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Abstract

Timed Automata (TA) are a de facto modeling standard for systems with time-sensitive prop-
erties. A common task is to verify if a given network of TA satisfy a given property for every
possible execution of the network. These questions lend themselves to being expressed in Linear
Temporal Logics (LTLs), which allows for expressions over atomic propositions that are defined
over time positions in N. We build upon the TA solver TACK, which supports properties ex-
pressed in the rich Metric Interval Temporal Logic (MITL), and encodes both the TA network
and property to be verified into a variant of Linear Temporal Logic, Constraint LTL over clocks
(CLTLoc). The produced CLTLoc formula can then be solved by tools such as Zot, which trans-
form CLTLoc properties into SMT-LIB, a standardized SMT solver language with support for
BitVector and real-valued logics.

We present a novel method that preserves TACK’s encoding of MITL properties while en-
coding the Timed Automata network directly into SMT-LIB, making use of both the BitVector
logic and the logic of real-valued functions. Our primary targeted SMT solver is Microsoft’s
Z3, which supports many standardized formats, including SMT-LIB and has strong support for
several SMT logics. We introduce several optimizations that allow us to significantly outperform
the CLTLoc encoding, and correct deficiencies in the original encoding.

Sommario

Gli Automi temporizzati (TA) sono de facto lo standard di modellazione per sistemi con propri-
età dipendenti dal tempo. Un’importante attività è quella di verificare se una data rete di TA
soddisfa una data proprietà, per ogni possibile esecuzione della rete. Molte proprietà interassanti
si possono esprimere in modo sintetico e efficace in Logica Temporale Lineare (LTL), che perme-
tte di predicare su proposizioni atomiche variabili nel tempo. In questa tesi ci basiamo sul TA
solver TACK, che supporta proprietà espresse nella logica temporale Metric Interval Temporal
Logic (MITL), più espressiva di LTL, e codifica sia la rete TA che la proprietà da verificare in
una variante di LTL, Constraint LTL over clocks (CLTLoc). La formula CLTLoc risultante può
quindi essere risolta con strumenti di verifica come Zot, che trasformano CLTLoc in SMT-LIB,
un linguaggio standardizzato per solutori SMT con supporto per BitVector e logiche reali.

In questa tesi presentiamo un nuovo metodo di verifica che conserva la codifica TACK delle
proprietà MITL ma che codifica la rete di TA direttamente in SMT-LIB, utilizzando sia la
logica BitVector che la logica delle funzioni a valore reale. Il nostro principale risolutore SMT
mirato è lo Z3 di Microsoft, che supporta molti formati standardizzati, compreso SMT-LIB e
ha un forte supporto per diverse logiche SMT. Abbiamo introdotto varie ottimizzazioni che ci
hanno permesso di migliorare in modo significativo le prestazioni di verifica rispetto alla codifica
CLTLoc e di correggere alcune carenze nella codifica originale.
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Chapter 1

Introduction

Timed Automata [1] (TA) are a popular tool for modeling time-sensitive systems. By combining
the transition semantics of finite automata with real-valued clocks, they are of great theoret-
ical and practical interest for representing time-bound processes and applications. They have
found common use in the domain of model checking, where system representations are evaluated
against a given property of interest. Various tools and encoding languages exist for a variety of
applications and use cases. These include the current de facto standard Uppaal [2], as well as
NuSMV [3] and MITL0,∞BMC [4].

Model Checking refers to a verification technique for solving properties of state transition
systems. A wide variety of industrial applications, including circuit design, control systems, and
program verification lend themselves to this representation. In the model checking process, the
system is exhaustively searched to see if the given property is valid. For invariant properties, the
property holds if every reachable state in the system satisfies the property, and thus the model
checker attempts to find a counterexample to falsify the property. Conversely, a reachability
property asserts that there exists at least one reachable state in which the given property holds,
and the model checker proves the property by finding that such a reachable state exists. A
reachability property can be solved by asserting its negation as an invariant property (and vice
versa).

TACK is a bounded model checker for networks of timed automata developed by Menghi et
al [5]. Properties to be verified are specified in Metric Interval Temporal Logic (MITL), and are
converted along with the TA network into CLTLoc, a variant of Constraint Linear Temporal
Logic supporting real-valued clocks. MITL and CLTLoc are rich logics that allow for continuous-
time semantics using traces, a form of timed words, to represent the execution of the networks
of TA.

Our contribution is a novel encoding of the TA network which does not use CLTLoc as an
intermediate step, instead directly transforming the network semantics into a hybrid BitVector
representation. This approach has the advantage of being tailor-made for TA networks, while
the previous approach relied on the general-purpose CLTLoc converter ae2sbvzot. However
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rather than just re-create the existing encoding in a new language, we have corrected several
deficiencies in the original TACK encoding, and have added additional features to make TACK
more useful for users. In addition we have exploited opportunities to more efficiently encode TA
constructs, noticeably eliminating the need for BitVectors to track the active state of the TA,
instead relying on the active transition to carry this information.

In this paper, we will first present the current state-of-the-art for bounded model checking,
followed by an in-depth description of both the required preliminary knowledge and the specific
implementation of the TACK bounded model checker (Chapter 2). We will then present our
novel contribution to the problem of encoding the TA network into a form suitable for an
SMT bounded model checker (Chapter 3). Afterwords we will present our experimental results
(Chapter 4) as well as summary remarks (Chapter 5).

8



Chapter 2

Preliminaries

In this chapter we present the current TACK bounded model checking procedure, along with the
required prerequisite knowledge. We begin with a discussion on the current state-of-the-art in
model checking, followed by a discussion on Timed Automata, giving an intuitive introduction to
the topic before formally defining the TA used in the rest of the paper. We then discuss Bounded
Model Checking, formally defining a trace of a TA network and presenting an illustrative example
trace. We then discuss the two temporal logics used in the TACK encoding, CLTLoc and MITL.
With the theoretical background complete, we move on to discussing the TACK encoding itself,
followed by an summary of BitVector logic and ae2sbvzot, the tool used by TACK to convert
CLTLoc formulas into BitVector form.

2.1 State of the Art

For many years, model checking was performed using Binary Decision Diagrams (BDDs) [6],
which offer many time- and space-complexity advantages over explicit state enumeration [7].
BDDs are symbolic representations of functions over boolean variables that exploit symmetries
to avoid explicitly representing the entire state space. However to efficiently handle larger state
spaces, BDDs have been largely abandoned in favor of bounded model checking techniques. A
representative example is NuSMV [3], which was originally designed to use BDDs but has since
been rewritten to use SAT-based bounded model checking. Using the strength of modern-day
SAT and SMT solvers, bounded model checking encodes the semantics of the state transition
system into SAT or SMT form, and then tasks the solver with finding a valid assignment of states
to time positions starting from a given initial state such that the desired reachability property
is true (resp. false for invariant properties). Because such solvers require finite state spaces, the
number of time positions considered is limited by a bound k, hence the name bounded model
checking.

In addition to finding finite traces, bounded model checking has also been applied to finding
traces of infinite length that can be represented in finite space. This is accomplished by limiting
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the search to so-called “lasso-shaped” traces. These traces begin with an initial finite sequence
of states before entering an infinite loop of states. Thus only a finite number of states need to
be explicitly represented by the bounded model checker, which can search for lassos of length
up to the given bound.

To represent state systems with real-time properties, Timed Automata have emerged as a
de facto standard [1]. At their core, timed automata are finite state machines that are enriched
with real-valued clocks that track the passage of time. These clocks can then be incorporated
into transition guards and state invariants to control and synchronize automata. Unfortunately
while Timed Automata have had great success at modeling real-time systems, they have not
been useful for representing the properties to be verified, and in fact it has been shown that
verification using TA to represent properties is undecidable [1]. As a result various temporal
logics have been developed by different solvers to represent the properties to be evaluated.

Uppaal [2] is a de facto standard for model checking systems of timed automata. Uppaal
supports a subset of Timed Computation Tree Logic (TCTL), an extension of the widely known
Computation Tree Logic (CTL) with real-time properties. The CTL family of logics uses the
expressive tree-view of future positions, and as such can represent a wide range of universality
and existence statements not possible in Linear Temporal Logics. However due to the difficulty
of encoding the full semantics of this logic, Uppaal and similar implementations often restrict
themselves to a subset of TCTL.

In addition to the work done with branching-time logics, there has been interest in the
expressive power of Metric Temporal Logic (MTL), a form of Linear Temporal Logic (LTL)
with Interval constraints on the ‘until’ operator. While powerful, standard MTL properties are
undecidable in general for infinite traces [8]. To make MTL tractable, the subset MITL was
proposed in 1991 [9], which offers decidable continuous semantics for TAs. MITL is valuable
both for its continuous time semantics, where the value of a property can be known at every
position p ∈ R+, and for its ability to capture expressive and complex properties. Examples of
MITL solvers include a tool developed by Kindermann et al. [4], which relies on a further subset
MITL0,∞ for property validation, and currently supports both finite and lasso-shaped bounded
traces. Another is TACK, which was developed by Menghi et al. [5] and has implemented a
bounded model checker for lasso-shaped infinite traces over the full MITL logic. To improve
the speed of the verification process, TACK encodes the TA and property to be verified into
BitVector logic [10, 11], which is supported by the standardized SMT-LIB language [12]. To
avoid the incompleteness of the naive lasso encoding shown by Kindermann [13], both tools
use a region-based encoding of the clock values. This is paired with a “non-Zeno” requirement,
so that the infinite traces span an infinite amount of time. In the following chapter we will
summarize the background and work accomplished in the TACK solver, before then presenting
our contribution to the TACK verification tool.
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2.2 Timed Automata

Timed Automata are a useful model for many interactions that require precise timing mech-
anisms [1]. Each Timed Automaton has a set of states, one of which is active at any given
moment, much like a Finite State Machine (FSM). Also like a FSM, a Timed Automaton has
a set of transitions that allow it to move between different states. However these transitions
come with powerful timing properties that allow for finer control over the progression of the
automata. Included with our automata is a network of clocks and integer variables. Clocks
progress as time passes, and can be used alongside variables as prerequisites for taking transi-
tions and remaining in states. Transitions can also reset these clocks (and assign new values
to variables), allowing for communication and shared state between different Timed Automata.
For explicit synchronization, we define a set of synchronization primitives that can be used to
coordinate transitions between different automata. Finally, states can be labeled with atomic
propositions, to aid in defining model properties that we will then verify over the network. To
help concretize this concept, we will introduce a simple Timed Automaton, which will be used
throughout this paper to help visualize important concepts.

Figure 2.1: A basic Timed Automaton

As we can see in Figure 2.1, Timed Automata have many similarities with Finite State
Machines and other automata. This example timed automaton consists of a finite set of states
Qi = {q1, q2, q3}, and a finite set of transitions Ti = {t1, t2, t3, t4}. Like a finite state machine, at
a given moment in time there is one state that is “active”. The TA can take transitions that may
change its state, with the condition that the source of the transition must be the currently active
state. We denote the source state of a transition t as t−, and the destination state as t+. As an
example, if the current active state is q1, then either t1 or t2 can be taken. Although not shown
in this example, the source and destination state of a transition may be the same state, and
there may be multiple transitions with identical source states and identical destination states.

In addition to states and transitions, TA are enriched with clocks and bounded integer
variables. Clocks are variables over R≥0 that increment with the passage of time. Their ability
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to continuously change value is fundamental to the ability of timed automata to model time-
sensitive and real-time systems. Meanwhile the bounded integer variables do not change value
on their own, and have to be explicitly modified by the TA.

Figure 2.2: A Timed Automaton with clock x and variable n.

We can now show how these values are used and manipulated by a timed automaton. Fig-
ure 2.2 shows the same example TA modified with transition guards, transition assignments, and
state invariants. Transition guards are conditions over either clocks or variables that prevent the
associated transition from being taken when they are not satisfied. As an example, transition t2
can only be taken when the value of clock x is greater than 5. Assignments on the other hand
modify the value of a clock or variable after the transition has been taken. For example, it is
perfectly valid for transition t2 to be taken when x = 6, even though the assignment x = 0 resets
the value of x to 0, which is smaller than the value accepted by the transition guard x > 5.
To be clear, the value is updated in the same instant as the transition, however the guards
only consider the pre-transition value of the clock when determining if the transition is valid.
Variables can be assigned to any value, while clocks can only be reset to 0. The third feature
to mention are the state invariants. In our example there is only one, x < 2 which is associated
with state q2. When a state is active, its invariant (if any) is required to be true. The invariant
attached to q2 requires the TA to depart state q2 before clock x reaches a value of 2. In this
example the only transition that leads to state q2 resets the value of clock x, but in general it is
illegal to transition into a state if the invariant would be violated upon entry.

In addition to clocks and variables, TA also offer a powerful synchronization mechanism
for different automata in the same network to coordinate. Any transition may contain a
synchronization event of the form {channel × sync}, where channel can be any symbol and
sync ∈ {!, ?,#,@}. Two different timed automata can synchronize their transitions by label-
ing them with the same synchronization channel, and using the actions to describe the type of
synchronization desired.

As shown in Table 2.1, two types of synchronization are defined. The first type is one-to-one
synchronization, which has two associated operators, one signifying one-to-one sending (!), and
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Type Synchronization Semantics

One-to-one Whenever a TA Ai takes a transition with a synchronization event
α!, there exists exactly one Aj , i 6= j, such that in the same instant
Aj has an active transition t′ with the synchronization event α?,
and vice versa.

Broadcast Whenever a TA Ai takes a transition with a synchronization event
α#, every other TA Aj must not simultaneously take a transition
with the same event, and must either simultaneously take a transi-
tion labeled with α@, or there must not exist a transition t′ ∈ Aj
such that t− is the currently active state, α@ is the synchronization
event, and the clock and variable guards of t′ are satisfied.

Table 2.1: Supported Synchronization Events

the second for one-to-one receiving (?). A transition labeled with α!, for some channel α, can
only be fired if at the same moment in time, another TA takes a transition labeled with the α?

event. The second type of synchronization available is termed ‘broadcast’ synchronization, and
again we have two operators, broadcast-send (#) and broadcast-receive (@). Like one-to-one
synchronization, for a given channel α there can only be one active transition with the event
α#, however the difference is that there can be 0, 1, or multiple automata that sync using
broadcast-receive at once. In addition, each automaton is required to perform a broadcast-sync
if it is able to, meaning that there exists a transition t such that t− is the currently active state,
and all guards of the transition are satisfied.

With the basic concepts introduced, we will formally define the Timed Automata discussed in
this paper. Let AP be a set of atomic propositions, and let Act be a set of synchronization events
of the form Act ⊂ {channel × sync}, where channel is a set of symbols and sync ∈ {!, ?,#,@}.
In addition we define a null event τ . Actτ is the set Act ∪ {τ}. Let X be a finite set of
clocks, and Int a finite set of integer-valued variables. Γ(X) is the set of clock constraints,
where a clock constraint γ is a relation x ∼ c | γ ∧ γ, where x ∈ X, ∼∈ {<,>,≤,≥}, and
c ∈ N. Assign(X) is the set of clock assignments, where each assignment has the form x := 0,
where x ∈ X. Assign(Int) is a set of variable assignments of the form y := exp, where
exp := exp + exp | exp − exp | n | c, n ∈ Int and c ∈ Z. Γ(Int) is the set of integer variable
constraints, where a variable constraint γ is defined as γ := n ∼ c |n ∼ n′ |¬γ |γ∧γ, where n and
n′ are integer variables, c ∈ Z, and ∼∈ {<,=}. A Timed Automaton with variables is defined
as the tuple A =

〈
AP,X,Actτ , Int,Q, q

0, v0var, Inv, L, T
〉
. In this tuple Q is the finite set of

states of the timed automaton, q0 ∈ Q is the initial state of the TA, v0var : Int→ Z is a function
providing initial values for each of the variables, and Inv : Q → Γ(X) is a function assigning
each state to a (possibly empty) set of clock constraints. The labeling function L : Q→ P(AP )

assigns each state to a subset of the atomic propositions. Each transition t ∈ T has the form
t =

〈
Q×Q×Actτ ×Γ(X)×Γ(Int)×P(Assign(X))×P(Assign(Int))

〉
, consisting of a source

and destination state, an action, a set of clock and variable guards, a set of clocks to be reset
when the transition fires, and a set of variables to assign values to. To refer to the components
of a transition we will use t− and t+ to refer to the source and destination states respectively,
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as well as tε, tγc , tγv , tac , tav to refer to the event, clock constraints, variable constraints, clock
assignments, and variable assignments respectively.

A network of Timed Automata is a finite list of timed automata A = [A1,A2, . . .AN ]. Timed
Automata in the same network can refer to common clocks, variables, and synchronization
channels to coordinate their actions. To simplify the notation we will use the symbols T , X,
Int, and Act/Actτ to refer to the union of the respective sets of each individual timed automaton
in the network. When necessary to refer to the properties of one timed automaton in particular,
we will append a numerical subscript to the set in question, for example Xi to refer to the clocks
used by the specific timed automaton Ai ∈ A.

2.3 Bounded Model Checking

Bounded Model Checking [8] refers to the problem of evaluating if a given network of timed
automata satisfies a given model, or property. To perform this evaluation, the TA network
along with the property to be evaluated are transformed into a form acceptable by a Satisfiability
Modulo Theories, or SMT solver. The solver then searches all possible executions of the system
to determine if the property is satisfied. Before we can discuss this process, we must describe
what we mean by an execution of a network of timed automata.

At a given position in time, the TA network can be described by the currently active states,
as well as the values of the clocks and integer variables. To describe the values of the clocks
and variables at different positions in time, we introduce ‘valuations’, which accept a clock or
variable argument and return a value.

v : X → R≥0
vvar : Int→ Z

Each time position has an associated clock and variable valuation. Because the execution of a
TA is a series of instantaneous state transitions, interspersed throughout time, we can represent
a TA execution as a series of ‘snapshots’ showing these moments of transitions. In order to
achieve this representation, we use the concept of a trace. For the time being let us consider a
trace η to be an infinite sequence

η = (l0, v0, vvar,0), δ0, t0, (l1, v1, vvar,1), δ1, t1, . . .

Where ll[i] returns the active state q ∈ Qi for i ∈ [1, N ], and tl[i] returns a transition
t ∈ Ti ∪ ], where ] is the null transition, which signifies that the TA does not perform a discrete
transition. We can see that the trace is made up of snapshots of the TA in a given moment of
time (l, v, vvar), which are connected with a combined temporal δ and discrete t transition step.
We can safely require that all transitions follow this pattern because two consecutive temporal
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transitions δ can simply be combined into one whose length is the sum of the two original
transitions, and two consecutive discrete transitions can be combined iff no TA in the network
performs a non-null transition in both positions, in which case the trace would be illegal, as TA
cannot perform multiple simultaneous transitions in our model.

Figure 2.3: An example trace through 4 positions.

In Figure 2.3 we can see a trace of the Timed Automaton defined in Figure 2.2, which has
been given an index of 1. To prevent the value of t[i] being undefined at position 0, the value of
t[i] corresponds to the transition taken in the following time position. However for clarity in the
traces shown here, the values of t[1] and δ have been shifted to the right by half of one position,
so that the active transition is placed in between its source and destination states. At the top
of the trace l[1] tracks the currently active state of the timed automaton. In this simple trace
the automaton begins in state q1, then after 6 time units in q1 the TA transitions to q2, remains
in q2 using a null transition, and then transitions to q3. Below the active state we show the
active values of both the variable n and the clock x at the given positions. The value δ shows
the amount of time that passes between the current state, and the immediately following state.

One surprising observation is that the value of the clock x does not seem to change between
positions 0 and 1, despite δ indicating that 6 units of time has passed. Recall that transition
t2 resets the value of the clock x to zero, and that the trace captures the values of clocks and
variables after any assignments have been applied.

Figure 2.4 shows how we can compute the value of clock x at the moment of the transition,
before the reset is applied. By combining the values of x and δ, we obtain the value of x that is
used to determine if the clock guard of transition t2 is satisfied. We see that x has a value of 6,
which satisfies the guard x > 5.

Notice in the above trace the value of clock x during the transition from state q2 to state
q3. State q2 has an invariant requiring that the value of clock x be strictly less than 2, however
at the moment of transition x(2) + δ(2) = 2. Is this trace therefore illegal? This raises an
interesting question: at the moment of transition, what is the active state? Possible answers
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Figure 2.4: A trace highlighting the evaluation of a clock guard.

could include the source state, the destination, both, or neither. Different models of Timed
Automata implement this differently. Some, like Uppaal [2] implement so called “super-dense”
time semantics, in which the TA may be in multiple states and perform multiple transitions in
the same instant of time. In our model, the TA is always in exactly one state at every instant
in time. If at the moment of transition the TA remains in the source state, the transition is
said to be “right-closed” or equivalently “left-open”, because the interval of time that the TA
spends in t− ends in a closed interval, while the interval of time that the TA spends in t+ begins
in an open interval. Conversely if the TA is located in the destination state at the moment
of transition, we say that it is “left-closed”, which also implies that it is right-open. Returning
to our example trace, if the timed automaton is not in state q2 in the instance of transition,
then the strict inequality in the state invariant can be satisfied with equality at the instance of
transition, since the automaton is not actually in that state at that final moment. To formalize
this notion we introduce the weak clock relation ∼w, which is defined as follows:

x ∼w c ⇐⇒ (x ∼ c ∨ x = c) ∼∈ {<,>,≤,≥}

x =w c ⇐⇒ false

To make our trace more precise, we add for each TA Ai the term edgeRC [i], which is true at a
given time position iff the currently active edge is right-closed.

Figure 2.5 shows the same example trace as before, but with the addition of the edge variable.
Like the transitions, it is shifted to the right by half of one position for ease of viewing. Notice
that when transition t3 is taken, the edge is left-closed, as is required by the invariant. The value
of the edge variable is not shown during the null transition, however during a null transition
either value is equivalent. We now revise the notion of a trace to include this term.

Definition 2.3.1. A trace η is an infinite sequence

η = (l0, v0, vvar,0), δ0, t0, edge0, (l1, v1, vvar,1), δ1, t1, edge1, . . .
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Figure 2.5: An example trace with edge variable.

When using Timed Automata to model real-time systems, a common desire is to verify that
every valid trace of the system obeys a given constraint, or property. Problems of feasibil-
ity quickly arise however, due to the infinite length of these traces. Bounded Model Check-
ing is a process in which timed automata traces of infinite length can be efficiently verified
against a property. Since TA traces are infinite in length, we restrict ourselves to traces of the
form s0s1 . . . sl−1(slsl+1 . . . sk−1sk)

ω, where every s = (l, v, vvar, δ, t, edge). These “lasso-shaped”
traces consist of an initial sequence of states up until sl−1, followed by a loop that can be re-
peated an infinite amount of times to form the full trace. Since the beginning of the loop is
allowed to occur anywhere within the sequence, the only variable is the number of distinct states
k. Bounded Model Checking refers to checking if a given property is satisfied over lasso-shaped
traces of up to length k. The TA system along with the desired property are converted into a
format suitable for parsing by a SAT or SMT solver, which is then tasked with finding a coun-
terexample to the property. If a counterexample is found, then there exists at least one trace
that does not satisfy the provided property. Otherwise, the property is said to have been verified
over the TA network up to the bound k, as the solver has shown that no lasso-shaped traces of
length k exist that contradict the property. Although restricting ourselves to only lasso-shaped
traces may seem to be a severe limitation, it has been shown that for a given TA network A,
there exists a limit K such that if a counterexample for a given property exists, there exists a
counterexample of length no more than K [14].

2.4 Constraint LTL Over Clocks

Constraint LTL is an extension of linear temporal logic allowing formulas over a given constraint
system [15]. CLTLoc is a constraint LTL where the constraint system consists of clocks defined
over the positive real numbers. This allows for the construction of formulas defined over atomic
propositions and clocks. A clock is a variable over R≥0 whose value changes between LTL
positions to model the passage of time. Like clocks in timed automata, clocks can be reset
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back to zero. In addition CLTLoc has been extended to support expressions over arithmetical
variables [16].

A formula in CLTLoc consists of atomic propositions, clock formulas, and formulas over
integer variables, which are combined using the standard LTL operators of X (next) and U
(until), as well as the derived operators G (globally), F (future), andR (release). A clock formula
compares the value of the clock to a given natural number, for instance x > 7. A variable formula,
on the other hand, can compare not only individual variables but also arithmetic combinations
of variables. An example would be the expression b+ c = 7; b, c ∈ Int.

Let X be a finite set of clocks and Int be a finite set of integer variables. CLTLoc formulas
are defined as follows:

φ := p | x ∼ c | exp1 ∼ exp2 |X (n) ∼ exp |φ ∧ φ | ¬φ | Xφ | φUφ

Where p ∈ AP , x ∈ X, c ∈ N, n ∈ Int, ∼∈ {<,=} and exp are arithmetic formulas over integer
variables and integers (defined in Section 2.2).

As mentioned before, clocks are special dense variables over R≥0 that ‘progress’ between
different LTL positions. To be more specific, each clock must either increment between two
adjacent time positions, or it must be reset. To maintain a consistent view of time, we introduce
δ : N → R>0, which measures the amount of time that elapses between two adjacent time
positions. For a given clock valuation σ : N × X → R≥0, each clock x ∈ X must either obey
the equivalence σ(l, x) + δ(l) = σ(l + 1, x), or is reset, i.e. σ(l + 1, x) = 0. This ensures that all
clocks progress at the same rate, and we can use δ(t) to calculate the amount of time elapsed
between any two positions.

We also define variables via the assignment function ι : N× Int→ Z that assigns a value to
each variable n ∈ Int at every time position in N. The arithmetical expressions exp can now be
evaluated at a time position l by replacing every occurrence of an integer variable n with ι(l, n).

A CLTLoc interpretation is the triple (π, σ, ι), where π : N → ℘(AP ) maps time positions
to the set of atomic propositions that evaluate to true, and σ and ι are the clock and variable
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valuations. A CLTLoc formula φ evaluated at time position l is defined as follows:

(π, σ, ι), l � x ∼ c ⇔ σ(l, x) ∼ c

(π, σ, ι), l � exp1 ∼ exp2 ⇔ exp1(ι, l) ∼ exp2(ι, l)

(π, σ, ι), l � X (n) ∼ exp ⇔ ι(l+1, n) ∼ exp(ι, l)

(π, σ, ι), l � p ⇔ p ∈ π(l)

(π, σ, ι), l � ¬φ ⇔ ¬((π, σ, ι), l � φ)

(π, σ, ι), l � φ1 ∧ φ2 ⇔ ((π, σ, ι), l � φ1) ∧ ((π, σ, ι), l � φ2)

(π, σ, ι), l � X (φ) ⇔ (π, σ, ι), l+1 � φ

(π, σ, ι), l � φ1Uφ2 ⇔ ((π, σ, ι), l � φ2)∨(
((π, σ, ι), l � φ1) ∧ ((π, σ, ι), l+1 � φ1Uφ2)

)

A CLTLoc formula φ is said to be satisfiable if an interpretation (π, σ, ι) exists such that
(π, σ, ι), 0 � φ. This is often shortened to simply (π, σ, ι) � φ.

2.5 MITL

Metric Interval Temporal Logic is a restriction of Metric Temporal Logic (MTL) such that
subscripts must be intervals [9] of non-zero length. An interval I is a convex region of R≥0. The
bounds of this region must be in the set {N ∪ ∞}. We will represent an interval as 〈a, b〉 or
〈a,∞), where a, b ∈ N, 〈 ∈ { (, [ } and 〉 ∈ { ), ] }.

The following grammar describes the set of MITL formulas:

φ := α | φ ∨ φ | ¬φ | φ UIφ

Where α represents the set of atomic propositions. The set of propositions currently supported
by TACK consists of the set AP (atomic propositions of the network of TA) and propositions
of the form n = c, where n is an integer variable and c is a constant value.

The semantics of MITL are defined as follows. An MITL signal is a function M : R≥0 →
P(AP ) × ZInt. At a given time t, M(t) = P, vvar gives us the set of AP that evaluate to true
P , as well as a valuation for the integer variables vvar. For a given signal M , M, t � φ is defined
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as follows:

M, t � α ⇔ M(t) = (ψ, vvar) ∧ α ∈ ψ

M, t � n = c ⇔ M(t) = (ψ, vvar) ∧ vvar(v) = c

M, t � φ1 ∧ φ2 ⇔ (M, t � φ1) ∧ (M, t � φ2)

M, t � ¬φ ⇔ ¬(M, t � φ)

M, t � φ1UIφ2 ⇔ ∃t′ > t, t′ − t ∈ I, (M, t � φ2) ∧ ∀t′′ ∈ (t, t′), (M, t′′ � φ1)

An MITL formula φ is said to be satisfiable if an interpretationM exists such thatM, 0 � φ.
We then say that M models φ.

2.6 TACK CLTLoc Translation

The TACK [5] tool developed by Menghi et al. converts Bounded Satisfiability Checking prob-
lems into the CLTLoc language. TACK uses Metric Interval Temporal Logic to specify the
property to be checked for satisfiability, which allows for more compact and powerful specifica-
tions of the desired properties to be checked. Once the Timed Automata network and the MITL
property have been converted into CLTLoc, TACK then uses the tool Zot to convert this inter-
mediate representation of the problem into the SMT-LIB language, which is supported by many
modern SMT solvers. Zot was designed with a modular architecture to allow for several different
strategies and algorithms that can be used to convert its input. Currently the most successful
Zot plugin for CLTLoc Bounded Model Checking is ae2sbvzot. We will provide an overview
of both the TACK encoding of Timed Automata in CLTLoc and the ae2sbvzot translation of
CLTLoc into BitVector form.

Each time position in an infinite trace of a network of timed automata is represented as a
position in the mono-infinite temporal space of CLTLoc. At every time position l[i] and t[i] return
the active state and active transition at the current time position. Each function is syntactic
sugar for a set of atomic propositions, one for each possible value of the function, that are
constrained so that only one may evaluate to true in each time position. Each edgeRCi , i ∈ [1, N ]

is encoded as an atomic proposition. TA clocks and variables can be represented directly as
CLTLoc clocks and variables.

Table 2.2 contains the formulas used to encode the Timed Automata into CLTLoc. To
accomplish this encoding, several auxiliary formulas are used. l[i], i ∈ [1, N ] represents the
location of the TA i at the current time position. Likewise, t[i], i ∈ [1, N ] represents the currently
active transition for TA i at the current time position. Because not every TA will transition
at each time position, we introduce a null transition symbol ]. Therefore the function t[i] may
return either a transition or the symbol ]. If transition t is active in a given position i, then the
TA is in state t− at position i and state t+ at position i+ 1.
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Table 2.2: TACK Encoding of an Automaton in CLTLoc

ϕ1 :=
∧

i∈[1,N ]

(l[i] = 0) ϕ2 :=
∧

n∈Int
n = v0var(n) ϕ3 :=

∧
i∈[1,N ]

Inv(l[i])

ϕ4:=
∧
x∈X

(x0=0 ∧ x1>0 ∧ xv=0) ϕ5(j):=
∧
x∈X

(xj=0)→X
(
(x(j+1) mod 2 = 0)R

(
(xv=j)∧(xj>0)

))
ϕ6 :=

∧
i∈[1,N ]

q∈Qi

((
l[i] = q ∧ t[i] = ]

)
→ X

(
Inv(q) ∧ r1(Inv(q))

))

ϕ7 :=
∧

i∈[1,N ]

t∈Ti

t[i] = t→
(
l[i] = t− ∧ X (l[i] = t+) ∧ ϕγc ∧ ϕγv ∧ ϕαc ∧ ϕαv ∧ ϕedge(t−, t+, i)

)
ϕedge(a, b, i) := ϕαRC(a, b, i) ∨ ϕαLC(a, b, i)

ϕαRC(a, b, i) := Inv(a) ∧ r2(Invw(b)) ∧ edgeRC [i]

ϕαLC(a, b, i) := Invw(a) ∧ r2(Inv(b)) ∧ ¬edgeRC [i]

ϕ8 :=
∧

i∈[1,N ];q,q′∈Qi|q 6=q′

((
(l[i] = q) ∧ X (l[i] = q′)

)
→

∨
t∈Ti|t−=q,t+=q′

(t[i] = t)

)
ϕ9 :=

∧
x∈X

(
X (x0 = 0 ∨ x1 = 0)→

∨
i∈[1,N ]

t∈Ti|x∈tac

t[i] = t

)

ϕ10 :=
∧

n∈Int

(
(¬(n = X (n)))→

∨
i∈[1,N ]

t∈Ti|n∈tav

t[i] = t

)

The first formula constrains each TA to be in the initial state at time 0. For each Timed
Automaton, the states are represented as natural numbers, with the initial state as 0. The
second formula initializes each variable n ∈ Int to its initial value, and the third ensures that
the invariants of each initial state hold in the initial position.

Formulas 4 and 5 are the clock constraints, and describe how the active value of the clock
evolves throughout the trace. To both test the value of a clock and simultaneously reset the
value during a transition, TACK has used two clock variables to encode a single clock value.
There is currently a work in progress to extent CLTLoc to support simultaneous test and reset,
however at the time of writing this is not published. For a clock x, xv holds the index of the
active clock value, and references to the clock value elsewhere are syntactic sugar for evaluating
this variable and then choosing the appropriate clock value. The active value is never zero, and
a clock reset at position i is not reflected in the formula until position i+1.

Formula ϕ6 defines the semantics for the null transition. If a Timed Automaton performs a
null transition then at the moment of transition, the state invariant must hold both before and
after clock resets are applied. The function r1 replaces the value of any reset clock with 0, thus
capturing the post-reset value of any clock used in the invariant.

Formula ϕ7 encodes the discrete transitions. Each must respect the guards and assignments
of the transitions, the TA must currently be in the source state of the transition, and must be in
the destination state in the following position. ϕedge encodes the two possible edge states, right
and left-closed, and ensures that the invariants are satisfied, either weakly or strongly depending
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on the edge type. Function r2 again ensures that in the event of a clock reset, the the invariants
of the destination state are evaluated against the correct clock values.

The final three formulas capture the sufficient conditions for a discrete transition. The active
state of a TA my not change, nor may a clock be reset, nor may a variable value change without
a transition explicitly causing the change.

Type Synchronization Encoding

One-to-one
v1 := ∧

i∈[1,N ]

t∈Ti|tε=α!

(
t[i] = t→ ∨

j∈[1,N ],

j 6=i

( ϕsync-on(j, α?) ∧ ¬ϕsync-on-but({i, j}, α?)

∧
ϕsame-edge(i, j)

))

v2 := ∧
i∈[1,N ]

t∈Ti|tε=α?

(
t[i] = t→ ∨

j∈[1,N ],

j 6=i

(ϕsync-on(j, α!) ∧ ¬ϕsync-on-but({i, j}, α!))

)

Broadcast
v1 :=

∧
i∈[1,N ]

t∈Ti|tε=α#

(t[i] = t→ (¬ϕsync-on-but({i}, α#)))

∧∧
i∈[1,N ]

t∈Ti|tε=α#

(
t[i] = t→

( ∧
h∈[1,N ]

j 6=i

( ϕsync-on(j, α@) ∧ ϕsame-edge(i, j)
∨( ∧

t′∈Ti′ ,
t′ε=α@

(X (¬φt′γc ) ∨ ¬φt′γv ∨ l[j] 6= t′−)
))))

v2 := ∧
i∈[1,N ]

t∈Ti|tε=α@

(t[i] = t→ ϕsync-on-but({i}, α#))

ϕsync-on (j, α) :=
∨

t∈Ti|tε=α
(t[i] = t)

ϕsync-on-but (S, α) :=
∨

g∈{i|i∈[1,N ]}\S
ϕsync-on(h, α)

ϕsame-edge (i, j) := X (edgeRC [i]↔ edgeRC [j])

Table 2.3: Encoding of Different Synchronization Types

Table 2.3 contains the encodings for the two supported synchronization types. These syn-
chronization semantics are defined in Table 2.1. The formula sync-on is true if the automaton i
performs a transition with the event α. Sync-on-but is true if an automaton not included in the
set S performs a sync on α. Same-edge is true if the two automatons have the same edge type.

Liveness Constraints When we introduced the concept of traces, we gave examples in which
at least one Timed Automata performed a non-null (or discrete) transition at every position in
the trace. It seems natural to require at least one discrete transition in each position, because
otherwise the state of the network would not change, and we could simply remove the unnecessary
duplicate position from the trace. Unfortunately the addition of MITL properties makes this a bit
more complex. Consider the MITL property G[0,∞)¬(G[0,10] α), where α is an atomic proposition
which only evaluates to true in state q. This property states that a TA is never in state q for
10 or more time units before leaving. Now let us consider a hypothetical counterexample. In
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trace η, the TA transitions into state q at position i, and then transitions to another state in
position i+i, with δ(i) = 20. This clearly violates the property, as the TA remained in state
q for 20 seconds. However in order to detect this violation, the MITL encoding requires there
to be a specific position in which the property is violated. Unfortunately position i+1 does
not suffice, as the TA is no longer in the critical state q. This counterexample can only be
detected if the solver has the ability to add another time position in-between i and i+1, where
at least 10 units of time has passed and the TA is still located in state q. Thus we must tolerate
positions in which every TA performs a null transition. That being said, we often do not wish to
accept traces in which discrete transitions never occur. These requirements are termed liveness
constraints.

Type Liveness Semantics

Strong transition
liveness

∧
i∈[1,N ]

G(F(t[i] 6= ]))

Weak transition
liveness

G(F( ∨
i∈[1,N ]

t[i] 6= ]))

Unrestricted >

Table 2.4: Possible Liveness Constraints

In addition to the TA and synchronization constraints, TACK includes support for optional
liveness constraints. The first is termed Strong Transition Liveness, which is shown in Table 2.4.
This guarantees that every time position, eventually in the future all timed automaton in the
network will take a discrete transition. Although a weaker version termed Weak Transition
Liveness is defined in the TACK paper, it is not implemented in the TACK tool. It requires that
at every position at least one timed automaton will eventually perform a discrete transition.
Finally the Unrestricted Liveness option places no restrictions on TA liveness.

Type Edge Semantics

Right-closed ∧
i∈[1,N ]

G(edgeRC [i])

Open >

Table 2.5: Possible Edge Constraints

Edge Constraints In addition to liveness, TACK also allows for customization of its edge
constraints. As we have seen in Section 2.3, the edge variables are necessary for defining which
state an automaton is located in during the instant of transition. However the freedom to choose
between two possible edge types is often not needed, and adds additional overhead to the solver.
To speed up problems that do not have invariant edge cases, TACK provides the option to set all
edge variables to right-closed in every time position. As seen in Table 2.5, this is contrasted with
the ‘open’ edge semantics, which do not place any additional restrictions on the edge variables.
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2.7 Bit-Vector Logic

A BitVector is an array of binary values, or bits. BitVectors are interpreted using two’s com-
plement arithmetic to produce integer values, and their length can be any positive integer (Z+).
We use the notation←−x [n] to represent a BitVector x of length n, but this can be simplified to←−x
if the length is clear. Bits are numbered from right to left, with the rightmost, least significant
bit labeled as 0, and the leftmost, most significant bit labeled as n − 1. As an example, the
constant vector −4 of length 5 would be written as

←−−4[5], which would expand to 11100. We
can also reference individual bits in the vector using the notation ←−x [i]

[n] to extract the ith bit

from the BitVector x. It is also possible to extract a sub-vector with the notation ←−x [j:i]
[n] , where

n > j ≥ i ≥ 0. This extracts a vector of length j − i+ 1 whose rightmost bit corresponds to the
ith bit of x and whose leftmost bit corresponds to the jth. Similarly, concatenation operates
on two BitVectors by combining their bit arrays. ←−x [n] ::←−y [m] returns a new BitVector ←−z [n+m]

where ←−z [m−1:0] =←−y , and ←−z [m+n−1:m] =←−x .

The usual arithmetic operations of addition (+) and subtraction (−) are defined over two
BitVectors of the same length. BitVectors also support the bit-wise operators not (!), disjuction
(|), conjunction (&), equivalence ( ⇐⇒ ), and implication (⇒). These binary operators return
a new BitVector where each bit i is the result of applying the logical operator to the ith bit
of each of the input vectors, following the usual convention where 1 is true and 0 is false. For
example, the expression

(←−−
1100 ⇒ ←−−1010

)
would evaluate to

←−−
1101, since a → b is equivalent to

a ∨ ¬b.

2.8 AE2SBVZOT

The final program to mention is ae2sbvzot, which is a BitVector-based plugin for Zot. It accepts
CLTL formulas and converts them to BitVector logic, which it then sends to Microsoft’s Z3 to
solve.

Table 2.6: An example ae2sbvzot trace showing loop variables.
BitVector 4 3 2 1 0
←−−
foo 1 0 1 1 0
←−−−
¬foo 0 1 0 0 1
←−−−
Xfoo 0 1 0 1 1
←−−
lpos 0 0 0 1 0
←−−−−
inloop 1 1 1 0 0

To model the lasso shape of runs, ae2sbvzot adds an additional position to the BitVector
that represents the ‘loopback’ position, or the first position of the next iteration of the loop.
This position becomes the left-most, most significant bit of the vector. To separate the lasso
from the initial portion of the trace, ae2sbvzot defines two special BitVectors,

←−−
lpos and

←−−−−
inloop.

In Table 2.6 we can see an example formula, foo, along with the corresponding vectors
←−−
lpos and
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←−−−−
inloop. We can see that

←−−
lpos has a value of 2, meaning that bit 2 is the first position in the loop.

Looking at the table we can see that the columns for bits 2 and 4 are in bold, to represent that 4,
being the ‘loopback’ position, is a copy of position 2, and therefore all formulas are constrained
to have identical values in these positions. Meanwhile

←−−−−
inloop highlights that bits 0 and 1 are not

in the loop portion of the trace, while the rest of the positions are. The infinite trace therefore
would begin in position 0, move to position 1, and then repeat the infinite sequence of positions
[232323 . . .].

Table 2.7: ae2sbvzot definition of a proposition ϕ
φ Encoding

¬ϕ
←−−
(¬ϕ) =!

←−
(ϕ)

ϕ1 ∧ ϕ2
←−−−−−−
(ϕ1 ∧ ϕ2) =

←−−
(ϕ1) &

←−−
(ϕ2)

ϕ1 ∨ ϕ2
←−−−−−−
(ϕ1 ∨ ϕ2) =

←−−
(ϕ1) |

←−−
(ϕ2)

Xϕ
←−−−
(Xϕ)[k:0] =

←−
(ϕ)[k+1:1]

ϕ1Uϕ2
←−−−−−
(ϕ1Uϕ2)

[k:0] =
←−−
(ϕ2)

[k:0] |
(←−−
(ϕ1)

[k:0] &
←−−−−−
(ϕ1Uϕ2)

[k+1:1]
)

∧
(((←−−

(ϕ1)
[k+1] |

←−−
(ϕ2)

[k+1]|!
←−−−−−
(ϕ1Uϕ2)

[k+1]
)
&(

!
←−−
(ϕ2)

[k+1] |
←−−−−−
(ϕ1Uϕ2)

[k+1]
))

= 1

)
∧(←−−−−−

(ϕ1Uϕ2)
[k+1] ⇒⇑

(←−−
(ϕ2) &

←−−−−−
(inloop)

)
= 1
)

Given a formula with a bound of k, ae2sbvzot constructs a BitVector for the formula and
for each sub-formula with a length of k+2. It adds an extra position both at the beginning
(bit 0) to represent the initial configuration of the system, as well as at the end (bit k+1) to
represent the loopback position as discussed. Each formula is then represented as a formula
over its component sub-formulas based on the rules in Table 2.7. The first three formulas show
the encoding of logical operators ¬,∧, and ∨. The rest of the table shows the encoding of the
temporal operators. Extra care is taken in the definition of U to ensure that the properties of
the lasso are taken into account. Note the use of the reduction or operator ⇑, which has a value
of 0 if the BitVector argument is exactly zero, 1 otherwise.

Atomic propositions (including the active states, transitions, edges and variable valuation)
are encoded as BitVectors, and form the basic atoms from which more complex expressions are
built upon. For each state, transition, and possible variable assignment (i.e. n = 4), there is
a BitVector defined whose value is 1 if the corresponding state or transition is active, or if the
variable assignment is true. One limitation of this approach is that arithmetic operations over
variables cannot be represented. As a result, in this implementation, variable guards may only
test for equality, and different variables cannot be added or subtracted in a variable assignment
statement.

To reduce the number of variables used, rather than store each transition (respectively state,
variable value) as a separate BitVector, ae2sbvzot uses a more compact bit-based representation.
We will use transitions to illustrate this encoding, which is identical for states and variables as
well. Since only one transition is active at a time, it is more compact to store the currently
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active transition as a binary number over dlog2 |T |e bits. Therefore ae2sbvzot creates dlog2 |T |e
BitVectors of length k + 2 to represent the active transition of the TA over time. Table 2.8
shows how these BitVectors are constructed to represent the active transition of a single timed
automaton. To reconstruct a BitVector whose bits have the value of 1 iff a given transition t is
active, ae2sbvzot combines the multiple transition BitVectors in a unique fashion to represent
a specific transition. As an example, consider a transition t ∈ Ti that has been encoded as the
number 1. Since the binary representation of 1 is

←−−−
00 . . .001, to create the BitVector for transition

t ae2sbvzot would construct the following expression:

!
←−−−−−−−−
tbi,dlog2 Tie−1& !

←−−−−−−−−
tbi,dlog2 Tie−2 & . . .& !

←−−
tbi,1 &

←−−
tbi,0

In this expression every BitVector is negated except for the last, which corresponds to the number
one. Each transition (resp. state, variable value) is assigned a combination of the corresponding
BitVectors in this fashion.

Clocks, being real-valued functions, cannot be easily represented in BitVector logic. Instead
ae2sbvzot takes advantage of SMT-LIB’s support for multiple logics, and encodes clocks directly
as functions that accept an integer argument, representing the time position, and return a real
number. For a given clock guard a BitVector is constructed to represent the truth value of the
clock expression. These can then be used to construct larger expressions using the rules shown
in Table 2.7.

Unlike the other terms, clocks cannot simply be constrained to hold the same value in the
loopback position. As shown by Kindermann [13] this excludes certain valid lasso shaped traces.
To avoid this ae2sbvzot adopts the region-based clock constraints suggested by Kindermann.
Two clock valuations are said to be in the same region if at both positions loop and k+1:

• Each clock x is either greater than the maximum value compared against x in a clock
guard in both positions (bxc > max(x)) or bx(loop)c = bx(k+1)c

• If bxc ≤ max(x), the formula x(l)−bx(l)c = 0 must have the same value in both loop and
k+1

• For every pair of clocks x, x′, if the floor of both clocks are less than their maximum values,
then the formula frac(x(l)) < frac(x′(l)) must have the same value in positions loop and
k+1, where frac is the fractional part of the clock’s value.

Transition Bit BitVector

0
←−−
tbi,0[k+2]

1
←−−
tbi,1[k+2]

..
.

..
.

(dlog2 Tie − 1)
←−−−−−−−−−
tbi,(dlog2 Tie−1)[k+2]

Table 2.8: Construction of the Transition BitVectors for Ai ∈ A
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These conditions are sufficient to ensure that the clock valuation in each position belongs to
the same region, a concept expanded on in Kindermann’s work [13]. This allows ae2sbvzot to
represent loops where the elapsed time of each loop iteration is constrained to be less than the
elapsed time of the previous iteration. Although a lasso with a fixed amount of time per-loop
iteration does not exist, there exists infinite series of loop iterations, each with a decreasing
elapsed time, that nonetheless have a diverging sum, and thus represent infinite traces.

Since the time per-loop iteration is no longer fixed, another constraint is required to ensure
that no “Zeno-shaped” traces are allowed. In Zeno traces, the time elapsed in the infinite trace
sums to a finite number. These cases are considered pathological and to exclude them, it has
been proven [13] that it is sufficient to require that in the loop section of the trace, that every
clock is either

• Reset at least once during the loop

• or has a value greater than max(x) in the final loop position.

This concludes the ae2sbvzot encoding of a CLTLoc formula.
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Chapter 3

Novel Encoding of Timed Automata
Networks

The previous work in this field has relied on first translating the TA network and property to be
verified into the intermediate CLTLoc representation, to be later translated into BitVector logic
and solved. Presented here is a novel method, named ta2smt, in which the Timed Automata
network is directly encoded into BitVector logic. This direct translation allows us to make
several optimizations not possible in CLTLoc. As before, the MITL property will continue to
be converted first into CLTLoc before being transformed into BitVector logic by ae2sbvzot. We
use a consistent naming convention for the atomic propositions to ensure that the two BitVector
encodings can be safely combined to produce the final SMT output. This chapter is organized
into three parts. In the first, we describe the various terms that make up our TA network, and
discuss how they are encoded into BitVector logic. In the second, we present the constraints,
defined over the terms from the first section, that capture the TA semantics. In the final section
we argue for the correctness of our model, and highlight improvements made over the original
encoding. For ease of reading we will refer to the old encoding as ae2sbvzot when contrasting
it with ta2smt, even though ae2sbvzot is only one part of the CLTLoc-based encoding of the
network.

3.1 BitVectors

Like ae2sbvzot, our novel encoding (ta2smt) is based on encoding the terms of the Timed Au-
tomata into BitVectors. Using BitVector logic, we have the ability to group logically connected
propositions into a Vector, granting significant speedups on operations performed over every
element of the vector. We wish to use this property to group together logically connected
constraints of the encoding. One common source of constraint duplication is the transition con-
straints. These constraints enforce the semantics of Timed Automaton transitions, requiring
that, for example all guards and assignment statements have been fulfilled. These constraints
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Transition Alias

Ti[0] !
←−−−−−−−−
tbi,dlog2 Tie−1& !

←−−−−−−−−
tbi,dlog2 Tie−2 & . . .& !

←−−
tbi,1& !

←−−
tbi,0

Ti[1] !
←−−−−−−−−
tbi,dlog2 Tie−1& !

←−−−−−−−−
tbi,dlog2 Tie−2 & . . .& !

←−−
tbi,1 &

←−−
tbi,0

Ti[2] !
←−−−−−−−−
tbi,dlog2 Tie−1& !

←−−−−−−−−
tbi,dlog2 Tie−2 & . . .&

←−−
tbi,1& !

←−−
tbi,0

..
.

..
.

Ti[|Ti|]
←−−−−−−−−
tbi,dlog2 Tie−1 & (∼

←−−−−−−−−
tbi,dlog2 Tie−2) & . . .& (∼

←−−
tbi,1) & (∼

←−−
tbi,0)

Table 3.1: Construction of the Transition Aliases

must be upheld at every transition in the trace, which can be dozens of discrete transitions long.
This motivates us to use the BitVectors to represent a piece of information changing over time,
i.e. representing its value at different time positions in the trace.

3.1.1 Transitions

Before describing the BitVector terms for the transitions, we must make one key change to our
set of transitions. For reasons to be discussed we wish to represent the null transition (when a
TA does not transition between time positions) not as the separate entity ], but rather as a set
of |Qi| transitions, one for each state q ∈ Qi. We define these null transitions as follows:

∀
i∈[1,N ]

∀
q∈Qi

tnullq := <q, q, τ,∅,∅,∅,∅>

These null transitions have the same source and destination state, and no constraints or assign-
ments. We can now refer to the set of all transitions as T , defined as Ti = Ti ∪ { ∪

q∈Qi
tnullq} for

each TA Ai. As before T is the union of the Ti sets. The motivation for this redefinition will
become clear when we discuss the encoding of the active states of the TA.

To encode our expanded set of transitions, we adopt the more compact bit-based represen-
tation used in ae2sbvzot and shown in Table 2.8. In order to be able to conveniently refer to
individual elements of the set, we will also define aliases which refer to unique combinations of
the BitVectors. This will give us the convenience of the individually-named BitVectors while
retaining the efficiency of the compact approach. This method will be formalized below for the
encoding of the states, transitions, and variables of the Timed Automata. For a model with a
time bound of k, and a timed automaton with n distinct transitions, we represent the active
transition of the automaton at different time positions as follows:

After defining the BitVectors to store the bits of the active transition, we define aliases for
the |Ti| transitions as shown in Table 3.1. Transition 0 is simply defined as the bit-wise ‘and’ of
the negations of each of the tb BitVectors. Transition 1 differs in that the last BitVector is not
negated. This corresponds to the BitVector representation of the number 1, which is

←−−−−−−
00 . . . 001.

When viewed in the table, the pattern becomes more clear. Each transition is encoded as a
unique combination of the tb vectors. Because the exact value of |Ti| is variable, for the last
transition in the table we use the symbol ∼ to signal that whether or not the BitVector is
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negated depends on the exact value of |Ti|. The key point is that each alias ←−−−−transt represents
when transition t is active - a bit at position l is set to 1 iff the transition occurs between positions
l and l+1. For clarity, let us consider an example TA with dlog2 |T |e = 5 and a transition t ∈ T
with Ti[5] = t. The base two representation of 5 is 00101, and therefore←−−−−transt[k+2] is equivalent
to (¬tb5 & ¬tb4 & tb3 & ¬tb2 & tb1).

Another consideration we must make is for the transition edges. We add an additional term←−−−−
edgeRCi [k+2], i ∈ [1, N ] for each Timed Automaton in the network. When a bit is set to 1, it
signifies that the active transition for the Timed Automaton at that time position is right-closed,
and conversely a value of 0 means that it is left-closed. Although not every transition will be
impacted by this term (for instance, the null transitions have no invariants that can be affected),
it is a necessity for the correctness of our system.

3.1.2 States

For each TA Ai ∈ A, we need a way to represent the currently active state of the timed
automaton. Like with the transition encoding, we wish to minimize the number of BitVectors
that the SMT solver must compute. Since we have already encoded the active transition into
BitVector form, we can exploit the fact that given the active transition t, the active state of the
TA is simply the source state of the transition, or t−. Therefore all that is needed is to define
a set of aliases that exploit this equivalence. To this end we define each state as the bit-wise
disjunction of all the transitions whose source is that state.

∀
q∈Q

stateq := |
t∈T |t−=q

transt

This is made possible by our addition of |Qi| null transitions for each TA i. This allows us to
assign each null transition a source and destination state, which in turn allows us define the
current state as the source of the active transition. This was not possible in TACK’s CLTLoc
encoding because of the use of a single null transition per automaton. When the CLTLoc null
transition was active, it was not possible to determine the active states without referring to the
state BitVector.

3.1.3 Variables

Bounded integer variables are treated slightly differently, because unlike states and transitions,
the possible values of a bounded integer variable are not unrelated objects in a set, but integers
that must respect the operations of addition and subtraction. For each variable n ∈ Int we
still construct a bit representation

←−−
vbn,j [k+2], where each BitVector has length k + 2. However

the difference is that the values are encoded in twos complement notation, and the number of
BitVectors is chosen so that the vectors are capable of representing the entire range of values for
the given bounded integer variable. We will define λ(n) as the number of bits needed for each
variable n.
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However sometimes it is more convenient to refer to the complete value of a variable at a
particular time position, rather than a particular bit of the variable over every time position.
We make use of the ‘extract’ and ‘concat’ operators to define a second set of BitVectors that are
defined over the first set.

←−−−−
varn(l)[λ(n)], 0 ≤ j ≤ k+ 1 is a vector of λ(n) bits that represents the

value of variable n at time position j.

3.1.4 Clocks

Our encoding of the clocks does not differ from ae2sbvzot. Each clock x ∈ X is defined as
a function x that takes an integer argument and returns a real number, where the argument
represents the time position and the return value is the value of the clock at that position in
time.

3.1.5 Complete Encoding

Table 3.2: Terms and Aliases used in BV encoding of TA

Terms

Transitions ∀
i∈[1,N ]

∀
j∈[0,|Ti|−1]

←−−
tbi,j [k+2]

Variables ∀
n∈Int

∀
j∈[0,λ(n)−1]

←−−
vbn,j [k+2]

Clocks ∀
x∈X

x : [0, k+1]→ R≥0
δ δ : [0, k+1]→ R>0

Edges ∀
i∈[1,N ]

←−−−−
edgeRCi [k+2]

Loop
←−
0 [k+2] <

←−−
loop[k+2] <

←−
k [k+2]

Aliases

Transitions ∀
i∈[1,N ]

∀
t∈[1,Ti]

←−−−−
transt = &

j∈[0,d| log2 Ti|e−1]
!(t\2

j)mod 2 (!(
←−−
tbi,j))

States ∀
i∈[1,N ]

∀
q∈Qi

←−−−
stateq = |

t∈Ti

←−−−−
transt

Variables ∀
n∈Int

∀
l∈[0,k+1]

←−−−−
varn(l) = :

j∈[λ(n),0]

←−−
vbn,j

[l]

inloop ∀
l∈[0,k+1]

(←−−−−
inloop

[l]
[k+2] =

←−
1 [1]

)
↔ (
←−−
loop ≤

←−
l )

Note: the operator \ is used to represent integer division.

Now that each piece of the timed automaton has been discussed, we can present all of the
terms used in the encoding of the TA network. A valid trace of the network consists of assigning
values to the following terms in Table 3.2. As we can see, the terms that our SMT solver will
need to assign values to are the compacted transition and variable BitVectors, as well as the
real-valued clock functions. In addition we define two special terms, which will be used to help
define our constraints. The first, δ, represents the amount of time that passes between two
adjacent time positions, and must be a real number greater than 0. The second, the term

←−−
loop,
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has a value equal to the index of the first time position in the loop portion of the trace. From
these we can represent any valid lasso-shaped trace of the network. In addition, for ease of
comprehension we have aliases to more easily refer to the transitions and states individually,
and to refer to the value of a variable at a particular time position.

3.2 Constraints

Of course, in addition to being able to represent all valid lasso-shaped traces, the terms defined
can represent many illegal traces as well. Timed Automata in our network cannot simply take
any transition as they please, they must obey certain restrictions. These restrictions take the
form of clock guards on a transition, a state invariant that prevents a TA from staying in a state
indefinitely, clock progression constraints, as well as many others. To ensure that our encoding
only allows for valid traces, we will formalize these constraints in BitVector logic for our SMT
solver to use when performing the Bounded Model Checking.

3.2.1 Initialization & Progression

In the definition of a Timed Automaton, we included the initialization terms q0 and var0,
and mentioned that all clocks are equal to 0 at the initial instance of the trace. Here we
formalize those constraints over the BitVector terms that make up our encoding. Also included
are constraints on how these three groups of values (transitions, variables, and clocks) evolve
throughout the trace.

Initialization and Progression Constraints

φ1 := ∧
i∈[1,N ]

←−
1 [1] =

←−−−−
stateq0i

[0] φ2 := ∧
n∈Int

←−−−−
v0var(n) =

←−−−−−
varn(0) φ3 :=

∧
x∈X

x(0) = 0

φ4 :=
∧

i∈[0,k+1]

δ(i) > 0 φ5 := ∧
t∈T

(
←−−−−
transt

[k:0] ⇒←−−−−statet+
[k+1:1]) φ6 := {φwtl | φstl | >}

φ7 :=
∧
x∈X

∧
j∈[0,k]

(
&

t∈R(x)
(!
←−−−−
transt)

[j]
)
→ x(j + 1) = x(j) + δ(j)

φ8 := &
n∈Int

&
t∈assign(n)

(!
←−−−−
transt

[k:0])⇒ &
j∈[1,λ(n)]

(
←−−
vnbj

[k:0] ⇔
←−−
vnbj

[k+1:1])

φwtl :=
←−
0 [k+2] 6=

(←−−−−
inloop & ( |

i∈[1,N ]

! ( |
q∈Qi

←−−−−−−
transnullq))

)
φstl := ∧

i∈[1,N ]

←−
0 [k+2] 6=

(←−−−−
inloop & ! ( |

q∈Qi

←−−−−−−
transnullq)

)
φInit := φ1 ∧ φ2 ∧ φ3 ∧ ∧φ4 ∧ φ5 ∧ φ6 ∧ φ7 ∧ (φ8 =!

←−
0 [k+2])

Table 3.3: Initialization and Progression Constraints for a network of timed automata

Properties φ1 − φ3 The initialization constraints are similar for states, clocks, and bounded
variables. For states, we assert that the initial state holds in the first time position by comparing
the vector for the initial state stateq0i to the constant vector

←−
1 [1] in formula φ1. This requires
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the first bit of the state vector to be set to 1, signifying that the state is active in time position
0. Because the state BitVector is an alias, what this constraint is requiring is that the active
transition for each TA i in position 0 must have its source state be equal to the initial state for
the TA, t− = q0i . This transition can be either a discrete transition beginning in q0i or the null
transition for state q0i . For variables, we assert that the provided initial starting value, var0n is
equal to the value of the variable at time position 0. For clocks, we assert that the clock function
at the initial time position is equal to 0 in formula φ3.

Property φ4 Each time position in the range [0, k+ 1] represents an instant of time in which
timed automaton may perform discrete (non-null) transitions. In between these positions, all
timed automata remain stationary, and only the clocks progress. To capture this progression,
we use the special clock δ. Formula φ4 captures that δ is defined as a function over integers in
the range [0, k + 1] that returns positive real numbers. The value of δ(i) at position i refers to
the amount of time between position i and position i+ 1.

Property φ5 Another aspect of progression is ensuring that the active state of a timed au-
tomaton correctly reflects the transitions being taken. To that effect, formula φ5 asserts that
when a transition is taken at time position i, the destination state is active at position i+1.
Because the state BitVectors are just aliases defined over the transition BitVectors, we do not
need to explicitly constrain the TA to be in state t− at time position i, since this is true by
definition.

Property φ6 Unique among the progression constraints is φ6, which encodes the desired
liveness property of the network, discussed in 2.4. This parameter can be chosen by the user,
and has three possible values. φstl encodes Strong Transition Liveness, which states that at every
moment in time, each TA will eventually in the future perform a discrete (non-null) transition.
Since our traces are lasso-shaped, this is equivalent to requiring that each TA takes a discrete
transition somewhere in the loop. Similarly, φwtl encodesWeak Transition Liveness, which states
that at every instant of time at least one TA will eventually perform a discrete transition in
the future. The key to these encodings is the expression !( |

q∈Qi

←−−−−−−
transnullq), which for a given TA

combines each of the null transitions with the bit-wise disjuction operator. This value is then
negated, and consequently a bit of this expression is set to 1 iff the TA has a non-null transition
active at that position. We can then compute the desired value by using

←−−−−
inloop. This BitVector

has bits which are set to 1 iff the corresponding position is inside the loop portion of the trace.
By requiring that a discrete transition occurs during the loop, we ensure that at every instant
of the infinite trace, a TA will eventually take a discrete transition. The third liveness option is
to have no liveness constraint at all, in which case φ6 trivially evaluates to true (>).

Property φ7−φ8 Formula φ7 connects δ to the other clocks. At each time position i, a clock
is either reset by a transition, or its value increments by δ(i). To do this we define the set Rx for
every clock x, which is defined as the set of all transitions t that reset the value of clock x. When
no transition in Rx is active, the clock must progress according to the value of δ. Similarly for
variables, we define the set assign(n) for every variable n containing all transitions that assign
a value to the variable. When none of these transitions are active, formula φ8 ensures that the
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Transition Constraints, Assignments, and Invariants

φ9 :=
∧
t∈T

∧
l∈[0,k]

←−−−−
transt

[l] → σδ(l, tγc)

φ10 :=
∧
t∈T

∧
l∈[0,k]

←−−−−
transt

[l] → µ(l, tγv)

φ11 :=
∧
t∈T

∧
x∈tac

∧
l∈[0,k]

←−−−−
transt

[l] → x(l+1) = 0

φ12 :=
∧
t∈T

∧
n,exp∈tav

∧
l∈[0,k]

←−−−−
transt

[l] →
(←−−−−−−−
varn(l+1) =

←−−−−−−−
ζ(l, n, exp)

)
φ13 :=

∧
i∈[1,N ]

t∈Ti

∧
l∈[0,k]

←−−−−
transt

[l] →
(
σδ(l, Inv(t−)) ∧ σw(l+1, Inv(t+)) ∧ (

←−−−−
edgeRCi

[l] =
←−
1 [1])

)

∨
(
σwδ(l, Inv(t−)) ∧ σ(l+1, Inv(t+)) ∧ (

←−−−−
edgeRCi

[l] =
←−
0 [1])

)
σ(l, γc) := x(l) ∼ c | σ(l, γ′c) ∧ σ(l, γ′′c )

σδ(l, γc) := x(l) + δ(l) ∼ c | σδ(l, γ′c) ∧ σδ(l, γ′′c )

σw(l, γc) := x(l) ∼w c | σw(l, γ′c) ∧ σw(l, γ′′c )

σwδ(l, γc) := x(l) + δ(l) ∼w c | σwδ(l, γ′c) ∧ σwδ(l, γ′′c )

µ(l, γv) :=
←−−−−
varn(l)[λ(n)] ∼ ←−c [λ(n)] |

←−−−−
varn(l)[λ(n)] ∼

←−−−−−
varn′(l)[λ(n)] | ¬µ(l, γ′v) | µ(l, γ′v) ∧ µ(l, γ′′v )

ζ(l, n, exp) :=
←−−−−
varj(l)[λ(n)] | ←−c [λ(n)] | ζ(l, n, exp′) + ζ(l, n, exp′′) | ζ(l, n, exp′)− ζ(l, n, exp′′)

φtrans := φ9 ∧ φ10 ∧ φ11 ∧ φ12 ∧ φ13

Table 3.4: Transition Constraints for a network of timed automata

value of n remains unchanged.

3.2.2 Transitions

As a quick review, transitions consist of a source and destination state, a synchronization action,
as well as (possibly empty) sets of clock constraints, variable constraints, clock assignments, and
variable assignments. In Section 3.2.1 on initialization and progression, φ6 was defined to ensure
that the source and destination states were implemented correctly - that the destination of one
transition is the source of the next. We now encode the guard and assignment constraints of
every transition in the TA network.

Property φ9 We will first consider the transition guards. Each transition can have multiple
guards, which consist of two types, clock guards and variable guards. Clock guards have the
form x ∼ c, where x ∈ X, c ∈ Z and ∼∈ {<,>,≤,≥}. Formula φ9 asserts that for every
clock guard, its associated transition being active at time position l implies that at the instance
of transition, the relationship ∼ holds between the clock value and the value. Recall that if a
transition is active at time position l, the transition occurs in the instant between time position
l and time position l+1. Therefore, at the instance of the transition, the clock does not have the
value x(l), but rather x(l) + δ(l), delta being the special clock that defines the amount of time
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spent in each time position. Note that we cannot simply use x(l + 1) as the value of the clock,
because it is possible that during the transition between time position l and l + 1, the value of
the clock may be reset, which would set x(l + 1) = 0. Our guard only sees the pre-transition
value of the clock, and thus we must manually add δ(l) to the value. We use the function σ to
encode the grammar of the clock constraints. In this case we use σδ, which differs only in the
fact that δ is added to the clock value.

Property φ10 This property captures the same semantics for variable guards, asserting that
an active transition with a guard implies that the guard is true at that time position. Because
variables, unlike clocks, do not progress with time, it is sufficient to simply use the value varv(l)
to determine if the guard is satisfied. The function µ is used to encode the variable constraint
grammar. If the form

←−−−−
varn(l)[λ(n)] ∼

←−−−−−
varn′(l)[λ(n)] is used and λ(n′) < λ(n), then the BitVector

←−−−−−
varn′(l)[λ(n′)] is implicitly sign-extended to a length of λ(n) bits. It is forbidden to use a variable
n′ such that λ(n′) > λ(n).

Property φ11 − φ12 Clock assignments are more straightforward then the clock guards. It
is enough to require that if a transition is taken at time position l, then in the following time
position the clock is reset to 0. Variable assignments however, are more complex. Unlike
clock assignments, variable assignments can access both constant values and the values of other
variables, and they may combine them using the operators {+,−}. To implement this in our
BitVector logic, we require that if any variable n′ appears in the assignment expression of variable
n, then λ(n′) ≤ λ(n), just as in the variable guards. We can then cast all constants and variables
to BitVectors of length λ(v), sign-extending shorter values if necessary. This allows us to use
the standard BitVector addition and subtraction operators to compute the final value, which is
assigned to v at time position l+1.

Property φ13 The last component of the transition to discuss is the state invariant. Although
invariants are state-specific, not transition-specific, since states are defined by the active transi-
tions, it is sufficient to ensure that at the moment of transition both the source and destination
invariants are satisfied, taking into account the value of

←−−−−
edgeRCi . Since all invariants are convex,

if the invariant is satisfied at moment the TA enters the state and at the moment it leaves, it is
satisfied at all positions in the interval between them. We can see that the transition implies one
of two statements, one for each possible value of

←−−−−
edgeRCi . In addition the invariants of the source

state are evaluated with δ(l), while the transitions of the state with the open-ended transition
are evaluated with the weak satisfaction relation.

3.2.3 Sync

The synchronization constraints capture the semantics defined in Table 2.1. Formula φ14 and
φ15 capture the constraints for one-to-one synchronization, while the others cover broadcast
synchronization.

Properties φ14 − φ15 The first formula in this group requires firstly that when a transition
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Sync Constraints

φ14 := &
t∈T :tε=α!

←−−−−
transt ⇒ (¬ |

t′∈{T\t}:
t′ε∈{α!,α#}

←−−−−
transt′) ∧ ( |

t′∈T :tε=α?

←−−−−
transt′)

φ15 := &
i∈[1,N ]

t∈Ti:tε=α?

←−−−−
transt ⇒ (¬ |

t′∈{T\t}:
tε=α?

←−−−−
transt′) ∧ ( |

j∈[1,N ]

t′∈Tj :
tε=a!

←−−−−
transt′ & (

←−−−−
edgeRCi ⇔

←−−−−
edgeRCj ))

φ16 := &
t∈T :tε=α#

←−−−−
transt ⇒ ¬( |

t′∈T :tε=α#∧t′ 6=t

←−−−−
transt′)

φ17 := &
i∈[1,N ]

t∈Ti:tε=α@

←−−−−
transt ⇒ ( |

j∈[1,N ]

t′∈Tj :tε=α#

←−−−−
transt′ & (

←−−−−
edgeRCi ⇔

←−−−−
edgeRCj ))

φ18 :=
∧

α∈Act

∧
i∈[1,|A|]
l∈[0,k+2]

(
∨
t∈Ti:
tε=α#

←−−−−
transt

[l])→

(
∧

j∈[1,k]:
j 6=i

(
∨

t′∈Tj :
t′ε=α@

←−−−−
statet′−

[l] ∧ σδ(l, t′γc) ∧ µ(l, tγv))→
∨

t′∈Tj :
t′ε=α@

←−−−−
transt′

[l])

φsync := (φ14 & φ15 & φ16 & φ17 = !
←−
0 ) ∧ φ18

Table 3.5: Synchronization Constraints for a network of timed automata

marked with α! (one-to-one send) is taken, no other transition with the α! or α# event may be
active, and secondly that there exists at least one active transition with the event α? (one-to-one
receive). The second formula is very similar, requiring that when a transition with the event α?

is active, no other transition with the event α? may be active, and there must be at least one
active transition with the α! event that has the same edge.

Properties φ16−φ18 Formulas φ16 and φ17 are similar to those for one-to-one communication,
with modifications for the different semantics of broadcast synchronization. φ16 requires that
when a transition with the event α# (broadcast send) is active, no other transition with the
same event may be active. The difference from φ14 is that there is no requirement for an active
transition labeled with the α@ (broadcast receive) event. φ17 requires that when a transition
with the event α@ is active, there exists at least one active transition with the event α# and the
same edge. Note that multiple transitions are allowed to receive the same broadcast signal. The
final formula φ18 handles the “compulsive” nature of broadcast synchronization. When there
exists an active transition with the broadcast send event on a channel α, for all other TA in the
network we require that if there exists a transition

• that has the broadcast receive event on channel α

• whose source state equal to the current state of the TA

• whose guards are all satisfied

then the TA is required to take (have active) a transition with the event α@.
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Loop Constraints

φ19 :=
∧

i∈[1,N ]

(
←−−−−
edgeRCi

[k+1] =
←−−−−
edgeRCi

[loop]) ∧
∧

j∈[1,dlog2 |Ti|e]

←−−
tbi,j

[k+1] =
←−−
tbi,j

[loop]

φ20 :=
∧

n∈Int

∧
j∈[1,λ(n)]

←−−
vbn,j

[k+1] =
←−−
vbn,j

[loop]

φ21 :=
∧
x∈X

(bx(k+1)c = bx(loop)c) ∨ (bx(k+1)c > max(x) ∧ bx(loop)c > max(x))

φ22 :=
∧
x∈X
bx(loop)c ≤ max(x)⇒ (frac(x(k+1)) = 0)⇔ (frac(x(loop)) = 0)

φ23 :=
∧

x,x′∈X
(bx(loop)c ≤ max(x) ∧ bx′(loop)c ≤ max(x′))→(

frac(x(k+1)) ≤ frac(x′(k+1))↔ frac(x(loop)) ≤ frac(x′(loop))
)

φ24 :=
∧
x∈X

x(k) > max(x) ∨ (( |
t:x∈tac

←−−−−
transt) &

←−−−−
inloop 6=←−0 )

φloop := φ19 ∧ φ20 ∧ φ21 ∧ φ22 ∧ φ23 ∧ φ24

Table 3.6: Loop Constraints for a network of timed automata

3.2.4 Loop Constraints

As mentioned previously, we are only interested in lasso-shaped runs that end in a loop. To keep
track of the initial position of the loop, we have defined the BitVector

←−−
loop, and constrained it

to have a value in the range [1, k].

Intuitively, the time position k+1 represents the first time position in the next iteration of
the loop. It is effectively a ‘copy’ of the position loop, however we add it as a distinct position so
that we may capture the semantics of the transition between time position k and time position
loop. We therefore must introduce constraints to ensure that these two positions are in fact
equivalent.

Propositions φ19 − φ20 For transitions, edges and variables this is very straightforward. We
simply require that in the loop and k+1 positions the active transitions, edge types, and variables
have identical values.

Propositions φ21 − φ23 It is tempting to encode the clock constraints in a similar manner,
requiring that x(k + 1) = x(loop) for each clock. However, as discussed in Section 2.8, this
encoding is not complete as it fails to capture certain runs. Instead we use the same region-
based clock constraints used in ae2sbvzot.

To begin, for each clock x we define the non-negative integer max(x), which is equal to the
maximum value compared against the clock in a clock guard. We also define frac(x(l)), which
is equal to the fractional part of x at time position l, or frac(x(l)) = x(l) − bx(l)c. Formulas
φ21, φ22, and φ23 encode the desired requirements. φ21 encodes the first part of the relationship
between x(loop) and x(k + 1). It states that either both values are greater than max(x), or
both have the same floor. This is the first part of the region encoding. φ22 handles the special

37



case where the fractional part of the value is equal to zero. Since clock guards can test for
equality, if the clock value is less than max(x), either the clock value at both time positions has
a fractional value of 0 or neither do. Finally, φ23 completes the region encoding by considering
the relationship between values of different clocks, asserting that the relationship between two
clock values {<,>,=} is preserved.

Property φ24 As mentioned in Section 2.8, we must exclude the “Zeno traces” from consider-
ation because while they are infinite traces, they execute in a finite amount of time. We encode
the same constraint used in ae2sbvzot. It is sufficient to require that every clock is either reset
within the loop, or has a value greater than max(x) at position k, which is shown in φ24. The
vector

←−−−−
inloop has length k+2, and each bit i is 1 iff i ≥ loop. Using this vector, we can determine

if a given clock is reset within the loop portion of the trace.

3.3 Equivalence and Improvements

Using the definitions presented above, we are now ready to define our TA network in BitVector
logic as follows:

φnetwork := φinit ∧ φtrans ∧ φsync ∧ φloop

We argue that this is a correct and complete representation of all lasso-shaped, non-Zeno
runs given the bound of k.

Both encodings constrain the clocks, variables, and timed automata to their respective initial
positions at time position 0. For variables and clocks these constraints are identical, as both
assign the desired value at time position 0. For states our encoding uses the ←−−−stateq aliases to
require that the TA begins in the initial state, despite not having state BitVectors. Because the
state alias is only true when one of the transitions whose source is that state is true (including
the state-specific null transitions), the constraint is valid. Our clock δ(l) ensures that all clocks
progress at the same rate, while clock resets and variable assignments are only allowed if one of
the corresponding transitions are active.

As for the transitions, although we have broken up ϕ7 into several pieces, the functionality
remains the same. We ensure that in order for a transition to be valid, its destination state
must be active in the next time position, the clock and variable constraints must be satisfied, all
assignments must be enforced, and the invariants of the source and destination state must be
true at the moment of transition. Like TACK, we allow that at the moment of transition, only
one of the two invariants must be satisfied, using the concept of weak satisfaction to formalize
this relaxation.

Similarly, the original TACK encoding contains three constraints that assert that the values
of the active states, as well as the values of the variables and clocks, can only be changed if
there is an active transition that modifies them. For states, this is accomplished with φ5, which
requires that the active state in the following position be equal to the value of the destination
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state of the active transition. Unlike in the original encoding, we have one null transition for
each position, so we do not need to consider the null transitions as a special case. Therefore
the for the state to change, there must be a non-null transition to enable the state change. For
variables, φ8 asserts that when no transition explicitly changes the value of a variable, its value
must remain the same. φ7 asserts the same for the clocks. Our new encoding also respects
the same loop constraints as ae2sbvzot including the extended clock constraints described in
Section 3.2.4 necessary to represent all possible lasso-shaped traces.

In addition, our encoding contains improvements over the original TACK+ae2sbvzot en-
coding. As mentioned previously, ae2sbvzot contains a limitation regarding integer variables -
because they are represented as elements of a set, ae2sbvzot can only test for equality. This
means that constraints of the form n ∼ c or n ∼ n′, where ∼6∈ {=} are not supported. Our en-
coding correctly represents the values of the integer variables using a twos-complement encoding,
and therefore can support the full grammar of variable guards and assignments. Another defi-
ciency in the original TACK implementation was a previously unknown error in the encoding of
broadcast synchronization symbols, which were added to the TACK CLTLoc encoding recently.
While the CLTLoc encoding of broadcast signals is still a work in progress, our experimental
evaluation adds confidence that our ta2smt encoding correctly handles these signals.

Although the TACK paper describes right-closed, left-closed, and unrestricted traces, the
implementation currently only supports right-closed traces. We have implemented all three
options in our encoding, allowing the user to choose which one they will use to evaluate their
traces.
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Chapter 4

Evaluation

The modular design of TACK aided us greatly in adding our novel ‘ta2smt’ encoding to the
existing TACK codebase. However due to the removal of CLTLoc as an intermediate language,
some adjustments were required to integrate our solution with the existing solvers. Previously
TACK assumed that an execution would countain five main steps:

1. The TA Network file and MITL property file are read from the input files and parsed.

2. The TA Network is converted into CLTLoc.

3. The MITL property is converted into CLTLoc.

4. The two CLTLoc formulas are combined using a CLTLoc ‘and’ expression.

5. The combined CLTLoc property is written to disk and the external converter (ae2sbvzot)
is invoked, which in turn invokes an SMT solver (Z3).

While TACK was designed so that the converters used in steps 2 and 3 (and the external program
used in step 5) could be easily modified, it was not anticipated that this general execution plan
would need to change. However our implementation modifies this plan slightly as follows:

1. The TA Network file and MITL property file are read from the input files and parsed.

2. The TA Network is converted into SMT-LIB.

3. The MITL property is converted into CLTLoc.

4. The CLTLoc formula representing the MITL property is written to disk, and ae2sbvzot is
invoked to convert the formula into SMT-LIB (without invoking Z3).

5. The two SMT-LIB files are combined, and Z3 is invoked to check for satisfiabiltiy.

We have therefore modified TACK to first determine which solution method is desired, and to
then execute one of the two possible ‘solution plans’ outlined above. Although currently ta2smt
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is the only algorithm available to execute step 2 in the new plan, we have continued in the spirit
of the original TACK design to make it simple for this algorithm to be modified or replaced, so
that future improvements are encouraged.

In this chapter we present the results of several experimental evaluations of the bounded
model checking process. These tests cover several different benchmarks common for bounded
model checking programs. For comparison, results are presented alongside those of the previous
iteration of the TACK program, to better judge the improvements made using the new process.
For both ae2sbvzot and ta2smt, strong transition liveness was used in all of the tests. In
addition all edges were constrained to be right-closed. These were the settings used to benchmark
the original TACK application, and they remain the default settings for the tool. In all of
the following tests, the time provided measures the combined time taken by both the TACK
program to parse the problem and convert it to SMT form and for the Z3 program to decide
the satisfiability of the SMT problem. In practice, the time taken by Z3 dwarfs the time used
by the TACK translation, and for the problem sizes encountered below the time taken by the
TACK translation was always less than a second. For every test below, the evaluation proceeded
in several rounds, each with a larger bound on the length of traces considered by TACK. The
data obtained demonstrates how the running time of each program scales with the size of the
search space.

All tests were performed on a server equipped with an AMD EPYC 7551 CPU (2.5 GHz) with
2 32-core sockets, 500 GB of RAM and Debian Linux (version 4.19). It should be noted that the
SMT solver is unusual among modern programs in that it is a highly CPU-bound application.
Although our tests were run on a large server with (at the time of writing!) an unusually high
amount of both processors and RAM, the Z3 solver is a single threaded application, and typically
uses less than a gigabyte of RAM while running. Therefore we believe that very similar results
could be obtained on a machine with more reasonable resources. In addition, we used Z3’s
built-in ‘parallel-or’ solution strategy to run two versions of each test, each copy with a different
random seed. The Z3 process terminates when either thread terminates, which means that the
times reported here are in fact the shortest time of two runs. This was done to reduce instabilities
in the solver and to present a clearer comparison between the two different algorithms.

4.1 Fischer Mutual Exclusion Protocol

The Fischer benchmark models a protocol for ensuring exclusive access to a shared common
resource that can be requested by multiple processes. The protocol uses global variables, in-
tegrated into the guards and assignment statements of the timed automata, to control access.
Each timed automaton in the network has a ‘critical state’, and the protocol guarantees that
only one timed automaton can be in its critical state at a time.

To be more specific, there is a shared variable id, which can take any integer value in the
range [0, n], where n is the number of processes in the protocol. Each process begins in an
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‘idle’ state a, and in order to reach the critical section cs, a process must first check to see that
the critical section is unoccupied (id = 0), at which point the process writes its own id to the
shared variable (while entering state b) and then performs a second transition to state c within
2 seconds of entering state b. The process is then required to wait at least 2 seconds in state
c. If after that interval the value of the shared variable is still equal to its id, the process may
access the critical section, otherwise it must wait for the value of id to return to 0 before trying
again (returning to b). Once access to the critical section is granted, the process may remain for
an unlimited amount of time before returning to state a.

To measure the scalability of our program, in addition to modifying the bound k, we per-
formed multiple test runs while modifying the number of timed automata in the network that
are attempting to execute their critical region. Aside from a numerical id, these processes are
identical in their behavior. In addition to testing the scalability of the program, we have also run
the Fischer protocol through several different MITL properties for verification. These properties
will be explained below.

Live1 := G[0,∞) (p1.b⇒ F[0,∞)p1.c)

Live2 := G[0,∞) (p1.b⇒ F[0,3]p1.c)

Live3 := G[0,∞) (p1.b⇒ F(0,3)p1.cs)

Live4 := G[0,∞) (p1.b⇒ F(0,3)p1.c)

Live5 := G[0,∞) (p1.b⇒ F[0,3]p1.cs)

Live6 := G[0,∞) ¬( ∨
i=1:n−1

(pi.cs ∧ ∨
j=i+1:n

pj .cs))

Liveness property 1 requires that once process one enters state b, it always transitions to
state c. Property 2 is similar, however it contains the additional constraint that process 1 must
complete the transition to state c in at most 3 seconds. Property 3 has a similar time bound, but
requires that process one move to the critical section cs rather than c within the time bound,
which we expect to not be universally true (a process can return to state b after moving to state
c if another process has reset the variable id). Properties 4 and 5 are copies of properties 2 and
3 respectively with the sole difference of inclusion vs exclusion at the boundaries of the interval.
Property 6 seeks to prove the “safety” of the protocol, namely that two distinct processes are
never in the critical section at the same time.

As we can see, the results printed in Tables 4.1 and 4.2 show the difficulty curves for each
problem, as both solvers take considerably more time to solve problems with larger bounds and
with a larger number of TA in the network. To better visualize these results, we have condensed
the tables above into Figure 4.1, which computes the average (geometric mean) speedup for a
given property and bound. The speedup is defined as the time taken by ae2sbvzot divided by
the time taken by ta2smt. A speedup of 1 indicates that both times are equivalent, values larger
than one (resp. less than one) represent a faster time by ta2smt (resp. ae2sbvzot). The speedup
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Table 4.1: Time required to solve the Fischer Properties (ae2sbvzot). A ! indicates the property
is satisfied, a % indicates that a counterexample was found. Blank entries indicate no result after two
hours.

TACK ae2sbvzot
n

k 2 3 4 5 6 7 8 9 10

li
ve
-o
n
e 10 0.9! 0.9! 1.0! 1.0! 1.2! 1.2! 1.5! 6.0! 1.7!

15 0.9! 0.9! 1.1! 1.4! 1.6! 1.7! 1.5! 14.2! 2.1!
20 1.0! 1.1! 1.3! 2.2! 1.9! 2.6! 2.4! 3.6! 3.9!
25 1.1! 1.6! 1.5! 2.1! 189.8! 3.4! 4.9! 4.5! 4.6!
30 1.1! 1.5! 2.0! 3.1! 6.4! 4.5! 4.9! 4.7! 4.8!

li
ve
-t
w
o 10 1.4! 1.6! 1.7! 2.0! 2.0! 2.4! 2.5! 2.7! 3.1!

15 4.5! 6.3! 6.0! 9.7! 15.0! 27.0! 48.4! 67.4! 146.5!
20 10.8! 13.0! 37.5! 22.1! 56.6! 36.8! 56.8! 567.9! 1589.1!
25 32.6! 39.3! 57.3! 131.8! 102.4! 2369.2! 1614.3! 1197.9! 6311.7!
30 42.4! 80.7! 127.7! 63.8! 1149.1! 125.9! − − −

li
ve
-t
h
re
e 10 1.0% 1.1% 1.6% 3.6% 8.0% 13.2! 19.5! 17.6! 26.7!

15 1.2% 1.3% 2.5% 2.0% 18.5% 27.6% 30.6% 59.4% 41.2%
20 1.2% 1.8% 2.1% 4.2% 8.0% 10.4% 23.9% 33.1% 64.7%
25 2.0% 2.3% 3.7% 5.9% 9.5% 24.1% 681.5% 753.3% 826.9%
30 1.5% 4.6% 4.6% 8.8% 32.7% 24.4% 30.7% 102.8% 150.1%

li
ve
-f
ou

r 10 1.2! 1.3! 1.5! 1.7! 1.9! 2.1! 2.1! 2.4! 2.3!
15 2.9! 3.6! 5.0! 8.0! 11.2! 19.6! 33.9! 74.8! 130.9!
20 6.6! 15.5! 14.4! 17.7! 77.7! 86.2! 183.5! 504.3! 1516.6!
25 10.3! 17.8! 22.9! 45.5! 151.4! 2482.6! 2406.0! 6578.4! −
30 27.5! 26.2! 33.9! 56.0! 67.0! 217.1! 1717.2! 291.6! 462.5!

li
ve
-fi
ve

10 1.1% 1.3% 1.9% 1.8% 5.4% 13.7! 24.0! 22.9! 23.7!
15 1.3% 1.7% 2.5% 2.3% 5.3% 5.7% 20.3% − 36.8%
20 1.7% 2.2% 2.6% 5.2% 8.6% 15.2% 29.8% 71.2% −
25 2.1% 3.6% 4.4% 13.5% 10.6% 17.2% 781.3% 816.1% 569.4%
30 2.2% 6.9% 5.6% 14.9% 21.1% 26.7% 28.8% 140.6% 238.6%

li
ve
-s
ix

10 0.9! 1.1! 1.9! 2.5! 3.1! 4.7! 10.1! 7.9! 16.2!
15 1.0! 1.8! 4.4! 10.0! 33.9! 51.2! 84.0! 110.9! 191.5!
20 1.5! 3.9! 10.2! 21.6! 93.3! 234.8! 670.4! 1000.4! −
25 1.7! 8.9! 27.6! 83.5! 188.1! 596.2! 2469.2! 5365.0! −
30 2.5! 16.3! 54.4! 263.4! 993.9! 3354.1! − − −
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Table 4.2: Time required to solve the Fischer Properties (ta2smt). A ! indicates the property
is satisfied, a % indicates that a counterexample was found. Blank entries indicate no result after two
hours.

TACK ta2smt
n

k 2 3 4 5 6 7 8 9 10

li
ve
-o
n
e 10 0.8! 0.9! 0.9! 1.0! 1.0! 1.2! 1.1! 1.0! 1.2!

15 0.8! 0.9! 1.0! 1.0! 1.1! 1.2! 1.2! 1.2! 1.3!
20 0.9! 1.0! 1.1! 1.2! 1.2! 1.5! 1.6! 1.5! 1.4!
25 1.0! 1.0! 1.2! 1.2! 1.3! 1.5! 1.8! 1.7! 2.7!
30 1.1! 1.1! 1.3! 1.3! 2.2! 2.3! 1.8! 2.1! 2.3!

li
ve
-t
w
o 10 1.6! 1.8! 1.8! 2.5! 3.0! 3.5! 3.0! 4.3! 4.0!

15 4.8! 5.3! 6.6! 6.0! 9.1! 12.4! 34.5! 28.6! 229.7!
20 10.2! 13.2! 14.4! 21.6! 27.4! 28.8! 61.2! 72.3! 108.6!
25 20.9! 28.9! 25.5! 47.6! 52.7! 50.6! 122.3! 235.3! 106.6!
30 36.1! 37.9! 56.9! 79.4! 87.2! 123.7! 198.4! 146.9! 283.4!

li
ve
-t
h
re
e 10 0.9% 1.0% 1.4% 1.7% 2.4% 24.5! 26.0! 16.1! 16.1!

15 1.0% 1.3% 2.2% 2.4% 3.6% 11.9% 10.0% 23.0% 26.4%
20 1.1% 2.1% 3.3% 5.4% 9.0% 13.7% 23.5% 24.6% 53.9%
25 2.3% 2.3% 8.3% 7.1% 14.7% 26.1% 90.8% 647.5% 467.8%
30 1.9% 4.6% 5.9% 9.9% 17.3% 32.3% 37.4% 73.2% 93.2%

li
ve
-f
ou

r 10 1.2! 1.4! 1.6! 2.2! 2.1! 2.4! 2.9! 2.5! 2.7!
15 2.5! 3.2! 4.2! 4.9! 6.1! 9.0! 10.6! 26.7! 287.2!
20 6.1! 6.1! 7.3! 12.9! 13.8! 20.7! 30.0! 30.9! 56.9!
25 17.8! 15.4! 16.7! 19.8! 24.1! 39.1! 60.6! 232.2! 108.8!
30 41.8! 21.8! 37.7! 44.2! 69.9! 67.7! 133.5! 156.4! 161.0!

li
ve
-fi
ve

10 1.0% 1.3% 1.5% 4.2% 4.2% 17.2! 14.1! 19.1! 21.0!
15 1.1% 1.7% 2.5% 3.3% 5.2% 8.1% 18.0% 20.6% 29.1%
20 1.4% 3.1% 4.6% 7.4% 10.8% 16.9% 21.6% 22.0% 56.9%
25 2.1% 3.6% 4.5% 10.0% 18.4% 28.2% 44.0% 259.8% 445.3%
30 2.5% 11.1% 8.9% 20.0% 22.8% 39.4% 66.0% 80.0% 116.7%

li
ve
-s
ix

10 1.0! 1.4! 2.2! 6.4! 13.1! 32.9! 27.1! 14.2! 15.0!
15 1.3! 3.0! 9.5! 24.4! 61.4! 95.7! 170.8! 346.7! 543.9!
20 1.5! 8.2! 53.6! 141.8! 368.0! 756.6! 1896.7! 2808.3! 6662.7!
25 2.3! 45.2! 122.6! 719.1! 1597.1! 3368.9! − − −
30 3.1! 99.1! 440.3! 823.2! 2724.4! − − − −
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Figure 4.1: Average Speedup Achieved by Different Liveness Properties

For a given liveness property and bound, the geometric mean of the speedup is computed over
the nine different model sizes. An asterisk (*) indicates that at least one solver did not

terminate within the time limit for two or more of the nine runs, and so an accurate mean
cannot be computed.

can only be calculated when both algorithms terminate within the given time limit of two hours.
When at least one algorithm does not terminate for a given number of TA, that run is excluded
from the average. While this usually does not significantly impact the average, property live-two
with bound thirty, as well as live-six with bounds of twenty-five and thirty have three or more
runs excluded from the average, and as a result we have omitted these averages from the chart.
This is because there is a clear trend, at least across the first five properties, where the ta2smt
algorithm clearly scales better to handle both more agents and larger bounds. This means
that when multiple runs with large numbers of agents are excluded, as is the case in the three
examples mentioned, the average is heavily weighted towards runs with fewer agents, favoring
ae2sbvzot. The most striking example of this trend is Live-two, where with two agents, both
algorithms’ performances are roughly equivalent, whereas with ten agents the ta2smt algorithm
quickly becomes over an order of magnitude faster than the ae2sbvzot encoding.

The averages shown above are an average of the performance over the nine model sizes, and
we believe it is in fact a rather pessimistic assessment of the ta2smt algorithm. Because ta2smt
exhibits superior scaling to larger models and bounds, if even larger models and higher bounds
were to be added to the results, we expect that the results would be even more favorable to
ta2smt. An interesting exception to this trend seems to be the bound of thirty, where ta2smt
exhibits a lower speedup than with a bound of twenty-five. After consulting the tables we highly
suspect that this is due to a quirk of the ae2sbvzot encoding, where the results with a bound
of thirty are slightly better than with a bound of twenty-five for several problems. We are not
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sure as to the cause of this strange phenomenon, but we do not expect this to repeat at higher
bounds.

The one property that does not fit the general trend is Live-six, where the ta2smt algorithm’s
performance ranges from equivalent to worse than the ae2sbvzot algorithm. This property is
unique in that the MITL property to be verified grows in size with the number of TA in the
network. It is possible that at larger sizes, the MITL encoding becomes a bottleneck that limits
the utility of further TA optimizations. It is also possibile that due to the additional complexity
of live-six, higher bounds are needed to offset the possible higher initial costs of ta2smt and reap
the benefits of ta2smt’s superior scaling. We believe that further tests with a longer timeout are
needed to understand these results.

Another result that may seem unusual is the behavior seen in live-three and live-five with
a bound of ten. Both algorithms are unable to find a counterexample for networks with seven
or more processes. This is in fact an artifact of the strong transition liveness. Because each TA
must transition during the loop section of the trace, they must all move to state b from the initial
state a. While all processes can make this transition from state a to state b simultaneously, the
invariant in state b requires a transition to state c, and unlike the previous transition, each TA
must transition individually, as the transition from b to c assigns the process id to the variable
id. Thus with a large number of processes and a small bound, it is impossible for every process
to complete this path from b to c and then back to b, and thus no valid lasso-shaped traces (with
strong transition liveness) exist. Although not shown in the table, with a bound of eleven there
exists a valid trace for a seven-process network, with a bound of twelve there exists a valid trace
for eight processes, and so on.

4.2 Token Ring

The Token Ring protocol models a ring of agents that pass a token between themselves, along
with a process that models the ring itself. The token moves in either direction along the ring
(the ring process controls the token). The agents may choose to return the token in either a
synchronous or asynchronous manner. In both cases channel-based synchronization is used to
coordinate ownership of the token.

live-token :=G0,∞(¬((ST1.zsync ∨ ST1.zasync ∨ ST1.ysync ∨ ST1.yasync)∧

(ST2.zsync ∨ ST2.zasync ∨ ST2.ysync ∨ ST2.yasync)))

This property asserts that agents 1 and 2 never simultaneously synchronize with the token.

Table 4.3 contains the results of the token ring tests. Although the time taken is not as large
as the Fischer tests, we can still see a clear pattern emerge. We used this test as an opportunity
to extend the maximum time bound used, and as shown above the general trend of ta2smt
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TACK ae2sbvzot

n

k 2 3 4 5 6 7 8 9 10
li
ve
-t
ok
en

10 1.0! 1.2! 1.3! 1.4! 1.5! 1.8! 1.9! 2.1! 2.2!
15 1.6! 1.5! 1.6! 1.8! 1.9! 1.9! 2.3! 2.5! 2.9!
20 2.8! 2.5! 2.4! 2.0! 2.5! 2.7! 2.9! 3.0! 3.5!
25 3.3! 4.7! 4.5! 3.4! 3.5! 3.3! 3.9! 4.2! 4.4!
30 5.0! 7.0! 7.4! 8.1! 7.2! 5.3! 4.1! 5.9! 6.1!
35 6.0! 9.0! 11.2! 10.0! 17.3! 10.2! 9.4! 5.7! 6.5!
40 9.9! 10.5! 14.2! 15.8! 18.8! 12.1! 11.7! 12.7! 12.2!

TACK ta2smt

n

k 2 3 4 5 6 7 8 9 10

li
ve
-t
ok
en

10 0.9! 1.0! 1.0! 1.0! 1.2! 1.2! 1.3! 1.4! 1.5!
15 1.0! 1.0! 1.1! 1.2! 1.4! 1.4! 1.5! 1.7! 1.7!
20 1.0! 1.2! 1.3! 1.3! 1.5! 1.7! 1.8! 2.1! 2.1!
25 1.1! 1.4! 1.4! 1.5! 1.7! 1.8! 2.1! 2.7! 2.4!
30 1.3! 1.4! 1.6! 1.6! 2.1! 2.0! 2.4! 2.6! 3.0!
35 1.3! 1.4! 1.6! 2.1! 2.2! 2.1! 3.0! 3.0! 3.2!
40 1.4! 1.5! 2.1! 2.6! 2.4! 2.4! 2.9! 3.4! 4.4!

Table 4.3: Time required to check the property of the Token Ring. A ! indicates the property
is satisfied, a % indicates that a counterexample was found. Blank entries indicate no result after two
hours.

scaling more efficiently than ae2sbvzot continues past a bound of thirty. Although the initial
results with a bound of ten are practically equivalent, by the time we reach a bound of forty
ta2smt starts to perform at least three times faster than ae2sbvzot.

4.3 CSMA/CD

The CSMA/CD (Carrier Sense Multiple Access/Collision Detection) protocol is a well known
protocol for allowing multiple agents to share a communication channel, and was popularized
by its inclusion in the Ethernet standard. The protocol includes one process to manage a shared
communication bus, as well as a number of processes that wish to obtain exclusive access to
the bus in order to send a message. When two processes attempt to send at the same time, the
bus process detects the collision and uses the broadcast synchronization primitive to force the
processes to wait a randomized amount of time before attempting to communicate again. While
an agent is sending over the bus, the bus process can send a ‘busy’ signal to the other agents,
in order to simulate the agents listening to the bus and detecting a communication in-progress.
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live-csma :=G(0,∞)(P1.begin_send→ (¬collision_after_deadline))

P1.begin_send :=(¬P1.send) ∧ (P1.send U(0,inf)>)

P1.collision_after_deadline :=G(0,52](P1.send ∧ (P1.send U[0,inf)(P1.send ∧ P2.send)))

This protocol was tested to ensure that a collision is always detected before a certain amount of
time has passed. The property live-csma asserts that after process 1 has been sending for 52
units of time, process 2 cannot begin sending until process 1 has finished.

The version of the CSMA/CD benchmark presented here is slightly different from the bench-
mark that has been used in benchmarks of Uppaal and other TA solvers. We noticed that the
common benchmark lacked the ability for processes to correctly recover from a collision. In
essence, once a collision occurs, one process begins transmitting, while the other must wait in
the retry state until the transmission is complete. However a full transmission takes 808 time
units to complete, and the retry state has an invariant requiring that processes in the state tran-
sition after at most 52 seconds. The only way for a process to remain in the retry state longer is if
another collision occurs, which of course also forces the transmitting process to restart. Because
there were no other options for the process stuck in the retry state, the transmitting process
could never finish a transmission. We modified the benchmark by adding a new transition whose
source and destination state are the retry state. It can only be taken if the bus process sends
a ‘busy’ signal (one-to-one), which the bus processes is only allowed to do if a process has been
transmitting for over 26 units of time. This transition resets the clock that would require the
process to leave the retry state, thus allowing it to remain in the retry state for the full 808 time
units required for a successful transition. Although our benchmark is different from those pre-
viously used, and therefore our results cannot be compared with the CSMA/CD benchmark for
Uppaal, we have created a more accurate model of a real-world transmission protocol, and thus
a more useful tool for assessing how our algorithm would perform with a real-world problem.

Figure 4.2 shows the TA diagrams used for the bus process. We have shown in bold the
new transition that was added to the standard version to improve the quality of the benchmark.
To simulate the ability of the sending processes to detect when the bus is already in use, we
have added a new transition to the bus process that allows it to send a busy signal to another
process when it is in the active state and at least 26 time units have passed since the beginning
of the current transmission (26 is used to represent the delay for the signal to propagate to other
processes).

Figure 4.3 shows the diagram for the sending process. Again the new additions are shown
in bold. Note that each sending process has its own unique clock, so that each process can
reset its clock independently. In the diagram for the sending processes we have added three
new transitions. The first keeps the TA in the waiting state, and synchronizes using the cd
signal (short for “collision detected”). This allows the process to choose whether to remain in
the waiting state or move to the retry state when it receives this broadcast synchronization
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Figure 4.2: CSMA Bus Automaton

signal. The other two new transitions concern the added busy synchronization channel. The
first allows a waiting process that wishes to transmit to detect a transmission in-progress and
transition directly into the retry state. The final, and most crucial transition allows a process in
the retry state to detect that the bus is still busy, and reset its clock. This allows it to remain
in the retry state for the full 808 time units needed for a complete transmission.

While running this experiment we discovered a previously unknown flaw in the ae2sbvzot
encoding of the broadcast synchronization constraints. Therefore the results are not directly
comparable, as ta2smt must explore the entire search space before returning a result of sat, while
the ae2sbvzot algorithm can terminate after finding one (erroneous) counterexample. Rather
than present incomparable results, we have decided to instead present two runs of the ta2smt
encoding with different liveness and edge constraints.

In Table 4.4 we see the first run, which follows our convention of using Strong Transition
Liveness and Right-Closed edges. The second run, however uses Unrestricted Liveness and Open
edges. This means that the second run has many more possibilities (valid traces) to consider,
and we would expect it to take a longer amount of time to verify the property. Once again for
small problem sizes the difference is minute, however although not as drastic as the difference
between ae2sbvzot and ta2smt, there is still a significant difference at higher bounds and higher
numbers of agents. For the problem sizes we have tested, the unrestricted runs can take up to
twice as long as the runs restricted by strong transition liveness and right-closed edges. This
is useful information for users weighing the benefits of a broader search against the extra time
costs.
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Figure 4.3: CSMA Sender Automaton

TACK ta2smt (Strong Transition Liveness, Right-Closed Edges)
n

k 2 3 4 5 6 7 8 9 10

li
ve
-c
sm

ac
d 10 2.4! 3.5! 4.3! 5.1! 5.2! 5.8! 8.8! 7.8! 9.5!

15 11.0! 31.2! 37.2! 52.7! 93.6! 121.7! 208.7! 275.4! 324.0!
20 27.1! 109.5! 263.5! 721.5! 1778.3! 2206.1! 3616.7! 5097.3! 5068.9!
25 82.7! 813.7! 2325.2! 4772.4! − − − − −
30 296.5! 2882.0! − − − − − − −

TACK ta2smt (Unrestricted Liveness, Open Edges)
n

k 2 3 4 5 6 7 8 9 10

li
ve
-c
sm

ac
d 10 2.8! 3.9! 5.0! 5.3! 8.1! 9.8! 9.2! 11.8! 10.5!

15 14.0! 44.2! 55.6! 72.7! 198.2! 219.4! 209.7! 469.9! 367.2!
20 64.3! 245.4! 543.9! 1188.7! 2764.7! 2037.6! 4110.6! − −
25 205.9! 2362.4! 3753.4! 6535.8! − − − − −
30 559.7! 5921.7! − − − − − − −

Table 4.4: Time required to check the property of the CSMA/CD Protocol. A ! indicates the
property is satisfied, a % indicates that a counterexample was found. Blank entries indicate no result
after two hours.
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Chapter 5

Conclusion

We have presented a novel approach for encoding networks of Timed Automata directly into
BitVector logic, suitable for solving by state-of-the-art SMT solvers. Building off of the work
begun with the development of the TACK solver, we retain TACK’s approach of encoding MITL
properties to be verified over the network, while creating a more efficient model for the encoding
of the network itself. Rather than encode the TA network into CLTLoc, we directly translate
the network terms and constraints into a combination of BitVector and real-valued logic, written
in the standard SMT-LIB language. One of the original motivations for using CLTLoc as an
intermediate representation in TACK was to create a common language that was both feasible
to translate into SMT form and expressive enough to easily support the encoding of additional
features. We have strived to make our encoding modular and easily accessible so that future
additions will not be hampered by the “low-level” nature of our encoding.

In addition to re-implementing the translation of timed automata networks, we have corrected
several deficiencies in the original TACK implementation, and the tool now supports the full
variable constraint and variable assignment grammars. In addition our implementation allows
users to choose the desired liveness and edge semantics at run-time, with a wider selection of
values than the original CLTLoc encoding. Furthermore our encoding eliminates the unnecessary
state BitVectors, creating a smaller search space for the SMT solver. We are proud to present
the implementation of this algorithm, which is available for download at https://github.com/
fm-polimi/TACK alongside the original TACK encoding, as free software.

Empirical testing has revealed that our approach exhibits significant speedups across several
benchmarks when compared to the previous encoding. The results seem to indicate that our
approach is better suited to exploring models with larger bounds, as the time necessary to solve
larger and larger bounds grows more slowly when compared with the CLTLoc encoding. In
addition, after discovering a flaw in the CLTLoc encoding that rendered it unable to solve the
CSMA/CD property, we took the opportunity to compare the performance of our encoding with
Unrestricted Liveness and open edges against the same encoding but with Stong Transition
Liveness and right-closed edges only. Our results showed that the latter encoding achieved
significant speedups by reducing the search space, with the speedup increasing with the problem
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size.

5.1 Future Work

One potential future research direction is to similarly implement the encoding of the MITL
property files directly into BitVector logic. As seen in the TACK results, the speedup achieved
by our tool was weakest when the MITL property was the largest, namely during the tests of
Fischer liveness property six. Another benefit to this re-implementation would be the potential
inclusion of finite traces (albeit with restrictions on the properties supported). This can be
supported in the TA encoding by disabling the loop constraints or making them conditional
on a ‘loop-exists’ variable, however modifications to the MITL encoding would be necessary to
make this extension useful.

In addition to future research, there are also opportunities to add additional ease-of-use
features to TACK. One such feature that could be added is support for automatically verifying
that bounded integer variables are never assigned a value outside of their bounds. Currently our
BitVector implementation simply allows variables to overflow, considering the burden of verifying
the bounds to fall on the user. However it would be relatively straightforward to increase the size
of the variable BitVectors so that all possible illegal assignments are guaranteed to not overflow,
and to then create a custom MITL property that asserts that the variable never leaves its given
bounds. Users could then check to see if their bounds were in fact correct, and receive a trace
showing the violation if one existed.
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