
Applying rule-based controllers and
reinforcement learning to control
a general purpose robot: the Air
Hockey challenge case

Tesi di Laurea Magistrale in
Computer Science & Engineering - Ingegneria Infor-
matica

Author: Francesco Minnucci

Student ID: 996059
Advisor: Prof. Marcello Restelli
Co-advisors: Amarildo Likmeta, Alessandro Montenegro
Academic Year: 2022-23

i

Abstract

Closing the reality gap generated by hardware limitations, physical constraints and un-
certainty of dynamics and sensors, represents a challenging task in modern days highly
dynamic robotic environments. Air hockey is an example of this type of environments,
since it is a game composed of different tasks requiring fast planning and immediate re-
action to environmental changes. It this thesis, it will be shown how to design a policy
for a general purpose robot, in order to make it play a complete air hockey game. A
combination of a rule-based approach and reinforcement learning will be used to train the
developed agent in executing specific tasks of air hockey, such as: hitting, defending and
preparing. Finally, all the trained tasks will be combined in a hierarchical agent, deployed
on a simulated robot to let it play a complete game against an opponent, while trying to
avoid constraints violations.

Keywords: Reinforcement Learning; Policy Gradient Methods; Robotics; Air Hockey;
Rule-based policies; Policy Optimization; Explainable Artificial Intelligence.

Abstract in lingua italiana

Colmare il cosiddetto reality gap, generato da limitazioni di hardware, limiti fisici ed in-
certezze dovute sia alla dinamica dell’ambiente che al rumore proveniente dai sensori,
rappresenta una grande sfida per i manipolatori robotici che operano in contesti ad alta
dinamicità. L’Air Hockey rappresenta un esempio di questo tipo di ambienti, poichè si
tratta di un gioco composto da task diversi che richiedono un’elevata capacità di pianifi-
cazione e un’immediata reazione ai rapidi cambiamenti ambientali. In questa tesi verrà
mostrato come modellare una politica per un robot generico, non ideato per risolvere un
task specifico; in particolare verrà utilizzato un manipolatore a 7 gradi libertà. L’obiettivo
finale sarà quello di sviluppare un agente in grado di partecipare ad una partita completa
di Air Hockey. Una combinazioni di politiche a regole e reinforcement learning verrà uti-
lizzata per addestrare l’agente sviluppato, in modo da permettergli di eseguire compiti
specifici tipici di una partita di Air Hockey, come: colpire il disco, difendere la porta da un
attacco, riposizionare il disco. Successivamente, tutte le singole funzioni allenate saranno
combinate all’interno di un agente gerarchico, per poi essere integrate in un ambiente
simulato al fine di testare il robot, in modo da permettergli di giocare una partita com-
pleta contro un agente di default, il tutto tentando di violare il minor numero di vincoli
strutturali e di gioco possibili.

Parole chiave: Reinforcement Learning; Policy Gradient Methods; Robotics; Air Hockey;
Rule-based policies; Policy Optimization; Explainable Artificial Intelligence.

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 2
1.3 Thesis Structure . 3

2 Preliminary backgorund 5
2.1 Markov Decision Processes . 5
2.2 Reinforcement Learning . 6

2.2.1 Policy Optimization . 9
2.2.2 Parametric policies . 10
2.2.3 Policy Gradient with Parameter-based Exploration (PGPE): 13
2.2.4 Actor Critic approaches . 16

3 Robot Air Hockey Challenge 19
3.1 What is Air Hockey . 19
3.2 Challenge Motivation . 20
3.3 Challenge organization . 20

3.3.1 Warm-Up . 21
3.3.2 Qualifying . 22
3.3.3 Tournament . 23

3.4 Framework . 24
3.4.1 Environments . 25

3.5 Agents . 27
3.5.1 Planar Robot - 3 Degrees of Freedom 27

3.5.2 KUKA iiwa14 LBR Robot . 28
3.5.3 Evaluation metrics . 29

3.6 Constraints . 29

4 Methodology 33
4.1 Air Hockey as an MDP . 33

4.1.1 State Space . 33
4.1.2 Action space . 34
4.1.3 Reward function . 34

4.2 Rule-Based Agent . 35
4.2.1 Hit task . 37
4.2.2 Defend task . 41
4.2.3 Prepare task . 42
4.2.4 Default Position task . 44
4.2.5 Noise filtering . 44

4.3 Hierarchical Agent . 45
4.3.1 Switcher . 45
4.3.2 Finite State Machine (FSM) . 46

5 Experimental results 49
5.1 Initial experiments . 49
5.2 Gradient analysis . 51
5.3 Training results . 53
5.4 Challenge outcome . 54

6 Related Works 59

7 Conclusions 63
7.1 Future Works . 63

Bibliography 65

List of Figures 69

List of Tables 71

List of Acronyms 73

1

1| Introduction

1.1. Motivation

Closing the reality gap represents one of the most challenging tasks in the field of Robot
Learning, in order to reach a real embodied intelligence. To deploy an effective learning
algorithm on a real world operating robot, careful considerations of practical factors must
be kept into account: sensors noise, observation delays, actuator limitations and physical
feasbility. The factors just cited are only some of the multiple issues encountered in the
development process. To better understand the described limitations, a more restricted
dynamic enviroment can be analyzed. In this thesis, such an environment is AirHockey.

AirHockey is a game characterized by a 2D constrained environment, the game field, and
by high uncertainty. The latter, in particular, originates from multiple sources: the air
flowing through small holes in the filed, producing an uneven airflow that causes fast and
uncertain movements; the collision between the puck and the mallet, or the table’s borders,
results in higly uncertaint trajectories. AirHockey game itself is further characterized by
a set of rules that the agent must follow to play a fair match.

While coping with the aforementioned challenges, a task-specific robot represents a possi-
bility, however employing general-purpose robots to face dynamic tasks is desirable if the
task requirements are blurry.

In this work, in order to allow a general purpose robot to perform a particular task, in
this case playing the AirHockey game, a specific controller was developed. The robot
controller was trained by means of a combination of Reinforcement Learning [RL, 21]
and parametric rule-based policies. In RL an agent learns a correspondence, commonly
called policy, between observations and actions. The learning process is carried out by
interacting with the environment. The learning path is steered by a reward function, which
serves as an intuitive measure of the agent’s local performances. Due to the automatic
nature of the policy-determination process, an RL controller tends to be robust since it
is able to generalize to unpredicted situations. The main issue of using an RL controller
resides in the possible lack of results interpretability, that is heavily influenced by the

2 1| Introduction

model utilized to link observations to actions. A parametric rule-based policy is, as stated
by Likmeta et al. in [10], “a rule-based controller in which the rules are defined in terms
of a set of parameters, whose values are not manually set, but learned by interacting with
the environment using an RL algorithm”.

The described RL framework materializes in a parameter-based RL method called Policy
Gradients with Parameter-Based Exploration for Control [PGPE, 20], that was employed
in order to learn the aforementioned parameters of the rule-based policy.

Participation to the Air Hockey Challenge

As stated before, AirHockey represents a valid environment to test the capabilities of a
general purpose robot subject to constraints. This thesis is based on a competion, Robot
Air Hockey Challenge, organized by the “Technische Universitat Darmstad (TUD)”. The
challenge is structured as follows.

The challenge consists in three simulated stages: Warm Up, Qualifying and Tournament.
In each of this stages different tasks are required for robot air hockey. The developed
agents should be able, not only to perform a particular task, but also be robust and
capable of adapting to changes. The agents are evaluated in a simulated environment
to mimic the simulation-to-real gap. In the first two phases the evaluation is based on
the success rate of the specific task, either Hit, Defend or Prepare, and on the violated
constraints. At the end of the qualifying stage, only the first 16 teams, based on the
described evaluation, are allowed to access the tournament. In the tournament phase the
agent must be able to play a complete game and, as the name suggests, mathces between
participants are organized, to produce a leaderboard.

A more detailed description of the challenge can be found in chapter 3, the following is
the official website of the challenge: Air Hockey Challenge website.

1.2. Goal

The goal of this work is to develop an agent capable of controlling a general purpose
robot, in order to play an Air Hockey match. The agent should be capable of exploiting
the whole potential of the robot, e.g. by shooting the puck as fast as possible, without
violating contstraints relative to robot and game requirements; while dealing with noisy
observations.

https://air-hockey-challenge.robot-learning.net/home

1| Introduction 3

Thesis outcome

The devolped agent, succesfully passed the qualifyng stage cut-off accessing the tourna-
ment. After two rounds of tournament matches the agent ranked fifth out of fourty-six
teams enrolled in the challenge.

1.3. Thesis Structure

The work will proceed in Chapter 2, revising all the background essentials necessary to
a better understanding of the thesis. Chapter 3 will describe what is AirHockey and
the organization of the challenge in its phases: warm-up, qualifying and tournament.
Moreover a description of the framework provided by the organizers will be given, followed
by a further explanation on the constraints to which the developed agent had to adhere.
In Chapter 4, the thesis will delve into the methods used to solve the challenge, describing
the formalization of the problem as a Markov Decision Process [MDP, 16]. The details of
the developed Rule Based Agent will also be provided. The experimental results will be
described in Chapter 5 reporting the whole training process which led to the final agent.
Chapter 6 will contain an overview of the related works, paying special attention to the
ones coping with the constraints. Finally, in Chapter 7, conclusions of the work will be
drawn, and some possible future development cues described.

5

2| Preliminary backgorund

This chapter will describe the background knowledge necessary to fully understand the
work of this thesis.

It will start by describing a foundamental framework exploited during the challenge,
the concpet of Markov Decision Process [MDP, 16]. A description of Reinforcement
Learning will follow, contextualizing it in the broader setting of learning by interaction, a
concept that forms the foundamental basis of almost all theories regarding learning and
intelligence. In this setting, in particular, Reinforcement Learning aims at learning to
control the state of the environment.

The chapter will proceed with an overview over the concept of policy optimization and
will describe various types of policies, together with an algorithm focused on parameter-
based exploration. A shallow description of Actor Critic approaches will also be provided
at the end of the chapter.

2.1. Markov Decision Processes

While dealing with Sequential Decision Making problems, a Markov Decision Process [MDP,
16] can be used to formalize the idea of environment, where the agent operates. This en-
vironment can be either stationary or not. In the first case its dynamics remain the same
over time while in the second one, they might change. A Markov Decision Process can
take place within a finite or infinite time horizon. In particular, the first assumes that
the decision process takes place over a finite, predetermined, number of steps. In what
follows, an infinite time horizon with discounted reward is considered.

An infinite time horizon, discounted, MDP is defined as a tuple M := 〈S,A, p, r, γ, µ0〉
where:

• S is the continuous state space;

• A is the continuous action space;

• p : S × A → ∆(S) is the state transition model. p(s′|s, a) specifies the probability

6 2| Preliminary backgorund

that the next state is s′, assuming that action a was taken in state s;

• r : S × A → R is the reward function. r(s, a) expresses the istantaneous reward if
the agent is in state s and selects action a;

• γ ∈ [0, 1] is the discount factor, it specifies how important future rewards will be
while learning the policy: if close to 0 it leads to myopic evaluations, if close to 1
leads to a far-sighted evaluation. It can be interpreted as the probability that the
interaction will last one step more, conversely, 1 − γ is the probability that such
interaction will stop in the next step;

• µ0 ∈ ∆(S) represents the initial probability distribution of states. µ0(·) gives the
probability that the MDP starts with state s.

At time t, a state st ∈ S can be described as a function of the history as follows:

st = f(s1, a1, r1, . . . , st−1, at−1, rt−1).

In an MDP, the Markovian property holds. A stochastic processXt is said to be Markovian
if and only if:

P(Xt+1 = j|Xt = i,Xt−1 = kt−1, . . . , X1 = k1, X0 = k0) = P(Xt+1 = j|Xt = i),

therefore, if the probability is stationary (time invariant), it is possible to write:

pij = P(Xt+1 = j|Xt = i) = P(X1 = j|X0 = i).

The above property states that the future is independent from the past given the present,
i.e., the current state itself is enough to capture all the information coming from the
history of interactions. As a simple example, it is possible to think of a Rubik’s cube:
knowing what have been the previous actions is not necessary to solve it, only the current
state is needed.

2.2. Reinforcement Learning

Interaction protocol In the following paragraph it is assumed to deal with a stationary
environment. This means that its dynamics remain the same over time and each action
has a fixed expected value, while each reward observation is a noisy realization of it.

2| Preliminary backgorund 7

Each learning process, either human or artificial, arises from the interaction of two ele-
ments:

• TheAgent: it has the ability of performing actions on the environment and observes
the outcomes of its actions;

• The Environment: it is evertyhing outside the agent; it is characterized by a state
and is solicited by the agent with actions, to which it emits an observation and a
reward.

The aforementioned reward, represents a notion of utility, that the agent will try to
maximize over time while interacting with the environment.

From now on, a fully observable MDP will be considered, therefore the observation will
coincide, at each step, with the real state.

Reinforcement Learning [RL, 21] is a sub-field of Machine Learning [ML, 1] that copes
exactly with the described situation. The agent’s goal is to identify a mapping, called
policy, between observations and actions. Further details about the policy will be provided
later in the chapter.

A general RL framework can be seen in Figure 2.1.

Environment

Agent

rt + 1

st+1

State st

Reward rt

Action at

Figure 2.1: The ongoing interaction between the agent and the enviroment comprises the
agent’s selection of an action and the subsequent response of the environment, providing
a new observation (state) and a reward.

8 2| Preliminary backgorund

Each action might influence not only the immediate state, but also the next ones, therefore
also the long term rewards. Since the agent aims at maximizing the total utility in a state,
called cumulative reward, it is necessary to express the desired goal in terms of the reward
function. This formalization of the goal is described by the so called Sutton hypothesis [21]:

All of what we mean by goals and purposes can be well thought of as the maximization
of the expected value of the cumulative sum of a received scalar signal (called reward).

As can be seen in Section 2.1, using this scalar reward signal is a keystone in the definition
of an MDP. While designing the reward function, particular attention should be kept on
rewarding the sub-goals, since the agent might learn to achive them, ignoring the main
goal. Moreover, the defined reward function will steer the learning process, specifying
how well the agent is performing locally.

RL algorithms taxonomy According to Sutton et al. ([21]), Reinforcement Learn-
ing algorithms can be model-based, if they use the collected experience in order to build
an approximate model of the environment, from which is possible to compute the opti-
mal policy, or model-free if they directly compute the optimal policy from the samples
they collected. While dealing with model-free algorithms there are two main branches of
learning which can be distinguished:

• On-policy learning: learn about policy π from experience sampled from π. It
learns action values for a near-optimal policy that still explores.

• Off-policy learning: learn about policy π from experience sampled from π̄. The
target policy is different form the behavioural policy, the one used to interact with
the environment. This type of learning aims at reusing past experience.

A further classification divides RL algorithms into:

• Value-based : focused on estimating the optimal value function, from which the
optimal policy is then derived;

• Policy-based : they directly search in the policies space for the one that maximizes
the expected return;

• Actor-critic: an hybrid and more general approach that combines evaluation func-
tionalities of value-based and the search strategies of policy-based approaches. The
policy is usually referred to as the actor while the value function as the critic.

2| Preliminary backgorund 9

Policy

A policy π, is the objective of the learning phase and defines the behaviour of the agent,
given a state in which it is.

Formally, it defines a distribution over the actions a ∈ A, given the state s ∈ S:

π : S → ∆(A).

For each state s, given an action a, the policy expresses the probability that the agent will
select action a while in state s. A specific case is represented by the so called determinstic
policy : in each state s ∈ S it will always suggest the same action. More formally:

∀s ∈ S ∃!ā ∈ A s.t. π(ā|s) = 1,

and, ∀a 6= ā it holds that:

π(a|s) = 0.

Objective

The main goal of the agent is to learn the optimal policy π∗, i.e., the policy that maximizes
the expected return, which is the expected discounted sum of future rewards:

J(π) := Eπ
[
T−1∑
t=0

γtr(st, at)

]
, (2.1)

where, Eπ[·] is computed considering the randomness of both the environment and the
policy.

Here, T represents the horizon of the learning problem, and can possibly be infinite. In
the latter case, in particular, few words should be spent on the discount factor γ. Since
its value ranges in [0,1], if T = +∞ then γ cannot be 1, in this case it is mandatory to
consider the rewards in a far future less important.

2.2.1. Policy Optimization

As stated in Section 2.2, one of the various types of RL algorithms is the so called
policy-based, which directly operates in the policies space. A Policy Optimization (PO)

10 2| Preliminary backgorund

algorithm, directly searches over the policies space, ignoring the definition of the target
policy as a function of another learned object, like a value function.

Sometimes the term Policy Search is used as a synonym of Policy Optimization.

While comparing policy optimization and value-based approaches various advantages of
the PO arise. In particular, as reported by Papini in [14]: convergence guarantees, contin-
uous actions, robustness to noise, partial observability, use of prior knowledge, safety and
explainability. Explainability represents an important property for this work, since the
developed agent was trained by means of a combination of RL and parametric rule-based
policy. The policy can be designed with a high level of human engineering, therefore it
will be highly explainable, and PO will be responsible only for discovering the best pa-
rameters; after the optimization the final controller will be the same, except with different
parameters.

One of the main drawbacks of policy optimization arises from the policy design itself.
The explainability advantage comes at the cost of possibly restricting the set of feasible
policies, since they will be tight to the designed one, therefore it is possible that the
unexpectedly good polices are ruled out. This drawback makes PO generally more suited
for the fine-tuning of already existing controllers, rather than developing new ones from
scratch.

2.2.2. Parametric policies

A policy class of particular interest is the one containing parametric policies. Letting
Θ ⊆ Rn be a parameter space, for some n ∈ N; a policy class is parametrized by Θ if
it belongs to ΠΘ = {πθ ∈ ∆SA|θ ∈ Θ}. The elements of Θ are real-valued n-dimensional
vectors, called policy parameters, the elements of ΠΘ are the parametric policies.

Rule-Based Policies

As suggested by Likmeta et al. in [10], a deterministic parametric rule-based policy can
be denoted as πθ : S → A, a function that takes a state s as input and produces, as
output, a control action a = πθ(s) parametrized by θ, a d-dimensional vector, such that
θ ∈ Θ ⊆ Rd, where Θ is called parameter space.

While dealing with parametric policies, the main goal becomes to find the best parameter
in Θ, therefore maximizing the expected return (consider for conciseness J(θ) = Jπθ):

2| Preliminary backgorund 11

max
θ∈Θ

J(θ) = E
s0∼µ

st+1∼p(·|st,πθ(st))

[
T−1∑
t=0

γtr(st, πθ(st), st+1)

]
, (2.2)

where T is the horizon of the task.

The agent will interact with the environment while executing policy πθ, collecting N

independent episodes {τi}Ni=1 and replacing the expected reward with a corresponding
sample mean, providing the estimator of the expected return:

Ĵ(θ) =
1

N

N∑
i=1

T−1∑
t=0

γtr(si,t, πθ(si,t), si,t+1). (2.3)

It is essential to test multiple values of θ to determine the optimal parameters, each of
which needs an evaluation of the objective, therefore an interaction with the environment,
possibly resulting in suboptimal outcomes due to a varying parameterizations.

The optimization of Equation (2.3) can be carried out using two different classes of policy
based methods: action-based policy optimization, also called policy gradient methods, and
parameter-based policy optimization. The first method, updates the parameters according
to the improving direction of the gradient ([15, 22]):

θ ← θ + α∇̂θJ(θ), (2.4)

where α > 0 is the learning rate and ∇̂θJ(θ) is an estimation of the policy gradient. This
methods require that the policy πθ is not only differentiable w.r.t. the parameters θ, but
also stochastic, so that it can guarantee a sufficient degree of exploration.

A deterministic rule-based policy cannot adhere to this requirements: it can be seen as
a parametrized decision tree, therefore it is not not, in general, differentiable and surely
not stochastic. Furthermore, stochastic policies prevent enforcing the traceability of the
decision making process.

Another significant problem with policy gradient methods, arises from the algorithms
employed: they tend to show a slow convergence, due to the high variance in their gra-
dient estimates. The main cause of this problem relies in the repeated sampling from a
probabilistic policy which translates into an injection of noise in the gradient estimates
after each step. Moreover, the variance increases linearly with the length of the history,
since each new state depends on the whole sequence of previous samples.

12 2| Preliminary backgorund

Due to all the aforementioned drawbacks of action-based policy optimization, as an alter-
native, it is possible to resort to parameter-based policy optimization methods, further
described in Section 2.2.3.

In what follows, to simplify some formulas and avoid numerical instability, the log-trick
(∇f = f∇ log f) will be used. While working with small probabilities or likelihoods, this
mathematical trick consists in working with the logarithms of these quantities, rather than
with the probabilities themselves. This necessity arises form the fact that probabilities
can be small numbers, leading to precision issues in floating-point arithmetic. By working
with the logarithms, products of probabilities are turned into sums of logarithms, leading
to more manageable and stable values.

Gaussian Policies

While dealing with continuous action spaces, like the one of the AirHockey challenge, a
common choice for the parametric policy is the Gaussian one. Considering scalar actions,
therefore A = R, a Gaussian policy is defined as:

πθ(a|s) =
1√

2πσθ(s)
exp

(
−(a− µθ(s))2

2σ2
θ(s)

)
, (2.5)

here π, with no subscripts, represents the mathematical constant; σ : Θ× S → (0,∞) is
the standard deviation function of the policy (σ2 is the variance), while µ : Θ × S → R
is the mean function of the policy. In this type of policies the stochasticity amount is
regulated only by σθ.

To sample from a Gaussian policy one can proceed as follow:

a = µθ(s) + σθ(s)η, (2.6)

where η ∼ N (0, 1) is a standard normal random variable.

As reported by Papini [14], for a Gaussian Policy, the score, i.e., the gradient of log-
likelihood with respect to the policy parameters, can be computed as:

∇θ log πθ(a|s) = −∇θσθ(s)

σθ(s)
+
a− µθ(s)
σ2
θ(s)

(
∇θµθ(s) +

a− µθ(s)
σθ(s)

∇θσθ(s)

)
. (2.7)

2| Preliminary backgorund 13

2.2.3. Policy Gradient with Parameter-based Exploration (PGPE):

As anticipated in Section 2.2.2, parameter-based policy optimization, represents an alter-
native for the optimization of Equation (2.3). This type of approach, also known as policy
gradient with parameter-based exploration [PGPE, 20], moves the exploration problem to
a higher level, the parameters one, allowing the use of non-differentiable and deterministic
policies.

A hyperpolicy νρ is defined, depending on a parameter vector ρ ∈ R ⊆ Rp; the parameters
θ will be sampled from this hyperpolicy. It is necessary that νρ is stochastic and differen-
tiable w.r.t. ρ. The exploration goes on by testing parameters sampled from νρ, therefore
the policy πθ can also be deterministic and non-differentiable. As shown by Likmeta et
al. in [10], it is convenient to redefine the expected return as a function of ρ:

J(ρ) = E
θ∼νρ

[J(θ)]

= E
θ∼νρ

 E
s0∼µ

st+1∼p(·|st,πθ(st))

[
T−1∑
t=0

γtr(st, πθ(st), st+1)

]
︸ ︷︷ ︸

J(θ)

.

The following algorithm, from [10], describes the learning process:

Algorithm 2.1 PGPE

Input: N number of sampled policy parameters
M number of episodes per policy parameter
Ite number of iterations
(αh)Ite−1 learning rate schedule

Initialize the hyperpolicy parameters ρ0 arbitrarly
for h = 0, 1, . . . , Ite− 1 do
Sample N policy parameteers {θhi }

N

i=1 independently from vρh

Collect M trajectories {τhi,j}Mj=1 independently for each {πθhi }
N
i=1

Update the hyperpolicy parameters ρh+1 = ρh + αh∇̂ρJ(ρh)

end for

N parameters {θi}Ni=1 are sampled independently from the hyperpolicy νρ. For each
of them, the rule-based policy πθi is run, collecting M independent episodes {τij}Mj=1,
(Figure 2.2). After these steps, all the NM episodes are used to estimate the objective:

14 2| Preliminary backgorund

νρ πθ

θ

st at

Figure 2.2: Graphical representation of parameter-based methods.

Ĵ(ρ) =
1

N

N∑
i=1

Ĵ(θi)

=
1

N

N∑
i=1

1

M

M∑
i=1

T−1∑
t=0

γtr(sij,t, πθ(sij,t), sij,t+1).︸ ︷︷ ︸
Ĵ(θi)

(2.8)

(2.9)

Exploting the stochasticity and differentiability of the hyperpolicy, it is possible to com-
pute the gradient, taking advantage of the log-trick (∇f = f∇ log f) [19]:

∇ρJ(ρ) = E [∇ρ log νρ(θ)J(θ)] .

After each iteration, the hyperpolicy is therefore updated with a single step of gradient
ascent:

ρ← ρ+ α∇̂ρJ(ρ),

where,

∇̂ρJ(ρ) =
1

N

N∑
i=1

∇ρ log νρ(θi)Ĵ(θi).

Where α > 0 is the learning rate, ∇̂ρJ(ρ) the estimator of the gradient ∇ρJ(ρ) retrieved
with the collected episodes {{τij}Mj=1}

N

i=1
.

It is common to assume a gaussian hyperpolicy, where ρ consists of a set of means and
standard deviations {µi, σi} that determines an independent Gaussian distribution for
each parameter θi in θ. This Gaussian hyperpolicy would present a diagonal covariance
matrix νρ,θ = N (µ, diag(σ)) having ρ = (µ, σ) as parameters. In such case, the expression

2| Preliminary backgorund 15

of the gradient will become:

∇µi log vµ,σ(θ) =
(θi − µi)

σ2
i

,

∇σi log vµ,σ(θ) =
(θi − µi)2 − σi

σ3
i

.

Sampling with a baseline Given enough samples, it is possible to determine the
reward gradient with arbitrary precision. Each sample requires an entire state-action
history, which is computationally expensive and time consuming. It is possible to obtain
a cheaper gradient estimate by drawing a sample θ and comparing its reward r to a
baseline reward b, computed as a moving average over the previous samples. If r > b then
ρ is adjusted to increase the probability of θ, the opposite is done if r < b. Using a step
size αi = ασ2

i , with α constant, the following parameter updates are obtained:

∆µi = α(r − b)(θi − µi),

∆σi = α(r − b)(θi − µi)2 − σ2
i

σi
.

Natural scores In addition, gradient updates can be done by means of the so called
natural gradient, when ρ in the gaussian hyper-policy is parametrized with log(σi) instead
of just σi. The parameter udpate is defined as follow:

ρ← ρ+ ζF−1∇ρJ(ρ), (2.10)

where ζ is the learning rate and F is the Fisher Information Matrix of the gradient score,
i.e., the variance of the gradient of the log-likelihood function w.r.t. the policy parameters,
defined as:

F := E
θ∼νρ

[
(∇ρ log νρ(θ))(∇ρ log νρ(θ))

T
]
. (2.11)

It quantifies how much information about the unknown parameters is carried by an action
sampled from πθ(·|s).

The matrix will be in the form:

F :=

[
1
σ2 0

0 2

]
, (2.12)

therefore, the inverse used in (2.11) will be:

16 2| Preliminary backgorund

F−1 :=

[
σ2 0

0 1
2

]
. (2.13)

Both the baseline sampling and the natural gradient can be added in the PGPE algorithm
(Algorithm 2.1), either combined together or one at a time. In particular, the baseline
update would be the last operation to perform before completing an iteration of the
for loop; on the other hand, the natural gradient update would substitute the standard
update of the hyperpolicy parameters. The following modified algorithm presents both
the proposed modifications:

Algorithm 2.2 PGPE with baseline and natural gradient update

Input: N number of sampled policy parameters
M number of episodes per policy parameter
Ite number of iterations
(αh)Ite−1 learning rate schedule

Initialize the hyperpolicy parameters ρ0 arbitrarly
for h = 0, 1, . . . , Ite− 1 do
Sample N policy parameteers {θhi }

N

i=1 independently from vρh

Collect M trajectories {τhi,j}Mj=1 independently for each {πθhi }
N
i=1

where each reward is taken as r = [(r1 − b), . . . , (rM − b)]T

Update the hyperpolicy parameters ρh+1 = ρh + ζhF−1∇ρJ(ρh)

Update baseline b accordingly
end for

As a drawback, PGPE cannot perform multiple gradient steps using the same episode
more than once, this holds since the hyperpolicy parameters change as an effect of the
gradient update.

2.2.4. Actor Critic approaches

As stated in Section 2.2, the actor-critic approach combines the evaluation functionali-
ties of value-based approaches with the search strategies of the policy based approaches.
Both the presented algorithms are off-policy, so they learn a target policy while using a
behavioural policy to interact with the environment.

2| Preliminary backgorund 17

Soft Actor Critic (SAC)

Soft Actor Critic [SAC, 7], is an off-policy actor-critic Deep RL [9] algorithm, based on
the maximum entropy reinforcement learning framework. The actor aims at maximizing
the expected reward while also maximizing the entropy, i.e., the level of unpredictability
in the actions selected by the policy. Indeed, the goal is to succeed at the task while
behaving as randomly as possible.

This algorithm is based on three main components: an actor-critic architecture, which
presents separate policy and value function networks, an off-policy formulation, that al-
lows reusing past collected data, increasing efficiency, and entropy maximization, which
enables stability and exploration. Neural networks are not going to be further analyzed
in this work.

Usually, standard RL aims at maximizing the expected sum of rewards. SAC, on the other
hand, considers a more general maximum entropy objective, favoring stochastic policies
by increasing the objective with the expected entropy of the policy:

J(π) =
T∑
t=0

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))] , (2.14)

where α is the temperature parameter; it determines the importance of entropy against
the reward, therefore controls the stochasticity of the optimal policy. The conventional
objective can be retrieved in the limit as α→ 0. This new objective incetivizes the policy
to explore more widely, while ignoring unoptimizing avenues, resulting in a smaller sample
complexity.

For further in-dept analysis of the algorithm one can refer to [7].

Optimistic Actor Critic (OAC)

Optimistic Actor Critic [OAC, 3] arises as an evolution of SAC, highlighting and solving
two issues that prevented efficient exploration. According to [3], combining a greedy
actor update together with a pessimistic estimate of the critic, can lead to pessimisitc
underexploration i.e., the avoidance of actions that the agent does not know yet. Moreover,
most algorithms are directionally uninformed, it means that they will sample actions in
opposite directions from the current mean with equal probability, this behaviour can be
wasteful since, typically, actions along certain directions are needed more than others.

The OAC algorithm copes with both the aforementioned issues, approximatig a lower

18 2| Preliminary backgorund

and upper confidence bound on the state-action value function. By doing so it is possible
to apply the principle of optimism in the face of uncertainty [2], performing directed
exploration bounded by the upper bound, while still using the lower bound to avoid
underestimation.

OAC can avoid pessimsitic underexploration because it uses the upper bound to determine
exploration covariance; moreover the exploration policy is not constrainted to have the
same mean as the target one, so the algorithm is directionally informed. The latter
property, allows to reduce the wasting arising from sampling portions of the action space
that have been already explored by previous policies.

Once again, for a further analysis one can refer to [3].

19

3| Robot Air Hockey Challenge

In this chapter the AirHockey challenge will be described. At the beginning there will be
an explanation of the air hockey game. After that there will be a delve into the details of
the challenge, describing the various phases and the framework provided by the organizers.
A particular focus on the constraints will close the chapter.

3.1. What is Air Hockey

Air Hockey is a competitive tabletop game involving two players, equipped with a mallet
and a puck. The matches take place on a specifically designed table, the playing surface
consists of a smooth surface perforated with numerous small holes, through which the air
is pumped, creating a cushion of air that significantly reduces the effect of friction on the
puck, allowing it to glide quickly on the table.

Figure 3.1: A real-world example of puck, mallet and air hockey game field.

The goal of the game is to manouver the puck into the opponent’s goal while, at the
same time, preventing the opponent from scoring. The players utilize the mallet to hit
the puck, aiming to control its trajectory and overrun the opponent’s defence. The game

20 3| Robot Air Hockey Challenge

requires strategic positioning, quick reflexing and, at least in a human player, precise
hand-eye coordination, to control the puck and succesfully execute defensive and offensive
maneuvers.

3.2. Challenge Motivation

As stated in Chapter 1, the principal motivation of this challenge consists in closing the
reality gap, i.e., the discrepancy between the performance of an RL agent in simulation,
and its performance in the real world. Reinforcement Learning models are extensively
trained in simulated environments, before being deployed in real world scenarios. This
is done since real-world experiments are expensive and can potentially be dangerous, as
an example one can think to an agent that is testing a wrong policy in an autonomous
driving environment, a wrong action might potentially crash the car. However, model
mismatches, observation delays, sensors noise and actuators limitations might lead to a
significantly reduction of performance while interacting with the real world.

The Robot Air Hockey Challenge arises in this context, providing a more restricted dy-
namic scenario to test possible solutions to the aforementioned limitations.

Challenge background

The Air Hockey Challenge has beed organized by the “Technische Universitat Darmstad
(TUD)”. In a previous work, the organizers showed how to apply a method to learn a
robotic task in simulation, while avoiding constraints violation in the learning process,
however this method, called [ATACOM, 13] resulted unsuitable for real-world applications
since model errors and external disturbances could cause unexpected violations of the
constraints. In [12], Liu et al. proposed an approach based on advanced optimization
techniques, to show how a general-purpose robot was able to achieve performances similar
to the ones of a task specific robotic arm in the hit tasks of the air hockey game. Moreover,
this work also showed how two agents were able to play a full game in simulation. However
this approach was never tested in a real-world environment.

3.3. Challenge organization

The challenge was structured into three main phases, Warm-Up, Qualifying and Tour-
nament, described in the following paragraphs. For each stage there were different tasks
required for robot air hockey. At the end of the challenge a real-robot simulation is
expected for the top-three teams.

3| Robot Air Hockey Challenge 21

The participants were provided with an environment that simulated an air hockey game
field and the robot, together with all the necessary APIs (Application Programming In-
terface) needed to control it. Each team developed an agent, testing it locally, and then
submitted it to the organizers’ cloud server for the evaluation. Except done for the warm-
up phase, the submitted agents were evaluated in a modified simulation environment, to
mimic the sim-to-real (simulation to reality) gap.

After every submission, the participants were able to download a dataset, collected by
the evaluator, to analyze the agent’s behaviour during the simulation.

The competition spanned during 41 weeks of 2023, from 20th February to 1st November.

A total of 46 teams participated to the challenge, coming from international universities
and research centers.

3.3.1. Warm-Up

In the warm-up phase the participants were provided with an ideal environment (no
disturbances added) and a 3-degrees-of-freedom robot. An example of the robot can be
seen in Figure 3.2.

Figure 3.2: 3dof-robot (image taken from the website of the challenge).

As the name suggests, the aim of this phase was to familiarize with the tasks, the envi-
ronments, and the API. The evaluator in the cloud server was the same provided in the
simulator.

During the warm-up, the agent had to perform two tasks:

• Hit: the puck was initialized randomly on the left side of the table with initial

https://air-hockey-challenge.robot-learning.net/home

22 3| Robot Air Hockey Challenge

velocity equal to zero. The objective was to hit the puck to score a goal as fast as
possible.

• Defend: the puck was randomly initialized on the right side of the table with a
random velocity, heading the left. The task consisted in stopping the puck on the
left side of the table and prevent it from getting scored.

Both the tasks were expected to be accomplished without breaking some constraints, that
will be described deeper later.

3.3.2. Qualifying

The qualifying stage was ran on a general purpose 7-degrees-of-freedom robot, in partic-
ular on a simulator emulating a KUKA iiwa 14 LBR.

Figure 3.3: 7dof-robot, KUKA iiwa 14 LBR (image taken from the website of the chal-
lenge).

The evaluator in the cloud server was modified in order to simulate differenty types of
real-world problems including:

• noise in the observation;

• noise in the torque applied to the joints;

• loss of tracking of the puck (i.e., the agents saw the previous state of the puck);

• model mismatch (for example an imperfect knowledge of the robot dimensions).

Each team was able to submit its solution only once per day and could download the
dataset at the end of the evaluation. Each evaluation was conducted with 1000 episodes,

https://air-hockey-challenge.robot-learning.net/home

3| Robot Air Hockey Challenge 23

i.e., 2.8 hours of real world experiments.

In this phase, the agent had to perform 3 different tasks, one of them also included an
opponent:

• Hit: an opponent robot moved in a predictable pattern, the puck was randomly
initialized with a small velocity. The objective was to score the goal as many times
as possible.
The episode was considered finished if the puck bounced back or was scored, in
particular in was considered as a success if the puck was in the opponent’s goal
when the episode terminated.

• Defend: the puck was randomly initialized on the right side of the table with a
random velocity, heading the left. The tasks consisted in stopping the puck on the
left side of the table and prevent it from getting scored.
The episode terminated if the puck returned to the opponent’s side or was scored
or its speed drop below a certain threshold. It was considered a success if the puck
was in the range where hits could be made and its longitudinal speed was below a
threshold.

• Prepare: the puck was initialized close to the table’s boundary and was unsuitable
for hitting. The task consisted in controlling the puck to move it into a good hit
position, while remaining in the agent’s side of the game field.
The episode terminated if the puck crossed the middle line that connected the middle
points of the two goals or if the puck was in the opponent’s side of the table. It was
considered a success if the puck stopped where its could be made and its longitudinal
speed was below a threshold.

As described in Section 3.5.3, the evaluation metric kept into account the success rate
of each task, and the deployability, i.e., the amount of violated constraints. According
to this metrics, each agent was categorized into three levels: Deployable, Improvable and
Non-deployable. Only “Deployable” and “Improvable” agents were qualified for the next
phase.

3.3.3. Tournament

A maximum number of 16 teams was allowed to acces the tournament. In this phase each
team had to develop an agent capable of playing a whole game, therefore an additional
methodology to allow the agent switching from a task to another had to be developed.

The tournament was divided in two sub-phases, between the twos an adjustment phase

24 3| Robot Air Hockey Challenge

was present to refine the developed agent. A double round-robin schedule was applied for
the tournament. This means that each team competed against every other participant
twice, once at home and once away.

The organizers provided a hard-coded baseline agent to test and validate the developed
agents. Each match lasted 15 minutes (45.000 steps), every 500 steps was considered as
an episode. Each agent had 15 seconds (750 steps) in order to execute a shoot able to
cross the center line, this timer was reset every time the puck entered the player’s side.
Violating this rule resulted in a fault, after 3 faults the opponent’s agent was granted
with an extra point. Each successful score counted as 1 point. An agent won the game
if it collected more points and its deployability score was less then 1.5 times the total
number of episodes (i.e 1.5 * 45000 / 500 = 135). For what concerns the final ranking,
a match win resulted in accumulating 3 points, a draw 1 point while a loss provided 0
points. Moreover, the agent would have lose the game if it was classified as non-deployable
during the match.

The final ranking was determined by the results of the two sub-phases.

3.4. Framework

The Air Hockey challenge was built upon MushroomRL, developed by D’Eramo et al. [4],
a Reinforcement Learning library. The general framework of the challenge consisted of
two main components, the Agent and the environment with which the agent was able to
interact thanks to the AirHockeyChallengeWrapper interface. A schema of the framework
can be seen in Fig, 3.4.

Figure 3.4: Challenge framework (image taken from the website of the challenge).

https://air-hockey-challenge.robot-learning.net/home

3| Robot Air Hockey Challenge 25

Participants had to develop the agent that interacted with the enviroment.

3.4.1. Environments

The AirHockeyChallengeWrapper provided by the organizers was built around a Base Env
and processed the information necessary for the challenge evaluation.

At a lower level, the robot was controlled by a Tracking Controller, a FeedForward-PD
controller, responsible of sending torque commands to the robot:

τcmd = M(q)q̈d + c(q, q̇) + g(q) +Kp(qd − q) +Kd(q̇d − q̇). (3.1)

The Trajectory Interpolator, by default a cubic polynomial, was used to interpolate the
trajectory points between two consecutive commands. A Joint safety limiter was also
added to avoid that the command exceeded the position or velocity limits. A summarizing
scheme can be found in Figure 3.5.

Figure 3.5: Control paradigm (image taken from the website of the challenge).

The simulation was carried out using a MuJoCo simulator. The simulation frequency
was set to 1000Hz while the control one at 50Hz. The observation provided by the
environment was made by:

• Puck Position and velocity: [x, y, θ, ẋ, ẏ, θ̇], with θ yaw angle;

• Joints position and velocities: [q, q̇];

• Opponent’s Mallet position (if the environment included an opponent): [xo, yo, zo].

Puck position and opponent’s mallet position were expressed in [meters], for x and y

coordinates, while θ was expressed in [radians]. The same holds for the puck’s velocities

https://air-hockey-challenge.robot-learning.net/home

26 3| Robot Air Hockey Challenge

([meters/seconds] and [radians/seconds]). The joints position and velocities were ex-
pressed in [radians] and [radians/seconds]. All the above values were expressed in robot
coordinates, further specified in Section 3.5.1 and Section 3.5.2.

The desired control action consisted in the desired joints positions and joints velocities,
in the warm-up phase; during qualifying and tournament it was customizable, since the
participants could express the desired trajectory interpolation order of the Trajectory
Interpolator. The possible choices were:

• 3, cubic interpolation: the action command contained the desired [position, veloc-
ity]. A cubic polynomial was used to interpolate the intermediate steps;

• 1, linear interpolation: the action command contained the desired [position]. A
linear polynomial was used to interpolate the intermediate steps;

• 2, quadratic interpolation: the action command contained the desired [position]. A
quadratic function used the previous position, velocity and the desired position to
interpolate the intermediate steps;

• 4, quartic interpolation: the action command contained the desired [position, veloc-
ity]. A quartic function used the previous position, velocity and the desired position,
velocity to interpolate the intermediate steps;

• 5, quintic interpolation: the action command contained the desired [position, ve-
locity, acceleration]. A quintic function was computed by the previous position,
velocity, acceleration and the desired position, velocity and acceleration to interpo-
late the intermediate steps;

• -1, linear interpolation: the action command contained the desired [position, veloc-
ity], the acceleration was computed based on the derivative of the velocity. This
interpolation was not proper, but was useful to avoid oscillatory behaviours in the
interpolation;

• None: the agent would send a complete trajectory between each action step, [posi-
tion, velocity, acceleration] of each joint.

Air Hockey Table

The dimensions of the Table, the puck and the mallet, are specified in the Figure 3.6:

3| Robot Air Hockey Challenge 27

Figure 3.6: Challenge’s air hockey table, a smaller version of a standard air hockey table
in which also the puck and the mallet got shrunk (image taken from the website of the
challenge).

The game table is a smaller version of the standard air hockey table, both the mallet
and the puck got shrunk as well. In the center of the table a two-dimensional system of
reference was inserted, from now on called World coordinates, that could be used to keep
track of the puck and mallet positions, observed respect to it.

3.5. Agents

In this section the agents employed in the warm-up, qualifying and tournament stages are
going to be described.

3.5.1. Planar Robot - 3 Degrees of Freedom

The base planar robot, used in the warm-up phase, was located at [−1.51, 0.0, 0.1], the
orientation was aligned with the world’s frame.

https://air-hockey-challenge.robot-learning.net/home

28 3| Robot Air Hockey Challenge

Figure 3.7: 3DoF planar environment robot (image taken from the website of the chal-
lenge).

The planar robot was composed by three joints, providing three degrees of freedom. At the
end of the last rod, an end effector is present, touching the game table. The base position
of the robot was considered as the center of a three-dimensional system of reference, from
now on called Robot coordinates. Despite the presence of the third dimension, this robot
could not move the end effector along the z-axis. The positions of the puck and the mallet
could be computed in both robot and world coordinates.

3.5.2. KUKA iiwa14 LBR Robot

The KUKA robot was equipped with 7 joints, in particular, a universal joint on the end-
effector was added, in order to increase the robot’s flexibility. The universal joint was
a passive joint that adapted the joint position based on contacts. In the simulation, a
plugin to compute the joint’s angle to keep the mallet parallel to the table was used. The
position of the universal joint was not observed. The joints were enumerated, from 1 to 7,
starting from the base of the robot. Particular attention was given to joints 4 and 7, called
elbow and wrist, since they were subject to higher efforts than others during movements.

Like in the 3DoF case, a three-dimensional system of reference was inserted at bottom of
the base of the robot. This time the robot was also able to move the end-effector along
the z-axis, therefore also the world coordinates included a z value.

Moreover, the End-Effector was defined as the tip of the extension rod before the universal
joint. The end-effector’s position could be fully determined by the robot’s joint position
and forward kinematics. The base position of the robot is depicted in Figure 3.8, that

https://air-hockey-challenge.robot-learning.net/home

3| Robot Air Hockey Challenge 29

includes also an opponent.

Figure 3.8: Kuka iiwa14 LBR Robot (image taken from the website of the challenge).

3.5.3. Evaluation metrics

As stated in the previous sections, each phase was evaluated according to some metrics.
For what concerns warm-up and qualifying phases, each task was evaluated by 1000

episodes. Two metrics were computed in the evaluation:

• Success rate: a success criterion was defined for each task, it was checked at the end
of every episode. Each episode could terminate because of two reasons: 1. Maximum
number of steps reached; 2. No further interaction can be in the episodes;

• Deployability : this scored assessed the agent under multiple aspects. Each metric
was assigned to one or more penalty points, depending on the level of risk. When
a constraint was violated, the deployability penalty points were added up. Same
violations were counted only once per episode.

3.6. Constraints

In this section, the constraints applied in the evaluation are going to be further expanded;
the number next to each constraint name represents the penalty points assigned to the
constraint violation, l and u represent lower and upper bounds, respectively.

There were five different types of constraints violations.

End-Effector’s Position Constraints (3) The x-y-position of the end-effector should
remain within the boundaries of the table. The z-position of the end-effector should remain

https://air-hockey-challenge.robot-learning.net/home

30 3| Robot Air Hockey Challenge

within a range. The end-effector’s position could be computed as

p = ForwardKinematics(q)x.

The constraint can be represented as:

lx < xee,

ly < yee < uy,

table_height− tolerance < zee < table_height+ tolerance.

These constraints were very strict, with very small tolerance w.r.t. physical limits of the
table and the robot, since an unfeasible command could potentially damage the table,
the end-effector or robot actuators. For example, if the provided command required the
robot to move the end-effector to a negative z value, in world coordinate, the robot would
try to push the end effector inside the table, damaging the rod and causing emergency
brakes in the robot joints, due to eccessive torque applied to win the vincolar reaction
coming from the table.

Join Position Limit Constraints (2) The joint position should have not exceed
the position limits. In the real-robot, violations of the position limit would trigger the
emergency break.

ql < qcmd < qu.

Joint Velocity Limit Constraints (1) The velocity should have not exceed the ve-
locity limits. The controllers in the real-robot were set not to exceed the velocity limits.

q̇l < q̇cmd < q̇u.

Computation Time (0.5 - 2) The computation time at each step should have been
smaller than 0.02s. There were different possible violations for this constraint:

• Penalty points 0.5:

0.1s ≥ maximum computation time > 0.02s.

3| Robot Air Hockey Challenge 31

• Penalty points 1:

0.2s ≥ maximum computation time > 0.1s.

• Penalty points 2:
maximum computation time > 0.2s,

average computation time > 0.02s.

Link Constraint In the 7DoF environment, additional constraints were added that
ensured positions of the elbow and wrists (joints 4 and 7 of the robot, starting the counting
from the base) were above a threshold.

zelbow > 0.25,

zwrist > 0.25.

33

4| Methodology

This chapter contains a description of the methodologies employed. Firstly, the challenge
will be framed inside the MDP framework, then the developed rule-based agent will be
described, together with its four tasks: hit, defend, prepare, Default Position, from now
on called default, and the adopted noise filtering method. The chapter will conclude with
the analysis of the final Hierarchical Agent and its main components, a switcher and a
Finite State Machine.

4.1. Air Hockey as an MDP

As formalized in Section 2.1, a Markov Decision Process is a framework typically em-
ployed while working with sequential decision making problems. For what concerns the
AirHockey challenge, the mapping of the environment to an MDP is described in the
following sections.

4.1.1. State Space

For the general purpose 7DoF robot, a configuration results fully described by the joint
angles: q = {qi|i ∈ 1 . . . 7, qmini ≤ qi ≤ qmaxi }. The space of all the possible joint positions
is known as the Joint Space. The end-effector position ee, in a given configuration q, can be
computed by means of Forward kinematics, ee = FK(q). The Task Space contains all the
allowed end-effector poses. From any position in the task space it is possible to compute
one, or more, joint configurations exploiting the Inverse kinematics, q = IK(ee). Indeed,
Forward Kinematics describes the process of determining the position and the orientation
of the end-effector in the cartesian space, based on the joint angles. Conversely, the Inverse
Kinematics deals with the opposite problem: determining the joint angles necessary to
achieve a specific orientation and position of the end-effector.

To build the continuous State Space, the observation provided by the environment, de-
scribed in Section 3.4.1 was slightly modified. The rotational axis element θ, therefore
also θ̇, was discarded.

34 4| Methodology

In order to reduce the noise in the observation, while maintaining the form of the state un-
changed, an additional preprocessing was performed, as further analyzed in Section 4.2.5.

4.1.2. Action space

A high-level control setting was developed to transpose the control from the task space
into the joint space. The agent directly controls the end effector position, in x, y and z
coordinates. A lower lever controller is then used to translate the cartesian coordinates
into the desired action, composed by joint positions and velocities, since the employed
interpolation (described, like the controller, in Section 3.4.1) is the cubic one. Given
the cartesian coordinates, the joint velocities for the next step, necessary to reach the
point, are computed by means of Inverse Kinematics and Quadratic Programming (QP),
an optimization technique that deals with quadratic objective functions, subject to linear
equality and inequality constraints. After that, the necessary joint positions are retrieved
using the previous positions and the computed velocity:

joint_post+1 = joint_post +
(joint_velt + joint_velt+1)

2
0.02, (4.1)

where 0.02 [seconds] represents the time duration of a single step; the sum of joint veloc-
ities is divided by two in order to provide smaller steps, to reduce the risk of constraint
violations.

4.1.3. Reward function

The designed reward associated with the MDP is task-dependent, the agent is positively
rewarded as it accomplishes a task, or part of it. Despite the task differences, there
is a common penalization in the reward: when the constraints are violated, when the
opponent scores a goal or when the agent does not complete the task. In particular, for
what concerns the constraints violations, their penalization is computed as follows:

normalized_violated_constraints =

∑
i(φi ·

1
N

∑N
j=1 σj)∑

i φi
,

σj = current_valuej − limitj,

(4.2)

(4.3)

where N is the total number of violated constraints, φi is the penalty point associated
to the violation of constraint i (described in Section 3.6), while σ, also called slack,
represents the difference between the current value of the constraint variable and the

4| Methodology 35

limit, for example:
limitzelbow = 0.25,

currentzelbow = 0.3,

σ = 0.3− 0.25 = 0.05,

if this difference is positive, then the constraint is violated since the value is over the
limit. In 4.2 only positive values of σ are considered. Each reward function will be
further explained in the specific task description in Section 4.2.

4.2. Rule-Based Agent

The developed rule-based agent, aims at exploiting a deterministic policy optimized via
Policy Gradient With Parameter-based Exploration [PGPE, 20], following the approach
in [10]. The actions from the task space are translated into the joint space, combining
inverse kinematics and Anchored Quadratic Programming [AQP, 12]: a modified version
of QP that, unlike Quadratic Programming, focuses on the optimization of the difference
between the current state and a reference value, called anchor. A further explanation will
be provided in Chapter 6.

The policy set is divided into 4 main branches, resembling the challenge tasks and de-
scribed in the following sections: Hit, Defend, Prepare, Default : in the Hit the agent has
to hit the puck in order to score a goal, in the Defend the agent has to prevent an in-
coming puck from scoring, stopping it without bouncing it back, in the Prepare the agent
has to reposition the puck in a place suitable for hitting, and finally, in the Default the
agent has to go back to a default configuration from which it will start another task. The
policies are further expanded into phases, each of them associated to a specific subtask.

Task framework In all the tasks, except in the Defend, the agent acts in the following
framework. To select the next position of the end-effector, a system of polar coordinates
centered in the puck is used. The main components of this system are:

• β: the angle between the line puck-goal and line the puck-end-effector;

• γ: the angle between the horizontal and the line puck-goal;

• r: also called radius, is the segment connecting the puck and the end-effector;

• dβ: the variation of the β angle in the desired next position of the end-effector;

• ds: the variation of length of the radius in the desired next position of the end-
effector.

36 4| Methodology

ɣ

r
β

r

ds
dβ

Figure 4.1: Coordinates used to find the next desired position of the end-effector. The goal
positions are highlighted in orange. The current position of the end-effector is the gray
one, while the blue one is the desired position in the next step. To reach that position,
a variation of the radius, ds, and the angle, dβ, is necessary. This variations, happening
simultaneously, will result in a curved movement.

The goal considered is always the one of the opponent. In the Prepare task the γ angle
is not considered and the angle β will span from the horizontal line and the radius. A
visual representation of the framework can be observed in Figure 4.1.

The developed agent will compute the next desired position of the end-effector in world
coordinates, converting it in robot coordinates before providing it to the lower level con-
troller. The description of this two systems of reference is provided in Chapter 3.

Each step of the agent will last 0.02 seconds, since the update frequency of the environ-
ment, as explained in Section 3.4.1 is 50Hz (1/50[Hz] = 0.02[s]). This amount of time will
be called either step or dt from now on. At each step, the agent will apply a variation of
dβ and ds to select a new position of the end effector. This variations are task dependent
and will be further explained in the following sections.

Each deterministic rule-based policy is parametric and its parameters, θi, will be optimized
by means of PGPE (Section 2.2.3).

Despite a natural evolution in its complexity, the developed agent is common for both the

4| Methodology 37

3DoF and the 7DoF robot. Thanks to the underlying mapping from the task space to
the joint space, the high level controller does not make any assumption on the underlying
model, except that the desired position it computed is reachable. By doing so, the agent
can work on a robot with a custom number of joint, as long as it can span the whole task
space.

4.2.1. Hit task

In the hit task the agent has to hit the puck to score a goal, as fast as possible and as
many times as possible during a match.

This task is divided into 4 subtasks, or phases :

• Wait : wait for the puck to move slowly, in this phase the agent stands still;

• Adjustment : adjust the end-effector position, in order to place it behind the puck
on a hitting trajectory with the goal;

• Acceleration: start accelerating the end-effector and stop only after and hitting the
puck;

• Slow-down: after an hit, move the end effector on a curved trajectory to decrease
it’s velocity and reduce the probability of constraints violations.

Each subtask is characterized by a time variable, tphase, which represents how many steps
the agent spent in the specific subtask. This timer is reset every time that the agent
changes task.

Rule based policy The policy that controls the hit task is structured as follow:

dβ =

(θ0 + θ1 · tphase · dt) · correction adjustment phase
correction

2
acceleration phase

(θ0 + θ1 · dt) · correction slow-down phase

, (4.4)

ds =

θ2 adjustment phase
dst−1+θ3·tphase·dt
radius+rmallet

acceleration phase

constant slow-down phase

, (4.5)

38 4| Methodology

(a) Adjustment. Puck still or moving slow. (b) Acceleration. Increase the end-effector ve-
locity to hit the puck.

(c) Hit the puck. The puck starts moving along
the hit direction.

(d) Slow-down. Move on a curved trajectory to
reduce end-effector velocity.

Figure 4.2: Hit phases. Goal areas are highlighted in orange. The dotted line represents
the ideal direction that the puck should follow in order to score a goal.

where radius is the distance between the center of the puck and the end-effector, while
correction is always defined as:

correction =

180− β ypuck ≤ table_width
2

β − 180 ypuck >
table_width

2

.

An example of hit can be seen in Figure 4.2, where the caption describes the subtask.

Reward function To train the agent, a specific reward function for the hit was de-
veloped. A hit is considered to be successful if the puck gets inside the opponent’s goal,
therefore the whole goal area should be considered. Moreover, if the puck moves fast it
will be harder for the opponent to stop it, fast hits should be rewarded as well.

The designed reward function is based on the building of a triangle with the opponent’s
goal area ends and the puck, as vertices (Figure 4.3).

If the puck is still inside the triangle computed at the previous step, a positive reward
for the puck’s position will be assigned, a second one, proportional to the puck’s velocity
will be computed, as well. At the end of each time step, after the reward assignment, a
new triangle is computed, since the puck’s position will change. On the other hand, if the

4| Methodology 39

(a) Triangle computation at step t. (b) Puck moving and reward assignment at step
t+ 1.

(c) Triangle re-computation after reward as-
signment at step t+ 1.

Figure 4.3: Triangle construction for assigning reward after the mallet hit the puck. Goal
areas are highlighted in orange, the blue arrow represents the puck velocity. The gray
triangle is the ideal area in which the puck should be to score a goal. If at the next
step the puck will be outside the triangle, a negative reward will be applied. After the
computation of the reward, the triangle will be recomputed with the new puck position
in t+ 1. The coordinates of the puck are the ones of its center.

40 4| Methodology

puck will be outside the triangle, a negative reward will be assigned, the more the puck
is outside the polygon, the bigger the penalty.

reward_hit =

− ||eepos−puckpos||

0.5·table_diag no hit

A+B · (1−(2·α
π

)2)·||vee||
max_vel hit the puck

1
1−γ goal

, (4.6)

where A and B are constant values, respectively equal to 100 and 10, table_diag is the
diagonal of the table, computed as:

table_diag =

√
table_length2 + table_width2,

α = arctan 2(eey_vel, eex_vel) therefore the angle, in radians, between the positive x-axes of
a cartesian plan and a point of coordinates (eey_vel, eex_vel) laying on it. Finally, max_vel
is a constant value equal to the maximum velocity observable in the environment. If the
agents successfully hits the puck, it receives an instantaneous reward for the hit, after
that, the described approach based on the triangles is applied:

reward_hit =

B + ||vpuck|| puck inside the triangle

−diff_angle puck outside the triangle
(4.7)

where B is a constant positive value equal to 10, rewarding the agent for being inside the
triangle, ||vpuck|| on the other hand rewards the agent if the puck is moving fast. Moreover:

diff_angle = arctan 2(vypuck , vxpuck)− angle_border,

where angle_border is the angle between the puck velocity vector and the closest triangle
border. The more the puck will go outside the triangle, the more negative the reward will
be. As last step, the final reward is computed as:

reward = reward_hit− α ·
∑

i(φi ·
1
N

∑N
j=1 σj)∑

i φi
, (4.8)

with α constant value, in this case equal to 1, is used to assign more or less weights to
the constraint violations (coming from Equation 4.2) w.r.t. to the task completion.

4| Methodology 41

4.2.2. Defend task

In the defend task, the agent has to stop an incoming puck and avoid it from being scored.
In the rule-based policy this task is divided into two subtasks depending on the position of
the puck w.r.t. the end-effector: bottom if end-effector below the puck, top if end-effector
above the puck.

Rule-based policy In this task the agent aims at stopping the puck on a specific line,
called defend_line, the x coordinate of the line are known, -0.8 in world coordinates,
therefore the agent has to compute only the y coordinate to identify the best point on
the line where to intercept the puck.

The desired y is computed as follow:

ytarget =

ypuck + θ0 · (rpuck + rmallet) · (||vpuck||)
2

hit from top

ypuck − θ0 · (rpuck + rmallet) · (||vpuck||)
2

hit from bottom
,

where rpuck and rmallet are the radii of the puck and the mallet, respectively, while vpuck
stands for velocity of the puck. After retrieving the coordinates of the intercept point
[xtarget, ytarget], the agent will move the end effector adding a variation in x and y to the
current end-effector position:

δx = (θ1 + θ2 · ||vpuck|| · (xtarget − xee)),

δy = (θ3 + θ4 · ||vpuck|| · (ytarget − yee)).

The final action is therefore computed as:

action = [xee + δx, yee + δy].

Reward function Since the computation of the interception point is quite straightfor-
ward, the defend reward function is simple as well, focused on not violating constraints.
A large reward is returned in case of success while no reward will be assigned in case of
failure. Moreover, for each violated constraints, a normalized penalty point, according
to the constraints penalty points described in Section 3.6, is subtracted by the reward.
Summarizing the final reward can be either positive or negative since it comes from the
difference between the reward, in case of success, and the penalties of the constraints

42 4| Methodology

violations:

reward =

B −
∑
i(φi·

1
N

∑N
j=1 σj)∑

i φi
task successful

−(P +
∑
i(φi·

1
N

∑N
j=1 σj)∑

i φi
) task not successful

. (4.9)

B and P are constant values, used to provide the agent a high reward or a high penalty
if the task is successful or or not, respectively. The values used in the experiments were
B equal to 1000 and P equal to 100.

4.2.3. Prepare task

In the prepare task, the agent has to reposition the puck that is in a position unsuitable
for hitting. First of all, it is necessary to define the suitability for a hit.

Check enough space In order to perform a hit there should be enough space for the
mallet behind the puck, therefore there should be at least a tolerance of:

radiuspuck + 2 · radiusmallet. (4.10)

In the agent a flag called enough_space was added, if this flag is False than the agent has
to perform a prepare to reposition the puck. To be more conservative and reposition the
puck more often, the tolerance is computed as follow:

xtol =

((
table_length

2

)
− side_tolerance

)
− |xpuck|,

ytol =

((
table_width

2

)
− side_tolerance

)
− |ypuck|,

tolerance = radiuspuck + 2 · radiusmallet,

where xtol and ytol are the offset of the puck w.r.t. the table borders and side_tolerance
is a value used to add an additional margin to the border, to make more frequent Prepare.
Finally, the flag enough_space is set to False if either xtol < tolerance or ytol < tolerance.
A visual representation can be seen in Figure 4.4:

4| Methodology 43

Figure 4.4: Prepare areas. If the center of the puck will be inside any of the hatched
areas, a Prepare will be performed. A Prepare can be performed only in the agent’s side
of the game field.

Phases Similarly to the hit, the prepare is divided into 3 subtasks: Wait, Adjustment,
Acceleration; they have the same aim of the ones in the hit. Also in this case, each subtask
has a time variable associated tphase, representing how many steps the agent spent in the
specific subtask.

Rule Based Policy The policy controlling the prepare is the following:

dβ =

θ0 · tphase + θ1 · correction adjustment phase

correction acceleration phase
, (4.11)

ds =

5 · 10−3 adjustment phase

θ2 acceleration phase
, (4.12)

where correction is defined as:

correction =

β − 90 ypuck ≤ 0

270− β ypuck > 0
. (4.13)

Reward function The reward function used is the same described in Section 4.2.2 for
the Defend task.

44 4| Methodology

4.2.4. Default Position task

After the completion of each task, the agent has to return to its default position, called
home from now on. The home was computed by means of Forward Kinematics with the de-
fault joints position and, in world coordinates, it is located at [−0.85995711, 0.0, 0.0645572].

Rule-based policy The policy ruling the return to home is the following:

correction =

360− β ytarget_point ≥ 0

beta− 0.01 ytarget_point < 0
(4.14)

dβ = (θ0 + θ1 · dt) · correction (4.15)

ds = step_size (4.16)

Where step_size is a constant and the small value 0.01 was used in order to avoid the use
of β alone. The θi used are the same of the Hit (Section 4.2.1). Here the target_point
represents the home, but, in principle, this function can be used to make the end effector
reach any point following a curved trajectory.

When the end-effector reaches the home position it will stand still, waiting for a another
task to start.

Reward function In this case, like in the prepare, the reward function used in the
same of the Defend task.

4.2.5. Noise filtering

As introduced in the description of the state space (Section 4.1.1), each observation is
preprocessed to reduce the effect of the noise.

The three main sources of noise are represented by:

• Noisy joint observation: the observed joints position and velocity can be slightly
different from the real ones;

• Noisy puck observation: the position and the velocity of the puck provided by the
environment can be slightly different from the real one;

• Loss of Tracking : the agent might lose the puck, seeing it in its previous state, At
time t the agent would see the same position and velocity of the puck in t− 1.

4| Methodology 45

To smooth out the noise in the puck position and velocity a simplified Kalman Filter is
used, in particular the one provided by the organizers and described in [12].

To delete the first type of noise, the developed agent uses its output at the previous time
step instead of the observation for the joint position and velocities. The combination of
Anchored Quadratic Programming [AQP, 12] solver and Inverse kinematics, used when
translating the end-effector coordinates into the ones in the joint space, provides desired
robot poses that are reachable, making this approach feasible. As one can imagine, the
first observation is a noisy one and cannot be overwritten. However, the sensibility to
such noise is negligible.

The magnitude of the noise in the server environment was estimated exploiting the dataset
provided at the end of each evaluation. In particular, in the qualifying stage, while
evaluating the prepare, the puck was initialized still, therefore by looking at the puck’s
position before a hit it was possible to estimate the noise. To develop a more robust
agent, in the local tests, a gaussian noise with zero mean and a higher variance than the
estimated one was used.

4.3. Hierarchical Agent

After developing each single task, it is necessary to combine them in order to build a
complete agent, capable of playing a full game. To do so, a high-level agent has been
developed.

The agent is called Hierarchical since it is at the top level in the decision process. This
agent decides what task is the best one to execute, based on the observation of the
environment and on two main components: the Switcher and the Finite State Machine.

4.3.1. Switcher

The Switcher is the component used to select a new task when the current one is com-
pleted. Each task, after its last action, sends a signal to the high-level agent, notifying its
completion. The switcher will then select another task, which can potentially be also the
same as before. This can happen, for example, if the agent performed a prepare but the
puck is still in an unsuitable position for hitting, a second prepare might be necessary.

The structure of the switcher can be seen in figure 4.5.

46 4| Methodology

Game begins

HOME

Opponent field
Check puck position

Home field

YES

NO
Enough
Space

YES

NO
Puck headed

towards
the agent

DEFENDHIT

PREPARE

Figure 4.5: Switcher structure. The blue rectangles represent the tasks while the yellow
rhombuses the checks that are performed.

The switcher relies on some parameters to pick the right action, like:

if ||vpuck|| > θ → defend

therefore it can be trained just like all the other tasks.

4.3.2. Finite State Machine (FSM)

While the switcher can decide what is the next task to perform, a second layer of safety
was added, in the form of a Finite State Machine (FSM). An FSM is a computational
model used to design systems that can exist in a limited number of states.

Since each task is characterized by its own parameters, the switching process might result
in offhanded movements which might violate the constraints. To assist the switcher and
ensure a safe and smooth switch among tasks, the FSM forces the agent, at the end of
each task, to go back to the home position and start selecting a new task from there.

4| Methodology 47

Home

Hit Defend

Prepare

Figure 4.6: Finite State Machine for controlling the transitions among tasks. The agent
will always start a game in the Home state. The machine allows only for transitions that
make the agent perform the same task as before or go home. In order to change task the
agent has to visit the Home state first.

Figure 4.6 describes the behaviour of the FSM. Each state represents a task while each
edge is an allowed transition. The agent will always start a match in the Home state. It
is possible to remain in the same state but not switching from a task to another without
passing from the Home state, even if the switcher might suggest a transition of such
kind.

49

5| Experimental results

In this chapter, the experiments associated with the training runs of the developed agent
are presented. The chapter will open with the initial experiments in section 5.1, also
highlighting some of the problems encountered during the training. In particular, the
successive section will address the aforementioned issues, showing the analysis performed
to identify and solve the problem. In the end, section 5.3, will show the training results
of the final agent.

5.1. Initial experiments

During the first phase of the challenge, the main objective consisted in becoming familiar
with the environment and with the interfaces that were used to control the robot. In
particular controlling the agent to reach a specified point or to follow a provided trajectory.
When the agent was successfully able to move the end-effector in the desired position, a
first version of the rule-based policies was introduced, starting from the hit task. This
preliminary approach was not based on the framework that exploited the polar coordinates
centered in the puck, as described in Section 4.2. This method provided only a variation
of ds, considering dβ as a constant, moreover it considered also a time to arrival, i.e.,
the amount of time in which the agent had to reach the point. This policy resulted in
sharp movements which led to numerous constraints violations. The policy was therefore
updated with the one described in Section 4.2.1.

In this challenge, the constraints had a huge impact on the robot. Violating them not
only reduced the quality of the agent in the evaluation but, in a real world environment,
it might result in damaging the robot actuators, the table or the end-effector. Therefore,
while developing the reward function, a lot of importance has been given to the constraints
violations. The reward employed is the one described in the equation 4.9, reported here
for convenience.

reward =

B − normalized_violated_constraints task successful

−(P + normalized_violated_constraints) task not successful
, (5.1)

50 5| Experimental results

Figure 5.1: Mean return of a training run of the hit task with a simple reward function,
aimed at not violating constraints. The agent keeps collecting large penalties since it is
not completing the task; the reward function focused on the constraints is too sparse.

where B and P are constant values that are used, respectively, to provide the agent with
a high reward if the task is successful or a high penalty in case of failure. In the performed
experiments B was equal to 1000, while P was equal to 100.

Unfortunately this simple reward function led to unsuccesful trains, an example can be
seen in figure 5.1, where on the horizontal axes there are indexes of each batch, which
represents an iteration of the PGPE algorithm (2.1), while on the vertical axes J(ρ) is
the value defined in equation. 2.8. The plot shows how, while aiming at not violating the
constraints, the agent does not improve the overall performances, keeping to collect high
penalties for not completing the task.

The following results are referred to training runs of the hit task.

As explained in the previous sections, the developed rule-based policy is parametrized
by multiple values that had to be learned, the θi. In a training run, all these values
are learned at the same time. To further inspect the behaviour of the agent, different
training runs on a single θ parameter were launched. In these training runs the algorithm
had to learn only one parameter, while the others were fixed. The results of the training
runs can be seen in figure 5.2, where opt_slack represents the difference between the

5| Experimental results 51

best value reached in the training run and the ideal one, with no penalties, while the
moving_average is the average of the return values computed on a moving window of
20 items. Despite a general improvement in the moving average, the reward was still
too noisy, the agent was not learning. Moreover a very high sensibility to the parameter
arose, even a small variation of the the parameter’s value could lead to a great variation
of performances.

(a) Only θ0 training run. (b) Only θ1 training run.

(c) Only θ2 training run. (d) Only θ3 training run.

Figure 5.2: Train of the hit task on a single θ. While training a parameter the others are
fixed. The gray area represents the slack between the maximum value reached during the
train and the ideal result, without violations or fails.

5.2. Gradient analysis

The parameters θ of the rule-based policy are sampled, during the trains, from a gaussian
distribution, with its mean and variance. To further inspect the reasons behind the
ineffectiveness of the previously described trains, an analysis of the gradient updates was
performed. A training run was launched, on a single parameter θ, saving all the updates of

52 5| Experimental results

the gradients relative to the mean and the standard deviation of the gaussian distribution
from which θ was sampled. The results of this experiments are visibile in figure 5.3.

Figure 5.3: Distribution of the gradient updates. The updates are related to the mean
and the standard deviation (sigma) of the gaussian distribution from which the trained
parameter θ was sampled. On the horizontal axis there are the values of the updates
while on the vertical one, the number of updates with that specific value.

As can be observed in the plots, the updates distribution tends to be symmetric, with
slightly more positive updates. This behaviour could arise from two sources:

• Local optima: since an initialization of the parameters θ is necessary, it might happen
that it was initialized close to a local optima, therefore the policy might get stuck
in it, not understanding which gradient direction is the best one to follow;

• Inefficient reward function: the designed reward function might be too sparse, it
means that the reward signal is unfrequent and the agent does not receive enough
feedbacks in the decision-making process.

To check if the noise in the return arose from a suboptimal setting of θ parameters,
an additional experiment was performed, deliberately initializing the parameters with

5| Experimental results 53

inaccurate values. Various versions of this experiment have been made, testing different
learning rates. Since the task under analysis was the hit one, at each episode the puck
was initialized in a random position and with a random, small, initial velocity. To allow a
fair comparison among the experiments, the initial conditions were forced to be the same,
testing each possibility: initial position fixed, initial velocity fixed, both initial position
and velocity fixed.

None of these experiments showed a reduction in the oscillation of the return; therefore
the necessity of developing a new, less sparse, reward function, arose naturally.

5.3. Training results

The reward function described in section 4.2.1 is the result of the ri-elaboration of the
function described in equation 5.1. The focus of the reward was changed, from penal-
izing the constraint violation, to promoting the correct execution of the hit task. This
change led to a new reward function way more dense than the previous one, the agent
received frequent feedbacks, allowing it to find new optimal parameters during the train
while increasing the average return. Moreover, a small learning rate was used, in order
to mitigate the high sensibility of the policy to the parameters values. Figure 5.4 and
figure 5.5, show the learning curve and the the variations of the mean and variance of the
gaussian distributions of the hyperpolicy.

54 5| Experimental results

0 200 400 600 800 1000 1200
batch_index

240

260

280

300

320

340

360

380

J(
)

mean_return
moving_average

Figure 5.4: Learning curve of hit task with dense reward function. Agent trained with
discount factor γ = 0.997 and learning_rate = 10−4.

In particular, in figure 5.4, around batch 700 a drop can be observed, this can be related
to the fact that the agent was in a local minima, after getting out of it the performances
reduced but, over time, the overall return increased. This positive results is reinforced by
figure 5.5 which shows a coherent direction in the updates of mean and variance of the
four theta distributions. Despite the overall increase of the success rate, a reduction of
the violated constraints was not observed.

5.4. Challenge outcome

In this section the outcomes of each phase will be reported, showing the results coming
from the server evaluation. This outcomes are also consultable in the leaderboard section
of the challenge official website.

The results of the hit training run described in section 5.3 were integrated in the final
hierarchical agent used in the tournament phase. The final agent was not completely
rule-based but incorporated also a different approach, trying to train the agent without
violating constraints, however this approach won’t be further analyzed in this thesis. This
agent, orchestrated by the switcher and the finite state machine, was composed of four

https://air-hockey-challenge.robot-learning.net/leaderboard

5| Experimental results 55

update_index

0.994

0.996

0.998

1.000
adj_de_beta_const_mean

update_index

4.606

4.604

4.602

4.600 adj_de_beta_const_var

update_index

2.995

2.996

2.997

2.998

2.999

3.000 adj_de_beta_time_mean

update_index
4.606

4.605

4.604

4.603

4.602

4.601

4.600 adj_de_beta_time_var

update_index

0.024

0.026

0.028

0.030 adj_ds_mean

update_index

9.210

9.208

9.206

9.204
adj_ds_var

0 5 10 15 20 25 30 35
update_index

0.005

0.006

0.007

0.008

0.009

0.010 acc_ds_mean

0 5 10 15 20 25 30 35
update_index

9.210

9.209

9.208

9.207

9.206 acc_ds_var

Theta variations

Figure 5.5: Updates of the mean and the variance of the gaussian distributions of the
hyperpolicy, from which θ values are sampled. The labels of the plots represent the
names of each parameter. Each row is associated to a θ, the common x-axis represents
the index of each update of the parameters. On the y-axis of the variance plots, the values
are expressed by means of the log(σ) to avoid excessively small numbers, therefore the
final variance is eσ.

56 5| Experimental results

diffefrent sub-agents, in particular:

• Hit agent : trained with the described rule-based policies;

• Defend agent : trained by means of SAC, described in section 2.2.4, combined with an
algorithm that avoided constraints violations called ATACOM [13], further described
in Chapter 6;

• Prepare agent : based on the rule-based policy described in 4.2.3;

• Home agent : like the defend agent, trained exploiting ATACOM.

Warm-up

In this phase only the hit and defend tasks were tested. The developed agent showed
a high success rate in the hit task, and a lower one in the defend. However the agent
resulted undeployable due to an excessive amount of violated constraints (> 1500):

Hit success Defend sucess Max penalty points

85.0 % 12.2 % 4402.0

Table 5.1: Warm-up 3DoF planar robot, server evaluation.

The max penalty points are computed as the maximum value among the ones associated
to each task, in particular for this phase they were 4402.0 in the hit task and 3096.0 in
the defend.

Qualifying

In the qualifying stage, the prepare task was added in the task pool. The evaluated agent
exploited rule-based approach to perform hit and prepare while the defend relied on the
ATACOM approach.

Hit success Defend sucess Prepare success Max penalty points

22.7 % 61.6 % 36.2 % 920.0

Table 5.2: Qualifying 7DoF Iiwa robot, server evaluation.

As in the warm-up phase, the maximum penalty points are computed as the maximum
penalty among the three tasks.

5| Experimental results 57

Hit Penalty Defend penalty Prepare penalty

920.0 1.5 329.0

Table 5.3: Qualifying penalty points in each of the three phases.

As can be seen, the hit task was the one generating the highest amount of penalties,
this was also the reason why a refactoring of the return function of the hit policy was
performed.

Tournament

In the final phase, the approaches described in previous chapters were gradually devel-
oped and integrated in the agent, showing an overall increase of the performances, which
resulted in a decrement of the Penalty Points (PP).

In the beginning, the agent contained only the Switcher, without the Finite State Machine
(FSM).

Constraint Joint velocity Joint Position End-effector Link Total PP
Violations 22 14 7 1 44 81

Table 5.4: Local evaluation of the agent, implementing only the Switcher.

Successively the FSM was integrated, significantly reducing the amount of violated con-
straints:

Constraint Joint velocity Joint position End-effector Link Total PP
Violations 13 3 9 1 26 49

Table 5.5: Local evaluation of the agent, implementing the Switcher and the FSM.

Up to this point, the agent was still implementing a simplified Default task, which just
moved the end effector back on the default position, following a straight line. Therefore
the policy described in Section 4.2.4 was developed, leading to to an additional decrement
of constraints violation.

58 5| Experimental results

Constraint Joint velocity End-effector Computation time Total PP
Violations 15 5 2 22 31

Table 5.6: Local evaluation of the agent, implementing the Switcher, the FSM and the
rule-based Default task.

In the end, the final agent was developed training the Default task with ATACOM. This
agent showed promising performances both in local and server evaluation:

Constraint Joint velocity End-effector Computation time Total PP
Violations 12 4 1 17 24.5

Table 5.7: Server evaluation of the final agent, implementing the Switcher, the FSM and
the Default task trained with ATACOM.

All the described results were collected by letting the agent play a complete game (45000
episodes), against a baseline agent, provided by the organizers.

The final agent showed good results despite the presence of noise in the modified environ-
ment on the server. Moreover, during the second round competitions the agent achieved
a winning rate of 50% against the other participants enrolled.

59

6| Related Works

This chapter will provide an overview of previous works in the field of both Air Hockey
and parametric rule-based policies, combined with Reinforcement Learning. Moreover,
a previous work from Liu et al., to train an agent without violating constraints will be
described as well.

Parametric rule-based policy

Nowadays, designing high-level decision making systems is a task that requires a con-
tinuous balancing between the necessity of both transparency and robustness. To be
transparent, a controller should always make possible to determine why a particular de-
cision was selected; on the other hand, a robust controller should be able to generalize to
unexpected situations. This two desiderata tend to be in contrast with each other. Indeed
when RL is used to train a controller to be highly robust, then the interpretability of the
final results is heavily influenced by the model employed.

Likmeta et al., developed an approach combining rule-based controllers and Reinforce-
ment Learning, exploiting the strength points of both methods [10]. In particular, the
authors aim at “Preserving the safety and transparency properties of the hand-crafted
rule-based controllers while enhancing them with the generalization capabilities of RL”.
Indeed, a parametric rule-based policy was designed, i.e., a rule-based controller where
the rules can be provided by domain experts and are defined by a set of parameters,
whose values are learned by means of an RL algorithm. The developed framework is
general, but it was applied in the autonomous driving (AD) scenario. Policy gradient
with parameter-based exploration [PGPE, 20] was used to train the modeled policies. In
the AD scenario, the controlled vehicle can face multiple challenges like: changing lane,
facing a crossroads or facing a roundabout. In each situation the agent might select mul-
tiple actions, the idea behind the work was to select the most conservative one (e.g., a
deceleration is more conservative w.r.t., an acceleration), according a carefully designed
total order relationship among actions. Since the controlled vehicle, called ego vehicle,
might interact with multiple vehicles at the same time, the policy πθ was modeled as a

60 6| Related Works

module taking as input information about the ego vehicle and any other vehicle around it,
providing as output a set of actions, one for each vehicle involved. This work, empirically
demonstrated that RL, in particular PGPE, can be used as an effective learning tool to
improve the performances of hand-crafted policies. However, the general applicability of
the controller is still heavily tied to the configuration of the parametric rules and there
is no constraints optimization, therefore there is no coping with the filling of the reality
gap. Moreover the work showed an agent acting in single tasks, not in a complete driving
scenario.

Air Hockey and motion planning

For what concerns previous experiments related to the air hockey field, Liu et al. [12],
showed that, a real general-purpose robotic manipulator arm, can achieve performances
that are close to the task-specific robots, by employing advanced optimization techniques,
using two Kuka Iiwa 14. In the agent developed in [12], a high-level policy selects the most
appropriate task i.e., hitting, defending etc., while a low level one provides the required
trajectory. This work provided a novel trajectory optimization technique, exploiting the
robot redundancy to generate high-speed motion without violating the joint’s constraints.
In the air hockey task, hitting is the most challenging movement. The developed approach
started by planning a collision-free cartesian trajectory, using hitting and stop points.
Then, a linear constrained Quadratic Programming (QP) was used to compute the desired
joint velocities on each point of the trajectory. When the agent reached the hitting point,
to optimize the hitting configuration a Nonlinear Programming is performed, then the
maximum end-effector velocity reachable in that configuration is computed, by means
of Linear programming. The QP step was later substituted with the so called Anchored
Quadratic Programming (AQP), an updated version of the quadratic programming, which
significantly improved the hitting performance. Since the 7DoF robot is redundant for a
two dimensional task, both QP and AQP optimize the redundant velocities at every point
of the trajectory but AQP minimizes the difference of the current velocities with respect
to a reference one, called anchor. Further information about AQP can be found in [12].

Further enhancements were also developed by Kicki et al. [8]. The work proposes a
learning-based approach for constrained kinodynamic planning, called Constrained Neural
Motion Planning with B-splines (CNP-B). This framework exploits the concepts of con-
straint manifold framing the problem as a planning over it. Dynamics and neural planning
methods are also included, generating plans able to satisfy an arbitrary set of constraints
and computing them in a short constant time, namely the inference time of a neural
network. This approach allows the robot to plan and replan reactively, making it suit-

6| Related Works 61

able for highly dynamic environments. All the kinematics dynamics, and the safety/task
constraints, are defined as a single constraint manifold. Moreover, this approach relies
on the representation power of neural networks to learn a planning function, inducing an
indirect encode of the manifold structure. The constraint satisfaction is framed as a man-
ifold learning problem, such that the trajectories generated are minimized not only w.r.t.
an arbitrary task, but also from the constraint manifold. By recovering the metric of the
constraint manifold it is also possible to attribute different priorities to each constraint.
The described approach was tested on two simulated tasks, imitating real-world scenarios:
moving a heavy vertically oriented object between two tables, and executing a high-speed
hit in Air Hockey. The experiments showed that the new method reached state-of-the art
performances, generating accurate and precise hitting motions, outperforming the results
achieved by [12].

Constrained Reinforcement Learning

While applying Reinforcement Learning techniques in the robotic field, many practical
issues arise, including safety and mechanical constraints. For example, a robotic manipu-
lator should not damage the environment around it, and should not take actions that are
over its feasible range. While applying RL techniques in this context, one can talk about
Constrained RL: a subfield of Reinforcement Learning where the learning process is sub-
ject to certain constraints, coming from various needs (safety measures, ethical concerns,
specific performance criteria etc.). In particular, the so called Safe Exploration, requires
that both physical and safety constraints are satisfied throughout the whole learning pro-
cess, as shown in [6]. The work of Liu et al., [13], proposed a novel method to deal with
constrained RL, by Acting on the Tangent Space of the Constraint Manifold (ATACOM).
This method converts the constrained RL problem to a standard unconstrained one, it
can deal with both equality and inequality constraints, and does not require an initial
safe policy, allowing the agent to learn from scratch. Furthermore, it does not require any
shielding or backup policy, bringing the agent back to a safe region. ATACOM can be
used on any model-free RL algorithm independently from the policy type (deterministic or
stochastic). Finally, it can increase the learning performances while coping with equality
constraints, since it is able to focus the exploration on the lower-level manifold. However,
its application in real-world scenarios resulted unfeasible, due to its high sensibility to
model errors and sensors noises, which can cause sudden constraint violations. To miti-
gate this downsides it requires differentiable constraint functions and an accurate model
of the robot, which can be integrated by an efficient tracking controller. In [13], ATA-
COM was tested with three tasks Circle Moving, Planar Air Hockey and Iiwa Air Hockey

62 6| Related Works

(whose results are described in [12]). Five state-of-the-art model-free algorithms were
used in each environment (PPO [18], TRPO [17], DDPG [11], TD3 [5], SAC [7]) showing
that they could maintain the constraints below a threshold while efficiently learning the
policy.

63

7| Conclusions

In this work it has been shown how closing the reality gap between the simulation and
the real world, represents a challenging task while coping with highly dynamic environ-
ments. The Air Hockey challenge arose in the context of developing and testing solutions
capable of planning and reacting to fast environmental changes. This thesis showed how
a general purpose robot, in this particular case, a 7DoF manipulator, can be used to suc-
cessfully execute a specific task, playing Air Hockey, if appropriately trained. To provide
an understandable but also capable of generalizing policy, a combination of rule-based
policy and reinforcement learning was employed. The developed policy was trained by
means of PGPE, successfully increasing the overall performances of the agent, however,
without reducing the total amount of violated constraints. Finally a hierarchical agent,
was developed to enable the robot to play a complete game. This agent was composed
by multiple low level agents, responsible of executing a single task of the Air Hockey
game: hitting, defending, preparing and going to a default position. The agent showed
the ability of playing and winning a full game against a baseline agent provided by the
organizers, moreover it ranked fifth out of a total of forty-six participants enrolled in the
challenge.

7.1. Future Works

One of the main challenges the agent had to deal with, was embodied by the constraint
violations. Both the task-specific and the robot-specific constraints represented an impor-
tant obstacle in the learning process. As described in Chapter 6, the use of an algorithm
thought to allow the agent a safe exploration, like ATACOM for example, might signif-
icantly improve the performances, allowing learning the policy without taking actions
that might violate the constraints. Moreover, in this thesis the switcher described in
Section 4.3.1 was built upon a set of parameters used to decide the next action that
the agent had to perform. This parameters were set manually, therefore, they could be
trained like other tasks, to find the best configuration of parameters. Finally, in addition
to the development of better policies for the specific tasks, a constrained version of PGPE

64 7| Conclusions

could be elaborated. This version might work in such a way that the agent could explore
freely, violating constraints in the simulated environment, but will develop a policy that,
with some theoretical guarantees, will not violate them in a real world-scenario, keep-
ing an average cost below a threshold (e.g., joint position constraint violated every ten
episodes).

65

Bibliography

[1] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

[2] R. I. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):
213–231, 2002.

[3] K. Ciosek, Q. Vuong, R. Loftin, and K. Hofmann. Better exploration with optimistic
actor critic. Advances in Neural Information Processing Systems, 32, 2019.

[4] C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters. Mushroomrl: Simpli-
fying reinforcement learning research. The Journal of Machine Learning Research,
22(1):5867–5871, 2021.

[5] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in
actor-critic methods. In International conference on machine learning, pages 1587–
1596. PMLR, 2018.

[6] J. Garcıa and F. Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

[7] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR,
abs/1801.01290, 2018. URL http://arxiv.org/abs/1801.01290.

[8] P. Kicki, P. Liu, D. Tateo, H. Bou-Ammar, K. Walas, P. Skrzypczyński, and J. Peters.
Fast kinodynamic planning on the constraint manifold with deep neural networks.
arXiv preprint arXiv:2301.04330, 2023.

[9] Y. Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274,
2017.

[10] A. Likmeta, A. M. Metelli, A. Tirinzoni, R. Giol, M. Restelli, and D. Ro-
mano. Combining reinforcement learning with rule-based controllers for trans-
parent and general decision-making in autonomous driving. Robotics and Au-

http://arxiv.org/abs/1801.01290

66 | Bibliography

tonomous Systems, 131:103568, 2020. ISSN 0921-8890. doi: https://doi.org/10.1016/
j.robot.2020.103568. URL https://www.sciencedirect.com/science/article/

pii/S0921889020304085.

[11] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning, 2019.

[12] P. Liu, D. Tateo, H. Bou-Ammar, and J. Peters. Efficient and reactive planning
for high speed robot air hockey. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 586–593. IEEE, 2021.

[13] P. Liu, D. Tateo, H. B. Ammar, and J. Peters. Robot reinforcement learning on
the constraint manifold. In Conference on Robot Learning, pages 1357–1366. PMLR,
2022.

[14] M. Papini. Safe policy optimization. 2021.

[15] J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gra-
dients. Neural Networks, 21(4):682–697, 2008. ISSN 0893-6080. doi: https:
//doi.org/10.1016/j.neunet.2008.02.003. URL https://www.sciencedirect.com/

science/article/pii/S0893608008000701. Robotics and Neuroscience.

[16] M. L. Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[17] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy
optimization. In International conference on machine learning, pages 1889–1897.
PMLR, 2015.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[19] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and J. Schmidhu-
ber. Policy gradients with parameter-based exploration for control. In V. Kůrková,
R. Neruda, and J. Koutník, editors, Artificial Neural Networks - ICANN 2008, pages
387–396, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-
87536-9.

[20] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and J. Schmidhuber.
Parameter-exploring policy gradients. Neural Networks, 23(4):551–559, 2010.

[21] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

https://www.sciencedirect.com/science/article/pii/S0921889020304085
https://www.sciencedirect.com/science/article/pii/S0921889020304085
https://www.sciencedirect.com/science/article/pii/S0893608008000701
https://www.sciencedirect.com/science/article/pii/S0893608008000701

| Bibliography 67

[22] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods
for reinforcement learning with function approximation. In S. Solla, T. Leen, and
K. Müller, editors, Advances in Neural Information Processing Systems, volume 12.
MIT Press, 1999. URL https://proceedings.neurips.cc/paper_files/paper/

1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

69

List of Figures

2.1 The ongoing interaction between the agent and the enviroment comprises
the agent’s selection of an action and the subsequent response of the envi-
ronment, providing a new observation (state) and a reward. 7

2.2 Graphical representation of parameter-based methods. 14

3.1 A real-world example of puck, mallet and air hockey game field. 19
3.2 3dof-robot (image taken from the website of the challenge). 21
3.3 7dof-robot, KUKA iiwa 14 LBR (image taken from the website of the chal-

lenge). 22
3.4 Challenge framework (image taken from the website of the challenge). . . . 24
3.5 Control paradigm (image taken from the website of the challenge). 25
3.6 Challenge’s air hockey table, a smaller version of a standard air hockey

table in which also the puck and the mallet got shrunk (image taken from
the website of the challenge). 27

3.7 3DoF planar environment robot (image taken from the website of the chal-
lenge). 28

3.8 Kuka iiwa14 LBR Robot (image taken from the website of the challenge). . 29

4.1 Coordinates used to find the next desired position of the end-effector. The
goal positions are highlighted in orange. The current position of the end-
effector is the gray one, while the blue one is the desired position in the next
step. To reach that position, a variation of the radius, ds, and the angle,
dβ, is necessary. This variations, happening simultaneously, will result in
a curved movement. 36

4.2 Hit phases. Goal areas are highlighted in orange. The dotted line represents
the ideal direction that the puck should follow in order to score a goal. . . 38

https://air-hockey-challenge.robot-learning.net/home
https://air-hockey-challenge.robot-learning.net/home
https://air-hockey-challenge.robot-learning.net/home
https://air-hockey-challenge.robot-learning.net/home
https://air-hockey-challenge.robot-learning.net/home
https://air-hockey-challenge.robot-learning.net/home
https://air-hockey-challenge.robot-learning.net/home

70 | List of Figures

4.3 Triangle construction for assigning reward after the mallet hit the puck.
Goal areas are highlighted in orange, the blue arrow represents the puck
velocity. The gray triangle is the ideal area in which the puck should be
to score a goal. If at the next step the puck will be outside the triangle,
a negative reward will be applied. After the computation of the reward,
the triangle will be recomputed with the new puck position in t + 1. The
coordinates of the puck are the ones of its center. 39

4.4 Prepare areas. If the center of the puck will be inside any of the hatched
areas, a Prepare will be performed. A Prepare can be performed only in
the agent’s side of the game field. 43

4.5 Switcher structure. The blue rectangles represent the tasks while the yellow
rhombuses the checks that are performed. 46

4.6 Finite State Machine for controlling the transitions among tasks. The agent
will always start a game in the Home state. The machine allows only for
transitions that make the agent perform the same task as before or go
home. In order to change task the agent has to visit the Home state first. . 47

5.1 Mean return of a training run of the hit task with a simple reward func-
tion, aimed at not violating constraints. The agent keeps collecting large
penalties since it is not completing the task; the reward function focused
on the constraints is too sparse. 50

5.2 Train of the hit task on a single θ. While training a parameter the others
are fixed. The gray area represents the slack between the maximum value
reached during the train and the ideal result, without violations or fails. . . 51

5.3 Distribution of the gradient updates. The updates are related to the mean
and the standard deviation (sigma) of the gaussian distribution from which
the trained parameter θ was sampled. On the horizontal axis there are the
values of the updates while on the vertical one, the number of updates with
that specific value. 52

5.4 Learning curve of hit task with dense reward function. Agent trained with
discount factor γ = 0.997 and learning_rate = 10−4. 54

5.5 Updates of the mean and the variance of the gaussian distributions of the
hyperpolicy, from which θ values are sampled. The labels of the plots
represent the names of each parameter. Each row is associated to a θ, the
common x-axis represents the index of each update of the parameters. On
the y-axis of the variance plots, the values are expressed by means of the
log(σ) to avoid excessively small numbers, therefore the final variance is eσ. 55

71

List of Tables

5.1 Warm-up 3DoF planar robot, server evaluation. 56
5.2 Qualifying 7DoF Iiwa robot, server evaluation. 56
5.3 Qualifying penalty points in each of the three phases. 57
5.4 Local evaluation of the agent, implementing only the Switcher. 57
5.5 Local evaluation of the agent, implementing the Switcher and the FSM. . . 57
5.6 Local evaluation of the agent, implementing the Switcher, the FSM and

the rule-based Default task. 58
5.7 Server evaluation of the final agent, implementing the Switcher, the FSM

and the Default task trained with ATACOM. 58

73

List of Acronyms

Acronym Description

MDP Markov Decision Process

RL Reinforcement Learning

PO Policy Optimization

FSM Finite State Machine

DoF Degrees Of Freedom

OAC Optimistic Actor Critic

SAC Soft Actor Critic

PGPE Policy Gradient with Parameter-based Exploration

API Application Programming Interface

FK Forward Kinematics

IK Inverse Kinematics

QP Quadratic Programming

AQP Anchored Quadratic Programming

PP Penalty Points

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Motivation
	Goal
	Thesis Structure

	Preliminary backgorund
	Markov Decision Processes
	Reinforcement Learning
	Policy Optimization
	Parametric policies
	Policy Gradient with Parameter-based Exploration (PGPE):
	Actor Critic approaches

	Robot Air Hockey Challenge
	What is Air Hockey
	Challenge Motivation
	Challenge organization
	Warm-Up
	Qualifying
	Tournament

	Framework
	Environments

	Agents
	Planar Robot - 3 Degrees of Freedom
	KUKA iiwa14 LBR Robot
	Evaluation metrics

	Constraints

	Methodology
	Air Hockey as an MDP
	State Space
	Action space
	Reward function

	Rule-Based Agent
	Hit task
	Defend task
	Prepare task
	Default Position task
	Noise filtering

	Hierarchical Agent
	Switcher
	Finite State Machine (FSM)

	Experimental results
	Initial experiments
	Gradient analysis
	Training results
	Challenge outcome

	Related Works
	Conclusions
	Future Works

	Bibliography
	List of Figures
	List of Tables
	List of Acronyms

