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1. Introduction
Close-proximity autonomous navigation about
an uncooperative spacecraft is a crucial problem
in the modern space industry for in-orbit
servicing missions as well as Active Debris
Removal (ADR) operations, and estimating the
relative pose of the target is a critical task. A
ground-based approach is unfeasible to achieve
the accuracy level needed in close-proximity
scenarios, while a spaceborne solution implies
the use of on-board sensors: using a low
Size-Weight-Power-Cost (SWaP-C) sensor like
a monocular camera is preferred over heavier
and more energy consuming sensors like LiDARs
and stereo cameras, but introduces the need of
very robust software to perform pose estimation.
This dissertation introduces AIKO-NET, a
deep Convolutional Neural Network (CNN)
capable of estimating the relative pose of an
uncooperative spacecraft from a single grayscale
monocular image. Starting from SLAB’s
Spacecraft Pose Network v2 (SPNv2) [3] as
a baseline, the Multi-Task Learning (MTL)
feature is expanded by trying to exploit a
researched synergy between different yet related
tasks. New feature maps and the respective
prediction heads are introduced keeping the

whole architecture modular and flexible, and a
new dataset called Multi-Feature Spacecraft Pose
Estimation Dataset (MFSPED) is presented and
used to provide AIKO-NET with the new feature
maps labels. Furthermore, a complete pose esti-
mation pipeline is built: it consists of a relative
trajectory generation module, a synthetic images
generation process, the pose prediction through
AIKO-NET, and the application of an Extended
Kalman Filter (EKF) to the position predictions.

This work was developed in collaboration
with AIKO, an Italian company pioneering
in-orbit servicing and space logistics.

2. Theoretical Background
2.1. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a
class of deep Artificial Neural Networks (ANNs)
that are specifically designed for computer vision
applications. ANNs are a fundamental compo-
nent of the field of Machine Learning (ML), that
focuses on creating algorithms that enable com-
puters to learn and improve from experience.
In ANNs, inputs are processed through inter-
connected layers of neurons (nodes), with each
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node using a mathematical function to trans-
form the input before passing it on to the next
layer. The weights and biases associated with
each node are adjusted during training to opti-
mize the network’s performance in solving spe-
cific tasks. Deep ANNs are characterized by the
presence of multiple layers between the input
and output layers, called hidden layers. In this
framework, the Multi-Task Learning (MTL) ap-
proach involves solving different tasks in parallel
to enhance generalization and performance by
utilizing domain information present in the train-
ing signals of such different yet related tasks as
an inductive bias. The operations characteriz-
ing CNNs are convolution and pooling, which
enable the networks to process the input images
by extracting what are called features used for
computer vision tasks. In the next section, Effi-
cientPose [1], a state-of-the-art object detection
and pose estimation CNN, will be presented.

2.2. EfficientPose
EfficientPose is the approach used in SPNv2 [3]
and in the work presented in this dissertation,
and is designed to achieve accurate 6D pose pre-
dictions from images.

Figure 1: EfficientPose architecture.

This architecture, depicted in Figure 1, makes
use of EfficientDet [5] as the backbone, which
is an object detection model that derives from
EfficientNet [6] the ability to efficiently scale the
network (input resolution, width, and depth) in
a principled manner. Furthermore, the imple-
mentation of the Bidirectional Feature Pyramid
Network (BiFPN), which is an efficient multi-
scale feature fusion logic, enables the network to
learn the same features at different scales.
EfficientPose extends the EfficientDet architec-
ture by exploiting its flexible architecture capable
of collecting features at different scales and feed-
ing them to class and box prediction subnetworks:
two subnets are added to accurately predict the

translation and rotation of the detected objects.
The rotation subnetwork is responsible for pre-
dicting the rotation of an object in 3D space; the
translation subnetwork is basically the same as
the rotation one, but it outputs, for each anchor
box (AB), a translation that represents the offset
in pixels from the center of the AB to the center
point of the corresponding object, exploiting the
translational invariance of the input features.

2.3. Perspective-n-Point problem
The Perspective-n-Point problem involves esti-
mating the pose of an object from a set of n 3D
points of a known model in its body frame and
their corresponding 2D projections in an image
taken by a calibrated camera, by mapping the
3D points to their 2D projections.
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Figure 2: Reference frames involved in the PnP
problem.

Taking Figure 2 as a reference, we can apply the
problem to the proposed scenario by estimating
the pose of the body frame B relative to the
camera in the camera frame C. The projection
[u,w]⊤ of a generic point of the target rB on the
image frame can be written as:uwvw

w

 = K
[
RB/C tB/C

]︸ ︷︷ ︸
unknown P

[
rB

1

]
, (1)

where K is the camera intrinsic matrix and de-
pends on the camera parameters, and where
P is the unknown relative pose. The Efficient
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Perspective-n-Point (EPnP) solver is a multi-
stage analytical approach to the problem that
consists in minimizing the reprojection error be-
tween the observed 2D image coordinates and the
predicted 2D coordinates of the 3D points based
on the estimated camera pose. The main idea is
to express the n points as the weighted sum of 4
virtual control points and retrieve a formulation
that brings 4 possible solutions: among these,
the one associated with the lowest reprojection
error is selected.

2.4. Relative Orbital Dynamics
The relative orbital dynamics problem is devel-
oped in a chief-deputy logic and is addressed
by expressing the EOM describing the deputy
position evolution in the chief’s Hill frame
{ôr, ôθ, ôh}. Thus, the deputy relative state can
be written as:

ρ = xôr + yôθ + zôh

ρ̇ = ẋôr + ẏôθ + żôh
(2)

The evolution of the deputy state is expressed
by the following differential equations [4]:

ẍ = 2ν̇

(
ẏ − y

ṙc
rc

)
+ xν̇2 +

µ

rc

− µ(rc + x)

((rc + x)2 + y2 + z2)3/2

ÿ = −2ν̇

(
ẋ− x

ṙc
rc

)
+ yν̇2

− µy

((rc + x)2 + y2 + z2)3/2

z̈ = − µz

((rc + x)2 + y2 + z2)3/2

(3)

where ν is the chief’s orbit true anomaly, µ is
the standard gravitational parameter of the main
attractor, and rc is the chief’s orbit radius. To
complete the formulation, the orbital motion of
the chief has to be expressed in terms of true
anomaly and orbit radius as:

r̈c = rcν̇
2 − µ

r2c

ν̈ = −2
ṙc
rc
ν̇

(4)

2.5. Extended Kalman Filter
In the field of navigation, filtering is used to
estimate the state of a system based on mea-
surements. The Kalman filter operates in two

stages: prediction and correction. In some cases,
the system being estimated may have nonlinear
dynamics, or the measurement model may be
nonlinear. In such cases, an extended Kalman fil-
ter (EKF) can be used. Let us consider a generic
nonlinear model for the state x in Equation 5,
where uk represents the input at the time step k,
f(·) is the state transition function, h(·) is the
measurement function which maps the state to
the measured quantity y, wk and vk identify the
process and measurement noise.{

xk+1 = f (xk,uk,wk)

yk = h (xk,vk)
(5)

To linearize the state transition and the measure-
ment functions, their Jacobian matrices can be
computed as:

F =
∂f

∂x

∣∣∣∣
x̂+

H =
∂h

∂x

∣∣∣∣
x̂−

(6)

The prediction phase consists in the propagation
of both the state x̂+

k and the related covariance
P̂+

k based on their values at the previous time
step; the correction phase exploits the incoming
measurements and an optimal weighting factor
Kk+1 called Kalman gain. The full EKF algo-
rithm is reported in Equation 7

x̂−
k+1 = f

(
x̂+
k ,uk, 0

)
P−

k+1 = FP+
k F

⊤ +Qk

Kk+1 := P−
k+1H

⊤
(
HP−

k+1H
⊤ +Rk+1

)−1

x̂+
k+1 = x̂−

k+1 +Kk+1

(
yk+1 − h

(
x̂−
k+1, 0

))
P+

k+1 = (I−Kk+1H)P−
k+1

(7)

Here, Q and R represent the covariance matrices
associated with process noise and measurement
noise, respectively.

3. AIKO-NET
AIKO-NET is a CNN developed to enhance the
current state-of-the-art MTL-based pose estima-
tion of uncooperative spacecrafts through monoc-
ular images. The main purposes of AIKO-NET
are to demonstrate the reproducibility of the
SPNv2 [1] MTL-related improvements and to
push this MTL nature of the network to further
enhance the estimation accuracy by exploiting
a researched synergy between different predic-
tion heads. Thus, the presented architecture is
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built on top of the SPNv2 which serves as the
baseline. Since the prediction of new features
is introduced, a completely customized dataset
called Multi-Feature Spacecraft Pose Estimation
Dataset (MFSPED) had to be generated to im-
plement the multi-task approach, and also pre-
processing and dataset generation pipelines were
developed in order to build an extremely flexi-
ble and interconnected framework which finally
led to ease of use and modularity of the whole
network and training conditions.

3.1. Custom Dataset
Taking inspiration from SLAB’s SPEED+
dataset [2], MFSPED is made of synthetic images
of the Tango satellite from the PRISMA mission.
Building a dataset for multi-task learning pur-
poses involves brainstorming some feature maps
that could help the network in solving its main
task.

(a) Satellite synthetic
image.

(b) Depthmap.

(c) Normalmap. (d) Shadowmap.

Figure 3: An example of a synthetic image of
Tango and the associated feature maps.

Three additional features, shown in Figure 3,
have been thought of:
a) Depthmap: a segmentation mask of the

satellite with additional information about
the distance from the camera. The closer to
the camera, the whiter the mask pixels; the
further from it, the darkest.

b) Normalmap: a colormap related to the
normal directions to the satellite surfaces in
the target’s body frame: the same surface
results associated with the same color for

every image in the dataset.
c) Shadowmap: an image where the shad-

owed part of the satellite corresponds to
white pixels. This feature should help the
net to better manage different lighting con-
ditions.

The dataset images are associated with a final
feature: the keypoints Heatmap. This feature
provides 2D heatmaps associated with each of the
18 pre-defined keypoints of the synthetic images.

(a) Position labels distribution.

(b) Orientation labels distribution.

Figure 4: MFSPED labels distribution in the
camera frame C.

The satellite images are synthesized in Unity
starting from pose data that is distributed as
displayed in Figure 4: the distance from the
target is considered to be normally distributed on
a range between 2 and 15 meters, and a random
divergence of the camera is considered to account
for an imperfect pointing of the target.
A brief description of the dataset processing
pipeline is shown in Figure 5.

Unity

BG dataset SAT dataset
PRE-PROCESSING

camera 
parameters

dataset 
metadata

DATASET 
GENERATION

FINAL DATASET

train.csv
validation.csv

test.csv

+
normalization 
parameters

Distributed pose 
labels

Figure 5: Full dataset pipeline.
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3.2. Architecture
The AIKO-NET architecture is an expansion of
SPNv2. The features are encoded by EfficientDet
and fed to the prediction heads on different scales,
from the 3rd to the 7th level of the BiFPN.

Class

Box

Rotation

Translation

ℎ!

Heatmap

Depthmap

Normalmap

Shadowmap

ℎ"

ℎ#

ℎ$

ℎ%

Prediction Heads

Shared Feature Encoder (")

Head

Head

EfficientNet
Backbone BiFPN

Figure 6: The AIKO-NET architecture.

The key difference with respect to SPNv2 is the
addition of several prediction heads that, as de-
picted in Figure 6, can be switched on or off
with ease. This modularity makes AIKO-NET a
valid test-bed for experimenting a MTL approach
with different head combinations. The following
prediction heads are currently implemented:

1. EfficientPose head hE, that is responsible
for classification, bounding box prediction,
and direct pose estimation;

2. Heatmap head hH, which output is used by
the EPnP for indirect pose estimation;

3. Depthmap head hD;
4. Normalmap head hN;
5. Shadowmap head hS.

Obviously, one between the EfficientPose and the
Heatmap heads has to be on in order to enable
the pose prediction. The segmentation head used
in the original SPNv2 architecture is replaced by
hD, which predicts a similar but slightly more
informational feature.
The EfficientPose head loss can be seen as the
sum of a:

• Focal loss for the classification task;
• Complete Intersection over Union (CIoU)

loss for the object localization task;
• SPEED loss [3] for the pose estimation task.

The SPEED loss is defined in Equation 8, where
t and q represent the relative translation and
rotation, respectively, and where "x̂" denotes the
predicted quantities x. All the other heads are
associated with a pixel-wise Mean Squared Error
(MSE) loss. The total loss is a weighted sum

of all the losses, and the EfficientPose head loss
alone can be seen as the weighted sum of the
classification, localization, and pose losses.

SPEED = et + Eq

=
∥t̂− t∥
∥t∥

+ 2 · arccos |q · q̂|
(8)

4. Relative Pose Estimation
Pipeline

The relative pose estimation pipeline consists of
four main steps:

1. Trajectory generation by means of relative
orbital dynamics.

2. Processing of the trajectory data in Unity
to produce a sequence of synthetic images
representing the target in the camera frame.

3. Direct and indirect pose estimations through
AIKO-NET.

4. Filtering of the estimated position using an
EKF.

5. Results
The backbone used is EfficientDet-D3, and the
chosen input size for the network is 512 × 512.
The generated dataset is made of 40000 images,
and the splits used for the training, validation,
and testing phases are presented in Table 1.

Table 1: Generated dataset splits

training validation testing

Split 70% 20% 10%
Nimages 28000 8000 4000

Exploiting the modularity of the architecture,
the different configurations reported in Table 2
are tested.

Table 2: Prediction heads configurations for 9
versions of the network.

V0 V1 V2 V3 V4 V5 V6 V7 V8

hE
hH
hD
hN
hS

BGs
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The aim of this process was to find suitable con-
figurations that may over-perform others. The
V0 configuration was used for the first tests on a
dataset with no backgrounds to assess the perfor-
mance of AIKO-NET in full configuration and
optimal scenario conditions. Configurations from
V0 to V7 were trained using loss functions that
equally concur to the total loss to identify how
much each prediction head enhances the "bench-
mark performance" associated with V0.
The last version, V8, has the same configuration
as V1 but the loss weights are modified based on
the previous results.
Each configuration is trained for 50 epochs with
a batch size of 10, and validated each 2 epochs.
A learning rate of 5e−4 is used, which is scaled
by a factor of 1e−1 at the 75% and 90% of the
training process.

Figure 7: AIKO-NET versions SPEED score com-
parison. Direct estimation on the left, indirect
estimation on the right. Config. V3 errors are
replaced by a red shaded region because they
are notably higher with respect to the ones from
other versions.

Figure 7 depicts the boxplots of the SPEED
scores for the different configurations, for both
the direct and indirect methods. Comparing the
left plot to the right one, we can say that the Effi-
cientPose head has an overall better performance.
AIKO-NET V1 is directly comparable to V0 since
they share the same configurations: the perfor-
mance of AIKO-NET V1 is slightly worse than
V0, because of the increased difficulty of the prob-
lem due to backgrounds. The boxplots for V3 are
not included in the plots due to the associated
high errors: the architecture is not optimized
for keypoint detection only. The indirect estima-
tion method appears to benefit from the tasks
performed by the head responsible for the direct
estimation, as shown by V4’s results. Also Effi-
cientPose benefits from the parallelization with

the heatmap estimation task: its predictions in
V4 result more accurate than in V2. Despite the
fact that the configurations from V5 to V7 exhibit
similar levels of performance, it is interesting to
note that the worst results are obtained with V7,
which involves using the shadowmap feature (the
most difficult one) in addition to hE and hH . On
the other hand, V6 with the normalmap head
shows slightly better performance than V4: this
could be due to the high informative level of the
RGB feature, which seems to aid the network in
its primary tasks.
AIKO-NET V8 was trained with different weights
associated with the different heads. Let w denote
the loss weight associated with the heads denoted
by the subscripts E, H, D, N, S. Let wbbox

E , wpose
E

be the losses of EfficientPose tasks. The loss
weights used by V8 are summarized in Table 3.

Table 3: Loss weights for AIKO-NET V8.

wE wcls
E wbbox

E wpose
E wH wD wN wS

V8 1 0.1 0.5 1 1 0.3 0.5 0.2

The test results reveal that V8’s EfficientPose
head exhibits improved performance in predict-
ing both the relative position and attitude, as
expected when compared to V1. However, there
is no significant improvement observed in the
relative pose estimation through the indirect
method. An example of prediction visualization
from AIKO-NET V8 is shown in Figure 8, where
the EfficientPose and heatmap heads outputs are
displayed in the first row, with the depthmap,
normalmap, and shadowmap reported below.

Figure 8: Prediction visualization example for
rgb_36434.png.
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Next, the full estimation pipeline was tested. A
relative trajectory was generated, and a sequence
of images with no backgrounds was output by
Unity and used as input for AIKO-NET V0. The
predictions were then processed by the EKF.
In the next graphs, showing the absolute position
errors, the filtered (blue) and raw (yellow) mea-
surements are overlaid and a logarithmic scale
is used. The CNN predictions on a dynamic,
simulated scene result consistent: the errors do
not present strange behaviors or sudden spikes.
This is a promising result as it suggests a first
step towards the applicability of AIKO-NET to
real-world scenarios. Although the predictions
made by the CNN are already very accurate, with
errors in the order of centimeters and millimeters,
Figure 9 demonstrates the effectiveness of the fil-
tering action. In this specific test, the EKF may
not provide significant additional benefits from
the error point of view, but its filtering action
would be useful in a more complete application
for control purposes by removing excessive noise
in the measured states.

0 50 100 150 200 250 300 350 400

t [s]

10
-6

10
-4

10
-2

10
0

10
2

E
x
 [

m
]

EKF effect on AIKO-NET position estimations

0 50 100 150 200 250 300 350 400

t [s]

10
-6

10
-4

10
-2

10
0

10
2

E
y
 [

m
]

0 50 100 150 200 250 300 350 400

t [s]

10
-6

10
-4

10
-2

10
0

10
2

E
z
 [

m
]

Figure 9: Effect of EKF on AIKO-NET position
predictions.

To perform a more rigorous evaluation of the
EKF’s performance, additional ∼ dm noise was
deliberately added to the measurements, and
the noise measurement matrices were fine-tuned
accordingly. With these more inaccurate mea-
surements, the beneficial effect of the EKF is
clear in Figure 10: the filtering often manages to
lower the errors by an order of magnitude. Thus,
the development of such a tool can be useful for
lowering measurements errors in scenarios where
the predictions are not as accurate as the ones
provided by AIKO-NET V0: this opens scenarios
that may consider pose estimation on satellites
beyond the trained range, or the application of

a lighter, smaller network for which the quality
of the predictions may deteriorate with respect
to the tested benchmark configuration.
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Figure 10: Effect of EKF on AIKO-NET dis-
turbed (∼ dm) position predictions.

6. Conclusions and Future work
The thesis investigates the task parallelization
benefits in a MTL CNN architecture for rela-
tive pose estimation of a known, uncooperative
satellite from greyscale, monocular camera im-
ages. The study contributes by demonstrating
the reproducibility of SLAB’s SPNv2 MTL ef-
fects and by developing and exploring different
configurations of AIKO-NET. AIKO-NET is a
MTL based, modular architecture made of a to-
tal of 5 prediction heads that can solve multiple
tasks simultaneously to improve pose estimation
performance using both a direct and an indirect
approach.
The study explores nine distinct configurations of
AIKO-NET, showcasing state-of-the-art perfor-
mance and the benefits of a modular architecture
that can be trained with a virtually unlimited
dataset. AIKO-NET was integrated into a com-
prehensive pipeline that begins with the custom
generation of trajectories and the relative simu-
lated images and concludes with the application
of an EKF to the position estimates.
Future work includes addressing the domain gap
problem, optimizing the standard deviation used
for generating the ground-truth heatmaps for the
keypoints prediction, exploring other loss types,
applying a dynamically weighted loss function to
optimize AIKO-NET, and embedding a filtering
process for the relative orientation estimates. Fu-
ture research directions should pave the way for
the deployment of a complete vision-based rela-
tive navigation architecture for space systems.
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