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Abstract

Small-scale IoT devices powered by energy harvested from the environment are gaining
popularity due to their ability to eliminate batteries that are bulky, require high main-
tenance costs, and have a detrimental impact on the environment. However, the energy
harvested from the environment is unpredictable, meaning it is not a stable power supply.

This makes the computation in these devices intermittent. Intermittent computing is
characterized by an alternation between active computing periods and periods where the
device is powered off, waiting to harvest enough energy from the environment to resume
computing. In intermittent computing systems, frequent energy failures occur, resulting
in the loss of data stored in volatile memory that has not been persisted in Non-Volatile
Memory(NVM). Unlike ordinary devices, like laptops and smartphones, energy harvesting
devices lack the computational and memory resources to equip a full-fledged operating
system to manage recovery after an energy failure. To enable these devices to continue
computing from the point where energy failed, it is necessary to save the execution state
in NVM.

Writes in NVM to persist the state are an overhead. Although these operations do not
directly contribute to program execution, they allow the program to appear as if it is
executing continuously despite frequent interruptions. STT-MRAM, an emerging NVM
technology, can be used as NVM for intermittent systems to lower this overhead since
it has better energy efficiency characteristics compared to other NVM technologies like
FeRAM, MRAM, and flash memories. Writes in STT-MRAM are stochastic in nature.
Specifically, the probability of an STT-MRAM cell switching from one state to another
during a write operation depends on the amount of current provided to it. This is an
opportunity for us. By piloting the current for writing the cell, we can decrease the
energy consumed by writes in STT-MRAM at the cost of introducing some errors in the
written data.

In our research, we examine the benefits and drawbacks of using STT-MRAM with ap-
proximated writes as the persistent storage for an intermittent computing system. To
do this, we build an experimental framework to simulate both approximated and correct
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executions of various benchmarks. This allows us to calculate the energy saved due to
approximated writes and the decrease in the quality of the outputs. By analyzing this
data, we can identify when the proposed approximate computing technique is effective,
reducing a relevant amount of the NVM writes overhead while maintaining an acceptable
quality in the produced output. Further, we explore, for each benchmark, the trade-off
between quality and energy consumption. By exploring this trade-off, we determine the
optimal approximation level that achieves the best energy efficiency while maintaining an
acceptable reduction in the accuracy of the results.

Our results demonstrate that, for example, for an image decoder program, using approx-
imated execution can save up to 50% of the energy used for a correct execution, with a
Root Mean Squared Error (RMSE) of 35 compared to the correct execution, indicating
that this technique can significantly reduce energy usage while still producing acceptable
output quality.

However, the results for a Fast Fourier Transform program are vastly different. Despite
applying the strongest level of approximation, the energy consumption is only reduced by
4% compared to a fully correct execution. At the same time, the quality of the output is
significantly affected, with a high probability of obtaining results with an Average Relative
Error (ARE) greater than 100%.

Keywords: intermittent computing, approximate computing, internet of things, energy
efficiency, batteryless systems



iii

Abstract in lingua italiana

Dispositivi di piccole dimensioni alimentati dall’energia raccolta dall’ambiente stanno
diventando sempre più popolari grazie alla loro capacità di eliminare le batterie che
sono ingombranti, richiedono costi di manutenzione elevati e hanno un impatto nega-
tivo sull’ambiente. L’energia raccolta dall’ambiente ha un comportamento imprevedibile,
il che significa che non è una fonte di alimentazione stabile. Ciò rende il calcolo in questi
dispositivi intermittente.

La computazione intermittente è caratterizzata dall’alternanza tra periodi di calcolo at-
tivo e periodi in cui il dispositivo è spento, in attesa di raccogliere abbastanza energia
dall’ambiente per riprendere l’esecuzione. Nei sistemi di computazione intermittente si
verificano frequenti interruzioni dovute alla mancanza di energia, con conseguente perdita
dei dati memorizzati nella memoria volatile che non sono stati resi persistenti nella memo-
ria non volatile (NVM). A differenza dei dispositivi ordinari, come laptop e smartphone, i
dispositivi che utilizzano energia raccolta dall’ambiente non dispongono delle risorse com-
putazionali e di memoria per avere un sistema operativo che gestisce il corretto recupero
dopo un’interruzione dovuta alla mancanza di energia. Per consentire la computazione
dopo un’interruzione per mancanza di energia è necessario salvare lo stato dell’esecuzione
nella NVM.

Le scritture nella NVM per salvare lo stato di esecuzione rappresentano un overhead.
Anche se queste operazioni non contribuiscono direttamente all’esecuzione del programma,
consentono al programma di sembrare in esecuzione continuamente nonostante le frequenti
interruzioni. La STT-MRAM è una tecnologia emergente di NVM, può essere utilizzata
come NVM per i sistemi intermittenti per ridurre questo overhead in quanto ha migliori
caratteristiche di efficienza energetica rispetto ad altre tecnologie di NVM come FeRAM,
MRAM e flash. Le scritture in STT-MRAM sono di natura stocastica. In particolare, la
probabilità che una cella STT-MRAM passi da uno stato all’altro durante un’operazione di
scrittura dipende dalla quantità di corrente fornita ad essa. Questa è un’opportunità per
noi, poiché pilotando la corrente per la scrittura della cella possiamo diminuire l’energia
consumata dalle scritture in STT-MRAM introducendo però errori nei dati scritti.
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Nella nostra ricerca, esaminiamo i benefici e gli svantaggi dell’utilizzo di STT-MRAM con
scritture approssimate come NVM per un sistema di computazione intermittente. Per fare
ciò, costruiamo un framework sperimentale per simulare esecuzioni approssimate e corrette
di vari benchmark, consentendoci di calcolare l’energia risparmiata grazie alle scritture
approssimate e la riduzione della qualità degli output. Analizzando questi dati, possiamo
identificare quando la tecnica di calcolo approssimativo proposta è efficace, riducendo una
quantità rilevante dell’overhead di scrittura in NVM pur mantenendo una buona qualità
nella produzione di output. Infine, esploriamo, per ogni benchmark, il compromesso tra
qualità e consumo energetico. Esplorando questo compromesso, determiniamo il livello di
approssimazione ottimale che garantisce la migliore efficienza energetica pur mantenendo
una riduzione accettabile dell’accuratezza dei risultati.

I nostri risultati dimostrano che, per un programma decodificatore di immagini, l’utilizzo
dell’esecuzione approssimata può risparmiare fino al 50% dell’energia utilizzata per un’esecuzione
corretta, con un RMSE di soli 35 rispetto all’esecuzione corretta, indicando che questa
tecnica può ridurre significativamente l’utilizzo di energia pur producendo una qualità
di output accettabile. Tuttavia, i risultati per un programma di Fast Fourier Transform
(FFT) sono molto diversi. Nonostante l’applicazione del livello di approssimazione più
forte, il consumo di energia è ridotto solo del 4% rispetto a un’esecuzione completamente
corretta, mentre la qualità dell’output è significativamente compromessa, con una elevata
probabilità di ottenere risultati con un Errore Relativo Medio (ARE) superiore al 100%.

Parole chiave: computazione intermittente, calcolo approssimato, internet delle cose,
efficienza energetica, dispositivi senza batteria
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1| Introduction

The popularity of the Internet of Things (IoT) has skyrocketed in recent years, leading
to an increased demand for affordable and compact embedded devices. However, most of
these devices rely on batteries as their primary energy source, which brings several chal-
lenges. For example, batteries can be dangerous if not adequately protected, expensive,
bulky, require high maintenance costs, and have a detrimental environmental impact.

To overcome these issues, energy-harvesting devices provide a viable alternative as they
can utilize energy from the environment without needing batteries. The energy harvested
from the environment is unpredictable, meaning it is not a stable power supply. For
this reason, these devices suffer from frequent energy failures, which makes computation
intermittent.

Intermittent computing is characterized by an alternation between active computing pe-
riods and periods where the device is powered off, waiting to harvest enough energy from
the environment to resume computing. Figure 1.1 illustrates how intermittent computing
operations occur in bursts, where the device executes a computation until the energy
stored in a small capacitor reaches the turn-off threshold. Upon reaching this thresh-
old, the device powers off and the capacitor starts recharging until it reaches the turn-on
threshold; at which point the computation resumes. The time that separates two con-
secutive execution periods is not constant as it depends on the environmental conditions
that determine the availability of energy.

Figure 1.1: An intermittent execution.
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Therefore, all the data stored in volatile memory are lost when an energy failure occurs.
For ordinary devices, like laptops, this is not a problem since they have an operating sys-
tem that allows the device to resume working correctly after an energy failure. However,
since devices that work with intermittent computing are small and have limited memory
and computational power, it is impossible to install an operating system. Therefore, to
solve this problem and allow the program to progress in the presence of energy failures,
we need to preserve the program’s state in Non Volatile Memory (NVM). When the
computation restarts, it allows continuing from where it powered off. Many techniques
target the problem of making intermittent computing equivalent to continuous comput-
ing [2–4]. These techniques can follow two paradigms: checkpoint-based and task-based.
Checkpoint-based intermittent computing periodically saves the program’s state to NVM
at specific places in the code. When the energy fails, the program can resume execution
from the last checkpoint with a restore routine. Task-based intermittent computing in-
volves dividing the program into smaller tasks that can be executed independently and
saved to NVM individually. Tasks have "Transactional" semantics, so if energy fails dur-
ing a task execution, the results of the task running during the fail are aborted. When
the computation restarts, the execution restarts from this task rather than starting the
entire program.

Saving the state in NVM is an overhead since the energy consumed by this operation does
not directly contribute to the progress of the program execution. Moreover, NVMs are
less energy efficient than volatile memories, so this energy overhead can heavily impact
the system’s overall energy efficiency. However, saving the state to NVM is essential
for intermittent computing, as it enables the program to appear to execute continuously
despite being interrupted multiple times.

Energy efficiency is crucial in intermittent computing systems since we want to maximize
the work that can be performed during the active computing periods. A possible solution
to solve this problem may be using novel NVM technologies such as STT-MRAM since
it has better energy efficiency characteristics than other NVM technologies like FeRAM,
MRAM, and flash memories [1]. The counterpart is that write operations in STT-MRAM
are stochastic [5]. Specifically, the probability of an STT-MRAM cell switching from one
state to another during a write operation depends on the amount of current provided to
it. Monazzah et al. [6] noted that this characteristic of STT-MRAM can be used for an
Approximate Computing (AC) technique. By piloting the current for writing the cell, we
can decrease the energy consumed by writes in STT-MRAM at the cost of introducing
some errors in the written data. We can exploit this approximation technique for reducing
the NVM writes overhead of intermittent computing systems.
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AC is a paradigm where a system provides an approximated result instead of a correct one
while reducing the computational time and increasing energy efficiency. This paradigm is
based on the idea that approximate results could be acceptable if they meet application
requirements. For example, many applications in intermittent computing systems can be
suitable for approximate computing [7], like FFT, image processing, and so on. However,
it is important to note that AC cannot be applied blindly to any program. In some cases,
like cryptography algorithms, even a slight loss in accuracy makes the program’s output
completely useless.

On the one hand, intermittent computing faces the challenge of scarce and unpredictable
energy, necessitating high energy efficiency. On the other hand, AC can enhance the
energy efficiency of systems. Therefore, applying AC to an intermittent computing sys-
tem represents an opportunity, as it can address the energy efficiency challenges faced
by the former. Notably, other works in literature have explored this idea of applying
software-based AC techniques to intermittent computing systems [7, 8]. We explore the
opportunities given by AC in intermittent computing systems but with a technique closer
to the hardware.

Research Question

We consider a board for an intermittent computing system that uses an STT-MRAM as
the persistent storage. We exploit the hardware AC technique proposed by Monazzah et
al. [6] to reduce the overhead of writing in STT-MRAM.

The question we aim to answer is: Can we obtain significant reductions in the overhead of
writes in NVM, using STT-MRAM, while still maintaining a good quality in the produced
outputs?

Contribution

We design an approximation technique for intermittent computing systems based on the
unique characteristic of stochastic switching of STT-MRAM as explained above. We chose
to define different quality levels so that we can adjust the level of approximation.

We define an experimental environment composed of an MSP430-series microcontroller
(MCU) that uses STT-MRAM as NVM. We build a framework for generating experimen-
tal results. This framework uses widespread simulators, such as NVSim [9] and MSPSim
[10]. NVSim simulates the behavior of NVM technologies under various conditions, such
as varying temperature, voltage, and current for write/read operations, and outputs the
latency, endurance, area, leakage power, and energy consumption of the modeled NVM
technology. Using this simulator, we can compute the energy consumption of approxi-
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mated and correct writes on STT-MRAM. MSPSim is an emulator for the MSP430 micro-
controller that accurately simulates the behavior of the MSP430 computing core, RAM,
and peripherals. MSPSim allows us to run code and accurately measure performance
without the need for physical hardware.

We use a set of heterogeneous benchmarks to evaluate the efficacy of our approxima-
tion technique. There is still no standard benchmark selection for evaluating inter-
mittent computing systems. Other works in literature [11] use benchmarks from the
MiBench2 suite[12] for evaluating intermittent systems. The benchmarks we select from
this suite are FFT, PicoJpeg, and Susan edge detection. FFT calculates the Fast Fourier
Transform of an input signal in the time domain. PicoJpeg, on the other hand, takes a
JPEG image as input and outputs the decoded image in bitmap format. Susan edge detec-
tion is a lightweight edge detection algorithm that takes grayscale images as input. These
benchmarks have distinct characteristics. For instance, FFT has a long computational
phase and generates relatively short outputs, whereas PicoJpeg has a short computational
phase but generates large outputs. We aim to consider various scenarios and highlight
how our approximation technique effectiveness can vary depending on the program.

For each benchmark, we select a proper evaluation metric to measure the impact of our
approximation technique on the accuracy of the results compared to the correct execu-
tion. For example, the evaluation metric for FFT is the Average Relative Error (ARE), for
PicoJpeg, it is Root Mean Squared Error (RMSE), while for Susan, we selected precision
and recall with a tolerance threshold. Then, we run these benchmarks with different ap-
proximation levels and evaluate how approximation impacts the accuracy of the obtained
results and how much the energy overhead of writes in NVM decreases.

Finally, we quantitatively explore, for each benchmark, the trade-off between quality and
energy consumption. By exploring this trade-off, we determine the optimal approximation
level that achieves the best energy efficiency while maintaining an acceptable reduction
in the accuracy of the results.

Our evaluation results indicate that our approximation technique can result in substan-
tial energy savings. For instance, when applied to the PicoJpeg benchmark, the energy
consumption for running the entire benchmark can be decreased by almost 50% com-
pared to fully accurate execution. while sill preserving a high Quality of Results (QoR),
as evidenced by a low RMSE value of only 35. However, the results for FFT are vastly
different. Despite applying the strongest level of approximation, the energy consumption
is only reduced by 4% compared to fully correct execution. At the same time, the QoR
is significantly affected, with a high probability of obtaining results with an ARE greater
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than 100%.

1.1. Structure

This thesis is structured into five chapters. First, we give an overview of the state of the
art of AC and intermittent computing and how these two can be combined. Then, we
describe in detail our research question. After this, we describe the methodology we use
to produce our experimental results, and finally, we discuss the experimental results we
obtained.

Below is a summary of the chapters included in this work:

• Chapter 2 provides an overview of state of the art in AC and intermittent com-
puting and how these two concepts can be combined. First, we describe the oppor-
tunities and challenges presented by AC. Next, we survey a small selection of AC
techniques proposed in the literature that are relevant to our work.

We then discuss the opportunities and challenges of intermittent computing and
describe the most important system techniques that support this type of computing.
The chapter then emphasizes the importance of NVM in intermittent computing
systems and compares some NVM technologies for this purpose.

Finally, we introduce some techniques from the literature that combine AC with
intermittent computing.

• Chapter 3 articulates the research question addressed in this thesis. Firstly, we
outline the context in which we place ourselves and in which the question is con-
sidered. Next, we elaborate on the advantages of applying our proposed approach.
Subsequently, we discuss the drawbacks that may arise from our approach. Finally,
we present the trade-off between energy savings and output quality.

• Chapter 4 details our methodology to produce quantitative results to answer the
research questions. First, we describe the evaluation environment and the design of
our approximation technique. We build a framework to generate the experimental
results composed of the widely used simulators NVSim and MSPsim. For both these
simulators, we describe their main features. Finally, we describe the benchmarks
we use to evaluate our technique, along with the error metrics that are specific to
each of them.

• Chapter 5 reports on our experimental results. In this chapter, we quantitatively
evaluate our approach’s effectiveness, considering the amount of energy we can save
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by reducing NVM writes energy cost and how much the accuracy of the result
produced by the benchmarks decreases.

Our results demonstrate that, despite a slight reduction in the QoR, our approxima-
tion technique can lead to a significant reduction of up to 50% in energy consump-
tion for programs like PicoJpeg. However, minor energy savings can significantly
deteriorate the QoR in other cases, like for FFT.

• Chapter 6 concludes the thesis and presents possible future work directions.
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2| Background

In this chapter, we will an introduction to Approximate Computing (AC) and intermittent
computing. We present motivations, challenges, and state of the art implementations for
both these paradigms. The background knowledge presented in this chapter is key for
future reasoning in this thesis work.

2.1. Approximate Computing

With a noticeable increase in the number of applications with onerous resource require-
ments the computational and storage demands of nowadays systems have exceeded the
available resources. As the amount of data managed by data centers increases, passing
from 33 zettabytes in 2018 to 64.2 zettabytes in 2020 also electricity consumption is in-
creasing significantly. Electricity consumption of US data centers is expected to increase
from 91 billion kWh [13] in 2013 to 140 billion kWh in 2020 [14]. At the same time, we
are also facing an enormous increase in the number of low-power devices that are causing
an explosion in the amount of new data produced. For these reasons, energy consumption
has become a key aspect in the design of computing systems. As performance demands
are rising they will soon exceed the resource budget.

A solution for this problem is AC which is based on the idea of allowing selective ap-
proximation or occasional violation of the specifications of a task. The key point is that
approximation can be applied on some parts of an application where a perfect result is
not necessary and an approximate or less-than-optimal result is sufficient, for example
applications that involve media processing (audio, video, graphics, and image), recogni-
tion, and data mining. In these applications a relaxation on the requirements on results
correctness is allowed due to several factors [15]: perceptual limitations determined by
the ability of the human brain to ‘fill in’ missing information and filter out high-frequency
patterns; redundant input data that cause an algorithm to be lossy and still be adequate
and noisy inputs.
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2.1.1. Motivations

AC allows to trade-off accuracy in return for increased performance. AC approach can
alleviate the scalability bottleneck [16], reducing execution time by early loop termina-
tion [17, 18], skipping memory accesses [19], offloading computations to an accelerator
[20], improving yield [21]. However, in our work, we focussed on the energy efficiency
improvements that can be obtained by AC.

In many scenarios AC can be proactively used for efficiency optimization, to create a
tradeoff between results correctness and energy consumption. Approximation is well tol-
erated on a vast class of applications like programs that contain some non critical portions
and errors in these portions do not affect significantly the Quality of Results (QoR). Es-
maeilzadeh et al. [22] found that in many benchmarks like fft, imagefill, jmeint, raytrace,
98% of Floating Point operations can be approximated. Rahimi et al. [23] observed that
in Image Processing applications a peak signal-to-noise ratio (PSNR) of 30DB is typically
considered acceptable. Therefore if program execution is not 100% numerically correct
due to few errors during computations the program can still “appear” to execute correctly.
AC can be used on this type of applications for example by reducing the energy consumed
in storage and memory access by performing a voltage scaling on SRAM supply-voltage
or by performing early loop termination or with loop perforation. Another domain that
is significantly affected by AC is IoT since devices such as sensors and actuators which
interface with the physical world are by their own nature not correct due to the unavoid-
able presence of noise. AC can be utilized in this domain by simply increasing the already
existing approximation level.

2.1.2. Challenges

Some applications are not well suited for approximation, for example in hard real-time
systems on which the execution times of processing tasks need to be well known, in
cryptographic algorithms or also in error detection algorithms like cyclic redundancy
check (CRC). In image processing applications the definition of “good enough” quality
is debatable since some people are more capable of analyzing the quality of an image
than others. Typical error-resilient image processing algorithms can accept errors of up
to 10%, but this same error would be unacceptable for a military system calculating the
trajectory of a ballistic projectile. Another challenge is to understand, in the problems
that allow an approximation, how large is the margin of error acceptance, so to find what
is the maximum applicable level of approximation that does not exceed this margin of
error. For this reason, it is important to ensure the quality of approximate computations
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through output monitoring.

Choosing the correct quality metric is another important step, take for example approx-
imating a compression program with deviation in the output file size as the accuracy
metric. Under approximation, the file size of an invalid output – a corrupt file – may even
become equal to the file size of the exact output, Akturk et al. [24] proved that by using
this quality metric the corrupt output may not be detected.

In conclusion, AC cannot always be applied regardless of the context, but we need to
consider if the system is amenable to not fully correct executions.

2.1.3. Techniques

In this section, we will discuss some AC techniques found in the literature. We selected
for this section the techniques that are most significant for a proper understanding of this
thesis work.

Voltage Scaling

Voltage scaling reduces the energy consumption of hardware while inducting possible
errors. For example, by reducing the set voltage in SRAM some energy will be saved
when writing in the memory, but this will also increase the possibility of the bit not
switching and so errors can be generated.

An important technique of voltage scaling, Near Threshold Computing (NTC), where the
supply voltage Vdd is approximately equal to the threshold voltage of the transistors Vth,
was presented by Dreslinsky et al. [25]. In this region the energy savings are almost the
same as in subthreshold (Vdd<Vth) but with more favorable performances. At the cost
of saving energy by scaling the supply voltage, there is a decrease in the frequency. For
example for the Phoenix processor, presented by Seok et al. [26], from a nominal 9.13
MHz and 29.6 pJ/inst we translate to a 9.8× reduction in energy and a 9.1× in reduction
of frequency. Dreslinsky at al. [25] also proved that in NTC there are more favorable
variability characteristics with respect to subthreshold. The variability characteristics
considered are process, voltage and temperature variations. Borkar et al. [27] observed
that these parameter variations pose a major challenge for the design of high-performance
microprocessors.

Another way of performing voltage scaling was presented by Monazzah et al. [6]. In their
work, they discussed a hardware/software approach to adjust the tradeoff between energy
and quality of write operations in STT-MRAM. STT-MRAMs suffer from a reliability
issue, that is the switching is stochastic. During write operation, the applied write signal



14 2| Background

may be unable to change the value of the STT-MRAM cell, thus leading to a write failure.
The lower the write signal voltage the higher the possibility to have a write failure because
a cell is not switching value, but also lower energy consumption. Here different quality
levels were defined. In each quality level a different level of approximation is performed,
by applying different voltage on a write in the memory cell. This approach allows more
configurability to approximation, having the possibility to give to critical data a higher
quality level, so less write failure possibility, while to non critical data a smaller quality
level with higher write failure possibility, but also better energy efficiency. In their work,
they demonstrated to achieve up to 34% energy savings over a baseline STT-MRAM, with
an acceptable quality of the generated outputs.

Loop Perforation

Loop perforation is an AC technique that works by skipping some iterations of a loop to
reduce computational effort, making execution cheaper and faster.

This technique was first presented by Sidiroglou et al. [17]. They noted that applica-
tion such as: video and audio encoders, Monte Carlo simulations and machine learning
algorithms can trade off accuracy in return for increased performance using loop perfo-
ration, which consists in transforming loops to execute a subset of their iterations while
skipping the rest. It is important to not perform this technique on critical loops, whose
perforation causes the computation to produce unacceptable results, crashes, increase its
execution time, or execute with memory errors, but only on tunable loops, whose per-
foration produces acceptably accurate computations with increased efficiency. Sidiroglou
and his colleagues show the performance advantage of their technique by evaluating it on
applications from the PARSEC benchmark suite, declaring that it delivers performance
increases up to a factor of seven, with the capability to still maintain an acceptable com-
putation accuracy changing the results that the application produces by less than 10%.

Inexact or Faulty Hardware

There are many AC techniques that fall in this class of approximation strategies. All these
techniques work on new designs for faulty hardware, that can achieve better performance
with respect to exact hardware in terms of speed, silicon area, power consumption and
critical path length.

Kang and Kahng [28] propose an accuracy-configurable approximate adder, for which the
accuracy of results is configurable during runtime. The proposed inexact adder, with bit-
width N, is composed by (N/k - 1) sub-adders, each of which is a 2k-bit adder. Sub-adders
are used to perform partial summations, to reduce the critical path delay the inexact adder
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avoids the carry chain, so the output of each sub-adder is incorrect when a carry input
should be propagated to the results. In the general implementation, the output result
will be correct when there are no errors in all (N/k - 1) sub-adders. Kang and Kahng
demonstrate that with smaller k values, the minimum clock period and dynamic power
can be reduced, but the probability of having a correct result will be decreased. This
type of adder is accuracy configurable since by changing the value of k, the accuracy of
the inexact adder can be controlled. The adder proposed by Kang and Kahng achieves
approximately 30% power reduction versus the conventional exact adder, by accepting
relaxed accuracy requirements.

Precision Scaling

Several AC techniques work on the idea of reducing the bit width of variables to reduce
storage requirements and computing effort. For example, if we have a floating point(FP)
variable that needs to be stored in double precision (64 bits) to be correct, we can store
it in single precision (32 bits). Doing so computation will be faster and more energy
efficient, but not exact.

Yeh et al. [16] proposed an application of precision scaling in the domain of physics-based
animation. They proposed an architecture with a hierarchical floating-point unit, that
leverages dynamic precision reduction, to enable efficient FPU sharing among multiple
cores. In their work they show three main benefits of precision reduction: First, some
FP computations may turn into trivial operations that do not require the use of an FPU.
Second, it provides value locality: Precision reduction improves the locality that exists
among similar objects in similar scenes and across iterations during constraint relaxation.
Third, it enables the possibility of using smaller, faster, and more energy efficient FPUs
to replace full precision FPUs. However, since in their proposed architecture the precision
requirement can vary dynamically, the architecture still necessitates occasional access to
full precision FPUs.

2.2. Intermittent Computing

In the last decade, we have seen a huge increase in interest in small low power computing
devices. These devices are used in a very broad number of domains, such as IoT devices,
transportation and logistics, healthcare, smart environment, personal and social domain
and so on.

Today, the total number of IoT devices connected globally exceeds 7 billion, and it is
going to increase to 22 billion by 2025 [29].
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Hester et al. [30] noted that in many domains, a main criticality of these devices is that
they run with batteries, this can be a problem, for example, when the devices are placed
in dangerous environments (e.g., radioactive areas, pressurized pipes) in which battery
recharging or replacement becomes a challenging task. A solution to this problem is
provided by advances in energy harvesting technology, by forgetting batteries and surviv-
ing on energy harvested from the environment, small intermittently powered devices can
monitor objects in hard-to-reach places without the battery maintenance burden.

This does not come for free, we have to take into account that computation in these
devices is intermittent, since energy is not always available to harvest and, even when
it is available, it needs to wait enough to buffer enough energy needed to compute a
useful amount of work. In these devices energy is harvested by the ambient(for eg. solar
energy, kinetic energy), however, the energy throughput produced by all these sources is
way lower even than the consumption of a small device, which will then fall into many
power failures that will unpredictably turn off the device multiple times per second. For
this reason, execution in these devices is radically different to traditional battery-powered
devices.

Batteryless intermittent computing is different from classic continuous computing since
there is no stable power supply. Energy harvested from the environment availability
depends on environmental conditions. Powering a device with it causes intermittent
execution with an alternation between active computing periods and periods where the
device is powered off, waiting to harvest enough energy from the environment to resume
computing. For this reason, execution is intermittent. When an energy failure happens,
the content of the device’s volatile main memory is lost. If partial results have not been
saved to the Non Volatile Memory (NVM), results produced so far are lost. Ordinary
devices such as laptops and smartphones equip an operating system that manages a
recovery after the energy failure. However, the devices used for intermittent computing
are small and have limited storing and computing capabilities, for this reason, they cannot
install an operating system. For this reason, having an intermittent execution creates the
need of saving the work done before an energy failure to not start the entire computation
all over again. There are several ways that we can find in literature to solve this problem,
but they can be summarized into two paradigms: checkpoint/restore-based solutions and
task-based solutions.

2.2.1. Checkpoint/Restore

Two routines are needed to implement this paradigm:
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• Checkpoint: before having an energy failure the system saves its state into NVM.
When and how to perform the checkpoint, which is an energy-expensive operation,
is a critical choice. Many articles in the literature give a solution to this prob-
lem.[HarvOS 2017][Hibernus 2015] [MementOS 2011].

• Restore: this routine restores the state saved in NVM from a previous checkpoint.

By combining these two routines, performing a checkpoint before having an energy failure
and restoring the saved memory state before resuming execution, the system acts as if
it is running in a continuous execution without having to restart all over again after the
device is powered off. Checkpoint mechanisms can be static when compiler-inserted or
dynamic when dynamically-decided.

2.2.2. Task-Based

In this paradigm, a program is decomposed into various atomic tasks small enough to
execute and save their results into NVM in a single execution period. The idea is to
create a chain of tasks that communicate with each other through NVM, so the input of
a task is the output of a previous one. By doing so, it is possible to create arbitrarily
complex applications; [31] and [32] are examples of this approach, but they differ in how
this communication chain between tasks is done.

Differently from checkpoint-based solutions, which may present problems in data consis-
tency, in task-based solutions the used data will always be consistent, independently of
where an energy failure happens. The task-based approach, however, requires some extra
effort from the programmer, who has to deconstruct the program into tasks that execute
atomically.

Algorithm 2.1 Checkpoints inconsistencies example.
1: Bool cond; {this variable is saved in NVM}
2: cond = false;
3: checkpoint();
4: cond = !cond;
5: if cond == true then
6: print("executed correctly");
7: else
8: print("inconsistently executed");
9: end if
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2.2.3. Checkpoint Inconsistencies

The state of an intermittent execution of a program is considered consistent if it cor-
responds to the state of the continuous execution of the same problem, otherwise, it is
inconsistent. Lucia et al. [33] have demonstrated that intermittent execution, with the
use of checkpoints, can lead to state inconsistencies. The main problem is that the volatile
state, such as registers stack and global variables, is lost after an energy failure of the
device and rolled back to the last check-pointed value after a restore, instead, the NVM
is not lost after a power off, and its value may be inconsistent with the volatile state
restored by a checkpoint.

Let us focus on algorithm 2.1 to better understand what inconsistency is. Suppose that
cond is a boolean saved in NVM, at line 2 its value is modified to false, and then a
checkpoint is performed saving the volatile state into NVM, line 4 is executed and the
value of cond is set to true. After that, an energy failure occurs. When the device will
harvest enough energy to restart its execution it will first perform a Restore routine that
restores only the state of the main memory, not of the NVM, then execution will restart
from the line after the checkpoint, so line 6 will be executed. Since cond is saved in NVM
its value will now be true, so in line 4 its value will be changed to false, and then the
else branch will be executed. This execution is different from the one we would obtain
by running the problem in a continuous execution, so it is inconsistent, and the produced
result is wrong.

Checkpoints are critical operations since they involve NVM, which is slower and more
energy-demanding than volatile memory, we should use checkpoints only when strictly
required to. They can produce inconsistencies by mixing persistent and non-volatile states,
they are also of variable length, depending on how much stack is being utilized during the
execution, so it would be optimal to perform a checkpoint only when it would not be too
long. For these reasons choosing when to perform a checkpoint is a non-banal problem,
and many different solutions have been proposed in the literature[3, 11, 32].

2.2.4. Intermittent Computing Techniques

In this section, we will present some relevant techniques for implementing intermittent
computing focusing on checkpoint-based approaches.

MementOS

MementOS is a static checkpointing mechanism [2], it has two parts:
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1. A set of program transformation passes that automatically place checkpoints inside
the code.

2. A library that contains state checkpointing and recovery routines.

At compile time MementOS modifies programs in two ways: First, it places trigger points.
A trigger point is a call to a MementOS function that estimates the available energy. If
this energy is below a certain threshold a checkpoint is taken, otherwise, the checkpoint
is ignored. This allows MementOS to have a dynamic-like behavior even if it is a static
checkpointing mechanism. Second, it wraps the program’s main() function with code
that allows restoring execution from a previous checkpoint. To suspend execution in time
for a checkpoint to complete, MementOS should insert enough trigger points at compile
time so that run-time energy trends are effectively sampled, but it should not insert too
many measurements, otherwise, their energy cost will be predominant with respect to the
execution’s cost. MementOS offers three strategies for automatic checkpoint placement:

1. loop-latch: a trigger point is placed at each loop latch (the end of the loop body),
resulting in an energy check for each iteration of each loop in the program.

2. MementOS places a trigger point after each function call, resulting in an energy
check each time a function returns.

3. In timer-aided mode, MementOS adds to either the loop-latch or function-return
mode a hardware timer interrupt that raises a flag at predetermined intervals. Each
trigger point then checks the flag and proceeds with an energy check only if the flag
is up. The flag is lowered again for the next trigger point.

Besides offering an automatic trigger point insertion mechanism, MementOS offers the
possibility to a programmer to manually add trigger points by including a header file
and placing function calls in the program. MementOS does not provide the possibility to
allocate elements into NVM, and thus it does not include such memory in the checkpoint
content.

HarvOS

HarvOS proposed by Bhatti and Mottola [3] is a static checkpoint solution that requires
minimal intervention by the developer. This solution operates at compile time and dy-
namically adapts to varying levels of remaining energy at run-time while capturing the
actual program execution through the control-flow graph (CFG) of the program.

In their solution they place calls to trigger functions by looking at the CFG of a program,
having different strategies depending on the program constructs. For example, having a
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different behavior for branching statements as opposed to loops results in a placement of
triggers ad hoc for a specific application. At the same time, another goal of this solution
is to reduce the size of the checkpoints by placing trigger functions where the size of the
allocated memory is reduced. When a trigger function is called, based on the current
system state, a checkpoint can be performed. At compile time HarvOS performs four
steps:

• Step 1: The worst-case memory usage throughout the code is estimated, this is used
to compute the highest energy cost ECKPmax for checkpointing.

• Step 2: Compute the maximum number of cycles CMCUmax that can be executed
after the device wakes up with a freshly charged energy buffer supplying energy.
Ewake-up

• Step 3: This step takes as input the results of the ones before, which can be com-
puted independently one from the other. In this step, Cuse, the number of useful
cycles the MCU can execute in a worst-case scenario, is computed. To do so it
is considered that the device starts with energy equal Ewake-up and after this, the
device does not receive any additional energy from the environment. Also, it is con-
sidered that the device needs to spend ECKPmax before having an energy failure to
checkpoint its state. Cuse is, in practice, the number of cycles the MCU can execute
to make progress in the program.

• Step 4: The CFG of the program is computed, to every block in the graph is
associated with the number of cycles required to execute it. Then the CFG is split
into sub-graphs whose total stretch in the number of cycles is at most Cuse/2. At
least one trigger function must be placed within each sub-graph. The distance in
terms of clock cycles between two calls should be lower than Cuse to have enough
energy to reach the next call and perform the checkpoint.

To minimize the checkpoint size, HarvOS identifies in each sub-graph the block corre-
sponding to the minimum size of allocated memory and places a trigger call right at the
end of it.

Hibernus

Hibernus is a dynamic checkpoint mechanism proposed by Balsamo et al. [4]. In Hiber-
nus, there are two states: active and hibernating. The hibernating state is a low-power
mode(LPM) where the device consumes considerably less energy since any computation
is stopped. The system moves between these states when the supply voltage (VCC) passes
thresholds. When VCC drops below a low threshold VH, a checkpoint is performed, and
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the system switches into the hibernating state. The checkpoint may then be restored
when the supply voltage rises above a high threshold VR and the computation resumes.

The Restore routine is performed only if an energy failure occurs while the board is in
LPM. If not, there is no need to do so since, in LPM, the volatile memory does not lose its
content. To implement Hibernus, the device must be equipped with a voltage comparator
that triggers an interrupt when the capacitor reaches a given voltage threshold. Hibernus
requires the programmer to put the initialization routine into its code and to specify the
voltage thresholds VR and VH, which are critical values for the stability of this checkpoint
mechanism.

To overcome the problem of finding the correct values, Balsamo et al. proposed Hi-
bernus++ [34], which extends the functionality provided by Hibernus with automatic
calibration of such thresholds. Hibernus does not present any data flow inconsistencies
even if it does not provide the possibility to allocate elements directly in NVM. This is
done thanks to the LPM in which the system is set when the hibernate routine is called.
In this state, the CPU is disabled. This means that no further computation is performed
until there is enough energy, granting consistency over the elements present in NVM.

2.2.5. The Choice of the NVM in Intermittent Computing

A critical operation for implementing intermittent computing applications is saving the
state of the device’s main memory, typically SRAM, into NVM. Traditionally, micro-
controllers have employed flash memory as the primary NVM technology. However, in
flash memory, write/erase operations are energy-intensive, thus making this technology
inefficient for frequent checkpointing.

An alternative to flash is given by the many emerging new NVM technologies such as ferro-
electric RAM (FRAM), STT-MRAM and MRAM. These technologies have better power
and performance characteristics compared to flash memory. It has been demonstrated
that it is possible to design microcontrollers that integrate FRAM [35] and STT-MRAM
[36, 37]. Moreover, Jayakumar et al. [38] have also shown that by having FRAM as
unified memory, it is possible to perform in situ checkpoints, allowing to perform even
long-running executions without having to care for energy failures. However, FRAM and
STT-MRAM are still inferior to SRAM in both energy consumption and performance, so
the best solution is to have hybrids of SRAM and FRAM/ STT-MRAM.
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2.2.6. Comparison between NVMs

Figure 2.1: From the work of Meena et al. [1], comparison of different NVM technologies.

Meena et al. [1] compared FeRAM, MRAM and STT-MRAM. Figure 2.1 summarizes
their comparison. Considering these technologies’ read time and write energy, we can
say that they outperform flash memory in both performance and energy consumption.
Another critical aspect to consider is the endurance of these memories. Since in inter-
mittent computing, checkpoints may be performed various times in a single second, it is
important to have memories that can be overwritten numerous times without their bits
dying. All these memories perform well also in this parameter, with at least 1012 erase
cycle endurance. After evaluating the most important characteristics of these NVMs, we
can conclude that they can all be valid alternatives to traditional flash memory.

2.2.7. STT-MRAM

By evaluating Figure 2.1, we noted that STT-MRAM is the most promising among these
emerging NVMs substitutes for flash memory, with the best energy consumption and
lowest read and erase time.

An STT-MRAM is made by many magnetic tunnel junctions (MTJ) cells that store the
data. Each MTJ cell is composed of a barrier oxide layer placed between two ferromagnetic
layers. The ferromagnetic layer, whose magnetic orientation is permanently fixed, is called
Reference Layer(RL). At the same time, the other one is named Free Layer(FL) since its
magnetic orientation can be arbitrarily rotated. In each MTJ cell, values are stored
in terms of resistance states. When the magnetizations of RL and FL are parallel, it
is in a low resistance state. Instead, when the magnetization of FL and RL are anti-
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parallel to each other, the MTJ is in high resistance state. By applying a bidirectional
current to the MTJ, we can change the magnetic orientation of the free layer. If the write
current flows from FL to RL, the magnetization state switches to low resistance. Instead,
the magnetization state changes to high resistance if the current flows in the opposite
direction.

There are some things to consider when dealing with this kind of memory, Devolder et
al.[39] noted that STT-MRAMs suffer from a reliability issue, the stochastic switching;
during a write operation, the applied signal may be unable to switch the value of the
STT-MRAM cell, leading to a write failure. Moreover, Bi and Wu [40] noted that Write
failure is an asymmetric phenomenon in STT-MRAMs, with 0 → 1 transition requiring
a higher current to make the STT-MRAM cell reliably commute compared to the value
needed to do so in a 0 → 1 transition. In many contexts, however, the exact correctness
of computations is not required, like in applications resilient to a certain degree of errors
like AC.

As stated by Monazzah et al. [41] the probability of an MTJ failing to switch its state
can be calculated by:

Pwf(tw) = exp

(
−tw

2µBp(Iw − IC0)

(c+ ln(Π2∆
4
))(̇em(1 + p2))

)
(2.1)

Where ∆ is the thermal factor, IC0 is MTJ’s critical switch current at 0 Kelvin, c the
Euler constant, e the magnitude of electron charge, m the magnetic momentum of FL,
µB the Bohr magneton, Iw and tw the write pulse width. By controlling the write pulse
and current, we can change the probability of the MTJ failing to switch.

For its good characteristics as a substitute for flash memory as a NVM in the context of
intermittent computing and its stochastic switching that adapts perfectly to the context
of AC, we decided to base this work on a microcontroller using STT-MRAM as a NVM.

2.3. Intermittent AC

Energy consumption is an essential issue in computation in general. Still, in the context
of intermittent computing, this aspect is even more significant since the efficacy of inter-
mittent computing systems depends on the amount of energy they have at their disposal.
Applications running on transiently powered devices are typically tolerant to approxima-
tion. For this reason, it is promising to synergize the domain of AC, which allows for
increased energy efficiency of executions with intermittent computing. Thanks to approx-
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imation, we can increase the amount of progress computed by an intermittent computing
system before it runs out of power.

Ordinary intermittent computing solutions maintain equivalence to continuous executions
by creating a persistent state on NVM, enabling computations to advance in the presence
of energy failures. Since NVM memory is slower and more energy-demanding than volatile
memory, checkpointing in NVM heavily impacts performance causing system throughput
to reduce while energy consumption increases. Van Der Woude & Hicks [11] noted that
due to checkpointing, the total run-time overhead could reach up to 170% the cost of the
application processing.

Ganesan et al. [8] propose a set of approximation techniques for intermittent computing:
subword pipelining and subword vectorization. Using these techniques makes it possible to
transform processing on energy-harvesting devices from all-or-nothing to as-is computing.
The idea is to accept the approximated result achieved before the power went off and then
execute the next task when power is restored instead of resuming the computation from
a checkpoint that leads to the correct result. They propose to process data at subword
granularity rather than word granularity. First, each word is split into subwords. Then
subwords are processed in order from the most to the least significant. Processing each
subword generates an approximate result. If a energy failure occurs before all subwords are
evaluated, and the result of the already processed subwords is acceptable, the remaining
subwords get ignored upon a restart, and execution continues with the next operation.
They propose:

• Subword pipelining: decompose high-latency instructions into smaller subword op-
erations.

• Subword vectorization: merge low-latency instructions, allowing parallel processing
on the most significant subwords of different data elements.

Using these techniques, starting from word-based computing where the entire word must
be processed to generate a result, we can obtain an iterative model where a partial approx-
imate result is generated after the first subword gets processed and the results improve
with each subsequently processed subword.
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In this chapter, we introduce the research question we target in this thesis. To do so, in
Section 3.1, we first define the base setting for intermittent computing. From this, we
derive three new possible settings obtainable by reducing the cost of Non Volatile Memory
(NVM) writes using a hardware Approximate Computing (AC) technique. In Section
3.2, we discuss the benefits of applying this technique and how applying approximation
to reduce NVM writes energy cost affects the accuracy of the produced results in an
intermittent computing system. Finally, in Section 3.3, we provide an overview of the
energy/quality trade-offs we consider.

3.1. Settings

Here we introduce the base scenarios in which an intermittent computing system works.
By reducing the NVM write energy cost from these base scenarios, we derive three new
possible cases, each exploiting the energy saved to gain different benefits.

An intermittently-powered device executes its program in bursts as energy becomes avail-
able. These bursts are separated by recharge periods, during which the device waits to
harvest from the environment enough energy to perform a meaningful amount of compu-
tation. Two approaches exist to ensure that the computation is equivalent to a continuous
computation: checkpoint-based and task-based.

Checkpoint-based systems

Intermittent systems that use checkpoint-based approaches, shown in Figure 3.1, preserve
the program’s state, including its registers, stack, global variables, and code in NVM.
This ensures that the state can be restored after an energy failure occurs, allowing the
computation to resume from where it stopped in the previous energy burst.

When the system has enough energy to start computing, the program’s state is restored
from the last checkpoint saved before the energy failure occurred. At this point, the
computing phase begins, during which the program progresses in its execution: T cmp,c-b

is the duration of this computing phase. The workload is the amount of progress the
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Figure 3.1: Checkpoint-based intermittent computation.

system makes in an energy burst, and it depends on T cmp,c-b. Right before an energy
failure occurs, the system executes the checkpointing routine. It takes a certain amount
of time T nvm,c-b to complete, and it has an energy cost of Envm,c-b. When an energy failure
occurs, the device must wait a recharge period in which it recharges its capacitor with
energy harvested from the environment. This period is denoted as T r,c-b.

Moreover, it is worth noting that when writing to NVM, the device needs to be running
in active mode, so with the use of the components it uses during the computing phase.
This is because we consider systems with no Direct Memory Access (DMA) available,
which means that the computing unit must be active and involved in the write operation.
However, the program is not progressing or making any further computation during this
period. The device is solely running to write to NVM, with no other operations being
performed. For this reason, while executing the checkpointing routine, energy is consumed
without contributing to the actual progress in the program execution. This can be seen as
a form of energy waste, but it is necessary to ensure that the computation can be resumed
after an energy failure with the correct state.

The value of Envm,c-b, the energy consumption of NVM writes, so the area in red in
Figure 3.1, can be calculated as T nvm,c-b × P nvm,c-b. Taking this into account from now
on we will always discuss in terms of energy consumption of NVM writes and not power
consumption.

Task-based systems

In intermittent systems using task-based approaches, shown in Figure 3.2, the program
is decomposed into tasks small enough to execute and save their results into NVM in a
single energy burst. Furthermore, the tasks have transactional semantics. This means
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Figure 3.2: Task-Based intermittent computation.

that if we have an energy failure while executing a task that has not completed, all the
operations done by that task are aborted. In the next energy burst, the computation will
restart from the beginning of this task. With this approach, the idea is to create a chain
of tasks that communicate to each other through NVM, so the output of a task can be
the input of the next one.

The task-based approach requires more effort from the programmer, who has to decon-
struct the program into a chain of tasks. In Figure 3.2, we can see that T cmp,t-b is the
duration of the computational phase of the task. In Figure 3.2, the dimension of the tasks
is the same for simplicity. We denote with Envm,t-b the energy required to write the task
output in NVM. When a power failure occurs, the system must wait for its capacitor to
recharge before resuming the computation. We denote this period T r,t-b.

3.2. Questions

Writes in NVM are energy-hungry operations, consuming a relevant amount of the energy
stored by the device’s capacitor. Van Der Woude et al. [11] noted that checkpointing
might add up to 60% run-time overhead with peaks at 170%. This study investigates the
potential benefits of using AC to reduce the energy consumed during write operations in
NVM. Specifically, the technique we explore consists in adjusting the current applied to
the writes in NVM. However, approximating writes in NVM also introduces errors in the
data saved. These errors introduced by the approximation may significantly reduce the
quality of the generated output.

With this thesis, we aim to answer the following research questions quantitatively:

1. What are the benefits of reducing the energy consumption of NVM writes?

2. How does this reduction impact the Quality of Results (QoR)?
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Figure 3.3: Increasing computing phase by reducing NVM write energy cost.

3. Can we obtain significant reductions in the energy consumptions of NVM writes
while maintaining an acceptable QoR?

To examine the advantages and the drawbacks that can be obtained by using AC to reduce
the cost of writes in NVM, we identify three potential settings:

• Setting 1, the capacitor is fixed, and a checkpoint-based approach is used.

• Setting 2, the capacitor is fixed, and a task-based approach is used.

• Setting 3, the capacitor is not fixed, but the workload for each energy burst is
fixed.

By exploring these settings, we aim to highlight the benefits of reducing the cost of NVM
writes in intermittent computing systems. For each case, we will also investigate the
effects of introducing errors resulting from approximation to provide a comprehensive
understanding of the trade-offs between energy efficiency and output QoR.

3.2.1. Benefits

The energy saved by reducing the energy required to perform writes in NVM can be
invested to obtain different advantages in an intermittent computing system. Here we
explore what these advantages in the settings introduced above are.

Setting 1: Fixed capacitor dimension, checkpoint-based

In the first setting, we have a fixed capacitor, so we cannot modify its dimension, and we
are using a checkpoint-based system, where the NVM is used to save the machine’s state
allowing the device to make progress.
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Figure 3.4: Re-organize tasks by having longer computing phase, by reducing NVM write
energy cost.

Since the capacitor size cannot be altered, the energy saved by reducing the cost of saving
the state in NVM can be invested to extend the computing phase, as shown in Figure 3.3.
This, in turn, increases the amount of computation the device can perform during each
energy cycle. Furthermore, since the capacitor is fixed, the recharge time is the same as
when the checkpointing data is not approximated.

A longer computational phase allows the program to make more progress in a single charge,
which reduces the number of energy cycles, and so checkpoints needed to complete the
execution of the program. This longer computing phase improves system throughput
since energy failures are fewer, and the system’s uptime increases. Longer uptime periods
also make the system more available to perform jobs and handle requests, increasing the
system’s availability. So we increase the energy spent on useful things.

For this setting, we can see comparing Figure 3.3 with Figure 3.1 that the length of
the computing phase is greater than the length of the computing phase in the regular
checkpoint-based model, so T cmp,c1 > T cmp,c-b. This is because the energy for writing the
state in NVM Eckp,c1 is smaller than Eckp,c-b, so the energy saved can be invested in the
computing phase. Since the capacitor size is fixed, the recharge time remains the same,
so T r,c1 = T r,c-b.

Setting 2: Fixed capacitor, task-based systems

Here we examine the setting where the intermittent computing system uses a task-based
paradigm and the capacitor size is fixed. In this setting, we can see from Figure 3.4 that
the advantage we obtain is the possibility to re-factor the program’s decomposition in
longer tasks with respect to the original task-based scenario depicted in Figure 3.2.

The programmer does the decomposition in tasks of the program. By reducing the energy
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Figure 3.5: Using a smaller capacitor allows for shorter recharge times.

for writing the task output in NVM and investing this saved energy in the computing
phase, the programmer can decompose the program into longer tasks. Longer tasks
enable the program to be completed in fewer tasks overall [42], which reduces the number
of energy failures that occur during the execution of the program. This means the system’s
uptime increases, increasing availability and throughput, similar to the checkpoint-based
setting we discussed earlier.

We can now compare Figure 3.4, where we reduced the energy cost of NVM writes,
allowing programmers to re-factor the tasks into longer ones, with the regular task-based
model in Figure 3.2. We can see that the execution time of longer tasks T cmp,c2 is higher
than T cmp,t-b. The energy consumption of writes of the output in NVM is smaller, so
Envm,c2 < Envm,t-b. Lastly, since the capacitor size is fixed, the recharge time remains the
same; this means T r,c2 = T r,t-b.

Setting 3: Capacitor not fixed, fixed computing workload

In this third setting, we consider an intermittent computing system where the size of
the capacitor is not fixed, giving us the flexibility to adjust its dimension. However, the
program’s progress in a single energy burst is fixed, so we must dimension the capacitor
size considering this constraint. We place this constraint since we want to consider a
system with the same availability and throughput as the original case. If we reduce the
computing phase length, we can use smaller capacitors, but this increases the number of
energy failures, decreasing availability and throughput. The benefits of this approach can
be applied to both checkpoint-based and task-based intermittent computing systems.
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Figure 3.6: Mean square srror increase with higher approximation levels.

In this case, the energy saved by reducing NVM writes energy permits us to use smaller
capacitors to perform the same computing work in a single energy cycle as in the original
case.

Using smaller capacitors has several advantages. Firstly, they have less leakage power,
meaning they lose less energy when unused. Secondly, smaller capacitors reach the operat-
ing voltage sooner, which enables them to recharge faster. Faster recharge times translate
into reduced downtime, which increases system availability. Thirdly, smaller capacitors
occupy smaller areas, making them well-suited for embedded systems where space is often
a constraint.

When comparing the checkpoint-based system with reduced NVM write costs shown in
Figure 3.5 to the standard checkpoint-based model in Figure 3.1, we can observe that
the computing phase remains unchanged, so T cmp,c-b is equal to T cmp,c3. However, the
energy consumed for NVM write operations is reduced: Envm,c3 is less than Envm,c-b. As
a result, a smaller capacitor can be used, meaning Ccap,c3 is smaller than Ccap,c-b. This
leads to shorter recharge periods: T r,c3 is smaller than T r,c-b. The same observations hold
for intermittent computing systems that use a task-based paradigm.

3.2.2. No Free Lunches

Now we discuss the drawbacks of approximating writes in NVM. The same approximation
technique was utilized in the settings examined in Section 3.2.1. The energy savings of
reducing the cost of NVM writes can be used to obtain different benefits. However, the
errors introduced by reducing this energy cost are of the same nature in all the described
settings.

Performing approximate writes in NVM reduces the energy cost of writing data, but it
comes at the cost of introducing errors in the saved data. These errors can affect the
quality of results, making the output unusable. The higher the degree of approximation
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Recharge Time CP Length QoR NVM energy cost

Case 1 T r,c1 = T r,c-b T cmp,c1 > T cmp,c-b Qc1 < Qcorr Envm,c1 < Envm,c-b

Case 2 T r,c2 = T r,t-b T cmp,c2 > T cmp,t-b Qc2 < Qcorr Envm,c2 < Envm,t-b

Case 3 T r,c3 < T r,c-b T cmp,c3 = T cmp,c-b Qc3 < Qcorr Envm,c3 < Envm,c-b

Table 3.1: Summary of advantages and drawbacks of the three cases introduced above,
assume in setting 3 we have a checkpoint-based approach.

used, the more errors are introduced, resulting in a greater decrease in the QoR, as shown
for an example for an image processing application in Figure 3.6. Not all programs can
tolerate approximation, so we must carefully consider the program that the intermittent
computing system is meant to run before using approximations in NVM.

In intermittent computing, the checkpoint written in NVM or the output of a task is
typically used as input in the next power cycle. This means that errors introduced in
the early energy cycles will have a greater impact on the final result quality than those
introduced in later energy cycles. Therefore, tuning the level of approximation used in
NVM writes is crucial. For example, one approach to reduce the snowball effect caused by
errors is to use an increasing level of approximation, starting with a small approximation
in the early phases and gradually increasing to stronger approximations in later phases.

The errors that arise from approximating writes in NVM are the same in all the cases
discussed earlier. The difference lies in how we invest the energy saved. The QoR in
the scenario where NVM writes are carried out correctly without any approximation is
denoted as Qcorr. The QoR for Setting 1, denoted as Qs1 and for Setting 2, denoted Qs2,
will be lower than Qcorr. In the same vein, the QoR for Setting 3, denoted Qc3, will also
be less than Qcorr.

3.3. From Qualitative to Quantitative

In this chapter, our focus has been on qualitatively examining the impact of using AC
on reducing the energy cost of NVM writes in intermittent computing systems. Through
exploring various settings with different types of advantages, we aimed to gain a better
understanding of how AC affects energy consumption in such systems. However, to truly
quantify the extent of this impact, we will perform a detailed experimental analysis in the
next chapters.

Our aim is to run different benchmarks on a system where writes on NVM are approxi-
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Figure 3.7: Tradeoff error/quality, stronger approximation will increase the energy savings
but reduce the QoR, the dotted and the continuous lines refer to two different programs,
we can see that different programs have different trends.

mated and assign numerical values to all relevant variables presented in Table 3.1. This
enables us to accurately measure the reduction in energy consumption and the degrada-
tion in the QoR obtained by using AC in intermittent computing systems. In addition,
we also evaluate the tradeoff between errors and energy saved through our experimen-
tal analysis exploring different levels of approximation and measuring the corresponding
amount of energy saved as well as the magnitude of error introduced.

The tradeoff between energy and quality is an important consideration in designing and
operating an intermittent computing system. The degree of approximation used in NVM
writes directly affects this tradeoff. A higher degree of approximation results in more
significant energy savings but also greater errors and a decrease in the quality of results.
Conversely, using a lower degree of approximation results in fewer errors and a higher
quality of results but with more limited energy savings. Finding the optimal level of
approximation is crucial in achieving the desired tradeoff between energy and quality of
the output.

Generally, the amount of energy saved and the QoR degradation depend on the specific
program the system is running and on the device and NVM characteristics. Intuitively,
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as shown in Figure 3.7, the trends of this energy/quality tradeoff heavily depend on the
program the system is running. While for some programs, the amount of energy saved is
big even with a small degradation in the QoR, for other programs, an almost imperceptible
reduction in the energy consumption may cause the QoR to decrease drastically, making
the output unusable. In intermittent computing systems, the tradeoff between energy and
quality is further complicated because errors introduced in the early power cycles have a
greater impact on the final result quality than errors introduced later. Therefore, it is key
to tune the approximation level used in NVM writes carefully to maximize energy saving
while still achieving the desired QoR.

In summary, the key aspect we explore in this thesis is understanding the quality/energy
tradeoff and the effectiveness of approximating writes in NVM. The tradeoff between
energy and quality is critical to find the optimal level of approximation to achieve the
desired balance between energy savings and quality of results.
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In this chapter, we describe the methodology used to perform the quantitative evaluation,
answering the research questions described in the previous chapter. First, section 4.1
describes the target architecture and the design of our approximation technique to reduce
the energy consumption of Non Volatile Memory (NVM) writes. Next, in Section 4.2,
we describe the workflow to generate the results that we show in Chapter 5. Lastly, in
Section 4.3, we describe the benchmarks we use to evaluate our technique and the quality
metrics specific to each of them.

4.1. Target Hardware Platform

In this section, we describe the platform we use to conduct the experimental study we
discuss in Chapter 5. We start by describing the NVM we select for our platform and the
approximation technique we utilize to reduce the cost of writing into it. Then, we present
the selection of the rest of the platform.

4.1.1. STT-MRAMs and Approximating Write Operations

In Chapter 3, we explored the potential benefits of reducing energy consumption in NVM
by utilizing approximate writes instead of correct ones. Here, we present in detail the
approximation technique we employ, based on the stochastic switching present in STT-
MRAM memories. In Section 2.2.7, we note that STT-MRAM performs better in terms
of energy consumption and latency than other NVM technologies. Therefore, it is more
suitable for embedded systems with strict energy constraints, which is the focus of our
thesis.

As discussed in section 2.2.8, STT-MRAM is susceptible to stochastic switching. This
is when the applied signal during a write operation cannot switch the value of the STT-
MRAM cell, leading to a write failure. We must apply a pulse of a specific width and
current to the STT-MRAM cell to achieve a successful write operation. The higher the
current and width of the pulse, the greater the probability of successfully switching the
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Quality WER Set Current (µA)

Q0 10-8 1153

Q1 10-6 865

Q2 10-5 769

Q3 10-4 673

Q4 10-3 577

Table 4.1: Relationship between WER and set current for a 32nm STT-MRAM.

STT-MRAM cell. However, to achieve almost 100% accuracy, we need to use a high
current for write operations. In our case, we do not always require fully accurate writes,
so we can introduce errors and use smaller currents, thereby reducing energy consumption
significantly. This creates a knob between the energy consumption and the Write Error
Rate (WER) of writes in STT-MRAM.

To better understand the relationship between the current and the WER in a 32nm STT-
MRAM cells, Monazzah et al. [6] conduct several Monte Carlo simulations, by varying
the write current while pulse width was fixed at 10nS. Based on this relationship, we
define different quality levels, each with a specific WER and the corresponding current
required to achieve it. The baseline quality level, Q0, represents the correct case with a
WER of 10-8. Quality levels progress from Q1 to Q4, where Q4 provides the best energy
efficiency but with a higher WER of 10-3. Table 4.1 summarizes our defined quality levels,
their WER, and their set current.

STT-MRAMs have the useful property of allowing actuation at the block granularity,
which means that the memory can be divided into sections, and a specific quality level
can be assigned to each section. This feature allows for deciding which quality level to
give to each saved data and determining in which section of the STT-MRAM the data
will be written. STT-MRAM can be used as the only NVM due to this property. Critical
data that cannot be approximated, such as counters in a loop, can be saved in a section
where writes are performed correctly. In contrast, data that can be approximated can be
saved in a different section where energy consumption is more efficient.

In summary, the technique we use for approximating writes in NVM is based on the
concept of stochastic switching of STT-MRAMs. We are able to exploit the knob between
write energy and quality offered by STT-MRAM to define different quality levels with
varying WERs and energy consumption.



4| Methodology 37

4.1.2. MCU

After selecting STT-MRAM as NVM, in this section, we describe the rest of the platform
we use to perform our evaluations.

The platform we select is composed of a Texas Instruments board that utilizes the MSP430
microcontroller (MCU) family. Specifically, we chose three different MCUs, namely the
MSP430L092 [43], MSP430G2x5 3[44], and a newly-designed MCU presented by Sing-
hal et al. [45], we call this MSP430Singhal from now on, all based on the MSP430
CPU. Although all these MCUs have the same RISC16 architecture, they differ in energy
consumption, amount of RAM and ROM, and clock. Table 4.2 summarizes the differ-
ence between these MCUs. These MCUs are commonly used in IoT devices and have
limited energy consumption, making them ideal for an energy harvesting scenario. We
chose multiple MCUs with different power consumptions to emphasize that the proposed
approximation technique’s benefits are strictly related to the overall system’s energy con-
sumption and not just the NVM’s energy consumption. Even if we save energy in writing
to the NVM, the overall energy consumption will still be high if the CPU consumes a lot
of energy. Therefore, we chose to highlight the importance of considering the system’s
overall energy consumption.

Figure 4.1 summarizes the platform we use for our evaluation. It is the standard MSP430
MCU architecture, but instead of the FeRam or the flash memory, we placed an STT-
MRAM instead as NVM.

MSP430Singhal MSP430L092 MSP430G2x53

Power supply (V ) 3 1.3 2.2

Frequency (MHz) 16 5 16

Active Power
(µW/MHz)

28.3 58.5 506

Sleep power (µW ) 0.32 8 3.74

Main Memory 8kB SRAM 2kB SRAM 4kB SRAM

Table 4.2: Comparison between the selected types of MCUs.
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Figure 4.1: The MSP430 with STT-MRAM as NVM architecture.

4.2. Evaluation Process

In this section, we describe the evaluation process we utilize to compute the effectiveness
of utilizing the approximation technique we describe above to reduce the total energy
consumption of a program running in the platform described in Section 4.1. To properly
describe the evaluation process, we need first to introduce two simulators we utilize:
MSPSim and NVSim, which we will describe in Sections 4.2.1 and 4.2.2, respectively.
After this, in Section 4.2.3, we describe the whole workflow, from the inputs to the final
evaluation outputs.

4.2.1. MSPSim

MSP430 MCUs are widely used in various applications, including building and home
automation [46], factory control and automation, and health and medical [47] applications.
However, software development for MSP430 can be complex, as it often involves real-time
interfacing with sensors, actuators, and other peripherals. For this reason, testing and
debugging become challenging in the development process.

MSPSim is an emulator for the MSP430 MCU that accurately simulates the behavior of
the MSP430 core, RAM, and peripherals, allowing us to execute and debug programs in a
simulated environment without needing the physical hardware. In addition, the emulator
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supports various MSP430 device families. One of the most relevant features of MSPSim
is its ability to simulate the cycles of MSP430’s core. MSPSim emulates the timing
and behavior of the core, including its instruction set, registers, and memory operations.
MSPSim allows us to run our code and accurately measure performance as we would on
the physical hardware.

MSPSim does not emulate any NVM. We modify MSPSim to allow us to consider a part of
the address space as it is STT-MRAM. This portion of the address space is further divided
into sections, with each section assigned an approximation level. The approximation level
determines the probability of errors occurring when values are written to that section.
Higher approximation levels result in more errors. In this way, we can simulate the
approximation technique for STT-MRAMs described in Section 4.1.1. When running a
program using MSPSim, we can choose which data needs to be saved in the simulated
STT-MRAM portion of the address space and in which section with what approximation
level the data should be saved.

4.2.2. NVSim

NVSim is a simulator that allows us to evaluate the cost and performance characteristics
of various NVM technologies, such as flash memory, phase-change memory, and STT-
MRAM.

NVSim simulates the behavior of NVM technologies under different conditions, including
varying temperature, voltage, and current for write/read operations. NVSim outputs
the latency, endurance, area, leakage power, and energy consumption of the modelled
NVM technology, which are essential for evaluating the design of NVM technologies. In
particular, we rely on NVSim to estimate the energy consumption of NVM technologies.

We utilize NVSim to characterize our STT-MRAM. To fully understand the behavior of
the memory array, it is necessary to accurately characterize the electrical properties of
each cell, such as the current required for set and reset operations and the voltage needed
for reading the cell value. This information can vary depending on the cell’s specific design
and can significantly impact performance, reliability, and energy consumption.

4.2.3. Workflow

This evaluation workflow, represented in Figure 4.2, consists of two parts that converge
to determine the optimal approximation level for a given program.

On one side, we provide the source code (.c file) of the program as input to the MSP430-
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Figure 4.2: The evaluation pipeline, from the source code and STT-MRAM cell definition
to the energy/quality tradeoff.

GCC compiler, which generates an executable file (.out file). We then feed this .out file to
the MSPSIM simulator, which runs the program with different levels of approximation.
For each program, we produce two outputs:

1. A file containing the number of instruction executions it takes to complete the
execution of the program, as well as the number of NVM accesses the program
performs.

2. A file containing the program’s output. The output changes if we change the ap-
proximation level since a different amount of errors will be introduced.

On the other side of the process, we have characterizations, one for each approximation
level, of the STT-MRAM cell in .cell files, which we provide as an input to NVSim. This
software calculates and outputs the energy consumption of the cell at different approxi-
mation levels.

To determine the total energy consumed by a program for accessing the NVM, we combine
the energy consumption values obtained from NVSim with the number of NVM accesses
calculated earlier.

Additionally, the total energy consumed to run the program includes not only the energy
consumed for accessing the NVM but also the energy consumed by the MCU to execute
all instructions. This total energy consumption can be calculated using the number of
instruction executions determined earlier and the energy consumption of running the
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MCU in active mode, as shown in Table 4.2.

By comparing the energy consumption of each approximation level with the quality of the
program output, we can determine the tradeoff between Quality of Results (QoR) and
energy savings. The quality metric used to compute this difference in QoR is application
specific. This tradeoff allows us to find the optimal approximation level for the given
program. It also allows us to evaluate the effectiveness of our approach.

4.3. Benchmarks

There is no standard benchmark selection for evaluating intermittent computing systems,
which have strict constraints on energy, memory, and computation resources. Other works
in literature [11] use benchmarks from the MiBench2 suite [12] for evaluating intermittent
systems. Mibench2 is a suite of benchmarks designed for embedded systems and covers
a wide range of application domains such as automotive, consumer electronics, network,
security, telecommunications, and office.

For our evaluation, we also select benchmarks from the MiBench2 suite. We chose a
heterogeneous selection of benchmarks to cover various aspects relevant to the evaluation.
Specifically, we considered the following aspects for each benchmark:

• Whether the benchmark is amenable to approximation or it requires 100% accurate
computing.

• Whether the benchmark is a pipeline of subtasks or a single task. Some benchmarks
are intrinsically built as a sequence of subtasks, with the output of each subtask
becoming the input of the next one. With this type of benchmark, we can force the
output of each subtask to be written in NVM instead of in volatile memory. This
allows us to simulate a task-based intermittent computing system.

In the approximated execution, some errors are introduced in the written data. This leads
to a decrease in the QoR compared to the output of the correct execution. To evaluate this
decrease in the QoR, we need to compare the output obtained from the correct execution
with the one obtained from the approximated execution.

We select a specific quality metric for each benchmark to quantify this difference in QoR.
The choice of the quality metric is specific to the benchmark. By comparing the output
obtained from the approximated execution with that obtained from the correct execution
using the selected quality metric, we can evaluate the impact of the introduced errors on
the QoR of the benchmark’s output.
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(a) Input (b) Output

Figure 4.3: Susan input and output, execution without approximation.

4.3.1. Susan Edge Detection

Susan is an image recognition and processing algorithm that allows the recognition of
corners and edges on images. It detects the edges in an image based on the differences in
pixel intensity between a central pixel and the one surrounding it. To do so, it places a
circular mask of pixels centered around each pixel in the image. At this point, for each
mask, it compares the intensity of the pixels in the mask with the central one. The pixels
that have similar intensity values are part of the same segment.

Susan edge detection is structured as a pipeline of sub-tasks, where the output of a sub-
task is fed as input of a successive one. So errors will affect the final QoR differently
depending on the stage they are introduced. This program is of particular interest to us
since it will allow us to show the errors snowball effect we discussed in Section 3.2.2.

Susan takes as input images in grayscale pgm format. For our environment with limited
availability of RAM, the images need to be resized to fit our memory constraints. There-
fore, its output is always a grayscale pgm image, where the identified edges are represented
as black pixels surrounded by white ones. In Figure 4.3, we can see an example of the
input and output of the Susan edge detection algorithm.

Quality Metric

In Susan Edge detection, we evaluate the quality of the approximated results by comparing
them with the correct execution results. The evaluation metrics used are precision and
recall, calculated with a tolerance value δ. For example, suppose a pixel detected in the
approximated execution is not in the same position as in the correct execution. In that
case, we can still consider it correctly detected if it is very close to the correct position. The
δ value represents the maximum distance from the correct position we allow to consider a
pixel correctly detected. A larger δ value means we allow more deviation from the correct
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position and still consider the pixel correctly detected. In contrast, a smaller δ value
requires the detected pixel to be very close to the correct position to be considered as
correctly detected.

We can so define:

• True positives (TP): pixels that were correctly detected as part of an edge both in
the approximated execution and in the correct execution, or around the pixel with
a distance less than or equal to δ.

• False positives (FP): pixels that are detected as part of the edge in the approximated
execution but were not detected as part of the edge in the correct execution or around
the pixel plus the δ.

• False negatives (FN): pixels that were part of the edge in the correct execution but
were not detected as part of the edge in the approximated execution or around the
pixel plus the δ.

• True negatives (TN): pixels that were not part of the edge in the correct execution
and were also not detected as part of the edge in the approximated execution or
around the pixel plus the δ.

At this point we calculate precision and recall with these formulas:

Precision =
True Positives

True Positives + False Positives
(4.1)

Recall =
True Positives

True Positives + False Negatives
(4.2)

4.3.2. FFT

The second benchmark we consider is Fast Fourier Transform (FFT). This benchmark
computes the discrete Fourier Transform of a sequence of complex numbers. Discrete
Fourier Transform computation is widely used in many domains, like signal processing,
communications, digital recording, and sampling.

The input this benchmark expects is a sequence of complex numbers representing the
signal in its original domain, such as time or space, and outputs a sequence of the same
length of complex numbers in the frequency domain. An example is provided in Figure 4.4.

This benchmark can be seen as a single task since once an output is generated, it is not
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(a) Random input (b) Output

Figure 4.4: FFT input and output, execution without approximation.

used as input by successive computations, so it does not affect the rest of the execution.

Quality Metric

The evaluation metric we selected to evaluate the performance of an approximated ex-
ecution FFT with respect to a fully correct one is Average Relative Error (ARE). This
metric is the most widely used in literature for the FFT benchmark [48].

AvgRelativeError =
1

n

n−1∑
i=0

∣∣∣∣x[i]correct − x[i]approx

x[i]correct

∣∣∣∣ (4.3)

With n being the length of the input sequence, x[i]correct is the ith element of the output
sequence from the correct execution of FFT, and x[i]approx is the ith element of the output
sequence from the approximated execution of FFT.

4.3.3. PicoJPEG

PicoJPEG is a benchmark from MiBench2. It decompresses an image in the format of
JPEG and outputs the decoded image in bitmap format. PicoJPEG is a lightweight
image-decoding algorithm, which makes it well-suited for intermittent computing systems
that have limited computing capabilities.

We selected this benchmark for evaluating our approach since it produces a very large
output. For example, for a 64x64 image, the bytes we will write in NVM are 3x64x64.
So we can evaluate the potential energy savings in a program that makes intense use of
NVM.
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Quality Metric

Being PicoJPEG a program that produces an image as output, we decide to use Root Mean
Squared Error (RMSE) as the evaluation metric to compare the approximated execution
with the correct one as suggested in other works in literature [48]. RMSE calculates the
average root-mean-square of the pixel differences of the precise and approximate outputs.

The formula for the computing of RMSE is:

RMSE =

√√√√width∗height∑
n=0

(CorrImage[n]− ApprImage[n])2

(width ∗ height)
(4.4)

With CorrImage[i] being the ith pixel of the flattened image computed with a fully
correct execution and ApprImage[j] being the jth pixel of the flattened image computed
with an approximation execution.

4.3.4. Only NVM Writes Micro-Benchmark

This benchmark is not a part of the MiBench2 suite. It is a simple benchmark that
solely writes an array of values in NVM. This benchmark is important because it is the
same as a checkpointing routine where the system only writes in NVM and performs no
other operations. This benchmark represents the corner case where there is no additional
workload except for the one required to write in NVM. By evaluating the energy savings
achieved with this benchmark, we can measure how much potential for energy savings we
have with a given platform. This is a best-case scenario for evaluating the effectiveness of
our approximation technique since the energy savings for the other benchmarks that also
have an additional workload will surely be smaller than the ones of this micro-benchmark.

In this chapter, we presented the framework, the tools, the workflow, and the benchmark
we used for generating the experimental results we show in the next chapter.
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This chapter presents the experimental results obtained using the methodology described
in the previous chapter. In Section 5.1, we describe the parameters that determine the
effectiveness of our Approximate Computing (AC) technique and the results on the energy
consumption of STT-MRAM at different approximation levels. Section 5.2 shows the
energy savings we can obtain with our AC technique for various benchmarks. In Section
5.3, we show the tradeoff between energy and quality for each benchmark.

5.1. System Parameters

To evaluate the efficacy of our AC technique, we need to consider various parame-
ters. Consider for simplicity a single energy burst, as shown in Figure 5.1. With
our AC technique, we can reduce Pnvm, thus reducing the energy consumed by Non
Volatile Memory (NVM) writes, calculated with Envm = P nvm × T nvm. We can then call
Ecomputation the energy consumed for the computation in that burst. It is calculated as
Ecomputation = T computation ×P computation. Let us call the total amount of energy computed
in a burst Etotal = Envm + Ecomputation.

The performance of our approach depends on the impact of Envm on Etotal. If Envm has

Figure 5.1: The variables to consider for evaluating the performance of our approach.
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Figure 5.2: Evaluating process, highlight on how we compute STT-MRAM energy con-
sumption. Green is input, blu intermediary steps, red output.

a negligible impact on Etotal, i.e., Envm << Ecomputation, then minimizing Envm results in
minimal energy savings.

Now, let us discuss where the values of these variables come from:

• Pcomputation depends solely on the microcontroller (MCU). In Table 4.2, we show
the values of Pcomputation for the MCUs we consider in our evaluation.

• Pnvm depends on the characteristics of the STT-MRAM. This is the value that we
can reduce using our AC technique.

• Tnvm depends on the benchmark and the amount of NVM utilized by the bench-
mark.

• Tcomputation depends on the benchmark and the amount of computation required
to calculate the benchmark output.

STT-MRAM Characterization

We now present the experimental results on the energy consumed when writing a bit in
STT-MRAM and how much this value can be reduced with our AC technique. These
results are key for computing the overhead of writing in NVM and how much we can
shrink this value. The results we obtain here are the heights of the NVM write area in
Figure 5.1 for different approximation levels.

We define five quality levels, with Q0 being the baseline representing the quality that
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Quality WER Set Current
(µA)

Write Energy
per bit (pJ)

% Energy
consumption

normalized to Q0

Q0 10-8 1153 167 100%

Q1 10-6 865 94 56.3%

Q2 10-5 769 74 44.3%

Q3 10-4 673 57 34.1%

Q4 10-3 577 43 25.7%

Table 5.1: WER-energy relationship for a 32nm STT-MRAM. Energy consumption are
reported for a single bit.

ensures nearly 100% correct writes, with a Write Error Rate (WER) of 10-8, meaning one
bit switch failure every 108 bit switches. Q1 is the first approximated level, with a WER
of 10-6, and Q4 is the most approximated level, with a WER of 10-3.

We compute the energy usage for writing a bit in an STT-MRAM for each quality level.
The WER of STT-MRAM cells depends on the value of the set current. To determine
the set current for each quality level, we referred to a study by Monazzah et al. [6]
that presented the relationship between the set current and the WER in STT-MRAM
memories. In Figure 5.2, we highlight the specific part of our evaluation process that
enables us to calculate the energy consumption for writing in STT-MRAM. To perform
this calculation, we require ".cell" files that contain the characterization of an STT-
MRAM cell, such as the set current, cell form factor, read voltage, and others. We
created a unique ".cell" file for each quality level, in which we adjusted the set current
based on this WER and set current relationship. We then feed these ".cell" files to NVSim
which outputs the energy consumption values for the write operation of the STT-MRAM
for each quality level.

Table 5.1 summarizes the energy consumption results, showing that even with the first
level of approximation, the energy saved is high, being 56.3% of the energy consumed
with Q0. The energy consumption decreases further with stronger approximation, with
Q4 consuming only 25.7% of the energy of Q0. It is important to point out that the
decrease in energy consumption does not follow a linear pattern, with the reduction being
more significant in the initial levels of approximation. However, this reduction becomes
less pronounced with the strongest quality levels.
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Figure 5.3: Evaluating process, highlight on how we compute the total energy consump-
tion. Green is input, blu intermediary steps, red output.

5.2. Total Energy Consumption

In this section, we show the energy savings obtainable using our AC technique, so how
much we can reduce Etotal. We then explain what the effectiveness of the proposed AC
technique depends on.

Figure 5.3 highlights the portion of our evaluation process to compute the total energy
consumed by every benchmark with our AC technique at different quality levels. We
show that the input this portion takes are the source codes of the programs, the energy
consumptions of the STT-MRAM at different quality levels we computed in the previous
section, and the MCUs characteristics of energy consumption we show in Table 4.2. The
produced output is the total energy consumed for running the program. We call this value
Etotal. This is a big portion of the evaluation process; for this reason we first show the
results that we obtain in terms of energy savings thanks to our AC technique. After this,
we explain how the intermediary values affect these results.

Figure 5.3 displays the total energy consumed for each benchmark, normalized to the total
energy consumed by the benchmark executed with quality level Q0. We show that the
reduction in the energy consumed varies dramatically between benchmarks and MCUs.
The energy savings are significant for almost all the benchmarks for a very energy efficient
MCU like the MSP430Singhal. However, for the MSP430G, which has more demanding
energy requirements, the energy saved is almost always negligible, regardless of the bench-



5| Experimental Evaluation 51

(a) MSP430L (b) MSP430Singhal

(c) MSP430G

Figure 5.4: Etotal with different levels of approximation normalized to Etotal with Q0, in
different MCUs for various benchmarks.

mark or the approximation level.

We now focus on the MSP430Singhal, as it provides the best results for our approximation
technique. For the Only-writes microbenchmark, which does nothing but write an array of
values in NVM and represents the corner case for our approximation evaluation, the energy
reduction with the maximum approximation level Q4 is significant, being it only 30% the
energy consumed with Q0. Looking at Figure 5.3, we can see that the PicoJpeg yields
the highest energy savings among all the other benchmarks from MiBench2. With an
approximation level of Q4, the energy consumed is only half of the energy consumed when
running the benchmark with Q0. However, in FFT, the energy consumption reduction
is almost negligible, regardless of the quality level. In Susan edge detection, we observe
significant energy savings, with the energy consumed with the Q4 quality level being only
0.62 times the energy consumed in the correct execution.
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Benchmark Active cycles NVM writes (bit)

Only-writes 8× 103 32× 103

FFT 48× 106 420× 103

Pico-jpeg 3638× 103 848× 103

Susan Edge 9500× 103 1107× 103

Table 5.2: Average number of active cycles and NVM writes to complete each benchmark.

Looking at the results, we note that energy consumption does not decrease linearly while
increasing the approximation level. So, energy consumption decreases more significantly
from Q1 to Q2 than from Q3 to Q4. For this reason, pushing the approximation level too
far could be less effective.

As we explained in Section 5.1, the effectiveness of our AC technique depends on how
much Envm impacts on Etotal. We define Eratio = ( Envm

Etotal
) × 100, this is the effectiveness

index that represents the effectiveness of our AC technique. We compute this index for
FFT, PicoJpeg, Susan edge detection and Only-writes. Eratio also depends on the MCU
utilized to run the benchmark, so we will show results for all the MCUs described in
Table 4.2.

It is important to note that the number of active cycles it requires the MCUs to complete
the benchmark, and the number of accesses in NVM, do not change if we run the bench-
mark with approximate execution or with a correct execution nor it changes for different
MCUs. This is because all the considered MCUs have the same core and instruction set
architecture, and the inputs we use for each benchmark are the same. Moreover, we run
all the benchmarks with the MCUs set at the same clock. So, while Pcomputation changes
for different MCUs, Tcomputation and Tnvm are independent from the MCU.

We run each benchmark hundreds of times, every time with a different input. We count
the number of active cycles and NVM writes it takes to complete each run and then do an
average of these values for each benchmark. This allows us to find, for each benchmark,
the average number of active cycles it takes to complete it and the average number of
NVM writes it performs. Our approximation technique may be used at any point in time,
but we cannot know the state of the memory at that moment. To simulate a scenario
"a regime", before each run of the benchmarks, we randomly initialize the simulator’s
memory. If we do not do so, MSPSim will initialize all the memory with zeros, this is not
a realistic case, and it could affect the obtained results. The results we get are summarized
in Table 5.2.
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(a) MSP430L (b) MSP430Singhal

(c) MSP430G

Figure 5.5: Envm impact on Etotal for different benchmarks in various MCUs.

We now combine these values with the active energy power for each considered MCU
with the energy cost to perform a single write in STT-MRAM with the baseline Q0
calculated in Section 5.1. This procedure allows us to find, in the case of STT-MRAM
writes performed without approximation, the value of Envm = #NVMwrites×EQ0, with
EQ0 being the energy to write a bit in STT-MRAM with quality level Q0. We can also
compute Ecomputation by knowing the number of active cycles shown in Table 5.2 and the
active power of the MCU shown in Table 4.2. Now it is easy to compute the index of
effectiveness of our AC technique: Eratio =

Envm
Envm+Ecomputation

. Figure 5.5 shows how much
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the writes in NVM impact the total energy consumption for running each benchmark.

To evaluate the effectiveness of our approach, we first analyze how Eratio changes when
different MCUs are used. As expected, the effectiveness of our approach is heavily influ-
enced by the active mode energy consumption of the MCU being used. To illustrate this,
we compared two MCUs: MSP430Singhal in Figure 5.5b and MSP430G in Figure 5.5c.
The first is the most energy efficient, while MSP430G is the least efficient. We found
that for the PicoJpeg benchmark, the Eratio was 69% for MSP430Singhal and only 7% for
MSP430G, resulting in a difference of almost 10x. For the Only-writes micro-benchmark,
where the T computation part of the execution is the smallest possible, the Eratio was 97% for
MSP430Singhal and 56% for MSP430G, a difference of 2x. We conclude that for MCUs
with energy consumption in active mode similar to that of the MSP430G, our AC tech-
nique does not give the possibility for significant energy savings. At the same time, for
MSP430Singhal and MSP430L, depending on the benchmark, we can save a considerable
amount of energy.

We now focus on MSP430Singhal, which benefits the most from our AC technique. As
we expect, the benchmarks that involve image processing offer more opportunities for our
approach. PicoJpeg, produces big outputs to be saved in NVM while having a relatively
small computation amount. The energy consumed by writes in NVM accounts for 69%
the total energy consumption of running the benchmark. For this reason, the amount of
energy we can save by reducing the cost of writes in NVM is significant.

Susan edge detection is the second most promising program for our AC technique, with
Eratio = 51%. The outputs of Susan are way smaller than the ones of PicoJpeg, being its
results grayscale images versus rgb images of PicoJpeg, so almost one-third the dimension.
However, their Eratio is not that different because Susan is intrinsically a benchmark
composed of more subtasks. While in PicoJpeg, the approximation is made only at the
end when the result is written in NVM, in Susan, writes in NVM are also performed as
intermediate results, where a write in NVM in a subtask of Susan is then used as an input
in a following subtask, as we explained in 4.3.1. However, for this reason, the behavior of
approximated Susan’s results follow a more complex pattern than that of PicoJpeg. We
discuss this in detail in Section 5.3.2.

At last, we show that FFT is the benchmark that gives fewer opportunities for our AC
technique, with writes in NVM accounting for only the 7% of the total energy consumed
to run the benchmark. This is because its output is pretty small, while the computational
part that cannot be approximated is relatively long. This makes this type of program not
convenient for applying our approximation technique.
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Figure 5.6: Evaluation process, highlight how we compute the tradeoffs. Green is input,
blu intermediary steps, red output.

In the next section, our evaluation will include the deterioration of the Quality of Re-
sults (QoR) for each benchmark. This will help us determine the level of approximation
that achieves a significant reduction in energy consumption without severely affecting the
accuracy of the output.

5.3. Quality/Energy Trade-off

Until now, we only evaluated the potential energy savings of our AC technique, but we did
not consider the degradation of the results it causes. In this section, we study the trade-off
of energy saved vs QoR for each of the presented benchmarks. Figure 5.6 highlights the
part of the evaluation process that allows us to define this relationship. The inputs for
this evaluation are the results of the benchmarks, run with hundreds of different inputs at
different levels of approximation, and the average Etotal of each benchmark for each level
of approximation. For each benchmark, we describe how the resulting QoR decreases and
if we recognize some pattern in the nature of this quality degradation.

5.3.1. PicoJpeg

In Figure 5.7, we show how our AC technique affects the outputs of PicoJpeg. This
benchmark can be seen as a single task, where the approximation happens only at the end
when writing the result in NVM. This can be seen as an approximate saving of an image.
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(a) Q0 (b) Q1 (c) Q4

Figure 5.7: PicoJpeg output at various levels of approximation.

Figure 5.8: PicoJeg trade-off.

When saving the image in STT-MRAM, some pixels at random positions will be incorrect
when a bit fails to switch. The only difference when increasing the approximation level
and the number of bit switch failures is that we introduce more wrong pixels in the image.
There is no correlation in the position of failed pixels, but they are spread randomly in
the image. We call this scheme of errors "Salt & Pepper". Similar results are obtained
by Zeinali et al.- [49] that also used STT-MRAM as memory to save images.

Figure 5.8 demonstrates this benchmark’s energy/quality trade-off, showing how the Root
Mean Squared Error (RMSE) compared to the result of a correct execution increases as
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(a) Q0 (b) Q1 (c) Q4

Figure 5.9: Susan edge detection output at various levels of approximation.

the approximation level changes. The RMSE almost linearly increases from Q1 to Q3 and
experiences a significant increase when moving to Q4, with the RMSE increasing from
9.8 at Q3 to 35 at Q4. On the other hand, the decrease in energy consumption, shown
on the right, is more prominent for the first levels of approximation and mitigates in the
last ones.

In summary, we observe that for Q3, the RMSE is only 9.8. With that approximation
level, we can achieve an energy reduction of 45% and 27.8% of the total energy consumed
by the benchmark with an MSP430Singhal and MSP430L MCU, respectively. At the cost
of a small degradation in quality, we can achieve significant energy savings when running
this program.

5.3.2. Susan Edge Detection

In Figure 5.9, we present an example of the results of the Susan edge detection benchmark
with varying levels of approximation. Although this is also an image-processing algorithm,
the errors introduced in the results are not limited to Salt & Pepper errors. The Susan
algorithm consists of a pipeline of tasks, and errors introduced in the initial stages of the
pipeline may impact the subsequent computations, leading to more complex errors. This
observation is significant as it is equivalent to a task-based intermittent computing. The
Susan edge detection benchmark is divided into various well-defined stages. Every stage
ends with a write in NVM. This value is then used as input for the next stage.

In the final stage, when the image is saved in NVM, we still introduce some Salt & Pepper
errors, similar to the PicoJpeg benchmark. However, these errors are hardly noticeable
in grayscale images. As the approximation level increases, the number of incorrectly
detected edges increases, and we observe a trend of false positives being introduced.
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(a) δ = 0 (b) δ = 1

(c) δ = 2

Figure 5.10: Susan edge detection trade-off. Precision and recall shown for different values
of tolerance δ

However, true positives are generally detected even with high levels of approximation.
These observations are further supported by the results on precision and recall we show
in Figure 5.10.

In Figure 5.10, we compare the decrease in the QoR of the approximated Susan outputs
with the energy savings we can obtain with the approximation. We plot this tradeoff for
δ = 0 in Figure 5.10a, δ = 1 in Figure 5.10b and δ = 2 in Figure 5.10c. As we explain
in 4.3.1, the delta is the tolerance, so we consider a pixel correctly detected if it is in the
same position as the correct execution result or around the position as the correct result
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with a distance less than or equal to δ pixels. Increasing the tolerance, the precision and
the recall values are higher.

We observe that also for this benchmark, the decrease in precision and recall is almost
linear from Q0 to Q3, and it shows a jump for Q4. Q3 seems the most promising approxi-
mation level. We can note that with Q3 considering δ = 1, we have a decrease in precision
of only 4% and a decrease in recall of 2%, while reducing the energy consumption, in an
MSP430Singhal MCU, of about 34% the original energy consumption of the benchmark.

We can note also that moving from δ = 0 to δ = 1, the increase in the precision and recall
for the approximated execution is bigger than when moving from δ = 1 to δ = 2. This
indicates that the miss-detected pixels are often located near the actual edges. Hence, even
if the approximated output is not entirely accurate, it still provides relevant information
about the edges present in the image.

(a) Q0 (b) Q1

(c) Q4

Figure 5.11: FFT output at various levels of approximation.
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Figure 5.12: FFT trade-off.

5.3.3. FFT

In this section, we evaluate the trade-off for the Fast FFT benchmark. Figure 5.11 shows
an example of the output at different levels of approximation. We observed that the
obtained result follows the correct curve, but it introduces various spikes, and the more
we increase the approximation level, the more spikes are introduced in the result. These
spikes have a very high value, causing the Average Relative Error (ARE) to increase
drastically. Since this benchmark can be seen as a single task, an introduced error in the
final result in NVM does not affect the rest of the execution. For this reason, the type of
errors we introduce here is again "Salt & Pepper", similar to the PicoJpeg benchmark,
since the output signal manifests sparsely occurring spikes that have no relation one with
the other. However, while this type of error in an image processing algorithm is not a
big problem, in FFT they cause the output to be almost useless. For example, an image
where 10% of randomly spread wrong pixels is still usable, but for a signal having 10%
of the values at random spikes, the output becomes useless, even if in the rest of the
output, the approximated curve follows the correct one. From this, we conclude that our
AC technique is unsuitable for this type of program.

Figure 5.12 shows how energy consumption decreases with different approximation levels.
In the graph, we evaluate the percentage of outputs with an ARE greater than 3%, which
is a significant amount of error. We found that for Q1, only 1% of the obtained results
have an ARE bigger than 3%, but this percentage increases to 35% at Q2. An FFT that
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produces a non-usable output for one-third of the times is useless. Thus, we can say that
the maximum approximation level we can apply is Q1. Furthermore, we observed that
even at the strongest approximation level, the energy savings for this benchmark are very
low, with only 4.5% using the MSP430Singhal. In contrast, for the other MCUs, the
energy saved is negligible. This observation also reinforces our conclusion that no benefits
can be obtained by applying our AC technique for systems running this type of program.

In this chapter, we performed the experimental evaluation. we have shown the trade-
offs for various benchmarks, considering various MCUs. In the next chapter, we draw
conclusions with respect to the experimental evaluation carried out in this chapter and
provide indications for future work.
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Energy harvesting devices spare the use of bulky, hazardous, and definitely not-eco-
friendly batteries. The drawback of this is that energy harvested from the environment
is inconsistent, so it cannot be considered a stable power supply. For this reason, energy
harvesting devices suffer frequent energy failures making computation intermittent.

To make the computation act as if it was continuous, these devices need to preserve their
state across energy failures. This is possible by saving the state in Non Volatile Memory
(NVM) before an energy failure occurs. Intermittent devices have scarce energy resources,
and writes in NVM are energy-hungry operations needed to make the computation look
continuous, so they represent an overhead.

We explored the use of STT-MRAM as the NVM for an intermittent computing system.
By piloting the write current, we were able to decrease the energy consumed by writes
in STT-MRAM at the cost of introducing some errors in the written data. This allowed
us to reduce the NVM write overhead while accepting a degradation in the Quality of
Results (QoR).

We reported that energy savings with this approximation technique might be significant.
Reducing the cost of writes in STT-MRAM allowed us to save almost 50% of the total
energy consumed to run a program while still producing results with a relatively small
degradation in the QoR. Unfortunately, the results are not always so exciting. In other
cases, an approximation that slightly reduced energy consumption caused a dramatic
decrease in the QoR. We defined and quantified a trade-off between energy savings and
QoR degradation and explored this tradeoff for various benchmarks. This exploration
allowed us to understand when our approach is more effective.

In Chapter 3, we described our research question. We identified where the energy savings
that we can obtain could be invested, so what are the obtainable benefits. We found that
the benefits are increased availability and throughput of the system and the possibility of
having smaller capacitors. At the same time, we identified that the drawback we have to
accept is a decrease in the accuracy of the produced results.
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In Chapter 4, we described the hardware of our target platform, composed of an MSP430
microcontroller that uses STT-MRAM as NVM. We then defined the framework we
utilized to generate our experimental results. Lastly, we described our selection of bench-
marks. By selecting benchmarks with different characteristics, we have the possibility to
cover various aspects for our experimental evaluation.

In Chapter 5, we reported the experimental results we obtained with our framework,
allowing us to evaluate the effectiveness of our approach quantitatively. In this chap-
ter, we explored the tradeoff between energy savings and degradation of the QoR for each
benchmark. We explained the reason why some programs are more suited for this approx-
imation technique than others. Moreover, we reported the reason why in some programs,
the errors followed more complex patterns than in others.

For example for an image decoder benchmark, using our approximation technique, we
saved up to 50% of the energy used for a correct execution, with minimal degradation
in the QoR. However, the results for a Fast Fourier Transform benchmark are vastly
different. The energy consumption can be reduced at most of 4% compared to a fully
correct execution. At the same time, the quality of the output decreases drastically,
making almost all the outputs produced useless.

The benchmark we evaluated were either equivalent to a single task, so to be executed in a
single energy burst or a pipeline of tasks, the same as a task-based intermittent system. We
did not perform an experimental evaluation on a dynamic checkpoint-based intermittent
computing system where the whole program state is persisted in NVM in points we cannot
know at compile time. Exploring the use of our approximation technique in this type of
intermittent system could give even better results since checkpoint-based systems have a
more intensive use of NVM compared to task-based and is a possible direction for future
work.

Moreover, in Chapter 3, we explained that checkpoints written in NVM or the output of
tasks are typically used as input in the next power cycle. This means that errors intro-
duced in the early energy cycles have a greater impact on the QoR than those introduced
in later energy cycles. Implementing the possibility of changing at runtime the approxi-
mation level so to minimize this snowball effect can be an interesting direction to enhance
the effectiveness of our approximation technique.

In Chapter 5, we explored the energy/quality tradeoff for each benchmark, identifying
the "optimal" approximation level as the one that provides significant energy savings
while not decreasing the QoR significantly. However, it is not always possible to quantify
what constitutes a "significant decrease in the QoR" in cases like image processing. For
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example, consider a system upstream that uses the output produced by the Susan edge
detection program. In some cases, it may be tolerable to have some edges not correctly
detected, while in other cases, even a small error could cause the system to malfunction.
Incorporating an upstream system that uses the approximated outputs of an intermittent
computing system as an input into our framework could be material for future work.
This would allow us to explore the trade-off we defined and better determine the optimal
approximation level.

In conclusion, one of the major challenges in intermittent computing is reducing the
overhead of preserving the system’s state across energy failures. This problem has been the
focus of many studies in the literature. In our work, we propose a hardware approximate
technique based on adjusting the write current of STT-MRAM, which takes advantage of
the stochastic switching property of these memories. Our results show that it is possible to
achieve significant reductions in the overhead of preserving the system’s state by sacrificing
the correctness of the results.
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