the contribution of pressure p,
the contribution of viscous stresses τij and volumetric force fx defined as the
force per unit of mass directed along x.

The viscous forces can be related to the speed with an equation that
depends on the nature of the fluid. For Newtonian fluids can be assumed:

τij = δij −
2
3(div u) + µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
(3.15)

where δij is the kronecker delta that’s equal to 1 for i = j and 0 for i 6= j.
Considering the case ρ = const. and switching to the Eulerian approach

we obtain:
∂u

∂t
= −1

ρ

∂p

∂x
+ 1
ρ

[
∂τxx
∂x

+ ∂τyx
∂y

+ ∂τzx
∂z

]
+ fx (3.16)

3.1.5 Final remarks about the governing equations

Lets look at the four equations that we just derived. The first equation is the
continuity equation where only density and velocity appear. The subsequent
three are the momentum equation for the three velocity component. They
are strongly non linear because of the convective term and in each equation
all the variables p, u, v, w and ρ appears.

In the case where ρ is a constant, such as the incompressible case, these
equation are a set of four equations with four unknowns. Therefore this can
be solved without any other equation. As we said before a fifth Navier-Stokes
equation exists that represent the conservation of energy. This is however
needed only in the case of a compressible flow where the density depends on
the pressure and other energy variables such as the internal energy e or the
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Figure 3.4: Sketch from Leonardo da Vinci’s notebooks. Atlantic Code

temperature T . Since in this thesis this equation won’t be used, we won’t
present it here. It can be however found in Anderson (1995).

This set of equations are the basis of any fluid-dynamic problem, hence
also the CFD ones. As we have just said, these equations are strongly non-
linear. To solve them numerically, it is therefore needed to choose a correct
solving procedure. This problem will be analysed in section 5.2.

3.2 The turbulence

All flows encountered in engineering practice, from simple ones, such as
two- dimensional jets, wakes, pipe flows and flat plate boundary layers, to
more complicated three-dimensional ones, become unsteady above a certain
Reynolds number. At low Reynolds numbers flows are laminar. At higher
Reynolds numbers flows are observed to become turbulent. A chaotic and
random state of motion develops in which the velocity and pressure change
continuously with time within substantial regions of flow.

Fluid engineers need access to viable tools capable of representing the
effects of turbulence. This chapter gives a brief introduction to the physics
of turbulence.

As said earlier turbulence is a random state of motion. However it is not
completely chaotic: turbulent flows are highly organized in spatial coherent
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structures called eddies. These structures presents a wide range of time and
length scales, which vary from the same size of the problem up to the order of
micrometres. The turbulence is characterised by a strong mixing: particles
of fluid which are initially separated by a long distance can be brought close
together by the eddying motions in turbulent flows.

The largest turbulent eddies interact with and extract energy from the
mean flow by a process called vortex stretching. The presence of mean velocity
gradients in sheared flows distorts the rotational turbulent eddies. Suitably
aligned eddies are stretched because one end is forced to move faster than
the other.

The characteristic velocity θ and characteristic length l of the larger eddies
are of the same order as the velocity scale U and length scale L of the mean
flow. Hence a "large eddy" Reynolds number Rel = θl/ν formed by combining
these eddy scales with the kinematic viscosity will be large in all turbulent
flows, since it is not very different in magnitude from UL/ν, which itself is
large. This suggests that these large eddies are dominated by inertia effects
and viscous effects are negligible.

Smaller eddies are themselves stretched strongly by somewhat larger ed-
dies and more weakly with the mean flow. In this way the kinetic energy is
transferred down from large eddies to progressively smaller and smaller ed-
dies in what is called the energy cascade. This is shown in figure 3.5, which
represents the turbulent energy spectrum. On the x-axis the wavenumber
κ = 2π/λ = 2πf/u, where λ is the wavelength of the eddies and f is the
frequency and on the y-axis the spectral energy E(κ).

The diagram shows that the energy content peaks at the low wavenum-
bers, so the larger eddies are the most energetic. They acquire their energy
through strong interactions with the mean flow. The value of E(κ) rapidly
decreases as the wavenumber increases, so the smallest eddies have the lowest
energy content.

The smallest scales of motion in a turbulent flow (lengths of the order of
0.1 to 0.01 mm and frequencies around 10 kHz in typical turbulent engin-
eering flows) are dominated by viscous effects. The Reynolds number Reη of
the smallest eddies based on their characteristic velocity υ and characteristic
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Figure 3.5: Turbulence power density spectrum

length η is equal to 1, Reη = υη/ν = 1, so the smallest scales present in
a turbulent flow are those for which the inertia and viscous effects are of
equal strength. These scales are named the Kolmogorov microscales after
the Russian scientist who carried out ground-breaking work on the struc-
ture of turbulence in the 1940s. At these scales work is performed against
the action of viscous stresses, so that the energy associated with small-scale
eddy motions is dissipated and converted into thermal internal energy. This
dissipation results in increased energy losses associated with turbulent flows.

The Kolmogorov length, time and velocity scales can be estimated through
the equations derived by Kolmogorov himself using the dimensional analysis
that are:

Length scale η ≈ Re
−3/4
l l

Time scale τ ≈ Re
−1/2
l T

Velocity scale υ ≈ Re
−1/4
l θ

(3.17)

Typical values of Rel might be 103 ÷ 106, so the length, time and velocity
scales associated with small dissipating eddies are much smaller than those
of large, energetic eddies, and the difference (the so-called scale separation)
increases as Rel increases.

Kolmogorov made the following three assumptions:

1. Hypothesis of local isotropy: At sufficiently high Re, the small-
scale eddies (l << L) are statistically isotropic.
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As energy is transferred to smaller and smaller scales, memory of the
boundary conditions (which are responsible for the anisotropy) is even-
tually lost. For some l << L, then the eddies become isotropic.

2. First similarity hypothesis: In every turbulent flow at sufficient
high Re, the statistic of the smallest scales of motion are uniquely
determined by the kinematic viscosity ν and the dissipation rate ε.

At the smallest scales, dissipation takes place. Thus both the viscosity
and the dissipation rate must be important parameters, and the time,
length and velocity scale can be built from them. These are known as
the Kolmogorov scales.

3. Second similarity hypothesis: In every turbulent flow at sufficiently
high Re, there is a range of scales L >> l >> η in which the statistics
have a universal form determined only by ε.

This is the range in which the eddies only transfer energy from larger to
smaller scales (which is the reason why the dissipation rate εmust be an
important parameter). In this region, the inertial range, dimensional
analysis allows us to derive an analytical form for the spectrum E(κ):

E(κ) = CKε
2/3κ−5/3 (3.18)

where Ck is a universal constant, the Kolmogorov constant. Exper-
imental and numerical data confirms the existence of the power-law
spectrum postulated by Kolmogorov in a wide variety of flows. From
this equation can be seen how the tangent of the power spectrum (in
logarithmic scale) has always slope equal to −5/3.

3.3 The simulation of turbulence

As seen in the previous section, turbulent flows are characterised by a wide
spectrum of temporal and length scales. Moreover the energy dissipation
takes place at the so-called Kolmogorov scales, which are several orders of
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magnitude smaller than the geometry of the problem. The contribution
of these scales to the velocity, pressure and temperature variations of the
problem is negligible because of their low energy content. However it’s not
possible to completely ignore them since their presence is fundamental for
the correct computation of the dissipated energy. Since the computational
cost required to directly simulate this scale is huge and their information
content small, it is no surprise that a substantial amount of research effort is
dedicated to the development of numerical methods to capture the important
effects due to turbulence without directly simulate it. The methods can be
grouped into the following three categories:

• Reynolds-averaged Navier-Stokes (RANS) equations: attention
is focused on the mean flow and the effects of turbulence on mean flow
properties. Prior to the application of numerical methods the Navier-
Stokes equations are time averaged (or ensemble averaged in flows with
time-dependent boundary conditions). Extra terms appear in the time-
averaged (or Reynolds- averaged) flow equations due to the interactions
between various turbulent fluctuations. These extra terms are modelled
with several techniques that try to link them to know variable. Among
them the best known ones are the k− ε model, k−ω and he Reynolds
stress model. The computing resources required for reasonably accurate
flow computations are modest, so this approach has been the mainstay
of engineering flow calculations over the last three decades.

These methods however have the drawback that the solution is strongly
dependent by the correct turbulence model used. Moreover there are
several "tuning" constants that have to be benchmarked and validated
for each kind of problem.

In open field - and therefore in wind engineering - applications these
technique showed disappointing results with errors in the order of 15-
20%.

Furthermore RANS models cannot be used to correctly evaluate peak
values, since they only compute mean flow quantities.
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• Large eddy simulation: this is an intermediate form of turbulence
calculations which tracks the behaviour of the larger eddies. The
method involves space filtering of the unsteady Navier-Stokes equa-
tions prior to the computations, which passes the larger eddies and
rejects the smaller eddies. The effects on the resolved flow (mean flow
plus large eddies) due to the smallest, unresolved eddies are included
by means of a so-called sub-grid scale model. Unsteady flow equations
must be solved, so the demands on computing resources in terms of
storage and volume of calculations are large. However due to the in-
creasing computational resources available and the several benefits that
it has, this technique is starting to be applied to industrial applications.

• Direct numerical simulation (DNS): these simulations compute
the mean flow and all turbulent velocity fluctuations. The unsteady
Navier-Stokes equations are solved on spatial grids that are sufficiently
fine that they can resolve the Kolmogorov length scales at which en-
ergy dissipation takes place and with time steps sufficiently small to
resolve the period of the fastest fluctuations. These calculations are
highly costly in terms of computing resources, so the method is not
used for industrial flow computations and even in research field only
simple geometry has been simulated. An industrial application of this
technique in the next decade is unlikely.

3.3.1 The large eddy simulation technique

In this thesis the LES technique has been chosen to simulate the problem.
In this chapter will be presented the main "philosophy" behind the LES
approach and how to derive the main equations.

As introduced earlier, large eddy simulations are based on the assumption
that small-scale turbulent eddies are more isotropic than the large ones, and
are responsible for energy dissipation in the mean. Modelling the small scales,
while resolving the larger eddies, may be very beneficial: first, since most of
the momentum transport is due to the large eddies, model inaccuracies are
less critical; secondly, the modelling of the unresolved scales is easier since
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they tend to be more homogeneous and isotropic than the large ones, which
depend on the boundary condition.

Thus LES is based on the use of a space filtering operation: a filtered
variable is denoted by an overbar and is defined as:

f(x) =
∫
D
f(x′)G(x,x′,∆) dx′ (3.19)

where D is the entire domain and G is the filter function. It is easy to show
that if G is function of x − x′ only, differentiation and filtering operation
commute. Here ∆ represent the filter width that is the smallest solved length
scale. The size of ∆ should be chosen so that the eddies of size ∆ can be
represented with the chosen grid size. Usually ∆ is taken equal to:

∆ = nh

with

h = (hxhyhz)1/3 or h = (h2
x + h2

y + h2
z)1/2

where hx, hy and hz are the grid spacing in the three directions. The best
value of n has been subject of debate. Several authors proposed values of n
spacing from 1 to 8 depending on the differencing scheme order. Lund (2003)
concluded that the use of a high value of n is not cost effective, in the sense
that reducing both n and ∆ gives more accurate results that reducing h with
a fixed ∆ at the same cost.

The most commonly used filter functions are:

• the sharp Fourier cutoff filter (defined in wave space):

Ĝ(κ) =

 1 if κ ≤ π/∆
0 otherwise

 (3.20)

• the Gaussian filter:

G(x) =
√

6
π∆2 exp

(
−6x2

∆2

)
(3.21)
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• the tophat filter in real space:

G(x) =

 1/∆ if |x| ≤ ∆/2
0 otherwise

 (3.22)

Keeping this in mind we can now go back to the Navier-Stokes equation
and derive from that their LES form. For incompressible flows, the Navier-
Stokes equations are:

div(u) = 0
∂ui
∂t

+ div(uiu) = −1
ρ

∂p

∂x
+ 1
ρ
µ div(gradui)

Exploiting the linearity of the filtering operation we can swap the filtering
and the differentiation order. Filtering the first equation leads to the LES
continuity equation:

div(u) = 0 (3.23)

Repeating the process for the momentum equation gives:

∂ui
∂t

+ div(uiu) = −1
ρ

∂p

∂x
+ 1
ρ
µ div(gradui) (3.24)

We now face the problem that we need to compute the convective terms of
the form div(φu) on the left hand side of the equation, but we only have
available the filtered velocity field u, v, w and pressure field p. We can
"decompose" this contribution writing

div(φu) = div(φu) + (div(φu)− div(φu)) (3.25)

and substituting this in the filtered momentum equation

∂ui
∂t

+ div(φu) = −1
ρ

∂p

∂x
+ 1
ρ
µ div(gradui)− (div(φu)− div(φu)) (3.26)

The last term in 3.26 is the contribute of the filtered scales. Since we
want to solve only the filtered variables, the term div(φu) cannot be directly
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solved. We can however write

div(φu− φu) = 1
ρ

div τij = 1
ρ

∂τij
∂xj

(3.27)

where
τij = ρ(φu− φu) = ρ(φuj − φuj) (3.28)

τij is therefore a convective momentum transport due to the interaction
between the unresolved eddies. These are usually called sub-grid-scale stresses
or SGS. We can now separate each variable in his filtered and unfiltered com-
ponent. So that

φ(x, t) = φ(x, t) + φ′(x, t) (3.29)

Substituting this in the equation of τij we obtain (omitting some mathemat-
ical manipulation):

τij = (ρuiuj − ρuiuj)
(I)

+ (ρuiu′j + ρu′iuj)
(II)

+ ρu′iu
′
j

(III)
(3.30)

Here we can recognise three groups of contributions:

(I) The Leonard Stresses Lij that are due to effects at resolved scale.
They are caused by the fact that a second filtering operation makes a
change to filtered flow variables, i.e. φ 6= φ.

(II) The cross - stresses Cij that are due to the interaction between the
SGS eddies and the resolved flow.

(III) The Reynolds LES stresses Rij that are caused by convective mo-
mentum transfer due to interactions of SGS eddies.

Both Leonard and Cross stresses are computed approximately. Reynolds
stresses instead are modelled with a so-called SGS turbulence model. Several
SGS models have been proposed with several degrees of complexity. Here
we’ll present the Smagorinsky-Lilly SGS model. This model is one of the
first models proposed and have been widely validate.
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The idea behind the Smagorinsky model is that local SGS stresses Rij

are taken to be proportional to the local rate of strain of the resolved flow
Sij = 1

2(∂ui/∂xj + ∂uj/∂xi).

Rij = −2µSGSSij + 1
3Rijδij (3.31)

where νSGS is a proportionality constant. The last term ensure that the sum
of the modelled normal SGS stresses is equal to the kinetic energy of the SGS
eddies. In the current literature this equation is used to describe the whole
stress τij including in it also the Leonard and the cross stresses.

τij = −2µSGSSij + 1
3τijδij (3.32)

To define the sub-grid viscosity µSGS the Smagorinsky-Lilly model relies on
the Prantl mixing length model for RANS and and assumes that we can define
a kinematic SGS viscosity νSGS (dimensions m2/s), which can be described
in terms of one length scale and one velocity scale and is related to the
dynamic SGS viscosity by νSGS = µSGS/ρ. Since the size of the SGS eddies
is determined by the details of the filtering function, the obvious choice for
the length scale is the filter cutoff width ∆. As in the mixing length model,
the velocity scale is expressed as the product of the length scale ∆ and the
average strain rate of the resolved flow ∆× |S|, where|S| =

√
2SijSij. Thus,

the SGS viscosity is evaluated as follows:

µSGS = ρ(CSGS∆)2
√

2SijSij (3.33)

where CSGS is a constant of the model.

Based on the second Kolmogorov hypothesis, the behaviour of SGS eddies
should be universal; the CSGS constant should therefore be universal too.
However different studies showed that the correct value of CSGS vary from 0.1
to 0.25. These differences in CSGS values are attributable to the effect of the
mean flow strain or shear. This gave an early indication that the behaviour of
the small eddies is not as universal as was assumed at first and that successful
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LES turbulence modelling might require case-by-case adjustment of CSGS or
a more sophisticated approach. This case-by-case adjustment is anyway less
difficult and critic than the RANS one, where the involved constants and
arbitrary variables are much more numerous and relevant.



Chapter 4

Wind tunnel tests

In the next chapter we will present the tests performed in the wind tunnel
of the Politecnico di Milano (hereafter PoliMi). We will briefly introduce the
wind tunnel testing technique, focusing then on the preparation of this test
and on the obtained result. Particular attention will be given to the inbound
flow simulation, both on the technique used and on the results.

The experiments were conducted for a study carried out by the University
of Reggio Calabria regarding the internal pressure on hangar-like buildings.
In this context we will use the pressure data acquired on the external surface.
The simple geometry of the model allows to compare a basic case without
focusing on ad hoc solutions. Future works could include the simulation of
the internal cavity and it’s pressure.

4.1 The wind tunnel of Politecnico di Milano

The tests have been carried out in the wind tunnel of PoliMi. This facility
is a closed circuit wind tunnel that developed on two floors as can be seen
in figure 4.1. The lower chamber has a cross-section equal to 4m × 4m and
is used for test that require high-speed (Vmax = 55m/s) and low-turbulence
(Iu < 0.1%) such as the aero-spatial ones. The upper chamber instead has
a bigger cross-section equal to 14m × 4m and a length equal to 35m. Here
the maximum speed reachable is equal to 16m/s with a minimum turbulence

51
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Figure 4.1: The Wind Tunnel of PoliMi

intensity of 2%. The wind flow is generated by 14 turbines, each one with a
maximum power of 1.5MW placed after the high-speed chamber. To dissipate
the heat generated by the turbines, before the low-speed chamber is placed
a heat-exchanger.

The length of the upper chamber allows to develop a proper and stable
boundary layer. The model get placed at the centre of a rotating table
located at the end of the low-speed chamber with a radius of 6.5m that allow
to rotate the model to simulate different wind-directions.

4.2 Wind Tunnel scaling technique

As said earlier, the scaling is one of the biggest problem in the wind tun-
nel testing technique. The correct scaling of the model is based on the as-
sumption that the phenomenon is governed by a certain number of non-
dimensional parameter. To identify these parameters, the first step is to
identify the dimensional quantities that affects the problem. The force act-
ing on the body F is therefore function of:
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• the fluid density ρ

• the fluid viscosity µ

• the flow free-stream velocity U

• a characteristic length L

• a frequency f

• the gravitational acceleration g

The correct way to extract the non-dimensional parameter from these quant-
ities can be found studying the equation of motion of a body subject to wind
forces. Using the dimensional analysis can be found four non-dimensional
groups can be found:

• the pressure coefficient Cp = F
1
2ρU

2L2 = p
1
2ρU

2

• the Reynolds number Re = ρUL
µ

• the Strouhal number St = fL
U

• the Froude number Fr = U√
gL

Using these quantities can be written:

Cp = f (Re, St, Fr) = f

(
ρUL

µ
,
fL

U
,
U√
gL

)
(4.1)

A correct scaling should therefore keep these groups equal. Lets see what
this would mean. Indicating with subscript r the quantities related to the
real-scale and with subscript m those related to the model scale:(

ρUL

µ

)
r

=
(
ρUL

µ

)
m

(
fL

U

)
r

=
(
fL

U

)
m

(
U√
gL

)
r

=
(

U√
gL

)
m

(4.2)
Lets call λ the ratio of each quantity between full-scale and model scale:

λL = Lr
Lm

λU = Ur
Um

λf = fr
fm

(4.3)
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We can now insert equations 4.3 in 4.2. Assuming ρr = ρf and µr = µf (that
are both true if the wind tunnel uses air):

λL = 1
λU

λf = λU
λL

λL = λ2
U (4.4)

It is immediate to see that Reynolds and Froude correct scaling cannot be
both achieved at the same time (excluding the extreme case λL = λU = 1
that represent non-scaling).

The Froude condition expresses the importance of the gravitational and
buoyancy effects of the flow. Assuming these to be negligible when thermal
effects are, one could choose to ignore this condition and to scale using the
Reynolds condition λL = λ−1

U . This however would lead to huge practical
problems. E.g. assuming a model 50 times smaller than the real version,
λL would be equal to 1/50. To have the same Reynolds in the wind tunnel
simulation, a wind speed 50 times faster would then be required. This means
that if the full-scale reference wind speed is equal to 25m/s, in the wind
tunnel would be required a wind speed equal to 1250m/s! This is of course
completely undoable.

This problem is the main problem with wind tunnel tests. The experi-
ments are carried out assuming the phenomena to not be Reynolds depend-
ent. This statement is not completely wrong (otherwise wind tunnel results
would be completely useless), but it’s not even completely true. The differ-
ence in the Reynolds number is more severe when the geometry is smooth,
without sharp edges, such as circular tower or spheres, because it affects the
behaviour of the detachment of the boundary layer In the case of sharp edges
- such as the one presented in this thesis - the boundary layer detachment is
governed by the geometry and the Reynolds number is less critical.

Another problem related to the scaling of the rounded objects is that
the flow behaviour strongly depends by the surface roughness. Since this
roughness in case of concrete or glass is usually measured in micrometres,
it’s easy to see how a correct scaling of it is extremely hard.

Going back to the three scaling condition, the Strouhal condition is there-
fore the only one respected assuming frequency scale equal to the ratio of the
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velocity scale and the length scale.
In the experiment presented in this thesis the length-scale has been chosen

for geometrical and practical reasons. The second scale chosen instead was
the velocity-scale. This has been chosen as the ratio between the maximum
wind speed achievable inside the wind tunnel at the roof-heigh - equal to
10m/s - and the maximum wind speed expected by the Eurocode at the
same heigh with a return period of 50 years - equal to 27m/s. The other
scales are than obtained through dimensional analysis.

The scales used in this experiment are:

Quantity Scale
Length 1/50
Speed 1/2.7
Time 1/18.51

Table 4.1: Scales used in the experiment

4.3 Blockage effect on the flow

From what have been said in section 4.2 one could think to use the smallest
λL that allow the scaled model to fit in the wind tunnel. The presence of
the model however alters the flow in the tunnel, reducing the section and
accelerating the flow on the side of the model. This is called blockage effect.

This effect alters the pressure on the building modifying the results. The
strength of it depends by the blockage ratio defined as the percentage of the
wind tunnel cross-section occupied by the model, i.e. it is equal to S/C where
S is a nominal cross-section area of the model and C is the cross-section area
of the wind tunnel. The effect of the blockage effect of the pressure can be
evaluated with the equation

CDc = CD
1

1 +KS/C
(4.5)

To use this formula one should evaluate the coefficient K that is usually
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tricky to compute.
To workaround this problem, the blockage ratio should be kept smaller

than 5%. This implies the model to not be too big depending on the wind
tunnel size.

It is clear as the two conditions, Reynolds and blockage, has opposite
requirements. The optimal condition is therefore to have the biggest model
possible with a blockage ratio lower than 5%. The cross-section of the wind
tunnel of PoliMi is equal to 4m × 14m = 56m2, while the maximum model
section is about 2.2m× 0.3m = 0.66m2. The ratio between these surfaces is
equal to ∼ 1.2% that is below the blockage limit.

4.4 Atmospheric Boundary Layer
reproduction

The reproduction of a correct inbound flow strongly affects the pressure dis-
tribution on the building. This aspect is therefore critical for a good simula-
tion.

Inside the wind tunnel the ABL is reproduced using mechanical device
that can alter the structure of the flow. In particular two kinds of devices
have been used: a group of 9 spires 2.5m tall located at the beginning of the
wind tunnel and a set of roughness pyramids placed on the ground with an
height ranging from 9cm to 18cm (figure 4.2).

The spires are used to generate the bigger structures and to fasten the
creation of the boundary layer. The ground roughness instead slows down
the wind near the ground with an effect similar to the buildings and the trees
in the real scale scenarios. There are several papers relating the size and the
distance of the roughness blocks to the boundary layer generated. They,
however, often refers to cubic or cylindrical blocks. The approach used for
the set-up is based on the experience of the operator and on a try-and-error
approach.

The target profile z0 is chosen scaling the real-scale profile (that could be
ether measured or taken from a code) by the same λL used for the geometric
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Figure 4.2: Wind tunnel turbulence generators

scaling of the structure.

4.4.1 Profile measurement

To verify that the generated profile coincides with the target one, it has to
be measured and classified. This is done using a cobra probe (figure 4.3 that
is a multi-hole probe that, through direct calibration, can measure the three
components of the inbound flow in a point.

This is moved along a vertical track through an engine. Acquiring time
histories ad different height is possible to compute al the quantities presented
in 2.3. It worth to be noted that the time histories acquired at different
height are not acquired simultaneously. At each height the probe acquire a
5 minutes time history to minimize the statistical error.

Hence the integral length scale Lzu, Lzv and Lzw cannot be computed. Even
more so the integral scale Lyu, Lyv and Lyw cannot be computed as well since
the probe doesn’t moves in the y direction at all. The only integral scales
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Figure 4.3: Cobra probe

that can be computed are the ones along x, which can be evaluated using
the Taylor hypothesis (ref. 2.3.1).

4.4.2 Results

Below we present the acquired data and we briefly discuss it.
In figure 4.4 we compare the mean velocity profile obtained in the wind

tunnel to the Eurocode profile (Equation 2.10) corresponding to a Cat. II
terrain (open field, z0 = 5cm) with same Uref . The profile shows a good
agreement with the theoretical one. In the figure only the portion up to
1.5m is represented, since during this testing campaign the profiles data has
been acquired only up to that height.

In figure 4.5 the same comparison with the Eurocode standard profile has
been carried out for the turbulence intensity. This plot deserves a bit more
comments. The blue lines represent the streamwise turbulence component.
The portion between 10cm and 60cm shows good agreement. The same
thing can’t be said for the rest of the profile; below 10cm the flow is less
turbulent that how it should be, this is probably due to the fact that in the
wind tunnel configuration there are a couple of meters upwind to the model
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Figure 4.4: Mean velocity profile

lacking roughness. The flow in the lowest part of the floor is the one expected
to change sooner as soon the ground roughness changes. Since the flow is
moving from a very rough area to an area almost perfectly flat, the profile is
expected to become faster and less turbulent starting from the bottom and
gradually proceeding upward. Paying attention, this can be seen also in the
mean velocity profile analysed a moment ago.

Another consideration that can be done is that the Eurocode law expect
the turbulence to tend to plus infinity with decreasing z. This is of course
non-physical and such behaviour cannot be expected.

The reason for the disagreement above z = 0.6m is somehow similar:
as just said, when the flow moves to a different roughness it starts to evolve
beginning from the bottom. The roughness is positioned starting "only" from
15m upwind to the model. The rough area is therefore not long enough to
generate a completely stable profile. In this testing campaign the model was
only 30cm tall, so the flow above 60cm wasn’t really important. If there
were a higher model (such as an high-rise building) more roughness could
have been placed in the first part of the tunnel to give the flow a longer time
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Figure 4.5: Turbulence intensity profile

to develop.
Similar comment to those that we just did for the streamwise turbulence

can be done for the span-wise - red - one. The comments on the vertical one
are a little different. As one can see from figure 4.5, the vertical components
show a different shape from the one expected from the Eurocode equation.
This time is the Eurocode equation to be approximated. Full scale measure-
ments indeed show the same kneel that can be seen in the vertical turbulence
profile. This has already been explained in section 2.3.3 and it’s due to the
limitation that the ground imposes to the vertical movements near it.

In figure 4.6 we can see the Integral scales profiles. In this plot is very
evident how the integral length scales generated in the wind tunnel are not
big enough. Observing the streamwise - blue - one we can see how at z equal
to 1m the Eurocode expect Lxu to be about 3m. So large eddies are really hard
to reproduce inside the wind tunnel because of the physical dimensions of it.
We need to remember from figure 2.3 that the time scale of the structures
is somehow proportional to their length scale. These large eddies therefore
have a very long duration compared to the time that the flow takes from the
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Figure 4.6: Integral scales profile

inlet to the measure point (a wash time is approximately 3s). They don’t
have therefore the time to form. The spires located at the beginning of the
wind tunnel should have the task to generate big eddies and increase the
length scales, but how can be seen they are not enough to fit the Eurocode
profile.

The problem is present also in span-wise and vertical length scales, even
if less severe.

Lastly in figure 4.7 we can see the power spectrum of the streamwise
velocity component 30cm above the ground. It has been non-dimensionalised
as the Von Karman spectrum (equation 2.22). The spectrum completely
agrees with the theoretical one, both for the peak and, more important, for
the slope of the inertial range.

4.4.3 Final remarks on the ABL simulation in the wind
tunnel

From the results presented appears a good degree of agreement between the
wind tunnel simulated ABL and the code expected one. Few remarkable
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differences however exist and are mainly attributed to the fact that the ABL
doesn’t have enough space to develop completely. It is important to remark
that the aim of this campaign was to have a good incoming flow for z below
30cm and this has been achieved. It is anyway clear that the wind tunnel
simulations don’t allow to have a completely arbitrary incoming flow, but
that a certain degree of compromise has to be accepted.

A final remark that has to be done is that, although wind tunnel test-
ing is an established technique used extensively in wind engineering, it is
still a simulation prone to error and must therefore be benchmarked. Com-
parisons between full scale tests on existing buildings and wind tunnel tests
have shown good correlation although discrepancies do exist (Hoxey et al.,
2002). Comparisons among different wind tunnel tests for the same scen-
ario have been used for sensitivity analyses and to quantify the reliability of
the modelling process. Such reliability comparisons have shown small but
systematic errors indicating modelling discrepancies as opposed to random
variation Cook (1990).
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Figure 4.8: The hangar model used in the wind tunnel tests

4.5 Wind tunnel test on the building

Following the reproduction of a correct inbound flow, the next step is to
prepare the test model and then run the test acquiring the pressure data. In
the next section we present the main characteristic of the model and then
the set-up used for the tests; finally we show and discuss the results of the
simulations.

The experimental data were made possible thanks to joint research with
Professor F. Ricciardelli, University of Reggio Calabria, on the internal pres-
sures of large span buildings with large openings for the PhD thesis of Eng.
Giuseppe Vazzana (being submitted in next future). Some results of this
research are already published in Vazzana, Ricciardelli, Zasso, and Giappino
(2013).

4.5.1 Hangar model

The model used in this thesis had purpose of represent a hangar-like building
and not a particular building. For this reason, it had a very simple shape
with sharp edges and flat surfaces. It didn’t show any particular feature or
detail.
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The model was a parallelepiped with sides of 1m x 2m and 30cm tall.
On the sides there were several openings that reproduced the doors on the
hangar. There were three doors side by side on the longer side and two
separated doors on the short side. Each door was 25cm wide and 20cm tall,
with the exception of a small door on the short side that was 8cm wide and
10cm tall. The rightmost door of the three on the front has been equipped
with a spring-opening mechanism that has been used to simulate the sudden
failure of one door during a storm.

The surface of the model consisted of 5mm thick Alubond panels. Each
panel had been punctured with three different size sets of hole. Two sets
simulated a distributed porosity of the wall: a low-porosity equal to 0.1% of
the total surface obtained using 6mm holes; and a high-porosity equal to 1%
of the total surface obtained using 12mm holes. A third set of smaller holes
was used to measure the surface pressure; we will better explain this in the
following section.

The edges of the building have been covered with aluminium tape to try
to make the edges as sharp as possible and avoid possible effects due to the
sides of the Alubond panels. The aluminium tape has also the purpose to
minimise unwanted air leakage inside the model. For the same reason the
aluminium tape has been placed also on the edges against the ground and
on the hole in the base panel where were the electric cables connecting the
instrumentation inside the model with the control room.

4.5.2 Model instrumentation

The model has been instrumented with 6 PSI ESP-32HD high-speed pressure
scanners, each with 32 pressure sensors. The scanners are connected to a
Chell QUADdaq data acquisition system that has a sampling frequency equal
to 500Hz. The data are therefore acquired with a MATLAB script and stored
on file.

Each pressure scanner was connected with a hole on the hangar surface
through a rubber tube. Few pressure taps were connected to a tube ending at
the centre of the internal volume and one pressure tap has been left without
tube as reference.
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Figure 4.9: Left: the Chell ESP-32HD pressure scanner; Right: the pressure
scanner and the tubing system inside the model

The tube length was exactly the same for all tubes and was equal to 0.6m.
This way all the pressure taps has the same frequency response function that
has been "inverted" during the post-processing.

During the test a Pitot tube located about 7m upwind to the building
recorded the mean velocity of the field (it can be seen on the left of figure 4.2).
This data has been used to compute the reference velocity for the calculation
of the pressure coefficient as will be explained in the next section.

4.5.3 Execution of the tests

The tests have been executed with different orientation of the building and
in different configuration. As we’ve stated before the target of this test
campaign was to study the behaviour of the internal pressure. To do so,
many different combinations of open door and porosity has been tested with
different wind directions.

Since the aim of this thesis is to reproduce the behaviour of the external
pressure we will just focus on the - so-called - zero test, that is: no porosity
and no open door. Future work could include the study of the internal
pressure with different porosity and/or with open doors.
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Figure 4.10: Original pressure spectrum and cleaned one

4.5.4 Results

Before doing any analysis of the pressure data acquired in the wind tunnel, it
has been necessary to "clean" these data from unwanted frequency contribu-
tions. There were mainly two noise sources: the frequency response function
of the tubes and the blade-pass frequency of the wind tunnel engines. The
first resulted in a large peak at about 30Hz. This has been removed invert-
ing the frequency response function of the tubes that was been previously
experimentally measured.

The obtained spectrum still shows clearly some very sharp peaks. There
has been some doubt about what these peaks could be. To demonstrate that
these peaks were due to the motor, the blade pass frequency of the motor
has been calculated using the equation:

BPF1 = Peng ·RPM100% ·Nblades/60 (4.6)

where Peng was the engine percentage of power used for the test equal to
92%, RPM100% is the full power round per minute of the engines, equal to
1200rpm and Nblades is the number of blades per rotor.

From this equation the first blade pass harmonic BPF1 has been calcu-
lated. The following harmonics has been calculated just as a product of this
one. So BPFn = n ·BPF1. The resulting frequency for the first 5 harmonics
was: 220.8Hz, 441.6Hz, 662.4Hz, 883.2Hz and 1104Hz. These are far above
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the acquisition frequency of 500Hz. To correctly compute the resulting fre-
quency on the acquired signal has been therefore necessary to compute the
aliased frequency of them. Using the Nyquist theorem, the aliased frequency
is

falias = |N ∗ fs − f | ; (4.7)

where fs is the sampling frequency - in this case equal to 500Hz -, f is the
non-aliased frequency and N is defined as

N = round(f/fs); (4.8)

Superimposing the aliased version of the first 10 harmonics to the spectrum,
a very good agreement can be observed for the first 7 harmonics (figure 4.11).
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Figure 4.11: Blade pass frequency

To remove this frequency the signal has been filtered with a low-pass filter
with cutout frequency equal to 50Hz.

All the pressure data recorded during the test has been normalised with
the equation:

Cp = p
1
2 ρU

2
ref

(4.9)
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in this equation Uref is the expected velocity at roof height at the centre of
the table. This is not measurable since the presence of the model alters the
flow. It is therefore computed as:

Uref = k Uref,pitot (4.10)

where Uref,pitot is the reference velocity measured by the Pitot tube described
in paragraph 4.5.2 and k is a proportionality constant calculated during the
simulations without the building.

Mean value

Figure 4.12: Mean value

The Cp mean value map shows a pattern typical of square buildings with
sharp edges. The upwind face of the building is the only one with a positive
Cp due to the stagnation point of the flow. The pressure coefficient on the rear
face and the rear part of the roof is slightly negative, indicating the suction
due to the increase of tangential velocity as expected from the Bernoulli
equation.

The map shows clearly that the most critical values of Cp are located
behind the leading edge of the building where the separation bubble forms.
Near the corners where the phenomenon is stronger, the mean Cp reaches
values equal to −2
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Standard deviation and skewness

Lets analyse the second and third order statistical momentums. The standard
deviation is a first index of how much the Cp value fluctuates around its
mean. Looking at the map it’s evident how the largest fluctuations occur at
the corner where the Cp value was already strongly negative.

Figure 4.13: Standard deviation

Figure 4.14: Skewness

In these areas the skewness is also strongly negative. The skewness in-
dicates if the oscillations are larger below or above the mean value. In figure
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4.15 is easily seen that the fluctuations on the corner of the building are far
wider towards the negative values as indicated by the negative skewness.
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Figure 4.15: Cp time history on the building’s corner

Minimum value

What has been said above can be summarized with figure 4.16. Here we
can see that the large negative fluctuation of the Cp behind the leading edge
cause the Cp to reach strongly negative value that are 2-3 times stronger than
the mean value.

This behaviour is the most critical for the civil engineer that is interested
in the analysis of the most extreme event that could lead to the failure of
the cladding. In this map however we computed only the minimum value
over an arbitrary time interval. This can give us a rough overview of the
behaviour of the minima but cannot be used as an indicative information to
compute the design value. As any random phenomenon, the larger is the
number of samples, the larger is the maximum. To compute the design value
from a give time history one will need to consider more factors. This we’ll be
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Figure 4.16: Minimum value during wind tunnel simulations

discussed in the last chapter of this thesis where we’ll analyse the calculation
of the design values for wind engineering applications.

4.5.5 Final remarks on the building simulation in the
wind tunnel

In this section we have presented the external pressure obtained in the wind
tunnel experiments. We have seen how the most stressed area is a small
portion of the roof behind the leading edge and how the mean value by itself
is not enough for a correct calculation of the design value. To correctly
compute the pressure peak value, a correct standard deviation and skewness
must be correctly reproduced.
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Chapter 5

CFD reproduction of the
experiment

The purpose of this work is to benchmark the CFD as tool for the repro-
duction of the wind tunnel experiment to evaluate the surface pressure on a
building. The choice of reproducing the wind tunnel scaled geometry instead
of the full-scale one could seems odd since we have described how the CFD
is useful to workaround the limitation imposed by the wind tunnel and in
particular the scaling problem. Reproducing the experiment with the same
scale and a similar velocity to the wind tunnel ones reintroduce this problem.

The reasons for this choice are that, in a comparison between a full-scale
CFD-reproduced phenomenon and a small-scale wind-tunnel-reproduced one,
it would have been hard to understand which differences are imputable to
the scaling error and which ones to the CFD turbulence model or numeric
errors.

The research should therefore be made in two step: a reproduction of the
experiment with the CFD using the same geometry and the same inbound
flow to validate the chosen CFD technique; and a following reproduction of
the full-scale problem analysing the difference with the previous simulation.

This chapter will be divided in eight sections: in the first section we
present the current state of the art for the generation of the inflow’s ABL,
afterwords, we introduce the solver and the boundary conditions that will

73
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be used in the current thesis. Then we present a preliminary benchmark
of the CFD technique using the data provided by Y.Yoshikawa obtained
at the Tokyo Institute of Technology wind tunnel. In the following section
we will benchmark some different CFD set-ups - solvers, schemes, meshing
technique, etc. - and we will try to simulate several components of the wind
tunnel on their own. Subsequently, in the sixth section, a reproduction of
the wind tunnel ABL will be executed; this part has proved to be the most
difficult and a correct reproduction of all the characteristics of the ABL to
be elusive. In the final part we will present a preliminary try to obtain
the surface pressure on the building and we will compare this to the results
obtained with different techniques.

5.1 The ABL reproduction in CFD
simulations

Data post-processing of the wind tunnel tests results shows how the probab-
ilistic distribution of the fluctuating pressure values around the mean value
may be very different from point to point and in particular from region where
positive peaks or negative peaks occur (Rocchi, Schito, and Zasso (2010,
2011); Zasso, Rocchi, and Schito (2009)). This experimental evidence is not
explainable considering only the mean flow field modification, due to wind-
structure interaction, but it may be related to the interaction of the larger
turbulence structures, present in the atmospheric boundary layer flow, with
those parts of the building that are effective in modifying and stretching the
vortexes (edges driving flow separations). This phenomenon is present in the
experimental results, since the wind tunnel common practice is to scale the
real wind and structure interaction by reproducing a wind field that contains
the turbulence structures and by simulating similar statistical properties of
the real wind in the site where the structure will be built. The same approach
is not usually followed by those CFD numerical simulations that model the
incoming turbulence through URANS (Unsteady Reynolds Average Navier
Stokes) approaches able to account only for averaged turbulence properties
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Figure 5.1: Left: Cp time history comparison. Right: probability distribu-
tion of (Cp − Cp,MEAN )/Cp,MEAN (image courtesy of Rocchi et al. (2011))

(k,ε,ω) or in those simulations where not realistic uniform turbulence condi-
tions are used as boundary conditions for the incoming wind.

A comparison between Wind Tunnel test and two LES simulations - one
reproducing the ABL, while the other with a uniform turbulence condition -
performed by Rocchi et al. (2011) highlighted that the extreme values (loc-
ated in the far tails of the probability distribution) are related to the turbu-
lence structure of the flow. In particular the presence of large low-frequency
structures is required to reproduce a real-like probability distribution of pres-
sure fluctuation and to simulate the most demanding peak values in region
of separated flow (figure 5.1).

It is therefore mandatory in CFD simulations to correctly reproduce the
incoming wind turbulent characteristics in order to define the more appro-
priate dimensioning peak pressure values. The definition of the incoming
wind characteristics becomes therefore a key feature for the modelling of the
wind-structure phenomenon.

At the present day, several techniques exists to reproduce the turbulent
flow. These can be divided into three main categories: the recycle techniques,
the synthetic generation of the inflow turbulence and the driver region tech-
nique.

Recycle techniques are modifications of the periodic conditions. In the
classic periodic conditions the cells of two separated surfaces get "linked"; the
domain thus repeat itself an infinite number of times. When used as inlet-
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outlet condition, periodic condition must take into account the head loss and
the variable boundary layer thickness.

A versatile and flexible recycle technique was proposed by Lund et al.
in 1998. This method, which was developed for flat-plate boundary layers,
consists of taking a plane of data from a downstream location whose distance
is a multiple of the boundary-layer thicknesses δ of the inflow, and rescaling
the inner and outer layers of the velocity profiles separately, to account for
the different similarity laws that are observed in these two regions. The
rescaled velocity profiles are then re-introduced at the inlet. In particular, in
the near-wall region inner-layer non-dimensional variables are matched; the
velocity of an inlet cell is taken equal to the velocity of a cell at the recycle
plane with the same y+ (non-dimensional wall distance) instead than one
with the same y. In the outer layer, the same consideration is applied, but
the rescaling is performed along lines of constant y/δ and a law-of-the-wake
is used instead of the logarithmic distribution. To correctly reproduce the
flow’s integral lengths, the domain must be at least twice as long (or wide)
as the wavelength of the longest structure present in the flow, i.e. the cross-
correlation of two points separated by a distance equal to half the domain
length must be equal to zero.

The main advantage of these methods is that they allow to reproduce
a stable an developed flow using small domains. They indeed simulate and
infinitely long geometry exploiting the periodic condition.

The main shortcoming is the fact that the inlet must be placed in a re-
gion in which the flow is in an equilibrium, well-known condition (flat-plate
boundary layer, for instance) and a fairly long fetch must be appended to the
region of interest for the recycling. This introduce two difficulties: the fact
that, in some flows, an equilibrium region in which scaling arguments can be
applied may not exist at all, and that recycling may introduce spurious peri-
odicity intro the time-series (see for example, Spille-Kohof and Kaltenbach
(2001)).

In wind engineering it is usually possible to apply the recycle technique
to generate ABL-like inlet database that can be later used as inlet condition
for wind engineering simulations. However, the ABL generated inside the
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Wind Tunnel is proved to not be stable and completely developed due to the
insufficient length of the test chamber. Moreover, the presence of the spires
makes the domain non-periodic. This method is thus not suitable for the
purpose of this thesis that is to reproduce a Wind Tunnel-like flow.

Methods that do not use some form of recycling are usually based on
the generation of synthetic turbulence, with assigned moments and spectra,
through random sequences. Le et al. in 1997 performed calculations of a
backward-facing step in which at the inflow they assigned a mean velocity
profile, to which random fluctuations with given moments and spectra where
superposed. Le at al., however, found that because of the inflow inform-
ation did not contain the phase information of the real turbulent eddies,
the turbulence level decayed rapidly. Only some fairly significant distance
downstream of the inflow the turbulent eddies regenerated and the flow field
becam realistic again. This proved that without the phase information, inflow
conditions cannot be expected to be accurate and the flow must undergo an
adjustment, as the turbulent eddies are generated and evolve (i.e. the correct
phase information is established) starting from a field in which such inform-
ation is either absent or incorrect. While it is possible, in principle, to match
this structural information using stochastic sequences, the specification of
the phase information is more difficult, since it relates to the structure and
shape of the turbulent eddies, which is strongly dependent on the type of
the flow (e.g. mixing layer or boundary layer) and on the location in the
flow (quasi-streamwise vortices are present near a wall, horseshoe vortices
and arches farther away).

The inflow method based on synthetic turbulence generation that was de-
scribed above and similar ones are based on the assumption that turbulence
can be specified by using only low-order statistics (mean velocity, spectra,
normal and - in some cases - shear Reynolds stresses). One factor that these
methods neglect, however, is the initial development of the inflow perturb-
ation. The higher-order statistics of the synthetic turbulence, in fact, do
not match those of realistic turbulent flow with the same low-order statistics
leading to rapid decay of the perturbations.

In the last decade, different methods to generate inflow conditions, that
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Figure 5.2: Contours of streamwise velocity fluctuations at y/δ = 0.01.
From top to bottom: precursor simulation, synthetic turbulence, synthetic
turbulence with forcing planes

seeks to establish the correct Reynolds shear-stresses profiles, has been pro-
posed. One, by Spille-Kohof and Kaltenbach, use a synthetic turbulent field
at the inflow plane and a number of control planes placed a short distance
downstream. At each of these planes a controller is introduced that ampli-
fies the wall-normal velocty fluctuation to match the target Reynolds shear-
stress. They found that the forcing superposed on the synthetic turbulence
reduced the distance required to achieve realistic statistics in a spatially de-
veloping wall-bounded flow very significantly.

A method to generate a completely stable and physically correct flow has
not yet been found. An attempt to use one of the latest synthetic turbulence
inflow technique to generate a Wind Tunnel-like and a comparison of the
pressure distribution obtained with this technique will be discussed in section
5.8.

A third method that has been used to generate inflow condition consists
of running a separate - preliminary - calculation of driver region. This is
usually a Wind Tunnel-like channel with periodic or symmetry lateral walls
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and a rough floor. The driver region is usually a quite long domain in or-
der to obtain a stable and developed boundary layer on a plane near the
outlet. The "real" simulation can then be attached to the driver region and
solved together, or the velocity and pressure field in one plane normal to the
streamwise direction and close to the outlet can be stored at each time step;
the sequence of planes is then read-in as inflow data for a separate calcula-
tion. This latter method allows to run two smaller simulation instead than a
larger one and can be useful when the precursor database is used for several
"following" simulations as it allow to solve the driver region only once. If this
is not the case, however, the storing and reading operations can increase the
cost of calculation, both in terms of CPU time and data-storage requirement.

The main advantage of this method is that the generation of a physical
flow is achieved by the solver without any artificial model. It can be used to
generate both stable or developing flow depending on the length and the geo-
metry of the driver region. These simulations show usually a good agreement
with experimental measurement, but the cost of the driver region simulation
is usually extremely high.

This method was chosen for this thesis to obtain a incoming flow as
similar as possible to the real Wind Tunnel tests. The consequences of this
choice will be discussed in the present chapter, covering both advantages and
disadvantages and the main problem arisen.

5.2 Solver and boundary conditions

The simulations has been carried out using a transient incompressible solver
i.e. considering the air density constant. The first solver that has been
tested is the PISO (Pressure Implicit with Splitting of Operators) scheme.
The PISO scheme involves one predictor step and two corrector steps and
may be seen as an extension of the SIMPLE scheme, with a further corrector
step to enhance it.

While a detailed description of the PISO algorithm can be found on Ver-
steeg (2007), it is interesting to point out a couple of facts.

The first important thing to keep in mind is how the continuity equation
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Figure 5.3: The PISO scheme flow-chart (Figure from Versteeg (2007) re-
elaborated by the author)
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is solved. How we have seen in chapter 3.1.3, the conservation of the mass
in an incompressible fluid can be simply represented by the equation

div u = 0 (5.1)

In the PISO (but also in the SIMPLE) algorithm however the velocity field is
computed using an approximate version of the momentum equation where the
pressure term used is the pressure at the previous iteration. The continuity
equation is solved replacing in equation 5.1 the velocity with the pressure,
using a relationship obtained from the estimation of the error introduced
during the approximation of the momentum equation.

The continuity equation therefore is used to compute a correction to the
pressure field to compensate the errors introduced during the calculation
of the velocity one. This is the reason why in the solving algorithm doesn’t
appears any "continuity equation", but instead a pressure correction equation
shows up. We’ll refer to this way to compute the pressure field later when
we speak about the digitally generated turbulence.

Another important fact that must kept in mind when using the PISO
scheme is the so-called Courant-Friedrichs-Lewy (or CFL) condition. This is
a necessary condition for the stability of the solver. Heuristically this condi-
tion imposes the time step to be smaller than the time that an hypothetical
particle need to travel across a single cell. For one-dimensional case, the CFL
has the following form:

C = u∆t
∆x ≤ Cmax (5.2)

where the dimensionless number C is called Courant number and for explicit
solvers Cmax is usually assumed equal to 1. This condition must be true for
every cell. For 3D cases the CFL condition is:

C = u∆t
∆x + v∆t

∆y + w∆t
∆z ≤ Cmax (5.3)

As a corollary, when the grid point separation is reduced, the upper limit for
the time step also decreases. Moreover if in a given portion of the domain
the velocity is larger, the cells need to be larger or the time step has to be
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reduced. This condition can become very strict in those areas where a large
velocity gradient occurs. In these areas it’s usually required a bigger spatial
resolution and thus smaller cells. This leads the maximum ∆t to decrease,
increasing the number of iteration required and thus the computational time
needed to solve the problem.

This condition can result in a serious increase in the computational cost
of a simulation. It is possible to partially workaround these limitation using
a more stable solver. In section 5.6.2 we will benchmark the PIMPLE solver.
The PIMPLE (PI (SO) - (SI) MPLE) solver is an enhancement of the PISO
solver that uses SIMPLE sub-iterations to stabilize the algorithm and allow
Courant bigger than 1 without diverging. It’s important to point out that
the PIMPLE solver with one sub-iteration (in OpenFOAM these are called
outer correctors) it’s equal to the PISO solver.

Boundary conditions

The choice of correct boundary condition is crucial to obtain good results.
We already discussed in section 5.1 about the inlet condition and the method
that can be used to define it. Here we will briefly present the other boundary
conditions used in this work.

The main boundary conditions that will be used are:

• fixed value

• zero gradient

• no slip

• free slip (or symmetry plane)

The fixed value BC is the simplest to be understood. It simply forces
the value of a certain variable to be equal to a given one. Mathematically
speaking, this is a Dirichlet boundary condition that is:

φ = α(x) (5.4)
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where α(x) is a given value that does or does not vary on the boundary
surface. This one is often used as BC for the inlet, where the velocity is
given (constant or not), and for the outlet, where the pressure is set equal to
zero.

A small remarks has to be given about the pressure value: while giving
the inlet velocity is clearly a way to impose a certain inflow discharge, some
doubt could arise about the fixed pressure value at the outlet. During ex-
periments we don’t care for the pressure value at the inlet nor at the outlet.
When the wind tunnel is turned off the pressure inside the wind tunnel is
everywhere equal to the atmospheric pressure (neglecting thermal or other
small differences). When the wind tunnel is turned on, if we consider a closed
circuit wind tunnel, the discharge in all the sections of the wind tunnel must
be equal; what makes the air to flow is a positive pressure gradient that arises
through the fans. This causes a negative pressure gradient to arise in the
wind tunnel that makes the air to start flowing. In the CFD simulations we
cannot simply impose a pressure gradient; indeed if we did it, the pressure
would be free to shift up and down, keeping the gradient unchanged and
therefore the solution consistent. These oscillations are however completely
non-physical. To avoid this behaviour the pressure has to be fixed at least in
one point. During the post-processing we will compute a reference pressure
at the test section and we will analyse the differential pressure, just the same
way the atmospheric constant pressure is neglected during the wind tunnel
experiments.

The second BC is the zero-gradient BC. Physically this BC is equal to say
that the flow is completely developed and that no more changes occur in the
direction parallel to the flow. Mathematically this is a Neumann boundary
condition, that is:

∂φ

∂n
= 0 (5.5)

where n is the normal vector to the boundary surface. In the case that φ is
a vector quantity the condition is

∂(φ× n)
∂n

= ∂φn
∂n

= 0 (5.6)
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that is to ask for the normal component of the quantity to be completely
developed.

This BC is true when it refers to the mean value of a completely developed
flow. Since the turbulence component of the flow quantities keeps changing
inside the eddies, this is not physically correct. Moreover if the flow is not
completely stable and developed, this BC is not even true for the mean value.
However this is the weakest BC that we can impose to the problem and is
a forced choice. To avoid errors in the upwind flow, the outlet is usually
placed few meters after the sampled area. We will see this solution in the
PoliMi Wind Tunnel simulation where the simulated wind tunnel is much
longer than the real version exactly for this reason.

The next BC used is the no slip boundary condition. This BC is not a
mathematical BC, but more a "set" of boundary conditions that represent
a physical behaviour. The no slip BC represents the behaviour of fluids to
adhere to surfaces by creating a thin layer of fluid that is not moving relative
to the surface. Mathematically this BC is equal to: u = 0

∂p/∂n = 0
(5.7)

In other worlds it’s equal to a constant zero value for the velocity field and
a zero gradient for the pressure.

The last BC is the free slip boundary condition. As the no slip condition,
also this BC doesn’t not represent a mathematical behaviour, but more a
physical one. Physically this BC represent a plane where the flow is free to
slip. This never happens in nature since a material that offers zero resistance
to the flow doesn’t exists, but can be used for some "ideal" surfaces, such as
the symmetry planes (for this reason, this BC is also called symmetry plane).
Mathematically this BC is equal to:

u× n = 0
∂(u× t)/∂n = 0
∂p/∂n = 0

(5.8)
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where n is the vector normal to the boundary surface and t a vector tangent
to it. This is to say that the normal component of the velocity must be equal
to zero, while the tangent velocity and the pressure have zero gradient. This
is exactly what happens on the symmetry planes. This is also used to bound
the domain without a difficult to solve BC in the areas where the exact flow
is not important, such as the roof of the wind tunnel or its sides.

5.3 Preliminary benchmark

The PISO solver has been benchmarked on the results obtained by professor
Masaru Yoshikawa. Professor Yoshikawa successfully reproduced the flow
inside the wind tunnel of the Tokyo Institute of Technology using a CFD
commercial software with an LES turbulence model.

This case has been chosen as benchmark for several reasons. The first
reason is that we already had the results of this geometry solved with a CFD
software (as opposed to the Milan wind tunnel) and we could compare our
results not only with an experimental output, but also with a numerical one.
The second reason is that this wind tunnel is significantly smaller that the
PoliMi one, with a total volume approximately equal to 150m3 (Milan Wind
Tunnel has a total volume slightly larger than 2000m3). In addition to a
smaller total volume, the roughness on the floor of the TITech Wind Tunnel
had been simulated using cubes. This kind of roughness is much easier to
mesh than the closely packed pyramids used in Milan.

The geometry of the benchmark case can be seen in figure 5.4. The wind
tunnel consists of a 26m long room with a cross section equal to 2.4m by
2.4m. Three spires, approximately 2m tall, are placed 1m after the inlet. The
ground roughness is then generated using two sets of square-based boxes: a
set of boxes 40cm wide and 15cm tall on most of the floor; and a set of
smaller boxes, 20cm wide and 7.5cm tall, on the last 4m of the floor before
the sampling point.
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Figure 5.4: Tokyo Institute of Technology Wind Tunnel (image courtesy of
M.Yoshikawa)

Mesh

The mesh has been done in agreement with the one used by Yoshikawa in
his simulation. The main difference between the mesh used by Yoshikawa
and the one used in this simulation lays in the shape of the cells: while
Yoshikawa used an unstructured grid of tetrahedral cells, in this simulation
a semi-structures grid made of hexahedral cells was adopted. The cells size
used can be seen in figure 5.5. The background was formed by 10cm large
elements. The size is reduced to 5cm in a portion of the domain close to the
ground and to the spires. Then the elements has been refined one more time
to 2.5cm on the roughness and the spires surface.

The mesh has been generated using the snappyHexMesh utility included
in the OpenFOAM suite. A detail of the mesh is shown in figure 5.6. On
each surface three layers of 3mm thick cells has been added to better resolve
the boundary layer.

Boundary conditions

The following boundary conditions has been used to solve the case:

• fixed constant value velocity and zero-gradient pressure at the inlet;

• fixed zero value pressure and zero-gradient velocity at the outlet;

• no slip condition on the floor;

• free slip condition on the side and on the roof;
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Figure 5.5: Cells size of the Yoshikawa’s simulation

Figure 5.6: A detail of the mesh used
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Figure 5.7: Mean velocity profile compared to Yoshikawa simulation and
Eurocode profile

Results

The flow has been measured in 850 points divided in 25 vertical lines (from
now on called traversing). The traversing has been organized both along the
streamwise direction and the span-wise direction to analyse the flow evolution
along both x and y.

In figure 5.7 we compare the simulated profile with the one simulated
by Yoshikawa and with the Eurocode standard log-law profile. The figure
is quite self-explanatory: the three profiles shows a very good agreement
demonstrating the simulation to be correct.

Comparing the current simulation profile with the Eurocode one above
1m, one can see that the simulated profile doesn’t grows as the Eurocode
hypothesizes. Unfortunately a comparison with Yoshikawa simulation and/or
TITech wind tunnel cannot be done, as the data above 1m are not available.
A possible explanation is that the wind tunnel is too short to create a stable
profile and this affects the flow above that height.
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Figure 5.8: Turbulence intensity profile compared to Yoshikawa simulation
and Eurocode profile

The last comparison we make with the Yoshikawa simulation regards the
turbulence intensity. In figure 5.8 the three simulated turbulence intensity
- thin solid lines - are compared with the Eurocode Turbulence intensity
(equation 2.14) - dashed lines - and with the Yoshikawa simulation - thick
solid line. It appears that the simulation’s turbulence intensity agrees with
the one simulated by Yoshikawa. These however are both 1.6 ÷ 2 times
lower than the one expected by the Eurocode. Since Yoshikawa simulation
perfectly match the experimental data, the most obvious explanation is that
this difference is due to a wind tunnel set-up that is able to reproduce the
mean profile, but that cause a turbulence intensity profile different from the
one proposed by the Eurocode.

Conclusions

From the comparison with the data obtained in the TITech wind tunnel
and with a simulation done with a commercial software, it appears that
the solver chosen and the set-up used are suitable for the solution
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of this type of problems. The geometry provided does not correctly
reproduce the wind profile prescribed by the Eurocode nor numerically, nor
experimentally. Since Rocchi et al. (2011) demonstrated that the incoming
turbulence strongly affect the peak distribution on the building surface, this
geometric set-up is not suitable for our research, even if it provides good
mean velocity profiles.

5.4 PIMPLE solver benchmark and
time-step optimisation

Parallel to the PISO solver, we decided to check if the PIMPLE solver was a
feasible solution to reduce the computational time required without affecting
too much the solution. This solver indeed allow to use larger time step,
reducing the total number of iterations required and thus overcoming the
limitations imposed by the PIMPLE solver.

To see the impact of the number of sub-iterations and the Courant on the
flow and study possible numerical-diffusion effects, we run a simple geometry
benchmark using different ∆t and nOuterCorrector (from hereafter NOC).
In table 5.1 and 5.2 the Courant number (maximum over the whole simu-
lation and average time-step maximum) and the average time per time-step
obtained with these simulations are summarised.

For ∆t ≥ 0.002s, however, severe numerical diffusion appeared. The best
solutions with a good execution time reduction and an acceptable numerical
diffusion are ∆t = 0.001s and NOC equal to 2 and 5. To have a better
knowledge of the impact of this choice on the flow, a more detailed benchmark
has been then carried out using again the Yoshikawa’s benchmark.

In figure 5.9 we compare the mean velocity profile obtained with the
PISO solver (the same plotted in figure 5.7) to the two profiles obtained with
2 and 5 outer correctors. The profile is almost identical showing little or no
difference at all.

Looking the turbulence intensity in figure 5.10 the result is still good and
the profiles show a good degree of agreement. However few differences start
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Table 5.1: PISO and PIMPLE execution time benchmark (part 1)

nOuterCorrector
1 (PISO) 2 5 10

dt=0.0001
maxCo -
mean maxCo -
mean iter time: 1.13609
time for 60s 681654
dt=0.0002
maxCo 1.3975
mean maxCo 1.0793
mean iter time: 2.0085
time gain 11.60%
dt=0.0003
maxCo 2.0835
mean maxCo 1.6389
mean iter time: 2.1045
time gain 38.25%
dt=0.0004
maxCo 2.7411
mean maxCo 2.1898
mean iter time: 2.3071
time gain 49.23%
dt=0.0005
maxCo 3.4688 3.5899
mean maxCo 2.7181 2.7658
mean iter time: 2.4599 3.6712
time gain 56.70% 35.37%
dt=0.001
maxCo 6.6494 6.7977
mean maxCo 5.3862 5.3531
mean iter time: 3.1207 5.7762
time gain 72.53% 49.16%
dt=0.002
maxCo 13.0819 12.7592 13.2431
mean maxCo 10.7296 10.4109 10.396
mean iter time: 3.5076 8.7334 14.5948
time gain 84.56% 61.56% 35.77%
dt=0.004
maxCo 26.23 23.5578 27.9573
mean maxCo 21.46 20.6794 20.0538
mean iter time: 3.5 8.2765 13.7686
time gain 92.30% 81.79% 69.70%
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Table 5.2: PISO and PIMPLE execution time benchmark (part 2)

nOuterCorrector
1 (piso) 2 5 10

dt=0.005
maxCo 31.1665 28.4032
mean maxCo 26.1783 25.1399
mean iter time: 8.4274 12.843
time gain 85.16% 77.39%
dt=0.01
maxCo 67.1 61.6586
mean maxCo 53.43 49.7343
mean iter time: 7.76 16.9393
time gain 93.17% 85.09%
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Figure 5.9: Turbulence mean velocity profile
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Figure 5.10: PISO - PIMPLE comparison: turbulence intensity profile

to arise. The streamwise turbulence intensity obtained with the PIMPLE
solver matches quite well with the PISO one. Lateral and vertical turbulence
intensity seams to be a little higher, with the simulation with 2 correctors
giving a closer result to PISO than the one with 5 corrector.

Figure 5.11 shows how the two spectra obtained with the PIMPLE solver
has an higher energy content in the range f ∗ = 0.5÷ 2.

From this comparison appears how the PIMPLE solver with 5 sub-itera-
tions doesn’t shows considerable advantages compared to the PIMPLE solver
with 2 sub-iterations. At the same time the differences between PISO and
PIMPLE solvers are acceptable, especially if we remember that the PIMPLE
solver reduce the time required for the simulation of 72.5%.
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Figure 5.11: PISO - PIMPLE comparison: streamwise spectrum

5.5 Sensitivity of ABL to Wind Tunnel
elements

The boundary layer obtained inside the wind tunnel is caused by the super-
position and the interaction of the effects of the spires and of the ground
roughness. There are also other factors affecting the flow that mainly influ-
ence the velocity distribution across the inlet plane. These are the distribu-
tion of the engines, the heat exchanger grid, the mast of the turning wings
and other elements of the wind tunnel. In our simulation we considered the
inbound flow constant in time and space. This hypothesis should be further
analysed as it’s impact on the resulting profile. This won’t be done in this
thesis, however.
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Figure 5.12: Simulation domain for the spires test

Figure 5.13: Detail of the simulation’s mesh for the spires test

5.5.1 Spires

The first element that has been tested are the spires placed at the beginning
of the wind tunnel. The simulation reproduces 2 spires inside a 50m long,
3m wide and 4m tall channel. Contrary to what has been done before, the
wall boundary condition is used both on the floor and the ceiling. The length
of the domain has been chosen in such a way that the distance between the
spires and the measurement point is the same in the simulation and in the
wind tunnel. The simulation domain has to be a little larger than the wind
tunnel, however, to avoid inlet and outlet to be too close to the spires or the
probes and possibly alter the flow.

The comparison with the wind tunnel data is given in figure 5.14 and 5.15.
The normalised mean velocity profiles show a very good agreement with the
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Figure 5.14: Mean velocity profile with spires only and spires+roughness for
comparison

experimental data. The green line representing the profile obtained with
both spires and ground roughness highlights how the spires are responsible
for the upper part of the mean velocity profile, while the ground roughness
is responsible for the lower.

The turbulence intensity in the simulation however is about 2% higher
than the one measured inside the wind tunnel. This reason for this behaviour
could be found in the solver used. This is indeed similar to what we observed
in section 5.6.2 with the Yoshikawa’s simulation where using the PIMPLE
solver in place of the PISO solver cause the turbulence intensity to grow.

5.5.2 Ground roughness

The second element to be tested is the ground roughness. This is also the
hardest to correctly simulate due to the complex geometry and the need to
catch the flow on the narrow spaces between the pyramids.

The roughness in this wind tunnel is not simulated with blocks, as it
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Figure 5.15: Turbulence intensity profile with spires only

was in the TITech wind tunnel, but with smaller and closer pyramids. The
pyramids has been chosen for operational reasons: having them disposed on
large panels allows a faster preparation of the Wind Tunnel compared with
the blocks that have to be placed one by one.

This kind of roughness proved to be the most difficult element to re-
produce: their non-vertical faces cause the cell’s faces to be non-orthogonal
causing severe numerical diffusion problems. Also, their closely packed dis-
tribution cause the meshing tool to create very skewed cells. A third problem
is that to correctly catch the flow passing between them, a large number of
cells need to be used.

To better understand the source of these problem, one need to remember
the kind of meshing utility used: Snappy Hex Mesh. This meshing tool be-
longs to the cut-cells kind. This means that the mesh is generated starting
from a volumetric mesh made of perfectly orthogonal cells. The utility then
whittled inside the mesh the desired geometry through several passages (re-
ferring to figure 5.17): 1) background mesh 2) refinement 3) castellated mesh
4) snapping ). An important observation is that the mesh, until the snapping
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Figure 5.16: Floor roughness used inside the wind tunnel

passage, is still completely orthogonal. This property will be exploited in the
creation of the mesh.

To find the better setup for the simulation of the roughness, we ran the
simulation of a 100m long, 20cm wide and 2m tall channel. The boundary
condition on the lateral and the upper walls have been set as symmetry plane,
while on the floor has been used a wall function boundary condition. The
pyramids were positioned on the floor of the domain. Several set-ups of the
pyramids and snapping techniques have been tested in order to find the best
solution. The set-up tested are:

• dense snapped: all the pyramids are reproduced and the cells are
snapped to the pyramids surface

• dense not snapped: all the pyramids are reproduced, but the cells are
not snapped. This leads to stepped pyramids instead of slanting sides.
The advantage of this mesh is that it’s almost completely orthogonal,
minimizing the numerical diffusion effects.

• coarse snapped: half of the pyramids are removed obtaining a chess-
board-like distribution. This helps reducing the crowdedness and re-
duce the meshing problems

• coarse not snapped: half of the pyramids are removed and the cells
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Figure 5.17: Some of the Snappy Hex Mesh steps

are not snapped. The same considerations of the "dense not snapped"
mesh applies here too.

Despite several tries, snappyHexMesh could not converge in the dense
snapped set-up. This is due to the problems said above. The other three
set-ups, instead, successfully converged.

In figure 5.18 the normalised mean velocity profile obtained with the three
meshes are compared to the one obtained inside the wind tunnel . Since a pro-
file inside the wind tunnel obtained only with the roughness wasn’t available,
the profiles are compared with the profile in figure 4.4. The expectation was
to catch the lower part of the profile that is most influenced by the roughness.

The results demonstrated that the stable boundary layer obtained with
these simulation doesn’t match with the experimental one. This is due to
the fact that the boundary layer inside the wind tunnel is not stable and is
affected by the alternating of different roughness heights.

Looking at the mean velocity profile in a logarithmic plot (figure 5.19,
appears that the profile fits very well a logarithmic function. This agrees
with the equations given by the Eurocode and demonstrate that the obtained
ABL is completely developed.

The differences between the three meshes are negligible. For this reason
in the following simulations the dense not snapped setup has been used being
the closer the the real Wind Tunnel setup.
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5.6 Empty Wind Tunnel simulation

The following work focused on the reproduction of the Milan wind tunnel.
However this simulation proved to be far more complex than the Yoshikawa
one and several problems arose. The first one has been the creation of a
correct mesh for the case.

5.6.1 Mesh

First of all we present the wind tunnel geometry and which feature we tried
to reproduce. In figure 5.20 the map of the wind tunnel is represented. As
said before, the size of this wind tunnel is far larger than the Japanese one
causing more cells, and thus more computational power, to be required using
the same cell size.

Different degrees of refinement have been used in different areas of the
mesh (figure 5.21). A 10cm background mesh is used in the upper part of
the domain. The mesh have been refined twice near the floor, i.e. each cell
is divided in 8 sub-cells twice, for a total of 64 cells per original cell after
the second refinement. The mesh has been refined one more time near the
smallest roughness and close to the (future) position of the building.

In figure 5.22 is a detail of the meshed roughness. It can be clearly seen
that the geometry is not correctly reproduced. A better agreement with the
wind tunnel geometry could be achieved refining the mesh one more time
near the roughness. This is however impossible since there are already 4
millions cells close to the ground roughness. Refining them one more time
would split each cell in 8 sub-cells. This would create about 32 millions cells
just to solve the roughness, exceeding the available computational power.

5.6.2 Time-step and solver

Once the mesh has been prepared, we ran the case using the same set-up
used in the Yoshikawa’s simulation. The first thing to point out is that while
the previous simulation used 1.7 Millions cells, this simulation is made of
more than 19 Millions cells. The computational power required to solve this
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Figure 5.20: Wind tunnel map (Measurements in millimetres)
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Figure 5.21: Wind tunnel mesh - overview

Figure 5.22: Wind tunnel mesh - detail of the roughness. Notice that the
pyramids are represented as blocks; this happens because the cells hasn’t been
snapped to the geometry.
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case is more than 10 times larger and is pushing our computational resource
to their limit. This situation represented the main problem we faced during
the simulations.

The first-try time step had been calculated to be 1/1000s using an ap-
proximated version of equation 5.2. As we said equation 5.2, has to be true in
every cell, therefore for the exact estimation of Comax should be used U and
∆x of every single cell. Since this is impossible to know before running the
case, a pre-dimensioning of the suitable ∆t can be done using U equal to the
free-stream velocity and ∆x = ∆x0/2N where ∆x0 is the background mesh
streamwise dimension and N is the maximum refinement level. This calculus
doesn’t predicts perfectly the Courant number. This happens because the
maximum refinement is usually executed near the surface where the speed is
lower than the free stream velocity; moreover, if the cells have been snapped
their size could be different from ∆x0/2N or they could be not aligned with
the flow. In unsteady simulations, like LES, fluctuating variations and guts
are difficult to predict. Therefore this formula gives a first idea of the order
of magnitude of the time-step, but the ideal value cannot be known before
the simulation starts.

When the simulation started we noticed that the estimated time step of
1/1000s led to a Courant number equal to 5÷6 with peaks (due to the guts)
equal to 7. Since the PISO solver easily diverges when the Courant number is
larger than 1, two solutions existed: lower the time step so that the average
Courant number was equal to ≈ 0.5 ÷ 0.6 or change the solver to a more
robust one.

While the first option looks like the most obvious one, it must be noticed
that in order to lower the Courant number from 7 to 0.5 the time step
should have been reduced to one tenth. Since the time needed to compute
each iteration was already close to the minimum obtainable from the CPU,
this would have meant to multiply the computation time by 10. This could
not be accepted as the estimated time was already about 10-15 days.

To solve this issue we decided to change the solver and use the PIMPLE
solver that we benchmarked in section 5.4 with ∆t = 0.001s and
NOC equal to 2.
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5.6.3 Results

Once all the Wind Tunnel elements has been benchmarked and that a nu-
merical method has been chosen, the next step of the research was to use
all these information to reproduce the flow inside the Wind Tunnel. Before
trying to simulate the experiment measuring the pressure on the building,
we needed to check that the flow generated by the combination of spires,
ground roughness and wall-functions agrees with the ABL measured inside
the PoliMi Wind Tunnel.

We have already pointed out in section 5.5.2 how the reproduction of the
ground roughness is not yet fully satisfactory and that the profiles obtained
does not correctly reproduce the Wind Tunnel profiles. At the time of writing
a finer mesh simulation is running. Due to the long time required for this
simulation to finish, in this chapter we will present a partial result obtained
with the mesh presented in 5.6 that provides fairly satisfying results.

In figure 5.24 the normalised mean velocity profiles appear. The simulated
flow is slightly faster than the experimental profile below z = 0.5m and
slower above. This behaviour indicate a lower value of z0, thus a more stiff
profile. When compared to the Eurocode profile for the Category II terrain,
however, the result is a bit better and the agreement between the two profiles
is acceptable.

In figure 5.25 the turbulence intensity profile obtained with the CFD
simulation are compared to those obtained inside the Wind Tunnel. The
simulated flow is slightly less turbulent in the streamwise above 10cm, but
shows the correct behaviour below that height tending to infinity, while the
experimental data doesn’t. The lateral and vertical turbulence intensity pro-
files below 0, 5m agree very well with the experimental data. We need to
remember that above that height the mesh becomes coarser and a lower
agreement with the experimental data has to be expected.

Also the integral length profiles shown in figure 5.26 agree sufficiently with
the experimental data. They don’t present the exponential growth expected
by the Eurocode equation 2.19, but we have seen in section 4.4.2 how this
behaviour cannot be reproduced neither inside the Wind Tunnel.
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Figure 5.23: Empty wind tunnel simulation - Velocity magnitude
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Figure 5.26: Integral length profiles inside the empty Wind Tunnel

Something more about the turbulent structures of the flow can be said
observing the streamwise component spectrum acquired at z = 0.3m in figure
5.27. The spectrum has been normalised using the same strategy used for
equation 2.22. For f ∗ < 2, that is f <≈ 20Hz. The simulated flow spectrum
agrees well with both the experimental spectrum and the ones proposed
by the Eurocode. Above that frequency the simulated flow spectrum drop
rapidly due to the LES cutout filter.

Transforming this frequency into a full-scale wave length we observe that:

LFS = UFS
fFS

= UFS
fMS ∗ 1

λt

=∼ 20m (5.9)

where the FS subscript indicate the full-scale values, while the MS indicate
the model-scale ones and λt is the time-scale parameter indicated in table
4.1. It appears that we are simulating only flow structures larger than 20m.
This value could appear not sufficient to correctly catch the negative peak
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Figure 5.27: Normalised streamwise component spectrum 30cm above the
ground

value that we are looking for in the simulation. However it’s important to see
that the cutout frequency falls inside the inertial sub-range of the spectrum.
In this portion of the spectrum, smaller eddies are generated by the decay
of larger ones and not by interaction with the boundary. This is important
because the "lost" frequency can be recovered just refining the mesh in the
area closer to the test section. This would shift the cutout frequency higher
and reduce the SGS viscosity, allowing the previously smaller eddies to decay
in smaller ones with lower time-scales.

The flow obtained with the CFD simulation represent a good approxim-
ation of the wind obtained in the PoliMi Wind Tunnel. The mean speed and
the turbulence intensity show some minor problem below 0.2 ÷ 0.3m from
the ground. This is most likely due to the poor reproduction of the ground
roughness that is the main cause for the turbulence in that area. Even if this
could seem a small portion of the domain, we need to remember that the
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model we are going to simulate is 30cm tall, thus it’s completely immersed
in flawed portion of the flow. Despite this, the results appears to be satisfying
enough to justify a simulation with the hangar using this setup.

5.7 Hangar simulation

The last simulation to be performed is the one of the PoliMi Wind Tunnel
with the test building in it. The simulation setup is almost identical to
the setup used for the empty Wind Tunnel simulation. The only and main
difference between the two case is the presence of the building at the centre
of the turning table. The simulation has been executed using 256 CPUs and
924GB of memory for 10 days i.e. more than 61.000 computing hours.

The pressures on the building has been acquired with two different tech-
niques: using the surface sample utility the pressure has been measured at
the centre of each boundary cell touching the hangar surface, this led to
(almost) continuous data with a very high spatial distribution. Using the
probe utility instead the pressure has been measured in the same points it
has been measured during the experiment inside the wind tunnel. This led
to a spatially discrete data with an average distance between the measuring
points of approximately 5÷ 10cm. To avoid differences between the experi-
mental results and the CFD ones imputable to the different sampling spatial
resolution, the comparison between the two techniques has been carried out
using the latter data, even if this resulted in a loss of information.

Since the pressure is set equal to zero at the outlet, the pressure in the
Wind Tunnel is almost everywhere larger than zero. The pressure are there-
fore "cleaned" exactly the same way they are in theWind Tunnel: the pressure
is acquired in six points at the test section on the wind tunnel side walls and
ceiling. This pressure is then set as reference static pressure and is subtrac-
ted by all the acquired data. In the Wind Tunnel this operation is done
pneumatically, while in our simulation is done during the post-processing.

In the following, the results of the simulation and the pressure map ac-
quired are presented.

Comparing the Cp mean value map obtained with the CFD in figure 5.28
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with those obtained with the Wind Tunnel simulation in figure 4.12, we can
observe that the value obtained with the simulation is about 10-15 % lower
on the lateral and rear walls of the building and on the leeward part of the
roof. The portion of the roof behind the leading edge of the building instead
shows larger error equal to 25-30%.

It’s important to point out that the Cp appear to be lower in absolute
value everywhere. This is explainable with the faster reference velocity at
the roof-height that leads to a larger dynamic reference pressure.

Even if the percentage error of the numerical value is still a bit too high
to consider it acceptable, the overall pressure distribution is the one expected
for this case, with a higher negative value behind the leading edge, a smaller
negative pressure everywhere else except the upwind face with a constant Cp
value close to 1.

Figure 5.28: Mean Cp

In figure 5.29 we see the standard deviation map plotted using the same
color scale used in figure 4.14. It’s evident that the standard deviation is
everywhere far below the experimental value with a mean error around 50-
60%. We will explain this later when looking at the time-histories.

When plotting the standard deviation with a proper scale to highlight
the differences (figure 5.30) we see that the distribution on the roof is similar
to the one in experimental data.

We already said that the skewness is an important parameter when look-
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Figure 5.29: Cp Standard deviation

Figure 5.30: Cp Standard deviation (different color scale)

ing at the pressure on a building surface. This happens because the surface
pressure where a separation of the boundary layer occurs are highly skewed
toward the negative values. To correctly catch the peak pressures it’s there-
fore extremely important for the correct estimation of the skewness too.

In figure 5.31 the skewness distribution on the building is presented . The
distribution is everywhere satisfying, except for the same portion of the roof
behind the leading edge where also the mean value was flawed.

Finally we can compare the time-histories of two pressure taps at the
centre of the roof and behind the leading edge (to be precise, at the roof
upwind corner) acquired in the wind tunnel and in the CFD simulation.

The time-history of the tap at centre of the roof shows a behaviour very
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Figure 5.31: Hangar CFD simulation: Cp Skewness

similar to the experimental data both in term of peak amplitudes, peak
symmetry (skewness) and mean value, as highlighted by the previous map.

The second time-history instead reflects all the problems that we previ-
ously said: while the positive peaks are similar between the two, the negative
ones of the experimental time-history are far more marked, with experimental
peaks that are 2÷ 2.5 times stronger than the CFD ones.

All the results we have presented indicate that simulation doesn’t cor-
rectly catch the separation bubble behind the leading edge of the building.
We need to remember however that these results has been obtained with
a fairly coarse mesh. Considering this, the overall distribution of the
pressure are pointing in the right direction.

The y+ value on the building is fairly high, with an average y+ equal to 60
and peaks equal to 110. This is probably the main reason why the boundary
layer separation isn’t properly simulated. To better catch the separation of
the boundary layer, the future work tries to add some layers of prisms cells
on the hangar surface. This, however, involves severe problems with the
Courant number and the stability of the solution near the edges, with the
local Courant number that, using the same setup used in the empty Wind
Tunnel simulation, reaches values equal to 10-15. The only solution to solve
this would be to lower the time step by 5-10 times the time-step. This leads
to a severe increase of the computational cost in terms of CPU time.
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Figure 5.32: Hangar CFD simulation: time history of the Cp at the roof’s
centre (top) and at roof’s corner (bottom)

5.8 Comparison with the synthetic
turbulence method

As it has been explained in section 5.1, an alternative method for the simu-
lation of a correct ABL to the direct simulation of a Wind Tunnel geometry,
is the use of a synthetic turbulence inlet. This technique implies to use a
complex code to generate a inlet plane velocity field U(y, z, t) with assigned
moments and spectra, through random sequences.

Parallel to the Wind Tunnel tests and the CFD simulation presented in
this thesis, a synthetic turbulence simulation of the hangar has been car-
ried out by Gorlé and Kóti (2014) at the Von Karmam Institute for Fluid
Dynamics using the same building geometry.

Their simulation consisted of a 4m wide, 3m tall and 7m long domain
shown in figure 5.33. The domain is significantly smaller than the PoliMi
Wind Tunnel, with a volume 33 times smaller. This is the first and main
evident advantage of the synthetic turbulence inlet method: since the simu-
lation of the whole driver region is not required, the cost of the simulation is
significantly lower.
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Figure 5.33: Domain used by David Koti for the synthetic turbulence simu-
lation

The synthetic method used is based on the 2D digital filtering of a set
of random data proposed by Xie and Castro (2008). This is base on the
assumption that the cross-correlation function between two points is equal
to:

R(r, 0, 0) = exp
(
−πr2L

)
(5.10)

where L is the length scale. This correlation function is used for deriving
a filter to process three two-dimensional sets of random data. The filter
function can be written as follows,

um =
N∑

j=−N
bjrm+j (5.11)

where rm is a series of random data with zero mean and unity variance. The
bj is the filter coefficient and N ≥ 2n , where n is the length scale L expressed
in grid units and it’s equal to N = L/∆x.

After some mathematical manipulation that can be found in Xie and
Castro (2008), the bj coefficient is defined as:

bk = exp
(
−π|k|
n

)
/ζ (5.12)
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where k is the r coordinate expressed in grid units (k = r/∆x) and ζ is a
normalisation factor used to ensure umum = 1, equal to:

ζ =
N∑

j=−N
b2
j (5.13)

This method is used to calculate the um(y, z) in a given time-step ensuring
lateral and vertical correlation. The correlation in time, and thus in the
streamwise direction, is obtained by defining the data on the next time step
using:

Ψβ(t+∆t, y, z) = Ψβ(t, y, z) exp
(
−π∆t
2TL

)
+ψβ(t, y, z)

[
1− exp

(
−π∆t
TL

)]0.5

(5.14)
where ψ(t, y, z) is obtained in the same way as Ψβ(t, y, z), but using a new
slice of random data. TL is the Lagrangian time scale and can be calculated
from measurements or previous computations. In this case the TL is assumed
constant for the entire inlet plane. TL is calculated using the Taylor’s frozen
turbulence hypothesis using the location at the height of the building from
the measurements performed in the Wind Tunnel of Politecnico di Milano.
The length scales Ly and Lz were assumed to be constant values. For further
work, the inlet can be divided into zones each having their own constant
length scales to improve the accuracy of the calculation.

The instantaneous velocity is then derived from the time-averaged velo-
city ui and the Reynolds stress tensor using:

ui = ui + aijΨj (5.15)

where

[aij] =


R

1/2
11 0 0

R21/a11 (R22 − a2
21)1/2 0

R31/a11 (R32 − a21a31)/a22 (R33 − a2
31 − a2

32)1/2

 (5.16)

and Rij is the prescribed Reynolds-stress-tensor, estimated from experi-
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Figure 5.34: Flow around the building simulated by David Koti. From the
top: instantaneous velocity field (lateral view), mean velocity field (lateral
view) and mean velocity field (top view)

mental data measured in the wind tunnel of PoliMi. Note for a boundary
layer flow which is homogeneous in the lateral direction, i.e. z in this nota-
tion, R31 = R31 = 0 and a31, a32 vanish.

5.8.1 Results and comments

In this study the LES results for the flow around the building shows sim-
ilar behaviour to those provided by the literature. Unsteady features and
instantaneous realizations appear, the flow is highly disturbed in several
respects. Tip vortices, developed relatively large vortex tube around the
building downstream are shown. Separation zones are observed on the top,
side, the front of and behind the building where the flow is always unsteady
and this unsteadiness has important effects in the surface of the object such
as providing a proper ventilation. However, the position of the separations
varies greatly both in time and direction (spanwise or streamwise). The reat-
tachment shows similarities, it is highly unsteady and the flow contains large
scale turbulent structures.
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A significant problem that occurred with the synthetic turbulence inlet
is that the inlet condition does not respect the divergence free condition
imposed by the continuity equation for an incompressible fluid. This error
emerges during the solving of the pressure correction equation. Since this
equation - obtained from a manipulation of the continuity one - is the one
use to compute the pressure field, this inconsistency in the inlet BC led
to significant pressure waves inside the domain that overcome any surface
pressure on the building.

This error can be corrected forcing the inlet condition to be divergence-
free through several methods discussed by Kim et al. (2013).

5.9 Conclusions and future work

The CFD reproduction of the Yoshikawa Wind Tunnel demonstrated the
feasibility of the CFD as tool for the reproduction of the Wind Tunnel tests.
After a proper benchmark with the Wind Tunnel results, the CFD could be
use as further instrument to validate the scaling hypothesis or to measure
flow fields that are experimentally difficult or even impossible to measure.

The current thesis however highlight that the direct simulation of a large
Wind Tunnel requires still significant computational power. To solve the case
presented in this thesis, 256 processors with about 1TB of memory has been
used. Despite this, the optimal number of cell overcome these resources and
pushed the hardware to his limit.

The results indicate that the approach used heads towards the right dir-
ection. The error committed on the mean value are close to be acceptable,
while the errors on the peaks are still too large to consider the simulated
pressures usable for structural design.

Future work should focus on a better reproduction of the ground rough-
ness. Also a refined mesh near the hangar, such as a larger number of cells
layers on its surface should help catching the correct flow behaviour behind
the leading edge and allow a more accurate prediction of the peak pressures in
that critical area. The synthetic turbulence method used by the Von Karman
Institute allows to control the incoming flow more easily. This could allow to
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use an arbitrary inlet flow without simulating the whole Wind Tunnel, redu-
cing drastically the number of cells required and allowing an higher spatial
resolution close to the building model using the same computational power.
However only in the latest years the research - uneasily - is finally close to
being able to correctly generate a synthetic the turbulence. As we have seen
at the beginning of this chapter, a wrongly simulated turbulence decays rap-
idly and the obtained flow is not reliable for the estimation of the pressures
acting on the building. The methods that will be developed have then to
be benchmarked accurately before using them to replace the Wind Tunnel
simulations as primary dimensioning tool. Simulations like the one proposed
in this thesis, even if computationally expensive, should be used exactly for
this purpose: estimate which degree of accuracy can be achieved with the
CFD and find the best method for this purpose, and then see if the same
accuracy can be achieved with the cheaper synthetic turbulence simulation.
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Chapter 6

Peak estimation in wind
engineering

In this chapter we will analyse the current state of the art for the prediction
of the design pressure on a building façade. Both the Wind Tunnel and CFD
outputs are indeed discrete stochastic time-histories. To correctly design a
building façade element, the structural engineer need to compute a single
load value; this however is not straightforward.

An important outcome from wind tunnel testing of low-rise buildings is a
statistical assessment of peak pressure coefficients (Cp,peak), typically defined
as a chosen fractile from a peak probability model whose parameters are de-
termined from the observed data. The accuracy and precision (uncertainty)
of this approach depend upon the form of the chosen peak probability model,
the method used to identify its parameters, and the quantity of data avail-
able. In order to obtain an adequate space resolution, large model scales are
desirable for low-rise buildings. This leads to a decreased time scale and long
data records to achieve the desired full-scale equivalent time. Thus, there is
a trade-off between the uncertainty of the estimated Cp,peak and the desire
to minimize data record lengths to limit the time and cost of wind tunnel
experiments. Many techniques for estimating Cp,peak have been proposed in
the literature: Davenport (1964); Gioffrè et al. (2000); Huang et al. (2013);
ISO (2009); Kwon and Kareem (2011); Peterka (1983); Sadek and Simiu
(2002); Stathopoulos (1983); Tieleman et al. (2006).

121
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6.1 Wind load peak estimation methods

Wind load peak estimation methods can be divided into three main cat-
egories: (1) determining Cp,peak from observed peaks (observed peak meth-
ods); (2) mapping the peak distribution of a Gaussian process to a non-
Gaussian peak cumulative distribution function (CDF) via the translation
process (translation methods) and (3) compute a peak factor analysing the
probability that one maxima from a sample of N maxima is higher than a
threshold value (peak factor method).

Each of these methods has unique advantages and disadvantages. Below
we present the most promising method of each category and then we apply
one of them both to Wind Tunnel and CFD results to compare them.

6.1.1 Observed peak methods

Observed peak methods are based on the subdivision of the time-history in N
subsets of duration t of each of which is then calculated the maximum value;
this is then used to compute the expected peak value over an observation
interval equal to t.

Observed peak methods include: a single observed peak value recorded
during a sampling period (Stathopoulos and nationale du Canada, 1981),
the mean of several observed maxima (Holmes et al., 1989), and a value
corresponding to a chosen fractile from a probability distribution (commonly
Gumbel) fitted to observed maxima (Cook and Mayne, 1980; Ho et al., 2005;
Pierre et al., 2005). The last method (Gumbel method) is the most flexible
among the three, offering a statistical quantification of the peak at a selected
fractile rather than a single observed peak or simple average.

The Gumbel method is based on the assumption that the Gumbel distri-
bution fits the distribution of peak wind pressure coefficient. The Gumbel
distribution is:

FXpk(x, t) = exp(− exp(−αt(x− Ut))) (6.1)

where x is the pressure data and t is the is the duration in which a single peak
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is observed (reference duration). αt and Ut are the distribution parameters
that are determined based upon N observed peaks using one of a number of
available methods: BLUE method, maximum likelihood method, probability
weighted moments, method of moments or probability plot method.

While the plot method is the easiest to understand, this leads to uncertain
results. The method of moments has proved to be easy to implement and
robust. The other methods have not been tested in this thesis.

Gavanski et al. (2013) showed that the Gumbel method as defined above
yields almost identical results to the observed peaks methodology proposed in
the ISO (2009) standard. Kasperski (2003) and Holmes and Cochran (2003)
applied the Type III Extreme Value Distribution and three-parameter Gener-
alized Extreme Value Distribution to fit the peak wind pressure coefficients,
respectively. Holmes and Cochran (2003) recommended the Gumbel model
for its simplicity.

The main shortcoming of the Gumbel method is the amount of data it
needs to be applied. This method indeed requires a total record duration of
ttot = Nt. For the determination of αt and Ut to be robust, N should be
greater than or equal to 10. The reference time t is usually assumed equal
to 10min at full scale. This implies that the total record duration should
be greater than or equal to 100min at full scale. Depending on the time
scale, this requires long Wind Tunnel testing records that increase the Wind
Tunnel cost e.g. using the scales presented in table 4.1, 100min full scale are
equal to approximately 5min 20sec. While the Wind Tunnel records were
6min long allowing the Gumbel method to be applied, the CFD simulations
were only 60sec long.

Cook and Mayne (1980) presented a procedure to convert the Gumbel
parameters between different reference durations. This allows the estimation
of αt and Ut using a sufficientN within a relatively short data record, followed
by a conversion to the desired longer reference duration T . For the two time
reference duration values (t < T ), the conversion is (Cook and Mayne, 1980):

αT = αt

UT = Ut + 1/αt ln(T/t)
(6.2)
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Figure 6.1: Errors of the formula by Cook and Maine with different N and
T/t

In figure 6.1 the Cp,peak computed with the Gumbel method and t = T is
compared with those computed applying equation 6.2 to subset shorter than
T . The results indicates that this method returns error smaller than 10%
for T/t < 40. Increasing the number of subset does not offer a significant
improvement.

6.1.2 Translation methods

The perceived data length requirement of the Gumbel method has led to
the development of alternative methods for the estimation of Cp,peak from
short records. The complete time series is used to estimate a peak CDF
from an underlying Gaussian process; a coordinates transformation (hereafter
translation) maps the experimental CDF to a Gaussian CDF, then the peak
CDF of the assigned non-Gaussian time series is obtained using the inverse
translation on the known Gaussian peak CDF.
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The idea underlying the translation methods is to find a translation
function g(•) that maps a standardised Gaussian process u to a given non-
Gaussian process x.

x = g(u) u = g−1(x) (6.3)

The peak distribution of a Gaussian process has been calculated by Rice
(1944).

FUpk(u, t) = exp[−ν0 t exp(−u2/2)] (6.4)

in which t is the reference duration and ν0 is the zero up-crossing rate that
can be be determined by counting the up-crossing rate νy of x above its
median or computing the spectral ratio (Sadek and Simiu, 2002).

The desired CDF of the peak of the non-Gaussian process x within the
reference duration t, FXpk(x, t), is obtained by substituting the inverse trans-
lation function, equation 6.3, into equation 6.4.

FXpk(x, t) = FUpk(u, t) = FUpk(g−1(x), t) = exp[−ν0 t exp(−(g−1(x))2/2)]
(6.5)

Cp,peak is then identified as xpk at a chosen fractile in FXpk.

Various methods have been proposed to determine the translation func-
tion g(•). Kareem and Zhao (1994) used the moment-based Hermite poly-
nomial to define the translation between the Gaussian and non-Gaussian
processes. Kwon and Kareem (2011) employed an updated and more robust
Hermite polynomial model Winterstein and Kashef (2000). Sadek and Simiu
(2002) modelled the non-Gaussian time series by using gamma and Gaussian
distributions to fit the long and short tails, respectively. The parameters
in the fitted distributions were re-evaluated by using the theoretical mo-
ment estimators in Tieleman et al. (2006). Ben Ayed et al. (2011) employed
a translation model to full scale pressure data and compared results with
values in ASCE 7. Huang et al. (2013) established the mapping relationship
between the non-Gaussian CDF and its underlying Gaussian CDF based on a
probabilistic model using the kernel smoothing technique. Yang et al. (2013)
improved the method of Kwon and Kareem (2011) for strongly non-Gaussian
data with an alternative approximate expression relating the skewness and
kurtosis of the measured data and the Hermite polynomial parameters.
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Figure 6.2: Skewness and kurtosis of all the taps on the hangar and the
monotonic region for the Peng and Yang model

The Peng and Yang Hermite polynomial model

Yang et al. (2013) used the same third order Hermite model for a softening
translation process presented by Winterstein and Kashef (2000)

x = g(u) ≈ k[u+ c3(u2 − 1) + c4(u3 − 3u)] (6.6)

with k = 1/
√

1 + 2c2
3 + 6c2

4.
The coefficient c3 and c4 are function of the skewness and the kurtosis of

the process x. The functions for their calculation proposed by Yang et al.
(2013) are:

c3 = 0.1967γ3 − 0.01646γ3γ4 + 0.01809γ3
3 + 7.438 · 10−4γ3γ

2
4

−9.209 · 10−4γ3
3γ4 − 1.366 · 10−5γ3γ

3
4 + 1.527 · 10−4γ5

3

+1.07 · 10−5γ3
3γ

2
4 + 8.823 · 10−8γ3γ

4
4

c4 = −0.0721 + 0.03176γ4 − 0.02942γ2
3 − 0.00179γ2

4 + 0.002348γ2
3γ4

+5.965 · 10−5γ3
4 − 6.282 · 10−4γ4

3 − 6.355 · 10−5γ2
3γ

2
4 − 9.692 · 10−7γ4

4

+1.497 · 10−5γ4
3γ4 + 5.457 · 10−7γ2

3γ
3
4 + 6.049 · 10−9γ5

4 ;
(6.7)

where γ3 and γ4 are the skewness and the kurtosis of the process x.
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In order to guarantee that g−1(•) exists, g(•) must be strictly monotonic,
which requires the following inequality be satisfied:

c2
3 + 3c4(3c4 − 1) ≤ 0 (6.8)

An approximation of this curve is given by Winterstein and MacKenzie
(2013):

3− γ4 + (1.25γ3)2 ≤ 0 (6.9)

According to Yang et al. (2013), if small deviations from the monotonic region
occurs, the kurtosis and the skewness can be slightly modified to fall on the
border of that region. The suggested method they propose is to retain the
measured kurtosis and solve for skewness using equation 6.9.

This method appears to be more robust than the Gumbel one, needing a
smaller time duration (?).

6.1.3 Peak factor method

The peak factor method aim to compute the maximum value of a random
process using the formula:

xpeak = µx + g(x, t)σx (6.10)

where µx is the mean value of the process x and σx it’s standard deviation.
g(x, t) is called peak factor.

This method is currently used to calculate peak values for wind loads
and load effects in several national codes, such as ASCE 7-02 and AIJ. Al-
though this codes use a very simple equation for the determination of g that
is based on the assumption that the process is Gaussian. The equation pro-
posed in ASCE and AIJ, moreover, does not take explicitly into account the
bandwidth of the process. Below we present both this equation and two
"improved" version, one by Kareem and Zhao (1994) and one by Pillai and
Tamura (Pillai and Tamura).
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For a Gaussian narrowband process the peak factor g has been derived
by Davenport (1964). It is given by:

g =
√

2 lnN + γ√
2 lnN

(6.11)

where γ is the Euler-Mascheroni constant equal to 0.57721, and N is number
of zero-crossing in the reference time t, that is equal to N = ν0T where ν0

is the cyclic rate. ν0 can be derived using the spectral moments method and
it’s equal to:

ν0 =
√
m2

m0
(6.12)

where
mi =

∫ ∞
0

f iSy(f) df (6.13)

and Sy(f) is the power spectral density of the normalised process:

y = (x− µx)/σx (6.14)

The Davenport equation can be simplified defining the constant

φ =
√

2 lnN (6.15)

obtaining:
g = φ+ γ

φ
(6.16)

To account the non-Gaussianity of the experimental PDF, this is de-
scribed using a Gram-Charlier PDF, that is given by:

P (x) = ϕ(x)
[
1 +

N∑
n=1

hnHn(x)
]

(6.17)

where ϕ(x) is a standard Gaussian probability density function

ϕ(x) =
√

2π exp(−x2/2) (6.18)

and Hn(x) are the Hermite polynomials.
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After some mathematical manipulation, Kareem and Zhao (1994) ob-
tained the equation for the peak factor accounting the non-Gaussianity of
the data PDF. This is:

g = α

{(
φmax + γ

φmax

)
+ h3

(
φ2
max + 2γ − 1

)
+

+h4

[
φ3
max + 3φmax (γ − 1) + 3

φmax

(
π2

12 − γ + γ2

2

)]}
(6.19)

where h3, h4 and α are the coefficient that take into account the skewness
and the kurtosis of the PDF and are defined by:

h3 = γ3

4 +
√

6γ4 − 14
h4 =

√
1.5γ4 − 3.5− 1

18

α = 1/
√

1 + 2h2
3 + 6h2

4

(6.20)

φmax is defined in the same way of φ, but in the place of the number of zero
crossing N , uses the number of maxima Nmax that is defined by:

Nmax = νmaxT with νmax =
√
m4

m2
(6.21)

Thus:
φmax =

√
2 lnNmax (6.22)

Pillai and Tamura (Pillai and Tamura) proposed a different equation for
φmax that takes explicitly into account also the bandwidth of the analysed
process. Their definition for φmax is:

φmax =
√

2 ln
(√

1− ε2Nmax

)
(6.23)

where ε is the bandwidth parameter defined as:

ε =
√

1− m2
2

m0m4
0 ≤ ε ≤ 1 (6.24)
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Figure 6.3: Comparison of estimated peak value using different methods -
slightly non-Gaussian process

This parameter is close to 0 for narrow band process and it increases as the
bandwidth increases, reaching 1 for the wide band process.

Once that the peak factor is know, the peak vale can be computed using
equation 6.10. This method provides satisfying results, overestimating the
peak factor by about 5÷ 10%.

6.2 Comparison between the proposed
methods

To show the different behaviour of the methods presented in section 6.1, these
have been applied to two process: firstly at a slightly non-Gaussian process,
then to a strongly non-Gaussian one.

In the comparison below the Peng and Yang Hermite polynomial method
will not be tested , because some problems occurred during the implement-
ation of this method inside the code. The benchmark of this method will be
executed in a future work.

In figure 6.3 the methods presented above are applied to a 6min record
from the Wind Tunnel test. The skewness of the considered tap is equal to
−0.014 and its kurtosis is equal to 3.154. The process is therefore really close
to be Gaussian.
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It appears that the Gumbel and the Davenport methods returns value
only 1.5% respectively smaller and higher than the average on the observed
peaks. The error is therefore completely acceptable.

The fact that the Davenport methods works so good is due to the almost
perfect Gaussianity of the considered process.

The Kareem and the Tamura methods show slightly lower performance
with an error equal to 11.9% for the Kareem method and to 9% for the
Tamura methods. From an engineering point of view however these errors
are always on the safe side, expecting higher pressure that observed ones (the
Kareem peak pressure is even higher than the maximum pressure observed
in the whole 100min full-scale process duration).

The expected peak value are summarised in table 6.1

Method Peak pressure [Pa] Error (compared with Gumbel method)
Gumbel 37.0893 -
Mean peak 37.6371 +1.48%
Davenport 38.2356 +3.0.9%
Kareem 41.3978 +11.62%
Tamura 40.4311 +9.01%

Table 6.1: Expected peak value for a Gaussian process with different methods

In figure 6.4 the methods are applied again to a strongly non-Gaussian
time-history. In this case the skewness is equal to −1.4135 and the kurtosis
is equal to 7.1384.

Again, the Gumbel method returns a peak value close to the mean peak
value with an error lower than 2.5%. The performance of the peak factor
methods instead have worsened. As it was expected, the Davenport method
fails completely in the peak prediction, expecting a peak value 41% lower
than the Gumbel method. This is due to the strongly negative skewness that
shifts the negative peak values toward minus infinity. The Kareem method
overestimate again the peak value, this time predicting a value 13% higher
than the highest observed peak and 37% higher than the value predicted
by the Gumbel method. The Tamura method performs slightly better, again
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Figure 6.4: Comparison of estimated peak value using different methods -
slightly non-Gaussian process

overestimating the peak value expected using the Gumbel method, but "only"
by 15%.

The expected peak value are summarised in table 6.2

Method Peak pressure [Pa] Error (compared with Gumbel method)
Gumbel 263.68 -
Mean peak 270.41 +2.55%
Davenport 154.19 -41.52%
Kareem 362.20 +37.37%
Tamura 301.93 +14.51%

Table 6.2: Expected peak value for a strongly non-Gaussian process with
different methods

A further analysis can be done to study the convergence of the expected
peak pressure as the signal length becomes longer. In figure 6.5 appears
that the differences in the value predicted by the Gumbel method with 10
subdivisions for a signal 50s long or longer are below 10%. This is a better
estimation than the Tamura method with a signal 360s long. Also the mean
peak value of the N higher peaks in the time history, where N = floor(t/tref )
gives acceptable results for t > 60s.
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Figure 6.5: Comparison of estimated peak value using different methods
with different signal length - slightly non-Gaussian process
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Figure 6.6: C+
p,pk distribution in the experimental and in the CFD simulation

6.3 Comparison of pressure peak values
between CFD and Wind Tunnel
experiment

In the section below we will compare the peak pressure distribution obtained
with the Wind Tunnel Test, with the distribution obtained with the CFD
simulations. Based upon what have been said in the previous section, the
peaks will be computed using the Gumbel method, dividing the time-history
in 10 parts. For the CFD, this cause each part to be only 6sec long. Using
the Cook and Maine method presented in section 6.1.1 this value will be
projected to a 30sec model-scale return period, equal to a 10min full-scale
one.

In figure 6.6 the positive peaks C+
p,pk can be compared. The comparison

indicates a good agreement between the two case: in both experimental and
CFD pressure maps the C+

p,pk is close to 3 on the windward face, while it is
between 0.5 and 0.8 on the rear part of the roof and lateral walls and almost
0 on the leeward wall.

Some problems occurs behind the leading edge. In the experimental test
the C+

p,pk in that area is just slightly lower than the rest of the roof. Instead
in the CFD simulation the C+

p,pk behind the leading edge is close to 0, never
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Figure 6.7: C −p,pk distribution in the experimental and in the CFD simulation

exceeding 0.15.
In figure 6.7 the negative peaks C −p,pk are compared . Again, the windward

wall’s C −p,pk are similar in the two cases, with values between −0.4 and −1.
The peaks are a little lower in the CFD simulation on the rear part of the
roof and lateral walls: while the experimental test predicts values between
−1.5 and −2.2, the CFD simulation never exceeds −1.9, with a difference
between −0.2 and −0.8.

Again the most problematic area is the one behind the leading edge. Here
the separation bubble generates strongly negative peaks in the experimental
test, that lead to C −p,pk up to −4.7 and even −6.2 on the corner. The CFD
simulation, probably due to a too much coarse mesh, does not catch this
behaviour and the C −p,pk never exceeds −3.
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Chapter 7

Conclusions

In the present work is presented a cross validation among the experimental
results obtained inside the Wind Tunnel of the Politecnico di Milano and
CFD simulation on a low rise building using an LES turbulence model. The
purpose of this cross validation was to demonstrate that using the LES tech-
nique is possible to obtain realistic peak pressures, and not only a realistic
mean value.

Literature survey clearly shows that a necessary condition for the cor-
rect simulation of unsteady pressures - e.g. the dimensioning negative peak
pressures - is the correct simulation of the incoming turbulent Atmospheric
Boundary Layer (correctly scaled with respect to the full-scale ABL). At this
purpose several strategies exist; these can be divided into three main cat-
egories: the recycle technique, the synthetic turbulence technique and the
direct simulation of the ground roughness.

The recycle technique, that has been largely validated in the past years,
cannot be applied in the case of a not completely developed boundary layer,
such as the POLIMI Wind Tunnel one, as well as most of the other Boundary
Layer Wind Tunnels for Wind Engineering applications. The presence of the
spires, moreover, makes the domain non-periodic, excluding this technique.

Synthetic turbulence inlet techniques have been developed, but a com-
pletely validated one still does not exists. An attempt to use this technique
coordinated with the present thesis work has been carried out by Gorlé and
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Kóti (2014). Due to the absence of a wide validation, however, it is difficult
to ascribe the differences of the surface pressure to the CFD-LES technique
rather than to an error in the simulation of the incoming flow.

A second, but not less important, problem with the cross validation of
the Wind Tunnel test with a synthetic turbulent inlet is that a complete
knowledge of the flow characteristics on a plane in the middle of the domain
is not experimentally available; introducing additional uncertainties.

For the reasons above, the direct simulation of the actual upwind channel
geometry of the Wind Tunnel - although extremely expensive - is mandat-
ory in the case of a non-periodic domain with a not completely developed
boundary layer, such as the present one.

The preliminary benchmarks have hinted that the correct reproduction
of the Wind Tunnel ground roughness requires a very fine mesh near the
floor. The simulation of the whole wind tunnel, thus, required to find a
compromise between the necessary spatial resolution and the available com-
putational power (that was equal to 256 CPUs and ∼1TB of memory). This
compromise has been only partially found . The obtained data showed prom-
ising results for this technique: the mean pressure distribution and the peaks
pressures obtained on most of the surface of the building are close to the
experimental ones. However the results indicate that a correct reproduction
of the incoming flow would require a finer mesh on the ground. Moreover
the pressure distribution on the building showed that the separation bubble
behind the leading edge was not correctly reproduced, again likely because of
a too coarse mesh. This suggests that - with a refined mesh - better results
are obtainable.

Future work should try to refine the mesh close to the building and add
more refined wall layers. This will result in a lower time-step and thus in a
longer computation time.

Although the direct simulation of the actual Wind Tunnel geometry has
proved to be extremely expensive from the computational point of view, it’s
important to this technique is not intended to be itself the best inlet condi-
tion for future CFD simulation work concerning wind-building interaction.
Instead, the results of this research can be used as an intermediate benchmark
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between the Wind Tunnel simulation and computationally lighter techniques,
such as the recycling or the synthetic turbulence ones presented in section
5.1 and 5.8.

In chapter 6 we introduced some methods for the estimation of the peak
pressure. The aim of this comparison was to find a method able to predict
the peak pressure with an acceptable error, even with a short time base. The
Gumbel method, originally meant to be used with long time series, revealed a
good accuracy also when used on short ones, if corrected using the Cook and
Mayne (1980) correction equation. This could allow to reduce the simulated
duration of the experiment, drastically reducing the CFD computational cost
and the Wind Tunnel test duration.

The peak factor methods showed a quick convergence, but predicted value
was usually 10 ÷ 15% higher than the observed peaks. Future work should
benchmark the Yang et al. (2013) method that in ? demonstrated a very
good accuracy compared with the Gumbel method, but that has not been
tested in this thesis.

The key result of the present research is that using a consistent incom-
ing ABL flow, the pressure time-space distribution simulated promisingly
compare with the experimental one, allowing future research to investigate
in depth existing correlations among the structure of the incoming turbu-
lence and the structure of the time dependent pressure field, still not fully
understood.
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