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1. Introduction
1.1. Rationale
Machine learning is increasingly becoming an
important aspect of various fields in which de-
cisions can heavily affect humans’ lives. This
means that, as machine learning models are de-
ployed in real-world applications, it becomes
crucial to ensure their trustworthiness and re-
liability. One way to achieve these important
properties is through providing model explana-
tions by means of XAI algorithms. However,
recent studies have shown that, alongside the
broad variety of these methods, there are still a
number of concerns regarding the robustness of
the explanation values that they are able to pro-
duce, particularly in situations in which models
are feed with inputs that lay outside the data
distribution they were trained on. Explanations
provided by models may be sensitive to small
changes in the input data, leading to unreliable
explanations. All these concerns justify the need
to carry out investigations in order to develop
explanation methods capable of improve the ro-
bustness.

1.2. State of the Art
In many areas of competence the problem of ex-
plaining models’ outputs may become a matter
of great importance [7]. When a model does not
meet the requirements to be considered intrinsi-
cally explainable, it is necessary to apply post-
hoc eXplainable AI (XAI) techniques which can
be divided into model-agnostic or model-specific.
One of the most widely used is SHAP (SHapley
Additive exPlanations) [10], an XAI method to
explain individual predictions, which calculates
the contributions of each features as its average
marginal contribution across all possible parti-
tions of the feature space. Although this XAI
technique enjoys many desirable properties, it
also suffers from several limitations, mainly con-
cerning its robustness. Intuitively, robustness
means that similar inputs must produce simi-
lar explanations [2]. Ensembles of models have
some desirable properties to provide more accu-
rate and robust predictions, increasing the gen-
eralization capabilities of the single models by
training several of them and combining their de-
cisions to obtain a single prediction [5]. Particu-
lar attention is placed on Random Forest (RF),
a very successful model that combines indepen-
dent Decision Tree (DT) models to build up a
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more powerful learner. Each tree casts a unit
vote for the most popular class to assign to the
input sample. This results in an increment in
the classification accuracy as well as in the abil-
ity to generalize [3, 8]. Concerning the intrin-
sic explainability of this technique, however, this
decreases as the number of weak learners in the
ensemble increases. One way to overcome this
problem is to apply XAI model-agnostic algo-
rithms, such as SHAP. At [2] the authors ob-
served that such an application yields values
that only partially meet the expectations. Al-
though the method provides the contribution of
every feature, in most cases the corresponding
values have low robustness to small perturba-
tions of the input. This can be interpreted as
a symptom of a lack of trustworthiness of these
explanations.

1.3. Objectives
This work is devoted to the conduction of a
study aimed at the developing of effective meth-
ods for the application of model-agnostic XAI
techniques to model ensembles. The goal is to
find a way to exploit the excellent prediction ca-
pabilities and improved robustness of this cat-
egory of models in order to enable the produc-
tion of more robust explanation values. What
makes this research interesting is the promise
that such application, by paralleling the already
established improvements in predictive capabil-
ities, is able to make explanations more robust
and therefore trustable. What we are aiming
to is the production by the developed procedure
of explanation values that result more robust to
small deviations in the input. This means that,
given a certain data point x and a slightly per-
turbed version of it x′, we expect the explana-
tions y and y′, respectively produced from the
two inputs just mentioned, to differ marginally.

2. Development
2.1. Robustness Metric Definition
As a first step, we need to rigorously define a
method to quantify the robustness property of
an explanation. The choice, basing on the work
presented in [2], fell on the notion of Lipschitz
continuity, defined as:

Definition 2.1. f : X ⊆ Rn → Rm is locally
Lipschitz if for every x0 there exist δ > 0 and

L ∈ R such that ||x − x0|| < δ implies ||f(x) −
f(x0)|| ≤ L||x− x0||.

Making use of this notion, we introduce the ro-
bustness criteria to calculate the average value
of the incremental ratio around the data point of
interest. Let X be the input space, let A be the
set of features of X and let f(·) be the prediction
function of the model. Define, for every xi sam-
ple of the test set, a discriminative discretization
of its surrounding:

Nf,ϵ(xi) = {xj ∈ X |
|xi,a − xj,a| ≤ ϵ ∀a ∈ A, f(xi) = f(xj)}

while we now want to calculate the robustness of
the SHAP explanations on data point xi with:

L̄(xi) =
1

|Nf,ϵ(xi)|
∑

xj∈Nf,ϵ(xi)

||g(xi)− g(xj)||2
||xi − xj ||2

where g(·) is the SHAP explanation function.
We decided to include in the robustness calcu-
lation only the perturbed samples whose label
predicted by the model is the same as the origi-
nal sample, because we expect that a perturbed
data point whose label differs from that of the
original data point will produce an explanation
that differs substantially from that of the orig-
inal data point, since different outputs are un-
derstood with different explanations.

2.2. Combination of Weak eXplana-
tions

DT is a model with very good intrinsic explain-
ability but by design it creates hard decision
boundaries meaning that small changes in the
input can lead to abrupt changes in the expla-
nations. Indeed, explanation values are con-
stant within the zones of explanation constancy,
i.e. the portions of space in which predictions
and explanations comes from the activation of
the same branch, which can be identified as the
cause of the abrupt changes in the SHAP ex-
planations of DT. RF, on the other hand, relies
on the combination of several weak learners to
create smoother SHAP explanation boundaries
coming from the averaging of the weak ones.
What we expect is that the softer boundaries
provide more robust explanations. Fig. 1 shows
a 2-dimensional comparison between DT and RF
explanations, being xi the central point and with
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Figure 1: Comparison between DT and RF regarding differences in the explanations values around some xi samples.

each value Hd(xj) of the map computed through
the formula:

Hd(xj) = ||g(xi)− g(xj)||2

As we expected, RF heatmaps depict more grad-
ual color changes, which correspond to differ-
ences in values that follow a smoother progres-
sion. However, while changes in RF explana-
tions are smoother, we will see that they hardly
provide improvements on the robustness (see
Table 2), probably because complex ensembles,
though often better performing, tend to be more
sensitive to the noise generated by the explana-
tions of the weak learners that provided a wrong
label. For this reason, it may be logical to "re-
ward" those explanations from the models that
contributed positively to the final decision.

2.3. Averaging on the eXplanations
Of the Majority (AXOM)

For our solution, we propose to combine the ex-
planations only of weak learners which predic-
tion matches with the one obtained by the en-
semble (see Fig. 2 for a more clear graphical
explanation). In algorithm 1 the AXOM eval-
uation algorithm for each data point x is pre-
sented. The method receives as parameters the
ensemble e (a RF trained model), the data point
x and the SHAP explainer σ. ϕw ∈ R1×p con-
tains the explanations of the weak learner, being
p the number of features, and an explanation is
added to Φ ∈ Rn×p, being n the number of se-
lected weak learners, if the label provided by the

weak learner lw is equal to that predicted by the
ensemble le. The final explanation axom_shap
∈ R1×p is the mean of all selected weak expla-
nations Φ for sample x.

Algorithm 1 AXOM procedure to calculate
single-sample explanations for an ensemble

procedure axom_shap_exp(e, x, σ)
le ← e.predict(x)
W ← e.estimators
Φ← new List( )
for w in W do

lw ← w.predict(x)
if lw = le then

ϕ←shap_explanation(w, x, σ)
Φ.append(ϕ)

end if
end for
axom_shap ← 1

|Φ|
∑

ϕ∈Φ ϕ
return axom_shap

end procedure

This method ensures that the obtained explana-
tion is free from the noise resulting from the ex-
planations of the weak learners that provided a
different label from the ensemble. Arguably, this
improves the quality of the explanation only in
the case where the ensemble has provided correct
output, so we expect to obtain data that support
the decision that was actually made, extractable
from the majority, which makes the method use-
ful for understanding what led to the decision.
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Figure 2: A toy example is depicted in the figure to illustrate the functioning of AXOM. The method considers in the average only
the explanations of the weak learners who were part of the majority in the voting.

2.4. Datasets
We tested the methods on four commonly
used datasets from UCI Machine Learning
Repository, that is Wine [1], Glass Identi-
fication [6], Seeds [4], Banknote Authen-
tication [9], being the test sets with a size of
10% of total data. In table 1 we specify some
information and the accuracy of the tested mod-
els. All of these address a classification task
with multivariate data points. The number of
features of the tested datasets was limited to
⌊log2(10000)⌋ = 13, given the choice of using
10000 points to evaluate the robustness within
the neighbourhood, in order to guarantee an ad-
equate search in the entire feature space, that
is, with at least two perturbations along each
feature axis.

Datasets N. features N. samples Accuracy
DT RF

Wine 13 178 88.9% 100%
Glass 10 214 81.8% 95.5%
Seeds 7 210 85.7% 95.2%
Banknote 5 1372 98.6% 99.3%

Table 1: Descriptions of the datasets.

2.5. Experimental Design
With regard to the conducted tests on robust-
ness, the choice of the radius of the neighbour-
hood of the data points of the test set to be anal-
ysed was ϵ = 0.01. This value defines the pertur-
bation area to be analyzed and it is constant for
all the experiments, in which data samples were
standardized to 0-1. The same experiments were

done for DT and RF. Two functions were then
defined for calculating the value of L̄, one that
performs the calculation through the explana-
tions obtained directly from the models and one
that performs it on RF through AXOM algo-
rithm. For each data point xi of the different
test sets, 10000 perturbed xj samples are ran-
domly chosen from their relative ϵ-neighborhood
Nϵ(xi), on which the variation of the explanation
value is calculated through the formula in sec-
tion 2.1, if and only if its corresponding predicted
label is equal to the one predicted for xi. This
latter choice derives from the fact that we only
expect robust explanation values as long as these
only account for a single output value. Indeed,
we expect that a perturbed data point whose la-
bel differs from that of the original data point
will produce an explanation that differs substan-
tially from that of the original data point, since
different outputs are understood with different
explanations.

3. Results
Table 2 shows the L̄ results in the form of
mean and standard deviation for each model and
dataset, while Fig. 3 present them in a more
detailed way by means of box plots (Note: L̄
indicates the variation of explanation values in
the neighborhood, thus a lower mean value is
associated with a higher robustness). Mean and
standard deviation values of AXOM are better
in each of the four analyzed datasets compared
with RF. However, when comparing the robust-
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ness values of AXOM with those of DT, the for-
mer provides significant improvements only in
some datasets. In the later parts of this chap-
ter we will analyze in detail the reasons for this
anomalous behavior.
To verify the reliability of these results, two-
sample t-test was used. As we expected, Ta-
ble 3 shows that AXOM significantly improves
robustness over RF for all datasets (see row RF
vs. AXOM), with p-values all below the 0.05
threshold. Regarding the DT vs. AXOM com-
parison, neglecting for the moment the case of
the Wine dataset to be discussed, it can be ob-
served that the equality in mean robustness in
Seeds is reflected in a statistical improvement
in favor of AXOM, which possesses values devi-
ating from the mean with less magnitude (also
observable in Fig. 3).

Comparison p values
Wine Glass Seeds Bank

DT vs. RF <0.001 0.774 0.008 0.3023
DT vs. AXOM <0.001 0.113 0.008 0.0656
RF vs. AXOM 0.042 0.007 0.030 0.0444

Table 3: Two samples mean T-test values comparison.

To get some insights, Fig. 4 shows the 2-D ro-
bustness heatmaps for the four test sets, con-
structed by averaging the heatmaps of all test
samples. Being T the set of all test points of
a given dataset, all xi ∈ T test samples were
centered in (0, 0) so that all samples could be
fit in the same box with axes bounded inside

(−ϵ, ϵ), while the heat values H(xj) are com-
puted through:

H(xj) =
1

|T |
∑
xi∈T

||g(xi)− g(xj)||2
||xi − xj ||2

It is possible to see from the colors of the plots
that RF and AXOM (except, again, for Wine
dataset) always exhibit more desirable behavior
than DT, with significantly smaller explanation
values that vary considerably more smoothly.
Comparing RF vs. AXOM we can notice a very
similar behavior, with the only difference repre-
sented by the lower values of the latter. Obvi-
ously, in order to make possible the 2-D repre-
sentation, this graphical analysis was conducted
by constructing the surroundings with perturba-
tions only along two arbitrary axes of the feature
space.
About the anomalous robustness values of DT,
first it is worth to recall that the accuracy of the
RF model is better than DT (see Table 1), and
so also the expected quality of the explanations.
Having said that, AXOM improves robustness
for all datasets except for Wine dataset, when
compared with DT. This is due a fortuitous be-
havior of DT for the experimental design param-
eters. Indeed, it can be observed from Table 2
that the obtained robustness is 0. That would
mean that the robustness is "perfect", i.e. all the
SHAP explanations for the perturbed data have
exactly the same value as the original data point.

Model Wine Glass Seeds Banknote
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Decision Tree 0.00 0.00 1.89 1.78 0.65 2.02 1.75 3.32
Random Forest 0.55 0.51 1.75 1.87 0.77 0.72 1.58 1.57
AXOM 0.47 0.44 1.27 0.72 0.65 0.67 1.28 1.34

Table 2: Mean and standard deviation of the L̄(xi) values calculated for each sample xi of the various test sets. Lower values of L̄
denote better robustness to perturbations.

Figure 3: Box plots constructed from the L̄(xi) values of the xi samples of the test sets of each of the four analysed datasets.
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Figure 4: Comparison of the L̄ heatmaps (two features) of the explanations for DT, RF and AXOM for the entire dataset.

However, the production of explanations that
are constant over a large portion of the feature
space is far from being a desirable behaviour,
especially as the complexity of the problem in-
creases. Differences in explanations of DT are
zero-valued when all the perturbed points ac-
tivate the same decision branch of the sample
under analysis. DT provides explanations that
enjoy perfect robustness only in samples that
are sufficiently distant from the decision surfaces
where a branch change occurs, whereas for data
points that are more unlucky in this respect, the
value of L̄ is significantly larger. An example of
this behaviour is shown in Fig. 5 through two
representative samples of Wine test set. Specif-
ically, by setting ϵ = 0.2 DT provides explana-
tions that suffer abrupt changes in value as soon
as a change in the decision branch is reached,
with values significantly higher than those of
AXOM. Note that in DT a change of decision
branch does not necessarily imply a change of
predicted label.

4. Conclusions
By analysing the elements on which trustwor-
thiness of explanations is based, robustness was
identified as a pivotal property. In this work, we
presented as a solution the establishment of an
unambiguous criterion for measuring such qual-
ity and a procedure for calculating SHAP expla-
nations of ensembles as the result of averaging
explanations of weak learners who contributed
positively to the final prediction. This approach
has proven to significantly improve the robust-
ness, confirming that weak learners taken indi-
vidually can play a key role in explaining the
decisions of the ensemble to which they belong.
In particular, a discriminative combination en-
ables the reduction of variance in the explana-
tions eliminating noise deriving from the weak
learners who provided an incorrect prediction.
We envisage that this approach is not limited to
RF and SHAP and that it is natural to extend it
to other types of ensembles, such as Bagging or
Gradient Boosting, as well as to other post-hoc
XAI techniques.

Figure 5: Comparison of DT and AXOM explanations difference heatmaps for two representative samples of Wine dataset with
ϵ = 0.2.
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