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Some people, when confronted

with a problem, think ”I know,

I’ll use regular expressions.”

Now they have two problems.

Jamie Zawinski
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del calcetto; grazie per avermi accompagnato in questi anni con qualche

chiacchera e molte risate.

Infine, un grazie va a tutte quelle persone incontrate che mi hanno lasciato

uno spunto di riflessione e una prospettiva interessante sulle cose attorno a

me.

Grazie mille per la pazienza che avete avuto e per il supporto che mi

avete dato.

I





Sommario

Al giorno d’oggi, l’interesse verso strumenti decisionali automatizzati è spinto

dagli straordinari risultati ottenuti dall’uso di tecniche di intelligenza artifi-

ciale. In questo lavoro, ci focalizziamo sul caso in cui un team di agenti gioca

sequenzialmente contro un avversario. La presenza di informazione asimmet-

rica tra i membri della squadra rende difficile il calcolo di una soluzione anche

nel caso di payoff a somma zero. Gli algoritmi ad hoc disponibili in letteratura

affrontano questo problema utilizzando tecniche di Programmazione Lineare.

L’approccio che proponiamo in questo lavoro consiste invece nell’usare una

procedura per convertire il gioco in un altro a due giocatori e somma zero.

Nel gioco convertito, il team è trasformato in un singolo coordinatore, a

conoscenza solo dell’informazione comune a tutti i membri del team, e che

prescrive ai giocatori un’azione per ogni possibile stato privato. Chiamiamo

questa procedura Public Team Conversion, e il suo risultato è un gioco in

forma estesa che mantiene la maggior parte della struttura del gioco orig-

inale. La nostra conversione permette di adottare le tecniche scalabili e

performanti già sviluppate per i giochi a due giocatori e somma zero, inclu-

dendo anche tecniche per la generazione automatica di astrazioni. Tuttavia,

questa procedura produce un gioco che potrebbe essere esponenzialmente più

grande dell’originale, ma questo non è evitabile a causa della natura NP-hard

del problema. Per risolvere parte delle difficoltà computazionali dovute alla

grandezza del gioco convertito, abbiamo sviluppato due tecniche di pruning,

capaci di diminuire considerevolmente l’aumento di dimensione. Presenti-

amo anche risultati sperimentali ottenuti applicando la nostra conversione a

benchmark standard nell’ambito, Kuhn Poker e Leduc Poker. Applicando

algoritmi stato dell’arte per la computazione di equilibri sul gioco risultante,

mostriamo l’efficacia del nostro approccio.
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Abstract

Nowadays, the push for automatic decision making tools is driven by the

extraordinary results obtained by Artificial Intelligence (AI) techniques. In

this work, we focus on a team of agents playing a sequential game against a

single adversary. The presence of asymmetric information among the mem-

bers of the team makes the problem of computing a solution hard even with

zero-sum payoffs. A number of ad hoc algorithms available in the literature

tackle this problem resorting to Linear Programming. Our novel approach

consists in using a procedure to convert the game to a classical two-player

zero-sum game. In this converted game, the team is transformed into a single

coordinator player which only knows information common to the whole team

and prescribes to the players an action for any possible private state. We call

this procedure Public Team Conversion, and its result is an extensive-form

game maintaining most of the structure of the original game. Our conversion

allows one to adopt the highly scalable and performant techniques already

developed for two-players zero sum games, including techniques for generat-

ing automated abstractions. However, our procedure produces a game which

may be exponentially larger than the original one, but this is unavoidable

due to the NP-hard nature of the problem. To cope with the computa-

tional issues due to the size of the converted game, we provide two pruning

techniques able to considerably reduce the increase in size. We also present

experimental results obtained by applying our technique to standard bench-

marks in the field, Kuhn Poker and Leduc Poker. We also apply state of the

art equilibrium computation algorithms on the resulting game, showing the

effectiveness of our approach.
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Chapter 1

Introduction

1.1 General overview

The contributions of the present work are related to the field of Artificial

Intelligence, with a specific focus on Algorithmic Game Theory. Algorith-

mic Game Theory is a field of study at the intersection of Game Theory

and Computer Science. Its objective is to design algorithms capable of op-

erating strategic decisions in complex environments, optimizing a preference

score over the possible outcomes. The complexity of the environment derives

from uncertainties due to the presence of imperfect information and/or other

agents optimizing their own scores.

The case in which only two players with opposite preferences score has

been thoroughly studied since the 50s, with remarkable results in the last 15

years. En fact, the introduction of scalable and efficient iterative techniques

such as Counterfactual Regret Minimization, game abstraction and online

subgame refinement allowed superhuman performances in big instances of

games: Libratus (Brown and Sandholm, 2017b) and Pluribus (Brown and

Sandholm, 2019b) in Hold’em Poker, AlphaGo (Silver et al., 2017) in Go,

AlphaStar (Vinyals et al., 2019) in Starcraft II.

However, little results have been achieved in the field when teams com-

posed of multiple players are confronting each other, due to inherent com-

plexity of the problem. The need of coordinating the strategies of multiple

players that are simultaneously influencing each other is an added complex-

ity which make classical approaches fail. The traditional route has been that

of employing mathematical programming formulations to solve games in the

space of combined strategies. In the following, a formalized definition of

these concepts will be provided, along with a newly developed method to

reduce the problem of finding the optimal strategy in a team versus single

7



8 Chapter 1. Introduction

adversary game to a two player game. This allows to use the powerful solving

tools that have already been developed for these games to solve team games

as well.

1.2 Motivations

Consider the following scenario: a team of autonomous drones is conducting a

military operation against a single predefined target. Communications may

not be available due to physical/technological constraint; nonetheless it is

desirable for the team to be able to coordinate just by observing the actions

undertaken by the other members. Which is the optimal way to jointly react

to every possible observation for all the team members given the presence of

an intelligent adversary trying to gain the most at the team’s expenses?

A natural way to represent such scenarios and to characterize the rational

optimal behaviour by each agent are provided by Game Theory. Von Sten-

gel and Koller (1997) define the team-maxmin equilibrium solution concept,

while (Celli and Gatti, 2018) redefine the concept for extensive-form games

in presence of different means of communication. The main open challenge

is to efficiently find equilibria corresponding to such solution concepts. En

fact, classical algorithms already developed for the two player scenario can-

not be applied directly, whereas state of the art algorithms able to solve a

generic instance of adversarial team games are grounded upon mathematical

programming formulations of the problems, which present scalability issues.

The main objective of this work is to provide a procedure able to convert

a generic instance of team game into the classical two player representation,

for which efficient algorithms are available to obtain a strategy corresponding

to an equilibrium in the original team game.

The core idea is to use public information and a common sharing of each

other’s strategies to allow team members to update a belief over the possible

hidden information the other team members may have. In other words, as

the game progresses, the information state of each player is enriched by the

probability that the other team members played the observed actions for each

possible hidden information they may have received. This because playing a

specific action when the overall strategy is known communicates part of the

private information.

Such a thought process is a natural concept from theory of mind. Private

states of a player can slowly be reconstructed by their played action, when

their behavior in all possible situations given all possible states is known.

As an example, think of a team card game without communication: if a
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team member knows that his companion will play a specific action if and

only if a specific card is dealt to him, then the fact that the player plays

such an action communicates the presence of that card in the companion’s

hand. Shared conventions across team members are an example of private

information sharing across team members without explicit communication.

1.3 Structure of this Thesis

Our work is split in three parts: the first introduces the formal notation used

and the literature contributions related to the present work. In particular, we

will focus on strengths and weaknesses of state of the art solving techniques

and on existing uses of public information for solving games. Then we will

describe our conversion procedure, prove its correctness, and present some

refinements. In the last part, we focus on experimental evaluation, showing

the convergence of traditional two-player algorithms on converted instances

of Kuhn and Leduc team poker.

The general structure followed is the one going from formal description

and verification to practical applications and examples.

More in detail, this Thesis is structured in the following way:

� Chapter 2 lays the formal groundings on which this work is based.

It presents the notation used throughout this document, and the for-

malisms used to represent games and solution concepts.

� Chapter 3 presentw the algorithms for computing Nash Equilibria in

two player zero sum games;

� Chapter 4 presents the algorithms developed to solve adversarial team

games;

� Chapter 5 reviews the related literature already employing Public In-

formation for two player zero sum and two player cooperative games;

� Chapter 6 presents our proposed procedure employing public infor-

mation to transform an adversarial team game, along with a proof of

correctness and some pruning procedures that refine the result;

� Chapter 7 shows the empirical results of our procedure when applied

to small and medium instances of poker games;

� Chapter 8 draws the conclusions of this work. The obtained results are

summarized and some interesting future developments are highlighted.





Chapter 2

Games, Strategies, Equilibria

Some people, when confronted

with a problem, think ”I know,

I’ll model it using a rigorous

mathematical model”.

Now they have two problems.

The main concepts to understand the field of this work are presented in

this chapter. In the first section, the game theoretical notions to represent

games, solution concepts and strategies are presented. In the second sec-

tion, the Reinforcement Learning formalism used in the next chapters are

reviewed.

2.1 Algorithmic Game Theory

Algorithmic Game Theory (AGT) is a field of study at the intersection of

Game Theory and Computer Science. Its objective is to design efficient

algorithms capable of operating strategic decisions in complex environments,

optimizing a preference score over the possible outcomes. The complexity of

the environment derives from uncertainties due to the presence of imperfect

information and/or other agents optimizing their own scores.

For an informal introduction to the concepts of Games and Solutions, we

refer to Osborne and Rubinstein (1994):

”A game is a description of strategic interaction that includes the con-

straints on the actions that the players can take and the players’ interests,

but does not specify the actions that the players do take. A solution is a sys-

tematic description of the outcomes that may emerge in a family of games.

11



12 Chapter 2. Games, Strategies, Equilibria

Game theory suggests reasonable solutions for classes of games and examines

their properties.”

Many possibilities are available for representing games and strategies. In

the following, we focus on normal form, extensive form and sequence form

games and their corresponding strategies, since they are the most relevant

to our analysis.

2.1.1 Game representations

Normal Form games

A game in normal (strategic) form describes a strategic interaction in which

each agent chooses his plan of action once and for all, and these choices are

made simultaneously. Intuitively, a normal-form game is a tensor-shaped

model, characterized by a concurrent choice of plans for all the players, cor-

responding to the choice of a specific slice of the tensor for each player. The

final payoffs for each player are determined by the joint tuple of chosen plans,

which are coordinates indexing the tensor.

Definition 1 (Normal-form game). A normal-form game (NFG) is a tuple

(N ,A, u) where:

� N = {1, 2, 3, ..., n} is a finite set of players;

� A = ×i∈NAi is a set of action profiles where Ai is the set of action for

player i;

� u = (u1, ..., un) is the set of utility functions ui : A → R.

Extensive Form games

Intuitively, an imperfect information game in extensive form models a tree-

shaped game characterized by a sequential play of actions of each player,

leading to a terminal node providing a utility. Due to partial information,

players may not have full knowledge of the exact past sequence of actions,

and in such a case two or more nodes may be identical from a player point

of view, thus belonging to the same information set.

Definition 2 (Extensive-form Games Kovař́ık et al. (2020a)). An imperfect

information game in extensive form (EFG) is a tuple (N ,A,H,Z,P, σc, u, I)
where:

� N = {1, 2, . . . , N} is the set of players.
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– c is the chance player.

� A =
⋃
pAp is the set of actions

� H is the set of histories, representing the sequences of actions.

– Given a, b ∈ H then we use a ⊑ b to denote the fact that a is equal

to or a prefix of b.

– Can be extended to sets: A ⊑ B ⇐⇒ ∃g ∈ A,∃h ∈ B : g ⊑ h

� Z = {h ∈ H :̸ ∃g, h ⊑ g} is the set of terminal histories.

� P : H \ Z → N ∪ {c} is the player function, denoting which player

acts in the given non-terminal history.

– Hp = {h ∈ H\Z : P(h) = p} is the history set of a specific player.

� A(h) := Ap(h) := {a|ha ∈ H} is the set of actions available to player

p = P(h) at h.

� u = (up)p∈N , where up : Z → R is the utility function assigning to

each terminal node the reward got by player p upon reaching terminal

node z ∈ Z.

� I = (Ip)p∈N . Ip is a partition of Hp, grouping histories indistinguish-

able by the player p.

– I ∈ I is called information set.

– We extend the action function to information sets:

∀I ∈ Ip Ap(I) := Ap(h) ∀h ∈ I

– We do a notational overload: I(h) = I ⇐⇒ h ∈ I

A plan for player p is a tuple πp that specifies an action for each infoset of

that player. The set of all plans of player p is denoted by Πp = ×I∈IpAp(I);
Πp grows exponentially in the size of the EFG. We denote by πp(I) the action

selected by player p at infoset I ∈ Ip
From the definition of EFG and NFG it is possible to define an easy

mapping between the two representations. In particular, given an EFG, its

equivalent normal form representation is the triplet (N ; (Πp)p∈N , (ũp)p∈N ),

where ũp is a correspondent utility function defined on plans derived from up.

However, the normal form representation may require an amount of space

exponentially larger than the extensive form to be stored in memory.

We now describe some important properties needed to characterize EFGs:
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Definition 3 (Perfect recall property). An EFG has perfect recall if for every

p ∈ N , for every I ∈ Ip and any pair h, h′ ∈ I, the sequences of infosets and

actions of player p leading to h, h′ are the same.

Definition 4 (Timeability property (Jakobsen et al., 2016)(Kovař́ık et al.,

2020a)). For a EFG, a deterministic timing is a labelling of the nodes in H
with non-negative real numbers such that the label of any node is at least one

higher than the label of its parent. A deterministic timing is exact if any two

nodes in the same information set have the same label

A EFG is timeable if it admits a deterministic exact timing.

A EFG is 1-timeable if it admits a deterministic exact timing such that

each node’s label is exactly one higher than its parent’s label.

Lemma 1 (Equivalence of timeable and 1-timeable EFGs (Kovař́ık et al.,

2020a)). Any classical timeable EFG can be made 1-timeable by adding chance

nodes with a single noop action. This modification will not increase the size

of the game more than quadratically

The previous classical definition of EFG lacks the formal characterization

of information available to the players that we need to operate on the public

information of the game. Therefore we propose a modification on the EFG

formalism to introduce the concept of visibility of any action for any player.

In order to do so, we restrict ourselves to perfect-recall timeable games.

The definition of Imperfect information Extensive-form game with

visibility (vEFG) we provide in the following is based on the classical one,

with the introduction of an explicit visibility function Pubp(a), describing

whether an action is detected by the players or not. Such a function deter-

mines whether some action is or is not visible for the player at any stage of

the game, and therefore imperfect recall situations in which an observation

is forgotten by a player cannot be represented.

Definition 5 (Extensive-form Games with visibility). An imperfect infor-

mation game in extensive form with visibility is a tuple (N ,A,H,Z,P, σc, u,
(Pubp)p∈N ) where:

� N = {1, 2, . . . , N} is the set of players.

– c is the chance player.

� A =
⋃
pAp is the set of actions

� H is the set of histories, representing the sequences of actions.
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– Given a, b ∈ H then we use a ⊑ b to denote the fact that a is equal

to or a prefix of b.

– Can be extended to sets: A ⊑ B ⇐⇒ ∃g ∈ A,∃h ∈ B : g ⊑ h

� Z = {h ∈ H : ̸ ∃g, h ⊑ g} is the set of terminal histories.

� P : H \ Z → N ∪ {c} is the player function, denoting which player

acts in the given non-terminal history.

– Hp = {h ∈ H\Z : P(h) = p} is the history set of a specific player.

� A(h) := Ap(h) := {a|ha ∈ H} is the set of actions available to player

p = P(h) at h.

� u = (up)p∈N , where up : Z → R is the utility function assigning to

each terminal node the reward got by player p upon reaching terminal

node z ∈ Z.

� Pubp(a) : A → {seen, unseen} is the visibility function, characteriz-

ing whether an action is seen or not by a player. This allows to make

the information known to a player explicit. In addition:

– to guarantee the perfect recallness of the converted game, any ac-

tion played by a player must be seen by the player himself. For-

mally, we have a constraint that ∀a ∈ Ap(I) : Pubp(a) = seen.

Moreover, for each action node, we expect all played action to

have the same visibility:

∀h ∈ H,∀p ∈ N ,∃v ∈ {seen, unseen}, ∀a ∈ A(h) : Pubp(a) = v

This last constraint is a logical constraint not impacting the ex-

pressive power of the model, but allowing a more explicit infor-

mation representation. Note that such a constraint may at most

double the size of the game with respect to the original EFG ver-

sion.

– Pubp(·) can be extended to sets of players.

PubA(a) : A → {pub,priv,hidden}, such that:

PubA(a) = pub ⇐⇒ ∀p ∈ A : Pub(a) = seen

PubA(a) = hidden ⇐⇒ ∀p ∈ A : Pubp(a) = unseen

PubA(a) = priv otherwise
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� The information set structure I = (Ip)p∈N can be recovered from Pubp.

Formally, ∀h, h′ ∈ H : h, h′ ∈ I ⊂ Ip if and only if

P(h) = P(h′) = p ∧ (a)a∈h:Pubp(a)=seen = (a′)a′∈h′:Pubp(a′)=seen

– I ∈ I is called information set.

– we extend the action function to information sets:

∀I ∈ Ip Ap(I) := Ap(h) ∀h ∈ I

– we do a notational overload to indicate the infoset of an history:

I(h) = I ⇐⇒ h ∈ I

� S is the public tree associated to the game. S ∈ S is called public

state.

– from Kovař́ık et al. (2020a): ”S is a partition of H, such that

each S ∈ S is closed under membership within infoset of every

player”. Specifically, two histories belong to the same public state

if they share the same public actions and differ only by the private

actions. Formally, ∀h, h′ ∈ H:

h, h′ ∈ S ⇐⇒ (a)a∈h:PubN (a)=pub = (a′)a′∈h′:PubN (a′)=pub

– we do a notational overload to indicate the public state associated

to the history: S(h) = S ⇐⇒ h ∈ S
– we can also define the public tree for a subset of players. Given a

subset of players X ⊂ N , then SX is the public tree associated to

players in X. Formally, ∀h, h′ ∈ H:

h, h′ ∈ SX ⇐⇒ (a)a∈h:PubX(a)=pub = (a′)a′∈h′:PubX(a′)=pub

In order to guarantee a specific structure of the vEFGs we treat, we in-

troduce the concept of public turn-taking, characterizing games in which the

sequence of players acting is common knowledge across all players. Intu-

itively, each player knows when other players played an action in the past,

even if the game has imperfect information and the specific action played

may be hidden.

Definition 6 (Public turn-taking property). A vEFG is public turn-taking

if:

∀I ∈ I, ∀h, h′ ∈ I : (P(g))g⊑h = (P(g′))g′⊑h′
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Lemma 2 (General transformation into public turn-taking game). Any

vEFG can be made public turn-taking by adding player nodes with a sin-

gle noop action. This modification will not increase the size of the game by

a factor larger than (|N |+ 1)|H|2.

Sketch of Proof. A very simple procedure that allows to prove the lemma

is the following: we can set for each level of the converted game a player,

by cycling through all players (chance included). Then we can add all the

histories of the original game one by one, while imposing that at each level

only the chosen player can play. If the history has no action assigned to

the level’s player, then we can add a dummy player node, with only a noop

operation, and try to prosecute with the actions of the original history in the

next node. The visibility of the noop actions is unseen for all players apart

from the one playing.

This procedure guarantees to get a strategically equivalent game by adding

at most O((|N | + 1)|H|) for any of the |H| histories in the original game.

This proves that the number of histories in the converted game is O((|N |+
1)|H|2)

As we will see in Chapter 6, this property is needed to guarantee that

when merging team players no imperfect recallness can arise from unknown

turn taking between team members.

Sequence Form games

The sequence form is a computationally efficient matrix representation of

an EFG with perfect recall. The main concept behind this representation

is the one of sequence, that is a tuple containing a possible series of actions

orderly played by one player. A sequence qi of player i is called terminal

when there exist a terminal history containing, for player i, all and only the

actions specified by qi.

Definition 7 (Sequence Form game). A sequence form game is a tuple

(N ,Q, u, C) where:

� N = {1, 2, . . . , N} is the set of players.

� Q = (Qp)p∈N is the set of sequences associated to each player.

� u = (up)p∈N , where up : Q → R is the utility function assigning to

each combination of terminal sequences of the players the value corre-

spondent to the terminal node reached, while it is not defined if at least

one of the sequences are not terminal.
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� C = ((Fp, fp))p∈N is the set of constraints associated to each player’s

sequences. They are flow constraints on the weights rp ∈ [0, 1]|Qp| that

player p associates to its sequences. The constraints can be derived

from the original EFG by:

1. assigning q∅; = 1;

2. ∀I ∈ Ip and sequence q leading to I: −rp(q)+
∑

a∈A(I) rp(qa) = 0;

3. reorganizing such constraints in matrix form we obtain Fprp = fp,

where Fp ∈ R(|Ip|+1)×|Qp| and fp ∈ R|Ip|+1. Note that the added

element in |Ip|+ 1 is the constraint corresponding to q∅. To keep

a uniform notation, a fictitious infoset named I∅ corresponding

to it is introduced.

We use some extra notation when working with sequences:

� q∅ indicates a special sequence called empty sequence; it is used to

indicate no action chosen by the player;

� given a sequence qp of player p, we will use qp(h) to indicate the parent

sequence of a node h, i.e. the last sequence leading to that node.

Similarly we can define qp(I) on infosets.

Game typologies

Given the possible formalisms available to represent games, we can define

some specific classes of games that are interesting for the scope of this work.

Definition 8 (Two-player zero-sum game). A game is said to be two-player

zero-sum (2p0s) if it has two players only and any gain from one player is a

cost for the opponent. Formally, N = {1, 2} and u1 = −u2

Definition 9 (Common payoff game). A game is said to be common payoff

if all the players share the same utility function. Formally, ∀p ∈ N : up = u

Definition 10 (Adversarial Team game). A game is said to be an adver-

sarial team game (ATG) if it has at least three players, and its player set is

partitioned into a single player called opponent and a set called team, such

that team players all share the same utility function which is the opposite of

the opponent’s. Formally, N = {o} ∪ T and ∀t ∈ T : ut = −uo

The challenge of rationally choosing a strategy against an opponent is a

common theme between 2p0s games and ATGs. 2p0s games can en fact be

seen as special ATGs in which the team has only one player. The challenge
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of cooperating towards a common objective is instead common between com-

mon payoff and adversarial team games. Common payoff games can be seen

as a specification of ATGs with a dummy opponent.

This allows to transfer insights and considerations across those game

classes.

Player 1

Player 2

1

2 3 4 5

L1 R1

l

L2 R2

r

L2 R2

(a) Extensive form representation of a

game. In this case, Pub2(a) = seen for all

actions and Pub1(l) = Pub1(r) = unseen

l r

L1L2 1 1

L1R2 1 1

R1L2 2 3

R1R2 4 5

(b) Normal form representation of

the same game.

Q1 = {q∅, L1, R1, R1L2, R1R2} , F1 =

 1 0 0 0 0

−1 1 1 0 0

0 0 −1 1 1

 , f1 =

10
0


Q2 = {q∅, l, r} , F2 =

[
1 0 0 0 0

−1 1 1 0 0

]
, f2 =

[
1

0

]

(c) Sequence form representation of the same game.

Figure 2.1: Example of game representations for a zero sum game. Utilities of

Player 1 are the only ones represented.

2.1.2 Strategy representations

A strategy is a policy prescribing the behavior of a player. A strategy is said

to be pure if, for every decision point of the player, it prescribes a single

action with probability 1. Otherwise, the strategy is said to be mixed. Some

of the most common strategy representations are the following:

Definition 11 (Normal form strategy). A normal-form strategy µp for a

player p ∈ N is a function describing a probability distribution over the

possible actions in a NFG. It can be formally defined as: µp : Ap → ∆|Ap|
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Definition 12 (Behavioral strategy). A behavioral strategy σp for player p ∈
N is a function that associates each of his information set with a distribution

over the possible actions. It can be formally defined as: σp(I) : Ip → ∆|A(I)|.

The space of behavioral space of player p is indicated by Σp

Definition 13 (Sequence form strategy (Koller et al., 1996)). A sequence

form strategy rp for player p ∈ N is a function that associates each of his

sequences with a weight, while respecting the flow constraint C of the game.

It can be formally defined as: rp(q) : Qp → [0, 1]|Qp| such that Fprp = fp.

Definition 14 (Strategy profile). A strategy profile is a tuple s = (si)i∈N ,

associating a strategy with each player.

Given a behavioral strategy, it is possible to define the notion of reach

probability, and strategy equivalence. Those concepts can also be extended

to normal form and sequence form strategies, but such a conversion is out of

the scope of the present work.

Definition 15 (Reach probability). Given a behavioral strategy σp for player

p, the reach probability ρσp(h) of history h is the probability with which player

p plays to reach history h under σp. Formally:

ρσp (h) =
∏

∀g⊑h:
I(g)=I,ga⊑h

σp(I, a)

Given a behavioral strategy profile σ, the probability of reaching terminal

node h can be expressed as ρσ(h) =
∏
p∈N ρσp (h)

In addition, reach probability can be defined on information sets too.

ρσp (I) =
∑
h∈I

ρσp (h)

ρσ(I) =
∑
h∈I

ρσ(h)

Definition 16 (Expected payoff of a strategy profile). Given a behavioral

strategy profile σ, its expected payoff for player p is the expected value of the

terminal nodes possibly reached when playing according to σ. Formally, it

can be defined with a notational overload on the value function up:

up(σ) = up(σp,σ−p) =
∑
z∈Z

ρσ(z)up(z)
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Definition 17 (Payoff equivalence). Any two strategies of a player are called

payoff equivalent if, for any strategy of the other players, both strategies have

the same expected payoff. Formally, σ and σ′ are realization equivalent if:

∀σ−p : up(σ,σ−p) = up(σ
′,σ−p)

Definition 18 (Realization Equivalence). Any two strategies of a player are

called realization equivalent if, for any fixed strategy of the other players,

both strategies define the same reach probabilities for all the terminal nodes.

Formally, σ and σ′ are realization equivalent if:

∀σ−p,∀z ∈ Z : ρ(σ,σ−p)(z) = ρ(σ
′,σ−p)(z)

2.1.3 Solution concepts

A solution concept is instead a characterization of the desired notion of equi-

librium between strategies in a strategy profile. Depending on the context of

the game, a solution concept may be preferred over another to characterize

the properties of the desired best strategy.

In order to characterize the strategy profiles corresponding exactly or ap-

proximately to an equilibrium, the notions of best response and exploitability

have to be introduced.

Definition 19 (Best Response). Given a player p and a strategy for all

the other players σ−p, a best response strategy BR(σ−p) for p is a strategy

maximizing their expected payoff. Formally:

BR(σ−p) ∈ argmax
σp∈∆|Σp|

up(σp,σ−p)

Such a definition can be extended to an adversarial team game as well, since

team members share the utility function.

BR(σo) ∈ argmax
σ1∈∆|Σ1|

...
σT∈∆|ΣT |

up(σT , σo)

Nash Equilibria

Nash Equilibria are the most classical and well-known solution concept in

Game Theory. The intuition behind such a concept is that a solution is

stable if no player has any incentive to change its own strategy. The rational

player is thus the one who is able to play a strategy guaranteeing a payoff

value, that means the opponent cannot play a counter strategy giving him

more than the guaranteed value.
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Definition 20 (Nash Equilibrium (Nash, 1951)). A Nash Equilibrium (NE)

is a strategy profile σ such that no player can gain a larger payoff value by

deviating to a different strategy. Formally:

∀p ∈ N : σp ∈ BR(σ−p)

This solution concept proved particularly interesting in 2p0s settings,

thanks to the properties of that class of games. In particular, in 2p0s games

the value of all NEs is unique.

This allows to use concept of guaranteed value against a best response as

a measure of quality of a strategy. The exploitability of a strategy, is defined

as the difference between the worst possible value achievable by that strategy

and the Nash equilibrium value.

Definition 21 (Exploitability). Given a strategy σp for player p in a 2p0s

game with value v∗p for the player, its exploitability e(σp) is defined as the

difference between the value of the game and the value of σp against its best

response. Formally:

e(σp) = v∗p − up(σp, BR(σp))

The concept of exploitability can also be extended to a strategy profile, by con-

sidering the average exploitability over all the players. This allows to avoid

the computation of the value of the game (which is as difficult as computing

the optimal strategy), thanks to the fact that v∗1 = −v∗2, providing a con-

venient method to evaluate strategy profiles without having solved the entire

game. Formally:

e(σ) =
1

2

∑
p∈N

v∗p − up(σp, BR(σp)) =
1

2

∑
p∈N

up(BR(σ−p), σ−p)

Definition 22 (ϵ-Nash Equilibrium). A ϵ-Nash Equilibrium is a strategy

profile σ such that e(σ) ≤ ϵ

Team Maxmin Equilibria

Outside the 2p0s context, Nash Equilibria lose many of their interesting

properties and expressiveness of rational play.

Let’s consider a Nash Equilibrium in adversarial team games. The op-

ponent o best responds to the joint strategy of the team T , and this is a

rational choice on its end. However, the each team member best responds

to the strategy of the opponent and the other team members. This is not

completely rational on the team’s end, since team members are aligned and
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willing to coordinate themselves; therefore considering only unilateral devia-

tion of team players one at a time means forgetting that team members may

coordinate multilateral deviations to achieve larger payoffs.

Another option would be that of merging all team players into a new

single player, and then treat the game as a 2p0s, so that unilateral deviations

of the team player correspond to any possible coordinated deviation of the

team players in the original game. However, for this 2p0s version of the

game to be strategically equivalent to the original adversarial team game,

the team player should forget all the information available to other team

members when playing in place of one team member. The problem is that

such a team player has imperfect recall due to different private information

available to the different team members, and all the algorithms for solving

2p0s games require the game to have perfect recall.

Therefore, for normal form adversarial team games a different solution

concept has been introduced by Von Stengel and Koller (1997), denoted as

Team-maxmin equilibrium.

Definition 23 (Team Maxmin equilibrium). A Team Maxmin equilirium

(TME) is the NE that maximizes the team utility. Formally, a TME is a

strategy profile σ∗ such that:

σ∗ = argmax
σ1∈∆|Σ1|

...
σT∈∆|ΣT |

min
σo

uT (σ1, . . . , σT , σo)

Von Stengel and Koller argue that in normal-form games the TME is

unique except for degeneracy. Such results can be extended to extensive

form games following the same arguments. Thus the TME solution concept

allows to recover many of the characterizing properties of a NE in a 2p0s

game.

The relationships between the NE and TME solution concepts in normal

form ATGs has been analyzed by Basilico et al. (2016) Basilico et al. (2017).

The following theorem states explicitly the inefficiency of playing a NE

instead of a TME for the team. This formally justifies the introduction of

TME solution concept, as a more rational equilibrium choice for the team.

Theorem 3 (Theorem 1 Basilico et al. (2017)). The Price of Anarchy (PoA)

of the NE w.r.t. the TME may be PoA = ∞ even in games with 3 players

(2 teammates), 2 actions per player and binary payoffs.

In addition, Basilico et al. (2017) investigate the impact of coordination

on the value achievable by the team. En fact, a TME prescribes the best
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possible strategy for the team, but does not assume any specific coordina-

tion when those strategies are applied in a game. This can be a source of

inefficiency, because by not coordinating during the sampling of action from

their mixed strategies, the players may miss higher payoffs.

This concept can be formalized through the Team Maxmin with correla-

tion and Price of Uncorrelation:

Definition 24 (TeamMaxmin equilibrium with correlation). A Team Maxmin

equilibrium with correlation (TMECor) is a TME equilibrium in which all

team players are correlated. Formally, a TMECor is a strategy profile σ∗

such that:

σ∗ = argmax
σT ∈∆|×p∈T Σp|

min
σo

uT (σT , σo)

Another nomenclature used in the literature for this concept is Team Maxmin

with coordination (TMECoor).

t1

t2

Player 1

Player 2

Opponent

K 0 0 0 0 0 0 K

Lo

L

l r

R

l r

Ro

L

l r

R

l r

Figure 2.2: Representation of a coordination game. A team of two players {1, 2}
faces a single adversary o. Each player can choose among two actions and no player

can observe the action of the others. For each outcome of the game, the payoff

represents respectively the team utility

Example 1 (Coordination Game). The tree of the game is depicted in Fig-

ure 2.2, assuming K > 0. In this case, the objective of the team would be to

end up either in the leftmost outcome of the game or in the rightmost one, as

both are characterized by a positive utility for the team. In order to maximize

the probability to reach one of these two leaves of the game tree coordination

is essential. As a matter of fact, it can be noted how the couple of actions

L-r or R-l always guarantee a null utility, and therefore the team must reduce

the probability to play such joint actions.
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A coordinated optimal strategy would be to play L-l and R-r uniformly,

with an expected payoff of K/2. This however requires some form of coor-

dination among team members. On the other hand, if no coordination is

possible, optimal strategy would be uniform strategy, with a payoff of K/4.

Remark. The only difference between the TME’s and the TMECor’s defi-

nition consists in the space of strategies of the team. In the definition of a

TME, the space of strategies of the team is the combination of independent

probability distributions over each player’s plans:

σT ∈×
p∈T

∆|Σp|

Conversely, in the definition of a TMECor, the space of strategy of the team

is the probability distribution over joint plans of the team members’ plans:

σT ∈ ∆|×p∈T Σp|

The joint plan sampling from a unique distribution allows the players to

coordinate and have a coherent plan sampled at each game iteration.

Definition 25 (Price of Uncorrelation). Consider an ATG. The Price of

Uncorrelation is defined as PoU = vC
vM
≥ 1, where vC is the game value for

the team at the correlated TME, while vM is the game value for the team at

the TME.

Given a normal form AGT with n players and m actions:

Theorem 4 (Theorem 2 (Basilico et al., 2016)). The POU of the TME w.r.t.

the TMECor may be POU = mn − 2 even in games with binary payoffs.

Theorem 5 (Theorem 3 (Basilico et al., 2016)). Given any n–player game

and a correlated team maxmin equilibrium providing the team a utility of v,it

is always possible to find in polynomial time a mixed strategy profile providing

a utility of at least v
mn−2 to the team and therefore POU is never larger than

mn−2.

These two theorems prove that worst case POU can be at most mn−2.

Therefore, even if the POU is not unbonded, the larger the game, the worse

the POU may be. This justifies the idea that to fully model rationality of

players in a real world situation, a solution concept considering coordination

of team members is needed. This also justifies the creation of a algorithm able

to efficiently compute a TMECor, since it is rational for a payoff-maximizing

team to look towards coordination.
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Celli and Gatti (2018) extended the previous work on normal form AGTs

to extensive form AGTs, considering different types of communication capa-

bilities among team members. Those different communication scenarios have

been formally modeled and the properties of the correspondent solution con-

cepts have been derived.

More in the specific, they identified 3 possible communication scenarios:

� No communication: corresponds to the scenarios in which team mem-

bers have no capability of communicating both before and during the

games, apart from playing the actions specified by the game rules. This

is the worst case scenario, and players have no other means than play-

ing a TME, since there is no exchange of information to permit any

form of correlation.

� Preplay communication only : corresponds to the scenarios in which

team members have capability of communicating before the start of

the game, but not during the game execution. This communication

form is easily implementable in many different contexts, from games

of cards to drones operating in a military context. While seemingly

simple, this communication form can be used to share a common seed

to correlate the sampling from mixed strategies of all team players.

This is effectively enough to implement a TMECor in a real game.

� Preplay and Inplay communication: corresponds to the scenarios in

which team members can freely communicate before and during the

game. This is the case of many common team videogames, like first-

person-shooters or real time strategy games like Starcraft II, and finan-

cial and industrial applications too. Such a communication form allows

a perfect coordination among team members based on fully sharing pri-

vate information. This form of communication leads to the definition

of a TMECom solution concept. This corresponds to a 2p0s Maxmin

equilibrium, since all the team players can be merged in a single player,

identically to the procedure proposed at the start of this subsection, but

without the generation of imperfect recallness thanks to the complete

sharing of private information.

Celli and Gatti (2018) formally define such solution concepts and the

enriched ATGs when communication is explicited. Next, we present their

main results regaring the properties of such games:

Lemma 6 (Equilibria utility, Property 2 in (Celli and Gatti, 2018)). Let

vNo, vCor, vCom be the utility of the team at, respectively, the TME, the
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TMECor and the TMECom for a ATG. Then:

vCom ≥ vCor ≥ vNo

Definition 26 (Inefficiency indices, Definition 6 in (Celli and Gatti, 2018)).

Let vNo, vCor, vCom be the utility of the team at, respectively, the TME, the

TMECor and the TMECom for a ATG. Then it is possible to define 3 Prices

of Uncorrelation related to the losses in payoffs for the team due to not being

able to adequately communicate:

� POUCom/No =
vCom
vNo

is the Price of Uncorrelation for the Preplay and

Interplay communication versus the no communication scenario.

� POUCor/No =
vCor
vNo

is the Price of Uncorrelation for the Preplay com-

munication versus the no communication scenario.

� POUCom/Cor =
vCom
vCor

is the Price of Uncorrelation for the Preplay and

Interplay communication versus the Preplay communication scenario.

Theorem 7 (Lower bounds for POUs, Example 1,2,3 in (Celli and Gatti,

2018)). The lower bound on the worst case PoUs are given in terms of |Z|,
the cardinality of the set of terminal nodes of the AGT in extensive form.

max
{
POUCom/No

}
≥ |Z|

2

max
{
POUCor/No

}
≥ |Z|

4

max
{
POUCom/Cor

}
≥

√
|Z|

Celli and Gatti (2018) prove also the complexity of finding each an equi-

librium for each of those solution concepts.

Theorem 8 (Theorem 2 (Celli and Gatti, 2018)). Given and Extensive-

Form Adversarial Team Game, the unique (unless degeneracy) TMEcom can

be found in polynomial time.

Theorem 9 (Theorem 3 (Celli and Gatti, 2018)). Finding a TMEcor is

FNP-hard when there are two team members, each with an arbitrary number

of information sets, or when there is an arbitrary number of team members,

each with one information set.

Theorem 10 (Theorem 6 (Celli and Gatti, 2018), (Hansen et al., 2008)).

Finding a TME is FNP-hard and its value is inapproximable in additive sense

even with binary payoffs.
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The study of the solution concepts of ATGs highlights the necessity of

some sort of communication for the team members. While the full communi-

cation setting of the TMEcom is the most efficient to compute and guarantees

the highest payoffs to the team, its requirements are not compatible with any

real world adversarial team game.

The research challenge this work is trying to answer is thus whether

an efficient algorithm for computing a TMEcor can be designed. Given

the FNP-hardness of the problem, any proposed exact algorithm will suffer

from exponential complexity. The focus of this work is that of enabling the

iterative approximated algorithms already available in the 2p0s context, to

offer a practical solution for TMEcor computation.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is one of the three paradigms of Machine

Learning, along with Supervised Learning and Unsupervised Learning. As

defined by Sutton and Barto (2018):

Reinforcement learning is learning what to do (ie. how to map situations

to actions) so as to maximize a numerical reward signal. The learner is not

told which actions to take, but instead must discover which actions yield the

most reward by trying them.

We can notice many common concepts with algorithmic game theory: the

ideas of actions to be applied, strategies to map situations into actions, and

the goal of maximizing a numerical utility. The differences in the two fields

emerge considering the type of models of the situations employed and the

methodology applied. En fact, RL focus is on model free learning often lack-

ing strong theoretical background. On the other hand, Algorithmic Game

Theory focuses on model based learning backed by a strong theoretical core.

The overall tradeoff is the scalability of RL versus the soundness AGT.

A popular stream of research in AGT focuses on employing RL methods

in the AGT theoretical framework, in order to produce sound and scalable

results. On the contrary, the goal of our work is to show how a theoretical

concept in RL, the one of Public Information, can be integrated in the AGT

framework to produce a conversion procedure from adversarial team games

to two-player zero-sum games.

In this section we introduce the basic concepts needed to comprehend the

techniques presented in the next chapters.
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2.2.1 Markov Decision Process

The core concept used in RL to represent the environment in which the player

is acting is the Markov Decision Process.

Definition 27 (Markov Decision Process (Weiss, 2013)). A Markov Decision

Process is a tuple (S;A, P,R, γ, µ) where:

� S is a set of states;

� A is a set of actions;

� P is a state transition matrix, ∀s, s′ ∈ S,∀a ∈ A : P (s′|s, a);

� R is a reward function ∀s ∈ S, ∀a ∈ A : R(s, a);

� γ is a discount factor γ ∈ [0, 1];

� µ is a set of initial probabilities ∀si ∈ S : µi = P (X0 = si).

At each state s ∈ S, the agent must choose an action a ∈ A. The

behavior of the agent is regulated by its policy. A policy π is nothing else

than a function that assigns a probability distribution over the set of actions

at each state π : S → ∆|A|. The objective of the learning phase is to find the

optimal policy π∗ that is the policy that maximizes the expected discounted

return:

π∗ ∈ argmaxEπ[R0], where Rt =

∞∑
i=0

γirt+i

Among the most common techniques used to solve MDPs we can find the

so called value-based algorithms. These are those algorithms that compute

π∗ learning an estimation of the expected return from each state:

vπ(s) := Eπ[Rt|St = s]

Qπ(s, a) := Eπ[Rt|St = s,At = a]

where vπ(s) is denoted as state-value function and Qπ(s, a) is denoted as

action-value function. Solving an MDP is a P-complete problem (Papadim-

itriou and Tsitsiklis, 1987).

In the following, we present more general formalizations of the MDP

model, which consider partial observability of the world state and the pres-

ence of other agents.
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Partially Observable Markov Decision Process

Partially Observable Markov Decision Processes extend the MDP model by

considering a partially observable environment, in which the agent only re-

ceives partial information about the current state. We base our definitions

on the originally proposed ones in Kaelbling et al. (1998).

Definition 28 (POMDP). A Partially Observable Markov Decision Process

(MDP) is a tuple (S,A, P,R,Ω, O, γ), where:

� S is a set of states;

� A is a set of actions;

� P is a set of conditional transition probabilities between states;

� R : S ×A→ R is the reward function;

� Ω is a set of observations;

� O is a set of conditional observation probabilities;

� γ ∈ [0, 1] is the discount factor.

At each time period, the environment is in some state s ∈ S. Similarly to

the MDP case, the agent takes an action a ∈ A, which causes the environment

to transition to state s′ with probability P (s′ | s, a). At the same time, the

agent receives an observation o ∈ Ω which depends on the new state of the

environment, s′, and on action a just taken, with probability O(o | s′, a).
The agent acting in a POMDP has only access to the action-observation

sequence. Such information can be more conveniently encoded into a belief

b(s) ∈ ∆S , which expresses the probability of being in a specific world state

given the actions played and observations received. The belief b(s) is updated

according to a transition function b′ = τ(b, a, o) such that:

b′(s′) = η O(o | s′, a)
∑
s∈S

P (s′ | s, a) b(s)

where η =
1∑

s′∈S
O(o | s′, a)

∑
s∈S

P (s′ | s, a)b(s)
is a normalizing constant.

A policy is a function that assigns a probability distribution over the set

of actions at each belief π : ∆|S| → ∆|A|. Apart from this redefinition, other

considerations regarding optimal policies and value functions still hold.
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Overall, the POMDP framework explicits the bayesian belief updates the

agent needs to trace the possible states he might be in. Such an explicitation,

allows to reduce any POMDP to a MDP where the states are the beliefs. It

is to be noted that equivalent results could be obtined by defining the policy

over sequences of actions and observations, even if its management from a

computational perspective may be more complicated.

From a computational perspective, solving a POMDP is PSPACE-complete

(Papadimitriou and Tsitsiklis, 1987).

Decentralized Partially Observable Markov Decision Process

Decentralized Partially Observable Markov Decision Processes (DEC-POMDP)

extend the POMDP model by considering multiple independent agents act-

ing concurrently on the environment. Therefore, actions are represented as

a tuple combining actions chosen by each agent.

Definition 29 (DEC-POMDP (Weiss, 2013)). A decentralized partially ob-

servable Markov decision process (DEC-POMDP) is a tuple (I, S, (Ai), P,

(Ωi), O,R, T ) where:

� I is a finite set of agents indexed 1, . . . , n.

� S is a finite set of states, with distinguished initial state s0 or belief

state b0.

� Ai is a finite set of actions available to agent i and A =×i∈I Ai is the

set of joint actions, where a = (a1, . . . , an) denotes a joint action.

� P : S×A→ ∆|S| is a Markovian transition function. P (s′|s, a) denotes
the probability of a transition to state s′ after taking joint action a in

state s.

� Ωi is a finite set of observations available to agent i and Ω =×i∈I Ωi
is the set of joint observations, where o = (o1, . . . , on) denotes a joint

observation.

� O : A × S → ∆|Ω| is an observation function. O(o|a, s) denotes the

probability of observing joint observation o given that joint action a

was taken and led to state s. Here s ∈ S, a ∈ A, o ∈ Ω.

DEC-POMDP framework allows to model general settings with multiple

players interacting in the same environment. Oliehoek and Vlassis (2006),

Kovař́ık et al. (2020a) proved the equivalence of such a model with timeable,

perfect recall extensive-form games. Solving a general DEC-POMDP has
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been proven to be NEXP-hard Bernstein et al. (2000), even when only two

agents are considered.

Policy representation in this framework strongly depends on the solution

method employed. While they are out of the scope of the present work, a

survey of available methods is available in Weiss (2013), Chapter 11.

In the next chapters we will review the main algorithms employed to solve

2p0s games and ATGs, and the main applications of public information in

the Reinforcement Learning and Game Theory fields. The notation used will

depend on the field to which each technique belongs; in most of the cases we

will treat game-theoretic topics, while all the RL-related concepts will be in

Chapter 5.



Chapter 3

Solving two-players zero-sum

games

Some people, when confronted

with a problem, think ”I know,

I’ll use an iterative converging

algorithm”.

Now they have two problems.

Two-players zero-sum (2p0s) games are a particular class of games, de-

fined in Chapter 2. Their intuitive characterization and useful properties

made them the classical subject of studies game in Game Theory, since the

seminal works of Von Neumann and Morgenstern (1944), Kuhn (1950), Nash

(1951), L. S. Shapley (1952). Paired with the Nash Equilibrium solution con-

cept, they are able to model many real-world situations, such as two players

board and card games, military operations and economic interactions. The

great interest into them and their powerful properties, allowed the devel-

opment of strong algorithms able to achieve superhuman performances in

many fields. The objective of this chapter is to outline the three main tech-

niques developed over the years to find a Nash equilibrium in 2p0s games,

characterizing their strengths and weaknesses:

� Section 3.1 describes Linear Programming techniques;

� Section 3.2 describes Fictitious Play, the first classical iterative algo-

rithm employed;

� Section 3.3 describes Counterfactual Regret Minimization, the state of

the art technique employed to find a NE on large instances of games.

33
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3.1 Linear Programming

A straightforward approach to compute a Nash equilibrium in a given 2p0s

game is to describe it as a linear program whose feasible solutions are NEs.

An important property of NE in 2p0s games is that the best-response for-

mulation is equivalent to a maxmin formulation. We can then use the latter

to describe NEs as mathematical problem, and then use the duality theorem

to get a linear program.

Both normal form and sequence form representations can be used.

3.1.1 LP on Normal form games

Consider a normal form 2p0s game (N , (A1,A2), (u1, u2)):

Definition 30 (Maxmin optimization problem). The problem of finding a

maxmin strategy of player 1 against player 2 is formulated as:

argmax
µ1

min
µ2

∑
a1∈A1

∑
a2∈A2

u1(a1, a2)µ1(a1)µ2(a2)

s.t.
∑
a2∈A2

µ2(a2) = 1

µ2(a2) ≥ 0 ∀a2 ∈ A2

s.t
∑
a1∈A1

µ1(a1) = 1

µ1(a1) ≥ 0 ∀a1 ∈ A1

By dualizing the inner min problem, we can obtain a LP formulation.

Definition 31 (Maxmin strategy formulation). The Maxmin strategy and

the corresponding value of player 1 against player 2 can be found solving the

following linear program (LP):

argmax
µ1,v1

v1

s.t v1 −
∑
a1∈A1

u1(a1, a2)µ1(a1) ≤ 0 ∀a2 ∈ A2∑
a1∈µ1(a1)

= 1

µ1(a1) ≥ 0 ∀a1 ∈ A1
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3.1.2 LP on Sequence form games

Consider a sequence form game (N ,Q, (u1, u2), ((F1, f1), (F2, f2))). As in

the normal form case, we can provide a linear program to find the maxmin

equilibrium:

Definition 32 (Maxmin strategy formulation). The maxmin strategy in se-

quence form and the corresponding value of player 1 against player 2 can be

found solving the following linear program:

argmax
r1,v1

∑
I2∈I2∪{I∅}

f2(I2)v1(I2)

s.t
∑

I2∈I1∪{I∅}

F2(I2, q2)v1(I2)−
∑
q1∈Q1

u1(q1, q2)r1(q1) ≤ 0 ∀q2 ∈ Q2∑
q1∈Q1

F1(I1, q2)r1(q1) = f1(I1) ∀I1 ∈ I1 ∪ {I∅}

r1(q1) ≥ 0 ∀q1 ∈ Q1

where Ii is the set of information sets for player i in the underlying extensive

form game.

3.1.3 Discussion

Linear programming approaches are descriptive, straightforward and fast:

there is no need of a specific algorithm for a NE computation, and LPs can

leverage efficient commercial solvers such as Gurobi. This allows for fast

resolution at a low implementation cost.

However, memory requirements of such an approach are heavy, since the

full game is loaded in RAM under form of constraints and variables. Those

requirement are severely worsened by the use of normal form, that has worst-

case size exponentially larger than the extensive form and sequential form

representations (Aumann, 1964), (Koller et al., 1996).

This constraint severely limited the scalability of those type of resolu-

tion algorithms, so research efforts focused on the more efficient iterative

algorithms we’ll analyze in Section 3.2 and Section 3.3.

3.2 Fictitious Play

Fictitious Play (FP) is an iterative algorithm introduced by Brown (1951),

able to converge to a NE in 2p0s games in normal form. Iteratively learn-

ing a NE means that the algorithm sets up a learning process for both the



36 Chapter 3. Solving two-players zero-sum games

agents, that can incrementally refine their strategies by repeatedly playing,

converging towards a NE. The intuition behind the algorithm is that:

� players track the opponent’s strategy during any past time step;

� at each time step, players play the best response to the opponent’s

empirical average play.

In this way, a stochastic process composed by two successions of strategies

is defined, converging to a NE strategy profile. Algorithm 1 outlines the

pseudocode of FP procedure.

Algorithm 1 Fictitious Play

1: function FictitiousPlay

2: Initialize average strategy profile µ̄1 arbitrarily

3: j ← 1

4: while within computational budget do

5: µj+1 ← ComputeBR(µ̄j)

6: µ̄j+1 ← j−1
j µ̄j +

1
jµj+1

7: j ← j + 1

(Brown, 1951) proves that the average strategy µ̄ converges to a NE.

Regarding the rate of this convergence, Daskalakis and Pan (2014) prove

that it is Ω(t
− 1

|Ap| ) ∀p ∈ N .

Equivently, explotability at time T for a game with n actions is:

e = O

(
1

n
√
T

)
The pseudocode and the properties of the algorithm can be used to un-

derstand its main strengths and weaknesses. On one hand, FP is an anytime

algorithm, that progressively converges to a NE offering the possibility of

termination whenever needed. Moreover, its memory requirements are mini-

mal, since only the space to store current and average strategies are needed.

However, its worst-case convergence rate is much worse than the one offered

by CFR, and computing an exact Best Response becomes prohibitive on

large instances of games.

Some extensions of the original work try to solve some of the weaknesses:

� Generalized Weakened FP defined in Genugten (2000), partially over-

comes the exact BR computation burden, by developing a theoretically

sound version of FP allowing approximated BR to be employed;
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� Fictitious Self Play defined in Heinrich et al. (2015), develops a GWFP

version able to directly run on extensive-form games, without expand-

ing it into normal form.

� Neural FSP defined in Heinrich and Silver (2016), proposes a specific

implementation of FSP using neural networks to approximate the aver-

age strategy, and RL methods to approximate the best response. The

implicit representation of the strategies lightens the memory require-

ments of the algorithm, allowing larger game instances to be solved.

3.3 Counterfactual Regret Minimization

Counterfactual Regret Minimization (CFR) represents current state of the

art algorithm to find NEs on 2p0s games. Its scalability, paired with great

flexibility and good empirical performances, allowed the development of pow-

erful variations of the vanilla algorithm that proved crucial for the superhu-

man performances of Brown and Sandholm (2017b), Brown and Sandholm

(2019b) in Poker.

In the following, we present the core concepts behind CFR, and the vari-

ations developed over the years, focusing on some important for Chapter 7.

3.3.1 Regret matching

Regret Matching (RM) is an algorithm developed by Hart and Mas-Colell

(1997) that converges to a NE in 2p0s normal form games by minimizing the

regret associated to not having always played the same action in hindsight.

The main idea behind RM is that the same game is repeatedly played by

all players with a potentially different strategy at each timestep, and each

player observes the payoff of the played action and the payoff they would have

received for each action they could have played. This allows the definition of a

regret of not having played an action in hindsight. RM leverages information

about past regrets to output a strategy for each timestep.

Definition 33 (Cumulative Regret). Suppose to have a succession of played

actions a1p, . . . , a
T
p of player p ∈ N and a succession of reward functions

u1p, . . . , u
T
p , where u

i
p(a) : A → R represents the payoff for player p if they

would have played action a. Then the cumulative regret RTp of player p up to

time T is defined as:

RTp : A → R, RTp (a) =
T∑
t=1

utp(a)− utp(atp)
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Moreover, we define RT,+p = max(0, RTp ).

Regret Matching associates a positive probability to each action propor-

tionally to the positive regret accumulated on it; the higher the regret, the

higher the desire to play that action.

Definition 34 (Regret Matching). Given RTp (a), Regret Matching (RM)

procedure prescribes to the player the mixed strategy µ defined by:

µ(a) :=
RT,+p (a)∑

a′∈AR
T,+
p (a′)

The main strength of RM is its fast convergence rate:

Theorem 11 (Regret Matching convergence rate, Zinkevich et al. (2007)).

When following RM procedure, the total regret RTp at time T is bounded by:

RTp ≤
√
|Ap|
T

∆max

where ∆max is a game constant defined as the difference between the highest

and the lowest payoff achievable by p.

Equivently, exploitability at time T for a game with n actions is:

e = O

(
1√
T

)
RM is thus able to maintain FP’s anytime and low memory requirements,

while overcoming the need of a BR computation and the slow convergence

rate. Such properties have been crucial to its wide adoption.

3.3.2 Counterfactual Regret Minimization

Counterfactual Regret Minimization (CFR) is the application of RM to ex-

tensive form game. Designed by Zinkevich et al. (2007), it is based on the

idea of independently allocating a RM instance over each infoset of the game,

in order to locally minimize regret of each action. However, this straightfor-

ward extension does not allow to minimize the full regret of the correspondent

normal-form strategy. To solve this issue, the idea of counterfactual regret is

introduced, which is a regret weighted by the opponent’s reach probability,

and the RM instances are set up to minimize it.

In the following, we introduce the definitions of the main concepts needed

to present CFR.
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Notation used:

� D(I) is the information sets of player p reachable from I (including I),

where p is playing in I;

� up(σ, I) is the expected utility for player p given that information set

I is reached and all players play using strategy σ except that player i

plays to reach I;

� σ | I → a is a strategy profile identical to σ except that player i always

chooses action a when in information set I;

� σ1, . . . ,σT is the succession of behavioral strategies produced by the

CFR procedure.

Definition 35 (Average Overall Regret). The average overall regret RTp of

player p at time T is defined as:

RTp (I) :=
1

T
max
σ∗
p∈Σp

T∑
t=1

(up(σ
∗
p, σ

t
−p)− up(σt))

Definition 36 (Infoset-Action Counterfactual Regret). The infoset-action

counterfactual regret RTp : I ×A(I)→ R of player p at time T is defined as:

RTp (I) :=
1

T

T∑
t=1

ρσ
t

−p(I)(up(σ
t |I→a, I)− up(σt, I))

We also define RT,+p (I, a) = max(RTp (I, a), 0).

Definition 37 (Regret Matching in CFR). The RM instances of each infoset

prescribe a strategy σT+1
p at time T :

σT+1
p (I)[a] =


RT,+

p (I,a)∑
a′∈A(I)R

T,+
p (I,a′)

if
∑

a∈A(I)R
T,+
p (I, a) > 0

1
|A(I)| otherwise

(3.1)

The whole CFR procedure is represented in Algorithm 2.
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Algorithm 2 Counterfactual Regret Minimization (Neller and Lanctot, 2013)

1: Initialize cumulative regret tables: ∀I : rI [a]← 0

2: Initialize cumulative strategy tables: ∀I : sI [a]← 0

3: function CFR(h, p, t, ρp, ρ−p)

4: if h is terminal then return up(h)

5: else if h is a chance node then

6: return
∑

a∈A(I(h)) CFR(ha, p, t, ρp, ρ−p · σc(h, a))

7: I ← I(h)

8: vσ ← 0

9: ∀a ∈ A(I) : vσI→a [a]← 0

10: for a ∈ A(I) do
11: vσI→a [a]← CFR(ha, p, t, ρp · σt(I, a), ρ−p)
12: vσ ← vσ + σt(I, a) · vσI→a [a]

13: if current player in h is p then

14: for a ∈ A(I) do
15: rI [a]← rI [a] + ρ−p · (vσI→a [a]− vσ)
16: sI [a]← sI [a] + ρ−p · σt(I, a)
17: σt+1(I)← RegretMatching(rI)

18: return vσ

19: function SolveGame

20: for t = 1, 2, . . . , T do

21: for p ∈ 1, 2 do

22: CFR(∅, p, t, 1, 1)

The following theoretical results guarantee the performances of CFR:

Theorem 12 (Upper bound on total regret(Zinkevich et al., 2007)). The

total regret experienced by a CFR procedure can be bound as follows:

RTp = RTp (∅) ≤
∑
I∈Ip

RT,+i,imm(I)

where ∅ is the root infoset of the game.

Theorem 13 (CFR convergence rate (Zinkevich et al., 2007)). If player p

selects actions according to Equation 3.1, then:

RTp ≤ ∆u,i|Ip|
√
|Ap|/

√
T

where |Ap| = maxI:p plays in I |A(I)|



3.3. Counterfactual Regret Minimization 41

This last theorem proves that CFR’s average strategy converges to a Nash

Equilibrium, maintaining the exploitability bound of e = O
(

1√
T

)
.

CFR’s performances attracted a large scientific interest. Many variants

to improve the original algorithm have been proposed over the years:

� Abstraction based variants: abstractions are smaller versions of

the original game, with the purpose of capturing the most essential

information while allowing a great speedup in the equilibrium finding

algorithm. Found strategies will then be mapped onto the original game

where a refinement technique might be applied. Important works in

this research line are:

– CFR-BR (Johanson et al., 2012) a CFR variant introduced to

avoid abstraction pathologies (Waugh et al., 2009);

– a fast method for computation of best response in poker games

(Johanson et al., 2011). This allowed a fast evaluation of goodness

of a strategy even in a big game like poker;

– regret-based pruning techniques (Brown and Sandholm, 2015), ac-

celerating CFR iteration by not considering parts of the game tree

at each iteration without loss of guarantees;

– realtime search techniques (Brown and Sandholm, 2017a) for re-

fining strategies in a game during realtime play with guarantees

on improving the overall performance.

� Sampling variants: CFR is an iterative algorithm based on full game

tree traversals on the game tree. This may result extremely slow on

big games, impacting the scalability of the overall algorithm. A crucial

impovement has been made in Lanctot et al. (2009), which introduces

Monte Carlo CFR (MCCFR), a version of CFR that allows sampling

of actions, thus traversing only one subtree for each information set.

Schmid et al. (2019) introduce Variance Reduced MCCFR, a refined

MCCFR that uses baselines to estimate value at non explored nodes,

thus reducing the variance due to sampling;

� Discounting Variants: Tammelin (2014) found that high inertia

due to accumulation of negative cumulative regret impacted negatively

CFR’s performances. Therefore CFR+ was introduced, avoiding large

negative regrets by clipping cumulative regrets at zero. This approach

has then been generalized in Discounted CFR (Brown and Sandholm,

2019a), introducing a discounting weighting scheme over past itera-

tions.
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3.3.3 Monte Carlo CFR

Monte Carlo Counterfactual Regret Minimization (MCCFR) is one of the

most important variations on the original CFR algorithm. Its main idea is

to substitute the exact regret cumulation with an unbiased estimator. At

each iteration, MCCFR samples only a part of the game tree, and applies

regret minimization using the sampled values. By maintaining the estimates

unbiased, the estimated regret values approach their true values.

Definition 38 (Sampled Counterfactual Value (Lanctot, 2013)). Define:

� Q = {Q1, Q2, . . . } be a set of subsets of the terminal history Z, such
that

⋃
Q∈QQ = Z;

� Qj ∈ Q be a block of terminal histories Qj ⊂ Z ;

� ∀j : qj > 0 be a probability distribution over Q indicating the probability

of sampling block Qj;

� q(z) =
∑

j:z∈Qj
qj be the probability of sampling a block containing

history z;

� z[I] = h ∈ H : h ⊏ z be the nonterminal history belonging to I leading

to z.

Then, the Sampled Counterfactual value ṽp(σ, I|Qj) when Qj is sampled can

be defined as the estimator of the counterfactual value at infoset I. It is

defined as a Monte Carlo estimator of the expected value at I, multiplied by

the counterfactual probability ρσ−p. Formally:

ṽp(σ, I|Qj) =
∑
z∈Qj

1

q(z)
ρσ−p(z[I])ρ

σ(z[I], z)up(z)

Lemma 14 (Unbiasedness of Sampled counterfactual value estimator (Lanc-

tot, 2013)). The sampled counterfactual value ṽp(σ, I|Qj) is unbiased.

EQj [ṽp(σ, I|Qj)] = vp(σ, I)

This result allows to use ṽ in place of the counterfactual utility:

vp(σ
t, I) ∼ ρσt

−p(I)up(σ
t, I)

Thus:

r̃(I, a) = ṽp(σ
t
I→a, I)− ṽp(σt, I)

Possible sampling schemes have been suggested by Lanctot et al. (2009):
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� External Sampling samples an action in each opponent and chance

node, while explores all actions in the currently exploring CFR player.

This results in:

q(z) = ρσ
t

−p(I)

� Outcome Sampling samples an action for every player. This results in:

q(z) = ρσ
t
(I)

Outcome sampling is the first CFR algorithm able to learn from single

trajectories sampled according to a known policy. This has important impli-

cations for off-policy-like applications and parallelization. Algorithm 3 shows

the pseudocode for Outcome Sampling MCCFR.

3.3.4 Deep CFR

Deep Counterfactual Regret Minimization (DEEP CFR) (Brown et al., 2019)

is one of the latest CFR variation proposed. Following the trend of employ-

ing Deep Learning techniques typical of the RL field, it modifies the Out-

come Sampling MCCFR by removing the tabular save of regrets and average

strategies for each infoset, substituting them with neural networks generaliz-

ing those values from trajectories stored in buffer of fixed size. The tradeoff

is to use less space in large games in exchange for the exactness of the regret

and average strategy values.

Algorithm 4 shows the DeepCFR procedure. More in detail, samples of

trajectories are collected in an Outcome Sampling fashion in the Traverse

sub-routine; collected values and played strategies in each infosets are saved

in value bufferMV,p and strategy bufferMΠ respectively. Those buffers are

implemented as Resevoir Memories which guarantees a fixed maximum size

and a uniform probability for each sample of each time step to be in the

memory. Played strategy at each timestep is determined by applying Regret

Matching to the outputs of a value network trained on the value buffer.

The average strategy to be returned is instead encoded in a average strategy

network trained at the end of the procedure to mimic the trajectories inMΠ.



44 Chapter 3. Solving two-players zero-sum games

Algorithm 3 Outcome Sampling CFR (Lanctot, 2013)

1: Initialize last visit times: ∀I, ∀a ∈ A(I)
2: Initialize cumulative regret tables: ∀I : rI [a]← 0

3: Initialize cumulative strategy tables: ∀I : sI [a]← 0

4: function OSMCCFR(h, p, t, ρp, ρ−p,s)

5: if h is terminal then return (up(h)/s, 1)

6: else if h is a chance node then

7: a← sample action according to σc(h)

8: CFR(ha, p, t, ρp, ρ−p, s)

9: I ← I(h)

10: σ(I)← RegretMatching(rI)

11: if current player in h is p then

12: σ′(I)← ϵ ·Unif(I) + (1− ϵ)σ(I)
13: else

14: σ′(I)← σ(I)

15: a′ ← sample action according to σ′(I)

16: if current player in h is p then

17: (u, ρtail)← OSMCCFR(ha′, p, t, ρp · σ(I, a), ρ−p, s · σ′(I, a))
18: for a ∈ A(I) do
19: W ← u · ρ−p
20: if a = a′ then

21: r̃(I, a)←W · ρtail · (1− σ(a))
22: else

23: r̃(I, a)←W · ρtail · σ(a)
24: rI [a]← rI [a] + r̃(I, a)

25: else

26: (u, ρtail)← OSMCCFR(ha′, p, t, ρp, ρ−p · σ(I, a), s · σ′(I, a))
27: for a ∈ A(I) do
28: sI [a]← sI [a] + (t− cI) · ρ−p · σ(i, a)
29: cI ← t

30: return (u, ρtail · σ(I, a′))
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Algorithm 4 Deep CFR

1: function DeepCFR

2: Initialize players’ network V (I, a|θp)
3: Initialize memoriesMV,1,MV,2 andMΠ

4: for t = 1, . . . , T do

5: for p = 1, 2 do

6: Traverse(∅, p, θ1, θ2,MV,p,MΠ)

7:
Train θp from scratch on loss

L(θp) = E(I,t′,r̂t′ )∼MV,p

[
t′
∑

a(r̂
t′ − V (I, a|θp))2

]
8:

Train θΠ from scratch on loss

L(θΠ) = EI,t′,σt′ )∼MΠ

[
t′
∑

a(σ
t′ −Π(I, a|θΠ))2

]
9: return θΠ





Chapter 4

Solving adversarial team

games

Some people, when confronted

with a problem, think ”I know,

I’ll solve it using a Linear

Program”.

Now they have two problems.

This chapter analyzes the state of the art algorithms for solving an adver-

sarial team game. As specified in Section 2.1.3, the chosen solution concept

in this context is a TMECor, corresponding to a team maxmin equilibrium

in which team members can communicate before the start of the game. A

common use of this communication is to share complete strategies of each

team member, and a common seed to allow deterministic computation of the

actions played by each player, even in presence of mixed strategies and even

for hidden actions. Therefore, the main difficulty faced by each algorithm is

how the problem of private information of each player is treated.

In the following, we analyze the main techniques developed. First section

will focus on mathematical programming techniques, while the second one

will focus on reinforcement learning techniques.

4.1 Mathematical Programming techniques

One possible solution for TMECor computation is to reason in the normal

form of the game, and coordinate each player’s choice of a plan on the overall

game through a common seed. Instead of working on the double problem of

47
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plan selection and seed coordination in the complete normal form at once, one

can choose to add one plan at a time to the possible choices of each player and

separately compute the best coordination of players on the available plans.

In this way, complete evaluation of the normal form game can be avoided and

the computation is more scalable; moreover, it is proven by (Celli and Gatti,

2018), (Farina et al., 2021) that the number of plans required by a TMECor

is finite and less or equal to the number of sequences of the opponent |Qo|.
This pushed toward the creation of iterative algorithms employing an oracle,

iteratively suggesting plans to be added to the ones available to the players.

To translate such operations into an algorithm, a common design choice

has been employing a Mathematical Programming formulation, since the or-

acle formulation must work in an implicit formulation of the game to retain

its advantages.

4.1.1 Hybrid Column Generation

Hybrid Column Generation (HCG) (Celli and Gatti, 2018) was the first al-

gorithm developed for the computation of a TMECor, introduced along with

the solution concept itself. After the initialization with a uniform plan for

each player, HCG iteratively executes three steps:

� update the utility matrix of the joint plans considering also the newly

introduced plans;

� compute the optimal coordinated strategy σT of the team members

over their current plans Pcur. Such a plan can be found considering a

probability distribution over joint reduced normal form plans, against

an adversary playing a sequence form strategy.

This problem can be solved considering the Hybrid-Maxmin linear

program:

argmax
σT ,v

∑
Io∈Io∪{I∅}

fo(Io)v(Io)

s.t
∑

Io∈Io∪{I∅}

Fo(Io, qo)v(Io)−
∑

π∈Pcur

UT (qo, π)σT (π) ≤ 0 ∀qo ∈ Qo∑
π∈Pcur

σT = 1

σT (π) ≥ 0 ∀π ∈ Pcur
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� compute adversary’s optimal strategy r̄o similarly to a sequence form

NE, with the team constrained to play only joint plans.

Such a problem can be solved considering the Hybrid-Minmax linear

program:

argmax
ro,v

v

s.t v −
∑
qo∈Qo

UT (qo, π)ro(q) ≥ 0 ∀π ∈ Pcur∑
qo∈Q

Fo(Io, qo) = fo(Io) ∀Io ∈ Io

ro ≥ 0 ∀qo ∈ Qo

� given the strategy profiles for all the players, use a oracle to find a

new plan to be added. In particular, the best plan to add to the ones

available to the team is their joint best response to the opponent’s

strategy r̄o.

Such a problem can be solved considering the BR-Oracle integer

linear program:

argmax
(rp)p∈N ,x

∑
z∈Z

UT (z)x(z)r̄o(path(z|o))

s.t
∑
qi∈Qi

Fi(Ii, qi)ri(qi) = fi(Ii) ∀i ∈ T ,∀h ∈ Hi ∪ {h∅}

x(z) ≤ ri(qi) ∀i ∈ T ,∀z ∈ Z,∀qi ∈ path(z|i)
x(z) ∈ {0, 1} ∀z ∈ Z

where

– x(z) is a binary variable which is equal to 1 iff, for all the sequences

qp ∈ Qp necessary to reach terminal node z, it holds rp(qp) = 1;

– path(x|G) returns the unique profile of sequences of players in G

leading to x when combined with some sequences of the players

in N \G.

These steps are executed until the newly found best response is contained in

the set Pcur. The inputs required by HCG are the extensive form formula-

tion of the game Γ, along with the corresponding sequence form constraints

((Fp, fp)p∈N ).
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The overall procedure is represented in Algorithm 5.

Algorithm 5 Hybrid Column Generation

1: function HybridColumnGeneration(Γ, ((Fp, fp)p∈T , (Fo, fo)))

2: Initialize Uh = 0, Pcur = {}, v ← 0

3: r̄o ← realization plan equivalent to a uniform strategy

4: br ← BR-Oracle(Γ, ((Fp, fp)p∈T , r̄o)

5: while br ̸∈ Pcur do
6: Pcur ← Pcur ∪ {br}
7: add utilities in (qo, br) to Uh
8: σT ← solve Hybrid-Maxmin((Uh, Pcur, (Fo, fo)))

9: r̄o ← solve Hybrid-Minmax((Uh, Pcur, (Fo, fo)))

10: br ← BR-Oracle(Γ, ((Fp, fp)p∈T , r̄o)

11: return (r̄o, σT )

Overall, HCG is an exact algorithm for the computation of a TMECor,

however without guarantees on the convergence rate. Guessing the exact

support through costly calls to a ILP slows down the execution, and poses

severe constraints on the maximum size of game instance solvable through

such an approach. Part of the computational burden of the algorithm can be

simplified by relaxing the binary constraints of the BR-Oracle ILP, trad-

ing guaranteed convergence of the result in exchange of faster execution. In

addition, HCG cannot be run as an anytime algorithm despite the iterative

column generation, since the best response is required to be exact to guar-

antee the convergence to a TMECor. This is a major problem for practical

applications.

4.1.2 Fictitious Team Play

Fictitious Team Play (FTP), developed by Farina et al. (2018), addresses

part of the issues encountered in HCG, by developing an iteratively converg-

ing algorithm and proposing a more efficient best response oracle based on

a different representation of the game.

In particular, Farina et al. (2018) propose to:

� work on a realization-equivalent representation of the game called aux-

iliary game. This representation simplifies the linear programs required

to compute a best response.

� use an iterative procedure inspired by Fictitious Play to converge to a

TMECor.
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The auxiliary game is a realization equivalent representation of the orig-

inal game. Instead of being the normal form conversion of the original game

as in HCG, the auxiliary games selects |T | − 1 players of the team to act as

pivot, which play in the auxiliary game by selecting a plan of the original

game before the start of the game. On the other hand, the remaining team

player and the opponent play in the original EFG, avoiding the exponential

size increase of the normal-form conversion. In particular, when the team is

composed by two players, only one needs to play using normal form plans,

avoiding the need of integer constraints on the other player’s strategy.

Formally:

Definition 39 (Auxiliary game, Farina et al. (2018)). Given a team adver-

sarial EFG Γ, the auxiliary game Γ∗ is a two-player game obtained by:

� N = {o, T };

� the root ∅ is a decision node of player T with A(∅) = {aπ}π∈Σ1

� each aπ is followed by a subtree Γπ, which is identical to Γ apart from

the fact that player 1 plays a fixed pure strategy π, and thus its decision

nodes are substituted by chance nodes.

� the opponent o does not observe the action chosen by T in ∅

See Figure 4.1 for a graphical representation of the structure of an aux-

iliary game.

The BR-Oracle linear program can thus be reformulated, considering

both players playing in sequence form strategies and one of them constrained

to play only in pure strategies.

argmax
ω,r1,r2

∑
q1∈Q1

ω(q1)

s.t ω(q1) ≤
∑
q2∈Q2

U(q1, q2|ωo)r2(q2) ∀q1 ∈ Q1

ω(q1) ≤Mr1(q1) ∀q1 ∈ Q1

F1r1 = f1

F2r2 = f2

r2(q2) ≥ 0 ∀q2 ∈ Q2

r1 ∈ {0, 1}|Q1|

Instead of computing an exact solution of the team maxmin equilibria

for each plan added to the support, a algorithm similar to Fictitious Play
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Γπ

aπ

Figure 4.1: Representation of the auxiliary game. The choice of an action aπ lead

to a game Γπ in which the player is substituted by a chance playing fixed strategy π.

is proposed. This algorithm works similarly to the original FP algorithm

introduced in Section 3.2, by computing a best response for the team and

for the opponent, each one against the average strategy of the other. Such

a procedure is able to extend the theoretical guarantees of convergence of

FP to this context. This is proved by showing how the auxiliary game is

realization equivalent to the original one; the advantage of the auxiliary game

is that both team members can be merged into a unique player. Thus a FP

algorithm can be used to solved the 2p0s auxiliary game. The motivation

behind the choice of a FP algorithm instead of a CFR algorithm depends by

the fact that the auxiliary game may be very large due to the normalizaiton

of the actions of the pivot players, and FP allows to solve it without needing

an explicit representation to work upon.

The FTP procedure is represented in Algorithm 6.

Algorithm 6 Fictitious Team Play

1: function FictitiousTeamPlay(Γ)

2: Initialize ω̄o
3: λ̄← (0, . . . , 0)) ∀σ ∈ Σ1 ▷ distribution over pivot player’s plans

4: ω̄T [r2]← (0, . . . , 0)∀σ ∈ Σ1 ▷ average strategy of non-pivot player

5: t← 1

6: while within computational budget do

7: (rt1, w
t
T )← BR-OracleT (ω̄o)

8: λ̄←
(
1− 1

t

)
λ̄+ 1

t1rt1
9: ω̄T [r1]←

(
1− 1

t

)
ω̄T [r1] +

1
t r2

10: ωto ← BR-Oracleo(ω̄T )

11: ω̄o ←
(
1− 1

t

)
ω̄o +

1
tω

t
o

12: t← t+ 1

13: return (λ̄, ω̄T , ω̄o)
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Overall, FTP algorithm is an anytime algorithm able to answer some

the weaknesses in HCG. In particular, the iterative algorithm allows to stop

the execution when a computational budget is ended, thus allowing to ap-

proximatively solve larger game instances than HCG. In addition, a more

efficient BR-Oracle is proposed, able to provide a considerable speedup

(Farina et al., 2018). The dependence on a Integer Linear Program is not

solved however, and therefore FTP shares the same scalability constraints of

HCG. Moreover, the use of FP means slow asymptotical convergence rate,

especially when a high quality approximation of the TMECor is required.

4.1.3 Fast Column Generation

The idea of auxiliary game presented in Section 4.1.2 has later been refined

by Farina et al. (2021). By working in the space of correlated plans and by

introducing the concept of semi-randomized correlation plans, Farina et al.

(2021) are able to introduce an improved column generation algorithm called

Fast Column Generation (FCG). Intuitively, the idea is that team players’

strategies can be represented as a correlated plan over the cartesian product

of the strategy spaces. While there is no explicit representation for such a

set, it can be proven that that set is the convexification of the set of semi

randomized correlated plans: these are the plans in which one of the two

players plays a pure strategy, similarly to the auxiliary game. These proper-

ties of the space of correlated strategies allow to define a column generation

algorithm in which the best response problem can be defined as the search

of the semi-randomized correlation plan bringing the maximum reduced cost

in the dual problem formulation.

In the following, we formally define the main concepts behind FCG.

We start by defining the strategy spaces used in the formalization of this

algorithm.

Definition 40 (Relevant Sequences, (Farina et al., 2021)). A pair of se-

quences q1 ∈ Q1 and q2 ∈ Q2 is relevant if either one is the empty sequence,

or if they can be written as σ1 = (I1, a1), σ2 = (I2, a2) and there exist v ∈ I1
and w ∈ I2 such that the path from the root to v passes through w or vicev-

ersa.

Definition 41 (Extensive form Correlated Plan, (Farina et al., 2021)). An

Extensive form Correlated Plan ξT is a probability distribution on all the

pairs of relevant sequences Q1 ▷◁ Q2.

In particular, the Von Stengel-Forges polytope VT is polytope of all vectors

ξ ∈ R|Q1▷◁Q2|
≥0 indexed over relevant sequence pairs that satisfy the following



54 Chapter 4. Solving adversarial team games

polynomially-sized set of linear constraints:

ξ[∅,∅] = 1∑
a∈A1(I)

ξ[(I, a), q2] = ξ[q1(I), q2] ∀I ▷◁ q2∑
a∈A2(I)

ξ[q1, (I, a)] = ξ[q1, q2(I)] ∀q1 ▷◁ I

Those are flow constraints typical of sequence form formulations.

Definition 42 (Space of Semi-Randomized Correlated Plans). The space of

Semi-Randomized Correlated Plans Ξ∗
p is defined as:

Ξ∗
i = {ξ ∈ VT : ξ[∅, q−i] ∈ {0, 1}∀q−i ∈ Q−i}

Now we can define the mathematical programs for the FCG procedure.

Definition 43 (Master LP). Given a set S = {ξ(1)T , ξ
(2)
T , . . . , ξ

(m)
T } of ran-

domized correlation plans, let:

β(i)(qo) :=
∑

z∈Z:qo(z)=qo

uT (z) ξ
(i)
T [q1(z), q2(z)] ∀qo ∈ Qo

be an auxiliary function. It is then possible to define the MasterLP, to find

the TMECor considering the team constrained on the support S:

argmax
λ(1),...,λ(m)

v∅

s.t vI −
∑

I′∈Io:qo(I′)=qo

vI′ −
m∑
i=1

β(i)(qo)λ
(i) ≤ 0 ∀qo ∈ Qo \ {∅}

v∅ −
∑

I′∈Io:qo(I′)=∅

vI′ −
m∑
i=1

β(i)(∅)λ(i) ≤ 0

m∑
i=1

λ(i) = 1

λ(i) ≥ 0 ∀i ∈ {1, . . . ,m}
v∅ free

vI free ∀I ∈ Io

Definition 44 (Pricing Problem). Given the Master LP in Definition 43,

let γ be the |Qo|-dimensional vector of dual variables corresponding to the
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first two constraints, and γ′ be the dual variable corresponding to the third

constraint. Then the reduced cost of variable ξ is:

c(ξ̂) := −γ′ +
∑
z∈Z

uT ξ̂[q1(z), q2(z)] γ[qo(z)]

Therefore the problem of finding the best response can be modeled as the

following BR-Pricing mixed integer linear program:

argmax
ξ̂∈Ξ∗

1

c(ξ̂T )

s.t ξ[∅,∅] = 1∑
a∈A1(I)

ξ[(I, a), q2] = ξ[q1(I), q2] ∀I ▷◁ q2∑
a∈A2(I)

ξ[q1, (I, a)] = ξ[q1, q2(I)] ∀q1 ▷◁ I

ξ[∅, q2] ∈ {0, 1} ∀q2 ∈ Q2

The overall procedure is represented in Algorithm 7.

Algorithm 7 Fast Column Generation

1: function FastColumnGeneration(Γ)

2: Initialize Uh = 0, Pcur = {}, v ← 0

3: Seed set S with semi-randomized correlated plans

4: (λ, γ, γ′)← MasterLPT (Γ, S)

5: (ξT , c)← BR-Pricing(Γ, γ, γ′)

6: while c > 0 or within computational budget do

7: S ← S ∪ {ξT }
8: (λ, γ, γ′)← MasterLPT (Γ, S)

9: (ξT , c)← BR-Pricing(Γ, γ, γ′) ▷ alternating the fixed player

10: ro ← MasterLPo(Γ, S)

11: return (S, λ, ro)

Generally speaking, FCG is a fast anytime algorithm able to converge

to a TMECor. It overcomes many of the weaknesses of its predecessors and

represents the state of the art technique to find a TMECor for an extensive

form adversarial team game. Its only weakness consists in the use of linear

programs, thus constraining the maximum size of problems it is able to solve.
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4.2 Reinforcement Learning techniques

In this section, we briefly explore an alternative path for the solution of an

adversarial team game. Pushed by the recent successes of Deep Reinforce-

ment Learning applications in 2p0s games, such as DeepStack (Moravćık

et al., 2017), AlphaGo (Silver et al., 2017), AlphaStar (Vinyals et al., 2019),

a similar research direction has been explored for adversarial team games. In

particular, the appealing characteristic of RL techniques is their incredible

scalability, even on large games; such a feature has the potential to solve the

scalability issues of LP-based approaches seen in the previous chapter.

In the following, we describe the two main techniques developed in this di-

rection, analyzing their strengths and weaknesses. A common characteristic

of these techniques is the paradigm of centralized training and decentralized

execution, that consists in training all the distributed agents together in an

environment presenting more information than the one available in real sce-

narios; each trained agent will then be deployed separately in the target

environment. Such a paradigm is useful in this context, because it eases the

training phase while retaining the distributed characteristics of the problem.

4.2.1 Soft Team Actor Critic

Soft Team Actor Critic(STAC) is the first Deep-RL algorithm proposed by

Celli et al. (2019) provably capable of converging to a TMECor. Its main

characteristics are the following:

� Use of a actor-critic learning paradigm. In particular, centralized state-

value and action-value functions called critic are trained using world

state information not available to agents at test time. Agents will act

based upon decentralized policies called actors and trained through

policy improvement steps on the critic’s value functions.

� Use of a fixed signaler. A fixed number of coordination signals is made

available to the team members. A uniform distribution is used to

sample one at the start of each game, to mimic the ex-ante coordination

implied by a TMECor. Intuitively, while at the start of the game

those signals are completely uninformative, the players’ training allows

them to associate a specific semantics to each signal, reaching consensus

on the strategy to play. Moreover, if enough signals are available,

any probability distribution can be represented by associating same

semantics to different signals.
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� Use of value/policy Hypernetworks (Ha et al., 2017). Those hypernet-

works are neural networks receiving in input the coordination signal

only, and having as output the weights of the value/policy neural net-

work respectively.

We refer to the otiginal paper (Celli et al., 2019) for the description of the

specific update rules employed.

In the following, we present STAC’s pseudocode. We use:

� D to represent the experience buffer

� ξ to represent a coordination signal;

� ψ for the parameters of the shared state value hypernetwork;

� θ1, θ2 for each player’s action-value hypernetwork parameters;

� ϕ for the policy hypernetwork.

Algorithm 8 Soft Team Actor Critic

1: function Soft Team Actor (θ1, θ2, ϕ, ψ)

2: ψ̄ ← ψ

3: D ← ∅
4: for each iteration do

5: ξ ∼ uniform distribution over signals

6: for each environment step do

7: at ∼ πϕ(at|st; ξ)
8: st+1 ∼ T (st+1|st, at)
9: D ← D ∪ {(st, at, rt, st+1, ξ)}

10: for each gradient step do

11: ψ ← ψ − λV ∇̂ψJV (ψ)
12: θi ← θi − λQ∇̂θi for i ∈ {1, 2}
13: ϕ← ϕ− λπ∇̂ϕJπ(ϕ)
14: ψ̄ ← τψ + (1− τ)ψ̄

As a whole, STAC represents the first attempt to find a RL-based algo-

rithm for a TMECor. While its performances on simple games is superior

than previous non game-theoretical approaches to team games, the complex

architecture and uniform structure for signaling strongly limit its scalability

and capability of convergence in more complex games.
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4.2.2 Signal Mediated Strategies

Another Deep-RL approach to the computation of a TMECor is Signal Me-

diated Strategies (SIMS), developed by Cacciamani et al. (2021). Intuitively,

SIMS works by considering a perfect recall refinement of the original game

with team players merged. Then, it solves this game using sampling 2p0s

techniques, populating a buffer of sampled trajectories. A coordinated train-

ing of decentralized policies and signaling tools is then predisposed and each

component learns to mimic the action distribution present in the buffer.

In the following we provide formal definition of the concept of perfect

recall refinement.

Definition 45 (Abstraction). Given two EFGs Γ and Γ∗ we say that Γ∗

is an abstraction of Γ if for all p ∈ N and h, k ∈ Hp,A∗(h) ⊆ A(h) and

I(h) = I(k) implies I∗(h) = I∗(k).

Definition 46 (Perfect Recall Refinement). Given a game Γ with an imper-

fect recall player T , Γ∗ is a perfect-recall refinement of Γ if T has perfect

recall in Γ∗ and Γ∗ is an abstraction of T .

SIMS procedure is presented in Algorithm 9. θ represents the signaler’s

policy parameters, while ϕ1, ϕ2 represent the parameters of each team player’s

policy.

Informally, SIMS’s loss L comprehends various terms:

� a classification loss LC on the action chosen with respect to the actions

in the buffer. LC depends on θ and ϕ;

� a regularization term LRP over the team players’ policies, to push them

towards deterministic strategies and avoid inefficiencies of uncorrela-

tion;

� a regularization term LRS over the signaler’s policy, to automatically

exclude not useful signals.
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Algorithm 9 Signal Mediated Strategies

1: function Signal Mediated Strategies(ϕ,M, θ)

2: while within computational budget do

3: (o, t)← SampleFromBuffer(M)

4: ξ = {ξ1, . . . , ξn} ▷ All avaialable signals

5: for k ∈ 1, . . . , n do

6: ak =
∏
j∈T πj(·|oj , ξk, ϕj)

7: Do one step of Gradient Descent on loss L(a1, . . . ,an, θ, ϕ)

8: return (ϕ, θ)

From a general point of view, SIMS is an efficient and scalable RL ap-

proach to the computation of a TMECor. However, the algorithm provides

theoretical guarantees of convergence only in case of no private information,

since the perfect recall refinement translates into forgetting private informa-

tion. Therefore SIMS is effective only in games in which there is no private

information, such as Goofspiel.
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Public Information in games

Some people, when confronted

with a problem, think ”I know,

I’ll coordinate a decentralized

system to solve it”.

Now they have two problems.

Public information is the set of common observations received by all

agents during play. Through the notion of Public Beliefs, it can enable

powerful techniques for game decomposition and team coordination.

While such a concept has been used in practical implementations leverag-

ing specifities of target games (e.g., dealing cards in poker) (Moravćık et al.,

2017) (Brown and Sandholm, 2017b), no explicit formalization of this con-

cept is available for classical EFG and DEC-POMDP formalizations. On the

other hand, supported by the efficacy of its applicaitons, ad-hoc formaliza-

tions like vEFG (see Section 2.1.1) or FOSG notation from Kovař́ık et al.

(2020a) have been proposed to explicitly account for it.

In the following, we will introduce the concept of Public Belief and its

state of the art applications: solving common payoff games and subgame

decomposition.

5.1 Public Beliefs

Public Beliefs have been first introduced by Nayyar et al. (2013) in the

context of decentralized stochastic control. Being the original notation used

very different from the one used in this paper, we will translate its main

concepts in the DEC-POMDP framework presented in Section 2.2.1.
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In this setting, n agents are cooperatively acting in the same environment

over a discrete finite horizon T. At each timestep agents act similarly to a

common DEC-POMDP, but recieve a compound observation composed by

a private part ott and a public part otpub shared by all agents. Agents are

assumed not to forget any observation received. The goal is to maximize a

unique reward Rtot =
∑T

t=0 u(a
t).

Instead of finding the policy in the original setting, Nayyar et al. (2013)

consider a coordinated system of a coordinator and n passive controllers.

The coordinator only knows the shared memory (otpub)t∈[1,T ], and at each

timestep, he plays an action called prescription. Prescriptions ΓT = (ΓT1 , . . . ,

ΓTn ) are commands that the coordinator sends to each passive agents, in the

form ”if you have private state x, then play action a”, for all possible private

states. Formally, prescriptions are mappings from private memory to actions:

ΓT = (ΓT1 , . . . ,Γ
T
n ) where ΓTp : (otpub)t∈[1,T ] → A

The prescription ΓTp is communicated to player p, which chooses an action

by applying its private information to the received prescription.

Other details of the model, such as the observation function, the system’s

dynamics, and the objective are identical to the original model. Coordinator

policies can be implemented in distributed scenarios by using a communica-

tion protocol to a shared coordinator, or by deploying a coordinator’s copy

on each agent.

Nayyar et al. (2013)’s main results are the equivalence of the coordination

system and the original environment, and the proof that the coordination

system is a POMDP, in which:

� the only player is the coordination agent;

� the states are the states of the original game;

� the action played by the coordinator are the prescriptions;

� received observations are the public observations of the original game.

The obtained MDP can then be solved using the belief approach de-

scribed in Section 2.2.1. In particular, beliefs in the coordinated system

POMDP are called Public Beliefs, since they correspond to a probability

distribution over the private states of all playes given the public informa-

tion. Public beliefs are therefore a generalization of beliefs in the multiagent

scenario.

It is also to be noted that the original NEXP-hard DEC-POMDP is

transformed into an exponentially larger PSPACE-complete POMDP.
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5.2 Public Beliefs in common payoff games

The direct applications of Nayyar et al. (2013)’s idea of public beliefs is to

solve n-players common payoff games. Recently, focus of part of the research

community shifted from 2p0s games to collaborative games, and public beliefs

played a central role. The main target of this stream of research efforts has

been the solution of Hababi (Bard et al., 2020), a cooperative card game to

be used as benchmark. Hanabi is a 2-to-5 players game in which each player

can see other people’s card but not its own, and communication between

players is strictly limited by a token-based mechanism.

While being a theoretically sound approach to find an exact solution, ap-

plying the conversion described in Nayyar et al. (2013) generates an exponen-

tial explosion in the space of actions, since generating possible prescriptions

means generating all possible combinations of actions for any private state.

Therefore, applications of such a method to large game instances (such as

Hanabi) require approximations to make it scalable.

In the following we briefly present the main approaches to the problem:

� Bayesian Action Decoder (BAD) (Foerster et al., 2019). BAD uses

a Pub-MDP representation identical to the one proposed by Nayyar

et al. (2013) to train an advantage actor-critic agent; however, the

agent has access only to a simplified representation of the game, with

domain-specific factorizations of beliefs and playable policies. Those

two components, originally exponentially large to represent, are thus

represented using a polynomial space. More in detail:

– belief factorization consists in approximating the probability dis-

tribution of each player’s private hand as a product of probability

of having a specific card in hand:

BTp (c) ≈ BTp,fact(c) :=
∏
ci∈c

P (ci|(otpub)t∈[1,T ])

where c represents a set of cards ci constituting a player’s hand

at time T .

– policy factorization consists in approximating the probability dis-

tribution over the possile prescription as a product of probability

of prescribing to play specific actions for specific private states:

P (ΓTi |BT , (otpub)t∈[1,T ]) ≈
∏

c∈BT

P (ΓTi (c)|BT , (otpub)t∈[1,T ])
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� Simplified Action Decoder (SAD) (Hu and Foerster, 2020). In order to

ease the coordination problem when players are exploring, SAD substi-

tutes the beliefs with an extra signal given containing the action each

player would have greedily played. In this way, an augmented MDP

is formed, in which exploration from each player is pubic information:

this solves part of the instability due to multiple agents acting on the

environment. SAD also keeps the factorizations used in BAD.

� Cooperative Approximate Policy Iteration (CAPI) (Sokota et al., 2021).

CAPI is an actor-critic approach very similar to BAD, but exploring

the correctness-scalability tradeoff differently. In particular the factor-

ization of the policy is maintained, while the factorization of beliefs

is dropped. This creates a less scalable but more performant version

of BAD, able to obtain good results on smaller game instances than

Hanabi.

5.3 Public Beliefs for subgame decomposition

In the context of perfect information 2p0s games, decomposition plays a cru-

cial role to enable efficient computation of optimal strategies. This because

the subgame starting at any point of the EFG is independent from other

parts of the EFG tree, thanks to perfect information. Therefore it is possible

to focus on the subgame first, and substitute the optimal value computed in

place of the subgame in the original game.

Such a procedure cannot be applied to imperfect information 2p0s games.

En fact:

� information sets link the strategy played in different parts of the tree,

creating dependencies among subgames;

� the optimal value of a subgame depends also on the strategy played

before reaching it;

� online search, i.e. online re-solving a subgame to refine the strategy of

a player, may lead to a highly exploitable strategy if no constraints are

put;

� only approximate estimates of expected values in the various nodes are

available.

These problems made hard to produce safe techniques, i.e. strategy refine-

ment techniques able to guarantee an exploitability reduction of the overall

strategy.
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In the following, we present the main solutions proposed in this research

direction:

� the notion of public belief can be used in order to define subgames fully

containing their information sets and compactly representing them. In

particular, subgames rooted at public states are guaranteed not to share

information sets with other parts of the original game, since a public

state is characterized by common information available to all players;

moreover, public state’s beliefs allow to compactly represent sufficient

information to characterize what has happened before the subgame

started (Kovař́ık et al., 2020b). Therefore, whenever a depth-limited

computation is required, it is possible to define possibly approximated

value functions over public states, and use the computed value as a

terminal node whenever a certain depth is reached. Such approaches

proved important for the major scalable applications to poker, Deep-

stack (Moravćık et al., 2017), Libratus (Brown et al., 2018) (Brown

and Sandholm, 2017b), and ReBEL (Brown et al., 2020).

� on the other hand, safe search techniques are needed to perform the

refinement of the subgame in a principled manner. En fact, blindly

applying CFR to produce a strategy in a subgame may compromise

the goodness of the fixed strategy employed in the initial part of the

game, since the refinement may aggressively optimize the strategy of a

player given the current opponent strategy only, creating an exploitable

strategy. Thus Burch et al. (2014), Moravćık et al. (2016), (Brown

and Sandholm, 2017a) developed safe refinements, by defining gadget

games in which the refining player is forbidden to converge to Nash

Equilibria that would correspond to a higher exploitabilities (those are

the strategies that make the opponent desire to change its strategy in

the upper parts of the game). What characterizes each technique is

its efficiency in optimizing the player’s strategy while retaining safety.

Those capabilities depend on how the gadget game is defined; further

details on their design are available in the original works.

Overall, public beliefs proved to be a powerful concept to generalize the

work made in perfect information settings to the imperfect information one.

While its application may not be straightforward due to the combinatorial

explosion it brings, approximation schemes are available. Its main strength

is the intuitiveness of the concept and its wide applicability.

In the next chapter, we will see how public information can be used to

coordinate team members in an adversarial team game.





Chapter 6

Public Team Conversion

Some people, when confronted

with a problem, think ”I know,

I’ll convert it into a problem I

know how to solve”.

Now they have two problems.

In this chapter we present the main contribution of the present work,

a 2p0s, public information representation of adversarial team games. Our

approach is to employ a conversion procedure based on public information,

to transform the original adversarial team game into an equivalent 2p0s game.

We introduce a general procedure for the conversion of any team game

and prove the equivalence of a Nash Equilibrium in the converted game with

a TMECor of the original game. Then, pushed by the inefficiencies in the

resulting game, we develop some pruning techniques to reduce the size of the

converted game. We also evaluate the quantitative impact of the proposed

techniques on an example game.

6.1 Motivation

State of the art techniques to find a TMECor in adversarial team games

presented in Chapter 4 can be interpreted using the idea of representation.

In particular each solving approach is characterized by the expressiveness of

the representation of the game used, which makes more or less explicit the

information needed for an effective team coordination. In particular:

� linear programming approaches of Section 4.1 use a normalized or par-

tially normalized representation. This because a normal form plan
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allows to specify the complete strategy of a player in one shot, and

by sharing this information with the other team member (or equiva-

lently, by correlating each player’s plan selection), he/she can optimize

his/her strategy while knowing how the other member will behave for

the rest of the game. This solves the coordination problem, at the cost

of large action space for the normalized players. This was addressed

through the use of column generation algorithms, which constrain the

available plans in the computation of a TMECor and iteratively add a

new plan to bring larger utilities.

� reinforcement learning approaches of Section 4.2 work on a refined

representation of the original game, without any normalization. This

avoids the exponential growth of the size of the game representation

and the column generation procedure. However, such game represen-

tation lacks enough information to fully characterize the coordination

among team members. In the case of STAC, the fragmented and fixed

system of signals severely affects the convergence performances, while

SIMS guarantees convergence only on instances without private ob-

servations, which is not the case of most practical team coordination

problems.

This representational problem of team games is strongly linked to the

information structure for a team, which is the main challenge in coordination.

To comprehend the characteristics of such structure, let us start from a

naive approach: applying CFR algorithm concurrently on all players. CFR

by definition works in a distributed environment, since it acts on a per-

infoset basis. The only condition for the team players to converge to a joint

Nash Equilibrium is that the joint team player must be a single perfect

recall player; this condition corresponds to the fact that team members are

each perfect recall and share the same visibility over the world. While such

an assumption is unrealistic in most team scenarios, it points to the core

probelm: asymmetric visibility.

In the following we characterize the possible types of asymmetric visibility

that may cause imperfect recall for the joint player, and possible solutions

to overcome them.

� non visibility over a team member’s action. If a team member plays

a action which is hidden from another team member, the joint team

player would have imperfect recall due to forgetting his own played ac-

tions. This source of imperfect recallness can be avoided in a TMECor

by considering the shared strategies and seed before the game starts.
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This allows to know a priori which are the exact actions played by

team members in each node. Thus it is safe to apply a perfect recall

refinement of the action visibility in the original game.

� non visible game structure. Consider two nodes in the same information

set for a player before which the other team member may have played

a variable number of times. In this case a perfect recall refinement is

not applicable to distinguish the nodes, because it would give the joint

coordinator a visibility not correspondent to the one of the players in

the game. To solve this edge case, we require the property of public

turn-taking defined in Section 2.1.1.

� private information disclosed by chance/adversary to specific team mem-

bers. This is the most complex type of non visibility, since in a TMECor

we have no explicit communication channels in which share this type

of information, and therefore this type of joint imperfect recall can-

not be avoided without modifying the structure of the game. En fact,

this specific type of non visibility is the one avoided by SIMS, and

solved through normalization of a player in HCG, FTP, FCG. In the

following we will refer to this specific type of information as private

information of a team member.

The main theoretical advance of the present work is the use of a trans-

formation based on public information to solve the problem of private infor-

mation sharing.

6.2 Public Team conversion procedure

In this section, we delineate the main characteristics of the conversion pro-

cedure based on public information at the core of this work. Firstly, we

will give an intuition on how it works; then we will formalize the conversion

procedure and provide a proof of correctness.

6.2.1 Intuition

Our PublicTeamConversion transformation builds upon the one pro-

posed by Nayyar et al. (2013) already introduced in Chapter 5. The main

idea is to substitute team players in the original game with a coordinator

that only sees public information common to team members. This coordina-

tor prescribes the action of the currently playing team member by emitting
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a prescription directed to him/her, associating each possible private state of

the player with one possible action.

Intuitively, we can see this process of prescription as a weak normaliza-

tion. En fact, we maintain the public tree structure of the original game,

while we normalize each public state, in the sense that we build smaller local

plans for each private state corresponding to a public state. As in the normal

form conversion, we still have an exponential explosion due to the combina-

tion of actions for each private state, but the decomposition per public state

makes it more computationally tractable, especially when employing pruning

techniques. See Section 6.3.2 for more details.

6.2.2 Formalization

In this Section, we provide a general formalization of our PublicTeamCon-

version. A general overview is given in Algorithm 10, while the following

line-by-line comments explain the purpose of each operation.

Comments over the presented pseudocode:

� Lines 1-5 Top-level game conversion

The converted game is initialized and high-level structures are created.

The player set of the converted game is defined as {t, o} since all team

members are merged in the coordinator. The tree structure of the

converted game is defined through a recursive function PublicTeam-

Conversion.

� Line 7 Initialization of converted node

Being PublicTeamConversion a node-by-node converting proce-

dure, we initialize the node h′ in the converted game corresponding

to the node h currently reached in the original game. This initializa-

tion is generic, and the characteristics of each node are defined later in

the code.

� Lines 8-10 Conversion of a terminal node

Terminal nodes in the original game are copied unmodified in the con-

verted game, since the conversion procedure does not impact them.

� Lines 11-19 Conversion of a opponent and chance node

Opponent and chance nodes in the original game are copied unmodified

in the converted game, since the conversion procedure does not impact

them. Visibility of actions for the team player depends on the actions

being public for the team.
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Algorithm 10 Public Team Conversion

1: function ConvertGame(G)
2: initialize G′ new game

3: N ′ ← {t, o}
4: h′∅ ← PublicTeamConversion(h∅,G,G′) ▷ root of new game

5: return G′

6: function PublicTeamConversion(h, G, G′)
7: initialize h′ ∈ H′ ▷ generic node to be specified

8: if h ∈ Z then ▷ terminal node

9: h′ ← h′ ∈ Z ′

10: u′p(h
′)← up(h) ∀p ∈ N

11: else if P(h) ∈ {o, c} then ▷ opponent and chance node

12: P ′(h′)← P(h)
13: A′(h′)← A(h)
14: if h is chance node then

15: σ′c(h
′) = σc(h)

16: for a′ ∈ A′(h′) do

17: Pub′t(a
′) = seen if PubT (a

′) = public else unseen

18: Pub′o(a
′)← Pubo(a

′)

19: h′a′ ← PublicTeamConversion(ha′, G, G′)
20: else ▷ team member node

21: P ′(h′) = t ▷ team coordinator player

22: A′(h′)←×I∈ST (h)A(I) ▷ prescriptions from public team state

23: for Γ′ ∈ A′(h′) do

24: Pub′t(Γ
′)← seen, Pub′o(Γ

′)← unseen

25: a′ ← Γ′[I(h)] ▷ extract action chosen given prescription

26: initialize h′′ ∈ H′ ▷ generic node to be specified

27: A′(h′′)← {a′}
28: P(h′′) = c

29: Pub′t(a
′) = seen if PubT (a

′) = public else unseen

30: Pub′o(a
′) = Pubo(a

′)

31: σ′c(h
′′) = play a′ with probability 1

32: h′′a′ ← PublicTeamConversion(ha′, G, G′)
33: h′Γ← h′′

34: return h′

Note: for notational clarity, we use← symbol to indicate the assignment of a

specific value to a function or node in the converted game. This assignment

will update the data structures in G′ accordingly
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� Lines 20-33 Conversion of a team member node

Converting a team member’s node is the focus of this algorithm. In par-

ticular, a node from any team member is transformed into a node of the

coordinator player, thus merging the team as a whole. The coordinator

information state is defined by the public information ST revealed dur-

ing the game, combined with the series of previous prescriptions given.

The actions available to the coordinator are the prescriptions to be

given to the player who should play in the corresponding state h in the

original game. A prescription Γ is made of an action for each infoset

of the public information state for the team. The effects of playing a

specific prescriptions are determined by applying in the original game

the action a′ prescribed for the infoset of the current history h. To

spread the information that a specific action has been played in the

original game, we add a dummy chance node h′′ with only the specific

action played, and maintain the visibility it would have in the original

game.

� Line 34 Return initialized node h′

Node h′ is returned after its complete initialization, to support the

recursion steps.

In Figure 6.1 and in Figure 6.2 we present a game and the results of its

conversion. To simplify the representation, we avoid a full adversarial team

game, and instead focus on a cooperative game.

6.2.3 Proof of correctness

In the following we provide a general proof of equivalence of a TMECor in a

public-turn-taking vEFG G and a Nash Equilibrium in G′ = ConvertGame(G).

Lemma 15. Given a public-turn-taking vEFG G, and the correspondent con-

verted game G′ = ConvertGame(G), each joint pure strategy πT in G can

be mapped to a strategy πt in G′, such that the traversed histories have been

mapped by PublicTeamConversion. Formally:

∀πT ∃πt ∀πo, πc :
(PubTeamConversion(h))h reached by playing (πT ,πo,πc) in G

≡
(h′)h′ reached by playing (πt,πo,πc) in G′
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Figure 6.1: Example of a cooperative game. Player 2 can see all actions apart from chance outcomes 0, 1. Nodes of a player with same

number are in the same infoset.
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Figure 6.2: Example of Figure 6.1 converted. Nodes of a player with same number are in the same infoset. For notational clarity, dummy

chance nodes are not represented, prescriptions list the action to take for private state 0 and 1, the action taken afterward is in bold in

the prescription.
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Proof. We can prove Lemma 15 recursively by traversing both G and G′ while
constructing the equivalent pure strategy in the converted game. We start

by h∅ and h′∅. We know that h′∅ = PublicTeamConversion(h∅).

Let h and h′ be the nodes currently reached recursively in G and G′, such
that h′ = PublicTeamConversion(h), with the guarantee that correspon-

dent histories in the trajectories traversed up to this point in the two games

have such a property. We thus have the guarantee that h and h′ are both

terminal or both share the same player. Then:

� Case team member node

Let a = πT [I(h)] be the action specified by πT to be taken at I(h).
We can construct a prescription Γ = (πT [I])I∈S[h] equivalent to the

pure strategy πT in this public state. We set πt[I ′(h′)] = Γ, and

prosecute our proof from the two reached nodes h′Γa and ha. The

construction procedure PublicTeamConversion guarantees en fact

that h′Γa = PubTeamConversion(ha).

� Case chance or opponent node

πo and πc are common to both the traversals. This guarantees that

the action a suggested by the policy is equal, and by construction of

the conversion procedure h′a′ = PubTeamConversion(ha). We can

thus proceed with the proof considering h′a and ha.

� Case terminal node

By construction, they have the same value for all players. This con-

cludes the recursive proof.

Lemma 16. Given a public-turn-taking vEFG G, and the correspondent con-

verted game G′ = ConvertGame(G), each coordinator pure strategy πt in

G′ can be mapped to a strategy πT in G, such that the traversed histories have

been mapped by PublicTeamConversion. Formally:

∀πt ∃πT ∀πo, πc :
(PubTeamConversion(h))h reached by playing (πT ,πo,πc) in G

≡
(h′)h′ reached by playing (πt,πo,πc) in G′

Proof. We can prove Lemma 16 recursively by traversing both G′ and G while

constructing the equivalent pure strategy in the original game. We start by

h′∅ and h∅. We know that h′∅ = PublicTeamConversion(h∅).
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Let h′ and h be the nodes currently reached recursively in G′ and G,
such that h′ = PublicTeamConversion(h), and with the guarantee that

correspondent histories in the trajectories traversed in the two games have

such a property. We thus have the guarantee that h and h′ are both terminal

or both share the same player. Then:

� Case team member node

Let Γ = πt[I(h′)]] be the prescription specified by πt to be taken at

I ′(h′). We can extract the prescribed action a = Γ[I] to be played in

history h. We set πT [I(h)] = a, and prosecute our proof from the two

reached nodes h′Γa and ha. The PublicTeamConversion procedure

guarantees en fact that h′Γa = PubTeamConversion(ha).

� Case chance or opponent node

πo and πc are common to both the traversals. This guarantees that

the action a suggested by the policy is equal, and by construction of

the conversion procedure h′a′ = PubTeamConversion(ha). We can

thus proceed with the proof considering h′a and ha.

� Case terminal node

By construction, they have the same value for all players. This con-

cludes the recursive proof.

Definition 47 (Mapping functions among original and converted game).

We define:

� ρ : ΠT → Πt is the function mapping each πT to the πt specified by the

procedure described in the proof of Lemma 15.

� σ : Πt → ΠT is the function mapping each πt to the πT specified by the

procedure described in the proof of Lemma 16.

Those two functions can also be extended to mixed strategies, by con-

verting each pure plan and summing the probability masses of the converted

plans. Formally:

∀µT ∈ ∆ΠT : ρ(µT )[πt] =
∑

πT :ρ(πT )=πt

µT (πT )

∀µt ∈ ∆Πt : σ(µt)[πT ] =
∑

πt:σ(πt)=πT

µt(πt)
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Corollary 16.1 (Payoff equivalence). A public-turn-taking vEFG G and G′ =
ConvertGame(G) are payoff-equivalent. Formally:

∀πT ∀πo, πc : uT (πT , πo, πc) = ut(ρ(πT ), πo, πc)

∀πt ∀πo, πc : uT (σ(πt), πo, πc) = ut(πt, πo, πc)

We can now prove the main result of the present work.

Theorem 17. Given a public-turn-taking vEFG G, and the correspondent

converted game G′ = ConvertGame(G), a Nash Equilibrium (µt, µo) in G′

corresponds to a TMECor (µT , µo) in G where µT = σ(µt).

Proof. By hypothesis we have that:

µ∗t ∈ argmax
µt∈∆Πt

min
µo∈∆Πo

∑
πt∈Πt
πo∈Πo
πc∈Πc

µt(πt)µo(πo)µc(πc)ut(πt, πo, πc)

We need to prove:

σ(µ∗t ) ∈ argmax
µT ∈∆ΠT

min
µo∈∆Πo

∑
πT ∈ΠT
πo∈Πo
πc∈Πc

µT (πT )µo(πo)µc(πc)uT (πT , πo, πc)

Let minTMECor(µT ) and minNE(µt) be the inner minimization problem

in the TMECor and NE definition respectively.

Absurd. Suppose ∃ µ̄T with a greater value than σ(µ∗t ). Formally:

min
TMECor

(µ̄T ) > min
TMECor

(µ∗t )

In such a case, we could define µ̄t = ρ(µ̄T ) having value:

min
NE

(µ̄t) = min
TMECor

(µ̄T ) > min
TMECor

(σ(µ∗t )) = min
NE

(µ∗t )

where the equalities are due to the payoff equivalence. However this is absurd

since by hypothesis µ∗t is a maximum. Therefore necessarily:

σ(µ∗t ) ∈ argmax
µT ∈∆ΠT

min
NE

(µT )
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6.3 Pruning

The general procedure presented in the previous section allows to prove the

theoretical soundness of our approach in the general setting. However, this

formalization is not suited for practical applications, because the prescrip-

tions of the coordinator produce a large fanout of the game tree. This because

in a public state in which A actions are available for S possible private states

we have AS prescriptions.

While the computation of a TMECor has a unavoidable exponential com-

plexity due to the NP-hardness of the problem, any 2p0s solving algorithm

can strongly benefit of any improvement made to the game size.

In this section we describe and empirically evaluate some pruning tech-

niques we devised to attenuate the computational challenges of the converted

game. Those techniques are crucial for the results we will present in Chap-

ter 7.

6.3.1 Intuition

To intuitively describe the idea behind the pruning techniques we’ll present,

we borrow the perspective of Brown et al. (2020) on public information in

games. Their idea is that a game with private information can be seen in

two ways:

� each player has its own set of private and public observations, and plays

a policy prescribing a probability over actions for each information state

the player is in;

� no player has private information, but instead a coupier is handling

it on their behalf. The players have to tell him/her each turn about

what to do for each possible private state, and all players can hear this

prescriptions. The coupier will then check the player’s private state and

sample an action from the policy specified by the player for the found

private state. A player strategy consists in a mapping from public

actions and belief over private states to prescriptions to the coupier.

The crucial intuition is that the two games are strategically equivalent; en

fact strategies can be easily mapped between the two representations, with

identical payoffs. The fact that in the second representation the players’

strategies are shared does not change the game, since the optimal Nash

Equilibria play is solid even in case of known strategies.

The PublicTeamConversion procedure we describe is grounded on

the second representation; the added advantage of applying it in team set-
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tings is the fact that whenever team players lack private information, we can

easily merge them into a unique player and find an optimal joint strategy

considering a single coordinator.

How can we leverage such a perspective to refine the public team con-

version procedure? We can consider to be a player, and check whether the

game returned by PublicTeamConversion is redundant in any sense. We

identified three sources of redundances in what we call basic representation:

� the more we proceed in the game, the more we can refine the prior on

private states. En fact, by observing actions, we can perform bayesian

updates, excluding non coherent private states. This allows to reduce

the number of private states, effectively lowering the exponential fanout

at each level.

We call this representation the pruned representation.

� the complete state of the game can be described by public actions and

beliefs; there is no need to store the players’ private states, since those

can be recovered by the players’ beliefs. This allows to avoid chance

sampling as in the original tree, with the price of managing a more

complex chance sampling. En fact, at any point, we can describe a

probability over the current player’s private state. Then the effect of

each prescription is not unique, but the action played by the coupier

depends on the probability mass over the private state and the corre-

spondence private state-action defined by the prescription. The coupier

can then be represented as a chance node sampling an action given a

belief and a prescription.

In other words, this representation associates a node to each public

state, and instantiates a chance node to sample the effect of a prescrip-

tion from the belief state over all players. In this way, private state are

never sampled, and only the actions reported by the coupier (which is

represented as chance player) are sampled.

In this way, we achieve to have the least possible number of nodes, since

all the game trajectories in the basic representation are overlapped as

long as they are coherent from a public information point of view. Note

that such a representation can easily integrate the pruning of impossible

private states. We call this representation with overlapped trajectories

and belief-based pruning the folded representation.

� whenever the player is in a state with three or more actions available, a

specific action is played and some possible private states are excluded
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from the belief. The specific actions prescribed for the excluded states

are not important to describe the information state of the player; we

can therefore forget part of the prescription and have imperfect recall

among different prescription without changing the game. For example,

given 2 player states {0, 1} and 3 actions {A,B,C}, consider prescrip-
tions AB and AC. In the case in which we observe action A after them,

there is no difference between having chosen one of the prescriptions

over the other; en fact the result is that action A has been played and

the players knows to have private state 0.

While this pruning technique does not directly reduce the number of

nodes, it reduces the number of information sets, simplifying the in-

formation structure of the game. This reduces the space requirements

to represent the strategies, and makes the algorithms converge faster.

This pruning technique is theoretically sound, and the convergence

properties of CFR in this imperfect recall setting have already been

addressed by Lanctot et al. (2012).

To have a visual representation of the effects of the pruning technique and

of the folding technique, we can check their effects on Figure 6.3, Figure 6.4.

6.3.2 Evaluation

In the following, we quantitatively analyze the impact of the pruning tech-

niques applied on a toy game.

Game Description. Suppose a game G in which there are C chance out-

comes at root, observed by P1 and not by P2, followed by H levels of actions

of P1, each with A actions each and one last level of P2. P2 has no visibility

of any of the previous actions, thus all his nodes are in the same information

set.

We proceed to analyze the size in total number of coordinator nodes of

the converted game for player P1 nodes, depending on the pruning technique

used. To formalize the total number of nodes, we use a succession notation,

where sl(c) indicates the number of nodes at level l in which P1 may be in

exactly c private states. Such a notation is particularly useful to represent

the relation between private states, pruning, and total number of nodes.

Normal form representation. As a baseline comparison, we compute the

number of normal form plans in the game. The total number of plans for P1

can be computed as AC·H .

Basic Representation. Each of the H level has AC actions, and we have

C independent trees due to the initial chance. Since we do not perform any

belief pruning, all nodes have C possible private states.
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Figure 6.3: Example of Figure 6.1 converted using belief pruning. Nodes of a player with same number are in the same infoset. For

notational clarity, dummy chance nodes are not represented, prescriptions list the action to take for private state 0 and 1, the action

taken afterward is in bold in the prescription.
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The correspondent succession is:

x0(c) =

{
0 if c ̸= C

C if c = C
initial C chance outcomes

xl(c) =

{
0 if c ̸= C

xl−1(c) ·AC if c = C
AC fanout at each level

Therefore:

tot(C,A,H) =
H∑
l=0

C∑
c=1

xl(c)

= C ·
H∑
i=1

(AC)i

Pruning Representation. Given a node with a generic number I of private

states, we can work by induction to retrieve the number of generated nodes:

� children left with I possible infostates: A. They correspond to the

nodes reached through a prescription assigning the same action for all

I states;

� children left with I − 1 possible infostates: A · (A− 1)1 · (I − 1). They

correspond to the nodes reached through a prescription assigning any

of the A actions to the state corresponding to the card drawn in this

subtree (defined by the chance outcomes) and to other I−2 states, and

assigning any of the remaining A− 1 actions to the remaining state;

� children left with I − 2 possible infostates: A · (A − 1)2 ·
(
I−1
2

)
. They

correspond to the nodes reached through a prescription assigning any

of the A actions to the state corresponding to the card drawn in this

subtree (defined by the chance outcomes) and to other I−3 states, and

assigning any of the remaining A− 1 actions to the 2 remaining states;

� ...

� children left with 1 possible infostates: A · (A − 1)C−1 ·
(
C−1
C−1

)
. They

correspond to the nodes reached through a prescription assigning any

of the A actions to the state corresponding to the card drawn in this

subtree (defined by the chance outcomes), and assigning any of the

remaining A− 1 actions to the I − 1 remaining states.



84 Chapter 6. Public Team Conversion

We can generalize this pattern. Children left with i possible private states

out of available I:

n(i, I) = A · (A− 1)I−i ·
(
I − 1

I − i

)
for i ∈ [1, I]

As a check:

C∑
i=1

n(i, I) =
I∑
i=1

A · (A− 1)I−i ·
(
I − 1

I − i

)
=

= A

I−1∑
j=0

(
I − 1

j

)
(A− 1)j1I−1−j =

= A · [(A− 1) + 1]I−1 = AI

which corresponds to the expected AI prescriptions available in the current

node.

Then repartition of each level’s nodes will depend on the number of nodes

having a certain number of private state in the previous state, according to

the repartition indicated by n(i, I). In particular, each of the bl−1(c) nodes

will generate n(i, c) children with i private states.

The correspondent succession is:

y0(C) =

{
0 if c ̸= C

C if c = C
initial C chance outcomes

yl(c) =

C∑
i=c

bl−1(i) · n(c, i)

Note that we do not count auxiliary chance nodes, since in practical im-

plementation they can be easily compacted with the previous coordinator

nodes.

Therefore:

tot(C,A,H) =
H∑
l=0

C∑
c=1

yl(c)

Folding Representation. In this representation we have no initial chance

sampling, and each coordinator nodes presents a chance node per prescrip-

tions, each with a variable number of children depending on the number of

unique actions.

To compute the total number of nodes per level, we can acknowledge that

each coordinator node with c private states corresponds to c nodes (all with

c private states) in the pruning representation. Therefore, at each level we

have a number of coordinator node zl(c) = yl(c)/c
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In this case, chance nodes have to be considered in the total nodes com-

puted, since they cannot be easily reduced. In particular, each coordinator

node has associated a chance node per prescription action available.

Therefore:

zl(c) = yl(c)/c

tot(C,A,H) =
H∑
l=0

C∑
c=1

yl(c)/c · (Ac + 1)

Moreover, such an analysis can be extended also to the case of 2 initial

level of chance nodes, extracting one out of C private states for P1 and P2

respectively. In this case, basic and pruning representation have a different

starting condition, with x0(C) = y0(C) = C2, while the folding representa-

tion has no changes.

Figure 6.5, Figure 6.6, Figure 6.7, Figure 6.8 present numerical results

obtained by setting different combinations of (C,A,H) when only P1 or both

P1 and P2 have private state.

What emerges is that pruning technique is particularly effective at damp-

ening the exponential factor due to the combinatorial structure of prescrip-

tions, thanks to the belief-based pruning.

On the other hand, folding technique is able to combine the benefits of

the pruning technique with a better management of chance sampling when

multiple players are involved. This is due to the fact it is able to avoid the

increase in size of tree due to chance sampling at the start of the game,

trading it for a linear factor on the size of the tree.

Moreover, the smaller the number of actions, the more folding has better

performances than pruning. Intuitively, when the majority of the nodes are

pruned to one or two private states, the folding 1
c factor is less impactful and

the folding representation is dragged down by the allocation of a chance node

after each prescription. This is the case when we have vast actions spaces

that allow to communicate more efficiently the private state of players.

Since the focus of the experiments is poker games, in which we have

usually two actions per node and three/four possible private states per player

in the original game as in Figure 6.6, we use the folding representation.

6.4 Implementation-side requirements

In Algorithm 10 we do an enumeration over the infosets I ∈ ST belonging

to a specific public state. Such a operation is theoretically possible, and it

is often the case that public states can be easily determined by leveraging

game-specific knowledge and implementation-side data structures. However,
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Note that for normal form we are measuring the total number of plans instead of

the total number of nodes.

C A H normal basic pruning folding

3 2 1 8.00E+00 3.00E+00 3.00E+00 9.00E+00

3 2 2 6.40E+01 2.70E+01 2.70E+01 7.50E+01

3 2 3 5.12E+02 2.19E+02 1.35E+02 3.75E+02

3 2 4 4.10E+03 1.76E+03 5.19E+02 1.46E+03

3 2 5 3.28E+04 1.40E+04 1.72E+03 4.86E+03

3 2 6 2.62E+05 1.12E+05 5.18E+03 1.48E+04

3 2 7 2.10E+06 8.99E+05 1.46E+04 4.18E+04

3 2 8 1.68E+07 7.19E+06 3.92E+04 1.13E+05

3 2 9 1.34E+08 5.75E+07 1.01E+05 2.93E+05

3 2 10 1.07E+09 4.60E+08 2.55E+05 7.40E+05

3 2 11 8.59E+09 3.68E+09 6.27E+05 1.82E+06

3 2 12 6.87E+10 2.95E+10 1.51E+06 4.41E+06

3 2 13 5.50E+11 2.36E+11 3.59E+06 1.05E+07

3 2 14 4.40E+12 1.88E+12 8.40E+06 2.46E+07

Figure 6.5: Pruning techniques comparison for C=3, A=2, in the case only P1 has

private information
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Note that for normal form we are measuring the total number of plans instead of

the total number of nodes.

C A H normal basic pruning folding

3 2 1 8.00E+00 9.00E+00 9.00E+00 9.00E+00

3 2 2 6.40E+01 8.10E+01 8.10E+01 7.50E+01

3 2 3 5.12E+02 6.57E+02 4.05E+02 3.75E+02

3 2 4 4.10E+03 5.26E+03 1.56E+03 1.46E+03

3 2 5 3.28E+04 4.21E+04 5.16E+03 4.86E+03

3 2 6 2.62E+05 3.37E+05 1.55E+04 1.48E+04

3 2 7 2.10E+06 2.70E+06 4.37E+04 4.18E+04

3 2 8 1.68E+07 2.16E+07 1.17E+05 1.13E+05

3 2 9 1.34E+08 1.73E+08 3.04E+05 2.93E+05

3 2 10 1.07E+09 1.38E+09 7.65E+05 7.40E+05

3 2 11 8.59E+09 1.10E+10 1.88E+06 1.82E+06

3 2 12 6.87E+10 8.84E+10 4.53E+06 4.41E+06

3 2 13 5.50E+11 7.07E+11 1.08E+07 1.05E+07

3 2 14 4.40E+12 5.65E+12 2.52E+07 2.46E+07

Figure 6.6: Pruning techniques comparison for C=3, A=2, in the case both P1 and

P2 have private information
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Note that for normal form we are measuring the total number of plans instead of

the total number of nodes.

C A H normal basic pruning folding

6 4 1 4.10E+03 6.00E+00 6.00E+00 4.10E+03

6 4 2 1.68E+07 2.46E+04 2.46E+04 4.85E+05

6 4 3 6.87E+10 1.01E+08 1.64E+06 1.69E+07

6 4 4 2.81E+14 4.12E+11 4.00E+07 3.22E+08

6 4 5 1.15E+18 1.69E+15 6.10E+08 4.32E+09

6 4 6 4.72E+21 6.92E+18 7.05E+09 4.64E+10

6 4 7 1.93E+25 2.83E+22 6.79E+10 4.25E+11

6 4 8 7.92E+28 1.16E+26 5.75E+11 3.47E+12

6 4 9 3.25E+32 4.75E+29 4.41E+12 2.60E+13

6 4 10 1.33E+36 1.95E+33 3.15E+13 1.82E+14

6 4 11 5.44E+39 7.98E+36 2.12E+14 1.20E+15

6 4 12 2.23E+43 3.27E+40 1.36E+15 7.61E+15

6 4 13 9.13E+46 1.34E+44 8.34E+15 4.63E+16

6 4 14 3.74E+50 5.48E+47 4.96E+16 2.73E+17

Figure 6.7: Pruning techniques comparison for C=6, A=4, in the case only P1 has

private information
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Note that for normal form we are measuring the total number of plans instead of

the total number of nodes.

C A H normal basic pruning folding

6 4 1 4.10E+03 3.60E+01 3.60E+01 4.10E+03

6 4 2 1.68E+07 1.47E+05 1.47E+05 4.85E+05

6 4 3 6.87E+10 6.04E+08 9.83E+06 1.69E+07

6 4 4 2.81E+14 2.47E+12 2.40E+08 3.22E+08

6 4 5 1.15E+18 1.01E+16 3.66E+09 4.32E+09

6 4 6 4.72E+21 4.15E+19 4.23E+10 4.64E+10

6 4 7 1.93E+25 1.70E+23 4.07E+11 4.25E+11

6 4 8 7.92E+28 6.97E+26 3.45E+12 3.47E+12

6 4 9 3.25E+32 2.85E+30 2.65E+13 2.60E+13

6 4 10 1.33E+36 1.17E+34 1.89E+14 1.82E+14

6 4 11 5.44E+39 4.79E+37 1.27E+15 1.20E+15

6 4 12 2.23E+43 1.96E+41 8.13E+15 7.61E+15

6 4 13 9.13E+46 8.03E+44 5.00E+16 4.63E+16

6 4 14 3.74E+50 3.29E+48 2.97E+17 2.73E+17

Figure 6.8: Pruning techniques comparison for C=6, A=2, in the case both P1 and

P2 have private information
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the question whether or not such a data structures can be built efficiently in

a automatic way is still open, and will be investigated in future expansion of

the present work.

This could prove especially useful for an online conversion procedure

applicable to any game, without the need of ad-hoc public state enumeration

support.



Chapter 7

Experimental Analysis

Some people, when confronted

with a problem, think ”I know,

I’ll evaluate the different options

experimentally”.

Now they have two problems.

This chapter provides an experimental analysis of the conversion proce-

dures described in Chapter 6. We apply the folding representation to Kuhn

and Leduc poker instances, showing the characteristics of the converted tree

and the performances of standard 2p0s solution techniques.

7.1 Game instances

The focus of this chapter is on Kuhn (Kuhn, 1950) and Leduc (Southey

et al., 2005) poker instances. Those two small and medium sized poker

instances have traditionally been identified as standard benchmarks for 2p0s

techniques, thanks to their simple structure and the presence of imperfect

information. Therefore, their multiplayer generalization has been used as a

benchmark in multiplayer games as well.

Specifically, we refer to the three player generalizations proposed by Fa-

rina et al. (2018). The Kuhn instances we use are parametric in the number

of ranks available, and on whether the adversary plays first, second or third

in the game. Similarly, Leduc instances are parametric on the number of

ranks, on the position of the adversary, but also on the number of raises that

can be made.

91
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7.2 Experimental Results

We implemented the folded representation of both Kuhn and Leduc taking

advantage of the OpenSpiel (Lanctot et al., 2019) framework. The framework

allowed us to specify the game as an evolving state object, and provided the

standard resolution algorithms for the computation of a Nash Equilibrium

in the converted game.

The implementation is in Python3.8 and the experiments have been per-

formed on a machine running Ubuntu 16.04 with a 2x Intel Xeon E5-4610

v2 @ 2.3GH CPU. The implementation is single threaded.

7.2.1 Description of converted games

Table 7.1a and Table 7.1b present the characteristics of the converted in-

stances.

7.2.2 Game resolution

Figure 7.1 to Figure 7.7 show the convergence performances on the con-

verted games of LCFR+ and OSMCCFR, which are state of the art solvers

taken from OpenSpiel. We report a paired plot showing both the value and

exploitability convergence, along with the optimal value of a TMECor as

computed by Farina et al. (2021), represented as horizontal dashed lines in

the team value plot.

To avoid excessive verbosity, we show the results for games in which the

adversary plays first.

7.3 Result Evaluation

Empirical results match with the theoretical results of Chapter 5. In partic-

ular, a NE in the converted games obtains a team value equivalent to the

TMECor in the original game.

It is to be noted that the slow convergence of OSMCCFR in Figure 7.7

and Figure 7.8 are due to the sampling nature of the algorithm and do not

depend on the game construction, as it can be seen in the corresponding

LCFR+ figures.
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Number of ranks 3 3 3 4 4 4 5 5 5

Adversary position 0 1 2 0 1 2 0 1 2

Coordinator nodes 222 291 591 1560 2220 7412 8890 13025 66465

Adversary nodes 219 372 288 1996 5416 2656 12425 54040 16560

Terminal nodes 1320 1704 2436 16584 24536 51800 144740 235660 760520

Chance nodes 1129 1405 2461 10913 14641 40977 85521 119001 514681

Chances with one child only 936 1188 2184 5680 7944 25400 29840 43360 218940

Total number of nodes 2890 3772 5776 31053 46813 102845 251576 421726 1358226

Coordinator information sets 86 113 155 392 556 856 1738 2543 4093

Adversary information sets 12 12 12 16 16 16 20 20 20

Time taken for a full traversal 2.0s 2.3s 3.36s 14.7s 18.1s 37.2s 68.6s 125s 447s

(a) Converted Kuhn game characteristics for varying parameters.

Number of ranks 3 3 3 4 4 4

Number of raises 1 1 1 2 2 2

Adversary position 0 1 2 0 1 2

Coordinator nodes 84243 117126 232950 57138 66268 76384

Adversary nodes 60543 98034 134196 32790 38622 46758

Terminal nodes 354999 476187 775233 163580 185994 213098

Chance nodes 284200 378928 694132 160395 184065 211437

Chances with one child only 181020 250908 494544 137044 159202 184738

Total number of nodes 783985 1070275 1836511 413903 474949 547677

Coordinator information sets 7184 7232 7316 5624 5632 5650

Adversary information sets 228 228 228 630 630 630

Time taken for a full traversal 332s 322s 686s 220s 255s 183s

(b) Converted Leduc game characteristics for varying parameters.
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Figure 7.1: LCFR+ performances in terms of expected value and exploitability on a

Kuhn Poker instance with 3 ranks and adversary playing first.
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Figure 7.2: LCFR+ performances in terms of expected value and exploitability on a

Kuhn Poker instance with 4 ranks and adversary playing first.



7.3. Result Evaluation 95

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2
Te

am
 v

al
ue

0 5000 10000 15000 20000 25000 30000 35000 40000
Time [s]

10 1

100

Ex
pl

oi
ta

bi
lit

y

Peak RAM occupation: 912 MB

Figure 7.3: LCFR+ performances in terms of expected value and exploitability on a

Leduc Poker instance with 3 ranks, 1 raise, and adversary playing first.
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Figure 7.4: LCFR+ performances in terms of expected value and exploitability on a

Leduc Poker instance with 2 ranks, 2 raises, and adversary playing first.
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Figure 7.5: OSMCCFR performances on a Kuhn Poker instance with 3 ranks and

adversary playing first.
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Figure 7.6: OSMCCFR performances in terms of expected value and exploitability

on a Kuhn Poker instance with 4 ranks and adversary playing first.
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Figure 7.7: OSMCCFR performances in terms of expected value and exploitability

on a Leduc Poker instance with 3 ranks, 1 raise, and adversary playing first.
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Figure 7.8: OSMCCFR performances in terms of expected value and exploitability

on a Kuhn Poker instance with 2 ranks, 2 raises, and adversary playing first.





Chapter 8

Conclusions

To conclude this work, we summarize the main results we obtained and

highlight some of their possible future developments.

8.1 Contributions of the present work

In the first part of this thesis, we reviewed the main results obtained in

two player zero sum games and in adversarial team games. The former is

a class of games which has been studied for long time and with remarkable

successes, with the development of effective techniques for the computation

of Nash Equilibria. On the other hand, adversarial team games have a more

recent definition and they represent a more complex class of problems. While

a clear and reasonable solution concept called Team Maxmin equilibrium

with correlation has been identified, the coordination of team members in

presence of private information is difficult to treat efficiently, and state of the

art techniques rely on linear programming to represent the problem in a way

to make it solvable. We also reviewed some public information approaches

able to overcome the presence of private information in a cooperative game

and for the decomposition of two players zero sum games.

This thesis presented a conversion procedure to transform an adversarial

team game in a two player zero sum game, such that a Nash Equilibrium

in the converted game corresponds to a Team Maxmin equilibrium with

correlation in the original game. This conversion procedure is based on the

use of public information among team members, which allows to remove each

player’s private information in the converted representation at the cost of a

exponential increase in the game size. This is unavoidable due to the NP-

hardness of the problem of computing a TMECor in a generic team game,

but some pruning techniques are proposed to obtain a resulting which is
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more computationally tractable. We proved our approach both theoretically

on generic games and empirically on Kuhn and Leduc poker.

In addition, to characterize the information structure in such a way it

can be used for our purposes, we introduced a variation on the Extensive

From Game formalism called Extensive Form Game with visibility (vEFG).

The main intent of these contributions is to lay the foundations of a new

research direction for the solution of adversarial team games.

8.2 Future Work

This thesis defines the theoretical foundations for the use of the public infor-

mation conversion procedure. However some steps will have to be performed

to refine such a technique.

On a more theoretical side, there is the need of an online procedure able to

produce a trajectory on a pruned/folded converted game, without requiring

to fully explore the original game. This problem is linked with the one of

efficiently index over public sets presented in Section 6.4, and requires more

formalization efforts to efficiently characterize public states, starting from

the vEFG formalization presented in Section 2.1.1.

On a practical side, more scalable solutions for the computation of an

equilibrium in the converted game are to be tested; in particular, the use of

automated or handcrafted abstractions to reduce the size of the game, and

continual resolving techniques.

Moreover this public information representation can be used to solve

adversarial team games with two teams of players, which is a problem not

addressed by any state of the art techniques.
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M. Moravćık, M. Schmid, K. Ha, M. Hlad́ık, and S. Gaukrodger. Refining

subgames in large imperfect information games. In AAAI, 2016.

M. Moravćık, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis,
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