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1. Introduction 

Proteins — large macromolecules composed of 

amino acids — are the building block of our 

metabolism. To this day livestock meat is still the 

major source of proteins for the world population 

that is in continuous growth. Livestock farming, 

however, is one of the main causes of Green House 

Gasses emissions — accounting for 14% of the 

world’s overall emissions [1] [2] — water depletion 

and land use [3]. The emerging sector of protein 

alternatives aims to substitute the consumption of 

meat from livestock origin. The amount of 

resources absorbed by the livestock meat supply 

chain and the resulting environmental impact 

represent nowadays one of the most urgent  global  

problems. In this scenario, the industrial scale 

production of protein alternatives is not only an 

economic challenge, but also an environmental 

must in order to substitute the consumption of 

meat from livestock origin. 

Protein alternatives can be classified into three 

different categories: plant-based, microorganism-

based, and cellular-based. The last category, 

commonly referred as cultured meat (CM), is the 

only one with the potentiality to substitute 

completely the livestock meat offering a product 

with the same organoleptic, textural, and 

nutritional properties.  

The production of cultured meat follows two main 

approaches that aim to produce a 3D biological 

tissue. Both of them derive from the Tissue 

Engineering (TE) for biomedical applications. The 

first and most common is Scaffolding, a process 

where cells are seeded into a porous substrate that 

guarantees their proliferation in three dimensions. 

The second is 3D Bioprinting (3DBP), which 

represents a novel promising alternative to 

scaffolding [4]. 3DBP is an Additive 

Manufacturing (AM) process where a cell-laden 

bioink is deposited in a three-dimensional pattern. 
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The main advantages of 3DBP are the possibility to 

process multi-material and to skip the cell seeding 

step. This procedure is in fact the main limiting 

factor of scaffolding due to the low diffusion depth 

of cells in their substrate, that is in the order of the 

microns [5], meaning that scaffolds once seeded 

need to be layered to reach a desirable thickness. 

Despite its potentiality, few research is dedicated 

to the development of 3DBP for CM, mainly due to 

novelty of the process and the low availability of 

materials that satisfy the constraints of edibility, 

biocompatibility, economic feasibility, and 

printability. In this sense, hydrogels are promising 

materials: they are biocompatible polymers 

commonly implemented in 3DBP for biomedical 

applications [6]. Alginate hydrogels in particular 

are edible materials that can be suitable for CM 

applications when integrated with gelatin to 

enhance their biocompatibility [7]. Moreover, these 

polymers have a wide availability and are 

economically feasible for large-scale productions. 

This thesis aims at presenting the first empirical 

printability model that identifies the optimal 

window of printing parameters considering the 

model’s uncertainty, in order to guide the 

experimenter according to any objective functions. 

The focus will be on two edible hydrogels — 

namely pure alginate 6%, and alginate 6% gelatin 

4% — used as bioinks for an extrusion-based 3D 

bioprinting process.  

2. Materials and methods 

Materials 

To produce the two bioinks, alginate 8% and 

gelatin 16% stock solutions were prepared with 

sterile PBS as solvent (sodium alginate and gelatin 

type A powders were purchased from Sigma 

Aldrich). To produce the alginate 6% bioink, the 

first stock solution was diluted with PBS, while to 

produce the alginate 6% and gelatin 4% bioink the 

two stock solutions were mixed in a ratio 3/1.  

The Bioprinter used in this work was the BioX from 

Cellink, equipped with the pneumatic extrusion-

based printhead and the HD camera tool. The 

nozzle adopted was a 0.410 mm conical nozzle 

form Cellink. 

Design of experiment 

An in-situ image analysis approach was pursued 

in order to assess the printability: for each 

repetition of the experiment a picture of the final 

print was gathered and analyzed. The test was 

based on a two-factors factorial Design of 

Experiment (DoE). The two factors analyzed were 

the pressure of extrusion (𝑃), and the scanning 

speed (𝑣) (Figure 1). 

 

Figure 1: Influence of the two factors on the extrusion 

process (Source: modified from [8]). 

6 levels of for both the factors were explored — 𝑃 ∈

[5, 10, 15, 20, 25, 30] 𝑘𝑃𝑎 and 𝑣 ∈ [5, 10, 15, 20, 25,

30] 𝑚𝑚/𝑠 — for 3 repetitions of each combination.  

Data collection 

The measured variable for the assessment of the 

printability was the Printability Index, evaluated 

on the voids of the printed object [9]: 

𝑃𝐼 =
𝐴𝑟𝑒𝑎𝑙

𝐴𝑖𝑑𝑒𝑎𝑙

 

( 1 ) 

The 𝐴𝑖𝑑𝑒𝑎𝑙 is the ideal area of the printed void, 

while 𝐴𝑟𝑒𝑎𝑙 is the real area of the printed void, 

measured by the image analysis algorithm. The 

printed object was designed to have a net-like 

geometry with squared voids, using a CAD 

software . The known ideal area was used for the 

evaluation of the PI (Figure 2).  

 

Figure 2: The input model from the design (left) to the 

g-code (center), to the final print picture (right). 

After each print, the printed object was 

photographed with the HD camera tool, and the 

images were imported on MATLAB R2022a. An 

image analysis algorithm was run on all the 

different images (Algorithm 1). Through image 

segmentation, the real area of the 4 voids was 

measured, and an averaged value of PI was 

estimated and collected for each print, called 

Average Printability Index (API) (Figure 3). 
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Figure 3: Estimation of the PI through image 

segmentation. 

3. Results 

The collected values of API were reorganized and 

analyzed both with Minitab and Excel. With the 

data regarding the two bioinks were created two 

datasets namely Alg for the pure alginate 6%, and 

Alg+Gel for the alginate 6% gelatin 4% hydrogel.  

Linear Regression Models 

Since the two datasets belonged to the same 

phenomena, but with different materials, it was 

forecasted to have similarity between the two 

models. In fact, following an iterative approach, 

from the two databases were generated two 

regression models with the same regressors both 

with high significance and that respected the 

hypothesis (see “Hypothesis of the models”) (Table 1). 

Table 1: Regression coefficients, and model significance 

indicators. 

Regressors Significance Alg+Gel Alg 

1  2.541 4.914 

P  -0.2518 -0.4049 

v  0.1460 0.1810 

P*P  0.005186 0.00773 

v*v  -0.00151 -0.00174 

P*v  -0.00248 -0.00318 

 R-sq adj 93.26% 93.09% 

 S 0.2152 0.2162 

 

 

Figure 4: Surface plots of the regression equations of the 

Alg+Gel dataset (top), and Alg dataset (bottom). 

Probability maps 

From the regression equations it is possible to 

predict the values of API from the process 

parameters, however the models provide a 

punctual prediction, lacking in information on the 

prediction uncertainty. Therefore, the probability 

maps were produced considering both the 

regression model and the prediction uncertainty, 

defining the probability of having the prediction in 

a certain interval. 

Considering the optimal quality interval, where 

𝐴𝑃𝐼 ∈ [0.75; 1.25], the probability maps followed 

the relation: 

𝐹𝑇,𝑑𝑓𝐸
(

𝛼𝑠𝑢𝑝 − 𝑦̂(𝒙)

∆(𝒙)
) − 𝐹𝑇,𝑑𝑓𝐸

(
𝛼𝑖𝑛𝑓 − 𝑦̂(𝒙)

∆(𝒙)
) = 𝑃 

( 2 ) 

where 𝛼𝑠𝑢𝑝 = 1.25 and 𝛼𝑖𝑛𝑓 = 0.75, and ∆(𝒙) is the 

prediction uncertainty term evaluated as: 

∆(𝒙) = √𝑀𝑆𝐸(1 + 𝒙𝑇(𝑿𝑇𝑿)−1𝒙) 

( 3 ) 
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Figure 5: Probability maps of Alg+Gel (top) and Alg 

(bottom) for the interval [0.75; 1.25]. 

4. Conclusions 

The output of this thesis aims to open the doors of 

process scalability to the 3DBP of CM. The 

probability maps are strong tools in the process 

optimization, and in the subsequent reduction of 

processing costs with the aim to reach the time of 

parity before 2035 (the predicted year of cost 

equalization between livestock meat and CM) [10]. 

Due to the sector of application, the output of the 

probability maps can be interpreted and used for 

different optimization purposes. Firstly, it can be 

used to identify the optimal pressure of operation 

in order to minimize the time of printing 

(maximizing the scanning speed). This will achieve 

the reduction in processing time, and consequently 

a cost reduction. The reduction of processing time 

will also affect the cellular activity: in fact, the 

longer cells are kept in a “open” environment 

without growth and the lower will be the final 

viability of the cellular population. 

An alternative is to identify the energy 

consumption function that links pressure and 

velocity, and together with the probability map 

resolve a minimization problem to achieve 

minimal energy usage. This is a fundamental step 

in the cost reduction of the process. 

Eventually, the probability map can be used to 

achieve the highest robustness and identify the 

optimal conditions for the quality reliability of the 

process. In fact, pressure is a parameter that can 

suffer from fluctuations during the processing, 

while velocity is more stable and controllable. If we 

focus on robustness, it is possible to fix the velocity 

or pressure that identifies the widest region of high 

probability on the map. 

5. Future developments 

Focusing on the in-situ monitoring, the proposed 

data analysis and model regression can be adopted 

in the formulation of a closed-loop controller by 

the implementation of a closed-loop controller 

algorithm.  

Another interesting development may be 

represented by the analysis of two additional 

dimensions: the Filament Fusion, and the Diameter 

expansion. The 3D model adopted for this thesis 

was designed in order to also measure these 

dimensions, but the focus was given only on the PI. 

These additional dimensions are two important 

features to consider for 3DBP for CM. 

The former accounts for the fusion of parallel 

filaments that are deposited adjacent to each other, 

which is particularly interesting for cultured meat 

applications, since in order to resemble the fibrous 

texture of meat, it is often bioprinted with parallel 

adjacent filaments.  

The latter refers to the final diameter of the 

extruded filament. This dimension intends to 

quantify the expansion of the filament when 

extruded, that reaches a diameter larger than the 

diameter of the nozzle. It is an important measure 

because it influences both the filament fusion and 

the printability index.  

6. Algorithms 
 

Algorithm 1     Image segmentation algorithm. 

Alg+Gel 

Alg 
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1: PR=InputCroppedImage; 

2: GM=PR(:,:,2)>160; 

3: BM=PR(:,:,3)>180; 

4: RM=PR(:,:,1)>170; 

5: RGBM=GM-(BM+RM); 

6: GrayPR=rgb2gray(PR); 

7: RegionGrowth= 
regiongrowing(im2double(GrayPR)); 

8: Reg=RegionGrowth(:,:,1); 

9: Reg=Reg.*RGBM; 

10: se=strel('disk',9); 

11: RegCL=imclose(Reg,se); 

12: se=strel('disk',10); 

13: RegOP=imopen(RegCL,se); 

14: Area=regionprops(RegOP,'Area'); 

15: if isempty(Area)==1 

16:      Porosity=0; 

17: else 

18:      Porosity=Area.Area/(170^2); 

19: end 

7. Hypothesis of the models 

Regression models follow the structure: 

𝒚̂ = 𝑿𝜷̂ 
( 4 ) 

Where 𝒚̂ is a (𝑛 ×  1) vector of the responses, 𝑿 is 

an (𝑛 × 𝑝) matrix of the levels of the independent 

variables and 𝜷̂ is a (𝑝 ×  1) vector of the estimated 

regression coefficient. 

The regression model followed two hypothesis: 

• The residuals are normally distributed, 

with mean 𝜇 = 0. 

• The residuals follow a random pattern. 

If at least one of the above hypothesis is rejected, 

the whole model has to be rejected. 
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