
POLITECNICO DI MILANO
DEPT. OF ELECTRONICS, INFORMATION AND BIOENGINEERING

DOCTORAL PROGRAM IN INFORMATION TECHNOLOGY

DESIGN SPACE EXPLORATION

OF OPENCL APPLICATIONS

ON HETEROGENEOUS PARALLEL PLATFORMS

Doctoral Dissertation of:
Edoardo Paone

Supervisor:
Prof. Cristina Silvano
Co-supervisors:
Prof. Gianluca Palermo
Prof. Vittorio Zaccaria
Tutor:
Prof. Andrea Bonarini
The Chair of the Doctoral Program:
Prof. Carlo Fiorini

2014 – XXVII





Abstract

PARALLEL programming is a skill which software engineers no longer
can do without, since multi- and many-core architectures have been
widely adopted for general-purpose computing platforms. In 2006

Intel introduced the first multi-core processor on the consumer market and,
at the same time, NVIDIA unveiled CUDA, a programming paradigm to
exploit Graphics Processing Units (GPUs) for general purpose computing.

Some years later (2008) the Khronos Consortium released the first spec-
ification of OpenCL, an open cross-platform API, inspired by CUDA, to
efficiently exploit data-level parallelism while enabling application porta-
bility across different computing platforms. This API ensures functional
portability of applications, so the same code can be compiled and executed
on multi-core CPUs as well as GPGPUs, but also synthesized and deployed
on FPGAs. However, additional fine-tuning of the application code might be
needed in order to take the most performance out of a specific architecture.

Another important aspect for application optimization is the exploitation
of architectural heterogeneity on modern computing platforms. The conver-
gence to globally heterogeneous locally homogeneous parallel architectures,
in both the embedded and High Performance Computing (HPC) domains,
leads to a rapid overlapping of the challenges related to the efficient ex-
ploitation of the available computing devices. In particular, mapping of
application tasks cannot be considered independently from specific opti-
mization of each task, besides accounting for the overhead of data transfers
and synchronization between different devices.

Code customization and task mapping represent the main challenge for

I



the design and optimization of OpenCL applications targeted to heteroge-
neous parallel platforms. At this aim, the Design Space Exploration (DSE)
methodology presented in this thesis allows to efficiently explore the cus-
tomization options of a parametric OpenCL application design. On the one
hand, the proposed techniques reduce the exploration time on simulation
platforms while providing close-to-optimal solutions; on the other hand,
they exploit platform-specific constraints to prune out unfeasible solutions
from the design space.

Task-level parallelism could be combined with request-level parallelism,
in order to deploy and run multiple independent OpenCL applications on
the same platform. This application scenario is enabled by the increasing
number of cores integrated in the same chip, however modern platforms still
lack run-time management to support applications with resource sharing.
Thus, multi-application use cases often suffer from resource contention and
performance degradation, especially under dynamic workload variations.

The contribution of this thesis consists of the DSE support to generate
Pareto-optimal application configurations, with different trade-offs between
performance and QoS. A run-time management technique is presented,
which exploits the knowledge-base gathered at design-time to implement
effective application auto-tuning. By including platform metrics and re-
source utilization in the optimization phase, this methodology also supports
performance-aware scheduling on multi-core platforms and improves the
overall system performance with respect to soft real-time constraints.

The proposed design methodology and runtime software layer have been
implemented and demonstrated on a real case-study – an OpenCL stereo-
matching application – targeting different industrial platforms.



Acknowledgments

Being admitted to the PhD program at Politecnico di Milano was a great
opportunity for my academic and professional development. I am grateful
to Cristina for having taken me under her supervision. She did a great job as
a supervisor, by putting a lot of effort to guide me in the scientific research
and contributing to my work with precious advice. In her group I also found
two brilliant young professors, Gianluca and Vittorio. I worked very close
to both of them, first in the 2PARMA European project and later in my PhD
research, and this collaboration has brought the main results of this thesis.
Thus, I would like to thank Gianluca and Vittorio for their great effort as
co-supervisors of my PhD work.

During my PhD I met very talented and skilled people. In particular,
my thoughts go to Patrick and Giuseppe, who did a great engineering work
developing the Barbeque open source project. I really enjoyed contributing
to their project and this collaboration produced the best of my outcomes,
in terms of prototypes and demos. Moreover, I learned many new soft-
ware engineering skills from Patrick, so I would like to thank him for his
professional advice.

Another fruitful collaboration was the one with Prof. Ingo Sander from
KTH. In particular, I would like to thank Ingo for his scientific support in
one of the works presented in this thesis.

Finally, all my colleagues at Politecnico di Milano deserve my thanks for
the nice work environment: many thanks to all of them.

III





Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Technological background . . . . . . . . . . . . . . . . . . 6
1.3 Thesis contributions . . . . . . . . . . . . . . . . . . . . . 8
1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . 9

2 Background, Terminology and Toolchain 15
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 OpenCL programming model . . . . . . . . . . . . . . . . 19

2.2.1 OpenCL NDRange: intra-task parallelism . . . . . . 20
2.2.2 OpenCL task graph: inter-task parallelism . . . . . . 21
2.2.3 OpenCL device fission . . . . . . . . . . . . . . . . . 23

2.3 Target application: OpenCL Stereo-Matching . . . . . . . . 23
2.4 Target platforms . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 STMicroelectronics Platform 2012 (STHORM) . . . 28
2.4.2 CPU/GPU platforms . . . . . . . . . . . . . . . . . . 30

2.5 MOST: Multi-Objective System Tuner . . . . . . . . . . . . 30
2.6 Barbeque Run-Time Resource Manager . . . . . . . . . . . 33
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 34

I OpenCL Application Customization and Optimization 37

3 Automated Optimization of Parametric OpenCL Applications 41
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 42

V



3.2 The OpenCL customizable Stereo-Matching application . . 44
3.2.1 Structure of the OpenCL kernels . . . . . . . . . . . 45
3.2.2 Resource parameters . . . . . . . . . . . . . . . . . . 46

3.3 The DSE methodology for application customization . . . . 48
3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 DSE Results of Phase 1 . . . . . . . . . . . . . . . . 54
3.4.2 DSE Results of Phase 2 . . . . . . . . . . . . . . . . 55
3.4.3 DSE Results of Phase 3 . . . . . . . . . . . . . . . . 56
3.4.4 Generation of operating points from the Pareto-set . . 60

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Ensemble Models for Simulation of Many-core Platforms 63
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Ensemble modeling of applications and architectures . . . . 66

4.2.1 Problem definition . . . . . . . . . . . . . . . . . . . 67
4.3 Proposed ensemble model and experimental results . . . . . 69

4.3.1 Preliminary correlation analysis . . . . . . . . . . . . 70
4.3.2 Accuracy analysis of the ensemble model . . . . . . . 71
4.3.3 Analysis of variance of the results . . . . . . . . . . . 73

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Task Mapping under Heterogeneous Platform Constraints 75
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Proposed Methodology . . . . . . . . . . . . . . . . . . . . 78

5.2.1 DSE Phase 1 – Task tuning . . . . . . . . . . . . . . 81
5.2.2 DSE Phase 2 – Task mapping . . . . . . . . . . . . . 85

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . 90
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 97

II Application Auto-Tuning and Run-Time Management 99

6 Application Auto-Tuning with Autonomous RTRM 103
6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Target Adaptive Framework . . . . . . . . . . . . . . . . . 106

6.2.1 Application adaptivity through dynamic knobs . . . . 106
6.2.2 Proposed Resource-Aware AS-RTM . . . . . . . . . 107

6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 108
6.3.1 Definition of metrics . . . . . . . . . . . . . . . . . . 108
6.3.2 Definition of dynamic workload . . . . . . . . . . . . 109



6.3.3 Run-Time Management description . . . . . . . . . . 110
6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . 111

6.4.1 Application Auto-Tuning Results . . . . . . . . . . . 111
6.4.2 Evaluating RTM Strategies . . . . . . . . . . . . . . 113
6.4.3 Dynamic Workload Results . . . . . . . . . . . . . . 115

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Combining Application Adaptivity and System-Wide RTRM 119
7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . 122

7.2.1 Design-Time . . . . . . . . . . . . . . . . . . . . . . 122
7.2.2 Run-Time . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 125
7.3.1 Evaluating RTM Strategies . . . . . . . . . . . . . . 126
7.3.2 Dynamic Workload Results . . . . . . . . . . . . . . 128
7.3.3 Mixed Priority Analysis . . . . . . . . . . . . . . . . 128
7.3.4 System-Wide Analysis . . . . . . . . . . . . . . . . . 131

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 Conclusions 137
8.1 Design-Time Conclusions . . . . . . . . . . . . . . . . . . 138
8.2 Run-Time Conclusions . . . . . . . . . . . . . . . . . . . . 139
8.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . 140

Abbreviations 143

Author’s Publication List 147
International Conferences . . . . . . . . . . . . . . . . . . . . . 147
Technical Reports . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 151

1





CHAPTER1
Introduction

The increasing computational parallelism provided by multi- and many-core
architectures allowed to overcome the power wall in silicon technology,
which limited the maximum operating frequency of single-core processors.
However, the progress of software compilers and EDA tools was not fast
enough to keep pace with such an increase of architectural complexity, more
specifically they still provide limited support to the software developer to
cope with parallelism. As a result, the computational capabilities of modern
platforms are usually not fully utilized.

At the same time, the possibility to integrate special-purpose accelerators
on the same chip enabled better energy efficiency, which in turn contributed
to the diffusion of mobile computing devices in the electronics market. Thus,
modern platforms also expose heterogeneity to the software developer, who
has to decide the functionality mapping, and require ad hoc programming
APIs to off-load data processing to specialized accelerators used as co-
processors. This, together with the increasing number of cores, represents
a burden for the software developer at the programming level – the so-
called programmability wall. Moreover, the rapid change of the commercial
platforms requires continuous porting of applications and software libraries
to new hardware, which increases the development cost and represents a risk

3



Chapter 1. Introduction

for the time-to-market of the final product.
Therefore, a hot research topic aims at providing tools to ease application

development for heterogeneous parallel platforms. It is a common view
in the academic and industrial research [40] that the programmer should
only express the concurrency of the application, and leave to the tools the
mapping of this concurrency into the parallelism of the hardware. This
thesis makes a step forward in this direction, targeting OpenCL [67] as a
cross-platform programming paradigm for heterogeneous parallel platforms.

1.1 Motivation

The availability of mobile computing platforms on the market is continuously
growing, leveraging a wide range of smart hand-hold devices (e.g. smart-
phones and tablets) and more recently even wearable ones, such as smart-
watches and smart-glasses. The market numbers show that such devices are
becoming more popular than desktop and laptop PCs, leading to a post-PC
era [40]. This new era is characterized by pervasive connectivity, which
enables to just “plug a device” into the Internet cloud wherever the user is,
at home, at the office or even moving from home to the office.

Pervasive connectivity enables download of information and fruition of
multimedia contents, data sharing, video and phone conferences, as well as
collection of data from sensors and upload on the cloud. These features make
a difference with respect to the previous generation of hand-hold devices,
which were mainly designed for a single functionality. On the contrary,
modern devices are smart, in the sense that they are multi-functional and
provide higher computational capability, but still have to be regarded as
embedded systems, because they are subject to a limited power budget. Thus,
software applications should be optimized to get the maximum performance
out of a specific platform.

Embedded computing devices represent the building blocks of the “Inter-
net of Things” and cyber-physical systems [40], because they are used to
interface the physical world with the digital world. Being connected to the
cloud, the new generation of mobile computing platforms generates a huge
amount of unstructured data, in the form of audio, video and physical mea-
surements. Sending this data to a data-center to extract useful information
is not a viable solution, because it requires high communication bandwidth
not available today along with very expensive, power-hungry data-centers.

In this context, robust video analysis is likely to become one of the
next killer applications of computing systems [40]. Currently, millions of
surveillance cameras are producing video shootings that are never analyzed

4



1.1. Motivation

because human observers are too expensive. Therefore, there is a need for
surveillance systems with enough computational power to automatically an-
alyze the input video and to request human intervention only when intrusion
or abnormal behaviors are detected. Similar advancements are needed in
other domains such as speech recognition, customer analytics and sensor
data processing.

The progress in the manufacturing process of semiconductor devices
enabled the integration of multiple processors on the same chip – the so-
called Multi-Processor System-on-Chip (MPSoC). This platform allows
the application developer to accelerate compute-intensive software tasks
on specialized processors (e.g. Digital Signal Processors (DSPs) for audio
and video encoding/decoding), while improving energy-efficiency. At the
same time, MPSoCs can be customized by designing application-specific
hardware and selecting which components to integrate (e.g., processors,
memory, analog, wireless, sensors, MEMS), for more optimized devices.

The fabrication costs of customized MPSoCs are high, so this approach
can be adopted only for large production volumes. For small volumes, the
application developer has to target standard commercial platforms and to
optimize the software, rather than designing a custom MPSoC. Thus, recent
MPSoCs integrate multi-core processors to provide enough computational
power for a variety of applications, for example Nvidia Tegra 4 includes a
multi-core ARM-based CPU and a multi-core embedded GPU. This platform
architecture exposes parallelism at two levels: i) in the form of task-mapping
on multi-processors, which requires dealing with platform heterogeneity
since each processor can be a specialized accelerator; and ii) as computa-
tional parallelism provided by each processor, being it a multi-core CPU
or a GPU for general-purpose computing, which typically includes several
homogeneous cores.

One main problem is the rapid change of the computing platforms avail-
able on the market, because new-generation products require porting of
application code to different accelerators. At the same time, it might be
difficult to exploit, at application-level, the increasing computational par-
allelism since there is still limited support for automatic optimization of
parallel code. These two factors represent a programmability wall, which is
the main source of complexity for the design of embedded systems today.
New design tools are needed to provide better support for software optimiza-
tion and cross-platform portability, instead of relying on hardware-software
co-design of application-specific MPSoCs.

Another aspect related to application design is that the constantly grow-
ing computational power provided by multi- and many-core processors

5



Chapter 1. Introduction

can exceed the requirements of a single application. Therefore, in order
to reduce design costs, multiple applications could be deployed and exe-
cuted on the same platform. This solution requires run-time techniques
to allocate system resources to applications, taking into account workload
variability and dynamic requirements. Similar techniques are also needed to
improve the system power consumption, as recently proposed by ARM with
the “big.LITTLE” architecture or previously by Nvidia with the Optimus
technology for automatic switching between integrated and discrete GPUs.

In conclusion, the last decade has witnessed a shift of the complexity in
embedded systems design from the hardware to the software. The design of
embedded software represents today the real added value of smart consumer
electronics and smart sensors, while the present hardware is not yet fully
exploited. Thus, after overcoming the power wall by adopting multi-core
processors, academic research and industry have to address the so-called
programmability wall.

1.2 Technological background

Today’s multi-core CPUs implement a Symmetric Multi-Processing (SMP)
architecture, where two or more identical processors – usually in a number
power of two – are connected to a shared memory and controlled by a single
Operating System (OS) instance. By means of OS support, it is possible to
schedule different processes on parallel cores – a type of parallelism known
as request-level parallelism [51]. Conversely, parallel processing consists
of one process running on parallel cores, but this requires the process to
spawn a pool of threads collaborating on a single task. Nowadays, there is
no yet compiler that can automatically generate a multi-thread program from
sequential application code (except for some specific patterns, e.g. loops),
thus the application developer has to express parallelism in the source code.

Several programming models have been proposed for the development
of multi-thread applications for parallel processing. For example, OpenMP
[89] exploits code annotation (by means of C pragmas) to give hints to the
compiler for parallelization; while Threading Building Blocks (TBB) [95],
a C++ template library developed by Intel, uses compile-time constructs to
express parallel tasks. Both OpenMP and TBB libraries abstract access to the
multiple processors by allowing the operations to be treated as tasks, which
are allocated to individual cores dynamically by the library run-time engine.
This approach aims at decoupling the programming from the peculiarities of
the SMP architecture, e.g. the number of cores, but it is limited to CPUs1.

1The OpenMP support for heterogeneous platforms, introduced in version 4.0 [90] with the target directive,

6



1.2. Technological background

Graphics Processing Units (GPUs) are specialized processors for graphics
applications. This type of applications is compute-intensive and throughput-
oriented, because the processing of large blocks of data (such as image
rendering) can be done in parallel. To exploit data parallelism, GPUs have a
highly parallel architecture, with a high number of stream processors and
high bandwidth to the video memory. In order to use GPUs for general
purpose computing, Nvidia introduced the Compute Unified Device Ar-
chitecture (CUDA) programming language [88]. CUDA is a C API that
allows a host application to access the GPUs as co-processors and offload
compute-intensive tasks. It is widely used to accelerate not only image
processing but also any application that exposes data-parallelism such as
physics simulation, base-band processing in Software Defined Radio (SDR)
[103] and cryptographic applications [50].

So far, the increasing number of processing cores integrated in one accel-
erator has been exploited to provide homogeneous computational parallelism.
Nevertheless, in recent years we have witnessed to an ever increasing co-
existence of different types of accelerators within the same platform, being
it embedded, desktop or High Performance Computing (HPC). This results
in a mix of globally heterogeneous locally homogeneous computational
parallelism. From the very beginning, platform heterogeneity imposed a
specialized programming API for each accelerator type (and eventually
vendor, in case of proprietary API), such as CUDA, Intel TBB, or the IBM
Cell BE SDK. This fragmentation has represented one of the major hurdles
towards the development of portable, parallel applications. Recently this
problem has been addressed by the Khronos Consortium with the proposal
of a cross-platform programming model – the Open Computing Language
(OpenCL) [67] – designed around the computational paradigm named sin-
gle program multiple data (SPMD), a subcategory of multiple instruction
multiple data (MIMD) [43].

OpenCL enables functional portability between different accelerators:
multi-core CPUs, many-core NoC-based accelerators2, DSPs3 and FPGAs4.
However, the OpenCL API does not ensure robust, cross-platform perfor-
mance portability, e.g. in terms of throughput for streaming applications.
On the one hand, OpenCL programs should be optimized for the target
architecture by tuning platform-related parameters; on the other hand, task
mapping over the available processing elements must be specific for each
platform, which increases the development effort.
is still an abstraction layer over multiple offloading programming paradigms such as CUDA or OpenCL.

2See Adapteva Epiphany IP: http://www.adapteva.com/epiphany-multicore-intellectual-property/
3See Texas Instruments OpenCL support: http://processors.wiki.ti.com/index.php/OpenCL
4See Altera OpenCL SDK: http://www.altera.com/products/software/opencl/opencl-index.html

7

http://www.adapteva.com/epiphany-multicore-intellectual-property/
http://processors.wiki.ti.com/index.php/OpenCL
http://www.altera.com/products/software/opencl/opencl-index.html


Chapter 1. Introduction

Another problem is that OpenCL does not provide an easy way to or-
chestrate task execution on multiple heterogeneous devices. This requires
either design-time or run-time techniques to find the optimal mapping of
application tasks to platform accelerators, while satisfying data-dependency
constraints. Moreover, OpenCL provides an application runtime but does not
support allocation of resources to separate applications (request-level paral-
lelism [51]). Therefore, additional platform support for Run-Time Resource
Management (RTRM) is needed in order to deploy multiple concurrent
OpenCL applications on the same platform.

1.3 Thesis contributions

This thesis work has two main objectives:

1. OpenCL application customization and optimization
This objective addresses one limitation of the OpenCL programming
paradigm, namely the tight dependence of application performance
on platform architectural details. Although the OpenCL API is cross-
platform and generic enough to enable programming of different types
of accelerators, customization of software parameters is necessary to
achieve good performance when porting applications to a target plat-
form. This problem is exacerbated by the intrinsic heterogeneity of
modern computing platforms, which usually include two or more ac-
celerators, eventually of different type, or can be extended by replacing
plug-in modules (e.g. on the PCI bus of a general-purpose worksta-
tion). Thus, efficient task mapping on the available platform devices is
important to maximize the throughput of an OpenCL application and
to target the same application to different platforms.
To address this problem, an optimization methodology is proposed,
based on customization of a parametric application design. The method-
ology exploits Design Space Exploration (DSE) to identify the optimal
solutions, with respect to multiple design objectives such as perfor-
mance or Quality of Service (QoS).
In this context, this thesis brings the following main contributions:

• A customizable OpenCL application design providing a param-
eterized software pipeline, combined with a suitable exploration
strategy for multi- and many-core platforms.
• A technique to configure an ensemble model based on Artificial

Neural Networks (ANNs), which allows to reduce the exploration
time on simulation platforms for many-core architectures.

8



1.4. Thesis organization

• A technique, supported by a constraint solver, to deal with plat-
form constraints, which allows for fast pruning of the design space
and efficient task mapping on heterogeneous parallel platforms.

2. Application auto-tuning and run-time management
This second objective concerns the problem of resource sharing when
multiple applications are deployed on the same computing platform.
This type of parallelism – referred to as request-level parallelism – can
be combined with task-level parallelism. However, platform resources
should be properly assigned depending on application requirements in
order to optimize the overall average system performance.
The solution for performance-aware scheduling proposed in this thesis
exploits offline application profiling to identify a set of optimal con-
figurations, with different trade-offs between design objectives. This
knowledge-base, obtained at design-time, is exploited at run-time for
application auto-tuning and efficient resource allocation.
The contributions of this thesis, with respect to run-time management,
are listed below:

• A Design Space Exploration (DSE) methodology to generate a set
of Pareto-optimal application configurations, used at run-time for
application dynamic auto-tuning and resource allocation.
• A light-weight run-time management technique to optimize re-

source sharing for computationally intensive OpenCL applications.

The techniques listed above have been validated on different industrial
platforms, described in Section 2.4, in order to demonstrate the applicability
of the proposed methodology to real case studies. The implementation
of the techniques exploits two external tools, MOST for the design-time
phase and Barbeque for the run-time phase, developed at PoliMI, which
will be introduced in Section 2.5 and Section 2.6, respectively. Conversely,
a Stereo-Matching OpenCL application, used in several experiments, has
been developed in this thesis and will be introduced in Section 2.3.

1.4 Thesis organization

The thesis is structured in two parts: Part I describes the contributions at
design-time, concerning application optimization and customization, while
Part II is about the contributions for run-time application auto-tuning and
resource management. This organization should help the reader to follow the
information flow from the design-time phase (Chapters 3-5) to the run-time

9



Chapter 1. Introduction

phase (Chapters 6-7): in the proposed application design methodology, the
design knowledge gathered at design-time by means of DSE is exploited
to support run-time decisions for optimal resource allocation and efficient
application auto-tuning.

Part I. OpenCL Application Optimization and Characterization

DSE consists of exploring the configuration space given by all possible
combinations of tunable design parameters, to identify the optimal solutions
with respect to some design objectives, e.g. throughput, power consumption,
or Quality of Service (QoS). The techniques proposed in this thesis mainly
exploit profile-based DSE, in which an executable or simulation model of the
application and target platform is used to capture the performance metrics
[108]. The executable model refers to a profiling configuration where the
application is executed on the real platform, while the simulation model
should be used when the platform is not available, to enable application
prototyping in an early design stage in order to reduce the time-to-market.

OpenCL is emerging as a standard for parallel programming of hetero-
geneous hardware accelerators. With respect to device specific languages,
OpenCL enables application portability but does not guarantee performance
portability [76], eventually requiring additional tuning of the implementation
to a specific platform or to unpredictable dynamic workloads. Not only the
number of cores changes from one platform to another, but also the way
computational parallelism is exploited in the compilation or synthesis flow,
as well as the memory access mechanisms (e.g. DMA) and the size of local
memories. Thus, this thesis addresses the problem of OpenCL performance
portability by adopting a parametric application design and customizing
application parameters for the specific target platform.

Automated exploration and optimization of application parameters rep-
resents a novel and interesting research domain, particularly useful in the
field of approximate software computing [99]. For these applications, the
quality and accuracy of the output can be traded off in return for lower
computational complexity and higher throughput. However, the size of a
design space grows exponentially with the number of parameters. The main
contributions of Part I consist of three DSE techniques for the design-time
optimization phase, described below. These techniques allow to efficiently
explore the design space, avoiding profiling of suboptimal or unfeasible
solutions, and thus to reduce the exploration time. The output is a set of
application operating points, which are optimal for the target platform and
expose different trade-offs between performance metrics and QoS.

10



1.4. Thesis organization

Chapter 3. Customization of parametric OpenCL applications

The first contribution of this thesis is a methodology to analyze the cus-
tomization space of an OpenCL application in order to improve performance
portability and to support dynamic adaptation. This chapter introduces a
parametric design for an OpenCL stereo-matching application, then an opti-
mization case study by targeting this application to the STMicroelectronics
STHORM (P2012) many-core computing fabric [83] is presented. In this
approach, DSE techniques are used to generate a set of operating points
that represent specific configurations of the parameters allowing different
trade-offs between performance and accuracy of the algorithm itself. These
points give detailed knowledge about the interaction between the application
parameters, the underlying architecture and the performance of the system;
they could also be used by a run-time manager software layer to meet dy-
namic performance and QoS constraints, as shown later in Part II.
Besides the parametric OpenCL design, another contribution of this chapter
consists of an exploration heuristic to reduce the overall number of simula-
tions. This heuristic makes the DSE-based optimization approach feasible
also when the simulation platform is slow. This is typically the case when a
platform is in the prototyping phase and thus it can only be simulated. The
experiments of this chapter use cycle-accurate simulations for the STHORM
platform to analyze the customization space of the OpenCL stereo-matching
application.

Chapter 4. Ensemble models for simulation of many-core platforms

The availability and the quality of software applications could determine the
survival of a computing platform – as well as the success of a new platform –
on the market. For this reason and also to reduce the time-to-market, during
the prototyping phase it is necessary to start developing applications for the
target platform on a simulation model.
This chapter presents a modeling technique to reduce the time associated
with cycle-accurate simulations of parallel applications deployed on many-
core embedded platforms. It uses an ensemble model based on artificial
neural networks that exploits (in the training phase) multiple levels of sim-
ulation abstraction, from cycle-accurate to cycle-approximate, in order to
predict the cycle-accurate results for unknown application configurations.
The experimental results show that high-level modeling can be used to sig-
nificantly reduce the number of low-level model evaluations provided that
a suitable artificial neural network is used to aggregate the results. The
methodology for the design and optimization of such an ensemble model

11



Chapter 1. Introduction

is assessed on the simulation platform for STMicroelectronics STHORM
(P2012) many-core computing fabric.

Chapter 5. Task mapping under heterogeneous platform constraints

While the previous DSE techniques considered a single target accelerator, in
this chapter the methodology is extended to target a generic platform with
multiple OpenCL accelerators, eventually heterogeneous. The OpenCL API
already supports a cooperative multi-device usage model with event-based
synchronization, but there is not yet any support for automatic load balanc-
ing among heterogeneous devices.
To cope with this limitation, the chapter presents a design flow for perfor-
mance optimization of OpenCL applications consisting of two phases: i) a
tuning phase that optimizes application kernels, considering device-specific
constraints, and generalizes the technique presented in Chapter 3; and ii) a
task-mapping phase that maximizes the whole application throughput on
the target heterogeneous platform.
The main contribution consists of a novel analytical technique, supported
by a constraint solver [96] for fast pruning of the design space. In the tun-
ing phase, this technique efficiently identifies an initial set of feasible task
configurations that are compliant with the platform device constraints. In
the mapping phase, it improves the task-level parallelism accounting for the
overhead of host-to-device and device-to-host memory transfers (overheads
implied by multiple OpenCL contexts for different device vendors).
The result is a software pipeline optimized for the target heterogeneous
parallel platform to maximize the average application throughput.

Part II. Application Auto-Tuning and Run-Time Management

The ever increasing number of processing elements integrated on the same
many-core chip delivers computational power that can exceed the perfor-
mance requirements of a single application. The number of chips (as well
as the related power consumption and production cost) can thus be reduced
by deploying multiple applications on the same chip – a practice which is
called resource consolidation. This practice is already common in the HPC
domain, in which virtualization [18] allows multiple users to acquire quotas
of the same cluster to run different applications. In the embedded domain,
the interest for virtualization techniques is more related to security and relia-
bility aspects [69], in order to isolate critical functionality from best-effort
applications on mixed-criticality systems. On the contrary, partitioning and
allocation of platform resources to improve the overall system performance

12



1.4. Thesis organization

is still based on fair allocation of the user time among the active tasks, as
done by the Linux scheduler. Moreover, this type of Run-Time Manage-
ment (RTM) is limited to multi-core CPUs, because other heterogeneous
accelerators are usually not managed by the Operating System (OS).

Part II presents a run-time resource management framework, based on
design-time optimization and characterization of the workload by means
of DSE. At the same time, the design-time techniques presented in Part I
provide fine-grained trade-offs between performance and QoS that will
be exploited by an Application-Specific Run-Time Manager (AS-RTM)
to improve the average use-case performance. In this context, the term
auto-tuning refers to the capability of an application to trade-off application-
specific metrics, such as the accuracy of result, with performance metrics.

Thus, the contribution is twofold: an auto-tuning software layer for
fine-grained application adaptivity and light-weight autonomous resource
management; and a more general two-level Run-Time Management (RTM)
framework, to decouple resource allocation from application adaptivity.

Chapter 6. Application auto-tuning with autonomous RTRM

To satisfy the performance requirements in the presence of resource con-
tention, the approach presented in this chapter exploits application auto-
tuning, based on design-time analysis, of both application-specific dynamic
knobs [56] and computational parallelism. Such features are implemented in
a software library, linked to each application, which is used to demonstrate
the main contribution: a light-weight Run-Time Resource Management
(RTRM) technique to improve resource sharing for computationally inten-
sive OpenCL applications.
The experiments are aimed at evaluating how much the interaction between
RTRM and application auto-tuning can become synergistic yet orthogonal.
In the proposed approach, run-time adaptation decisions are taken by each
application, autonomously. This has two main advantages: i) a non-invasive
application design, in terms of source code, and ii) a very low run-time
overhead, since it does not require any central coordination by a supervisor
nor communication between the applications.
An experimental campaign was carried out by using a video processing
application – the OpenCL stereo-matching implementation presented in
Section 2.3 – and stressing out resource usage. The results show that, while
RTRM is necessary to provide lower variance of the application perfor-
mance, the application auto-tuning layer is fundamental to trade it off with
respect to the computation accuracy.

13



Chapter 1. Introduction

Chapter 7. Combining application adaptivity and system-wide RTRM

To better exploit the computational capabilities offered by multi-core high-
end embedded systems, new parallel programming paradigms, such as
OpenCL, should be combined with effective resource management. How-
ever, dealing with mixed-priority workloads and time-varying scenarios still
represents an open problem.
The contribution presented in this chapter addresses such challenges by ex-
ploiting the synergy between the MOST DSE framework and the Barbeque
RTRM – presented in Section 2.5 and Section 2.6, respectively – to achieve
effective and flexible system-wide application adaptivity. In particular, de-
sign space exploration techniques are used to generate a set of operating
points, which are selected at run-time by an Application-Specific Run-Time
Manager (AS-RTM), the same presented in Chapter 6. These points are also
clustered with respect to performance and resource requirements to identify
a set of Application Working Modes (AWMs), to be used by the Barbeque
RTRM for efficient resource allocation.
The technique presented in this chapter was developed in the context of the
European FP7 project 2PARMA5 and validated on an embedded many-core
platform as well as on a NUMA server x86 machine.

5PARallel PAradigms and Run-time MAnagement techniques for Many-core Architectures, project website:
http://www.2parma.eu/

14

http://www.2parma.eu/


CHAPTER2
Background, Terminology and Toolchain

The goal of this chapter is to provide the reader with the necessary back-
ground before describing the proposed techniques and to introduce appli-
cations and tools used in the following of this thesis. More in details,
Section 2.1 describes the research context, introducing some related works
and underlining the motivations of the proposed approach.

This thesis work addresses the OpenCL programming paradigm to target
heterogeneous parallel computing platforms. OpenCL is being adopted by
many platform vendors, in the embedded and High Performance Computing
(HPC) domains, mainly because it allows to effectively exploit both data
parallelism and concurrency in an application task graph, while provid-
ing a cross-platform API. Thus, Section 2.2 gives a brief presentation of
OpenCL, while the reader can refer to the specification [67] for a detailed
API description.

Augmented reality and advanced image processing are just two exam-
ples of computationally intensive multimedia applications which are now
required on high-end mobile devices, while exhibiting classical HPC traits.
Stereo-Matching, described in Section 2.3, belongs to a class of applications
that allow to dynamically tune at run-time the trade-off between performance
and accuracy metrics, by means of some tunable parameters. Therefore,

15



Chapter 2. Background, Terminology and Toolchain

the experiments consider different case studies based on a Stereo-Matching
application, implemented in this thesis with OpenCL APIs.

OpenCL enables application portability but does not guarantee perfor-
mance portability, eventually requiring additional tuning of the implemen-
tation to a specific platform. Therefore, the experimental setup includes
different types of OpenCL devices used as software programmable accelera-
tors, described in Section 2.4, in order to analyze the problem of application
optimization for heterogeneous parallel platforms.

Finally, Section 2.5 presents the MOST framework and Section 2.6 the
Barbeque Run-Time Resource Manager. The former provides a Design
Space Exploration (DSE) tool, used in Part I to automate the process of
customizing and optimizing an application for the target platform. The latter
is used in Part II to implement a Run-Time Resource Management (RTRM)
framework, for run-time optimization of resource allocation on multi- and
many-core platforms.

2.1 Background

In the embedded domain, platform-based design [66] represents a domi-
nant paradigm to design optimized architectures and to meet time-to-market
constraints. In this approach, a template Multi-Processor System-on-Chip
(MPSoC) platform is provided by the silicon vendors as reference design.
Then, the application developer can use conventional Design Space Explo-
ration (DSE) to tune the hardware/software parameters of the platform in
order to achieve the desired trade-off between area, power consumption
and performance. DSE generally consists of a multi-objective optimization
problem whose domain is composed of parameters of a microprocessor-
based platform (and all integrated IPs) and/or application parameters while
the objective functions are, typically, the overall performance and power
consumption [66]. The solution of the optimization problem is a set of
non-dominated points termed Pareto set [30].

The emphasis on the efficiency of the DSE algorithms is due to the fact
that in computer architecture research and development, simulation still
represents the main tool to predict performance of alternative architectural
design points. If we consider a full cycle-accurate system-level simulation,
even the most simple workload requires a significant time to be analyzed,
thus a comprehensive exploration of the design alternatives could exceed
practical limits [92]. The overall goal is thus to minimize the number of
simulations to be executed during the exploration phase. A common ap-
proach to solve this problem is to use Design of Experiments (DoEs) and

16



2.1. Background

Response Surface Model (RSM) techniques [101] combined with suitable
multi-objective minimization or maximization techniques [30]. An alter-
native approach is based on meta-heuristics (such as Simulated Annealing
[110] and Genetic Algorithms [35]) that provide more accurate results but
in the long term considering simulation time.

The possibility to customize the platform and to implement optimized
software tasks for each available processor led to a deep research into
hardware-software co-design. However, this approach is complex, because
of the size of the design space, and expensive at the same time, thus it
can be applied only for large production volumes. More recently, general
purpose parallel computing platforms have been proposed for both the
embedded and HPC domains, consisting of a host processor and one or more
multi- and many-core accelerators (e.g. STMicroelectronics STHORM
[83], Adapteva’s Parallela platform1). Such platforms provide sufficient
computational power to support a wide range of applications and can be
easily programmed with software, e.g. by means of the OpenCL API [67],
reducing the per-unit design cost for small production volumes.

The development of complex software for parallel, heterogeneous plat-
forms – the so called programmability wall – has been addressed with
a wide range of software engineering methodologies. Among the most
prominent approaches in the area of OpenCL development we can find
template libraries for imperative languages [33, 36, 115] and functional
meta-programming [28, 29, 72].

Template libraries for imperative languages provide optimized kernel im-
plementations for operations on vectors and matrices. Besides, they provide
an easy interface to the low level primitives of the OpenCL toolchain, by
enabling straightforward composition of kernels. This property enables the
programmer to shift the focus towards the top-level view of the application,
improving productivity. However, these libraries are limited to regular vector
or matrix operations, thus they are most suitable for arithmetic kernels.

Functional meta-programming is a technology widely used in the field of
functional languages. It allows to specify programmatically how and when a
certain part of the code should be generated and executed. Code generation
can thus be done not only at design-time but also later (either at walk or
run-time). This opens opportunities for automatic application customization
and optimization which could greatly improve the performance on hetero-
geneous platforms. The state of the art in this case is very advanced, as
both Obsidian [29] and Barracuda [72] are able to generate CUDA code that
makes automatic use of local memory on GPU devices.

1http://www.adapteva.com/introduction/

17

http://www.adapteva.com/introduction/


Chapter 2. Background, Terminology and Toolchain

Domain Specific Languages (DSLs) can be used as well to provide a
re-targetable dynamic compilation framework [77, 26, 37]. This approach
is application-domain specific and usually limited to a class of kernels
(e.g. stencil operations), thus it cannot address kernel heterogeneity within
complex applications. The generated code outperforms hand-optimized
programs, because the high-level description in a DSL enables a set of
intermediate source-to-source code transformations before compilation for
the target platform. However, due to the nature of DSLs, it is very difficult
to agree on a common programming framework.

This thesis presents an innovative approach to optimize OpenCL appli-
cation design, focused on software-programmable multi- and many-core
accelerators for embedded computing platforms. It is based on the DSE
techniques already studied for MPSoC design, applied here to a parametric
application design, such as the OpenCL Stereo-Matching application pre-
sented in Section 2.3. The performance portability problem, in this case,
is casted into a multi-objective optimization problem, which allows to con-
sider, by means of profile-based DSE, several design objectives, e.g. power
consumption, throughput and Quality of Service (QoS) [122].

The OpenCL introduction given in Section 2.2 will show that there are
some parameters to customize the behavior of an OpenCL runtime for a
target platform. Besides these OpenCL parameters, application-specific
parameters must be also considered by the design-time phase. They can be
found in a class of applications that allow to dynamically tune at run-time
the trade-off between performance and Quality-of-Result (QoR) metrics,
by means of dynamic knobs [56]. An example of such knobs consists of
those parameters that change the number of loop cycles, by skipping some
iterations with a given step (a technique known as loop perforation [106]).
This generates a more approximate result, which we also refer to as QoR
loss, in return for a faster execution.

Thus, the domain of the multi-objective optimization problem is com-
posed of both platform-related and application-specific parameters. How-
ever, the number and the range of customizable parameters define a large
design space. Such complexity makes it impossible to take fast run-time
decisions without any knowledge about the interaction between parameters
and metrics. On-line RSMs have been used to improve run-time manage-
ment by either using piecewise linear regression [17], Artificial Neural
Networks (ANNs) and Q-learning [81] or other predictive/adaptive mod-
els [31]. Design-time exploration is increasingly used as an alternative
technique to provide simple guidelines for run-time management of small
eco-systems[121, 79] or to support more complex and versatile composite

18



2.2. OpenCL programming model

approaches [105]. Following this second technique, the design-time phase
proposed by this thesis is aimed at building a performance model of an
application on the target platform, to be used by the run-time framework
presented in Part II.

Part II will also deal with multi-application scenarios deployed on multi-
core platforms. These scenarios expose both task-level parallelism, at the
application-level, and request-level parallelism [51], at the system-level in
the form of multiple independent tasks. The OpenCL API is designed to
make efficient use – at application-level – of the massive computational
parallelism provided by modern accelerators. On the contrary, there is not
yet support for efficient deployment of multiple OpenCL applications on
the same platform. Several frameworks (e.g. OmpSs [39], SOCL [52],
SnuCL [68]) have been proposed to optimize execution of an OpenCL
application on a heterogeneous platform, but they are limited to a single
application. The reason for this limitation is that the runtime support is
usually provided as a library to be linked to the application. Conversely, run-
time management of multi-application scenarios and dynamic workloads
requires some form of coordination among the applications – either in a
centralized [55, 19] or distributed approach [71, 119] – supported by an
inter-process communication infrastructure.

2.2 OpenCL programming model

Open Computing Language (OpenCL) is an open standard for parallel
programming of heterogeneous systems [67]. Its standard API enables cross-
platform portability of applications between different types of accelerators:
multi-core CPUs, General Purpose GPUs (GPGPUs), many-core accelera-
tors (such as STMicroelectronics P2012 [83] or Adapteva’s Epiphany) and
– more recently – also FPGAs [109]. These accelerators are off-the-shelf
components that can be used to speed up compute-intensive applications,
while reducing the design cost with respect to application-specific platform
solutions. OpenCL allows to use such accelerators as programmable par-
allel processors, thus enabling platform re-usability and addressing a wide
spectrum of application fields, from graphics and multimedia to scientific
and medical software.

OpenCL has a strong CUDA [88] heritage, but it provides a common
hardware abstraction layer across different multi-core architectures [76]. It
follows an off-loading programming paradigm, where the application code
running on a host CPU is responsible for offloading computationally inten-
sive kernels on the available accelerators (also called OpenCL devices) and

19



Chapter 2. Background, Terminology and Toolchain

takes care of transferring data from host to device, and viceversa, because
of different address spaces. From a programming perspective, OpenCL
provides a standard host API to access different types of co-processors to
ease porting of application code across different platforms.

In order to write portable code, the application designer should only
express the potential parallelism and let the compile or synthesis toolchain
optimize the code for a specific target architecture: thus, the way parallelism
is exploited on a GPU architecture might be very different from the way it
is done on a FPGA. The OpenCL host API allows to express application
parallelism at two levels:

• At task-level, by means of an iteration space (called NDRange in
the OpenCL specification), to express potential data-parallelism in
compute-intensive application hotspots (called kernels).

• At application-level, in the form of task graph, by expressing data
dependencies among tasks deployed within the same OpenCL context
but executed on different command queues, each command queue being
attached to a computing device.

These two ways of expressing parallelism are analyzed more deeply in the
following sections, since both will be exploited by the parametric application
design proposed in Part I. Finally, the last paragraph will introduce the device
fission API, extensively used in Part II to control resource assignment to
OpenCL applications.

2.2.1 OpenCL NDRange: intra-task parallelism

OpenCL is a language and runtime specification born to address intra-task
parallelism, which mainly exploits data parallelism. On the one hand, it
allows to create highly optimized kernels because commercial OpenCL
compilers can exploit vector units, Fused Multiply-Add (FMA) blocks,
floating-point units and other DSP blocks available on an OpenCL device.
On the other hand, to express intra-task parallelism, one has to specify the
iteration space with a composition of two grids: a global and a local one.
The global grid scales linearly with the problem size and provides a baseline
for partitioning work across the processing units of the device. It allows to
express fine-grained data parallelism, which results in the parallel execution
of the same program – the OpenCL kernel – for each point in the iteration
space – the work-items. The local grid is used to assign iterations to each
kernel work-group, which consists of work-items sharing data through a
local memory.

20



2.2. OpenCL programming model

OpenCL uses a relaxed consistency memory model [47], i.e. work-items
could be executed in any order and the state of memory visible to a work-
item is not guaranteed to be consistent across the collection of work-items at
all times. However, OpenCL provides some synchronization mechanisms at
the work-group level in the form of barriers, to enable consistency of shared
buffers in local memory.

Sizing of the local grid is critical since:

1. too large local grids might cause register spill on OpenCL devices such
as GPUs or CPUs [46],

2. local memory can be too small to accommodate all the work-items,

3. too small grids can lead to inefficient use of local memory, increasing
the number of accesses to the slower global memory.

It is therefore extremely important to consider grid sizing in application
design [98, 111]. Both global and local grids are indeed exploited differ-
ently by each platform compiler and/or runtime, to make efficient use of
the underlying architecture. For example, on modern CPUs the OpenCL
compiler takes advantage of advanced vector instruction sets [60], while
on Altera FPGAs the synthesis tool transforms the iteration space into a
deep hardware pipeline [109]. Thus, in the design methodology presented in
Chapter 3, grid sizing is exposed as a set of application parameters in order
to enable automated optimization by means of DSE.

As already mentioned, the size of the local grid determines also the
amount of local memory required by a work-group for the shared buffers.
Thus, the amount of local memory available on a device represents a plat-
form constraint, which can be used to filter out from the design space the
unfeasible solutions (Chapters 3, 5). At the same time, the work-group size
impacts on the memory bandwidth for reading and writing data to the global
memory. On platforms that use Direct Memory Access (DMA) to transfer
data to the local memory, software-pipelined kernel implementations could
benefit from overlapping data transfer with processing [77]. Thus, the appli-
cation design proposed in Chapter 3, which targets P2012 (see Section 2.4)
and uses DMA at the work-group level, will consider grid sizing in order to
balance the pipeline stages.

2.2.2 OpenCL task graph: inter-task parallelism

In the previous section, we introduced the concept of OpenCL NDRange,
which allows to express and exploit data parallelism on multi-core acceler-
ators. OpenCL applications have to explicitly offload a data-parallel task

21



Chapter 2. Background, Terminology and Toolchain

(kernel NDRange) on an accelerator device, by enqueuing it on the command
queue attached to that device; then, the OpenCL runtime will execute the
task as soon as the device becomes available.

However, when it comes to multiple devices OpenCL falls short. While
it allows device partitioning for running multiple tasks on the same device,
it does not provide an easy way to orchestrate task execution on multiple
devices. This is due in part to the inability of using a single command queue
for all the devices. Still, it is possible to exploit multi-device execution using
separate command queues for each device and event-based synchronization,
but this requires that:

• the application developer should write ad hoc host code to orchestrate
the command queues

• devices should belong to the same vendor platform.

However, if two devices do not belong to the same vendor platform,
OpenCL does not allow to create a context containing both devices. If two
devices belong to two separate contexts, then it is not possible [52]:

• to synchronize commands executed on one device with commands
executed on the other;

• to share buffers between the devices;

• to copy data from a buffer on one device to a buffer on the other device.

Therefore, the developer is forced to instantiate separate OpenCL contexts
for different devices, taking care of copying data across contexts and using
very inefficient synchronization methods, such as waiting until a command
queue gets empty. Thus, designing and hand-coding an OpenCL application
that maintains load balance between different heterogeneous devices, while
efficiently managing memory transfers, is a complex task. Moreover, it
is difficult to write portable code, since the layout in terms of available
accelerators could be very different from one platform to another.

To address these limitations of the OpenCL API and enable scheduling on
heterogeneous platforms, a number of techniques and frameworks have been
proposed in literature. The authors in [49] propose a static approach based
on compiler analysis of the kernel code to predict the optimal partitioning
on a heterogeneous platform for an OpenCL data-parallel task. However,
this approach introduces memory transfer overhead for data dependencies
in complex task graphs. On the contrary, SOCL [52] is a unified OpenCL
platform which uses dynamic and adaptive load balancing of the applica-
tion task graph. Thus, OpenCL is extended in order to support command

22



2.3. Target application: OpenCL Stereo-Matching

queues attached not only to one particular device, but to a group of devices
– eventually from different vendors. More oriented to HPC, the SnuCL
framework [68] allows an application to exploit heterogeneous CPU/GPU
clusters, where the nodes are on a network, by exposing OpenCL devices in
a compute node as if they were in the host node.

2.2.3 OpenCL device fission

In the OpenCL platform model, each accelerator contains one or more
compute units. For example, for a multi-core CPU a compute unit is a
worker thread executing on a core, while for a GPU a compute unit is a
stream processor. By default, the OpenCL runtime distributes the work-
groups of one kernel NDRange among all compute units of the device
attached to the command queue. Thus, an NDRange kernel executed on a
multi-core CPU, by default, uses all the available cores.

However, since the number of cores is rapidly increasing, it is beneficial
to let the OpenCL programmer take more control over which resources
should be used by the runtime, rather than treating a device as a single
homogeneous computing resource2. For this reason, the OpenCL device
fission API was first introduced as an OpenCL 1.1 extension, then included
in the OpenCL 1.2 specification [67]. Fundamentally, device fission allows
sub-dividing a device into one or more sub-devices, thus enabling more
advanced inter-task parallelism across the command queues.

There are several partitioning options to apply the device fission [67].
Once created, a sub-device can be used as a generic OpenCL device, with
standard APIs. These APIs will be used in Part II to assign resources
of a homogeneous multi-core platform to multiple applications, within a
framework for RTRM.

2.3 Target application: OpenCL Stereo-Matching

The stereo-matching algorithm described in [125] has been implemented in
an OpenCL application, to be used in the experimental part of this thesis.
Stereo-Matching is relevant for multimedia applications and, at the same
time, provides a parameterizable and adaptable design. The reason for using
OpenCL, as programming paradigm, is to enable cross-platform portabil-
ity and evaluate the proposed techniques for application optimization on
heterogeneous parallel platforms.

In the computer vision domain, one application of interest is 3D scene
2https://software.intel.com/en-us/articles/opencl-device-fission-for-cpu-performance

23

https://software.intel.com/en-us/articles/opencl-device-fission-for-cpu-performance


Chapter 2. Background, Terminology and Toolchain

PR PL QR QL 

P

Q

CAM LEFT CAM RIGHT 

CAM LEFT 

CAM RIGHT 

PL 

PR 

QR 

QL 

DP 

DQ 

Figure 2.1: Example of input stereo images (on the right), obtained shooting a scene which
contains two objects: a green parallelepiped and an orange spheroid. DP and DQ

represent the binocular disparity of pixels P and Q, where DP > DQ since P belongs
to the object closest to the cameras.

reconstruction, which builds on top of stereo-matching algorithms to com-
pute the depth map for a scene captured with stereo cameras. One example
application is the Lens Blur filter in the Google Camera App3, which al-
lows to take out-of-focus background from a photo by blurring pixels by
different amounts depending on the pixel depth. In this way, a software
application provides on smart-phones and tablets the same optical effect that
traditionally required professional cameras with advanced optics.

Given a stereo-image pair as input, the stereo-matching algorithm as-
sumes that each pixel in the right image (‘anchor’) has a corresponding
pixel in the left image, but eventually in a different position. Images are
assumed to have been captured by cameras with the same vertical position,
thus the search can be limited to the same row. The difference between the
horizontal position in the left image and the position in the right image is
called binocular disparity and it is inversely proportional to the distance of
the point with respect to the cameras. Since it represents a distance between
two points in a bitmap image, the disparity is measured in pixels.

In Figure 2.1, a 3D scene (on the left) containing two objects – a green

3http://googleresearch.blogspot.it/2014/04/lens-blur-in-new-google-camera-app.html

24

http://googleresearch.blogspot.it/2014/04/lens-blur-in-new-google-camera-app.html


2.3. Target application: OpenCL Stereo-Matching

MAX_ARM_LENGTH,

Figure 2.2: Construction of shape-adaptive local support regions with cross-based method.

parallelepiped and an orange spheroid – is captured by a pair of stereo
cameras. The blue and red lines show the projection of pixels P and Q –
belonging to the surfaces of the parallelepiped and the spheroid, respectively
– on the focal plane. The projections are different for the left and right
cameras, because of the binocular disparity proportional to the distance
between the cameras – which is fixed and known. However, the disparity
also depends on the distance of the objects from the cameras, thus the
disparity of pixel P, belonging to the parallelepiped, is higher than the
disparity of Q, which belongs to the spheroid and is farther than P.

The peculiarity of the selected algorithm [125] consists of adaptive-shape
local support windows, based on color similarity, for each pixel: pixels with
similar color are, indeed, likely to belong to the same object surface. Support
windows are represented by means of a cross-like structure for each pixel,
whose arms extend to cover any irregular shape in the image (see Figure 2.2).
This technique allows aggregating matching costs in adaptive-shape support
regions, thus enhancing the accuracy of the disparity result.

To compute the disparity for each pixel, the algorithm proceeds by formu-
lating disparity hypotheses and combining, for each hypothesis, the support
regions of the ‘anchor’ pixel and that of the corresponding pixel in the left
image. Then, it applies an orthogonal integral image technique for fast cost
aggregation of the raw matching costs on the combined window. The final
result, for each pixel, is the disparity which minimizes the matching cost
over the combined window, between the ‘anchor’ pixel in the right image
and its projection in the left image. This cost is normalized over the size of
the combined support window.

25



Chapter 2. Background, Terminology and Toolchain

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 2 4 6 8 

Matching-Cost Q 

0 

1 

2 

3 

4 

5 

6 

7 

0 2 4 6 8 

Matching-Cost P 

DP = 6 DQ = 3 

D = { 0, 2, 4, 6, 8 } 

Disparity error: 
real disparity DQ = 3, 
computed D’Q = 2 

CAM LEFT 

CAM RIGHT 

PL 

PR 

QR 

QL 

A
gg

re
ga

te
d 

m
at

ch
in

g-
co

st
 

A
gg

re
ga

te
d 

m
at

ch
in

g-
co

st
 

Disparity hypothesis 

Disparity hypothesis 

Figure 2.3: Matching cost aggregation, considering disparity hypotheses 0, 2, 4, 6, 8.

In the example of Figure 2.3, the exact disparities are DP = 6 and
DQ = 3. Disparity hypotheses are considered from 0 to 8, with a fixed step
equal to 2. For each hypothesis, the algorithm considers the support regions
of pixels P ′ and Q′, which represent the projection of the anchor pixels for
the selected disparity. By means of image orthogonal integral, it computes
the aggregated matching cost over the combined support regions, as shown
in the two plots. For pixel P, the disparity hypothesis which minimizes
the matching cost is 6, while for Q it is 2. Thus, by using non contiguous
hypotheses, the result for pixel Q is not exact: the exact disparity is 3, while
the approximate one computed by the algorithm is 2.

The difference between approximate and exact disparity is the disparity
error, an application-specific metric already proposed in [125] to evaluate
the trade-off between performance and accuracy of the computation. In par-
ticular, the QoS for the stereo-matching application, used in the experiments
of this thesis, is quantified as the inverse of the disparity error. By increasing
the step between consecutive disparity hypotheses, the application QoS is
likely to decrease but the computation becomes faster, because a smaller
number of hypotheses is evaluated by the algorithm.

The disparity information is typically stored as a gray-level bitmap file,
where higher-intensity pixels represent higher disparity values (see Fig-
ure 2.4). The three disparity maps on the right of Figure 2.4 show the result

26



2.3. Target application: OpenCL Stereo-Matching

Left camera
 Right camera


reference disparity


1 

2 

3 

disparity error


Figure 2.4: Measurement of the stereo-matching QoS, by comparing the output for a given
parameter configuration with respect to a reference disparity map.

on the Tzukuba dataset by varying the hypothesis step. As the step increases,
the QoS decreases. However, this is not the only parameter, there are other
parameters that allow to control the accuracy – and the performance – of
the stereo-matching algorithm. These parameters will be referred to as
application parameters in the rest of this thesis and they are listed below.

color threshold: defines a threshold for color similarity with respect to
the anchor pixel when building a shape-adaptive support region.

max arm length: the support region of each pixel is encoded in a cross
structure and all pixels covered by the cross arms (left, right, up and down)
are similar in color to the anchor pixel: this parameter represents the maxi-
mum arm length and thus limits the size of support windows (see Figure 2.2).

max hypo value and hypo step: these parameters define the set of inte-
ger disparities that the algorithm should test for each pair of pixels. Each
disparity value is a ‘hypothesis’ that is actually evaluated by the algorithm.
The disparity hypotheses (in pixels) will range from 0 to max hypo value,
with a given hypo step step. The latter parameter acts as the ‘resolution’ of
the algorithm, by setting the step between consecutive disparity hypotheses.

matchcost limit: controls the truncation limit of matching cost.

27



Chapter 2. Background, Terminology and Toolchain

2.4 Target platforms

As a cross-platform open standard, OpenCL is used today for programming
heterogeneous parallel platforms. Although its API provides functional
portability over a wide range of computing devices, OpenCL applications
then require additional design-time and run-time tuning for achieving best
performance on each target platform. To address this problem and to validate
the proposed techniques, different types of accelerators have been used in
the experimental setup of this thesis work.

One platform is the STMicroelectronics P2012 (STHORM) [83], a re-
search many-core computing fabric developed in the context of the 2PARMA
FP7 European project [107]. This platform was designed to improve the
performance/energy efficiency in order to enable parallel processing for
embedded applications, but it exposes a degree of complexity in the on-
chip and off-chip memory hierarchy. Thus, it requires platform-specific
customization of the OpenCL applications. The other platforms are desktop
workstations with CPU/GPU heterogeneity, which were selected in order
to generalize the techniques proposed in this thesis. Since this information
represents a common background for the following chapters, the platforms
are introduced in this section.

2.4.1 STMicroelectronics Platform 2012 (STHORM)

The target platform for the applications used in Chapter 3 and Chapter 4 is
STMicroelectronics STHORM, a low-power many-core computing fabric
also known as Platform 2012 [21, 83, 52]. STHORM consists of a Globally
Asynchronous Locally Synchronous (GALS) fabric of clusters (4 in our
configuration), connected through an asynchronous global Network-on-Chip
(GANOC). The STHORM cluster (see Figure 2.5) is composed of a multi-
core computing engine, called ENCore, and a cluster controller. The ENCore
cluster hosts 16 Processing Elements (PEs); the base processing element of
the ENCore engine is a STxP70-V4 processor, a dual-issue customizable
32-bit RISC core of STMicroelectronics with a 32-bit floating-point unit.

The processing elements do not have private data caches to avoid main-
taining memory coherence across the cores. Nevertheless, they share a L1,
256 KB multi-banked Tightly Coupled Data Memory (TCDM): this memory
is mapped as local memory by the STHORM’s OpenCL toolchain. A DMA
engine allows for efficient asynchronous memory transfers between global
memory (off-chip) and local memory (on-chip): this mechanism – exploited
by the OpenCL asynchronous copies – allows hiding the latency of accesses
to the external memory, which can be several hundreds of clock cycles.

28



2.4. Target platforms

Shared'Tightly'Coupled'Data'Memory'(TCDM)'

M
em

or
y'
ba
nk
'#
1'

M
em

or
y'
ba
nk
'#
2'

M
em

or
y'
ba
nk
'#
32
'

M
em

or
y'
ba
nk
'#
31
'

.'.'.'.''

Logarithmic'interconnect'(TCDM)'

ST'xP70'+'
FPx'#1'

M
em

or
y'
ba
nk
'#
3'

M
em

or
y'
ba
nk
'#
4'

16'KB'P$'

ST'xP70'+'
FPx'#2'

16'KB'P$'

ST'xP70'+'
FPx'#16'

16'KB'P$'

.'.'.'.'Pe
rip

he
ra
l'l
og
ar
ith

m
ic
'in
te
rc
on

ne
ct
'Timers'

HWS'

EXT2MEM'

EXT2PER'

ENC2EXT'EN
CO

RE
<N

>'
V'C

C'
in
te
rf
ac
e'

DMA'
Channel'#0'

DMA'
Channel'#1'

ST'xP70'+'
FPx'CP'

16'KB'P$'

32'KB'TCDM'

CCV
Peripherals'

CVPVCC'Gl
ob

al
'in
te
rc
on

ne
ct
'in
te
rf
ac
e'

CC
'in
te
rc
on

ne
ct
'

Figure 2.5: STMicroelectronics P2012 (STHORM) cluster architecture overview.

Two aspects must be taken into account when designing an OpenCL
application targeted to STHORM:

• The latency of accesses to external memory represents a bottleneck for
OpenCL applications on STHORM. Thus, some design effort needs
to be spent in order to reduce the number of read/write operations and
to exploit asynchronous transfers. In particular, software pipelining
should be used to write the core application kernel, in order to allow
for asynchronously fetching next data with DMA while elaborating
current data.

• One workgroup is executed on one cluster and each one of its work-
items is mapped to a processing element, to exploit the computational
power at the cluster level. Work-items have access to the 256 KB
local memory and to the synchronization module available on ENCore
that provides a hardware-supported accelerated synchronization. Paral-
lelism between workgroups can only be exploited on a multi-cluster
configuration and it is anyway limited by the number of clusters.

STHORM SDK includes a simulation platform – GePop – that can be
configured in terms of simulation speed and of accuracy with regard to
the hardware architecture. The two configurations used in this thesis are
posix-posix and posix-xp70:

• In posix-posix, the host processor and each STHORM processing
element are modeled as POSIX threads and the STHORM memory
hierarchy is also modeled. Application and OpenCL runtime code run
natively on the workstation for both host and STHORM side.

29



Chapter 2. Background, Terminology and Toolchain

• In posix-xp70, the host code (application and runtime) is executed
natively on the workstation in a POSIX thread. The STHORM device is
modeled as an architecture accurate platform based on xp70 Instruction
Set Simulator (ISS), on which the OpenCL runtime and the application
kernel execution are simulated.

2.4.2 CPU/GPU platforms

Two additional platforms were used in this work, as follows.
PLT1: Workstation with Intel Xeon Quad-Core CPU E5-1607 at 3.0 GHz

and 8 GB RAM, running a Linux distribution based on kernel 3.5. OpenCL
1.2 runtime for the CPU, provided by Intel OpenCL SDK 2013. Discrete
GPU NVIDIA Quadro NVS 300, with OpenCL 1.1 runtime provided by
CUDA SDK version 5.5.

PLT2: Non-Uniform Memory Access (NUMA) machine with four nodes,
each a Quad-Core AMD Opteron Processor 8378 at 2.4 GHz, with 8 GB of
RAM per node, running a Linux distribution based on kernel 3.9. OpenCL
1.2 runtime provided by AMD Accelerated Parallel Processing (APP) SDK
v2.8.1. No discrete GPU available.

As explained in Section 2.2, multi-core CPUs already support the OpenCL
device fission API, thus the Intel and the AMD OpenCL platforms were used
in Part II to validate the RTRM techniques.

2.5 MOST: Multi-Objective System Tuner

For the design-time exploration and optimization phases, in this thesis we
have used the Multi-Objective System Tuner (MOST). MOST is a DSE tool,
built on top of the open-source project Multicube Explorer developed at
PoliMI [124]. It provides a re-targetable framework to drive design multi-
objective optimization towards the Pareto-set in the objective space [30],
thus skipping sub-optimal solutions. Since the design-time optimization
techniques described in Part I have been implemented and validated using
this tool, an overview of MOST is given in this section.

In order to evaluate a design configuration, MOST requires a simulation
model. The key feature supporting re-targetability is that MOST does not
include any model of the target problem but provides a standard XML
interface to enable easy integration of it. This model enables profiling of
the metrics to be optimized for each design configuration, but it is used as
a black box: MOST internally represents the design space as a Cartesian
space and uses the simulation model to find a projection of the design points
into the objective space.

30



2.5. MOST: Multi-Objective System Tuner

3D design space 2D objective space 

p = x, y, z( ),m1,m2,m3,m4 , ! = f m1,m2,m4( ), ! = g m3( )

z 

x 

y 

p2 

p4 

p1 

p5 

p3 

!"

#"

p2 

p4 

p1 

p5 

p3 

Use Case 
Simulator 

x 

y 

z 

m1 

m2 

m3 

m4 

f 

g 

!"

#"

Figure 2.6: Projection of points from the design space (left) to the objective space (right).
The design space represents the Cartesian space given by the design parameters (x, y
and z in this example). The same points appear in the objective space, which shows the
objective functions on the axes.

The internal representation used by MOST can be better understood by
looking at the example illustrated in Figure 2.6. It shows an optimization
problem with three decision parameters (x, y and z) and two objectives, the
functions α and β to be minimized. The plot on the left is the MOST internal
representation of the design space, where the coordinates of each point are
given by the configuration of parameters. The same points appear in the plot
on the right, which represents the projection of design points in the objective
space. The position of the points in the second plot depends on the values
of the objective functions α and β. Each design point is represented with
a tuple, containing the vector of parameter values and associated metrics.
The metrics are not computed by MOST, but can be retrieved either by
the simulation model provided by the user or by a proper RSM trained on
a subset of the design space. The multi-objective optimization problem
consists of a set of minimization functions, computed on the design metrics:
in this example, α is a function of metrics m1, m2 and m4, while β depends
only on metric m3.

To configure this optimization problem, the designer has to provide two
input files, the two dashed-line modules in Figure 2.7:

31



Chapter 2. Background, Terminology and Toolchain

!"#$%&#"'()*+,-"'
.%/"01&2'

(%0)3%&'
4,5,6,#"'

7$3819,3%&'
:02%*15;8#'

4"#12&'%+'
<=$"*18"&5#'

.7(>'(;"00'
?@'

4"#12&'($,-"'
4"A&13%&' B#"'C,#"'

(18)0,5%*'

.
7
(>
'<
=$
0%
*,
3%

&'
D"

*&
"0
'

E.F'
E.F'

Figure 2.7: Overview of the MOST architecture. The filled modules are internal compo-
nents, while the dashed-line modules are XML files that need to be input for a particular
optimization problem.

• The XML design space description, which defines the parameters and
metrics of the design and, for each parameter, the range of values;

• An XML interface to the use case simulator, which allows MOST to
invoke the simulator and to retrieve the metrics for a given design point.

Then, by means of scripting (the MOST shell in Figure 2.7) the designer can
define the objective functions and start the exploration in batch mode.

In general, MOST is a simulation- or profile-based DSE framework.
Although it was initially conceived for optimization and customization
of MPSoC platforms, MOST has been recently also applied to compiler
optimization [15] and – in this thesis – to application customization. In
the context of this thesis, the simulation model consists of an OpenCL
application deployed on a parallel platform, but the platform itself can be
either the real hardware one or just a simulation model. In the first case the
performance metrics, such as execution speed, are more accurate, while in
the second case it is possible to exploit power and thermal models to analyze
more architectural design issues. However, in both cases MOST allows 1)
to profile the behavior of an application running on the target platform and
2) to identify a set of optimal configurations.

MOST has a modular structure regarding its internal components: DoEs,
RSMs and optimization algorithms. DoEs are sampling techniques used to
select an initial set of experiments, out of the design space, to start analyzing
the system behavior. RSMs are techniques used to describe the analytical
relation between design parameters and one or more metrics, to build a

32



2.6. Barbeque Run-Time Resource Manager

Figure 2.8: Overall view of BarbequeRTRM interactions with applications and the under-
lying platform to support system-wide run-time resource management.

meta-model of the system behavior. The optimization algorithms are the
heuristics used to dynamically select the next configurations to evaluate
in the DSE loop, trying to reduce the overall number of simulations while
achieving close-to-optimal Pareto solutions. By combining DoEs, RSMs
and optimization algorithms it is possible to define heuristics tailored to a
class of problems or specific platform architectures [92].

2.6 Barbeque Run-Time Resource Manager

The System-Wide Run-Time Resource Manager (SW-RTRM) represents
the core component of the resource management approach presented in
Chapter 7. The framework implementing this module is BarbequeRTRM4,
developed at PoliMI [19].

An overview is provided in Figure 2.8. From a high abstraction level, the
SW-RTRM is in charge of collecting two types of information:

1. Variable resource requirements from the running applications: this
information is generated whenever a new application is started, so
resources must be assigned, or an application completes its execution
and releases the resources; moreover, it includes dynamic resource
requests during application run-time.

2. Changes in system resource availability: this information comes from
platform monitoring of run-time thermal and reliability issues.

4Project website at http://bosp.dei.polimi.it

33

http://bosp.dei.polimi.it


Chapter 2. Background, Terminology and Toolchain

These two kinds of information can trigger an optimization step, where
a system-wide optimization policy is executed to identify a new resource
partitioning among demanding applications, on a event-driven basis.

Static application requirements are defined by a predefined set of possible
configurations, i.e. the Application Working Modes (AWMs) identified at
design-time through DSE, each one corresponding to a certain amount
of platform resources. Besides, dynamic application requirements can be
adjusted at run-time by calling the setGoalGap API, in case an application
cannot meet its performance goal with the assigned AWM.

A detailed description of the optimization policy has been provided in
[19]. Briefly, the resource management problem can be formulated as a
Multi-choice Multi-dimension Multiple Knapsack Problem (MMMKP) [63],
which is known to be NP-hard. The Barbeque scheduler implements an
optimization policy as a resource manager module, based on state-of-the-
art heuristics [121] that enable near-optimal solutions and are fast enough
for effective run-time exploitation. More in detail, the AWM selection is
performed by considering system-wide optimization objectives, spanning
from application QoS to priority, from reconfiguration overhead to fairness,
as well as power consumption minimization and stability enforcement.

Once a new resource assignment has been identified, the SW-RTRM
leverages on the control mechanisms implemented by the Platform Inte-
gration Layer (PIL) module to setup resource constraints for the scheduled
applications. For instance, for multi-core Linux-based systems, the PIL
relies on the Control Groups framework [20]. This allows to setup a set of
isolated execution contexts, one for each scheduled application, matching
the optimal resource requirements identified at design time.

Finally, resource assignment (AWM selection) is notified to each applica-
tion by exploiting the Abstract Execution Model (AEM) API provided by
the application runtime library (RTLib). This library handles communication
with the SW-RTRM and implements the application control-loop [19].

2.7 Conclusions

This chapter introduced a programming paradigm (OpenCL), a parallel ap-
plication (Stereo-Matching), different heterogeneous platforms (STHORM,
CPU/GPU workstations) and some external tools (MOST, Barbeque) that
will be used in the experimental parts. The experiments will exploit these
tools to validate the novel techniques of this thesis for customization and
optimization of OpenCL applications targeted to heterogeneous parallel
platforms, in Part I, and for efficient run-time management, in Part II.

34



Part I

OpenCL Application
Customization and Optimization

35





Overview

The first part of this dissertation is focused on design-time customization and
optimization of an OpenCL application targeting a heterogeneous parallel
platform. Chapter 3 presents more in detail the parametric application design
and Design Space Exploration (DSE) optimization for the STHORM (P2012)
platform, which was introduced in Section 2.4. The contribution of Chapter 4
is an ensemble model based on Artificial Neural Networks (ANNs) that
exploits (in the training phase) multiple levels of simulation abstraction, from
cycle-accurate to cycle-approximate, to predict the cycle-accurate results
for unknown application configurations. Finally, the work presented in
Chapter 5 completes the design-time phase with a novel analytical technique,
supported by a constraint solver, for fast pruning of the design space and
efficient task mapping on heterogeneous parallel platforms.

37





CHAPTER3
Automated Optimization of Parametric

OpenCL Applications

In this chapter, a methodology is proposed to analyze the customization
space of an OpenCL application in order to improve performance portability
and to support dynamic adaptation. This methodology was published in [7]
and represents the first outcome of this thesis work as well as a relevant
contribution to the 2PARMA FP7 European project.

The methodology exploits Design Space Exploration techniques to gen-
erate a set of Operating Points (OPs) that represent specific configurations
of the parameters allowing different trade-offs between performance and
accuracy of the algorithm itself. These points give detailed knowledge about
the interaction between the application parameters, the underlying archi-
tecture and the performance of the system; they could also be used by a
run-time manager software layer to meet dynamic performance and Quality
of Service (QoS) requirements, as demonstrated later in Chapter 6.

The problem is that the exploration time for a full search is proportional
to the size of the design space, which grows exponentially with the number
of parameters. This problem is exacerbated by the long simulation time re-
quired by cycle-accurate simulation platforms, especially for highly parallel

39



Chapter 3. Automated Optimization of Parametric OpenCL Applications

architectures such as STHORM, targeted in this chapter. The posix-xp70
simulation model of the STHORM platform, described in Section 2.4, en-
ables accurate profiling of OpenCL kernel execution time; however, the
simulation is relatively slow, since it takes around 30 minutes for simulating
one application configuration on one input pair of stereo images.

To address this problem and to support application customization, the
exploration methodology presented in Section 3.3 allows for a reduction of
the overall number of simulations by exploiting relations between parameters
as they are discovered and unfolded during the exploration. Finally, this
chapter also presents a technique exploiting a fast high-level simulation
model to further reduce the exploration time, enabling in the experiments
(Section 3.4) an overall speed-up of 16x with respect to an exhaustive
exploration of the entire design space.

This type of approach, where the application parameters are customized
for a target platform or a specific use case, is typically referred to in litera-
ture as auto-tuning. Section 3.1 presents several auto-tuning techniques to
optimize performance of kernels for different operations, either based on
static analysis or on real profiling. When dealing with multiple optimization
objectives, the solution consists of a Pareto-set and the application config-
uration could be chosen offline by the designer among the Pareto-optimal
solutions. However, a more interesting approach is where the configuration
is dynamically selected at run-time, in order to adapt the application behav-
ior. This is also called application auto-tuning, but it is based on dynamic
requirements and is typically used to deal with varying execution contexts.

In order to distinguish between them, in this thesis the term auto-tuning is
reserved to the run-time phase (Part II), while offline auto-tuning is referred
to as application customization and represents the main topic of Part I.
Nevertheless, in the next section we keep the term auto-tuning to refer to
customization techniques presented by previous works, in order not to alter
their original nomenclature.

3.1 Related Work

Application auto-tuning1 on conventional CPUs typically takes place at
compile-time and has been successfully applied in several works, e.g. AT-
LAS [118], FFTW [45] and SPIRAL [93]. Compile-time optimization
considers common CPU architectural properties and therefore focuses pri-
marily on loop unrolling, register spills and data reuse in L1/L2 caches,

1Here auto-tuning means offline optimization and customization of application parameters for a target platform,
as explained in the introduction.

40



3.1. Related Work

while CPU performance is not much sensitive to memory bandwidth issues.
In the OpenCL programming paradigm, as well as CUDA on GPGPUs,

it is difficult to take into account the architectural peculiarities of the target
platform. The main reason is that the OpenCL API provides an abstraction
layer, meant to ease application porting across different architectures, rang-
ing from multi-core CPUs to FPGAs. Besides, some metrics, in particular
those related to memory bandwidth, are difficult to analyze without the
profiling support. Thus, most works that target parallel processing by means
of CUDA or OpenCL also exploit run-time auto-tuning, but they are limited
to scientific kernels for dense and sparse linear algebra.

Optimization of dense matrix multiplication. This kernel is probably
the most widely used by OpenCL tutorials (e.g. [59]), because it is possi-
ble to apply several types of optimizations: sizing of the local and global
NDRange, tiling to exploit shared buffers in local memory, coalescing of
memory accesses. From a computational point of view, the peculiarity of
this kernel is that each element of the result matrix is computed with a
sequence of multiply-and-add operations on one row of the first input matrix
and one column of the second input matrix. On the one hand, some OpenCL
platforms support a fast implementation of the Fused Multiply-Add (FMA)
OpenCL built-in function. On the other hand, it might be not possible to
buffer an entire row or column of the input matrices in local memory, de-
pending on the matrix size. However, dense matrix multiplication exposes a
lot of data reuse across work-items, thus this kernel can benefit from a tiled
implementation. Choosing by hand the optimal values for all the parame-
ters is not trivial, because it requires a good knowledge of the underlying
platform architecture [116]. Moreover, whenever the OpenCL application is
deployed on a different platform, both host code and OpenCL kernels need
to be customized again. Thus, several auto-tuning frameworks have been
proposed, e.g. in [82].

Optimization of 1D, 2D and 3D stencils. In a stencil operation, each
point in a multidimensional grid is updated with weighted contributions
from a subset of its neighbors. Thus, the possibility for data reuse is limited
to a search span around each work-item. This results in smaller shared
buffers than for dense matrix multiplication and a relative simple kernel
implementation, since tiling is not required in most cases. Nevertheless,
optimization techniques for stencil kernels have been investigated in several
works, e.g. [34, 62, 112], including NUMA-aware allocation, array padding,
multi-level blocking, loop unrolling and reordering, as well as prefetching
for cache-based architectures and DMA for local-store based architectures.

41



Chapter 3. Automated Optimization of Parametric OpenCL Applications

Optimization of Fast Fourier Transform (FFT). This kernel is another
application often used to benchmark OpenCL platforms, because of its
high memory bandwidth. An auto-tuning technique for the FFT kernel
is presented in [38], while a more complex 3D-FFT implementation is
proposed in [87].

Run-time auto-tuning is based on profiling, during the application setup,
of the execution time for different kernel configurations. These configu-
rations are custom kernel implementations, obtained from a generic code
template by customizing some parameters during the code generation. The
parameters, in turn, define a design space that is typically too large to be ex-
plored extensively. Thus, the works cited above exploit application-specific
heuristics to reduce the number of tests from a full combinatorial design
space. However, these heuristics are eventually also architecture-specific
(e.g. only GPU [87] or Intel CPUs [58]), thus often being limited to a single
platform vendor and not enabling cross-platform portability.

Overall, three are the main limitations of the previous works:

• They all provide application auto-tuning for specific kernels, in most
cases just for dense and sparse linear algebra.

• An application typically consists of more kernels, of different type,
in the form of a task graph; thus, combining different auto-tuning
techniques, embedded in the single kernels, might be not easy.

• The optimization techniques consider a single objective, namely the
execution time, while a more generic approach should take into account
also power consumption, resource utilization, QoS, etc. in a multi-
objective optimization problem.

The auto-tuning approach proposed in this chapter differentiates from the
previous works because it decouples the application parametric design from
the exploration strategy. This separation of concerns allows to exploit an
external Design Space Exploration (DSE) framework and to define advanced,
eventually application-specific, exploration strategies. Thus, the DSE sup-
port to application customization is the strong contribution of this chapter.

3.2 The OpenCL customizable Stereo-Matching application

The stereo-matching application developed in this thesis has been imple-
mented primarily targeting STMicroelectronics STHORM (P2012) [83],
thus some design choices address specific features of a multi-cluster parallel
architecture. For example, the usage of asynchronous memory transfers

42



3.2. The OpenCL customizable Stereo-Matching application

!"#$%"&'(
)*(+,-(

!"#$%"&'(
.*(+,-(

+/01233453,6/#( 7"#,&859"0"/#( .5:#5-5#1(

;<(=(;<( >?<( @<( ;<(

<(/A(B/1,&(C*59%6/#(B"-5(/#(
DBEF.G(HIJKLJM(NDD(

Figure 3.1: Execution flow of the OpenCL kernels with the corresponding percentages of
execution time, profiled on STHORM Instruction Set Simulator simulator.

by means of the async work group copy OpenCL API and the map-
ping of workgroups to the platform computing clusters enables optimal
exploitation of STHORM. The kernel grids have been sized so to match
the number of cores available on one ENCore cluster (see Section 2.4), but
the parametric design still leaves the possibility, by means of a resource
parameter, to change the number of workgroups and the size of a workgroup
to target a different platform.

3.2.1 Structure of the OpenCL kernels

The structure of the application is shown in Figure 3.1. For each pair of
stereo images, the following five OpenCL kernels are executed.

WinBuild (left and right frames): two instances of the same OpenCL
kernel (one for the left and one for the right frame) can be executed in
parallel to build the local support regions for each pixel in the image.

CostAggregation: this kernel evaluates all the disparity hypotheses by
computing the matching-cost associated with support regions of pixels on
the same line in the two reference images. A Winner-Takes-All (WTA)
decision is then taken for selection of the ‘cheapest’ disparity hypothesis in
terms of matching-cost.

FinalDecision: this kernel simply considers the results of all the work-
groups involved in the previous step and decides the global disparity result.
It can be seen as a reduction step.

Refinement: it performs a regularization (smoothing) of disparity results
over the support regions.

The profiling percentages reported in Figure 3.1 show that CostAggrega-
tion is the most computationally intensive kernel. As proposed in [125], for

43



Chapter 3. Automated Optimization of Parametric OpenCL Applications

CostAggrega*on,
WG,0,

d �[0, d0-1]!

Edi
(p) independent,from Edj

(p), 
with i≠j ,

CostAggrega*on,
WG,1,

d �[d0, d1-1]!

CostAggrega*on,
WG,2,

d �[d1, d2-1]!

CostAggrega*on,
WG,i,

d �[di-1, di-1]!

CostAggrega*on,
WG,N:1,

d �[dn-1, dmax]!

Figure 3.2: Parallelization of matching-cost aggregation kernel over several workgroups.

each disparity hypothesis d this kernel performs two orthogonal integration
steps over the raw matching-costs on the combined support region. As
expressed by Equation 3.1, the final result is the disparity hypothesis d0

p that
minimizes the aggregation cost Ed(p):

d0
p = arg min

d
Ed(p), d ∈ [0, dmax] (3.1)

Since different disparity hypotheses can be considered independently,
it is possible to distribute the workload over several workgroups, each
workgroup working on a different range of disparities (see Figure 3.2). The
WTA decision is first taken at the workgroup level, on the local range of
disparity hypotheses; then, FinalDecision kernel selects the final disparity
that minimizes the aggregation cost over all the workgroups. This solution
has been designed for multi-cluster architectures with a shared-memory
model such as STHORM.

3.2.2 Resource parameters

In order to explore different platform configurations, the following resource
parameters have been introduced.

Number of workgroups (nb workgroups) for matching-cost aggre-
gation. In our implementation, data-parallelism is mainly exploited by
work-items within a workgroup; however different workgroups can work
in parallel if more clusters are available. This parameter allows setting the
number of workgroups for CostAggregation kernel, enabling concurrent
execution on several clusters. Each workgroup will process a different range
of disparity hypotheses (see Figure 3.2). The maximum allowed number

44



3.2. The OpenCL customizable Stereo-Matching application

!"#$%&'#$%"#&()&

*+
,-
./
0,
/%
",1

2&
12,'03,/45%3,1467-&

12,849%&:&
*+,-./0,/%",12&

!"#$%&'#$%"#&;)&

*+,-./0,/%",12&

Figure 3.3: Matching-cost Aggregation OpenCL kernel.

of workgroups is the total number of disparity hypotheses divided by the
number of hypotheses evaluated in one cycle by each workgroup; in turn,
the number of hypotheses evaluated in one cycle is defined by parameter
nb hypo per wg, described later:

num disparitiestot =

⌊
max hypo value

hypo step

⌋
+ 1 (3.2)

nb workgroupsmax =

⌈
num disparitiestot
nb hypo per wg

⌉
(3.3)

Workgroup size (nb wi per wg). This parameter specifies the work-
group size: by reducing the workgroup size, it becomes possible to schedule
several workgroups on the same cluster. We have set nb wi per wg to 16
(the number of PEs available on one cluster) given the features of the target
platform. However, this parameter must be tuned according to the accelera-
tor architecture: other platforms might provide a lower parallelism within
the workgroup, in this case it is important to reduce the workgroup size and
to exploit the parallelism between workgroups.

In our application, the work-items work on different image rows, each one
processing a number of pixels specified by wg col pixel width. Figure 3.3
shows the execution model for CostAggregation kernel: this kernel is slightly
different from the other ones, since more than one PE can work on the same
image row but with a different disparity value (see nb hypo per wg).

Number of pixels processed per work-item (wg col pixel width). Our
OpenCL kernels never access external memory directly, data is first copied
to local memory (L1, 256 KB on cluster) by means of asynchronous DMA
transfers at workgroup level. In order to compensate for the DMA latency,

45



Chapter 3. Automated Optimization of Parametric OpenCL Applications

we have implemented a software pipeline (Figure 3.4) so that asynchronous
memory transfers – global-to-local (read) and local-to-global (write) – are
executed in parallel to data processing [77]. The application also exploits
FIFO buffers allocated in local memory to pipeline different stages of data
processing, for example horizontal and vertical matching-cost integration.

The parameter wg col pixel width allows to indirectly control the size of
DMA transfers. As shown in Figure 3.3, wg col pixel width specifies the
length of the row of pixels to be processed by one work-item: thus, tuning
of this parameter makes it possible to compensate the DMA latency with
the processing time in the pipeline stage.

Thus, the configuration of application parameters changes the pipeline
properties: not only the stage duration, as explained before, but also the
latency (max arm blocks, as shown in Figure 3.4). The relation between
max arm blocks and the application parameters is described below:

block size =
nb wi per wg

nb hypo per wg
(3.4)

max arm blocks =

⌈
max arm length

block size

⌉
(3.5)

Number of disparity hypotheses for each workgroup (nb hypo per -
wg). This parameter introduces a third dimension in the NDRange grid of
CostAggregation kernel (see Figure 3.3). In Equation 3.4, block size is the
number of pixel rows processed within one pipeline stage; however, there
might be more than one work-item processing the same line but evaluating
different disparity hypotheses (as many as specified by nb hypo per wg).
For some configurations of the parameters (as we will show in Section 3.4),
increasing nb hypo per wg might give better results in terms of performance
and memory utilization.

3.3 The DSE methodology for application customization

The goal of Design Space Exploration (DSE) is to analyze and tune applica-
tion-specific parameters and resource parameters to minimize the disparity
error and maximize the application throughput, also taking into account the
variability on input data and run-time workload.

The disparity error is defined as the error of the algorithm in computing
the actual disparity of the pixels in the stereo frames. To evaluate the
disparity error, we used a set of seven bitmap image-pairs (three color
components per pixel, encoded on 24bit) chosen from the Middlebury stereo

46



3.3. The DSE methodology for application customization

Read%image%RGB%pixels%column%blocks%

Read%support%window%column%blocks%

Read%previous%disparity%votes%column%blocks%

Write%disparity%votes%column%blocks%

Horizontal%integral%of%aggrega>on%cost%

Ver>cal%integral%of%aggrega>on%cost%

CrossAregion%aggrega>on%cost%and%WTA%

MAX_ARM_BLOCKS,+,1,

0% 1% 2% 3% 4% 5% 6% 7% PIPELINE%COLUMN%CYCLES%

Figure 3.4: Software pipeline for CostAggregation kernel, with max arm blocks=4 (e.g.
nb wi per wg=16, nb hypo per wg=4 and max arm length=16).

datasets [102]. Each reference image-pair has a corresponding truth disparity
map which is used to compute the disparity error as the average intensity
difference per pixel in the seven disparity maps.

Since we have to deal with a minimization problem, the other objective
was set to delay per pixel (execution time divided by the number of pixels
processed by the application), that is the inverse of throughput. This metric
is computed as the geometric average value of delay per pixel over the seven
images in the set.

The output of the methodology is a set of Operating Points (OPs), i.e.
tuples composed of application-specific parameter and resource parameter
values providing optimal disparity error and delay per pixel. Since there are
two target objectives, the definition of optimality is not unique [57]; thus the
final output of our methodology is a Pareto set of configurations.

Finally, the Pareto set of operating points can be used by either the appli-
cation designer, at deployment time, or by a suitable run-time management
layer to trade off Quality of Service (QoS) with performance [79]. In fact,
the original parameter space is too wide to make accurate decisions about
the optimal configurations, both for the developer or the run-time layer.
Moreover, workloads or QoS requirements (such as the disparity error)
can change dynamically, requiring dynamic adaptation of the parameter
configuration. Our methodology prunes the parameter space to identify only
those important to take this decision.

47



Chapter 3. Automated Optimization of Parametric OpenCL Applications

An OP for the stereo-matching application is formally defined by a tuple:

c = 〈α,ρ, δ, ε〉 (3.6)

where:

• α and ρ are two arrays of values, the first one for application parame-
ters and the second one for resource parameters.

α =


color threshold
max arm length

hypo step
max hypo value
matchcost limit

 ∈ A (3.7)

ρ =


nb workgroups
nb wi per wg

wg col pixel width
nb hypo per wg

 ∈ R (3.8)

where both A and R are finite, discrete domains: A ⊂ N5
0 , R ⊂ N4

0

(the possible values are reported in Table 3.1).

• δ is the delay per pixel, which depends on both α and ρ:

δ = f1(α, ρ) (3.9)

• ε is the disparity error, which only depends on α:

ε = f2(α) (3.10)

The multi-objective optimization problem is thus defined as a set of two
objective functions to be minimized:

min
α∈A,ρ∈R

f(α,ρ) =

[
f1(α,ρ)
f2(α)

]
∈ R2 (3.11)

However, each configuration of parameters c = 〈α,ρ〉 requires the alloca-
tion of a certain amount of buffers in local memory when deployed on the
target device. Thus, the choice of α and ρ is also subject to the following
constraint:

m(α′,ρ′) ≤M with α′ ⊆ α,ρ′ ⊆ ρ (3.12)

whereM is the size of local memory available on the device and the function
m quantifies the memory usage for a given configuration of parameters.

48



3.3. The DSE methodology for application customization

MAX_ARM_LENGTH,

WG_COL_PIXEL_WIDTH,

Design'space'of'
feasible'solu0ons'

Sub2space'of'non'
feasible'solu0ons'

Figure 3.5: Irregular space of feasible solutions due to the constraint of local memory size.

The DSE methodology proposed in this thesis, based on a parameter
inter-dependency model [48], aims at reducing the space of application
configurations by exploiting relations between parameters. Equation 3.12
points out that the size of local memory poses a constraint on the feasible
solutions for the stereo-matching application, but such constraint can be
applied to any OpenCL application with shared buffers. In particular, it
creates inter-dependencies among application and resource parameters that
should be taken into account. This also means that the multi-dimensional
subspace of feasible solutions has an irregular shape (e.g., Figure 3.5).

The proposed exploration strategy consists of three main phases, pre-
sented below.

Phase 1: Random sampling of the design space. We first apply a
random sampling over all parameters on the complete reference dataset. In
this phase we apply a twofold preliminary analysis of the results:

• Analysis of correlation: we calculate the correlation between input
parameters and measured metrics. A high value of correlation often
means that there is some kind of dependency: this analysis provides an
estimate of the impact of parameters on the metrics.

• Analysis of standard deviation: the standard deviation is a measure
of variability. We are mostly interested in the variability of metrics
disparity error and delay per pixel with respect to the input data. This

49



Chapter 3. Automated Optimization of Parametric OpenCL Applications

!"#$"%!$&'()*+,

!"#$+-./$0"&1',

+-./$2*'.,
3/&/%$*+%'2+/&4,

!"*3+3/2*$&5!5*,

(6$75$.'%$7),

(6$+-./$.'%$7),

7)$3/&$.5#'&2$754*+,

(6$7*"$7/%8)%/1.2,

Figure 3.6: Inter-dependency graph of application (blue) and resource (green) parameters.

information is used to determine if the image pairs in the dataset can
be pruned by using only one representative image pair.

Phase 2: Exploration of resource parameters and inter-dependent
parameters. According to Equation 3.10, the disparity error is independent
of the resource parameters, i.e. the quality of the result does not depend,
in our implementation, on the configuration of the NDRange grid. By
exploiting this property, the goal of this phase is to identify the configuration
of resource parameters that minimizes the delay per pixel metric.

We manually identify the dependencies between parameters and draw a
dependency graph (Figure 3.6) where nodes represent the input parameters
and edges the inter-dependencies: “A path from node A to a node B and back
to A, which forms a cycle, indicates that the Pareto-optimal configurations
of all the parameters on the cycle need to be calculated simultaneously” [48].
As expressed by Equation 3.12, not all parameters necessarily impact on the
memory usage: thus, the set of inter-dependent parameters consists of the
subset α′ ∪ ρ′. For all the inter-dependent parameters a full combinatorial
search is done. The other parameters can be considered separately in the
next phase since their choice is not constrained by the memory size. Besides,
we explore the configurations of inter-dependent parameters on the single
representative image pair identified in phase 1. Eventually, this phase allows
for identification of the best configuration of resource parameters for each
configuration of inter-dependent application parameters.

Phase 3: Refinement of application parameters on a high-level sim-
ulation model. We refine the Pareto-optimal solutions found at step 2 by
considering all the image-pairs in the reference data-set and by exploring
the values of the remaining independent application parameters. Since they
impact mainly on the disparity error, we show that it is possible to do this
analysis by using a fast simulation model instead of the Instruction Set

50



3.4. Experimental results

Table 3.1: Design space of the Stereo-Matching OpenCL application on STHORM. Step
exp2 for nb hypo per wg means that this parameter takes power-of-2 values (1, 2, 4).

parameter min max step
hypo step 1 3 1

color threshold 14 64 10
max arm length 1 18 1
matchcost limit 60 60 –
max hypo value 200 200 –
nb wi per wg 16 16 –

nb hypo per wg 1 4 exp2
nb workgroups 1 1 –

wg col pixel width 64 96 16

Simulator (ISS) – the posix-xp70 configuration of the STHORM simulation
model. Although the fast simulation model introduces some approxima-
tion, this optimization technique provides a significant speedup that will be
quantified in Section 3.4.

The resulting operating points are Pareto-filtered leaving a set of optimal
trade-offs in terms of throughput and disparity error.

3.4 Experimental results

In this section we apply the proposed methodology to the OpenCL stereo-
matching application: the goal is to optimize the application for STHORM
(P2012) by customizing application parameters. In particular, we follow the
three phases described in Section 3.3 to efficiently derive a set of Pareto-
optimal operating points in terms of disparity error and delay per pixel.

Table 3.1 describes the design space of our stereo-matching application:
an important preliminary task, actually, is to define the design space. We
have assigned a constant value to the parameters matchcost limit and max -
hypo value, based on the characteristics of input data (seven images from
the Middlebury stereo dataset). Indeed, the experimental results have been
generated by using a single-cluster configuration for the STHORM simulator
(multi-cluster is not supported by the SDK version we have used). For this
reason, parameter nb workgroups has not been explored (fixed to 1). Since
the provided SDK does not allow multiple workgroups to be executed
concurrently on the same cluster, also parameter nb wi per wg is constant,
fixed to the number of PEs available on the cluster.

Considering all possible values for each parameter in our design space,
the total number of potential configurations is 3888. Since these configura-

51



Chapter 3. Automated Optimization of Parametric OpenCL Applications

tions must be profiled on a dataset consisting of 7 images, 27216 ISS-based
simulations are required for an exhaustive exploration of the application
parameters. This is a very large number considering that it would have
required approximately 1.5 years by using the cycle-accurate simulator on
a modern workstation (around 30 minutes for each simulation). We will
show that our methodology allows to reduce the time associated with design
exploration to derive a Pareto-approximate set of configurations.

3.4.1 DSE Results of Phase 1

We first consider a Design-of-Experiments (DoE) consisting of a random
sampling of the entire design space; these configurations are explored on
the cycle-accurate STHORM simulator considering all images in the dataset.
The sample was sized in order for the exploration to satisfy a given temporal
constraint (100 design points, so that this task did not require longer than two
weeks on a modern workstation). Then, we perform the following analyses.

Analysis of correlation. A first analysis of the correlation values in
Table 3.2 points out the parameters that mostly affect the metric delay per
pixel: hypo step and wg col pixel width. We can also see that color thresh-
old has almost no impact on the execution time, while there is a significant
correlation between color threshold and disparity error (this result will be
useful in the third exploration phase).

The correlation value between parameter wg col pixel width and metric
disparity error is due to the irregular shape of the space of feasible solutions
(Figure 3.5), since the resource parameters do not change the accuracy of
results (see Section 3.2.2). For example, it might not be possible to execute
on STHORM a configuration of the stereo-matching application with a
high value for both parameters max arm length and wg col pixel width. As
a consequence, the feasible solutions with high wg col pixel width must
have low values of max arm length, thus the accuracy of results will be
low because of the strong negative correlation (-38.0%) between parameters
max arm length and disparity error.

Analysis of standard deviation. Table 3.3 shows the average coeffi-
cient of variation (also known as Relative Standard Deviation – RSD) of
metrics delay per pixel and disparity error over all random configurations
of parameters for each image in the dataset; the last row reports the RSD
of the average value of application metrics considering the whole set of
seven images. The image with average RSD closest to the average RSD of
the dataset is “cones”, thus this image was selected as representative of the
dataset in phase 2.

52



3.4. Experimental results

Table 3.2: Phase 1, correlation analysis after random sampling.

Parameters/Objectives delay per pixel (µs) disparity error
hypo step -76.5% 57.4%

color threshold 1.6% -12.1%
max arm length 12.9% -38.0%
nb hypo per wg -13.3% 1.0%

wg col pixel width -47.2% 23.9%

Table 3.3: Phase 1, Relative Standard Deviation (RSD) for the dataset.

Image/RSD delay per pixel disparity error
baby 1.55 × 10−2 0.88
barn 1.69 × 10−2 0.73

cones 2.20 × 10−2 0.63
sawtooth 1.19 × 10−2 0.47
tsukuba 1.30 × 10−2 0.46
teddy 1.72 × 10−2 0.47
venus 0.81 × 10−2 0.30
dataset 1.79 × 10−2 0.61

3.4.2 DSE Results of Phase 2

As we noted above, the disparity error is independent from the resource pa-
rameters. Since resource parameters have some impact only on the delay per
pixel, the goal of this phase is to identify the configuration of resource param-
eters that minimizes the delay per pixel. However, the memory constraint
on the feasible solutions creates inter-dependencies between application and
resource parameters that should be taken into account to trade-off disparity
error and delay per pixel.

The parameters selected by the inter-dependency analysis include:

• application parameters: hypo step, max arm length

• resource parameters: nb hypo per wg, wg col pixel width.

In this way the number of simulations has been reduced to 648. Note that in
our exploration nb wi per wg is not considered: its value is kept constant
to 16, i.e. the number of processing elements on the STHORM ENCore,
because the provided SDK does not support two kernels on the same cluster.

As said above, the configurations must be profiled with the cycle-accurate
simulator. We observe from Table 3.3 that delay per pixel does not vary
significantly with the input image set (average RSD 1.8%). Since in this
phase we are mainly interested in optimizing delay per pixel, we decided to

53



Chapter 3. Automated Optimization of Parametric OpenCL Applications

use a single representative image (cones) for the whole dataset.
The plots in Figure 3.7 show the results in the disparity error vs delay

per pixel objective space with reference to the values of different parameters.
Whenever a clear behavior can be noticed, an arrow has been plotted: in such
cases, it is possible to infer that a dependence exists between the parameter
and the measured metrics.

Figure 3.7a focuses on hypo step levels: this parameter is the most signif-
icant for the stereo-matching application because it enables the identification
of three clusters of operating points. This also means that any change to
hypo step has a direct effect on the measured metrics (as highlighted by
the arrow). Within each cluster of configurations defined by hypo step,
parameter max arm length allows for additional fine-tuning of the trade-off
between delay per pixel and disparity error: in particular, disparity error
decreases with higher values of max arm length. Indeed, in Figure 3.7b
we can notice different horizontal rows of configurations, each one char-
acterized by a certain configuration of application parameters (hypo step
and max arm length). Thus, the points belonging to the same row have the
same value of metric disparity error and only the configuration of resource
parameters changes.

Figure 3.7c and Figure 3.7d show the objective space for parameters nb -
hypo per wg and wg col pixel width, respectively: the best configuration of
resource parameters is nb hypo per wg = 2 and wg col pixel width = 96,
independently from the configuration of other inter-dependent application
parameters. However, the choice of nb hypo per wg = 2 and wg col -
pixel width = 96 does not represent a feasible solution together with some
values of max arm length (e.g. 17 and 18, see Figure 3.5); thus, for these
configurations we select a smaller value of wg col pixel width (80).

3.4.3 DSE Results of Phase 3

This phase is aimed at identifying the configurations of application pa-
rameters that optimize both the disparity error and the delay per pixel
(color threshold, max arm length and hypo step). For this reason, we in-
clude in the DoE also those parameters not considered in the previous phase
(color threshold), i.e. the parameters independent from the design constraint
(the size of local memory in our implementation).

In principle, this could be done by just exploring all the configurations
on the cycle-accurate simulator for the entire dataset: this means 324 config-
urations for each image. However, the results of the correlation analysis in
Table 3.2 show that color threshold almost has no impact on delay per pixel.

54



3.4. Experimental results

 3

 4

 5

 6

 7

 8

 9

 10

 1  2  3  4  5  6  7  8

D
is

pa
rit

y 
er

ro
r [

av
er

ag
e 

pe
r p

ix
el

]

Delay [us per pixel]

Image "cones", hypo_step levels in the objective space

hypo_step 1
hypo_step 2
hypo_step 3

hypo_step low-to-high

(a) Phase 2, objectives space for hypo step

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 1  2  3  4  5  6  7  8

D
is

pa
rit

y 
er

ro
r [

av
er

ag
e 

pe
r p

ix
el

]

Delay [us per pixel]

Image "cones", max_arm_length levels in the objective space

max_arm_length 2
max_arm_length 4
max_arm_length 6
max_arm_length 8

max_arm_length 10
max_arm_length 12
max_arm_length 14
max_arm_length 16
max_arm_length 18

max_arm_length low-to-high

(b) Phase 2, objectives space for max arm length

Figure 3.7: Phase 2, results in the objective space disparity error vs delay per pixel for
parameters hypo step (3.7a) and max arm length (3.7b).

55



Chapter 3. Automated Optimization of Parametric OpenCL Applications

 3

 4

 5

 6

 7

 8

 9

 10

 1  2  3  4  5  6  7  8

D
is

pa
rit

y 
er

ro
r [

av
er

ag
e 

pe
r p

ix
el

]

Delay [us per pixel]

Image "cones", nb_hypo_per_wg levels in the objective space

nb_hypo_per_wg 1
nb_hypo_per_wg 2
nb_hypo_per_wg 4

nb_hypo_per_wg low-to-high

(c) Phase 2, objectives space for nb hypo per wg

 3

 4

 5

 6

 7

 8

 9

 10

 1  2  3  4  5  6  7  8

D
is

pa
rit

y 
er

ro
r [

av
er

ag
e 

pe
r p

ix
el

]

Delay [us per pixel]

Image "cones", wg_col_pixel_width levels in the objective space

wg_col_pixel_width 48
wg_col_pixel_width 64
wg_col_pixel_width 80
wg_col_pixel_width 96

wg_col_pixel_width low-to-high

(d) Phase 2, objectives space for wg col pixel width

Figure 3.7: Phase 2, results in the objective space disparity error vs delay per pixel for
parameters nb hypo per wg (3.7c) and wg col pixel width (3.7d).

56



3.4. Experimental results

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

D
is

pa
rit

y 
er

ro
r [

av
er

ag
e 

pe
r p

ix
el

]

Delay [us per pixel]

Entire dataset, "confidence" levels in the objective space

confidence 14
confidence 24
confidence 34
confidence 44
confidence 54
confidence 64

confidence low-to-high

Figure 3.8: Phase 3, objectives space disparity error vs delay per pixel for parameter
color threshold.

Thus, we split this exploration in the following sub-phases:

1. we use the cycle-accurate simulator to profile the average delay per
pixel δ for one value of color threshold (54 configurations× 7 images);

2. we use a high-level simulation model to derive the disparity error and
the delay per pixel for all combinations of color threshold, max arm -
length and hypo step.

3. we scale the delay per pixel computed in the previous step according
to δ.

The high-level simulation model is based on the native OpenCL run-
time of a 4-cluster Non-Uniform Memory Access (NUMA) AMD machine.
OpenCL being a cross-platform standard, the stereo-matching application
can be compiled and executed on this machine. While it is not needed to
change the application implementation, the configuration of resource param-
eters must be modified in order to meet a tighter constraint of local memory
size (32KB). Figure 3.8 shows the levels of parameter color threshold in the
objective space. It is still possible to identify three clusters of configurations
corresponding to the three values of hypo step. Within each cluster it is

57



Chapter 3. Automated Optimization of Parametric OpenCL Applications

possible to achieve different trade-offs between throughput and accuracy by
fine-tuning color threshold and max arm length.

By Pareto-filtering the final points, we find the optimal solutions repre-
sented in Figure 3.9. In order to be able to quantify the loss in accuracy
caused by introducing the high-level model, we have also run phase 3 entirely
on the cycle-accurate simulator. This approach gives us accurate profiling
information for the execution time of all configurations: the Pareto-optimal
solutions calculated on this database will be referred to as reference Pareto
set in the following.

In order to quantify the loss in accuracy, we use the Average Distance
from Reference Set (ADRS) metric to measure the distance between the
exact Pareto set Π = Ψ(Φ) and the approximate Pareto set Λ = Ψ(Ω), as
defined in [32]:

ADRS(Π,Λ) =
1

|Π|
∑
xR∈Π

(
min
xA∈Λ
{δ(xR,xA)}

)
(3.13)

where δ is a measure of the normalized distance in the objective function
space of two configurations:

δ(xR,xA) = max
j=1,...,m

{
0,
fj(xA)− fj(xR)

fj(xR)

}
(3.14)

The ADRS is usually measured in terms of percentage; the higher the
ADRS, the worst is Λ with respect to Π. We calculate the ADRS between
the approximate Pareto set obtained with the high-level simulation model
and the reference Pareto set obtained with the cycle-accurate simulator: in
our tests, the ADRS is less than 3%.

3.4.4 Generation of operating points from the Pareto-set

The approximate Pareto-set obtained in Phase 3 has been used to generate
a set of configurations for the stereo-matching application. We decided to
cluster the configurations into 10 possible sets and to identify one configura-
tion representative of each cluster (centroid): see the plot in Figure 3.9 and
the list of operating points in Table 3.4.

The different symbols in Figure 3.9 represent different clusters, plotted
in the objective space of disparity error and throughput (Kpixel/s). The
operating points in Table 3.4 are sorted by disparity error. In this case, it
happens that they are sorted by throughput, so it is easy to identify different
trade-offs between performance and QoS.

58



3.4. Experimental results

 2

 3

 4

 5

 6

 150  200  250  300  350  400  450  500  550  600

D
is

pa
rit

y 
er

ro
r [

av
er

ag
e 

pe
r p

ix
el

]

Throughput [Kpixel per sec]

Clustering of operating-points in the Pareto-set

cluster 0
cluster 1
cluster 2
cluster 3
cluster 4
cluster 5
cluster 6

Figure 3.9: Clustering of Pareto-solutions for generation of operating points.

The operating points identified by our methodology allow to optimize
the application targeted to STHORM, thus the first result achieved is per-
formance portability. The same methodology could be used to customize
the application for another device, in which case the operating points would
probably have different configurations of parameters depending on the target
architecture. The operating points could also be exploited by a Run-Time
Manager, as described in Chapter 6, to enable application auto-tuning: this
allows for application self-reconfiguration – by changing operating point –
in presence of dynamic QoS requirements or workload variations.

Table 3.4: List of operating points for stereo-matching on STHORM with single-cluster
configuration. Parameters are hypo step (h), color threshold (c), max arm length (m),
nb hypo per wg (n), wg col pixel width (w).

h c m n w disparity error throughput (Kpixel/sec)
1 64 18 2 80 1.83 167.88
2 64 18 2 80 2.09 301.72
3 64 18 2 80 2.49 410.11
3 64 12 2 96 2.67 469.76
3 64 7 2 96 3.25 520.62
3 64 4 2 96 4.22 557.93
3 54 2 2 96 5.99 583.29

59



Chapter 3. Automated Optimization of Parametric OpenCL Applications

3.5 Conclusions

This chapter presented a parametric design for an OpenCL application
and a methodology to efficiently derive the optimal customization options
(operating points). The proposed DSE heuristic provides a speed-up by
reducing the overall number of simulations and exploiting a fast high-level
simulation model. An exhaustive exploration of the application design
space targeted to STMicroelectronics STHORM (P2012) requires 27216
simulations, which correspond to approximately 1.5 years simulation time
on a modern workstation. With this methodology, only 1672 cycle-accurate
simulations are needed, while the simulation time on the high-level model
can be neglected. In conclusion, the overall time speed-up is 16x, while the
accuracy of the solution with respect to an exhaustive exploration is very
good (ADRS < 3%).

Although in this chapter the proposed methodology has been applied
to the Stereo-Matching application, it is general enough to be used for
customizing any OpenCL application on a different platform (as discussed
in Chapter 5), provided that the application exposes a set of parameters
to control both the QoS/performance trade-off and the usage of platform
resources. The exploration time could be further reduced by applying
orthogonal complementary approaches such as a) executing simulations in
parallel on a cluster (linear speed-up with the number of nodes), and b)
replacing the cycle-accurate simulator with a cycle-approximate one, at the
expenses of result accuracy. Next chapter will discuss the second alternative
and will propose a modeling technique to provide even better accuracy, by
combining cycle-approximate and cycle-accurate simulations.

60



CHAPTER4
Ensemble Models for Simulation of

Many-core Platforms

The technique presented in Chapter 3 exploited a search heuristic to effi-
ciently explore the design space of an OpenCL application targeted to a
many-core embedded platform. Thus, it was aimed at reducing the number of
configurations to be simulated on the cycle-accurate platform model. How-
ever, the problem was exacerbated by the long simulation time associated
with each configuration of the applications running on the cycle-accurate
virtual platform. In this chapter, we introduce a modeling methodology, in-
spired by ensemble learning [91], that leverages different simulation models
to further reduce the overall simulation time.

A Low-Level, highly accurate model MLL allows, given an applica-
tion/architecture configuration x, to derive an estimate y of a specific metric:

y =MLL(x) (4.1)

Artificial Neural Networks (ANNs) have already been used effectively as
a surrogate ofMLL [92]. The final model is a closed form expression that
can be used to predict with reasonable accuracy the target system metric
provided by cycle-accurate simulators. However, before being useful, the

61



Chapter 4. Ensemble Models for Simulation of Many-core Platforms

model must be trained and the training time can be long depending on the
target accuracy. Thus, in this chapterMLL is combined with a High-Level –
thus faster but less accurate – modelMHL:

ŷ =MHL(x) (4.2)

The main contribution of this chapter is a methodology – published in
[6] – to combine MHL and MLL in order to exceed the speed/accuracy
trade-off attainable with state-of-the-art methods such as those presented in
[92]. This goal is achieved by applying techniques borrowed from machine
classification, statistical analysis of variance and multi-objective analysis.

4.1 Related Work

The efficiency of a Design Space Exploration (DSE) strategy is the trade-off
between the simulation time and the accuracy of a multi-objective opti-
mization solution. The accuracy, in turn, depends on the distance of an
approximate Pareto-set from the exact one. In simulation-based DSE, the ex-
act Pareto-set can only be identified by Pareto-filtering all the design points,
after they have been profiled on the target simulation model to evaluate
the objective functions (e.g. performance or power consumption). This
represents one main difference between profiled-based DSE and analytical
DSE [64]: while in profiled-based DSE the design itself represents a black
box and design metrics can only be retrieved by means of simulation, in
analytical DSE the design properties are known and can be used to formulate
the optimization problem in an analytical form.

However, applicability of analytical DSE is limited by the complexity
of the design and the type of metrics that have to be profiled. For example,
estimation of Worst-Case Execution Time (WCET) for a complex applica-
tion on a multi-core platform can be done analytically [23, 97], once the
WCETs of application tasks are known and the platform guarantees real-time
processing and predictable communication latency between the cores. On
the contrary, power consumption metrics are more difficult to capture in an
analytical representation.

Conversely, simulation-based DSE can be applied to a wider range of
design optimization problems, potentially to any type of design provided
that a simulation model is available. However, the main problem is the
exploration time since, for most kinds of design like many-core computing
fabrics as in this chapter, evaluating design metrics of a single system
configuration means hours or days of simulation under a realistic workload.

62



4.1. Related Work

In order to minimize the number of simulations to be executed during the
DSE phase, a common approach is to use Design of Experiments (DoEs) and
Response Surface Models (RSMs) combined with suitable multi-objective
minimization or maximization techniques.

The DoE is typically used to identify an initial plan of simulations to
provide the designer with a coarse-grained view of the architectural design
space. Each DoE plan differs in terms of the layout of the selected design
points in the design space. Consolidated approaches are either based on
random sampling or more sophisticated techniques like Box-Behnken and
Latin Hypercube designs [101]. However, the designer could also define a
custom set of initial experiments, which is usually done after identification
of a set of feasible design solutions [53].

RSM techniques are introduced after the initial experimental design to
analyze the system response of unknown configurations without incurring
into additional delay due to simulation [61]. Indeed, an RSM is a closed
form analytical meta-model of the real simulation model: examples of
RSMs, used for DSE and analyzed in [92], are linear regression, Shepards
interpolation, neural networks and Radial Basis Functions (RBFs).

The evaluation of such analytical expression is typically one or more
orders of magnitude faster than real simulation for applications of commer-
cial interest, depending on the design complexity and the system resources
dedicated to the simulation. Thus, RSMs have been used to derive main
and interaction effect analysis [61, 73] or to extend traditional optimization
as in meta-model assisted optimization. In particular, they have been used
in iterative refinement approaches [92], as a filtering criterion to exclude
from optimization the worst configurations [41], and even to identify the
best experiments to be done in order to improve the model itself [70].

Before being useful, an RSM must be trained and the training samples,
typically, are obtained from a single simulation model of the target design.
However, different models (cycle-accurate, cycle-approximate, functional)
can provide different overlapped views of the same simulated platform, in
particular for simulation of parallel applications on many-core computing
platforms. In this chapter, a DSE methodology based on neural networks
(e.g. [92]) is extended with techniques borrowed from ensemble modeling.
Ensemble methods [91] use multiple models to obtain better predictive
performance than it could be obtained from any of the constituent models,
provided that a suitable aggregation technique is used.

The research on techniques for combining the predictions of multiple
classifiers to produce a single classifier goes back to the 90’s [25, 44]. Both
theoretical and empirical research has demonstrated that a good ensemble

63



Chapter 4. Ensemble Models for Simulation of Many-core Platforms

Conventional modeling
Randomly chosen configurations are simulated 
through the low level simulator; the evaluated 
system metrics are then used to train a neural 
network. Prediction is then possible for all the 
configurations in the design space.

neural training

Low level simulations
(training set)

Ensemble modeling
Randomly chosen 
configurations are 
simulated at high and low 
abstraction levels. 
Configurations are 
classified and used to train 
the neural network.

Low level simulations
(training set)

High level simulations
(training set)

predictions
(to be compared with 
low level simulation)

predictions

Figure 4.1: Conventional modeling (left) vs. the proposed ensemble modeling (right).

is one where the individual classifiers in the ensemble are both accurate
and make their errors on different parts of the input space [91]. Indeed,
aggregation techniques rely on resampling to obtain different training sets
for each of the classifiers, in order to reduce the risk of model over-fitting.

However, the technique proposed in this chapter differs from traditional
ensemble modeling. While a pure ensemble is a technique for combining
many weak learners (as defined in [91]) in an attempt to produce a strong
learner, here we are validating a new technique that attempts to combine
weak learners (a cycle-approximate simulation model) and strong learners
(a cycle-accurate one) to improve the efficiency of the ensemble model, in
terms of training time and prediction accuracy.

Therefore, the aggregation technique proposed here is inspired by model
stacking. As defined in [120], stacked ensemble modeling works by deduc-
ing the biases of the models with respect to a provided learning set. When
used with multiple models, stacked modeling can be seen as a more sophis-
ticated version of cross-validation, exploiting an aggregation meta-model
for combining the individual models instead of cross-validation’s based on
winner-takes-all. When used with a single model, stacked generalization is
a scheme for estimating and then correcting for the prediction error [120].

4.2 Ensemble modeling of applications and architectures

Conventional modeling tries to overcome lengthy simulations by using
closed form models (such as neural networks [92], see Figure 4.1). In this
scenario, low level simulations are used to train the model by tuning its
structure to minimize a certain measure of error. The error can be computed

64



4.2. Ensemble modeling of applications and architectures

by considering either configurations not belonging to the training set or
belonging to a larger set (potentially as large as the design space).

Closed form models are ideally very light given their straightforward
mathematical representation. The main drawback, however, is due to the
time needed to simulate the training samples. In our approach, we assume
thatMLL has already been used to derive a suitable neural surrogate meta-
model. As it can be observed in Figure 4.1, the final goal of the model is
to make educated predictions about the remaining set of configurations, by
resorting to a selected random subset of training simulations.

In the proposed technique, a conventional meta-model is extended to an
ensemble model that, taking into account the information coming from a
higher level of abstractionMHL, provides either better accuracy or better
performance (see again Figure 4.1).

The methodology is based on the following phases:

• Identify the structure of the ensemble model. In the case of the neural
network, this consists of identifying the number of hidden layers and
the number of neurons per layer, by analyzing the associated design
space. Since this problem can be of exponential complexity, suitable
heuristics should be applied.

• Identify the correct percentage of training samples to be used for
bothMHL andMLL and the overall training set size. This should be
done by considering the relative length of simulation of each configura-
tion, which might depend on the target architecture, software resource
usage and/or application-level parameters.

These phases are basically aimed at characterizing statistically the distri-
bution of the prediction errors and assess the statistical properties of the
model. This information is used, at the end, to configure an ensemble model
in the framework shown in Figure 4.2.

4.2.1 Problem definition

The methodology proposed in this thesis for ensemble modeling considers
the following parameters:

• The number of hidden layers and the number of neurons per layer
in the Artificial Neural Network (ANN) configuration, which change
the internal geometry of the ANN.

65



Chapter 4. Ensemble Models for Simulation of Many-core Platforms

MOST 
Multi-Objective 
System Tuner 

NN 
Neural-Network 
ensemble model 

STHORM platform simulator 

Low-Level 
Simulator (slow) 

High-Level 
Simulator (fast) 

application 

Performance

Power consumption

Accuracy of results

Design 
Space 

Exploration 
architect 

Figure 4.2: DSE framework based on ensemble modeling of different simulation platforms.

• The composition of the training set in terms ofMLL andMHL sam-
ples, considered in proportion to the total number of points in the
application design space.

A design point (either produced byMLL orMHL) is defined as a tuple:

c = 〈α,π〉 (4.3)

where:

• α is the array of values for application parameters (also referred to as
input configuration);

• π is the array of metric values associated to the input configuration α.

The possible values for α depend on the design space for the specific
application to be explored. In order to distinguish betweenMLL orMHL

points, we apply a coloring technique. Beside the application input parame-
ters, we add a flag parameter (either 0 or 1) to each training sample:

c = 〈α′,π〉 (4.4)

α′ = [α0, . . . , αn−1, φ] (4.5)

where φ is the flag to classify the two types of training configurations:

c = 〈[α0, . . . , αn−1, 1],πLL〉 (4.6)

c = 〈[α0, . . . , αn−1, 0],πHL〉 (4.7)

66



4.3. Proposed ensemble model and experimental results

We expect the ANN model to be able to learn the commonalities and dif-
ferences from the information gathered from the two simulation types; in
practice, we expect it to learn the correlation – if any – between type 0 and
type 1 metrics.

4.3 Proposed ensemble model and experimental results

STMicroelectronis STHORM was chosen as reference platform because
the complexity of this multi-cluster architecture can be modeled at differ-
ent abstraction levels: posix-posix forMHL and posix-xp70 forMLL, see
Section 2.4. At the same time, the customization space for applications
targeted to this type of device is too large to think about profiling all pos-
sible configurations on a cycle-accurate simulator. Our approach being
application-specific, we selected the OpenCL Stereo-Matching application
presented in Chapter 3 and we targeted it to STHORM.

The customization is enabled by a set of application parameters that can
be of two types (see last two rows in Table 4.1):

• application specific parameters, which affect both the Quality of Ser-
vice (QoS) provided by the application and the computational load;

• platform resource parameters, which impact on the OpenCL runtime
(kernel scheduling and memory access patterns), but not on the quality
of application results.

As seen in Chapter 3, the possibility to change the platform resource param-
eters allows for improved application portability and optimization for the
specific target device. In this experiment, we are mainly interested in the
metric cl-cycles, returned by both posix-posix and posix-xp70 simulation
models. This metric represents the number of cycles for execution of the
OpenCL kernels on STHORM and depends on both application specific and
platform parameters.

Table 4.1: Design space exploration for OpenCL Stereo-Matching application.

SIZE OF DESIGN SPACE 486
TIME (H) FOR COMPLETE LL SIMULATION 603.15

TIME (MIN) FOR COMPLETE HL SIMULATION 44.48
PLATFORM RESOURCE PARAMETERS 4

APPLICATION-SPECIFIC PARAMETERS 2

67



Chapter 4. Ensemble Models for Simulation of Many-core Platforms

DBHL 

DBLL 

normalize 

normalize 
TSLL 

TSHL Train/validation 
mixed set (%HL + %LL) 

Artificial Neural 
Network (ANN) 

%HL 

%LL 

GePop xp70 

~30min 

<1min 

GePop Posix 

de-normalize 

predicted 
values 

estimate value 

actual value 

RMSE 

Test set 

Figure 4.3: Experimental setup for tuning the neural network configuration.

4.3.1 Preliminary correlation analysis

Table 4.2 shows the selected range of values for the configuration param-
eters of the neural network model. The LL% and HL% values represent
the percentages of design space that are explored usingMLL andMHL,
respectively, to estimate the clock cycles (cl-cycles). As shown in Figure 4.3,
the set of mixed configurations (in terms of LL% accurate and HL% ap-
proximate samples) is used for training and validation of the ANN model.
Then, by querying the ANN model, it is possible to predict the clock cycles
(cl-cycles) for those configurations that were not simulated onMLL during
the first phase. The prediction error for a specific ANN configuration is
calculated as the relative Root Mean Square (RMS) error with respect to the
solutions obtained by using onlyMLL.

Figure 4.4 shows a correlation analysis between the parameters presented
in Table 4.2 and the simulation time and RMS error associated with the pro-
posed ensemble model. The area as well as the color intensity of the circles
in the plot represent the absolute value of correlation, while the color (blue
or red) indicates whether the correlation is, respectively, positive or negative
(indicated also by the ‘+’ or ‘–’ sign in each cell). The negative correlation
between “Error” (RMS), on the one hand, and both “HL%” and “LL%”, on

Table 4.2: Parameters for neural network model tuning of OpenCL Stereo-Matching
application.

# LAYERS # NEURONS HL% LL%
1-5 1-5 0, 50, 100 2, 4, 6, 8, 10

68



4.3. Proposed ensemble model and experimental results

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

ï�

ï���

ï���

ï���

ï���

�

���

���

���

���

�

LL
 %

H
L 

%

La
ye

rs

N
eu

ro
n

s

Si
m

. T
im

e

Er
ro

r

LL %

HL %

Layers

Neurons

Sim. Time

Error

hl are lighter
High-level simulations
increase slightly the 
Simulation time
(positive correlation)

HL decrease Error Too
High-level simulations
have an inverse e!ecton error 
(high negative correlation)

increasing layers is worse
Higher number of
hidden layers can
increase the error 
(positive correlation)

+

+

–

–

–

–––

+

+

+

+

Figure 4.4: Correlation analysis applied to the neural network model for the OpenCL
Stereo-Matching application targeted to STHORM. The metric “Sim. Time” refers to
the total simulation time required to build the mixed training set for a given model
configuration.

the other hand, confirms that it is possible to improve prediction accuracy
by increasing the size of the training set. This is verified both forMHL

andMLL training samples, which accounts for the adoption of an ensemble
model. Indeed, while reducing the RMS prediction error, the utilization of
MHL simulations has a very low impact on the simulation time, which is
confirmed by the low correlation between “HL%” and “Sim. Time”. Since
the cycle-approximate platform is much faster than the cycle-accurate one
(13x according to our measurements, see first and second row in Table 4.1),
the time contribution from addingMHL samples is negligible: thus, the
total simulation time to build a mixed training set is almost proportional to
the number of simulations onMLL.

4.3.2 Accuracy analysis of the ensemble model

The histogram in Figure 4.5a shows the number of Artificial Neural Network
(ANN) configurations for different levels of RMS prediction error. The

69



Chapter 4. Ensemble Models for Simulation of Many-core Platforms

1 3 5

0

2

4

6

8

0.4 0.8 1.2 1.6 0.4 0.8 1.2 1.6 0.4 0.8 1.2 1.6
RMS Error [relative]

D
en

si
ty

(a) Distribution grouped by the number of hidden
layers. Its shows the impact of neural network
depth (1, 3 and 5 hidden layers) on the RMS
prediction error.

  0  50 100

0

2

4

6

8

0.4 0.8 1.2 1.6 0.4 0.8 1.2 1.6 0.4 0.8 1.2 1.6
RMS Error [relative]

D
en

si
ty

(b) Distribution grouped by the percentage of high-
level training samples. Its shows the impact of
adding high-level training samples (0%, 50%
and 100% of the design spaces) to the ensem-
ble model.

Figure 4.5: Density distribution of neural network configurations with respect to RMS
prediction error.

configurations are assigned to one of the three histograms according to the
number of layers in the ANN. In this plot, the highest density distribution
for low levels of RMS error corresponds to ANN configurations with only
one hidden layer. In general, the best configuration we have consistently
seen in our experiments is a ANN with 1 hidden layer of 5 neurons.

Figure 4.5b shows the distribution of ANN configurations, in relation to
the percentage of high-level samples used for training the ensemble model.
The configurations with the same number of high-level training samples
(either 0%, 50% or 100%) are grouped together in the same vertical window.
The vertical gray bar indicates the average RMS error in each group: we
observe that by passing from a purely cycle-accurate model (first window
from left) to an ensemble model with 50% high-level training samples, the
average RMS error on the prediction of metric cl-cycles decreases from
0.8 down to 0.5. At the same time, as seen in Figure 4.4 and confirmed
by the measurements in Table 4.1, the delay due to additional high-level
simulations is negligible compared to the time required for cycle-accurate
simulations.

70



4.4. Conclusions

!"#$

!"%$

!"&$

!"'$

!"($

!")$

!"*$

!"+$

,$

,",$

,"#$

,$ %$ '$ )$ +$ ,,$ ,%$

!
"
#$
%&
&'
&$
(!
)*
+,

-)
.$

#/01*+,'2$,0)$(3$'4$56)$'-)&+**$7)8/92$8:+;).$

Conventional 
modeling 

Ensemble 
modeling 

Figure 4.6: Analysis of efficiency between traditional neural network modeling, as in [92],
and the proposed ensemble modeling technique for Design Space Exploration.

4.3.3 Analysis of variance of the results

We applied the non-parametric Kruskal-Wallis analysis of variance (ANOVA)
to assess whether the introduction ofMHL training samples is statistically
significant for improvement of the model prediction accuracy. The p-value
in Table 4.3 indicates the probability that the observed difference in means
is due to chance, rather than it being a systematic effect. Thus, because of
the low p-value, we deduce that the distributions observed for the selected
application must be regarded as significant.

Table 4.3: Kruskal-Wallis analysis for significance of LL% training samples on the Root
Mean Square (RMS) of model predictions.

CHI-SQUARED DEGREE of FREEDOM P-VALUE

47.686 2 4.4e-11

71



Chapter 4. Ensemble Models for Simulation of Many-core Platforms

4.4 Conclusions

Traditionally, high-level models are used to speed up the simulation process
at the expense of profiling accuracy. In this chapter, ensemble models based
on neural networks and trained with both low-level and high-level simula-
tions (mixed training set) show better accuracy with respect to conventional
models, for which the training set consists of only low-level samples. This
result can be achieved because, given a time window as shown in Figure 4.6,
ensemble neural network models enable to better exploit the time window
in terms of high-level (fast) and low-level (slow) simulations.

The accuracy improvement reported by using ensemble neural network
models is up to 30% for the OpenCL Stereo-Matching application running on
the STHORM platform. Alternatively, the same level of accuracy could be
achieved by replacing part of the cycle-accurate training set with application
configurations profiled on a fast simulation platform, with a one order of
magnitude speed-up of the design exploration.

72



CHAPTER5
Task Mapping under Heterogeneous

Platform Constraints

The convergence to globally heterogeneous locally homogeneous computa-
tional parallelism, in both the embedded and High Performance Computing
(HPC) domains, requires common design methodologies to better exploit
such complex platforms while easing application porting. The shift to-
wards heterogeneous parallel computing can be observed, for example, in
the OpenCV library [24] which includes, starting from version 2.4.3, an
OpenCL back-end. This means that augmented reality applications that use
OpenCV can now access any type of OpenCL-capable accelerator through
standard APIs, on hand-hold devices with embedded GPUs as well as on
desktop computers. Indeed, while CUDA limits application portability to
Nvidia GPUs, the OpenCL back-end of OpenCV already supports GPUs
from different vendors, as well as multi-core processors, and it is planned for
a wider range of devices (e.g. OpenCL-enabled FPGAs) in the near future.

However, when targeting an OpenCL application to a heterogeneous
parallel platform, task mapping has to cope with the platform constraints.
To address this problem, this chapter presents a design methodology [1] that
extends the approach presented in Chapter 3, to exploit the concurrency in

73



Chapter 5. Task Mapping under Heterogeneous Platform Constraints

the application task graph for efficient mapping on heterogeneous parallel
platforms. In the tuning phase, this technique generalizes the previous
analysis of inter-dependent parameters [48], by exploiting a constraint
solver to efficiently identify an initial set of feasible task configurations
that are compliant with the platform constraints. In the mapping phase, it
improves inter-task parallelism while accounting for the overhead of host-to-
device and device-to-host memory transfers – overheads implied by multiple
OpenCL contexts for different device vendors, as discussed in Section 2.2.

The proposed design flow is validated on the OpenCL Stereo-Matching
application, targeting the two CPU/GPU heterogeneous parallel platforms
described in Section 2.4.

5.1 Related Work

The auto-tuning methodology presented in this chapter differs from the one
of Chapter 3 in two main aspects. The first difference is that the application
in Chapter 3 was targeted to a single OpenCL device, while in this chapter
platforms with multiple, heterogeneous accelerators are considered. Thus,
this chapter also addresses inter-task parallelism, as discussed in Section 2.2,
and investigates the optimality of a mapping taking into account the overhead
of data transfers between different OpenCL contexts. As in Chapter 3, the
methodology presented here separates the application parametric design
from the optimization framework; the difference is that the Design Space
Exploration (DSE) heuristic presented in Chapter 3 was application and
platform specific, while this chapter presents a more generic exploration
strategy for both parameter customization and task mapping.

As in Chapter 3, a design-time phase allows for offline optimization and
customization of applications targeted to heterogeneous parallel platforms.
Optimization of OpenCL streaming applications on heterogeneous platforms
has recently been addressed by a number of works based on Domain Specific
Languages (DSLs), such as Halide [94], KernelGenius [77] and HIPAcc
[84]. These works present different DSLs for the same application domain,
namely image processing, and focus on a specific class of kernels, the stencil
operation. Stencil kernels are relatively simple but can be fused to better
exploit data locality, so the works [94, 77, 84] aim at optimizing complex
stencil pipelines used for image processing. The generated code outperforms
hand-optimized programs, because the description in a DSL enables fine-
grained customization by means of source-to-source code transformations.

While the works in [77] and [84] use the term heterogeneity to refer to
different target platforms, Halide [94] provides a concrete example of code

74



5.1. Related Work

that can efficiently exploit a heterogeneous platform, running concurrently
on multiple different accelerators (e.g. CPU-GPU). In this sense, the problem
addressed by Halide is the same of this thesis, but there are some major
differences: on the one hand, their approach is limited to a specific type of
kernel operations and cannot address kernel heterogeneity in the application
task graph; on the other hand, it requires a DSL description of the algorithm,
so it does not enable porting of existing OpenCL application code to next-
generation platforms.

The type of customization considered in this chapter is coarse-grain,
since the application task graph is an input to our methodology and the
tasks are atomic. Other works in literature follow a similar coarse-grain
approach, such as SOCL [52] and OmpSs [39], but they use dynamic task
mapping and scheduling. SOCL provides a unified OpenCL platform, built
on top of the StarPU runtime system [16], to enable access to heteroge-
neous accelerators from different vendor platforms as if they belonged to
the same platform. Thus, it automatically handles memory transfers be-
tween different OpenCL contexts, when needed, and allows to instantiate
a single command-queue attached to multiple devices (not supported by
the OpenCL standard), dynamically dispatching the application tasks de-
pending on run-time availability. The OmpSs framework not only allows
to use heterogeneous accelerators within the same application, but also to
mix different programming APIs (OpenMP, OpenCL and CUDA) while
automatically handling data dependencies in the task graph.

With respect to [52], the proposed approach is suitable to embedded
applications since i) it improves performance predictability by means of
offline workload characterization and ii) it avoids the overhead of run-time
scheduling. These considerations also apply to [39], moreover OmpSs does
not provide a unified programming API, relying instead on different APIs
(OpenMP, OpenCL and CUDA) for different target devices. Moreover, both
of them lack auto-tuning of tasks for the target platform, thus requiring
by-hand code customization.

Several works address the problem of task scheduling on heterogeneous
platforms targeting only Nvidia GPUs and focusing primarily on load balanc-
ing [85, 113]. By targeting a homogeneous execution context, on computing
devices from the same vendor and with the same programming API (CUDA),
these techniques can easily move tasks from one computing device to an-
other and exploit specific features of the target architecture to hide memory
transfers [113]. Sometimes, this hypothesis is used to completely ignore
the cost of memory transfers in the timing model for GPU workload [75].
On the contrary, the framework in [85] does not support the execution of an

75



Chapter 5. Task Mapping under Heterogeneous Platform Constraints

application task graph on multiple devices in order not to deal with memory
transfers, whereas our approach does. Moreover, these approaches are more
suitable to the HPC domain, in which clusters of GPUs can host concur-
rent execution of multiple applications, while the technique presented in
this chapter addresses embedded platforms, where the composition of the
run-time workload is known at design time and therefore the overhead of
dynamic scheduling can be reduced or even completely avoided.

Elastic computing [117] is another interesting approach, based on the
complete separation of functionality from implementation. It uses multiple
implementations of the same functionality, not limited to a specific applica-
tion domain, to find the optimal mapping for a target heterogeneous platform.
As in our approach, all alternative implementations of a given functionality
must be provided to the optimization framework either by the application
developer or in the form of library. However, in [117] the implementations
can use different languages, depending on the target device. Thus, the main
difference with respect to our methodology is that the work in [117] does
not start from a cross-platform programming paradigm such as OpenCL.
On the one hand, this limits application portability to the set of available
kernel implementations; on the other hand, kernel customization for the
target platform is not needed.

5.2 Proposed Methodology

The methodology for the customization of OpenCL applications consists of
two main phases: tuning and mapping, as illustrated in Figure 5.1. It applies
to multi-task applications expressing task-level parallelism in the form of
a large grain data flow (LGDF) graph [74, 13]. Each task is supposed to
have a parametric design, i.e. the task behavior can be customized by tuning
source-level parameters. For an OpenCL application, the term task refers to
the execution of an OpenCL kernel on a platform device, by means of the
clEnqueueNDRangeKernel API [67]. Therefore, a task includes an iteration
space over an NDRange, to parallelize the kernel execution on separate data
blocks. For OpenCL kernels, the source-level parameters include constants
used to allocate buffers in local memory and iterate over the input data, as
well as size of the global and local grids which define the NDRange.

76



5.2.
P

roposed
M

ethodology

Constraint Solver

Application constraints

OpenCL !
constraints

Feasible!
configurations

!

Tuning!
(profile-based DSE)

"

"
!

Candidate!
configurations!
(one for each task!
and each device)Original design space!

(source-level parameter!
configurations for each device)

(B)(A) Other candidate!
task configurations

GPU

# Task Graph

GPUCPU CPU

!
Mapping through!
constraint solver

(C)

Phase 1, OpenCL task tuning (repeated for each task) Phase 2, task mapping (once per task graph)

CPU

GPU ParametersMetrics

Execution profiling!
on platform devices

Figure 5.1: Proposed Design Space Exploration (DSE) flow for tuning and mapping an OpenCL application to a heterogeneous platform.

77



Chapter 5. Task Mapping under Heterogeneous Platform Constraints

Figure 5.2: Synthetic OpenCL task graph used to describe the methodology.

The choice of parameters has been inspired by the work in [104], which
provides an overview of the OpenCL performance pitfalls in porting OpenCL
applications from GPU to CPU devices. Since the transformations proposed
in [104] do not alter the parallelization or the structure of the original
program, they could be implemented as a parameterization of the OpenCL
code. In this case, code specialization becomes a generic form of parameter
tuning, providing good opportunities for automation and improving inter-
platform OpenCL performance portability.

The proposed methodology consists of two main phases, as illustrated
in Figure 5.1. In Phase 1, each task is first considered independently to
apply task-level optimization. We use an analytical technique to identify
the subset of source-level parameters that satisfy the constraints of each
available platform device (Phase 1, Block A). Then the feasible configura-
tions pass through a tuning phase that removes Pareto-dominated solutions
(Phase 1, Block B). At the end of Phase 1, each task is associated with its
best parameter configurations for each device although it has not yet been
assigned to any specific device. At this point, the parametric configurations
of the same task on different devices may be significantly different due to the
device constraints. In Phase 2, Block C implements the mapping problem,
by means of a solver based on constraint programming [86]. The input to the
solver is the application task graph and the pruned set of task configurations
coming from the previous phase. Phase 2 considers, as its optimization
objective, the application throughput, taking into account the overhead of
host-to-device and device-to-host memory transfers.

To better illustrate the steps of the proposed methodology, we introduce
a synthetic OpenCL application. The final goal is to map this application
to different platforms, by exploiting inter-task parallelism. The application
Large Grain Data Flow (LGDF) is shown in Figure 5.2. It consists of
OpenCL kernels with different memory access patterns and different memory

78



5.2. Proposed Methodology

Table 5.1: Source-level parameters for matrix multiplication kernel.

Parameter Min Max Step

num tiles x 1 Matrix C width (2048) 1
num tiles y 1 Matrix C height (1024) 1
num tiles xy 1 Matrix A width (512) 1

wg size x 1 Device max wg size x 1
wg size y 1 Device max wg size y 1

block size x 1 512 1
block size y 1 512 1

requirements, as well as multiple instances of the same kernel processing
different data. The input data stream is represented by blocks A and B. Data
is processed by multiple tasks in a pipelined modality, whereas tasks are
instances of a matrix multiplication (MULT), a matrix add (ADD, which
adds a constant matrix K) and a matrix stencil (S2D) operator.

Considering the execution context, there are different platforms on which
we might want to run the above application. Each OpenCL platform may
have specific features that could affect the overall partitioning onto multiple,
heterogeneous devices. To address this problem, Phase 1 of the methodology
(Section 5.2.1) focuses on each kernel of the application to prune its source-
level design space, then Phase 2 (Section 5.2.2) considers the application
task graph as a whole.

5.2.1 DSE Phase 1 – Task tuning

This section describes how task tuning applies to one of the tasks of the
application shown in Figure 5.2: the matrix multiplication (MULT). We
consider an extended version of the original matrix multiplication sample
available in the Altera OpenCL SDK1. OpenCL, indeed, allows to run the
very same code provided by Altera for an FPGA target on a CPU or GPU,
while the contribution of this task tuning phase consists of customizing
source-level parameters for the target platform.

The set of tunable parameters that we consider for the matrix multipli-
cation kernel is shown in Table 5.1. The original implementation already
exploits tiling – by means of buffers in local memory – in order to reduce
the global memory access bandwidth. However, to broaden the scope of this
investigation, the application has been modified to let the workgroup size
be set independently from the tile size. Besides, the workgroup shape has

1http://www.altera.com/products/software/opencl/opencl-index.html

79

http://www.altera.com/products/software/opencl/opencl-index.html


Chapter 5. Task Mapping under Heterogeneous Platform Constraints

also been changed from a squared to a rectangular one – with dimensions
wg size x and wg size y. Finally, two additional parameters allow to
increase the work for a single work-item, by making it process a block of
dimensions block size x × block size y.

This modification adds more opportunities for the mapping stage but,
since the tile size is forced to be a square, it provides an additional set of
constraints to be met:

• tile size x = wg size x × block size x

• tile size y = wg size y × block size y

• tile size x == tile size y

• The size of the tile must meet the limits of the local memory size of
the device.

• The size of input matrices, in each dimension, must be a multiple of
the tile size.

By solving at design time the last constraint, the methodology allows to
simplify the control logic for checking the boundary conditions within
the kernels themselves. This is important for GPU architectures, whose
performance is affected by thread divergence. As described in the next
paragraph, sizing of the parameters shown in Table 5.1 is done through a
constraint problem formulation.

Constraint problem formulation. In constraint programming (CP), a
problem is formulated using constraints to define relations between variables,
then a solver generates solutions that satisfy such constraints [96]. This
makes CP a form of declarative programming, since the constraints do not
specify a sequence of steps to find a solution, but rather the properties of a
solution to be found.

The kernel parameterization problem is formulated as a CP problem,
using the formalism provided by the Minizinc constraint solver [86]. We
define a modular composition of variables and constraints by dividing them
in two sets:

• OpenCL platform variables and constraints on the dimension of the
workgroups and local memory size (Listing 5.1).

• Application-specific variables and constraints on the properties of the
tiles used by the matrix multiplication kernel (Listing 5.2).

The problem formulation consists of a sharp separation between the
definition of generic constraint rules and the specialization of these on a

80



5.2. Proposed Methodology

Listing 5.1: OpenCL platform constraints

% Platform parameter declaration
int: max_wg_size;
int: max_wg_size_x;
int: max_wg_size_y;
int: max_wg_size_z;
int: local_mem_size;

% Platform decision variables
var 1 .. max_wg_size_x : wg_size_x;
var 1 .. max_wg_size_y : wg_size_y;
var 1 .. max_wg_size_z : wg_size_z;
var int: local_mem_usage;

% Platform constraints
constraint (wg_size_x <= max_wg_size_x);
constraint (wg_size_y <= max_wg_size_y);
constraint (wg_size_z <= max_wg_size_z);
constraint (wg_size_x*wg_size_y*wg_size_z <= max_wg_size);
constraint (local_mem_usage <= local_mem_size);

specific platform. This represents one of the advantages of using CP. For
example, considering the platform constraints in Listing 5.1, there could
be different values for the max wg size bound that are dependent on the
device actually used. Thus, in order to keep the problem formulation generic,
the parameters are initialized in a separate file.

The application-specific constraints represent an extension of the more
general OpenCL platform constraints. Thus, another advantage of using
CP is that the problem formulation can be easily extended. Moreover, the
problem formulation is independent from the search strategy used by the
solver, which allows to evaluate – or eventually to develop in parallel –
an optimized search strategy. Finally, when dealing with minimization or
maximization goals (like the task mapping problem in Section 5.2.2), the
solution is potentially optimal.

The output of the constraint solver (Block A in Figure 5.1) is the feasible
solution set for matrix multiplication, which is a subset of the original design
space shown in Table 5.1. The main advantage introduced by this technique
is a drastic reduction of the exploration space and, more important, of the
exploration time, while not disregarding any feasible – and therefore possibly
optimal – solution.

81



Chapter 5. Task Mapping under Heterogeneous Platform Constraints

Listing 5.2: Application-specific constraints

% Parameter declaration
int: size_x;
int: size_y;
int: size_xy;
int: max_block_size_x;
int: max_block_size_y;

% Decision variables
var 1 .. size_x : num_tiles_x;
var 1 .. size_y : num_tiles_y;
var 1 .. size_xy: num_tiles_xy;
var 1 .. max_block_size_x : block_size_x;
var 1 .. max_block_size_y : block_size_y;
var int: tile_size_x = ( wg_size_x * block_size_x );
var int: tile_size_y = ( wg_size_y * block_size_y );

% Variable assignment
wg_size_z = 1;
local_mem_usage = (tile_size_x * tile_size_y * 4 * 2);

% Application constraints
constraint (tile_size_x == tile_size_y );
constraint (size_x == (tile_size_x * num_tiles_x ));
constraint (size_y == (tile_size_y * num_tiles_y ));
constraint (size_xy == (tile_size_x * num_tiles_xy));

Task tuning. The constraint programming solution is used as a starting
point for the next sub-phase — the task tuning (Block B in Figure 5.1).
Here, for each task in the LGDF, we search over the feasible set in the
application design space to find the optimal configuration with respect to
some design objective. In our flow, the optimization objective consists of
minimizing the kernel execution time, by averaging the profiled metrics over
a dataset representative for the target application in order to account for
data-dependent variability.

To automate this process we use MOST, the profile-based DSE tool for
multi-objective optimization presented in Section 2.5. Figure 5.3 shows the
tools used in the proposed design flow: the MiniZinc solver, implementing
the analytical technique described in the previous section, allows for fast
pruning of those configurations of an OpenCL kernel unfeasible with respect
to device constraints; then, MOST adopts heuristics [48, 92] to navigate and
prune the feasible solution set, by profiling the kernel on the target device.

82



5.2. Proposed Methodology

Figure 5.3: The proposed DSE framework implementing Phase 1.

5.2.2 DSE Phase 2 – Task mapping

The input of Phase 2 (see Figure 5.1) is a set of optimal configurations for
each task – one for each platform device – derived in the previous phase.
Each configuration is characterized by its own kernel execution time (EXE),
as measured by the task tuning in Phase 1. However, in order to also take
into account inter-task communication when tasks are mapped to different
devices, additional information is needed: i) the time required to copy input
data from host to device buffers (H2D), and ii) the time to retrieve the kernel
output from the device buffers (D2H). To measure the communication
overhead, the application is structured as a network of components (see
ocl task in Figure 5.4), where each component is an instrumented version of
the original OpenCL kernels. This instrumentation allows to measure H2D
and D2H average times, which are later used by the constraint solver to find
the optimal task mapping, as described below.

Task graph mapping. To expose concurrency, the mapping process is
based on well-known pipelining principles [74]; it corresponds to identi-
fying feed-forward cut-sets in the LGDF and placing buffers in-between.
Each cut-set of the task graph becomes thus a pipeline stage. The optimal
mapping – with respect to the throughput – minimizes the critical path of
the decomposed graph, i.e. the slowest pipeline stage for kernel execution
time and buffering overhead (H2D, D2H).

83



Chapter 5. Task Mapping under Heterogeneous Platform Constraints

Figure 5.4: Skeleton component ocl task used to wrap OpenCL kernels and profile execu-
tion (EXE) and memory transfer times (H2D, D2H).

Figure 5.5 shows a minimal OpenCL task graph mapped to a heteroge-
neous platform with different OpenCL contexts, since the computing devices
belong to different vendors (e.g. Nvidia for the GPU device and Intel for
the CPU one). When two tasks, connected by an edge in the task graph, are
mapped to computing devices belonging to different OpenCL contexts (e.g.
tasks A-D or C-E), the data dependency requires a copy of data buffers from
one device to another, which results in a D2H and H2D operation. Different
accelerators – and even the same accelerator in different PCI slots – can
experience significantly different communication times. For example, the
memory transfers from GPU on our target platform PLT1 (see Section 5.3)
are 46% slower than from the CPU. These transfer times are taken into
account in the analysis and optimization.

The mapping problem is solved as a constraint optimization problem.
The program formulation shown in Listing 5.3 is applicable to any acyclic
OpenCL task graph. It defines a set of constraints in terms of precedence
rules and memory transfers that are applied only when required by a specific
mapping. In fact, H2D and D2H overhead times are taken into account
only when two tasks connected through an edge – data dependency – are
scheduled in different OpenCL contexts; otherwise, they are ignored, since
data are already in the device memory. In the final result, multiple tasks
could be executed on the same device. This corresponds to instantiating
a task that wraps several kernels (see Figure 5.4), ensuring that internal

84



5.3. Experimental Setup

Figure 5.5: Task mapping example.

scheduling of each kernel meets the dependencies expressed in the original
task graph.

Figure 5.6 shows the application task graph associated with the mapping
solutions found for the two target platforms. Kernels with the same color
are mapped to the same computing device while the dashed lines show the
feed-forward cut-sets in the LGDF, which define different pipeline stages.

5.3 Experimental Setup

The presented flow has been automated to a large extent: the task tuning
phase is fully automated and the constraint solver, both for pruning the un-
feasible solutions and task mapping, directly provides the solution. The only
information required as input is the list of kernel constraints and customiz-
able parameters. Nevertheless, the application host code is not generated
automatically, but we rely on template code to realize the final mapping of
OpenCL kernels to platform devices. This enabled the validation of the pro-
posed methodology on a real world use case: the OpenCL Stereo-Matching
application described in Section 2.3, targeted to two commercial heteroge-
neous parallel platforms. Stereo-Matching (SM) is a streaming application,
since it processes an input stream of stereo frames, and therefore the through-
put of the application (frame-rate) can benefit from the software pipelining
technique proposed in Section 5.2.2. The SM behavior can be tuned by
setting some specific parameters, to trade-off the throughput (frame-rate)
and the Quality-of-Service (QoS), which measures the accuracy of the result.

85



Chapter 5. Task Mapping under Heterogeneous Platform Constraints

Listing 5.3: Problem formulation for application task mapping

% TaskPrec[j] contains the predessors of task j
% TaskNext[j] contains the successors of task j
% TaskType[j] is the type of task j (instance)

% Total host-to-device memory transfer time
% In this implementation,
% we consider T_H2D = T_D2H for a device buffer
constraint forall (i in DEVICES) (

sum_time_h2d[i] = sum (j in TASKSET) (
sum (p in TASKSET) (

bool2int( (p in TaskPrec[j]) and (mapping[j]==i)
and (mapping[p]!=i) ) * T_MEM[i,TaskType[p]]

)
)

);

% Total kernel execution time on each device
constraint forall (i in DEVICES) (

sum_time_exe[i] = sum (j in TASKSET) (
bool2int( mapping[j]==i ) * T_EXE[i,TaskType[j]]

)
);

% Total device-to-host memory transfer time
constraint forall (i in DEVICES) (

sum_time_d2h[i] = sum (j in TASKSET) (
sum (n in TASKSET) (

bool2int( (n in TaskNext[j]) and (mapping[j]==i)
and (mapping[n]!=i) ) * T_MEM[i,TaskType[n]]

)
)

);

% Optimize pipeline stage
constraint forall (i in DEVICES) (

(sum_time_h2d[i] + sum_time_exe[i]
+ sum_time_d2h[i]) <= StagePeriod

);

% Minimization solver
solve minimize StagePeriod;

86



5.3. Experimental Setup

(a) Mapping for PLT1

(b) Mapping for PLT2

Figure 5.6: Optimal mappings of the synthetic task graph to two heterogeneous platforms.

Our analysis is focused on the parameter which controls the step between
consecutive disparity hypotheses, the hypo step. Since the algorithm
mainly consists of minimizing the matching-cost while iterating over the
disparity range, the tuning of hypo step directly affects the performance
in terms of throughput and QoS, mainly the disparity error (the average
error in the pixel disparity computation).

Figure 5.7 shows the OpenCL kernels invoked by SM. Some of them
are instantiated several times (WinBuild, ConvertInty, AggVer) so that each
instance can be considered a different task. The gray box represents one
step of the iterative cost aggregation, which is repeated for each disparity
hypothesis. The OpenCL kernels within this box have been modeled as a
single task, in this experiment, for two reasons: 1) the constraint program
formulation for solving the mapping problem currently supports only tasks
with a single output and 2) these kernels represent steps of a cost aggregation
super-task which would not benefit from execution on different devices.

In this experiment we use a stream of input frames with resolution
384× 288 and we fix the maximum disparity hypothesis to 24: thus, given
an anchor pixel in the left stereo frame, its corresponding pixel in the right

87



Chapter 5. Task Mapping under Heterogeneous Platform Constraints

Table 5.2: Experimental setup of OpenCL platforms.

Platform OpenCL devices

PLT1 One 4-core CPU device, one discrete GPU
PLT2 One 8-core CPU device, two 4-core CPU devices

frame should have a maximum horizontal offset of 24 pixels. We consider 4
values of hypo step, from 1 to 4, corresponding to four different ranges
of disparity hypotheses. Figure 5.8 shows the task graph flattened with
hypo step set to 1, i.e. the largest task graph, which results in 24 cost-
matching tasks.

In the rest of this chapter, PLT1 and PLT2 refer to the two CPU/GPU
platforms described in Section 2.4. The configuration of the two platforms
is summarized in Table 5.2. The CPU nodes on PLT2 are exposed by the
OpenCL runtime as a homogeneous multi-core CPU device. In order to
emulate a heterogeneous platform, we used the device fission API [67] to
partition the 16 cores into 3 CPU sub-devices: one sub-device with 8 cores
and two with 4 cores each. Thus, both target platforms provide heterogene-
ity: architectural heterogeneity in PLT1 and computational heterogeneity
in PLT2. Although they are general purpose, we expect comparable com-
putational capability and architectural complexity to be soon available on
high-end embedded platforms.

5.4 Experimental Results

The design flow is applied to task optimization and mapping of the OpenCL
Stereo-Matching (SM) task graph, presented in the previous section.

DSE Phase 1 – Task tuning. The constraint solver is very efficient in
finding the feasible task configurations: the feasible sets of all SM kernels
on all target devices (Table 5.3) were found in 11s, using one CPU core
on PLT1. The full design space contains 224 points for the GPU device on
PLT1, while it is even larger on the CPU devices since they support larger
workgroups. For this experimental setup, the feasible set is always smaller
than 0.1% of the full design space for all kernels and target devices. These
cut-sets represent the result of Phase 1, Block A: they are very precise and
capture all the candidate optimal solutions.

Figure 5.9 shows the distribution of feasible design configurations for
kernel WinBuild, with respect to parameters WG SIZE X and WG SIZE Y.
The set of points is different for the two target OpenCL devices on PLT1,
mainly because the platform constraint on the local memory is smaller on

88



5.4. Experimental Results

Figure 5.7: Task graph of Stereo-Matching OpenCL kernels.

Figure 5.8: Flattened task graph of Stereo-Matching OpenCL kernels, with parameter
hypo step set to 1 (24 disparity hypotheses).

89



Chapter 5. Task Mapping under Heterogeneous Platform Constraints

0

10

20

30

40

50

0 10 20 30 40 50
WG_SIZE_X

W
G
_S
IZ
E_
Y

2.5

5.0

7.5

10.0

count

(a) WinBuild - PLT1, GPU

0

10

20

30

40

50

0 10 20 30 40 50
WG_SIZE_X

W
G
_S
IZ
E_
Y

5

10

15

20
count

(b) WinBuild - PLT1, CPU

Figure 5.9: Distribution of design points in the feasible solution set for kernel WinBuild,
on PLT1 OpenCL devices, with respect to parameters WG SIZE X and WG SIZE Y.

GPU than on CPU (16KB vs. 32KB). If there were no constraints, the
feasible set would have been the same for the two target devices and the
points would have been homogeneously distributed. On the contrary, only a
small area is covered with feasible solutions, moreover their distribution is
not homogeneous. This shows a first interesting result: by adopting the ad
hoc filtering technique based on constraint programming, the design space
to be explored was reduced by three orders of magnitude.

The optimization phase (Phase 1, Block B) is driven by the profile-based
DSE tool, presented in Section 2.5, which was configured for this experiment
to select up to 50% points of the feasible set and to minimize the average
kernel execution time. The percentage of points can be tuned to control the
trade-off between accuracy of the solution and exploration time [108]. Since
we set a single design objective for the optimization of OpenCL kernels,
the result is one configuration of parameters, specific for the target device,
which is optimal with respect to the average throughput.

Table 5.4 shows the tile size for each kernel, which results from the
combination of optimal parameters. We can observe that the tile size of
ConvertInty, WTA and CrossCheck is in average higher than for other kernels,
because these kernels do not allocate buffers in local memory and therefore
such constraint is not considered. On the contrary, the tile size of the other
kernels – those kernels which use shared memory to exploit data reuse
– on the GPU device is always smaller than on the CPU devices (except

90



5.4. Experimental Results

 0

 10

 20

 30

 40

 50

 60

 70

WinBuild ConvertInty AggHor AggVerA AggVerB WTA CrossCheck RefineHor RefineVer Total-24d

Im
p

ro
v

em
en

t 
[%

]
PLT1, GPU
PLT1, CPU
PLT2, CPU

Figure 5.10: Performance improvement of the Stereo-Matching kernels, after applying the
task tuning phase, vs. the original implementation.

for one case, but this might be due to the fact that the provided solution
is approximate). Also in this case, the difference in optimal tile size for
CPU and GPU devices mainly depends on the platform constraint of local
memory size, which is smaller on GPU than on CPU.

In the original CUDA implementation of the Stereo-Matching application
[126], the number of threads per block (equivalent to the workgroup size in
OpenCL) is 16X16. This design choice was based on the maximum number
of CUDA threads per block and on code optimizations for data fetching
into local memory [126]. Thus, we consider a reference configuration of
the Stereo-Matching kernels with 16X16 workgroup size and 1X1 block
size. Figure 5.10 shows that the tuning phase provides optimized task
configurations, with up to 60% performance improvement on the target
CPUs, with respect to the reference configuration.

91



C
hapter

5.
Task

M
apping

under
H

eterogeneous
P

latform
C

onstraints

Table 5.3: For each kernel of the Stereo-Matching application, rows 1-3 show the number of feasible solutions on the platform devices
considered in the experimental setup. The last row shows the average size of the feasible set, among the target devices, as percentage of the
full design space.

PLT DEV WinBuild ConvertInty AggHor AggVerA AggVerB WTA CrossCheck RefineHor RefineVer
PLT1 GPU 365 3856 1106 1212 1557 3856 3856 1462 1035
PLT1 CPU 1005 4994 1713 1738 2138 4994 4994 2111 1538
PLT2 CPU 963 4308 1683 1718 2081 4308 4308 2035 1529
% Design Space 0.01% 0.06% 0.02% 0.02% 0.03% 0.06% 0.06% 0.03% 0.02%

Table 5.4: Results of DSE on the feasible solution set of OpenCL Stereo-Matching (WS = workgroup size, BS = block size, TS = tile size, with
TS =WSx ×WSy ×BSx ×BSy). The results contain one configuration of optimal kernel parameters for each target device.

PLT1, GPU PLT1, CPU PLT2, CPU
Kernel WSx WSy BSx BSy TS WSx WSy BSx BSy TS WSx WSy BSx BSy TS

WinBuild 16 32 1 1 512 32 48 1 1 1536 12 3 2 6 432
ConvertInty 96 3 2 8 4608 48 72 1 1 3456 48 6 8 4 9216

AggHor 16 4 1 1 64 48 1 2 8 768 12 1 8 2 192
AggVerA 16 32 1 1 384 4 3 8 8 768 2 8 8 4 512
AggVerB 16 18 1 1 288 6 2 8 8 768 16 24 1 1 384

WTA 128 1 1 1 128 384 18 1 1 6912 384 2 1 1 768
CrossCheck 16 3 4 6 1152 32 1 6 2 384 48 9 2 1 864

RefineHor 16 6 1 1 96 128 1 1 6 768 24 1 8 1 192
RefineVer 8 36 1 1 288 2 6 4 8 384 16 3 1 8 384

92



5.4. Experimental Results

DSE Phase 2 – Task mapping. The mapping of the OpenCL task graph
to the target heterogeneous platforms follows the proposed approach. For
each platform we consider 4 different task graphs, one for each value of
hypo step, depending on the QoS (result accuracy) required by the user.
For each task graph configuration, the mapping problem is solved to identify
the optimal mapping. These points represent the solution of a multi-objective
optimization, since throughput and QoS are two design objectives.

Figure 5.11 reports cycle time (the time between two consecutive out-
put frames) with respect to the average disparity error (the higher the
hypo step, the higher this error) for PLT1 and PLT2. For each plat-
form, four mapping configurations have been considered, by varying from
a single device up to multiple heterogeneous devices. This plot shows the
improvement on the throughput metric for a given level of average disparity
error. The maximum observed improvement is 3x when hypo step is
1, thus for the largest task graph shown in Figure 5.8. Not necessarily the
throughput increases when using multiple devices: the fourth configuration
in Figure 5.11 shows a sub-optimal mapping, where tasks are equally di-
vided among all available devices. On PLT1, this configuration does not
perform better than the single-device execution on CPU: the reason is that the
speedup contribution from multi-device execution (CPU and GPU) does not
compensate the overhead of H2D and D2H memory transfers for copying
data from one device to the other. Thus, without the proposed optimization
driven by a constraint solver, it might be difficult for the developer to find a
mapping that balances the pipeline stages and maximizes the throughput.

Scalability. The flattened model of Figure 5.8 is given as input to the
constraint program to identify the best mapping which maximizes the aver-
age throughput. By setting a constraint on the maximum cycle time (150ms
on PLT1 and 250ms on PLT2), the Minizinc solver identifies a solution
that satisfies the mapping problem of Section 5.2.2. The search time is less
than 2s for all values of hypo step, except for hypo step set to 1 on
PLT2 (> 30min). In this case, the constraint solver spends most time in
evaluating all possible mappings (3 platform devices) of the cost-matching
cascade (24 tasks). To cope with this problem, we added one constraint to
the mapping formulation, based on the analysis of the task graph. When a
sequence of tasks is connected like in the cost-matching cascade, i.e. the
output of one task is the input to the next task, the optimal solution will be
found by splitting this cascade into up to ND sub-ranges, where ND is the
number of platform devices. This mapping minimizes the time overhead of
H2D and D2H memory transfers between consecutive tasks. By adding the
new constraint, the search time is reduced to 2.5s.

93



Chapter 5. Task Mapping under Heterogeneous Platform Constraints

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

C
y
cl

e 
ti

m
e 

[m
s]

PLT1 (Intel Xeon Quad-core CPU + NVidia Quadro GPU)

PLT1, GPU
PLT1, CPU

PLT1, GPU+CPU (optimal)
PLT1, GPU+CPU (sub-optimal)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

C
y
cl

e 
ti

m
e 

[m
s]

Average disparity error [pixel]

PLT2 (4 x AMD Opteron Quad-core CPU)

PLT2, CPU4
PLT2, CPU8

PLT2, CPU4x2+CPU8 (optimal)
PLT2, CPU4x2+CPU8 (sub-optimal)

Figure 5.11: Trade-off between cycle time and disparity error of the Stereo-Matching task
graph deployed on PLT1 and PLT2, for different mapping configurations.

94



5.5. Conclusions

5.5 Conclusions

The optimization and customization design flow presented in this chapter
allows to efficiently map OpenCL applications to heterogeneous parallel
platforms. For such platforms, it is generally hard to exploit pure data-
parallelism, since devices from different vendors have to be instantiated as
different OpenCL contexts. The conversion to a task-parallel implementa-
tion, if possible, may suffer from unnecessary data transfers from host to
device, and vice-versa, so it requires manual optimization to achieve good
performance for each target computing device.

The proposed design flow is based on a constraint solver to identify a
set of feasible configurations with respect to platform-specific constraints
and on a DSE framework for tuning task parameters. The constraint solver
automatically pruned the search space of the Stereo-Matching OpenCL
kernels to 0.1% of the original size. Combined with the proposed mapping
methodology, this enabled the generation of optimized OpenCL software
pipelines, some of them even 3x faster than the single-device implementation
for the selected use cases.

In the current mapping solution, the scheduling of tasks mapped to the
same computing device has been limited to satisfy data dependencies in the
application task graph. Future work will investigate more advanced schedul-
ing techniques to enable overlapping of computation and communication.

95





Part II

Application Auto-Tuning and
Run-Time Management

97





Overview

To provide the performance requirements in multi-application scenarios, this
thesis exploits both application auto-tuning and Run-Time Resource Manage-
ment (RTRM). Resource allocation on multi- and many-core accelerators can
either exploit physical partitioning of the available processing cores among
the applications (e.g. by means of the device fission OpenCL API) or use
time-based scheduling. In any case, in order to enable performance-aware
allocation, the run-time manager needs to know the resource requirements of
each application. The design-time exploration phase presented and discussed
in Part I is exploited to build such knowledge-base in the proposed approach.
A similar approach was already studied for Multi-Processor System-on-Chip
(MPSoC) platforms in [123, 80], whereas this thesis considers the problem
for general purpose platforms with parallel accelerators.

The contribution of Chapter 6 is a light-weight RTRM technique to pro-
vide resource sharing for computationally intensive OpenCL applications. It
exploits an Application-Specific Run-Time Manager (AS-RTM) to enable
each running application to take autonomous decisions for run-time adap-
tation. Then, Chapter 7 presents a more general Run-Time Management
(RTM) approach, which exploits both centralized RTRM and application-
level auto-tuning. This framework, which integrates different independent
tools, was developed in the context of the 2PARMA European project [107].

99





CHAPTER6
Application Auto-Tuning with Autonomous

RTRM

This chapter presents the application run-time support to exploit the set
of optimal Operating Points (OPs) identified by Design Space Exploration
(DSE) in Chapter 3. The proposed approach exploits application auto-tuning,
implemented by the Application-Specific Run-Time Manager (AS-RTM),
of both application-specific dynamic knobs and computational parallelism.

The AS-RTM allows an application to take run-time adaptation decisions,
autonomously. This has two main advantages: i) a non-invasive application
design, in terms of source code, and ii) a very low run-time overhead, since it
does not require any central coordination of a supervisor nor communication
between the applications.

Another contribution of this chapter is a light-weight Run-Time Resource
Management (RTRM) technique for computationally intensive applications
on multi-core platforms, published in [4]: it considers the information
of system workload gathered by platform sensing to take reconfiguration
decisions, while minimizing the impact on other applications that share the
same resources.

101



Chapter 6. Application Auto-Tuning with Autonomous RTRM

6.1 Related Work

The run-time management approach described in this chapter has some
flavors of autonomic computing [65], an initiative started by IBM in 2001
to develop self-managing features for distributed computing systems. This
vision leverages on a variety of architectural frameworks based on self-
regulating autonomic components, mainly exploited in the research area of
multi-agent systems. However, this vision can be extended to embrace also
Run-Time Management (RTM) techniques for adaptive resource allocation
and application auto-tuning on multi- and many-core platforms. Indeed, the
RTM technique presented in this chapter exposes three main characteristics
of an autonomic-system: automatic, adaptive and context aware.

In line with the autonomic computing vision, invasive computing [114]
represents a design paradigm for resource-aware programming on parallel
computing platforms. This paradigm is based on the invade and retreat
approach, in which an application enters a phase called invasion whenever
some computation needs to be parallelized over some neighbor processors;
afterwards, when the compute-intensive code region has completed, a retreat
phase allows to release resources.

A proof-of-concept implementation of an invasive resource manager was
made in [27]. The proposed approach, based on a central X10 invasive frame-
work, exploits scalability curves provided by the application developer for
performance-aware resource allocation. As in our approach, in [27] resource
adaptation is not expected to speed up each running application, but the goal
is to speed up the system as a whole. However, the approach proposed in
this chapter tries to solve the same problem without a central manager, while
accounting for performance degradation due to resource sharing, such as for
the memory bandwidth, and therefore exploiting dynamic scalability curves.

Invasive computing was also presented, in [119], as a distributed frame-
work based on game theory for homogeneous many-core systems. However,
distributed approaches suffer from communication overhead and conver-
gence time. With respect to [119], our approach behaves as a multi-agent
distributed system too, but it exploits performance-accuracy trade-offs at
application-level in order to extend the operational range within a given
resource quota.

Effective application-level tuning is leveraged by software-based ap-
proximate computing [99]. As discussed in Section 2.1, these techniques
allow to design an application so that the trade-off between performance
and Quality-of-Result (QoR) metrics can be dynamically tuned at run-time,
by means of dynamic knobs [56]. The work presented in [55] combines

102



6.1. Related Work

the concept of dynamic knobs, to support run-time adaptivity, and that of
heartbeat, to provide a way to monitor application latency and throughput.
Their framework, SEEC, uses a run-time manager with different levels of
adaptation, from a simple closed-loop control scheme to a more refined
machine learning manager. However, this solution differs from the one
proposed in this chapter because it lacks design-time support.

A machine learning approach to multi-core resource management is
presented in [81]. In this approach, a resource manager monitors each
application execution and learns a predictive model of their responses to
allocation decisions. The performance model is indeed a Response Surface
Model (RSM), based on Artificial Neural Networks (ANNs). Thus, it allows
to take into account interference between concurrent applications due to
the contention on shared resources, which cannot be assigned in an isolated
manner (e.g. memory bandwidth, cache utilization). This generates a
performance degradation, which is considered both by the run-time manager
in [81] and ours. However, in order to reduce the run-time overhead due
to model training as well as the complexity of the decision space, our run-
time manager exploits a knowledge-base obtained at design-time through
DSE – the Pareto-set – and just refines the operating point to account for
performance degradation.

Similarly, in [122] design-time and run-time techniques are combined in
order to train a global resource manager. A step forward made on top of the
previous approach has been done in [80] with a run-time management frame-
work, called ARTE, supported by DSE. While in [122] the run-time manager
was designed for instantaneous throughput maximization, the goal of ARTE
is to minimize application response times. However, even in this case, the
run-time manager is a single one (system-wide) and, at the application level,
it provides only the possibility to change the parallelization.

Thus, design-time application characterization to support run-time man-
agement – as done in this thesis – is not a new idea, but there are some main
differences with respect to [122, 80]:

• The performance model obtained at design-time, in our approach, is
specific for the individual applications, but the run-time workload can
be mixed. Thus, our run-time management approach is not application-
specific and allows to cope with unpredictable workload variations.

• The run-time manager presented here controls not only the application
parallelism but also application-specific metrics, e.g. the quality of a
decoded video or the accuracy of some computation, enabling more
fine-grained optimal auto-tuning.

103



Chapter 6. Application Auto-Tuning with Autonomous RTRM

Figure 6.1: Application adaptivity through the Application-Specific Run-Time Manager
(AS-RTM).

• While the previous work mainly targeted Multi-Processor System-on-
Chips (MPSoCs) platforms, the techniques presented in this thesis
have been validated on general-purpose multi-core platforms, thus
demonstrating that the solution is portable.

6.2 Target Adaptive Framework

The basic idea of the proposed adaptive framework consists of exploiting
the orthogonality between application auto-tuning and Run-Time Resource
Management (RTRM) for computationally intensive OpenCL applications.
The run-time decisions are taken based on profiling information gathered at
design-time, which consists of a set of application configurations, namely
the Operating Points (OPs), optimal with respect to application performance
metrics (e.g. throughput) and resource usage (see Chapter 3).

In this section, first the application-oriented self-adaptive layer is pre-
sented in Section 6.2.1, then the proposed resource-aware extension in
Section 6.2.2.

6.2.1 Application adaptivity through dynamic knobs

In the proposed approach, each application is linked to the framework library
that provides an Application-Specific Run-Time Manager (AS-RTM). The
main purpose of the AS-RTM is to manage application adaptivity by tuning
the dynamic knobs [56] – application parameters that can be changed at
run-time without recompiling the application.

104



6.2. Target Adaptive Framework

The AS-RTM is generic, however its behavior can be customized for each
application given a different list of run-time configurations – the OPs. The
OP data structure contains a set of parameters, which represent the values of
the application dynamic knobs for a specific configuration, and the metric
values profiled at design-time. As shown in Figure 6.1, the AS-RTM allows
to define one or more application goals. A goal represents a soft constraint
on a certain metric – e.g. the frame-rate or the Quality of Service (QoS) – or
even on a parameter – e.g. the number of threads – that can be dynamically
set by the user or selected by the application itself depending on external
events. Such constraints are assumed to be strictly ordered by their priority.

Similarly to the Heartbeat framework [54], this AS-RTM uses high-level
monitors of the performance (such as a throughput monitor, a QoS monitor
or any user-defined monitor) to sense the execution context and to react to
any change in the application run-time requirements.

The AS-RTM integration in a third-party application is straightforward:
it does not require refactoring the application logic to meet an execution
template (such as in [19] and [123]) but only wrapping the code to be profiled
with the monitor calls.

6.2.2 Proposed Resource-Aware AS-RTM

The proposed approach aims at analyzing RTRM for compute-intensive
workloads, such as OpenCL applications, in multi-application scenarios.

In a plain OpenCL application, the platform resources are managed by
the OpenCL runtime at application-level, so an application is enabled to use
all devices available on an OpenCL platform and, by default, the entire quota
of each device. On a multi-core CPU, for example, the OpenCL run-time
binds each application to all compute units by default and relies on the OS
scheduler to assign CPU time to all applications (seen as different processes
by the scheduler).

Any resource-related parameter (e.g. the computational parallelism)
could be treated as a generic application parameter. However, a plain man-
agement of such parameters could lead to system configurations where the
total amount of computational parallelism required by the running applica-
tions exceeds the system resources. In turn, this would result in a degradation
of application performance since the OS scheduler limits the process CPU
usage, thus the application performance would be unpredictable, as the
number of deployed applications (processes) changes over time.

To overcome this problem, we propose a resource-aware AS-RTM, which
takes into account the CPU usage (as we target multi-core CPU platforms),

105



Chapter 6. Application Auto-Tuning with Autonomous RTRM

for self-limiting the application parallelism (e.g. the number of working
threads). At each application cycle, the AS-RTM monitors the goal status.
Whenever a goal is not satisfied or has been changed (e.g. the required
frame-rate has been decreased), in order to select the most suitable OP, the
AS-RTM follows this procedure:

1. The AS-RTM updates the internal constraints on the OPs to meet the
current goals.

2. If there is at least one OP that satisfies all the constraints, the AS-RTM
chooses the one with the highest rank value. Otherwise, it chooses the
OP closest to the valid region defined by the constraints, starting from
the one with highest priority.

According to this decision policy, we add a constraint on the process
CPU usage, on top of the application-specific ones. The value of this
constraint is initialized to the maximum system CPU quota (Γ). At run-
time, by monitoring the system CPU usage (γ) and the process CPU usage
(πmeasured), the AS-RTM selects an OP only if the profiled CPU usage of
the OP (πprofiled) satisfies the following constraint:

πprofiled ≤ Γ− γ + πmeasured (6.1)

If only one application is running, γ and πmeasured are equal, thus the
application is allowed to use the entire CPU resource. Otherwise, if the
platform is congested, Γ and γ have the same value, which forces the AS-
RTM to select among the OPs whose profiled CPU usage fits the quota
assigned by the OS scheduler.

6.3 Experimental Setup

This experimental section considers a case study based on the OpenCL
Stereo-Matching application, targeted to the two multi-core CPU platforms
described in Section 2.4.

6.3.1 Definition of metrics

The Stereo-Matching application has two metrics of interest, namely the
frame-rate (measured as [frames/s]) and the disparity error, which represents
a measure of the average error associated with the application result (the
pixel disparity, see Section 2.3). However, the tests in this chapter consider
only normalized metrics, defined as follows, in order to abstract our analysis
from the specific application.

106



6.3. Experimental Setup

Normalized Actual Penalty (NAP)

This metric measures the degree of user satisfaction, with respect to a frame-
rate goal set at the application start. The frame-rate goal is a soft real-time
constraint, which should be met independently from the machine workload
and resource availability.

NAP =
GOALmeasured −GOALdemanded
GOALmeasured +GOALdemanded

(6.2)

Normalized Error

This is a measure of the output quality normalized on the range of valid
values, so that ERR = 1 when the application runs with the configuration
that provides the lowest – but still acceptable, with respect to design require-
ments – output quality; while ERR = 0 when the quality is highest. It was
obtained for Stereo-Matching from the disparity error (DErr) as follows:

ERR =
DErrOP −DErrMIN

DErrMAX −DErrMIN

(6.3)

Difference w.r.t. to off-line profiling

Another metric of interest is the deviation (DEV) of the metrics (e.g. cycle
period) observed at run-time with respect to the expected values, i.e. the OP
metrics profiled at design-time.

DEV =

∣∣∣∣TcyclemeasuredTcycleOP
− 1

∣∣∣∣ (6.4)

Since the following tests consider dynamic scenarios, for the NAP and
ERR metrics a synthetic value is computed to take into account the temporal
dimension:

NAPAV G =

∫
NAP (t) dt

∆t
, ERRAV G =

∫
ERR(t) dt

∆t
(6.5)

6.3.2 Definition of dynamic workload

A dynamic workload, in this thesis, consists of a set of applications with
different schedules (start time), amount of data to process (number of frames
in Stereo-Matching) and performance requirements (frame-rate). This use-
case is aimed at mimicking the workload expected in resource consolida-
tion, specifically targeted to offloading computationally intensive OpenCL

107



Chapter 6. Application Auto-Tuning with Autonomous RTRM

applications [42]. Although it uses only one type of application (Stereo-
Matching), a dynamic workload is mimicked by exposing the following
parameters:

• Start delay: each application instance is started upon user request, thus
different start times are used.

• Amount of input data: each Stereo-Matching instance is required to
process a different number of frames.

• Frame-rate goal: soft real-time constraint to guarantee a certain re-
sponse time, as demanded by the user.

The above parameters are randomly chosen for each Stereo-Matching run,
within a range of values shown in Table 6.1.

6.3.3 Run-Time Management description

Three Run-Time Management (RTM) configurations have been considered:
1) Plain-Linux: Baseline implementation without run-time adaptivity.

Each application instance is deployed as a plain OpenCL application, thus
it is bound by default to all processing elements available on the CPU. On
the one hand, since there is no manager, this configuration relies on the
OS to schedule tasks from different applications. On the other hand, the
application runs a fixed configuration, with 50% QoS.

2) AS-Linux: In this configuration the AS-RTM can switch the Operating
Point to trade-off between performance and QoS. Although the computa-
tional parallelism can be controlled by the AS-RTM through an application
dynamic knob, the effective resource usage still depends on the allocation of
CPU user time by the OS scheduler.

3) RA-AS-Linux: Configuration implementing the proposed Resource-
Aware AS-RTM. Differently from the previous configuration, here the com-
putational parallelism is used orthogonally with respect to the application-
specific knobs. It implements the technique presented in Section 6.2.2, based
on monitoring of the system CPU usage for smart adaptation of the resource
requirement.

Table 6.1: Range of values for the random parameters of dynamic workload tests.

Parameter AMD Intel
Number of frames 10-840

Frame-rate goal [frames/s] 1-7
Start delay [s] 0-90

Num. instances 1-6 1-4

108



6.4. Experimental Results

6.4 Experimental Results

The experiments described in this section have been carried out on the
AMD and Intel multi-core CPU platforms presented in Section 2.4. In
Section 6.4.1, a single stereo-matching application, with some constraints
on resource usage, is used to assess the capability of the proposed AS-
RTM framework of exploiting the available trade-offs between performance
metrics. In Section 6.4.2, we evaluate the dynamic behavior of the stereo-
matching application, in a multi-application scenario, with different RTM
techniques, including the proposed one for efficient resource sharing based
on platform sensing (Resource-Aware AS-Linux). We conclude this section
with a campaign of experiments in Section 6.4.3 that execute random dy-
namic workloads to compare the different techniques analyzed individually
in the previous experiments.

6.4.1 Application Auto-Tuning Results

This experiment aims at assessing the benefits of application adaptivity.
It consists of a single Stereo-Matching application deployed on the Intel
platform (PLT1 in Section 2.4), with 200 frames to process. The test is
repeated for each possible number of cores (4 in total on the Intel platform),
with the frame-rate goal incremented at each run from 3 to 21 frames/s.

The results are shown in the three plots of Figure 6.2, where the x-axis is
the goal value and y-axis represents, in order, the average measured frame-
rate (6.2a), the average normalized error (6.2b), and the average NAP (6.2c).
With the highest resource availability (4-cores) the AS-RTM can provide 3
frames/s without quality loss (ERR'0% in Figure 6.2b). On the contrary,
configurations with lower resource availability show a quality loss which
ranges from 20% to 50%, depending on the number of cores. This means
that there is a range of goal values, different for each amount of available
resources, where the AS-RTM can reduce the computational accuracy in
return for higher performance, in order to meet the requested goal.

Figure 6.2a shows a similar behavior in all tests but with different thresh-
olds for the maximum reachable frame-rate: the test with 1-core provides
up to 4.3 frames/s, with 2-cores up to 8.1 frames/s, with 3-cores up to 11.5
frames/s and with 4-cores up to 16.4 frame/s. After these frame-rate thresh-
olds, the AS-RTM (already in the OP with lowest quality of result) cannot
find any suitable OP to meet the goal, thus the NAP value starts growing
(Figure 6.2c).

In conclusion, this test demonstrates that the AS-RTM allows to satisfy
higher throughput demands by exploiting the possible trade-offs in terms of

109



Chapter 6. Application Auto-Tuning with Autonomous RTRM

performance versus computational error. The dynamic workloads presented
in the next section will benefit from this feature, since in a multi-application
deployment scenario each instance cannot use the full platform, but is
constrained to a subset of resources.

(a) Average measured frame-rate vs. frame-rate goal

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2  4  6  8  10  12  14  16  18  20  22

F
P

S
 [

fr
a

m
e

s
/s

e
c
]

Frame-rate goal [frames/sec]

1-core
2-cores
3-cores
4-cores

(b) Average normalized disparity error vs. frame-rate goal

 0

 20

 40

 60

 80

 100

 120

 2  4  6  8  10  12  14  16  18  20  22

E
R

R
 [

%
]

Frame-rate goal [frames/sec]

1-core
2-cores
3-cores
4-cores

(c) Average Normalized Actual Penalty vs. frame-rate goal

 0

 10

 20

 30

 40

 50

 60

 70

 2  4  6  8  10  12  14  16  18  20  22

N
A

P
 [

%
]

Frame-rate goal [frames/sec]

1-core
2-cores
3-cores
4-cores

Figure 6.2: Observed frame-rate, normalized error and Normalized Actual Penalty (NAP)
by varying the frame-rate goal and the number of CPU cores.

110



6.4. Experimental Results

6.4.2 Evaluating RTM Strategies

In this section, three RTM strategies are compared in terms of adaptabil-
ity, predictability and fairness, by analyzing a multi-application sequential
scenario. It consists of four Stereo-Matching instances, which are executed
on the Intel platform, with the following start times: tA1 = 0s, tA2 = 20s,
tA3 = 60s and tA4 = 100s. The number of frames to be processed by
each instance has been chosen to let all the applications run together for
approximately 30s, then they complete their execution at different times.
All instances have the same throughput goal (4 frames/s) and their AS-RTM
is configured to minimize the disparity error. We can logically partition the
experiment in two phases. In the first phase new applications are launched,
so we can observe how already running applications react when the new ap-
plications steal resources. The second phase begins when the oldest instance
has completed its execution. In this phase, one by one, all applications leave
the execution context, so we can observe how the remaining instances exploit
the resources that are released. Figure 6.3 shows the three evaluated RTM
strategies: Plain-Linux (6.3a), AS-Linux (6.3b) and the proposed Resource-
Aware AS-Linux (6.3c). For each strategy, the plots show the throughput
and disparity error profiled at run-time, in a time window of 300 seconds.

Plain-Linux. Since the application knobs are fixed, the error is constant;
conversely, the throughput is strictly dependent on the workload. With one
or two instances, the goal is met, although when the second instance starts
we can observe some instability (t = 20s). When more than two instances
are running, the goal cannot be reached. Moreover, the performance presents
a high rate of fluctuations and is not predictable.

AS-Linux. When only one application is running, the throughput is
stable and the disparity error is constant. As soon as the second application
is started (t = 20s), the throughput of both instances starts oscillating but
the error remains constant. The reason for this is that the AS-RTM does
not change the OP (the throughput is above the goal) but, since the total
amount of resources demanded doubles the number of cores, the throughput
is strongly related to the scheduler policies. After 60s, the third application
is started and even more resources are demanded, strengthening the relation
between OS scheduling and throughput oscillation. In this case, the mea-
sured throughput can go below the goal value, forcing the AS-RTM to select
a faster OP, which in turns boosts the oscillation.
Although all application instances have the same priority and the same list
of OPs, they select different OPs as we can notice in the error plot. In
conclusion, this configuration is not fair nor predictable.

111



C
hapter

6.
A

pplication
A

uto-Tuning
w

ith
A

utonom
ous

R
TR

M

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250  300  350

T
h

ro
u

g
h

p
u

t 
[f

ra
m

es
/s

ec
]

App 1
App 2
App 3
App 4

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250  300

App 1
App 2
App 3
App 4

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250  300

App 1
App 2
App 3
App 4

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300  350

E
rr

o
r 

[%
]

Time [s]

App 1
App 2
App 3
App 4

(a) Plain-Linux

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300

Time [s]

App 1
App 2
App 3
App 4

(b) AS-Linux

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300

Time [s]

App 1
App 2
App 3
App 4

(c) RA-AS-Linux

Figure 6.3: Behavior of the run-time management strategies, in terms of throughput and normalized error, for Plain-Linux (6.3a), AS-Linux
(6.3b) and the proposed Resource-Aware AS-Linux (6.3c). The application throughput goal is set to 4 frames/s.

112



6.4. Experimental Results

Resource-Aware AS-Linux. The behavior of the proposed RTM tech-
nique is quite different: after an initial transitory period, the constraint on the
CPU utilization forces the AS-RTM to use only OPs that fit in the available
resources, preventing throughput oscillations. Whenever a new application
starts or ends, the AS-RTM waits until the CPU usage, of both the system
and the application, becomes stable before updating the CPU usage con-
straint. For short periods, the number of threads might be greater than the
number of cores, thus some oscillations can be observed (e.g. t = 20s,
t = 60s). Then, such undesired oscillations end once the platform resources
have been partitioned among the applications.
The CPU monitor allows the AS-RTM to gain predictability, however – as
the disparity error plot shows – this strategy is not fair because the resource
allocation is not coordinated among the running applications. This problem
will be overcome with the two-level RTRM approach presented in the next
chapter.

6.4.3 Dynamic Workload Results

This section describes the results obtained by deploying a multi-application
configuration on both reference platforms. The maximum number of in-
stances and the maximum frame-rate goal are shown in Table 6.1.

As shown in Figures 6.4a and 6.4b, Plain-Linux has the worst NAP metric:
although the single application can reach all throughput demands, concurrent
execution of applications with different resource demands introduces high
penalties on the performance metrics. In this configuration, all applications
use by default the entire CPU (device fission is disabled). This introduces a
high rate of context-switches, which degrades the measured frame-rate. As a
consequence, the difference between the design-time and run-time profiling
is highest for this configuration (Figures 6.4c and 6.4d) and such deviation
continues increasing as we deploy more concurrent applications. This result
was expected because the OpenCL library relies on the OS scheduler to
allocate user time to different applications.

In the case of AS-Linux, the QoS metric (Figures 6.4e and 6.4f) is tuned at
run-time to react to variations in the system workload. The error associated to
the application output is below Plain-Linux in scenarios with 1-3 instances,
above for scenarios with 4-6 instances. The Normalized Actual Penalty
(NAP) benefits from the wider range of trade-offs, so it is lower than in
Plain-Linux; however, the predictability of performance metrics is low, as
shown by the performance deviation bars (Figures 6.4c and 6.4d).

This limitation is overtaken by the proposed Resource-Aware AS-Linux,

113



Chapter 6. Application Auto-Tuning with Autonomous RTRM

(a) Average Normalized Actual Penalty (NAP)

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6

N
A

P
 [

%
]

Plain-Linux
AS-Linux

RA-AS-Linux

(b) Average Normalized Actual Penalty (NAP)

 0

 2

 4

 6

 8

 10

 12

1 2 3 4

N
A

P
 [

%
]

Plain-Linux
AS-Linux

RA-AS-Linux

(c) Throughput degradation w.r.t.offline profiling

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6

D
E

V
 [

%
]

(d) Throughput degradation w.r.t. offline profiling

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 3 4

D
E

V
 [

%
]

(e) Normalized output quality loss

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6

E
R

R
 [

%
]

(f) Normalized output quality loss

 0

 10

 20

 30

 40

 50

 60

1 2 3 4

E
R

R
 [

%
]

Figure 6.4: Dynamic workload analysis by varying the number of Stereo-Matching in-
stances, on the AMD platform (6.4a, 6.4c, 6.4e) and Intel platform (6.4b, 6.4d, 6.4f).

114



6.5. Conclusions

where an application is allowed to use resources only if these are available.
Thus, RA-AS-Linux performance is slightly better than AS-Linux, in most
cases, because the AS-RTM can take better adaptation decisions, at run-time,
thanks to higher accuracy and predictability of the performance metrics in
high contention scenarios.

The average Normalized Actual Penalty (NAP) (Figures 6.4a and 6.4b) is
the metric that better summarizes this analysis. We can observe, as expected,
an increasing NAP for all configurations as the workload grows. Never-
theless, the adaptive configurations (supported by the AS-RTM) always
reduce the NAP with respect to the plain configuration, which means that
the frame-rate goal is met much more frequently.

6.5 Conclusions

The experimental results show that, while Run-Time Resource Manage-
ment (RTRM) is necessary to provide lower variance of the application
performance, the application auto-tuning layer is fundamental to trade it
off with respect to the computation accuracy, in order to extend application
operability with low resource availability. At this aim, the light-weight RTM
technique, presented in this chapter and targeted to compute-intensive appli-
cations, allows to take local decisions on resource utilization at application
level, for efficient resource sharing.

Differently from previous approaches (e.g. “invade and retreat” [119]
or the Barbeque run-time resource manager presented in Section 2.6), in
this approach applications act like autonomous agents, without coordination
among them. On the one hand, this solution has the advantage of being
non-intrusive from a design point of view, since it does not require a commu-
nication infrastructure; on the other hand, it does not provide any guarantee
of fairness nor optimality in resource allocation.

To achieve system-level objectives such as fairness, the next chapter
will present a more general solution which exploits a two-level run-time
management framework: resource allocation is delegated to a centralized
resource manager while application-specific auto-tuning is controlled by the
AS-RTM.

115





CHAPTER7
Combining Application Adaptivity and

System-Wide RTRM

The Run-Time Resource Management (RTRM) technique presented in the
previous chapter was specifically targeted to computationally intensive ap-
plications. Besides not supporting different priority levels and being limited
to multi-core x86 platforms, that technique did not ensure a fair allocation
of resources. Therefore, this chapter presents a more efficient and portable
run-time management solution, developed in the context of the 2PARMA
FP7 European project [107] and published in [3], which could scale from
embedded to High Performance Computing (HPC) systems.

The proposed methodology still exploits – as in Chapter 6 – the syn-
ergy between design-time and run-time but, in addition to the Application-
Specific Run-Time Manager (AS-RTM), it integrates Barbeque, an open
source system-wide run-time resource manager presented in Section 2.6. By
combining application auto-tuning, provided by the AS-RTM, with system-
wide RTRM, a two-level Run-Time Management (RTM) framework is im-
plemented and demonstrated on a multi-core x86 Non-Uniform Memory
Access (NUMA) workstation. With respect to Chapter 6, resource manage-
ment is not done by each application autonomously but it is coordinated by

117



Chapter 7. Combining Application Adaptivity and System-Wide RTRM

a central manager, in order to take into account the application priorities and
to enable optimization of system-wide metrics.

7.1 Related Work

Several previous works targeting run-time resource management have been
already presented in the previous chapter, especially focusing on adaptive
and self-aware computing. This section presents some examples from a
specific category that exploits, like in the proposed approach, design-time
profiling and optimization to support run-time management.

One reference methodology, in this context, exploits Design Space Ex-
ploration (DSE) to customize a run-time manager for embedded multi-core
platforms [122, 79]. Just like in our approach, their assumption is that the
set of applications is known at design-time, therefore it is possible to prune
the decision space from suboptimal resource partitioning schemes and im-
plement a light-weight run-time manager. However, there are some main
limitations:

• The previous work targeted an embedded platform, such as an MPEG4
encoder chip, but the run-time manager was demonstrated on a simula-
tion platform. Therefore, depending on the simulation/speed accuracy,
performance deviation with respect to offline profiling does not occur.
Under these conditions, run-time scheduling is precise, thus enabling
an instantaneous convergence to a stable configuration. On a real
platform, as we target, this never happens because of contention on
shared resources and feedback control is necessary to compensate for
performance variations.

• The demonstrator, although in simulation, was configured with a lim-
ited number of cores (only 7 in [122, 79]) while today’s multi-core
accelerators typically contain 64 (see [77]) or more PEs.

• The only application parameter controlled by the run-time manager is
the number of threads, in [122], beside the core frequency on platform
cores, in [79], while our framework allows to consider more fine-
grained application auto-tuning.

• The run-time manager in previous work just takes decisions on optimal
resource partitioning but does not enforce the assigned quota, whereas
our framework does.

• With respect to [122, 79], our framework exploits a hierarchical ap-
proach, in which resource allocation is done by a central resource

118



7.1. Related Work

manager while fine-grained application auto-tuning is done at the ap-
plication level. This enables better scalability, both with the number of
platform cores and the number of concurrent applications.

The synergy between design-time and run-time was also exploited in
[123]: the proposed framework is hierarchical like ours but the application
integration is not as much straightforward as with the Barbeque API [19].
Moreover, it does not consider application parallelization and it was not
demonstrated with a real multi-application workload.

The work in [80] is an extension of [79], considering not only instan-
taneous throughput maximization but also latency to ensure application
responsiveness. However, this is achieved through a run-time manager pre-
cisely tuned at design-time for a specific application use case. Thus, it is
most suitable for an embedded platform, while the proposed approach –
including the design methodology and the run-time software layer – can be
applied on a wider range of platforms. The portability of the framework
proposed in this thesis addresses one important aspect of modern computing
platforms, namely the convergence of both architectures and programming
paradigms in the embedded and HPC domains.

A novel contribution of this chapter is that the design-time profiling phase
is aimed at optimizing applications, written in OpenCL, for a specific plat-
form besides characterizing the workload. At this aim, we exploit platform
performance counters exported through a portable Barbeque API to tailor an
application implementation for a specific architecture. In this context, cache
pirating [100] is a promising technique to model cache sharing, in order to
predict throughput variations in multi-application scenarios. Indeed, cache
misses have an immediate impact on the bandwidth used to access shared
main memory, which represents a shared resource on multi-core platforms.
Thus, co-scheduling decisions taken by a run-time manager should take
into account the application profile, being it memory-bound or compute
intensive, as recently proposed in a Barbeque extension [78].

Another important aspect, discussed in several points of this thesis, is
platform heterogeneity. The work in [85] presents a scheduling framework
for GPU accelerators in the domain of medical imaging with timing require-
ments. The scheduler is capable of utilizing multiple GPUs in a system to
minimize the average response time of applications. Moreover, it enables
priority-based task scheduling and preemption on GPU to fulfill the timing
requirements of high-priority dynamic tasks. Like the methodology pro-
posed in this chapter, the framework in [85] requires off-line characterization
of the kernel execution time. However, their framework is based on CUDA,
which limits platform heterogeneity to different Nvidia GPU devices.

119



Chapter 7. Combining Application Adaptivity and System-Wide RTRM

StarPU [16] and OmpSs [39] propose run-time frameworks specifically
focused on performance optimization of heterogeneous platforms. However,
in both cases, task scheduling strategies do not target any other objective but
performance maximization and load balancing. On the contrary, the frame-
work proposed in this chapter exploits the Barbeque Run-Time Resource
Management to enable fair, priority-based resource allocation [19].

We conclude with an example of run-time management from the indus-
try, the Grand Central Dispatch (GCD) technology introduced by Apple
in both MacOS and iOS. GCD allows parallel tasks in a program to be
queued up for execution and, depending on the availability of processing
resources, to be scheduled on any of the available platform resources. The
support to OpenCL, starting from version 10.7 [14], allows GCD to also
handle OpenCL compute devices, suggesting the application which available
OpenCL device is best for running a particular kernel.

7.2 Proposed Approach

The proposed methodology provides effective run-time management of
parallel applications sharing computing resources on a multi-core platform.
As in Chapter 6, the goal is to support dynamic workloads and to improve
the average system performance, but considering the resource requirements
and the priorities of each individual application. Thus, this section describes
how three independent tools – MOST , Barbeque and the AS-RTM – have
been integrated to build a hierarchical Run-Time Resource Management
(RTRM) framework. The experiments in Section 7.3 will show the benefits
of using the proposed framework on a NUMA x86 workstation, compared
to the light-weight solution presented in Chapter 6 or to a plain Barbeque
configuration [19].

7.2.1 Design-Time

DSE has been applied to the optimization of parallel streaming applications,
implemented with a parametric design as described in Chapter 3. The
methodology presented in this chapter exploits in the DSE phase the synergy
between MOST and Barbeque (BBQ), as shown in Figure 7.1.

The exploration is driven by the DSE framework (MOST), which forces
a fixed configuration of resources allocated to the application, for each
profiled design point: this is done by creating, before starting the application
profiling, a custom application recipe (Section 2.6) containing a single
Application Working Mode (AWM), with the CPU quota specified by MOST .
In this way Barbeque creates an execution context, limiting the platform

120



7.2. Proposed Approach

Figure 7.1: Design Space Exploration and SW-RTRM synergy for the characterization of
Application Working Modes.

resources available to the application. On the one hand, this ensures the
same operating conditions at design-time and at run-time, providing a higher
profiling accuracy. On the other hand, it allows the designer to define in
MOST a minimization objective on the amount of allocated resources.

The synergy between MOST and Barbeque also enables a simplified
low-level profiling, because MOST can use in the optimization phase the
performance counters exported by the RTLib. The target platform used in
Section 7.3 provides some hardware counters, including, for example, the
number of accesses to the main memory (DRAM). These counters represent
platform metrics that are collected by the RTLib while the application is
running in a Barbeque execution context and then can be exported directly to
MOST , at the end of each simulation, through a standardized XML interface.
Therefore, both platform and application-specific metrics can be used by the
designer to define the multi-objective optimization problem.

Still in Figure 7.1, the set of Operating Points (OPs) output by the DSE
phase is filtered and clustered with respect to platform specific metrics, in
order to identify the set of optimal AWMs. The performance level that can
be achieved in each AWM – the AWM value – is automatically generated
by MOST: since it is based on profiling on the target platform, this value is
more accurate than any hand-coded value, as done in previous work [19],
and allows the Barbeque scheduler to take better run-time decisions.

121



Chapter 7. Combining Application Adaptivity and System-Wide RTRM

!"#$%&'()*%+,-.'/)&%+,%#0-12%+34.45%1+6!(',/,37+

899:)24;0.+<+

899:)24;0.'
!9%2)=2+,-.'
/)&%+34.45%1++

68!',/37+

>?+34.45%1+

30.)$01+

?:4@01&+412A)$%2$-1%+

>?#+
899<+

8(3#+
899B+

899:)24;0.+B+

899:)24;0.'
!9%2)=2+,-.'
/)&%+34.45%1++

68!',/37+

>?+34.45%1+

30.)$01+

>?#+
899B+

8(3#+
899<+

Figure 7.2: Proposed two-level framework for run-time resource management.

7.2.2 Run-Time

Similarly to the approach described in Chapter 6, each running application is
linked to an AS-RTM, implementing the application auto-tuning layer. The
AS-RTM selects the optimal OP to meet the performance requirement (e.g.
frame-rate) by tuning the provided Quality of Service (QoS), depending on
the amount of available platform resources. However, while in the previous
approach each AS-RTM was allowed to take autonomous decisions on
resource usage, here resource allocation is delegated to the System-Wide
Run-Time Resource Manager (SW-RTRM), as shown in Figure 7.2.

As seen in Section 2.6, Barbeque can force an application to use a limited
amount of platform resources by means of the Linux Control Groups. Each
time an event triggers the Barbeque scheduler and the running applications
are reconfigured by Barbeque, the new AWM is sent to the application
through the RTLib API and the AS-RTM can eventually change the OP.
Barbeque always monitors the system state, in terms of running applications
and resource requirements, thus it can take optimal decisions for priority-
based and performance-aware resource allocation.

Moreover, Barbeque also knows the underlying platform architecture, in
terms of resource heterogeneity and memory organization, and this infor-
mation is taken into account by the application mapping. The experiments
in Section 7.3 allow to analyze this problem on a multi-core x86 NUMA
platform: as demonstrated in [22], the performance of applications running
on NUMA platforms is significantly affected by cache misses and high
access rates to the main memory.

122



7.3. Experimental Results

Application resource requirements include both static requirements, de-
fined in the application recipe, and dynamic ones, since each application
can assert resource requests at run-time by means of the SetGoalGap()
API, provided by the RTLib. Any call to the SetGoalGap() API triggers a
rescheduling event, which eventually causes a reallocation of platform re-
sources and the rescheduling on a higher AWM. The parameter passed to this
API is the Normalized Actual Penalty (NAP), defined in Section 6.3, which
represents a measure of the distance between the application performance
requirements and the values profiled at run-time.

In high contention scenarios, the AS-RTM is useful to reduce the rate of
such requests, since it allows an application to trade off performance metrics
(e.g. frame-rate) with QoS. This enables to account for small performance
fluctuations at application-level, by just switching OP within the same AWM,
and to reduce the reconfiguration overhead at system-level.

7.3 Experimental Results

Beside the configuration based on the resource-aware AS-RTM (RA-AS-
Linux), proposed in Chapter 6, we consider two other configurations that
use Barbeque: the Plain-SW-RTRM and the AS-SW-RTRM.

Plain-SW-RTRM: Implementation of the approach proposed in [19], a plain
system-wide run-time resource manager (Barbeque). Application require-
ments are mainly defined by the set of Application Working Modes (AWMs),
identified at design-time, each one corresponding to a given amount of
required resources. However, if the resource requirement gets higher at
run-time, an application can also request a higher AWM to the manager,
through the SetGoalGap() API. In this configuration the AS-RTM is not
used, thus the application runs with QoS fixed to 50%.

AS-SW-RTRM: The proposed two-level run-time management framework,
which uses both the system-wide run-time resource manager (Barbeque) and
the AS-RTM. It extends the Plain-SW-RTRM configuration by linking each
application to an AS-RTM. The AS-RTM is used to control at application-
level the trade-off between performance and accuracy metrics, by tuning the
parameters orthogonal w.r.t. resource usage. Differently from RA-AS-Linux,
in this configuration the number of worker threads is selected according to
the AWM assigned by Barbeque.

In the first two experiments, we consider the same analysis done in Sec-
tion 6.4.2 and Section 6.4.3, with sequential and dynamic workload tests,
respectively. Then, in Section 7.3.3 we analyze the results from the perspec-

123



Chapter 7. Combining Application Adaptivity and System-Wide RTRM

tive of the run-time application requirements, in a mixed-priority scenario.
Finally, the experiment in Section 7.3.4 focuses on system-level metrics.

7.3.1 Evaluating RTM Strategies

This section uses the same experimental setup of Section 6.4.2. Four Stereo-
Matching instances are executed on the Intel platform (see Section 2.4 for the
configuration details), with a throughput goal of 4 frames/s: the applications
are started one after the other, with the following start times: tA1 = 0s,
tA2 = 20s, tA3 = 60s and tA4 = 100s.

The plot in Figure 7.3a (Plain-SW-RTRM) shows the temporal behavior
when the applications use a plain Barbeque configuration [19], without
application-level adaptivity. Whenever the number of running applications
changes, Barbeque corrects the resource assignment and selects a different
AWM for each application. However, since the QoS is fixed (see the horizon-
tal lines in the Error plot), any resource reconfiguration has an immediate
impact on the profiled throughput.

The plot in Figure 7.3b (RA-AS-Linux) is the approach proposed in the
previous chapter, where each application lets the AS-RTM to take auto-
nomous decisions for resource allocation. In this case, the throughput goal
(4 frames/s) can be met much more frequently by trading off accuracy of
results in return for faster execution.

Then, Figure 7.3c shows the behavior of the approach proposed in this
chapter (AS-SW-RTRM), which combines system-wide RTRM with applica-
tion-level auto-tuning. In this configuration, two features can be observed:

• The throughput fluctuations whenever the AWM changes is very small,
compared to RA-AS-Linux.

• The QoS provided by all running applications is the same, meaning
that they select the same OP.

Barbeque provides a better isolation of the execution contexts, which results
in a more accurate OP selection and a faster response to workload variations:
this effect can be observed by comparing the throughput plots of Figure 7.3b
and Figure 7.3c, since the throughput fluctuations in RA-AS-Linux are much
more frequent than in AS-SW-RTRM. Moreover, the second feature highlights
another important property of the proposed approach: since all running
applications are identical and have the same priority in this test, Barbeque
is fair in allocating platform resources and all applications are configured
in the same AWM. Then, the AS-RTM of each application autonomously
selects the same OP, because all have the same throughput goal.

124



7.3.
E

xperim
entalR

esults

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250  300  350

T
h

ro
u

g
h

p
u

t 
[f

ra
m

es
/s

ec
]

App 1
App 2
App 3
App 4

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250  300

App 1
App 2
App 3
App 4

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200  250  300

App 1
App 2
App 3
App 4

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300  350

E
rr

o
r 

[%
]

Time [s]

App 1
App 2
App 3
App 4

(a) Plain-SW-RTRM

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300

Time [s]

App 1
App 2
App 3
App 4

(b) RA-AS-Linux

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  50  100  150  200  250  300

Time [s]

App 1
App 2
App 3
App 4

(c) AS-SW-RTRM

Figure 7.3: Behavior of the run-time management strategies, in terms of throughput and normalized error, for Plain-Linux (6.3a), AS-Linux
(6.3b) and the proposed Resource-Aware AS-Linux (6.3c). The application goal is set to 4 frames/s.

125



Chapter 7. Combining Application Adaptivity and System-Wide RTRM

7.3.2 Dynamic Workload Results

Also in this experiment (see Figure 7.4), the hierarchical Run-Time Man-
agement technique (AS-SW-RTRM) shows several advantages with respect
to the resource-aware AS-RTM proposed in the previous chapter (RA-AS-
Linux) and to the plain Barbeque framework (Plain-SW-RTRM) [19].

From a point of view of the achieved throughput (frame-rate for Stereo-
Matching), RA-AS-Linux and AS-SW-RTRM are approximately equivalent
in Figure 7.4a, while AS-SW-RTRM is better in Figure 7.4b. However,
the metric that mostly benefits from the proposed RTM framework is the
frame-rate difference with respect to off-line profiling (the DEV metric in
Figures 7.4c and Figure 7.4d), since the application performance becomes
much more predictable than in RA-AS-Linux.

Both RA-AS-Linux and AS-SW-RTRM perform better than the plain
Barbeque configuration, because they can benefit from application adaptivity
implemented by the AS-RTM: while in Plain-SW-RTRM the application
QoS is fixed to 50%, in the other configurations the QoS can get lower or
higher than 50%, depending on platform workload and resource availability.

7.3.3 Mixed Priority Analysis

In this sub-section we want to analyze the effectiveness of a priority-based
approach to ensure application Quality of Service (QoS) requirements. We
bound the QoS to the frame-rate metric monitored at run-time by the Stereo-
Matching (SM) AS-RTM with respect to a dynamic goal. In the plots, a
positive goal-gap means that the provided frame-rate is above the goal, thus
it ensures good QoS to the user.

We consider only the adaptive configuration with Barbeque (AS-SW-
RTRM), in which we can define a static priority for each application instance.
As in previous experiments, whenever the current AWM does not allow SM
to provide the demanded QoS (negative goal-gap), the application can send
a request to Barbeque for an AWM featuring more resources.

We used two instances of SM, one with priority 1 (SM-P1) and the other
with priority 2 (SM-P2), where priority 1 is higher than priority 2. We
start these two instances at the same time and each SM instance is assigned
the highest AWM by Barbeque, since the platform is configured with 3
device nodes and each instance is deployed on a different node. In this
experiment, we introduced a synthetic application – TestApp – to simulate
some unpredictable workload. The TestApp has no functionality. Its only
purpose is to increase the resource contention, on the different application
priority levels, at pseudo-random time intervals. To this end, the recipe

126



7.3. Experimental Results

(a) Average Normalized Actual Penalty (NAP)

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6

N
A

P
 [

%
]

Plain-RTRM
RA-AS-Linux

AS-RTRM

(b) Average Normalized Actual Penalty (NAP)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 3 4

N
A

P
 [

%
]

Plain-RTRM
RA-AS-Linux

AS-RTRM

(c) Throughput degradation w.r.t. offline profiling

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6

D
E

V
 [

%
]

(d) Throughput degradation w.r.t. offline profiling

 0

 2

 4

 6

 8

 10

 12

1 2 3 4

D
E

V
 [

%
]

(e) Normalized output quality loss

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6

E
R

R
 [

%
]

(f) Normalized output quality loss

 0

 10

 20

 30

 40

 50

 60

1 2 3 4

E
R

R
 [

%
]

Figure 7.4: Dynamic workload analysis by varying the number of Stereo-Matching in-
stances, on the AMD platform (7.4a, 7.4c, 7.4e) and Intel platform (7.4b, 7.4d, 7.4f).

127



Chapter 7. Combining Application Adaptivity and System-Wide RTRM

 0

 100

 200

 300

 400

 500

 0  100  200  300  400  500  600

C
P

U
 q

u
o

ta
 [

%
]

Time [s]

High Prio
Low Prio

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  100  200  300  400  500  600F
ra

m
e

-r
a

te
 g

o
a

l 
g

a
p

 [
fr

a
m

e
s
/s

]

Time [s]

High Prio
Low Prio

Figure 7.5: CPU quota and frame-rate goal-gap: SM high priority vs. SM low priority.

associated to the TestApp includes AWMs with CPU quota requests ranging
from 100% to 300%.

We started 3 instances of TestApp, with the following schedule (time
elapsed since SM-P1 and SM-P2 started, t0):

1. TestApp1 (TA1-P2), with priority 2, after 60s (t1)
2. TestApp2 (TA2-P1), with priority 1, after 90s (t2)
3. TestApp2 (TA3-P1), with priority 1, after 130s (t3)

What happens in this scenario is that Barbeque tries to be fair in allocating
resources to applications with the same priority. When a SM instance
asks for more resources, Barbeque manages the request according to the
priority of the application, the status of the system and its multi-objective
optimization policy.

Figure 7.5 shows the CPU quota assigned to SM-P1 and SM-P2. Bar-
beque reserves an entire node (400% CPU quota) to SM-P1, except for a
very short time at t3, when TA3-P1 starts. On the contrary, SM-P2 is forced
by Barbeque to run in a lower AWM, which explains why it is assigned only
100% CPU quota until TA2-P1 and TA3-P1 complete their execution. In
other words, since there are not enough resources to schedule all applications

128



7.3. Experimental Results

Table 7.1: Performance counters and metrics.

Counter Description

CTIME Workload completion time [s]
POWER System power consumption [W]
IPC Effective Instructions-per-Cycles
CYCLES Total number of CPU cycles
CPU-USED CPUs utilization
CTX Total number of context switches
MIG Total number of CPU migrations
FES Total number of front-end stalled-

cycles
BES Total number of back-end stalled-

cycles
B-RATE Effective rate of branch instructions
B-MISS-RATE Effective percentage of missed

branches

at the highest AWM, Barbeque acquires resources from low-priority appli-
cations (TA1-P2 and SM-P2) to ensure the demanded QoS to high-priority
applications. As a consequence, the frame-rate goal-gap measured by the
AS-RTM of SM-P2 (see Figure 7.5) gets negative at t2, which results in a
lower QoS.

7.3.4 System-Wide Analysis

This section discusses the effects of the proposed methodology on managing
resource contention as well as addressing some platform-specific issues.
Three experimental scenarios have been considered by using 1, 3 and 6
instances of the Stereo-Matching application on the AMD platform, and
comparing a non adaptive version of this application with the proposed
adaptive version. In the first case, every Stereo-Matching instance spawns a
fixed number of threads (8), while in the second case the number of threads
is dynamically set at runtime, up to a maximum of 8.

The Linux standard perf tool has been used to collect architectural
performance counters, while the Intelligent Platform Management Interface
(IPMI) enabled measurement of the system-wide power consumption. It is
worth to underline that the cpufreq governor was set to ondemand, thus
giving complete control of CPU frequencies to the Linux kernel. The AMD
NUMA platform has been partitioned into a host (4 cores) to execute the
system processes and a managed device (12 cores) to be directly managed
by Barbeque.

129



Chapter 7. Combining Application Adaptivity and System-Wide RTRM

Figure 7.6: Benefits and loss on the considered performance metrics. Positive bars
represent benefits introduced by the proposed methodology.

For each execution, we sampled the completion time of the scenario, the
system power consumption and a set of statistics provided by the perfor-
mance counters of the CPUs, listed in Table 7.1. To state the significance of
the statistics, we repeated the execution of each scenario 30 times, with a
mean confidence interval between 95% and 99%. A scenario stops when all
the instances have completed their input stream.

A first analysis has been done, by observing the performance metrics
listed in Table 7.1. Figure 7.6 provides an overall picture of the experimen-
tal results in terms of normalized metrics speed-up, where positive bars
highlight the improvements introduced by the proposed methodology with
respect to Linux OS.

The case of a single running instance shows an increase of the com-
pletion time of about 40%, but at the same time a reduction of the system
power consumption of 12%. This is mainly due to the default Barbeque
scheduling policy, which allocates resources to the application from a sin-

130



7.3. Experimental Results

Figure 7.7: Memory events comparison, plain Linux vs. proposal for single instance and
3-instances scenarios.

gle processing node. Benefits are higher when the system is subjected to
resource contention. In the 3-instances scenario, without noticeable changes
in power consumption, the completion time decreases by 35%, while, in the
6-instances scenario, both completion time and power consumption decrease
by approximately 15%.

Given the scenarios, one of the key results is that the CPU pipeline works
better, being affected by less stalls (both on front-end and back-end), and
less branch mispredictions. This results into a lower number of CPU cycles
spent for the execution, and a slightly higher throughput (IPC). The number
of context switches and task migrations gets worse, but since these are
intra-node and not inter-node, we do not experience significant penalties.
Indeed, the results show that even these drawbacks are strongly mitigated
in the presence of higher contention on resources. Looking at the most
critical scenario (6-instances), it is evident that almost all metrics have been
improved. In the case of multiple Stereo-Matching instances, the results
point out the effectiveness of the proposed methodology in managing the
resource contention, and thus improving the utilization of resources by each
competing application.

To complete the analysis, we focused on the memory events to evaluate
the benefits in overcoming platform-specific critical issues. Indeed, as
demonstrated in [22], the performance of applications running on NUMA
platforms is significantly affected by cache misses and high access rates
to the main memory. These issues are exacerbated as the contention on
resources increases, when multiple applications run on the system.

131



Chapter 7. Combining Application Adaptivity and System-Wide RTRM

Table 7.2: Performance metrics on memory.

Counter Description

CACHE-MISSES Total number of cache misses
LLC-MISSES Total number Last-level cache

misses
DRAM Total number of DRAM accesses

To address these platform specific issues, we exploited the synergy be-
tween MOST , AS-RTM and Barbeque by a) including the minimization
of DRAM accesses in the DSE multi-objective optimization, and b) allo-
cating resources at run-time, i.e. scheduling the applications, taking into
account the memory hierarchy of the target NUMA machine (where the
DRAM is logically shared and Last-Level Caches (LLCs) are physically
distributed among nodes). The results in Figure 7.7 show that the number
of cache misses (last level included, LLC, see Table 7.2) has been reduced,
as well as the number of accesses to the main memory (DRAM). The latter
is the most interesting result, because contention on the memory controller
represents the main performance bottleneck on NUMA architectures. The
importance of this result demonstrates the capabilities of our methodology
to face platform-specific weaknesses.

7.4 Conclusions

In this chapter a design methodology for run-time management on multi-
core platforms was presented. Design Space Exploration (DSE) identifies a
set of Operating Points and Application Working Modes. Then at run-time,
the SW-RTRM exploits multi-objective resource allocation policies, while
the AS-RTM fine tunes the application parameters according to time-varying
performance or QoS goals, within the assigned resource quota.

The experiments proved the benefits of the proposed approach by con-
sidering an adaptive Stereo-Matching application, running on a multi-core
NUMA platform for a target scenario featuring resource contention and
mixed-priority workload. From the application perspective, the resource
contention analysis has shown the benefits of our approach in terms of av-
erage performance (frame-rate) of the running Stereo-Matching instances.
Moreover, the mixed-workload analysis has demonstrated that applications
with different priority levels are properly served, ensuring the requested
QoS to high-priority applications while keeping under control low-priority
workload.

132



7.4. Conclusions

From the system side, the outcome of the low-level analysis has shown
performance improvements ranging from 35% to 40% and a power consump-
tion reduction between 12% and 15% for the selected set of experiments.
Based on the statistics collected from several performance counters, we can
assess that these results are significant for a better utilization of the system
resources, compared to the plain-Linux case. Finally, the hierarchical and
modular nature of the approach makes it promising for scaling with the
application performance requirements and platform computational capabil-
ities, whatever the target market will be, embedded systems or HPC. The
approach has also been validated on the STHORM embedded platform by
STMicroelectronics in the context of the 2PARMA European project [9].

133





CHAPTER8
Conclusions

This thesis has addressed the problem of optimizing OpenCL applications
for a target heterogeneous parallel platform. A design-time phase, presented
in Part I, exploits different Design Space Exploration (DSE) techniques for
efficient customization of a parametric OpenCL application for the target
platform, considering both device-specific constraints and concurrency in
the application task graph. Then, the framework proposed in Part II enables
effective application auto-tuning at run-time, with flavors of autonomic
computing, while a centralized resource manager allows for optimal resource
allocation under varying workloads and dynamic application requirements.

All experiments have been carried out on industrial platforms, in order to
demonstrate the applicability of the proposed methodology to real case stud-
ies. Also the target application – a stereo-matching OpenCL implementation
– represents an example of computationally intensive multimedia application,
that can benefit from acceleration on a parallel computing platform. Indeed,
some of the outcomes of this thesis have been used within the 2PARMA
FP7 European project and implemented in official prototypes delivered to
the project consortium [9, 10, 11, 12].

The applicability to real case studies is motivated by the rapidly growing
adoption of the OpenCL programming API by many platform vendors. Thus,

135



Chapter 8. Conclusions

the problem of application optimization for parallel heterogeneous platforms
– addressed by this thesis – represents a real challenge today. The same way
compilers allow to automate several kinds of code optimization, application
domain experts need design methodologies and tools for automated opti-
mization and deployment of their applications on heterogeneous parallel
platforms. This problem is exacerbated by the rapid evolution of commercial
platforms, which requires fast and effective porting of applications to new
hardware with tight time-to-market.

The choice of a stereo-matching application, in turn, is coherent with
the main application domain targeted by OpenCL today, namely computer
vision. As an example, the OpenCV library [24], widely used to provide
vision algorithms on embedded systems, has recently added an OpenCL
back-end. However, other application domains are expected to benefit from
software-programmable parallel accelerators, for example in the field of
digital signal processing, as demonstrated by the adoption of the OpenCL
API by Texas Instruments1. Moreover, the possibility to “program” even
FPGA platforms through the OpenCL API allows to embrace the problem
of High-Level Synthesis (HLS) and that of hardware-software partitioning,
by just treating the hardware partition as an OpenCL context on FPGA and
analyzing task mapping within the same programming framework.

In this context, the design and optimization methodology proposed in this
thesis enables portability of application code along with platform-specific
performance optimization. Besides, the run-time management layer imple-
ments effective application auto-tuning and resource allocation, in order to
improve the system performance in multi-application scenarios.

8.1 Design-Time Conclusions

The integration with the MOST framework allows to automate the DSE pro-
cess and to implement advanced exploration strategies. The DSE techniques
presented in Part I aim at speeding up the exploration with respect to a full
combinatorial search of all parameters, while ensuring better results than
design optimization done by hand in a limited time window.

Chapter 3 describes a parametric OpenCL application design and a
methodology for customizing application parameters and identifying a set of
Pareto-optimal Operating Points (OPs). This methodology allows to sample
the design space by first considering the application parameters subject
to platform-specific constraints, such as the size of local memory on an
OpenCL accelerator. This custom Design of Experiment (DoE), together

1See TI wiki webpage: http://processors.wiki.ti.com/index.php/OpenCL User’s Guide

136

http://processors.wiki.ti.com/index.php/OpenCL_User's_Guide


8.2. Run-Time Conclusions

with a precise selection of the dataset by means of a correlation analysis,
allows to explore just a small fraction of the design space and provides, at
the same time, a very accurate Pareto solution. Combined with a high-level
simulation model in the final refinement phase, it provides a significant
speed-up, reducing the overall exploration time by 16x while keeping the
approximation error of the solution below 3%.

Chapter 4 exploits low-level and high-level simulations too, but in the
training set of a Response Surface Model (RSM) based on Artificial Neural
Networks (ANNs). The proposed ensemble neural network model improves
prediction accuracy; alternatively, the same level of accuracy can be achieved
by replacing part of the training set with high-level samples, in return for
10x speed-up of the training phase.

Finally, Chapter 5 analyzes the problem of task mapping on a heteroge-
neous OpenCL platform. An auto-tuning phase based on a constraint solver
allows to prune the design space of the target application down to 0.1%
of the original size, by exploiting platform constraints. Combined with a
constraint problem formulation to analytically find an efficient task mapping,
the proposed methodology generates optimized OpenCL software pipelines
that exploit the concurrency in a task graph on multiple accelerators.

8.2 Run-Time Conclusions

The set of configurations identified at design-time is used by a run-time
management framework to support resource allocation and application auto-
tuning. Indeed, the Pareto-optimal configurations present different trade-offs
between performance (e.g. frame-rate), accuracy of the result and resource
requirement. The proposed framework implements the logic for selection of
the best run-time configuration, while optimizing resource allocation based
on dynamic application requirements. This allows to cope with workload
variations and resource sharing in multi-application scenarios on the one
hand, with thermal and variability platform issues on the other hand.

In Chapter 6 I presented an application layer for light-weight Run-Time
Management (RTM) – the Application-Specific Run-Time Manager (AS-
RTM) – which exploits platform sensing for dynamic control of resource
utilization. The AS-RTM is generic, however its behavior can be customized
for each application given a different list of OPs. While enabling 50%
better average performance with respect to a plain Linux configuration,
this approach has the advantage of being non-intrusive from a design point
of view, since applications take run-time decisions autonomously and no
communication infrastructure is needed.

137



Chapter 8. Conclusions

Finally, in Chapter 7 the AS-RTM is integrated with Barbeque, to im-
prove performance predictability and some system-wide metrics, such as
fairness of resource allocation and priority-based Quality of Service (QoS).
In this approach, Barbeque accounts for system-wide optimization – mainly
resource allocation, based on design-time characterization of the Application
Working Modes (AWMs) – while the AS-RTM fine-tunes the application
behavior to react to small workload variations and dynamic requirements.
The resulting two-level RTM approach has been validated on the STHORM
embedded platform as well as on a NUMA x86 workstation and represents
one of the main outcomes of the 2PARMA project.

8.3 Future Works

The techniques proposed in this thesis could be further developed in several
ways or re-targeted to other design problems, as listed below.

Custom code generation. The proposed optimization methodology
requires an application parametric design, customizable by means of either
command line options or constants defined during dynamic compilation of
OpenCL kernels. This does not represent a limitation of the approach, since
it is common practice to use a parametric design when OpenCL applications
are optimized by hand. An alternative approach exploits dynamic generation
of custom code, such as in [77]. The limitation of custom code generation is
that the application is usually described with a Domain Specific Language
(DSL), so this approach is domain specific. However, it also enables several
kinds of code optimization, by exploiting some recurrent computational
patterns. Thus, a possible extension of this work consists of starting from a
DSL representation of the application, rather than from a parametric design,
and include in the design space also code transformations for generation of
an optimized implementation for a target platform.

Co-scheduling profiling support. Another important aspect of this
work is run-time management. The DSE methodology presented in Chap-
ter 7 exploits platform performance counters to consider also the appli-
cation memory bandwidth in the multi-objective optimization problem.
This knowledge-base is needed by the run-time resource manager for co-
scheduling decisions, as in the Co-Scheduling Workloads (CoWs) scheduler
policy recently added to Barbeque [78]. Thus, the exploration methodol-
ogy presented in this thesis could be extended to identify and export a set
of alternative application configurations, with different trade-offs between
compute-intensive and memory-bound profiles.

138



8.3. Future Works

OpenCL-enabled FPGA platforms. The OpenCL SDK recently re-
leased by Altera allows prototyping and synthesis of an FPGA-based hetero-
geneous system (CPU + FPGA). For this platform, the OpenCL program-
ming paradigm allows to embrace both High-Level Synthesis (HLS) and
application portability. However, optimization of the OpenCL kernels is
much more challenging than for general-purpose platforms, since logic- and
gate-level optimizations are difficult to capture in a high-level input design.
While for code optimization the designer still has to rely on the synthesis
tools provided by the platform vendor, the methodology presented in this
thesis could effectively support the task mapping phase. OpenCL-enabled
FPGAs are usually provided with a PCI interface2, in order to be used as
co-processors for application acceleration. Thus, they could be found on
general-purpose workstations beside other accelerators, such as GPGPUs
or the Intel Xeon Phi3. For such heterogeneous platforms, mapping of an
application task graph on the available devices represents a large design
space but the mapping options are limited by area and timing constraints on
FPGAs. Thus, a proper analytical technique, based on a constraint solver as
proposed in Chapter 5, could help pruning the design space from unfeasible
or sub-optimal configurations.

Mixed-criticality systems. The mapping technique and run-time frame-
work presented in this thesis are being improved to support the design of
mixed-criticality systems in the CONTREX FP7 European project4. De-
ployment of hard real-time and soft real-time applications on the same
multi-core platform requires design methodologies to find the correct – and
preferably optimal – task mapping and scheduling. On the one hand, an-
alytical techniques are needed to analyze the Worst-Case Execution Time
(WCET) of hard real-time applications; on the other hand, profiled-based
DSE and run-time management, based on the techniques presented in this
thesis, are expected to improve the overall performance of low-criticality
applications with respect to soft timing constraints.

2See for example the Altera Stratix V FPGA computing card, which has a PCI Express interface to the host
CPU: http://www.nallatech.com/PCI-Express-FPGA-Cards/pcie-385n-altera-stratix-v-fpga-computing-card.html

3Intel Xeon Phi website: http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
4CONTREX website: http://contrex.offis.de

139

http://www.nallatech.com/PCI-Express-FPGA-Cards/pcie-385n-altera-stratix-v-fpga-computing-card.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://contrex.offis.de




Abbreviations

A
ADRS Average Distance from Reference Set
AEM Abstract Execution Model
ANN Artificial Neural Network
API Application Programming Interface
AS-RTM Application-Specific Run-Time Manager
ATLAS Automatically Tuned Linear Algebra Soft-

ware
AWM Application Working Mode

C
CPU Central Processing Unit
CUDA Compute Unified Device Architecture

D
DMA Direct Memory Access
DoE Design of Experiment
DRAM Dynamic Random Access Memory
DSE Design Space Exploration
DSL Domain Specific Language
DSP Digital Signal Processor

E
EDA Electronic Design Automation

141



Abbreviations

F
FFT Fast Fourier Transform
FMA Fused Multiply-Add
FPGA Field Programmable Gate Array

G
GALS Globally Asynchronous Locally Syn-

chronous
GCD Grand Central Dispatch
GPGPU General Purpose GPU
GPU Graphics Processing Unit

H
HLS High-Level Synthesis
HPC High Performance Computing

I
IP Intellectual Property
IPMI Intelligent Platform Management Interface
ISS Instruction Set Simulator

L
LLC Last-Level Cache

M
MEMS Micro Electro-Mechanical System
MIMD Multiple Instruction Multiple Data
MMMKP Multi-choice Multi-dimension Multiple

Knapsack Problem
MPSoC Multi-Processor System-on-Chip

N
NAP Normalized Actual Penalty
NoC Network-on-Chip
NUMA Non-Uniform Memory Access

O
OP Operating Point
OpenCL Open Computing Language

142



Abbreviations

OS Operating System

P
PCI Peripheral Component Interconnect
PE Processing Element
PIL Platform Integration Layer

Q
QoS Quality of Service

R
RBF Radial Basis Function
RISC Reduced Instruction Set Computer
RMS Root Mean Square
RSD Relative Standard Deviation
RSM Response Surface Model
RTM Run-Time Management
RTRM Run-Time Resource Management

S
SDK Software Development Kit
SDR Software Defined Radio
SMP Symmetric Multi-Processing
SPMD Single Program Multiple Data
SW-RTRM System-Wide Run-Time Resource Manager

T
TBB Threading Building Blocks
TCDM Tightly Coupled Data Memory

W
WCET Worst-Case Execution Time

143





Author’s Publication List

International Conferences

[1] Edoardo Paone, Francesco Robino, Gianluca Palermo, Vittorio Zac-
caria, Ingo Sander, and Cristina Silvano. Customization of OpenCL
Applications for Efficient Task Mapping under Heterogeneous Plat-
form Constraints. Accepted for publication in Proceedings of the
Conference on Design, Automation and Test in Europe – DATE’15.

[2] Davide Gadioli, Simone Libutti, Giuseppe Massari, Edoardo Paone,
Michele Scandale, Patrick Bellasi, Gianluca Palermo, Vittorio Za-
ccaria, Giovanni Agosta, William Fornaciari, and Cristina Silvano.
OpenCL Application Auto-Tuning and Run-Time Resource Man-
agement for Multi-Core Platforms. In Proceedings of the 12th In-
ternational Symposium on Parallel and Distributed Processing with
Applications – ISPA’14, pages 127–133. IEEE, August 2014.

[3] Giuseppe Massari, Edoardo Paone, Patrick Bellasi, Gianluca
Palermo, Vittorio Zaccaria, William Fornaciari, and Cristina Silvano.
Combining Application Adaptivity and System-wide Resource Man-
agement on Multi-Core Platforms. In Proceedings of the International
Conference on Embedded Computer Systems: Architectures, Model-
ing, and Simulation – SAMOS’14, pages 26–33. IEEE, July 2014.

[4] Edoardo Paone, Davide Gadioli, Gianluca Palermo, Vittorio Zac-
caria, and Cristina Silvano. Evaluating Orthogonality between Appli-
cation Auto-Tuning and Run-Time Resource Management for Adap-
tive OpenCL Applications. In Proceedings of the 25th International

145



Bibliography

Conference on Application-specific Systems, Architectures and Pro-
cessors – ASAP’14, pages 161–168. IEEE, June 2014.

[5] Giuseppe Massari, Edoardo Paone, Michele Scandale, Patrick Bel-
lasi, Gianluca Palermo, Vittorio Zaccaria, Giovanni Agosta, William
Fornaciari, and Cristina Silvano. Data Parallel Application Adaptivity
and System-Wide Resource Management in Many-Core Architectures.
In Reconfigurable Computing: Architectures, Tools, and Applications,
volume 8405 of Lecture Notes in Computer Science, pages 345–352.
Springer International Publishing, April 2014.

[6] Edoardo Paone, Nazanin Vahabi, Vittorio Zaccaria, Cristina Silvano,
Diego Melpignano, Germain Haugou, and Thierry Lepley. Improving
Simulation Speed and Accuracy for Many-Core Embedded Platforms
with Ensemble Models. In Proceedings of the Conference on Design,
Automation and Test in Europe – DATE’13, pages 671–676. IEEE,
March 2013.

[7] Edoardo Paone, Gianluca Palermo, Vittorio Zaccaria, Cristina Sil-
vano, Diego Melpignano, Germain Haugou, and Thierry Lepley.
An Exploration Methodology for a Customizable OpenCL Stereo-
matching Application Targeted to an Industrial Multi-Cluster Archi-
tecture. In Proceedings of the 8th International Conference on Hard-
ware/Software Codesign and System Synthesis – CODES+ISSS’12,
pages 503–512. ACM, October 2012.

Technical Reports

[8] Giovanni Agosta, William Fornaciari, Cristina Silvano, Vittorio Za-
ccaria, Patrick Bellasi, Edoardo Paone, Michele Scandale, Dim-
itrios Soudris, Benno Stabernack, Daniel Guenther, Xi Zhang, Junaid
Ansari, Diego Melpignano, Germain Haugou, and Antoine Dejonghe.
2PARMA Lesson Learnt. Deliverable D7.7.1, FP7 European Project
2PARMA, 2013.

[9] Germain Haugou, Jens Brandenburg, and Edoardo Paone. Integrated
prototype based on STM P2012 architecture. Deliverable D5.3.1, FP7
European Project 2PARMA, 2013.

[10] Vittorio Zaccaria, Edoardo Paone, Sotirios Xydis, Patrick Bellasi,
Jens Brandenburg, Alex Bartzas, and Ioannis Koutras. Integrated
prototype based on x86 multi-core architecture. Deliverable D5.4.1,
FP7 European Project 2PARMA, 2013.

146



Bibliography

[11] Edoardo Paone and Vittorio Zaccaria. Final prototype of the design
space exploration methodologies for run-time support. Deliverable
D3.3.2, FP7 European Project 2PARMA, 2012.

[12] Jens Brandenburg, Edoardo Paone, Vittorio Zaccaria, Cristina Sil-
vano, Gianluca Palermo, Germain Haugou, J. M. Zins, Diego Melpig-
nano, Xi Zhang, and Junaid Ansari. Run-time monitoring of applica-
tion parameters. Deliverable D4.2.3, FP7 European Project 2PARMA,
2012.

147





Bibliography

[13] W.B. Ackerman. Data Flow Languages. Computer, 15(2):15–25, Feb 1982.

[14] Apple Inc. Using Grand Central Dispatch With OpenCL, 2013. https://developer.
apple.com/library/mac/documentation/Performance/Conceptual/OpenCL MacProgGuide/
UsingGCDwOpenCL/UsingGCDwOpenCL.html.

[15] A.H. Ashouri, V. Zaccaria, S. Xydis, G. Palermo, and C. Silvano. A framework for Compiler
Level statistical analysis over customized VLIW architecture. In IFIP/IEEE 21st International
Conference on Very Large Scale Integration (VLSI-SoC), 2013, pages 124–129, October 2013.

[16] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. StarPU: A
Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency
and Computation: Practice & Experience, 23(2):187–198, February 2011.

[17] Subhasis Banerjee, G Surendra, and SK Nandy. On the effectiveness of phase based regression
models to trade power and performance using dynamic processor adaptation. Journal of
Systems Architecture, 54(8):797–815, 2008.

[18] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the Art of Virtualization. In Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pages 164–177,
New York, NY, USA, 2003. ACM.

[19] Patrick Bellasi, Giuseppe Massari, and William Fornaciari. A RTRM proposal for multi/many-
core platforms and reconfigurable applications. In 7th International Workshop on Reconfig-
urable Communication-centric Systems-on-Chip (ReCoSoC), 2012, pages 1–8, July 2012.

[20] Patrick Bellasi, Giuseppe Massari, and William Fornaciari. Exploiting Linux Control Groups
for Effective Run-time Resource Management. In PARMA 2013 Workshop HiPEAC 2013, Jan
2013, Berlin, Germany, 2013.

[21] Luca Benini, Eric Flamand, Didier Fuin, and Diego Melpignano. P2012: Building an Ecosys-
tem for a Scalable, Modular and High-efficiency Embedded Computing Accelerator. In
Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’12, pages
983–987, San Jose, CA, USA, 2012. EDA Consortium.

[22] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali. A Case for
NUMA-aware Contention Management on Multicore Systems. In Proceedings of the 19th

149

https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/UsingGCDwOpenCL/UsingGCDwOpenCL.html
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/UsingGCDwOpenCL/UsingGCDwOpenCL.html
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/UsingGCDwOpenCL/UsingGCDwOpenCL.html


Bibliography

International Conference on Parallel Architectures and Compilation Techniques, PACT ’10,
pages 557–558, New York, NY, USA, 2010. ACM.

[23] A. Bonfietti, L. Benini, M. Lombardi, and M. Milano. An efficient and complete approach
for throughput-maximal SDF allocation and scheduling on multi-core platforms. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2010, pages 897–902, March 2010.

[24] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[25] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[26] Kevin J. Brown, Arvind K. Sujeeth, Hyouk Joong Lee, Tiark Rompf, Hassan Chafi, Martin
Odersky, and Kunle Olukotun. A Heterogeneous Parallel Framework for Domain-Specific
Languages. In Proceedings of the 2011 International Conference on Parallel Architectures
and Compilation Techniques, PACT ’11, pages 89–100, Washington, DC, USA, 2011. IEEE
Computer Society.

[27] Hans-Joachim Bungartz, Christoph Riesinger, Martin Schreiber, Gregor Snelting, and Andreas
Zwinkau. Invasive Computing in HPC with X10. In Proceedings of the third ACM SIGPLAN
X10 Workshop, pages 12–19. ACM, 2013.

[28] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover.
Accelerating Haskell Array Codes with Multicore GPUs. In Proceedings of the Sixth Workshop
on Declarative Aspects of Multicore Programming, DAMP ’11, pages 3–14, New York, NY,
USA, 2011. ACM.

[29] Koen Claessen, Mary Sheeran, and Bo Joel Svensson. Expressive Array Constructs in an
Embedded GPU Kernel Programming Language. In Proceedings of the 7th Workshop on
Declarative Aspects and Applications of Multicore Programming, DAMP ’12, pages 21–30,
New York, NY, USA, 2012. ACM.

[30] Yann Collette and Patrick Siarry. Multiobjective Optimization: Principles and Case Studies.
Springer, 2003.

[31] Matthew Curtis-Maury, Filip Blagojevic, Christos D. Antonopoulos, and Dimitrios S.
Nikolopoulos. Prediction-Based Power-Performance Adaptation of Multithreaded Scien-
tific Codes. IEEE Transactions on Parallel and Distributed Systems, 19(10):1396–1410,
October 2008.

[32] Piotr Czyzżak and Adrezej Jaszkiewicz. Pareto simulated annealing – a metaheuristic technique
for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis,
7(1):34–47, 1998.

[33] Usman Dastgeer, Johan Enmyren, and Christoph W. Kessler. Auto-tuning SkePU: A Multi-
backend Skeleton Programming Framework for multi-GPU Systems. In Proceedings of the
4th International Workshop on Multicore Software Engineering, IWMSE ’11, pages 25–32,
New York, NY, USA, 2011. ACM.

[34] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf, and
K. Yelick. Stencil computation optimization and auto-tuning on state-of-the-art multicore
architectures. In International Conference for High Performance Computing, Networking,
Storage and Analysis, 2008. SC 2008., pages 1–12. IEEE Press, November 2008.

[35] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, April
2002.

[36] Denis Demidov, Karsten Ahnert, Karl Rupp, and Peter Gottschling. Programming CUDA
and OpenCL: A Case Study Using Modern C++ Libraries. Computing Research Repository
(CoRR), abs/1212.6326, 2012.

150



Bibliography

[37] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. Terra: A multi-
stage language for high-performance computing. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, pages 105–116,
New York, NY, USA, 2013. ACM.

[38] Yuri Dotsenko, Sara S. Baghsorkhi, Brandon Lloyd, and Naga K. Govindaraju. Auto-tuning of
Fast Fourier Transform on Graphics Processors. In Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming, PPoPP ’11, pages 257–266, New York,
NY, USA, 2011. ACM.

[39] Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesús Labarta, Luis Martinell, Xavier
Martorell, and Judit Planas. OmpSs: a Proposal for Programming Heterogeneous Multi-Core
Architectures. Parallel Processing Letters, 21(02):173–193, 2011.

[40] Marc Duranton, David Black-Schaffer, Koen De Bosschere, and Jonas Maebe. The HiPEAC
Vision for Advanced Computing in Horizon 2020. 2013.

[41] M. T.M. Emmerich, K. C. Giannakoglou, and B. Naujoks. Single- and Multiobjective Evolu-
tionary Optimization Assisted by Gaussian Random Field Metamodels. IEEE Transactions on
Evolutionary Computation, 10(4):421–439, August 2006.

[42] Holger Endt and Kay Weckemann. Remote Utilization of OpenCL for Flexible Computation
Offloading using Embedded ECUs, CE Devices and Cloud Servers. In PARCO, pages 133–140,
2011.

[43] Michael Flynn. Flynn’s Taxonomy, pages 689–697. Springer US, 2011.

[44] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In
Proceedings of the Thirteenth International Conference Machine Learning, 1996, volume 96
of ICML, pages 148–156, 1996.

[45] M. Frigo and S.G. Johnson. The Design and Implementation of FFTW3. Proceedings of the
IEEE, 93(2):216–231, February 2005.

[46] Benedict Gaster, Lee Howes, David R Kaeli, Perhaad Mistry, and Dana Schaa. Heterogeneous
Computing with OpenCL: Revised OpenCL 1.2. Morgan Kaufmann, 2012.

[47] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and
John Hennessy. Memory Consistency and Event Ordering in Scalable Shared-memory Mul-
tiprocessors. In Proceedings of the 17th Annual International Symposium on Computer
Architecture, ISCA ’90, pages 15–26, New York, NY, USA, 1990. ACM.

[48] Tony Givargis, Frank Vahid, and Jörg Henkel. System-level Exploration for Pareto-optimal
Configurations in Parameterized Systems-on-a-chip. In Proceedings of the 2001 IEEE/ACM
International Conference on Computer-aided Design, ICCAD ’01, pages 25–30, Piscataway,
NJ, USA, 2001. IEEE Press.

[49] Dominik Grewe and Michael F. P. O’Boyle. A Static Task Partitioning Approach for Hetero-
geneous Systems Using OpenCL. In Proceedings of the 20th International Conference on
Compiler Construction: Part of the Joint European Conferences on Theory and Practice of
Software, CC’11/ETAPS’11, pages 286–305, Berlin, Heidelberg, 2011. Springer-Verlag.

[50] Owen Harrison and John Waldron. Practical Symmetric Key Cryptography on Modern
Graphics Hardware. In USENIX Security Symposium, pages 195–210, 2008.

[51] John L Hennessy and David A Patterson. Computer Architecture: A Quantitative Approach.
Elsevier, 2012.

[52] Sylvain Henry, Alexandre Denis, Denis Barthou, Marie-Christine Counilh, and Raymond
Namyst. Toward OpenCL Automatic Multi-Device Support. In Euro-Par 2014 – 20th
International Conference on Parallel Processing, pages 776–787. Springer, 2014.

151



Bibliography

[53] Fernando Herrera and Ingo Sander. Combining analytical and simulation-based design space
exploration for time-critical systems. In Forum on Specification Design Languages (FDL),
2013, pages 1–8, Sept 2013.

[54] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and Anant
Agarwal. Application Heartbeats: A Generic Interface for Specifying Program Performance
and Goals in Autonomous Computing Environments. In Proceedings of the 7th International
Conference on Autonomic Computing, ICAC ’10, pages 79–88, New York, NY, USA, 2010.
ACM.

[55] Henry Hoffmann, Jim Holt, George Kurian, Eric Lau, Martina Maggio, Jason E. Miller, Sab-
rina M. Neuman, Mahmut Sinangil, Yildiz Sinangil, Anant Agarwal, Anantha P. Chandrakasan,
and Srinivas Devadas. Self-aware Computing in the Angstrom Processor. In Proceedings of
the 49th Annual Design Automation Conference, DAC ’12, pages 259–264, New York, NY,
USA, 2012. ACM.

[56] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and
Martin Rinard. Dynamic Knobs for Responsive Power-aware Computing. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, pages 199–212, New York, NY, USA, 2011. ACM.

[57] Ching Lai Hwang, Abu Syed Md Masud, et al. Multiple Objective Decision Making – Methods
and Applications, volume 164. Springer, 1979.

[58] Intel Corporation. Intel Software Autotuning Tool, 2010. https://software.intel.com/en-us/
articles/intel-software-autotuning-tool.

[59] Intel Corporation. General Matrix Multiply Sample, 2013. https://software.intel.com/sites/
products/vcsource/files/GEMM.pdf.

[60] Gangwon Jo, Won Jong Jeon, Wookeun Jung, Gordon Taft, and Jaejin Lee. OpenCL Frame-
work for ARM Processors with NEON Support. In Proceedings of the 2014 Workshop on
Programming Models for SIMD/Vector Processing, WPMVP ’14, pages 33–40, New York,
NY, USA, 2014. ACM.

[61] P. J. Joseph, K. Vaswani, and Matthew J. Thazhuthaveetil. A Predictive Performance Model
for Superscalar Processors. In 39th Annual IEEE/ACM International Symposium on Microar-
chitecture, 2006. MICRO-39., pages 161–170, Dec 2006.

[62] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning framework for parallel
multicore stencil computations. In IEEE International Symposium on Parallel Distributed
Processing (IPDPS), 2010, pages 1–12. IEEE Press, April 2010.

[63] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.

[64] Torsten Kempf, Gerd Ascheid, and Rainer Leupers. Multiprocessor Systems on Chip: Design
Space Exploration. Springer, 2011.

[65] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing. Computer,
36(1):41–50, January 2003.

[66] K. Keutzer, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-Vincentelli. System-level design:
orthogonalization of concerns and platform-based design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 19(12):1523–1543, December 2000.

[67] Khronos Group. OpenCL Specification, v1.2. https://www.khronos.org/registry/cl/specs/
opencl-1.2.pdf, 2012.

[68] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee. SnuCL: An
OpenCL Framework for Heterogeneous CPU/GPU Clusters. In Proceedings of the 26th ACM
International Conference on Supercomputing, ICS ’12, pages 341–352, New York, NY, USA,
2012. ACM.

152

https://software.intel.com/en-us/articles/intel-software-autotuning-tool
https://software.intel.com/en-us/articles/intel-software-autotuning-tool
https://software.intel.com/sites/products/vcsource/files/GEMM.pdf
https://software.intel.com/sites/products/vcsource/files/GEMM.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf


Bibliography

[69] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. seL4: Formal Verification of an OS Kernel. In Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09, pages
207–220, New York, NY, USA, 2009. ACM.

[70] Joshua Knowles. ParEGO: A hybrid algorithm with on-line landscape approximation for expen-
sive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation,
10(1):50–66, 2006.

[71] Sebastian Kobbe, Lars Bauer, Daniel Lohmann, Wolfgang Schröder-Preikschat, and Jörg
Henkel. DistRM: Distributed Resource Management for On-chip Many-core Systems. In
Proceedings of the Seventh IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS ’11, pages 119–128, New York, NY, USA,
2011. ACM.

[72] Bradford Larsen. Simple Optimizations for an Applicative Array Language for Graphics
Processors. In Proceedings of the Sixth Workshop on Declarative Aspects of Multicore
Programming, DAMP ’11, pages 25–34, New York, NY, USA, 2011. ACM.

[73] Benjamin C. Lee and David M. Brooks. Accurate and Efficient Regression Modeling for
Microarchitectural Performance and Power Prediction. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XII, pages 185–194, New York, NY, USA, 2006. ACM.

[74] E.A. Lee and D.G. Messerschmitt. Synchronous Data Flow. Proceedings of the IEEE,
75(9):1235–1245, Sept 1987.

[75] Haeseung Lee and Mohammad Abdullah Al Faruque. GPU-EvR: Run-time Event Based
Real-time Scheduling Framework on GPGPU Platform. In Proceedings of the Conference on
Design, Automation & Test in Europe, DATE ’14, pages 220:1–220:6. EDA Consortium, 2014.

[76] Jaejin Lee, Jungwon Kim, Sangmin Seo, Seungkyun Kim, Jungho Park, Honggyu Kim,
Thanh Tuan Dao, Yongjin Cho, Sung Jong Seo, Seung Hak Lee, Seung Mo Cho, Hyo Jung
Song, Sang-Bum Suh, and Jong-Deok Choi. An OpenCL Framework for Heterogeneous
Multicores with Local Memory. In Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’10, pages 193–204, New York, NY,
USA, 2010. ACM.

[77] Thierry Lepley, Pierre Paulin, and Eric Flamand. A Novel Compilation Approach for Image
Processing Graphs on a Many-core Platform with Explicitly Managed Memory. In Proceedings
of the 2013 International Conference on Compilers, Architectures and Synthesis for Embedded
Systems, CASES ’13, pages 6:1–6:10, Piscataway, NJ, USA, 2013. IEEE Press.

[78] Simone Libutti, Giuseppe Massari, Patrick Bellasi, and William Fornaciari. Exploiting Per-
formance Counters for Energy Efficient Co-Scheduling of Mixed Workloads on Multi-Core
Platforms. In Proceedings of Workshop on Parallel Programming and Run-Time Management
Techniques for Many-core Architectures and Design Tools and Architectures for Multicore
Embedded Computing Platforms, PARMA-DITAM ’14, pages 27–32, New York, NY, USA,
2014. ACM.

[79] G. Mariani, P. Avasare, G. Vanmeerbeeck, C. Ykman-Couvreur, G. Palermo, C. Silvano, and
V. Zaccaria. An Industrial Design Space Exploration Framework for Supporting Run-time
Resource Management on Multi-core Systems. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’10, pages 196–201. EDA Consortium, 2010.

[80] Giovanni Mariani, Gianluca Palermo, Vittorio Zaccaria, and Cristina Silvano. ARTE: An
Application-specific Run-Time managEment framework for multi-cores based on queuing
models. Parallel Computing, 39(9):504–519, 2013.

153



Bibliography

[81] J.F. Martinez and E. Ipek. Dynamic Multicore Resource Management: A Machine Learning
Approach. Micro, IEEE, 29(5):8–17, September 2009.

[82] K. Matsumoto, N. Nakasato, and S.G. Sedukhin. Performance Tuning of Matrix Multiplication
in OpenCL on Different GPUs and CPUs. In High Performance Computing, Networking,
Storage and Analysis (SCC), 2012 SC Companion:, pages 396–405. IEEE Press, November
2012.

[83] Diego Melpignano, Luca Benini, Eric Flamand, Bruno Jego, Thierry Lepley, Germain Haugou,
Fabien Clermidy, and Denis Dutoit. Platform 2012, a Many-core Computing Accelerator for
Embedded SoCs: Performance Evaluation of Visual Analytics Applications. In Proceedings of
the 49th Annual Design Automation Conference, DAC ’12, pages 1137–1142, New York, NY,
USA, 2012. ACM.

[84] R. Membarth, F. Hannig, J. Teich, M. Korner, and W. Eckert. Generating Device-specific
GPU Code for Local Operators in Medical Imaging. In IEEE 26th International on Parallel
Distributed Processing Symposium (IPDPS), 2012, pages 569–581, May 2012.

[85] Richard Membarth, Jan-Hugo Lupp, Frank Hannig, Jürgen Teich, Mario Körner, and Wieland
Eckert. Dynamic Task-scheduling and Resource Management for GPU Accelerators in Medical
Imaging. In Proceedings of the 25th International Conference on Architecture of Computing
Systems, ARCS’12, pages 147–159, Berlin, Heidelberg, 2012. Springer-Verlag.

[86] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck, and
Guido Tack. Minizinc: Towards a standard CP modelling language. In Principles and Practice
of Constraint Programming – CP 2007, pages 529–543. Springer, 2007.

[87] Akira Nukada and Satoshi Matsuoka. Auto-tuning 3-D FFT Library for CUDA GPUs. In
Proceedings of the Conference on High Performance Computing Networking, Storage and
Analysis, SC ’09, pages 1–10, New York, NY, USA, 2009. ACM.

[88] NVIDIA Corporation. NVIDIA CUDA C Programming Guide. http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html, 2011.

[89] OpenMP Architecture Review Board. OpenMP Application Program Interface Version 3.1.
http://www.openmp.org/mp-documents/OpenMP3.1.pdf, 2011.

[90] OpenMP Architecture Review Board. OpenMP Application Program Interface Version 4.0.
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf, 2013.

[91] David Opitz and Richard Maclin. Popular ensemble methods: An empirical study. Journal of
Artificial Intelligence Research, 11:169–198, 2009.

[92] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. ReSPIR: A Response Surface-
Based Pareto Iterative Refinement for Application-Specific Design Space Exploration. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(12):1816–
1829, Dec 2009.

[93] M. Puschel, J.M.F. Moura, J.R. Johnson, D. Padua, M.M. Veloso, B.W. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R.W. Johnson, and N. Rizzolo. SPIRAL: Code
Generation for DSP Transforms. Proceedings of the IEEE, 93(2):232–275, February 2005.

[94] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and
Saman Amarasinghe. Halide: A Language and Compiler for Optimizing Parallelism, Locality,
and Recomputation in Image Processing Pipelines. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, pages 519–530,
New York, NY, USA, 2013. ACM.

[95] James Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, first edition, 2007.

154

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf


Bibliography

[96] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming
(Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.

[97] Kathrin Rosvall and Ingo Sander. A constraint-based design space exploration framework for
real-time applications on MPSoCs. In Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2014, pages 1–6, March 2014.

[98] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk,
and Wen-mei W. Hwu. Optimization Principles and Application Performance Evaluation of a
Multithreaded GPU Using CUDA. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’08, pages 73–82, New York, NY,
USA, 2008. ACM.

[99] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan
Grossman. EnerJ: Approximate Data Types for Safe and General Low-power Computation. In
Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, pages 164–174, New York, NY, USA, 2011. ACM.

[100] Andreas Sandberg, David Black-Schaffer, and Erik Hagersten. Efficient techniques for pre-
dicting cache sharing and throughput. In Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques, PACT ’12, pages 305–314, New York,
NY, USA, 2012. ACM.

[101] Thomas J Santner, Brian J Williams, and William I Notz. The Design and Analysis of Computer
Experiments. Springer, 2003.

[102] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International journal of computer vision, 47(1-3):7–42, 2002.

[103] Jiwon Seo, Yu-Hsuan Chen, David S De Lorenzo, Sherman Lo, Per Enge, Dennis Akos, and
Jiyun Lee. A real-time capable software-defined receiver using GPU for adaptive anti-jam
GPS Sensors. Sensors, 11(9):8966–8991, 2011.

[104] Jie Shen, Jianbin Fang, H. Sips, and AL. Varbanescu. Performance Traps in OpenCL for CPUs.
In 21st Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP), 2013, pages 38–45, Feb 2013.

[105] Hamid Shojaei, AmirHossein Ghamarian, Twan Basten, Marc Geilen, Sander Stuijk, and Rob
Hoes. A parameterized compositional multi-dimensional multiple-choice knapsack heuristic
for CMP run-time management. In Proceedings of the 46th Annual Design Automation
Conference, pages 917–922. ACM, 2009.

[106] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. Managing
Performance vs. Accuracy Trade-offs with Loop Perforation. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 124–134, New York, NY, USA, 2011. ACM.

[107] C. Silvano, W. Fornaciari, S. Crespi Reghizzi, G. Agosta, G. Palermo, V. Zaccaria, P. Bel-
lasi, F. Castro, S. Corbetta, A. Biagio, E. Speziale, M. Tartara, D. Melpignano, J. M. Zins,
D. Siorpaes, H. Hübert, B. Stabernack, J. Brandenburg, M. Palkovic, P. Raghavan, C. Ykman-
Couvreur, A. Bartzas, S. Xydis, D. Soudris, T. Kempf, G. Ascheid, R. Leupers, H. Meyr,
J. Ansari, P. Mähönen, and B. Vanthournout. 2PARMA: Parallel Paradigms and Run-time
Management Techniques for Many-Core Architectures. In VLSI 2010 Annual Symposium,
volume 105 of Lecture Notes in Electrical Engineering, pages 65–79. Springer Netherlands,
2011.

[108] C. Silvano, W. Fornaciari, G. Palermo, V. Zaccaria, F. Castro, M. Martinez, S. Bocchio,
R. Zafalon, P. Avasare, G. Vanmeerbeeck, C. Ykman-Couvreur, M. Wouters, C. Kavka,
L. Onesti, A. Turco, U. Bondi, G. Mariani, H. Posadas, E. Villar, C. Wu, Fan Dongrui, Zhang

155



Bibliography

hao, and T. Shibin. MULTICUBE: Multi-objective Design Space Exploration of Multi-core
Architectures. In 2010 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages
488–493, July 2010.

[109] Deshanand P. Singh, Tomasz S. Czajkowski, and Andrew Ling. Harnessing the Power of
FPGAs Using Altera’s OpenCL Compiler. In Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’13, pages 5–6, New York, NY, USA,
2013. ACM.

[110] K.I. Smith, R.M. Everson, J.E. Fieldsend, C. Murphy, and R. Misra. Dominance-Based
Multiobjective Simulated Annealing. IEEE Transactions on Evolutionary Computation,
12(3):323–342, June 2008.

[111] Bharat Sukhwani and Martin C. Herbordt. GPU Acceleration of a Production Molecular
Docking Code. In Proceedings of 2Nd Workshop on General Purpose Processing on Graphics
Processing Units, GPGPU-2, pages 19–27, New York, NY, USA, 2009. ACM.

[112] Wai Teng Tang, Wen Jun Tan, R. KrishnaMoorthy, Yi Wen Wong, Shyh hao Kuo, R.S.M.
Goh, S.J. Turner, and Weng-Fai Wong. Optimizing and Auto-Tuning Iterative Stencil Loops
for GPUs with the In-Plane Method. In IEEE 27th International Symposium on Parallel
Distributed Processing (IPDPS), 2013, pages 452–462. IEEE Press, May 2013.

[113] A. Tarakji, M. Marx, and S. Lankes. The development of a scheduling system GPUSched for
graphics processing units. In International Conference on High Performance Computing and
Simulation (HPCS), 2013, pages 566–575, July 2013.

[114] Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-Landsiedel, Wolfgang
Schröder-Preikschat, and Gregor Snelting. Invasive computing: An overview. In Multi-
processor System-on-Chip, pages 241–268. Springer, 2011.

[115] Philippe Tillet, Karl Rupp, and Siegfried Selberherr. An Automatic OpenCL Compute Kernel
Generator for Basic Linear Algebra Operations. In Proceedings of the 2012 Symposium on
High Performance Computing, HPC ’12, pages 1–2, San Diego, CA, USA, 2012. Society for
Computer Simulation International.

[116] Vasily Volkov and James W. Demmel. Benchmarking GPUs to Tune Dense Linear Algebra. In
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08, pages 31:1–31:11,
Piscataway, NJ, USA, 2008. IEEE Press.

[117] John Robert Wernsing and Greg Stitt. Elastic Computing: A Framework for Transparent,
Portable, and Adaptive Multi-core Heterogeneous Computing. SIGPLAN Not., 45(4):115–124,
April 2010.

[118] R. Clint Whaley and Antoine Petitet. Minimizing development and maintenance costs in
supporting persistently optimized BLAS. Software: Practice and Experience, 35(2):101–121,
February 2005.

[119] Stefan Wildermann, Tobias Ziermann, and Jürgen Teich. Game-theoretic Analysis of Decen-
tralized Core Allocation Schemes on Many-core Systems. In Proceedings of the Conference
on Design, Automation and Test in Europe, DATE ’13, pages 1498–1503, San Jose, CA, USA,
2013. EDA Consortium.

[120] David H. Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.
[121] Ch. Ykman-Couvreur, V. Nollet, F. Catthoor, and H. Corporaal. Fast Multidimension Mul-

tichoice Knapsack Heuristic for MP-SoC Runtime Management. ACM Transactions on
Embedded Computing Systems (TECS), 10(3):1–16, April 2011.

[122] Chantal Ykman-Couvreur, Prabhat Avasare, Giovanni Mariani, Gianluca Palermo, Cristina
Silvano, and Vittorio Zaccaria. Linking run-time resource management of embedded multi-
core platforms with automated design-time exploration. Computers & Digital Techniques, IET,
5(2):123–135, 2011.

156



Bibliography

[123] Chantal Ykman-Couvreur, Philipp A. Hartmann, Gianluca Palermo, Fabien Colas-Bigey,
and Laurent San. Run-time Resource Management Based on Design Space Exploration. In
Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS ’12, pages 557–566, New York, NY, USA,
2012. ACM.

[124] Vittorio Zaccaria, Gianluca Palermo, Fabrizio Castro, Cristina Silvano, and Giovanni Mariani.
Multicube explorer: An open source framework for design space exploration of chip multi-
processors. In 23rd International Conference on Architecture of Computing Systems (ARCS),
2010, pages 1–7. VDE, 2010.

[125] Ke Zhang, Jiangbo Lu, and Gauthier Lafruit. Cross-based Local Stereo Matching Using
Orthogonal Integral Images. IEEE Transactions on Circuits and Systems for Video Technology,
19(7):1073–1079, 2009.

[126] Ke Zhang, Jiangbo Lu, Qiong Yang, G. Lafruit, R. Lauwereins, and L. Van Gool. Real-
Time and Accurate Stereo: A Scalable Approach With Bitwise Fast Voting on CUDA. IEEE
Transactions on Circuits and Systems for Video Technology, 21(7):867–878, July 2011.

157


	Contents
	Introduction
	Motivation
	Technological background
	Thesis contributions
	Thesis organization

	Background, Terminology and Toolchain
	Background
	OpenCL programming model
	OpenCL NDRange: intra-task parallelism
	OpenCL task graph: inter-task parallelism
	OpenCL device fission

	Target application: OpenCL Stereo-Matching
	Target platforms
	STMicroelectronics Platform 2012 (STHORM)
	CPU/GPU platforms

	MOST: Multi-Objective System Tuner
	Barbeque Run-Time Resource Manager
	Conclusions

	I   OpenCL Application Customization and Optimization
	Automated Optimization of Parametric OpenCL Applications
	Related Work
	The OpenCL customizable Stereo-Matching application
	Structure of the OpenCL kernels
	Resource parameters

	The DSE methodology for application customization
	Experimental results
	DSE Results of Phase 1
	DSE Results of Phase 2
	DSE Results of Phase 3
	Generation of operating points from the Pareto-set

	Conclusions

	Ensemble Models for Simulation of Many-core Platforms
	Related Work
	Ensemble modeling of applications and architectures
	Problem definition

	Proposed ensemble model and experimental results
	Preliminary correlation analysis
	Accuracy analysis of the ensemble model
	Analysis of variance of the results

	Conclusions

	Task Mapping under Heterogeneous Platform Constraints
	Related Work
	Proposed Methodology
	DSE Phase 1 – Task tuning
	DSE Phase 2 – Task mapping

	Experimental Setup
	Experimental Results
	Conclusions


	II   Application Auto-Tuning and Run-Time Management
	Application Auto-Tuning with Autonomous RTRM
	Related Work
	Target Adaptive Framework
	Application adaptivity through dynamic knobs
	Proposed Resource-Aware AS-RTM

	Experimental Setup
	Definition of metrics
	Definition of dynamic workload
	Run-Time Management description

	Experimental Results
	Application Auto-Tuning Results
	Evaluating RTM Strategies
	Dynamic Workload Results

	Conclusions

	Combining Application Adaptivity and System-Wide RTRM
	Related Work
	Proposed Approach
	Design-Time
	Run-Time

	Experimental Results
	Evaluating RTM Strategies
	Dynamic Workload Results
	Mixed Priority Analysis
	System-Wide Analysis

	Conclusions


	Conclusions
	Design-Time Conclusions
	Run-Time Conclusions
	Future Works

	Abbreviations
	Author's Publication List
	International Conferences
	Technical Reports

	Bibliography

