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Abstract

Introduction

As reported by the World Health Organization (WHO), Autism Spectrum Disorder (ASD)

is a neuro-developmental condition characterized by some degree of impaired social be-

haviour, communication and language and a narrow range of interests and activities that

are both unique to the individual and carried out repetitively. It is estimated that world-

wide 1 in 160 children has ASD [1]. Intervention during early childhood is crucial to

promote development and long-term positive effects. Children with ASD may have diffi-

culty communicating non-verbally, such as through hand gestures, eye contact, and facial

expressions [2].

Gold-standard therapy centres on the delivery of evidence-based psycho-social interven-

tions, trying to adapt to the needs of each child. Recent studies have shown that children

with autism cope well with rule based, predictable systems such as humanoid robots. ASD

children feel more comfortable with such robots than in the presence of humans, who may

be perceived as hard to understand and sometimes even frightening [3]. The “supervised au-

tonomy” in which the humanoid robot works independently under a supervisor’s guidance

is known as Robot-Enhanced Therapy (RET) [4].In this way, the Therapist-Robot-Child

triadic interaction is elicited, facilitating communication between child and therapist. As

observed by Sial et al. in their work [5], a collaborative approach based on interactive

games between a robot and ASD children has produced positive results in terms of thera-

peutic outcomes such as social interaction, communication, joint attention and turn taking.

Studies have shown that motor impairments are a prominent comorbidity within the ASD

phenotype [6], even though they are not currently included in the diagnostic criteria of

autism. McAuliffe et al. [7] explored how these altered motor ability might be linked to an

atypical skills learning. In point of that, their results supports the hypothesis that a poor

imitative gestural learning can impact social and motor development, since learning via

imitation is a prime method by which humans acquire skills. As a consequence, teaching

gesture imitation in RETs might improve the child’s social skills as well as spontaneous

gesture use [2]. Designing RET protocols with increased robot’s autonomy is important in

order to decrease the human workload and to deliver consistent therapies. In this context,

gesture recognition algorithms can be exploited to trigger robot’s feedback in interactive

protocols and to evaluate children’s performances. A proper feedback should be triggered

to increase children’s engagement, thus empowering the therapy’s robustness.

Human action recognition relies on capturing systems able to track body’s movements.

Since children with autism are particularly sensible to the touch [8], wearable systems

would be unfeasible, even if they are fast, robust and receive information directly from
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users’ movements . As a consequence, many approaches have exploited RGB, depth, or a

combination of these two data types (RGB-D) from video sequences to recognize actions.

However, visual-based capturing systems make the recognition a challenging task due to

many factors such as occlusions, viewpoint, lighting and user-variance. Among those,

low-cost depth cameras such as Microsoft Kinect v2 are able to provide a powerful human

body tracking in real-time [9]. Thus, Kinect skeleton data (3D coordinates of body joints)

can be used to distinguish many actions.

Deep learning-based approaches achieved promising results in classification tasks [10].

In the context of action recognition, Convolutional Neural Network (CNN)s are the most

used. Particularly, Residual Network (ResNet)s, which are based on the learning of error

functions (i.e. residual functions), are a good solution to extract with precision relevant fea-

tures from biomechanical data, allowing a fast training process and resolving the vanishing

gradient problem.

Since networks learn to recognize from data they are fed with, training datasets affect

their behavior. The most used are public datasets and rarely newly created. Their gesture

sets are usually selected from Activities of Daily Living (ADL) (tasks of every-day life) or

from context-specific activities (such as the Gaming 3D Dataset [11]). Body parts involved

in the actions range from a single limb, just the upper/lower body part or the whole

skeleton.

The main goal of this thesis project is to find a proper method to automat-

ically recognize gestures inside a robot therapy (IOGIOCO) for children with

ASD. In this way, the robot could react properly to children’s movements when

interacting with them and support therapist’s work in the Therapist-Robot-

Child triadic interaction. The final goal is to implement and test an online

algorithm in a clinical application to be able to help therapists, empowering

children’s learning.

Methods

IOGIOCO robot therapy is based on interactive mirroring games between the humanoid

robot NAO and ASD children. It includes 5 training levels and one final evaluation and

involves the training of selected communicative gestures from ADL. The 19 gestures of

the protocol are: tall, angry, listening, waiting, kissing, short, giving, where, hungry, me,

peekaboo, happy, yes, no, big, hello, little, pointing, coming (Figure 1). The recognition

algorithm is involved from Level 3 on.

Figure 1: Some gestures perfromed by NAO: listening, angry, where, peekaboo and kissing.
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The gesture recognition algorithm’s workflow involved data acquisition, data processing

and generation of pose features to facilitate the learning process of the classifier, the

classification with Neural Networks and the online implementation (Figure 2).

Figure 2: Workflow of the proposed algorithm.

Data Acquisition

The proposed method exploits Kinect camera to acquire data since a non-intrusive vision-

based capturing system is required to monitor children and therapist’s movements. Kinect

camera is able to capture keypoints (skeleton 3D joints’ coordinates) allowing a spatial

analysis of each gesture.

Three different datasets were acquired and used for the development of the algorithm

of gesture recognition. Among these, the last 2 were manually segmented. They were:

1. Subsampled Healthy Dataset: 5-gestures dataset with small, hello, pointing, come

and yes gestures. 18 healthy adult subjects performed these actions once.

2. Healthy Dataset: 14-gestures dataset made of 18 healthy subjects, 9 adults and 9

children. The gesture set included tall, angry, listening, waiting, kissing, short, hello,

giving, where, hungry, big, little, pointing and coming gestures.

3. Expanded Dataset: 19-gestures dataset made of 22 subjects, of which 2 were adults

with ASD. Only 11 subjects of this dataset performed every type of action. The

complete gesture set included tall, angry, listening, waiting, kissing, short, giving,

where, hi, peekaboo, hungry, happy, big, me, no, little, pointing, yes and coming

gestures.

Data Processing

Information extracted from Kinect was processed. Filtering was necessary to reduce noise

by which Kinect is affected. Since coordinates were referred to the camera, the reference

system was centered with respect to the subject himself. Different reference points to

achieve translation invariance were tested. Furthermore, since healthy and ASD adults

and children with different physical structures were involved in this project, normalization

was required to obtain user-invariance. A frame by frame normalization was carried

out. This was because of Kinect’s low spatial resolution on depth data [12] and subject’s

undefined position in front of the camera, which could affect the normalization’s value thus

not reflecting the real body size. This approach led to an increasing in the robustness of

the normalization’s method. However, a frame by frame normalization changed the length

of the scaling segment, computed as Euclidean distance, from one frame to the adjacent

ones: this is true especially when dealing with, for example, yes gesture or any gestures

involving a forward bend of the torso. In order to deeply investigate how much these
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segments changed from one frame to another, for each gesture class the average segment’s

length over frames in every sample was computed. Then a comparison between segments’

variations during the action for each gesture class was achieved by means of Standard

Deviation.

Furthermore, Kinect data needed to be arranged according to biomechanics in order

to highlight the kinematics characterizing a particular gesture in a single sample. Since

the lower body was not crucial in the gesture set, only the upper body segments were

preserved. To get an effective representation of the gesture executed and to keep local

motion characteristics, joints’ coordinates of upper body skeleton sequences were grouped

into body sets (two arms and one trunk). Body sets were organized from top to bottom

according to the physical structure of the human body (head and trunk first, right arm

and left arm then). rearranged according to the physical structure of the human body .

Thus, 3D matrices describing actions were generated by stacking together every frame of

the movement, composed by 3D arrays of joints’ coordinates.

Pose Features

After data processing, a focus on the meaning of network’s inputs was carried out by

generating pose features able to describe the kinematics of actions. The proper preparation

of these features could somehow drive the learning process of the classifier [13]. To obtain

a pose feature, all the 3D coordinates (xk, yk, zk) of each frame Ft in a skeleton sequence

were scaled through a normalization function N(·):

(x′k, y
′
k, z

′
k) = N(xk, yk, zk)

x′k =
(xk − xmin)

(xmax − xmin)
,

y′k =
(yk − ymin)

(ymax − ymin)
,

z′k =
(zk − zmin)

(zmax − zmin)
,

(1)

where (x′k, y
′
k, z

′
k) are the normalized coordinates of k-th keypoint and cmax(xmax, ymax, zmax)

and cmin(xmin, ymin, zmin) are the scaling coordinates. In order to standardize every ac-

tion class, different gesture normalizations’ techniques were experimented. In the end,

keypoints were scaled exploiting a gesture independent normalization. Therefore, maxi-

mum and minimum coordinates of each channel (x, y, z) of every movements’ sequence

were detected whatever gesture executed and used as scaling values. Moreover, cmax and

cmin were selected independently of body joints, thus in a whole-body control volume.

These scaling coordinates could have been computed with respect to the entire dataset,

thus obtaining different normalization values for each action in the gesture set. However,

this approach would have been dataset specific, while a gesture independent normalization

made the system dataset independent.

When using Artificial Neural Network (ANN)s and the only available motion features

are skeletal data, an intermediate representation of skeletal sequences can help in data

processing and in understanding samples the net has to learn from. Therefore, RGB

pose features were obtained by transforming the coordinate space into RGB color space

scaling each coordinate in the range of [0, 255]. In this way, kinematics of each action was

preserved and outlined by a new image representation. During a movement, a displacement
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in the x direction is depicted by a variation of red amount, while a shift in y or z direction

corresponds to a change in green or blue, respectively. Figure 3 shows the way a pose

feature representation is generated.

Figure 3: From skeleton sequences to RGB pose features: Every frame Ft of a sequence is transformed

in a 3D array to be stacked in a matrix together with the others. N denotes the number of frames in each

sequence and K denotes the number of keypoints in each frame. Then, after the gesture normalization,

a scaling in the RGB color space is applied, thus obtaining a single RGB pose feature representing the

motion. On the horizontal dimension temporal dynamics is shown, while the spatial structure (keypoints)

is depicted on the vertical one.

Starting from this skeleton-based representation, further data processing was applied:

• Temporal Interpolation and Reshape: since CNNs require inputs to be the same

length, different ways of interpolation and reshape were tested;

• Enhanced Action Images: a local contrast enhancement technique was exploited to

further highlight the characteristics of the motion;

• Data Mirroring: since gestures used in the training of the model were executed with

the right arm, data mirroring was able to make the classifier independent of the hand

used to execute the action and to augment the dataset.

Classification

A Residual Network (ResNet) was implemented since is able to build a deep neural network

without the risk of degradation in performance. This is possible thanks to skip connections,

which allow the net to skip the training of one or more weight layers. Moreover, a Softmax

function is frequently used in the last layer of the network. Softmax turns the numeric

output of the last linear layer of a multi-class classification neural network into a vector

of N probabilities, where N is the number of classes. So ResNet’s output was a vector

representing the probability distribution of all the 19 potential outcome gestures. Pose

features were used as net’s inputs. In order to evaluate the recognition algorithm, a

Leave-P-Out subject cross-validation method was exploited for the most comprehensive

19-gestures Expanded Dataset. In this way, P out of N subjects in the dataset were used for

testing and P−N for training and validating the model (P=2 subjects and N=11 subjects

of the Expanded Dataset). Different net’s hyperparameters were tested to achieve the best

recognition’s results possible.
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Online Recognition

Once the algorithm was established offline, an online implementation was designed. It

included two steps:

• Kinect-only configuration: the model was set and tested on the continuous data

stream captured by the camera;

• Kinect-NAO configuration: the model was set and tested with the robot.

Different settings were experimented to take into account Kinect’s behaviour with robot

connection. For this reason, Kinect camera’s Frames Per Second (FPS) was evaluated in

both configurations to monitor the frame frequency, since the recognition task relied on

data acquisition of skeleton poses.

In order to exploit the recognition algorithm in a real-time classification, a sliding

window was used. Pose features were computed and analyzed by the classifier on a certain

window, characterized by two configuration parameters: size and step. A window of fixed

size in terms of number of frames was used on the continuous data stream captured by the

camera. Different configurations were experimented to avoid lag between the performance

of the action and the classification’s output as much as possible. To detect the presence of

a gesture among no gestures, the highest conditional probability output by the Softmax

layer of the classifier was compared to a threshold τ ∈ [0,1]:

state =

{
gesture, if probability > τ

no− gesture, if probability < τ
(2)

When the detection threshold was exceeded, the probabilities’ prediction vector was saved

in a buffer. Then, the window slided of a fixed step before predicting again (Figure 4).

Once the buffer was filled with N prediction vectors, the algorithm identified the gesture

performed with one of the following two possible methods:

• By averaging buffer ’s prediction vectors’ probabilities;

• By checking whether all buffer ’s predictions were equal.

Moreover, in Kinect-NAO configuration, a positive or negative gender-specific sound feed-

back was implemented on NAO to be given as an output depending on the performance

assessment. Once the whole algorithm was established, new acquisitions were performed

to test the effectiveness of the new method.

Acquisitions

The new gesture recognition algorithm was tested with new acquisitions. 6 ASD children

aged between 4 and 6 were involved in IOGIOCO therapy at CARElab (Computer Assisited

Rehabilitation) in Fondazione Don Gnocchi. From the second week of acquisitions, the

best model able to classify 19 gestures was tested. In these acquisitions, the therapist

supervised the level deciding the gesture to be imitated and taught to the child. NAO

performed the gesture selected and pointed at the therapist, thus triggering the evaluation

of the therapist’s performance by the algorithm. After a temporal window of about 10

seconds, the robot gave a positive or negative sound feedback saying “Well done!” or “Come

on, let’s do it again!” respectively. The robot pointed at the child and the classifier started

its evaluation again.
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Figure 4: Gesture vs no gesture. Kinect camera captures frames; when the window is filled with the

proper number of frames (WS, window size) then a prediction is output. If the highest conditional

probability exceeds the threshold, a gesture is detected and the probabilities’ prediction vector is saved

in the buffer. The window slides of a fixed step and the process re-starts.

Morover, healthy subjects’ tests were conducted at Politecnico di Milano. Both Kinect-

only and Kinect-NAO configurations were experimented on 2 healthy adults to test gesture

recognition performances. 17 selected gestures were correctly performed. In Kinect-NAO

acquisitions, actions were performed mimicking the therapy protocol, complying with its

timings. So far, yes and no predictions were discarded even if offline they were properly

recognized. Yes and no are quite challenging movements for the Kinect to capture. In fact,

their characterizing movements are described by a small number of joints and a reduced

motion range (they involve only the head region) and would need a finer tracking system

to be correctly tracked only when intentionally performed.

In order to evaluate the online recognition, Accuracy, F1-score, Precision and Recall

were analyzed. Since in clinical acquisitions gestures were performed a different number of

times, the class distribution was uneven. For this reason, F1-score was a better measure

of the incorrectly classified cases than the accuracy metric.

Results and Discussion

The quantity and the different properties of movements (e.g. duration, range of motion)

used in IOGIOCO protocol made the learning process and the online implementation of

the recognition algorithm challenging. The overall choices made during the algorithm’s

development were of great importance to make it robust. The main algorithm settings

result are now reported.

Algorithm Specifications

Among the reference points experimented to achieve translation invariance, hip center

turned out to be the most stable joint to this purpose. Since it lies on the human body’s

sagittal plane, a generalization of the algorithm was possible by the mirroring of movements

VII



Figure 5: The mean of the Standard Deviation of different normalization’s segments for each class in

the Expanded Dataset is shown through two column charts.

performed. In this way, the algorithm was able to recognize gestures independently of the

dominant hand. For what concerns user invariance, results shown in Figure 5 pointed

out that the trunk size was the most stable length during the performance of an action

for almost all gestures. Thus, it was used as scaling value. From the two charts it’s

possible to notice that the most unstable segment during the performances of almost all

gestures was the height. This was due to Kinect system larger noise behaviour in feet and

ankles. Instead, head and trunk and shoulder-shoulder segments had a lower Standard

Deviation, since their computation does not involve the bottom part of the body. However,

these normalization’s segments were not the most stable ones due to head and shoulders

movements while performing gestures. The arm length’s mean of Standard Deviation was

quite the same for all actions, but still high. As a result, the trunk size turned out to be

the best solution, since is the least action-involved segment.

After data preparation, the best set of ResNet’s hyperparameters was used to train the

recognition algorithm. The best model, able to classify all the 19 gestures of IOGIOCO

therapy protocol, reached an offline test accuracy of 95%. Considering the wide gesture set

and the different temporal dynamics and duration of actions, this result was encouraging

in sight of online recognition.

Online Recognition

In order to analyze Kinect behaviour after NAO connection, FPS was recorded to evaluate
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the difference between Kinect-only and Kinect-NAO configurations. In Table 1 FPS’s

mean and variance are compared. As can be seen, Kinect-NAO configuration slowed down

Table 1: FPS mean and variance for Kinect-only and Kinect-NAO configurations.

Configuration FPS mean FPS variance

Kinect-only 50.48 14.65

Kinect-NAO 11 3.56

the frames’ capture by the camera. When performing gestures in front of Kinect camera,

Kinect-only FPS’s mean value was 50.48 fps while, with robot connection, the mean value

decreased to 11 fps. Taking into account these results, online settings were properly set

reducing the window size and step.

To monitor the trend of prediction’s vector probabilities, tall, hello and little gestures

were performed in Kinect-only configuration. Results are shown in Figure 6.
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Figure 6: Probability trends of the prediction vector when performing tall, hello and little gestures. The

step functions stand for the Ground Truth (GT) i.e. the temporal window in which the gesture was

performed.

As expected, when the movements were performed, the gesture-corresponding probability

increased. Note that in little gesture, since at the beginning of the action both limbs are

raised as in tall gesture, tall probability increased too.

Acquisitions

In Table 2, Accuracy, F1-score, Precision and Recall metrics of all the acquisitions are

reported.

Table 2: Metrics scores obtained by the assessment of the algorithm’s performances in different sets up.

Configuration Subjects Accuracy (%) F1-score (%) Precision (%) Recall (%)

Kinect-only 2 healthy adults 97 97 98 97

Kinect-NAO 2 healthy adults 94 94 95 94

Kinect-NAO 4 ASD children 82 83 89 82

It is worth to notice that recall scores are lower with respect to precision ones. This means

that there were reduced chances for an incorrect gesture to be recognized as a correct one,

which may be beneficial for therapy sessions.

Kinect-only acquisitions on two healthy subjects resulted in an overall accuracy of

97% and an F1 score of 97% for the 17 gestures selected. Instead, with Kinect-NAO
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Figure 7: Confusion matrix of healthy adult subjects’ acquisitions in Kinect-NAO configuration.

configuration, acquisitions resulted in an overall accuracy of 94%. Confusion matrix of

Kinect-NAO configuration for healthy subject acquisitions is shown Figure 7. As can be

seen, waiting gesture was confused with giving : in fact, the two movements have a similar

motion range. Moreover, actions like short or giving are similar gestures which can be

easily mistaken when performed by different subjects. For what concerns kissing gesture

mistaken with happy, keypoints’ files were analysed by plotting their joints’ coordinates

mimicking skeleton movements. It turned out that joints were captured by Kinect in a

wrong position, similar to happy gesture. The other two mistaken gestures highlighted the

importance of timings: the preformed movements started few seconds after NAO pointed

and the algorithm analyzed subject’s position before the actual execution of the gesture.

These results were promising, but it has to be taken into account that the subjects were

healthy adults performing gestures in a precise way. Considering the wide gesture set and

the different temporal dynamics and duration of actions, outcomes were encouraging in

sight of clinical applications.

For what concerns acquisitions in IOGIOCO therapy, during the first 4 weeks 2 out of

6 children successfully familiarized with NAO, accessing Level 2. The other 4 were also

able to reach Level 3 to test the recognition algorithm. Taking into account the broad

spectrum of conditions of ASD, depending on the child different engagement levels were

detected. NAO’s feedback was able to engage children’s attention, thus increasing their

interaction with the therapist and the robot itself. On the other hand, sometimes children

lacked of interest in interacting with NAO, thus, in these cases, it was difficult for them
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to keep up with the therapy’s exercises.

In the 4 children’s clinical acquisitions, F1-score resulted 83%. This F1-score was lower

than the 94% reached with the healthy subjects’ acquisitions, but it has to be pointed

out that the net was trained on a dataset mainly composed by healthy subjects (only 2

ASD adults out of 22), thus challenging the recognition task for ASD users. Moreover,

a lower number of acquisitions were done and not all gestures were tested in the clinical

context. Figure 8 reports the assessments of children’s performances during the therapy.

As can be seen from the confusion matrix, almost all actions were correctly recognized by

Figure 8: Confusion Matrix of the evaluated children’s performances during IOGIOCO therapy in a

clinical context.

the algorithm. For what concerns hungry gesture, from video analysis resulted that the

action was well executed by the child. However, the subsequent raising of the other hand

while performing the action made the algorithm recognize a double handed gesture.

Conclusions

This thesis demonstrated successfully the use of a gesture recognition algorithm for the

purpose of increasing ASD children engagement and empowering gestures’ learning by

means of a straightforward and robust feedback system within interactive games. The

classification system was tested on 2 healthy subjects and 4 children as part of IOGIOCO

therapy. Since ASD has a wide variation in type and severity of symptoms people can

experience, children had different ways of approaching the therapy, thus NAO. For this

reason, depending on the child, different engagement levels were detected. When children

were totally into the therapy, a robot feedback increased their attention and happiness

too. Otherwise, with a poor level of engagement, children struggled to comply with

IOGIOCO timings. This cases demonstrated the need of improving time settings by which

the recognition task starts. Another important aspect is the type of feedback the robot

provides. Customized stimuli may be more effective at eliciting skills learning. In point

of that, child-specific feedback might empower children’s social interaction. In order to
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improve the recognition, future work should also aim to update the existing dataset with

the collected acquisitions of both healthy subjects and ASD children. In this way, the

algorithm would learn to identify gestures differently performed by these users and could

be tested on more subjects. Furthermore, the implementation should also consider the

next challenging protocol’s levels, in which gesture teaching is inserted in a story-telling

scenario. Up to date, there is no unequivocal evidence of the effectiveness of this therapy.

Therefore, a Randomized Controlled Trial (RCT) would reduce biases when testing this

treatment’s efficacy.

.
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Sommario

Introduzione

Come riportato dall’Organizzazione Mondiale della Sanità, i Disturbi dello Spettro Au-

tistico (DSA) coprono una serie di deficit neuroevolutivi caratterizzati da difficoltà nello

stabilire relazioni sociali, nella comunicazione e nel linguaggio, con la presenza di compor-

tamenti ripetitivi e stereotipati. Si stima che nel mondo 1 bambino su 160 abbia DSA [1].

L’intervento nella prima infanzia è fondamentale per promuovere lo sviluppo e gli effetti

positivi a lungo termine. I bambini con DSA possono avere difficoltà a comunicare in

modo non verbale, ad esempio attraverso gesti, contatto visivo ed espressioni facciali [2].

La terapia standard si basa su interventi in ambito psico-sociale fondati sull’evidenza

medica che cercano di adattarsi all’esigenza di ogni bambino. Le terapie più recenti

si basano sulla Human-Robot Interaction (HRI) poiché i bambini con DSA focalizzano

più facilmente la loro attenzione su sistemi prevedibili come i robot, piuttosto che sugli

esseri umani. I bambini con DSA si sentono più a loro agio con i robot rispetto agli

esseri umani, che, invece, possono risultare difficili da capire [3]. La modalità “supervised

autonomy”, in cui il robot umanoide lavora in modo indipendente sotto la guida di un

supervisore è nota come RET [4]. In questo modo l’interazione terapista-robot-bambino

è favorita, facilitando la comunicazione tra il terapista e il bambino. Come osservato da

Sial et al. nel loro lavoro [5], un approccio collaborativo basato su giochi interattivi tra

un robot e bambini con DSA ha portato a risultati positivi in termini interazione sociale,

comunicazione e attenzione congiunta. Diversi studi hanno dimostrato che i deficit motori

sono una comorbidità prevalente nei soggetti con DSA [6], anche se attualmente non sono

inclusi nei criteri diagnostici dell’autismo. McAuliffe et al. [7] hanno osservato come queste

alterate capacità motorie potrebbero essere collegate a atipiche capacità di apprendimento.

In tal senso, i loro risultati supportano l’ipotesi che deficit nell’apprendimento tramite

imitazione di gesti possano avere un impatto sullo sviluppo sociale e motorio, poiché

l’apprendimento per imitazione è uno dei primi metodi con cui gli esseri umani imparano.

Di conseguenza, l’insegnamento tramite imitazione di gesti nelle RET potrebbe migliorare

le abilità sociali del bambino cos̀ı come lo spontaneo utilizzo di gesti [2]. RET carattrizzate

da una maggiore autonomia del robot sono importanti per alleggerire il carico di lavoro del

terapista e fornire terapie consistenti. In questo contesto, gli algoritmi di riconoscimento di

gesti possono essere utilizzati per classifcare l’azione svota dal bambino, in modo tale che

il robot ne valuti l’esecuzione tramite feedback. Un feedback appropriato aumenterebbe il

coinvolgimento dei bambini, rafforzando cos̀ı la robustezza della terapia.

Il riconoscimento delle azioni si basa su sistemi di acquisizione in grado di tracciare i

movimenti del corpo umano. I bambini con DSA sono particolarmente sensibili al tocco
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[8], quindi sistemi indossabili non sono utilizzabili anche se veloci, robusti e ricevono

informazioni direttamente dai movimenti degli utenti. Di conseguenza, molti approcci

prevedono l’utilizzo di dati RGB o di profondità da video sequenze o una combinazione

di questi due (RGB-D) per riconoscere le azioni. Tuttavia, i sistemi di acquisizione video

rendono il riconoscimento un compito arduo a causa di molti fattori quali occlusioni del

campo visivo della fotocamera, posizionamento della stessa e illuminazione. Tra i sistemi

di acquisizione video, le telecamere di profondità a basso costo come Microsoft Kinect v2

sono in grado di fornire un potente metodo di tracciamento del corpo umano in tempo reale

[9]. Di conseguenza, i dati relativi allo scheletro umano acquisiti dalla Kinect (coordinate

spaziali delle articolazioni) possono essere utilizzati nell’ambito del riconoscimento di gesti.

Gli approcci basati sul deep learning hanno ottenuto risultati promettenti nelle attività

di classificazione [10]. Nell’ambito del riconoscimento di azioni, le CNN sono le più utilizzate.

In particolare, le ResNet, che si basano sull’apprendimento di funzioni di errore (i.e.

residuali), sono una buona soluzione per estrarre con precisione le caratteristiche rilevanti

dai dati biomeccanici, consentendo un rapido training della rete e risolvendo il “vanishing

gradient problem”.

Poiché le reti imparano a riconoscere dai dati con cui vengono allenate, i dataset

di training influiscono sul loro comportamento. I più utilizzati sono dataset pubblici e

raramente creati da zero. I loro set di gesti sono solitamente selezionati da azioni della

vita quotidiana o sono specifici di un particolare contesto (come il Gaming 3D Dataset

[11]). Le parti del corpo coinvolte nelle azioni possono comprendere un singolo arto, solo

la parte superiore/inferiore del corpo o l’intero scheletro.

L’obiettivo principale di questo progetto di tesi è trovare un metodo adegua-

to per riconoscere automaticamente i gesti all’interno di una terapia robotica

(IOGIOCO) per bambini con DSA. Con l’integrazione dell’algoritmo di riconosci-

mento, l’efficacia del trattamento aumenta, mentre si alleggerisce il carico di la-

voro del terapeuta nell’interazione triadica terapeuta-robot-bambino. L’obiet-

tivo finale è implementare e testare un algoritmo online in un’applicazione cli-

nica per essere in grado di aiutare il terapeuta, promuovendo l’apprendimento

dei bambini.

Metodi

La terapia robotica IOGIOCO si basa su giochi di imitazione interattivi tra il robot umanoide

NAO e i bambini con DSA. Comprende 5 livelli e una valutazione finale e prevede

l’insegnamento di gesti comunicativi selezionati da attività di vita quotidiana. I 19 gesti

del protocollo sono: alto, arrabbiato, ascolta, aspetta, bacio, basso, dare, dove, fame, io,

cuccù, felice, s̀ı, no, grande, ciao, piccolo, puntare, vieni (Figura 9). L’algoritmo di

riconoscimento è inserito nella terapia dal Livello 3 in poi.

Il workflow dell’algoritmo di riconoscimento dei gesti ha coinvolto l’acquisizione dei

dati, l’elaborazione dei dati e la generazione di pose features per facilitare il processo di

apprendimento del classificatore, la classificazione con reti neurali e l’implementazione

online (Figura10).
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Figura 9: Alcuni gesti eseguiti da NAO: ascolta, arrabbiato, dove cuccù e bacio.

Figura 10: Workflow dell’algoritmo proposto.

Acquisizione di dati

Il metodo proposto utilizza la camera Kinect per acquisire dati poiché è necessario

un sistema di acquisizione video non intrusivo per monitorare i movimenti dei bambini

e del terapeuta. È in grado di catturare keypoints (coordinate 3D delle articolazioni)

consentendo un’analisi spaziale di ogni gesto.

Tre diversi dataset sono stati creati e utilizzati per lo sviluppo dell’algoritmo di ricono-

scimento dei gesti e sono di seguito elencati. Tra questi, gli ultimi 2 sono stati segmentati

manualmente.

1. Subsampled Healthy Dataset : dataset con 5 gesti – piccolo, ciao, puntare, vieni e s̀ı.

18 soggetti adulti sani hanno eseguito queste azioni con una ripetizione.

2. Healthy Dataset : dataset di 14 gesti composto da 18 soggetti sani, 9 adulti e 9

bambini. Il set di gesti includeva alto, arrabbiato, ascolta, aspetta, bacio, basso, ciao,

dare, dove, fame, grande, piccolo, puntare e vieni.

3. Expanded Dataset : dataset di 19 gesti composto da 22 soggetti, di cui 2 adulti con

DSA. Solo 11 soggetti del dataset hanno eseguito ogni tipo di azione. Il set completo

di gesti includeva alto, arrabbiato, ascolta, aspetta, bacio, basso, dare, dove, ciao,

cuccù, fame, felice, grande, io, no, piccolo, puntare, s̀ı, vieni.

Elaborazione dei dati

Le informazioni estratte dalla Kinect sono state elaborate. Un filtraggio è stato necessario

per ridurre il rumore di cui la Kinect è affetta. Poiché le coordinate erano riferite alla

telecamera, il sistema di riferimento è stato centrato rispetto al soggetto stesso. Sono

stati testati diversi punti di riferimento per ottenere invarianza alla traslazione. Inoltre,

poiché in questo progetto sono stati coinvolti adulti e bambini sani e soggeti con DSA con
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strutture fisiche differenti, è stata utilizzata una normalizzazione per ottenere invarianza tra

soggetti. È stata eseguita una normalizzazione fotogramma per fotogramma sui dati a causa

della bassa risoluzione spaziale sui dati di profondità [12] della Kinect e della posizione

indefinita del soggetto davanti alla telecamera, che potrebbero influenzare il valore di

normalizzazione non riflettendo le dimensioni reali del corpo umano. Questo approccio

ha permesso un aumento della robustezza del metodo di normalizzazione. Tuttavia, una

normalizzazione fotogramma per fotogramma potrebbe cambiare la lunghezza del segmento

di normalizzazione, calcolato come distanza euclidea, da un fotogramma a quello adiacente:

questo è vero soprattutto quando si tratta, ad esempio, del gesto s̀ı o di qualsiasi gesto

che coinvolga un piegamento in avanti del busto. Per indagare a fondo quanto questi

segmenti cambiassero da un fotogramma all’altro, per ogni classe di gesti è stata calcolata

la lunghezza media del segmento sulla sequenza video in ogni campione. Quindi un

confronto tra la variazione dei segmenti durante l’azione per ogni classe di gesti è stato

ottenuto mediante deviazione standard.

Inoltre, i dati Kinect sono stati organizzati secondo la biomeccanica al fine di evidenziare

la cinematica che caratterizza un particolare gesto in un unico campione. Poiché la parte

inferiore del corpo non era essenziale nel set di gesti, sono stati conservati solo i segmenti

della parte superiore del corpo. Per ottenere una rappresentazione efficace del gesto eseguito

e per mantenere le caratteristiche del movimento locale, le coordinate delle articolazioni

delle sequenze scheletriche della parte superiore del corpo sono state suddivise in set corporei

(due braccia e un tronco). I set sono stati riorganizzati dall’alto verso il basso secondo la

struttura fisica del corpo umano (prima testa e tronco, di seguito braccio destro e sinistro).

Pertanto, sono state generate matrici 3D per descrivere le azioni concatenando insieme

ogni fotogramma del movimento, composto da array di coordinate 3D delle articolazioni.

Pose Features

Dopo l’elaborazione dei dati, è stato effettuato un focus sul significato degli input della rete

neurale generando pose features in grado di descrivere la cinematica delle azioni eseguite.

La corretta preparazione di queste features potrebbe in qualche modo guidare il processo

di apprendimento del classificatore [13]. Per ottenere una pose feature, tutte le coordinate

3D (xk, yk, zk) di ogni frame Ft in una sequenza sono state scalate tramite una funzione

di normalizzazione N(·):

(x′k, y
′
k, z

′
k) = N(xk, yk, zk)

x′k =
(xk − xmin)

(xmax − xmin)
,

y′k =
(yk − ymin)

(ymax − ymin)
,

z′k =
(zk − zmin)

(zmax − zmin)
,

(3)

dove (x′k, y
′
k, z

′
k) sono le coordinate normalizzate del k-esimo keypoint, cmax(xmax, ymax, zmax)

e cmin(xmin, ymin, zmin) sono le coordinate di scala. Per standardizzare ogni classe di azio-

ne, sono state sperimentate diverse tecniche di normalizzazione dei gesti. I keypoints

sono stati ridimensionati sfruttando una normalizzazione gesto-indipendente. Pertanto, le

coordinate massime e minime di ciascun canale (x, y, z) di ogni sequenza di movimenti

sono state rilevate qualunque gesto eseguito e utilizzate come valori di scala. Inoltre, cmax
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e cmax sono state selezionate indipendentemente dalle articolazioni del corpo, quindi in

un volume di controllo comprendente il corpo intero. Queste coordinate di scala avrebero

potuto essere calcolate rispetto all’intero dataset utilizzato, ottenendo cos̀ı valori di norma-

lizzazione diversi per ciascuna classe nel set di gesti. Tuttavia, questo approccio sarebbe

stato specifico per il dataset, mentre una normalizzazione gesto-indipendente ha reso il

sistema dataset-indipendente.

Quando si usano le ANN e le uniche informazioni sul movimento disponibili sono i

dati scheletrici, una rappresentazione intermedia delle sequenze scheletriche può aiutare

nell’elaborazione dei dati e nella comprensione dei campioni da cui la rete deve imparare.

Pertanto, RGB pose features sono state ottenute trasformando lo spazio delle coordinate

nello spazio colore RGB, scalando ciascuna coordinata nell’intervallo [0, 255]. In que-

sto modo, la cinematica di ogni azione è stata preservata ed evidenziata da una nuova

rappresentazione visiva. Durante un movimento, uno spostamento nella direzione x è

rappresentato da una variazione della quantità di rosso, mentre uno spostamento nella

direzione y o z corrisponde a un cambiamento nel verde o blu rispettivamente. La figura

11 mostra il modo in cui viene generata una RGB pose feature.

Figura 11: Dalle sequenze scheletriche a RGB pose feature: ogni fotogramma Ft di una sequenza è stato

trasformato in un array 3D per essere concatenato in una matrice insieme agli altri. N indica il numero

di fotogrammi in ciascuna sequenza e K indica il numero di keypoints in ogni fotogramma. Quindi,

dopo la normalizzazione delle coordinate, viene applicato un ridimensionamento nello spazio colore

RGB, ottenendo cos̀ı una singola RGB pose feature che rappresenta il movimento. Sulla dimensione

orizzontale è mostrata la dinamica temporale, mentre la struttura spaziale (keypoints) è rappresentata

su quella verticale.

A partire da questa rappresentazione scheletrica, i dati sono stati ulteriormente elabo-

rati:

• Interpolazione temporale e ridimensionamento: poiché le CNN richiedono che gli

input abbiano la stessa lunghezza, sono stati testati diversi modi di interpolazione e

ridimensionamento;

• Enhanced Action Images: una tecnica di miglioramento del contrasto locale è stata

utilizzata per evidenziare ulteriormente le caratteristiche del movimento;

XVII



• Data Mirroring: poiché i gesti utilizzati nel training del modello sono stati eseguiti

con il braccio destro, il data mirroring è stato in grado di rendere il classificatore

indipendente dalla mano utilizzata per eseguire l’azione e di aumentare il dataset.

Classificazione

È stata implementata una rete Residual Network (ResNet) poiché è in grado di costruire

una rete neurale profonda senza il rischio di comprometterne le prestazioni. Ciò è possibile

grazie alle “skip connections”, che permettono alla rete di saltare il training di uno o più

layer. Inoltre, una funzione Softmax viene spesso utilizzata nell’ultimo layer della rete.

La funzione Softmax trasforma l’output numerico dell’ultimo layer lineare di una rete

neurale di classificazione multiclasse in un vettore di N probabilità, dove N è il numero

di classi. Perciò, l’output della ResNet è caratterizzato da un vettore che rappresenta la

distribuzione di probabilità di tutti i 19 gesti. Le pose features sono state utilizzate come

input. Al fine di valutare l’algoritmo di riconoscimento, è stato sfruttato un metodo di

convalida incrociata dei soggetti Leave-P-Out per il dataset più completo, l’ Expanded

Dataset, con 19 gesti. In questo modo, P su N soggetti nel dataset sono stati utilizzati per

il test e P−N per il training e la convalida del modello (P = 2 soggetti e N = 11 soggetti

dell’Expanded Dataset). Sono stati testati diversi iperparametri della rete per ottenere i

migliori risultati di riconoscimento possibili.

Riconoscimento online

Una volta ottenuto l’algoritmo offline, esso è stato implementato online. L’implementazione

online comprendeva due passaggi:

• Configurazione solo-Kinect: il modello è stato impostato e testato sul flusso di dati

continuo catturato dalla telecamera;

• Configurazione Kinect-NAO: il modello è stato impostato e testato con il robot.

Sono state sperimentate diverse impostazioni per tenere conto del comportamento della

Kinect con la connessione del robot. Per questo motivo, gli FPS della telecamera Kinect

sono stati valutati in entrambe le configurazioni per monitorare la frequenza dei fotogrammi,

poiché l’attività di riconoscimento si basava sull’acquisizione dei dati delle pose dello

scheletro.

Per sfruttare l’algoritmo di riconoscimento in una classificazione in tempo reale è stata

utilizzata una finestra scorrevole. Le pose features sono state calcolate e analizzate dal clas-

sificatore su una determinata finestra, caratterizzata da due parametri di configurazione:

dimensione e step. Una finestra con dimensione fissa in termini di numero di fotogrammi

è stata utilizzata sul flusso di dati continuo catturato dalla telecamera. Sono state spe-

rimentate diverse configurazioni per evitare il più possibile il ritardo tra la performance

dell’azione e l’output della classificazione. Per rilevare la presenza di un gesto, l’output di

probabilità condizionale più alto dal Softmax layer del classificatore è stato confrontato

con una soglia τ in [0,1]:

stato =

{
gesto, se probabilità > τ

nessun− gesto, se probabilità < τ
(4)

Quando la soglia di rilevamento è stata superata, il vettore di previsione delle probabilità

è stato salvato in un buffer. Quindi, la finestra si è mossa di uno step prefissato prima di
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Figura 12: Gesto vs nessun gesto. La fotocamera Kinect acquisisce i fotogrammi; quando la finestra

è piena con il numero corretto di frame (WS, dimensione della finestra), viene emessa una previsione.

Se la probabilità condizionale più alta supera la soglia, viene rilevato un gesto e il vettore di previsione

delle proabilità viene salvato nel buffer. La finestra scorre di uno step specifico e il processo si ripete.

prevedere di nuovo (Figura 12). Una volta che il buffer è stato riempito con N vettori di

previsione, l’algoritmo ha identificato il gesto eseguito con uno dei due possibili metodi:

• Calcolando la media delle probabilità dei vettori di previsione del buffer ;

• Controllando se tutte le previsioni del buffer fossero uguali.

Inoltre, nella configurazione Kinect-NAO, è stato implementato sul robot un feedback

sonoro positivo o negativo da fornire come output a seconda della valutazione delle presta-

zioni. Una volta implementato l’intero algoritmo, sono state eseguite nuove acquisizioni

per testare l’efficacia del nuovo metodo.

Acquisizioni

Infine, il nuovo algoritmo di riconoscimento di gesti è stato testato con nuove acquisizioni.

6 bambini con DSA di età compresa tra i 4 ei 6 anni sono stati coinvolti nel protocollo

terapeutico IOGIOCO al CARElab (Computer Assisited Rehabilitation) della Fondazione

Don Gnocchi. Dalla seconda settimana di acquisizioni è stato sperimentato il miglior

modello in grado di riconoscere 19 gesti. In queste acquisizioni, il terapista supervisionava

il livello decidendo il gesto da imitare e da insegnare al bambino. NAO eseguiva il gesto

selezionato e puntava verso il terapista, innescando cos̀ı la valutazione della performance del

terapeuta da parte dell’algoritmo. Dopo una finestra temporale di circa 10 secondi, il robot

forniva un feedback sonoro positivo o negativo dicendo ”Ben fatto!” o ”Dai, facciamolo di

nuovo!” rispettivamente. NAO indicava il bambino e il classificatore iniziava di nuovo la

sua valutazione.

Inoltre, al Politecnico di Milano sono stati condotti test su soggetti sani. Entrambe

le configurazioni solo-Kinect e Kinect-NAO sono state sperimentate su 2 adulti sani per
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testare le prestazioni di riconoscimento dei gesti. Nelle acquisizioni Kinect-NAO sono

state eseguite le azioni imitando il protocollo della terapia rispettandone i tempi. 17 gesti

selezionati sono stati correttamente eseguiti. Finora, le previsioni di s̀ı e no sono state

scartate anche se offline erano state correttamente riconosciute. S̀ı e no sono movimenti

piuttosto impegnativi da tracciare per la Kinect . Infatti, i loro movimenti caratterizzanti

sono descritti da un numero ridotto di articolazioni e da un raggio di movimento ridotto

(coinvolgono solo la regione della testa) e richiederebbero un sistema di tracciamento più

fine per essere correttamente tracciati solo se intenzionalmente eseguiti.

Al fine di valutare il riconoscimento online, sono stati analizzati Accuratezza, F1-score,

Precisione e Recall. Poiché nelle acquisizioni cliniche i gesti venivano eseguiti ognuno un

numero diverso di volte, la distribuzione delle classi era irregolare. Per questo motivo, l’F1-

score è stato una misura più rappresentativa dei casi classificati in modo errato rispetto

all’accuratezza.

Risultati e Discussione

La quantità e le diverse proprietà dei movimenti (ad esempio durata, range di movimento)

utilizzate nel protocollo IOGIOCO hanno reso difficile il processo di apprendimento e

l’implementazione online dell’algoritmo di riconoscimento. Le scelte complessive fatte

durante lo sviluppo dell’algoritmo sono state di grande importanza per renderlo robusto.

Vengono ora riportati i risultati delle impostazioni principali dell’algoritmo.

Specifiche dell’algoritmo

Tra i punti di riferimento sperimentati per ottenere l’ invarianza di traslazione, il centro

dell’anca si è rivelato l’articolazione più stabile a questo scopo. Poiché si trova sul piano

sagittale del corpo umano, il mirroring dei movimenti eseguiti ha permesso una generaliz-

zazione dell’algoritmo. In questo modo, l’algoritmo è stato in grado di riconoscere i gesti

indipendentemente dalla mano dominante. Per quanto riguarda l’invarianza tra soggetti,

i risultati mostrati in Figura 13, hanno evidenziato che la dimensione del tronco era la

lunghezza più stabile durante l’esecuzione di un’azione per quasi tutti i gesti. Pertanto,

è stato utilizzato come valore di scala. Dai due grafici è possibile notare che il segmento

più instabile durante l’esecuzione di quasi tutti i gesti è stato quello dell’altezza. Ciò era

dovuto al maggiore rumore del sistema Kinect per quanto riguarda le articolazionni dei

piedi e delle caviglie. I segmenti della testa-tronco e spalla-spalla avevano invece una de-

viazione standard inferiore, poiché il loro calcolo non coinvolge la parte inferiore del corpo.

Tuttavia, questi segmenti di normalizzazione non sono risultati i più stabili a causa dei

movimenti della testa e delle spalle durante l’esecuzione dei gesti. La deviazione standard

media della lunghezza del braccio era più o meno la stessa per tutte le azioni, ma comunque

alta. Di conseguenza, la dimensione del tronco si è rivelata la soluzione migliore, poiché è

il segmento meno coinvolto nell’azione.

Dopo la preparazione dei dati, il miglior set di iperparametri per la ResNet è stato

utilizzato per allenare l’algoritmo di riconoscimento. Il miglior modello, in grado di classi-

ficare tutti i 19 gesti del protocollo terapeutico IOGIOCO, ha raggiunto una precisione di

test offline di 95%. Considerando l’ampio set di gesti e le diverse dinamiche temporali e

durate delle azioni, questo risultato è stato incoraggiante in vista del riconoscimento online.

Riconoscimento Online

Per analizzare il comportamento della Kinect dopo la connessione del robot, sono stai

analizzati i FPS per valutare la differenza tra le configurazioni solo-Kinect e Kinect-NAO.
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Figura 13: La media della deviazione standard lungo i frame di diversi segmenti di normalizzazione su

tutti i campioni nell’Expanded Dataset è mostrata attraverso due grafici a colonne.

Nella tabella 3 vengono confrontate la media e la varianza dei FPS. Come si può vedere,

Tabella 3: Media e varianza FPS per le configurazioni solo Kinect e Kinect-NAO.

Configurazione FPS mean FPS variance

solo Kinect 50.48 14.65

Kinect-NAO 11 3.56

la configurazione Kinect-NAO ha rallentato l’acquisizione dei fotogrammi da parte della

telecamera. Durante l’esecuzione dei gesti, il valore medio di FPS di Kinect era di 50.48 fps

mentre, con la connessione del robot, il valore medio scendeva a 11 fps. Tenendo conto di

questi risultati, i settung online sono stati impostati adeguatamente riducendo dimensione

e step della finestra.

Per monitorare l’andamento delle probabilità dei vettori di previsione, i gesti alto, ciao

e piccolo sono stati eseguiti nella configurazione solo-Kinect. I risultati sono mostrati nella

Figura 14.

Come previsto, quando sono stati eseguiti i movimenti, la probabilità corrispondente al

gesto è aumentata. Nota che nel gesto piccolo, poiché all’inizio dell’azione entrambi gli

arti sono sollevati come nel gesto alto, aumenta anche la probabilità di alto. Acquisizioni
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Figura 14: Andamento delle probabilità dei vettori di previsione quando si eseguono i gesti alto, ciao e

piccolo nella configurazione solo-Kinect.

Nella tabella 4, vengono riportate le metriche Accuratezza, F1-score, Precisione, Recall di

tutte le acquisizioni.

Tabella 4: Punteggi delle metriche ottenuti dalla valutazione delle prestazioni dell’algoritmo in diverse

configurazioni.

Configurazione Soggetti Accuratezza (%) F1-score (%) Precisione (%) Recall (%)

solo-Kinect 2 adulti sani 97 97 98 97

Kinect-NAO 2 adulti sani 94 94 95 94

Kinect-NAO 4 bambini DSA 82 83 89 82

Si può notare che i punteggi di Recall sono inferiori rispetto a quelli di Precisione. Ciò

significa che c’erano ridotte possibilità di riconoscere un gesto errato come corretto, il che

può essere utile per le sessioni di terapia.

Dalle acquisizioni solo-Kinect su due soggetti sani si è ottenuta un’ acuratezza com-

plessiva di 97% e un F1-score di 97% per i 17 gesti selezionati. Invece, con la configura-

zione Kinect-NAO, l’accuratezza complessiva era di 94%. La matrice di confusione della

configurazione Kinect-NAO per acquisizioni di soggetti sani è mostrata nella Figura 15.

Come si può vedere, il gesto di aspetta è stato confuso con dare: i due movimenti,

infatti, hanno un range di volume d’azione simile. Inoltre, azioni come basso o dare

sono gesti simili che possono essere facilmente confusi se eseguiti da soggetti diversi. Per

quanto riguarda il gesto bacio scambiato con felice, sono stati analizzati i file dei keypoints

tracciando le coordinate delle loro articolazioni che imitano i movimenti dello scheletro.

Da questa analisi è risultato che le articolazioni sono state tracciate dalla Kinect in modo

errato, simile al gesto felice. Gli altri due gesti confusi hanno evidenziato quanto siano

importanti le tempistiche: i movimenti eseguiti sono iniziati pochi secondi dopo che il robot

ha puntato e l’algoritmo ha analizzato la posizione del soggetto prima dell’esecuzione del

gesto vero e proprio. Nell’insieme, i risultati sono promettenti, ma bisogna tener conto che

i soggetti erano adulti sani che eseguivano gesti in modo preciso. Considerando l’ampia

gamma di gesti e le diverse dinamiche temporali e la durata delle azioni, i risultati sono

stati incoraggianti in vista delle applicazioni cliniche.

Per quanto riguarda le acquisizioni nella terapia IOGIOCO, durante le prime quattro

settimane 2 bambini su 6 hanno familiarizzato con successo con NAO, accedendo al Livello
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Figura 15: Matrice di confusione delle acquisizioni di soggetti adulti sani nella configurazione Kinect-

NAO.

2. Gli altri 4 sono stati anche in grado di raggiungere il Livello 3 per testare l’algoritmo

di riconoscimento. Tenendo conto dell’ampio spettro dell’autismo, a seconda del bambino

sono stati rilevati diversi livelli di coinvolgimento. Il feedback del robot è stato in grado di

promuovere l’attenzione dei bambini, aumentando cos̀ı la loro interazione con il terapeuta

e il robot stesso. D’altra parte, a volte i bambini non erano interessati a interagire con il

robot, quindi, in questi casi, è stato difficile per loro tenere il passo con gli esercizi della

terapia.

Nelle acquisizioni cliniche di 4 bambini, l’ F1-score ha raggiunto 83%. Questo F1-score

era inferiore al 94% raggiunto con le acquisizioni su soggetti sani, ma va sottolineato che

la rete è stata allenata su un dataset composto principalmente da soggetti sani (solo 2 ASD

adulti su 22 soggetti), rendendo più complesso il compito di riconoscimento per gli utenti

con DSA. Inoltre, è stato effettuato un numero inferiore di acquisizioni e non tutti i gesti

sono stati testati nel contesto clinico. La figura 16 riporta le valutazioni delle prestazioni

dei bambini durante la terapia.

Come si può vedere dalla matrice di confusione, quasi tutte le azioni sono state cor-

rettamente riconosciute dall’algoritmo. Per quanto riguarda il gesto fame, dalla video

analisi è emerso che l’azione è stata effettivamente ben eseguita dal bambino. Tuttavia,

il successivo sollevamento dell’altra mano durante l’esecuzione dell’azione ha fatto s̀ı che

l’algoritmo riconoscesse un gesto a due mani.

Conclusioni
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Figura 16: Matrice di confusione delle prestazioni dei bambini valutati durante la terapia IOGIOCO in

un contesto clinico.

Questa tesi ha dimostrato con successo l’uso di un algoritmo di riconoscimento dei gesti allo

scopo di aumentare il coinvolgimento dei bambini con DSA e promuovere l’apprendimento

dei gesti per mezzo di un robusto sistema di feedback all’interno di giochi interattivi. Il

sistema di classificazione è stato testato su 2 soggetti sani e 4 bambini come parte del

protocollo terapeutico IOGIOCO. Poiché l’autismo è caratterizzato da un ampio spettro nel

tipo e nella gravità dei sintomi, i bambini avevano modi diversi di approcciarsi alla terapia

IOGIOCO, quindi a NAO. Per questo motivo, a seconda del bambino, sono stati rilevati

diversi livelli di coinvolgimento. Quando i bambini erano totalmente coinvolti nella terapia,

il feedback di NAO aumentava anche la loro attenzione e felicità. Altrimenti, quando il

livello di coinvolgimento nella terapia era scarso, i bambini hanno faticato a rispettare

le tempistiche del protocollo terapeutico. Questi casi hanno dimostrato la necessità di

migliorare le impostazioni dell’istante in cui inizia l’attività di riconoscimento dell’algoritmo

all’interno del protocollo. Un altro aspetto importante è il tipo di feedback fornito dal robot.

Gli stimoli personalizzati possono essere più efficaci per promuovere l’apprendimento. In

tal senso, feedback specifici per ogni bambino potrebbero potenziarne l’ interazione sociale.

Per migliorare il riconoscimento, il lavoro futuro dovrebbe anche mirare ad aggiornare il

dataset esistente con le acquisizioni raccolte sia di soggetti sani sia di bambini con DSA.

In questo modo, l’algoritmo imparerebbe a identificare i gesti diversamente eseguiti da

questi utenti e potrebbe essere testato su più soggetti. Inoltre, l’implementazione dovrebbe

anche considerare i livelli successivi del protocollo, più complessi e impegnativi, in cui

l’insegnamento dei gesti è inserito in uno scenario di narrazione. Ad oggi, non ci sono

prove inequivocabili dell’efficacia di questa terapia. Pertanto, uno studio randomizzato

controllato (RCT) ridurrebbe gli errori durante il test dell’efficacia di questo trattamento.
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Chapter 1

Introduction

1.1 Motivation

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterised by some

degree of impaired social behaviour, communication and language and a narrow range of

interests and activities that are both unique to the individual and carried out repetitively,

as the World Health Organization (WHO) states.

In the past few decades, studies have demonstrated that ASD occurs globally, and that

the numbers of recorded cases are rising. There are many possible explanations for this

apparent increase, including improved awareness, expansion of diagnostic criteria, better

diagnostic tools and improved reporting. It is estimated that worldwide 1 in 160 children

has ASD [1].

The aetiology of ASD is still being studied and, despite years of research, a complete

understanding of the causative factors is still elusive. Despite the awareness that genetics

may play a big role in ASD, a rapidly increasing prevalence suggests a bigger role of

environmental factors [14]. Intervention during early childhood is important to promote

the optimal development and well-being of people with an ASD.

Gold-standard treatments focus on the delivery of evidence-based psycho-social inter-

ventions, such as behavioural treatments and skills training programs. Newest interventions

exploit Robot-Assisted Therapy (RAT); in fact, some studies in the literature show that

people with ASD are more comfortable with rule-based and predictable systems rather

than human beings, which are perceived as hard to understand and even frightening [3].

RAT enables embodied interactions through an increasing in the engagement and atten-

tion, a decreasing in social anxiety and the maintenance of simplicity and predictability

[4]. Besides possibly experiencing difficulties developing and understanding language skills,

children with ASD may have difficulty communicating non-verbally, such as through hand

gestures, eye contact, and facial expressions [2]. As observed by Sial et al. in their work [5],

a collaborative approach based on interactive games between a robot and ASD children

has produced positive results in terms of therapeutic outcomes such as social interaction,

communication, joint attention and turn taking. Studies have shown that motor impair-

ments are a prominent comorbidity within the ASD phenotype [6], even though they are

not currently included in the diagnostic criteria of autism. McAuliffe et al. [7] explored



how these altered motor ability might be linked to an atypical skills learning. In point

of that, their results supports the hypothesis that a poor imitative gestural learning can

impact social and motor development, since learning via imitation is a prime method by

which humans acquire skills. Also [15] reports that children with ASD exhibit significant

impairments both in imitation of gestures as well as in their spontaneous use, which have

been found to be related to the development of social interaction. These findings suggest

that teaching gesture imitation may improve the child’s social skills and even language

development [16] as well as spontaneous gesture use [17].

1.2 Goal

This thesis’ project focuses on the implementation and testing of an online gesture recog-

nition algorithm to be used in a robot-therapy environment for children with autism. This

thesis is integrated in a bigger project promoted by CARELab in Fondazione Don Gnocchi

Milano, called IOGIOCO. IOGIOCO robot therapy aims to empower ASD children with

gestures meaningful from the communicative point of view (transitive and intransitive

gestures). The humanoid robot NAO should react properly to children’s movements when

interacting with them and support therapist’s work in the Therapist-Robot-Child triad.

Thus, the principal aim of this work is to develop an automatic method to classify the

action performed and assess users’ performances. The proper feedback should be a trigger

to increase children’s engagement while complying with protocol’s timings. The final goal

is to integrate the algorithm in the therapy to be able to help therapist’s work, promoting

children’s learning.

1.3 Overview

To achieve the goal, a Residual Network (ResNet) was exploited since artificial neural

networks are widely used in recognition tasks [10]. Both Offline and Online recognition

systems were implemented.

Firstly, the net was designed and tested offline with previous data acquisitions. The

chosen method exploits Kinect camera acquisitions since a non-intrusive vision-based

capturing system is required to monitor children with autism, which are particularly

sensible to the touch, thus wearable systems would be unfeasible. These acquisitions

included several gestures performed mainly by healthy subjects. The net had to learn from

data first and apply this knowledge to new one then. Inputs’ characteristics and processing

are essential when dealing with ANN, since they are the most reality-related part. In fact,

even though the way nets learn it is not well understood, a proper data preparation will

drive the learning process [13]. Thus, the information extracted from Kinect was processed.

Filtering was necessary to reduce noise by which Kinect is affected. Since coordinates

are referred to the Kinect, the reference system was centered with respect to the subject

himself. To achieve user-invariance properties, different frame by frame normalizations were

experimented and evaluated by the analysis of the body scaling segments’ variation during

the performance of the action. After, pose features were generated: joints’ coordinates of

skeleton sequences were rearranged according to the physical structure of the human body

to get an effective representation of the action. In addition, when using ANN and the
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only available motion features are skeletal data, an intermediate image representation of

skeletal sequences can help in data processing and in exploring the samples the net has to

learn from. Therefore, RGB pose features were obtained by transforming the coordinate

space into RGB color space. Starting from this skeleton-based representations, further

data processing was implemented.

When data preparation was concluded and properly adapted to this project’s goal, the

choice of a suitable classification method was essential. Residual learning (based on the

learning of error functions) turned out to be a good solution to extract with precision

relevant features from biomechanical sequences, because of its fast training process and its

ability of resolving the vanishing gradient problem.

Once the algorithm was established offline, an online implementation was designed to

be integrated in the robot therapy. Different settings were experimented to comply with

protocol timings and to take into account Kinect behaviour with robot connection.

Finally the new gesture recognition algorithm was tested: healthy subjects’ tests were

conducted at Politecnico di Milano and 6 ASD children were involved in IOGIOCO therapy.

The thesis demonstrated successfully the use of the gesture recognition algorithm for

the purpose of increasing ASD children engagement and empowering gestures learning.

The results obtained with healthy adults and autistic children were quite encouraging, and

pave the way to new developments in the near future.

1.4 Thesis structure

The current thesis is organized as follows: first, the literature related to this work is

reviewed and analyzed in Chapter 2. The keywords used in the literature search involved

the concepts of autism, robot therapy and gesture recognition.

In Chapter 3, the gesture recognition algorithm is presented. IOGIOCO protocol and

the datasets used are described. The methods used in this work are outlined, starting

with Data processing and Pose Feature overview. Classification, Online Recognition and

Acquisitions are then detailed.

In Chapter 4 Data processing’s results and offline models are presented. Furthermore,

Online settings and two healthy subjects’ acquisitions results are reported. Moreover, the

acquisitions carried out at CARElab with ASD children are exposed.

Then, in Chapter 5, overall results of both gesture recognition algorithm and acquisitions

are analyzed and discussed.

Finally, in Chapter 6 final conclusions are pointed out and several directions for future

improvements and research challenges are outlined.
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Chapter 2

State of the Art

2.1 Autism

Autism Spectrum Disorders (ASDs) are a group of neuropsychiatric disorders characterized

by deficits in social communication as well as by the presence of restricted interests and

stereotyped and repetitive behaviors [18]. There is no cure, the causes are still unknown

and symptoms vary from patient to patient.

The prevalence of ASD has been increasing in the past two decades: it is now 1 in

54 children based on 2016 data, up from 1 in 60 in 2014 [19]. Increased ASD screening

frequency in children and adults, better diagnostic criteria and more accurate behavioral

and neuro-psychological scales may all have also contributed to the steady rise in the

prevalence of ASD. The spectrum of symptoms can be very broad: deficit in sharing

emotions or affect, failure to response to external stimuli, difficulties in understanding

situations and relationships or to suit to different social contexts. Stereotyped movements

or behaviours, difficulties in the adherence to routine and hyper- or hypo-reactivity and

interest in unusual external stimuli may often be present too. Those symptoms can be

accompanied by intellectual and language impairment or not [20].

ASD is diagnosed when a patient demonstrates at least three symptoms in the domain of

social communication and at least two symptoms of restricted interests/repetitive behaviors.

Assessment instruments include parent/caregiver interviews, patient interviews, direct

observation of patients and detailed clinical assessments [21].

Heterogeneities in etiology, phenotype and outcome are hallmarks of ASD. The subse-

quent clinical variety shows different levels of deficits or impairments in behavioral features

and communicative functioning [20]. Heterogeneity is mainly due to environmental factors,

but also to gender, multiplicity of genes involved and genetic variability. Gender distribu-

tion seems to have a role in ASD since there is a prevalence of 3 males diagnosed to every 1

female [22] and genetic architecture in ASD varies substantially from single mutation being

enough to cause ASD, to an accumulation of over one thousand low-risk alleles [23]. Even

comorbidities highlight and complicate the heterogeneity of ASD. Comorbid psychopatholo-

gies include anxiety, depression, Attention Deficit Hyperactivity Disorder (ADHD) and

intellectual disability. Moreover, medical comorbidities include seizures, sleep difficulties,

gastrointestinal disorders, mitochondrial dysfunction and immune system abnormalities

[20].



Few studies have been conducted to understand how symptom description, interpre-

tation, and acceptance of ASD may vary along different population, but evidence has

suggested that culture influences the diagnostic process, intervention services provided

and the outcome for an individual with autism. Therefore, treatment options have to

be set accordingly to a specific goal [24]. Other factors contributing to the difficulties in

identifying efficacious treatments include small sample sizes, the lack of significantly im-

paired study participants, highly variable study samples, which reduce the potential effect

size of an intervention, and the use of outcome measures that are not uniformly adopted.

Behavioral interventions undertaken early in life, using an intensive delivery format, are

considered the current gold-standard treatment for behavioral symptoms associated with

ASD. Alternatively, only two pharmaceuticals were approved by the US Food and Drug

Administration (FDA), risperidone and aripiprazole [20]. Recently, new therapies involve a

variety of equipment to improve cognitive skills and social interaction of ASD children such

as tablets for different games, computer used with joystick and mouse, mobiles and socially

assistive robots. All of these interventions aim to increase the children concentration and

improve features like eye contact, eye blink rate, response time, task repetition, proximity

with peers in terms of distance, joint attention, turn taking and communication [5].

2.2 Robot Therapy

The challenges faced by people with autism when interacting with others are characterized

by confusion, fear or basic misunderstanding of emotions. They have difficulties using and

understanding verbal and non-verbal communication, recognizing and properly reacting to

other people’s feelings [3].

In contrast, autistic people cope well with rule based, predictable systems such as

computers. Recent developments have shown the advantages of using humanoid robots

for psycho-educational therapy. Children with autism feel more comfortable around such

robots than humans, who may be perceived as hard to understand and sometimes even

frightening. Thus, most studies are based on remote controlled Human-Robot Interaction

(HRI) [3]. Different structured scenarios based on activity or a physical play between a

socially assistive robot and ASD children have produced results in the communication and

social behavior of the children [5].

Robot-Assisted Therapy (RAT) enables embodied interactions, such as increasing en-

gagement and attention and decreasing social anxiety. During a child-robot interaction,

robots can simultaneously provide social cues while maintaining simplicity and predictabil-

ity. The robots used in RAT differ in their appearances, ranging from mobile platforms to

humanoid robots [4]. Furthermore, recent researches report how humanoid robots can help

to increase bodily awareness of children with autism [25]. Despite the promising results

of RAT, most of the studies are exploratory and have methodological limitations, such as

a low number of participants or failures to comply with therapy protocols [4]. Robots for

autism therapy can play different roles: demonstrators and guides of the interaction, toys

responding to the child, mediators of the social behavior between the child and others. To

this purpose, a robot can verbally ask the child to perform certain behaviors, assist the

child in predetermined play scenarios, or move autonomously in order to let the child start

an imitation task or free-play interactions by himself/herself. More frequently, a therapist
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or teacher guides the child through robotic interactions, for instance by asking the child to

touch the robot or to imitate the robot’s behavior [26]. The different roles assumed by the

robot during RAT are correlated with specific control paradigms: Wizard of Oz (WoZ),

full autonomy and supervised autonomy (Figure 2.1). Most RAT studies are limited to

Figure 2.1: Robot control paradigms [4].

the WoZ technique in which robots are remotely controlled by a human operator, without

the knowledge of the child. Increase the level of robot autonomy in RAT research is impor-

tant in order to decrease the human workload and to deliver consistent therapies. In the

full autonomy control paradigm the robot makes decisions and adapts its actions to any

situation by itself. Since the robot’s action policies cannot be perfect and its behaviours

must be compliant with the therapeutic goals, interaction context and state of the child,

this paradigm is not feasible and can raise some critical ethical concerns. Therefore, a

“supervised autonomy” in which the robot works independently toward achieving given

therapeutic goals under a supervisor’s guidance is suitable and known as RET. The robot

is provided with the information necessary to select its next actions within well-defined

constraints under the supervision of a therapist [27]. For instance, in the semi-autonomous

implementation of Kaspar robot by Zaraki et al. [28], the robot played four individual

games with two children and a joint game with a pair of children while a researcher was

sitting next to the robot to facilitate the interaction by evaluating the robot’s behaviour

and giving the final permission for the robot to display the behaviours recommended by

the system.

As observed by Sial et al. in their work [5], a collaborative approach based on interac-

tive games between a robot and ASD children has produced positive results in terms of

therapeutic outcomes such as social interaction, communication, joint attention and turn

taking. Studies have shown that motor impairments are a prominent comorbidity within

the ASD phenotype [6], even though they are not currently included in the diagnostic

criteria of autism. McAuliffe et al. [7] explored how these altered motor ability might be

linked to an atypical skills learning. In point of that, their results supports the hypothesis

that a poor imitative gestural learning can impact social and motor development, since

learning via imitation is a prime method by which humans acquire skills. As a conse-

quence, imitation skill training should be included in intervention programs [2]. In this

context, robotic technologies have been shown to be valuable tools for ASD therapies

7



[29, 30]. Thanks to gesture classification algorithms, robots are able to provide feedback

with the aim of increasing the engagement of children in the gesture imitation programs.

Storytelling is one of the systematic intervention for ASD children to learn gestures via

imitation. Storytelling has demonstrated promising results in improving social perception,

social and cognitive skills and interactions [30, 31, 2]. Many research studies suggested

that robots can help in storytelling activity [30], but it’s important to underline that this

kind of therapy is not standardized. According to [31], the main goals are:

• provide social support, establishing confidence and reducing stress;

• create a pleasant environment (facilitate social play);

• establish a dynamic model of social interaction (social interaction peers);

• strengthen motivation, increasing personal initiative;

• improve communication;

• use non-verbal communication (improve eye contact, facial expressions and gestures);

• engage in play, developing imitation;

• develop empathy;

• support active learning, encouraging participation;

• integrate targeted behaviors into learning.

In the context of gesture recognition and imitation training, following the structure pro-

posed by Duarte et al. [2], the story follows a linear structure with an introduction, a

mid point and a conclusion. While in the first part the scenario is introduced, in the mid

point the gesture is shown (by the therapist or by the robot) and imitation training starts.

In the conclusion, a reinforcement is given depending on the performance of the child

(e.g. waving back if the child performed well) [2]. This reinforcement could be triggered

automatically thanks to a gesture recognition system able to evaluate the performance

of the child by means of gesture classification. During the session, the therapist selects

a gesture or a skill to be learned and also an appropriate story. The therapist controls

the transitions of each part of the therapy: when clarification is needed (e.g the child is

distracted by other stimuli), the story can be played back. In this way, it is possible to

improve imaginative abilities and social competences through gestures representing social

skills such as: pointing, showing, giving, clapping, waving etc. [2]. However, a more

extensive intervention could be necessary in order to facilitate the transfer of skills to ADL

[31]. Moreover, it is important to take into account that children with ASD can perform

the gestures with certain shades/nuances that make it challenging for gesture recognition

systems to recognize the movement and it can also be hard to evaluate child’s performance.

For instance, it is common that the waving/goodbye gesture is performed with the child’s

palm of the hand facing himself instead of the person he/she is waving to or the child

raises the arm without waving: in these cases his performance has to be considered very

positive, even if the gesture was not correctly executed [2].

8



2.3 Gesture Recognition System

The word “gesture” refers to any non-verbal communication, intended to deliver a specific

message. In the field of gesture recognition, a gesture is described as any physical movement

with a dynamics executed over time that can be interpreted by a sensor. The general

definition of gesture recognition is the ability of a computer to understand gestures and

to execute commands based on those gestures. In this context, recognition can follow four

different steps: Data Acquisition, Data Processing, Feature Extraction and Classification

[2]. A focus on the way Online Recognition can be implemented can be carried out.

2.3.1 Data Acquisition

The first step consists in data extraction, which converts the physical gesture to numerical

data. Online recognition tasks depend on data acquisitions instruments. In vision-based

capturing systems, the gesture is identified by a camera and the main advantage is that

they allow the natural execution of the subjects’ movement. On the other hand, the

main drawbacks are the complexity of processing and the camera field. Since children with

autism are particularly sensible to the touch [8], wearable systems would be unfeasible, even

if they are fast, robust and receive information directly from users’ movements. Microsoft

Kinect cameras are the most used tools (Figure 2.2). These tools are a combination of an

RGB camera and a depth sensor. In the first version, the depth sensor used an infrared

technology while in the second version it uses time-of-flight technology to create 3D images.

Due to the 3D pose estimation algorithms intrinsic to the Kinect camera, it is able to

estimate the joint 3D positions of two people in front of the camera, called skeleton points

(Figure 2.3).

Figure 2.2: Kinect Joint Map.

Therefore, the data extracted from a Kinect camera can be of three types: arrays

of skeleton points [2, 32, 9, 33, 34], RGB-Depth images [3] or a combination of both

[35, 36, 11].

Datasets

When comparing results in literature, the type of datasets used must be taken into account

in sight of the development of a classification system. Du et al. [35] evaluate their model

on both Berkeley Multimodal Human Action Dataset (Berkeley MHAD) and ChaLearn

dataset. Berkeley MHAD is characterized by 11 actions performed by 12 subjects formed

by movements in both upper and lower extremities or by movements with high dynamics

in upper or lower extremities. Furthermore, the subjects were given instructions on what

action to perform; however no specific details were given on how the action should be
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Figure 2.3: Kinect Joint Map

executed. On the other hand, ChaLearn gesture recognition dataset is made of 27 people

performing 20 Italian gestures. Hou et al. [11] experimented their work on three public

datasets: MSRC-12 Kinect Gesture Dataset contains 12 gestures involving all the body

parts performed by 30 subjects previously coached on how to perform each gesture, Gam-

ing3D Dataset is formed by 10 subjects performing 20 gaming actions while UTD-MHAD

dataset is characterized by 27 actions performed by eight subjects (four females and four

males) with each subject performing each action four times. Mathe et al. [37] evaluate

their approach on a real-life dataset of 10 users with 5 samples per 10 gestures, which

involved the upper body part only. In this case, the subjects were provided only with an

intuitive description of the way gestures should have been performed. Zhang et al. [38]

experimented their recognition method on two public datasets: ChaLearn LAP largescale

isolated gesture dataset (IsoGD) and Sheffield Kinect Gesture dataset (SKIG). IsoGD

is made of 249 kinds of gestures performed by 21 individuals, while SKIG contains 10

categories of hand gestures and all gestures are performed by 6 individuals with 3 kinds of

hand postures under 2 illumination conditions and 3 backgrounds. Wang et al. [36] used

three datasets: NTU RGB+D dataset, SBU Interaction dataset and ChaLearn Gesture

Recognition dataset. NTU RGB+D dataset is made of 60 different all body-actions per-

formed by 40 different subjects, SBU Interaction dataset includes 8 activities performed by

714 participants and ChaLearn Gesture Recognition dataset contains 20 Italian gestures

performed by 27 different people. In the end, Pham et al. [9] exploited MSR Action 3D

dataset and KARD dataset. MSR action dataset contains 20 different Activities of Daily

Living (ADL) performed by 10 subjects for three times while KARD dataset contains 18

ADL performed by 10 different subjects. In testing their model, they divided both datasets

in 3 subsets of 8 actions each. Table 2.1 summarizes the most used datasets.

2.3.2 Data Processing

Regarding data processing, different techniques are widespread used, being the most com-

mon: the normalization of the skeleton’s size and video pre-segmentation. The first one
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Table 2.1: Datasets’ Comparison.

Cite Dataset gestures Body parts

[35]
Berkeley MHAD 11 all

ChaLearn 20 all

[11]

MSRC-12 Kinect Gesture Dataset 12 all

Gaming3D Dataset 20 all

UTD-MHAD 20 all (but mainly upper body)

[37] real-life dataset 10 upper body

[38]
ChaLearn IsoGD 249 all

SKIG 10 hand

[36]

NTU RGB+D 60 all

SBU Interaction 8 all

ChaLearn 20 all

[9]
MSR 20 all

KARD 18 all

[33]

MSR 20 all

KARD 18 all

NTU RGB+D 60 all

[34]

MSR 20 all

KARD 18 all

NTU RGB+D 60 all

SBU Interaction 8 all

acts on skeleton’s coordinates: since different users have different physical characteristics

(height, limb length) and might be standing at different distances from the capturing de-

vice, the coordinates are scaled with respect to the skeleton height (in order to compare

skeletons with the same size) and centered with respect to a reference point (e.g. hip joint

or neck joint) to set it as the origin [2, 3]. On the other hand, video pre-segmentation

allows to isolate the gesture by manually trimming the frames that do not contain the

movement [2, 32].

2.3.3 Features

The third step characterizes gestures, recurring to specific features describing the kinematics

of actions executed. Marinoiu et al. [3] exploited both 2D and 3D pose features (Figure 2.4).

The first ones were characterized by 2D body joints locations. Even though good accuracy

and speed were obtained, 2D information might be insufficient for actions’ interpretation,

as the depth information could be crucial. That is why, subsequently, 3D human skeletons

were extracted from Kinect disregarding the temporal information. Papadakis et al. [32]

used signal images, based on the creation of 2D images by concatenation of 1D signals

which captured the 3D motion of human skeletal joints over space and time. Different

transformations were applied for the creation of “activity” images (e.g. Discrete Fourier

Transform (DFT), Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT) and

Discrete Sine Transform (DST)) (Figure 2.5). Wang et al. [36] chose “Joint Trajectory
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Figure 2.4: Examples of 2D and 3D pose reconstruction. From left to right: 2D joint position estimates,

3D pose estimation, projection of the inferred shape model overlaid on the original image and inferred

3D shape model [3].

Figure 2.5: (a) A signal image; activity image resulting upon (b) DFT; (c) FFT; (d) DCT; (e); DST.

[32].

Maps” in order to encode the motion information into texture patterns by setting saturation

and brightness; similarly, Hou et al.[11] encoded the temporal variation changing the hue

channel in the construction of “skeleton optical spectra” (Figure 2.6). On the other hand,

Figure 2.6: Joints at different time-stamps have different colors reflecting the temporal order. [11].

Du et al. [35] and Pham et al. [9] employed coordinate projections on three orthogonal

planes represented as three RGB components (Figure 2.7).

Once the features are selected, further processing can be carried out. As a further

step for characterizing gestures, Pham et al. [34] proposed a method to enhance the local

patterns of their RGB representations through an Adaptive Histogram Equalization (AHE),

which is able to enhance the contrast of an RGB representation locally. As an Histogram

Equalization technique, AHE adjusts the gray level of an image according to its probability
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Figure 2.7: Three components of all skeleton joints in each frame are separately concatenated by

their physical connections. After arranging the representations of all frames in chronological order, the

generated matrix is quantified and normalized into an image [35].

distribution function and enlarges the dynamic range of the gray distribution to improve

visual effects [39]. In fact, to enhance the image contrast, Histogram Equalization spreads

out the most frequent pixel intensity values or stretches out the intensity range of the

image (Figure 2.8). By accomplishing this, image’s areas with lower contrast gains higher

contrast.

Figure 2.8: Histograms of an image before and after equalization.
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2.3.4 Classification

The last step is gesture classification whose aim is to interpret signals to label human

movements. Gestures could be static or dynamic. The former are time independent and

easier to classify while the latter need more sophisticated techniques to face temporal

evolution.

Machine learning is a frequently used tool in this field since it provides the systems

with the capacity to automatically learn and improve from past experience without being

explicitly programmed [40]. Machine learning algorithms for gesture recognition can be

divided in supervised and unsupervised learning algorithms.

Supervised and Unsupervised Learning Algorithms

Supervised learning algorithms learn from labeled data to create models able to classify

new data. The most used in the gesture recognition field are K-Nearest Neighbors (KNN),

Hidden Markov Model (HMM), Support Vector Machine (SVM) and Artificial Neural

Network (ANN)s. Lai et al. [41] used KNN to recognize hand gestures in real-time using

Kinect camera. They create a dataset of skeleton sequences for 20 individuals performing

8 simple hand gestures useful for human-computer interaction. Each gesture was repeated

5 times by each individual and recorded over 1 second (30 frames). The method had

an accuracy of 97.2% but it’s sensitive to temporal misalignment and more storage- and

computation-heavy than their former work based on a log-covariance method [42]. Anuj et

al. [43] based their approach on HMM and adaptive thresholds to classify a set of gestures

to control the basic operations in a PowerPoint presentation. Their test dataset included 5

subjects performing 5 gestures 16 times – 8 times correctly and 8 times incorrectly. They

chose HMMs to handle the time series data and classify sequences. They created a discrete

HMM for each dynamic gesture and fed the stream simultaneously to all HMMs. Each

HMM, in turn, returned a likelihood for match. Compared to a single HMM for all gestures,

multiple HMMs better preserve the discriminating features of every gesture and have better

accuracy. The precision obtained was high (96.48%), but this approach exploited different

features for different kinds of movements and analyzed specific frames depending on the

gesture to be recognized. Gu et al. [44] used an HMM for each gesture on sets of 3D joints:

5 gestures are defined for the experiments (come, go, wave, rise up and sit down). Since

HMM has already become a general method to modeling speech signals, they applied it in

the field of gesture recognition because of the similarities between temporal gesture signal

and speech signal. Their method reached an accuracy of 85.0% with low detection speed.

The disadvantages of using HMMs are the need for an a priori notion of the model topology

and, as with any statistical technique, large amounts of training data [45]. Bhattacharya

et al.’s [46] approach used SVM on 3D skeletal joint coordinates of edited data stream

first (the starting and ending frames of each gesture were marked by a human observer)

with an accuracy of 99.97%. Then they extended those techniques to detect and classify a

gesture in an unedited stream which also captures random movements. This recognition

was done offline and reached an accuracy of 83.33%. The gesture vocabulary was based

on aircraft marshaling gestures used in the military air force and included 8 actions and

tested on 3 subjects.

Unsupervised learning algorithms are based on non-labeled data and they learn how
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to classify autonomously; K-means and Artificial Neural Network (ANN) are examples of

unsupervised learning algorithms. Gani et al. [47] in order to differentiate signer’s hands

used a K-means clustering algorithm to partition pixels into two groups corresponding

to each signer’s hands. Every gesture in testing data set is then compared against each

gesture in training data set by using Euclidean distance. Two data sets have been created,

corresponding to training and testing data set captured from 4 different signers using both

their hands. They reached an accuracy of 91%. Maharani et al. [48] compared SVM and

K-means methods showing that Multiclass SVM (99.15% accuracy) performs better than

K-Means clustering method (77.42% accuracy). The testing was done on 6 peoples, and

each person was tested 180 times with four gestures (forward, right, left, and stop), three

distances (2m, 3m, 4m), and three slopes positions (45°, 0°, -450°).
In recent years, among ANN, Convolutional Neural Network (CNN) has become a

crucial algorithm in image classification field for gesture recognition because of its fast

and robust classification ability. It has the capacity of feature learning without the need

of extracting features manually and it can train unprocessed images and generate feature

extraction classifier automatically [49]. CNN is a Deep Learning algorithm which can take

in an input image, enhance various patterns in the image and be able to discriminate one

from the other. The architecture of a CNN was inspired by the organization of the Visual

Cortex. Each neuron responds to stimuli only in a restricted region of the visual field: the

receptive field. In other words, the inputs of hidden units in layer n are from a subset of

units in layer n−1 (Figure 2.9). This particular architecture is characterized by local spatial

Figure 2.9: CNN wiring exploiting spatially-local correlation.

coherence which allows the net to learn features without training millions of parameters,

since some of them are shared. In this way, the extraction of relevant information occurs

at low computational cost. In the context of gesture recognition, there are several types of

CNNs such as ResNets. ResNets can have variable sizes, depending on how big each of the

stages of the model are, and how many of them it has. Each stage is composed of a number

of residual blocks, each of them characterized by weight layers, as shown in Figure 2.10.

In Figure 2.10, X is the predicted label that must be equal to the true label. The residual

function R(x) (error function) will compute and produce the residual of the model (error

measure) to match the predicted label with the true label. Thus, a residual block learns a

mapping function y = R(x) + S(x) where R(x) is a set of weight layers and S(x) is the

shortcut connection’s function. These shortcut connections skip the training of one or more
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Figure 2.10: A single residual block of ResNet. More residual blocks constitute one of the stages of

ResNets.

weight layers. During the computation of the gradient, the skip connection path allows it

to effectively reach initial layers, skipping the middle ones. In this way, the gradient does

not back propagate layer by layer thus solving the vanishing gradient problem and allowing

a deeper network. The main advantage of deeper models is the ability of performing more

convolutions extracting with more precision the relevant features. Hence, ResNet is able to

build a deeper neural network without the risk of degradation in performance. Moreover,

ResNets’ extracted features in lower layers are raw and elementary, while those in upper

layers are high-level abstract features as combinations of the first ones. In fact, the output

from the first hidden layer extracts certain attributes from the input, so the information

content from the first hidden layer is much richer than the input itself. For this reason, the

second hidden layer needs to have a larger number of filters to properly extract the now

richer features. Because of the increasing in the number of filters, the feature map’s size has

to be decreased to preserve time complexity per stage [50]. Downsampling is achieved by a

convolutional layer with a specific stride rather than by a max pooling layer. When pooling

is replaced by an additional convolution layer with stride, performance stabilizes and even

improves on the base model [51]. Moreover, pooling is a fixed operation while convolution

can be learned. For all these reasons, input/output dimensions can be different and two

main types of residual blocks are used in a ResNet: the Identity block – the case where

the input activation has the same dimension as the output activation (S(x)= id(x)= x)

and the Convolutional block – when the input and output dimensions don’t match up and

there is a Conv2D layer in the shortcut link (S(x)= Conv(x)).

Several types of CNN are used in the field of recognition tasks. Du et al. and Papadakis

et al. [35, 32] used skeletal information to create images capturing the motion of joints in the

3D space and to feed a CNN. Du et al. evaluate their model on both Berkeley Multimodal

Human Action Dataset (Berkeley MHAD) reaching 100% accuracy and ChaLearn gesture

recognition dataset with a precision of 91%. Hou et al. [11] found an effective method to
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encode the spatio-temporal information of a skeleton sequence into color texture images,

referred to as Skeleton Optical Spectra (SOS), and employs CNNs to learn the features for

action recognition. Experiments were conducted on three public datasets. With MSRC-12

Kinect Gesture Dataset the method reached an accuracy of 94.27% while with Gaming 3D

Dataset it reached an accuracy of 95.45%. For the challenging UTD-MHAD dataset the

accuracy was 86.97%. Mathe et al. [37] used a CNN on raw skeletal data (3D coordinates)

to classify arm gestures and evaluate this approach on a real-life dataset of 10 users. Even

though the subjects were only provided with an intuitive description of the way gestures

should have been performed, their model reached an accuracy of 90%. Zhang et al. [38]

used 3D CNNs and convolutional Long Short Term Memory (LSTM)s. Two public datasets

are used to evaluate the performance of their proposed method: ChaLearn LAP largescale

isolated gesture dataset (IsoGD) and Sheffield Kinect Gesture dataset (SKIG). In addition

to RGB and depth data, they also used optical flow data to improve the prediction accuracy.

The method reached an accuracy of 62.14% and 99.53% with the two datasets, respectively.

Wang et al. [52] proposed two-stream Recurrent Neural Network (RNN) architecture

to model both temporal dynamics and spatial configurations for skeleton-based action

recognition. Their model was evaluated on three datasets: with NTU RGB+D dataset

they reached a cross-subject accuracy of 71.3%, with SBU Interaction dataset they got an

accuracy of 94.8% and with ChaLearn Gesture Recognition dataset they got a precision of

91.7%. Pham et al. [9] used a CNN ResNet on RGB images in which skeleton sequences

transformed into 3D arrays were exploited. They evaluate their model on two datasets:

MSR Action 3D dataset and KARD dataset. More specifically, they divided both datasets

in 3 subsets of 8 actions each obtaining, with their best net configuration, accuracies of

99.4%, 99%, 100% and 100%, 100%, 100%, respectively.

2.3.5 Online Recognition

Tipically, in the context of gesture recognition that relies on vision-based systems (e.g.

Kinect cameras), a camera records human bodies and the system extracts features (e.g.

3D coordinates) from the individual frames of the recording. In their work, Luzhnica et al.

[53] use sliding windows as basic unit for real-time classification, i.e. data windows of fixed

size (number of frames) that constitute snapshots of the continuous data stream. Features

are computed per window, which typically has two configuration parameters: size and

step. For parameter selection, they cross validated the data with several window sizes (140,

160, 180, 200 number of frames, where 1 second contains 85-87 frames). They also used

steps of 20, 30, 40 and 50 frames and again used cross validation to select a value for this

parameter. Molchanov et al. [54] worked on offline and online hand gesture recognition.

To detect the presence of a no gesture they compare the highest current class conditional

probability output by the net to a threshold τ ∈ [0,1]. When the detection threshold is

exceeded, a classification label is assigned to the most probable class. Baldissera et al.

[55] implemented online recognition using a window of the 16 most recent tables (each

containing a fixed number of frames) updated with each new acquired framework. Their

proposed model evaluates the window in question and saves the softmax probabilities of

this result in a buffer containing the latest N predictions. If the average of any class in

the buffer exceeds a limit of network trust (Cth), the algorithm then identifies that this
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gesture took place. To prevent the same gesture to be classified multiple times, after the

assignment of a label the algorithm has a time of cooldown, in which it is silenced, even

if some class exceeds the confidence limit. This way, the window that stores the latest

frames is renewed preventing the same sequence of frames that generated a classification

of a gesture to be analyzed again.
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Chapter 3

Methods

The goal of this thesis project is to find a proper method to recognize gestures inside

robot therapies for children with ASD. In this way, the robot could react properly to

children’s movements when interacting with them and support therapist’s work in the

Therapist-Robot-Child triad therapy (Figure 3.1). Experiments of this kind of treatment

take place at CARElab (Computer Assisted Rehabilitation) in Fondazione Don Gnocchi

(Milan) with IOGIOCO robot therapy. The gesture recognition algorithm is part of the

therapy protocol and its workflow was: Data Acquisition, Data Processing, Pose Features,

Classification and Online Recognition (Figure 3.2). In this chapter IOGIOCO protocol,

algorithm workflow and algorithm integration in the therapy are presented.

Figure 3.1: Therapist−robot−child triad.

3.1 IOGIOCO Robot Therapy

IOGIOCO aims to empower significant transitive and intransitive gestures in children with

ASD, thanks to interactive mirroring games with the humanoid robot NAO. NAO robot is

0.57 m high and 0.28 m wide with 25 degrees of freedom of manipulation. It was designed



Figure 3.2: Workflow of the proposed algorithm.

to answer to a variety of inputs, offering different set of tasks: from walking to grabbing

objects, or even stand-up by itself after a fall [56]. IOGIOCO protocol includes 5 training

Figure 3.3: NAO Robot.

phases/levels and one final evaluation. The sessions have an approximate duration of

10−20 minutes and are executed weekly. The different levels are:

• Level 1: Familiarization;

• Level 2: Pure mirroring;

• Level 3: Introduction of selected specific gestures;

• Level 4: Integration of learnt gestures in child’s Activities of Daily Living (ADL)

(tasks of every-day life);

• Level 5: Further generalization of the proposed gestures.
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The first two phases have the purpose of encouraging the child to adapt to the setting

and to the proposed activities. The following three phases involve the training of selected

communicative gestures within a Robot-Child-Therapist interaction. One of the modalities

in the triad is the Robot Coach (RC). The robot shows the action to be performed, then

therapist and child respectively have to repeat the gesture. For each person, the robot

gives some visual and/or sound feedback depending on the performance. In Therapist

Coach (TC) modality, the therapist shows the action and NAO mirrors it offline. Then

the child has to perform the action introduced by the therapist, while NAO is mirroring

him/her. In this modality, the feedback should be given by the therapist.

3.1.1 Gestures

The gestures selected are meaningful from the communicative point of view and part of

ADL. The 19 gestures of the protocol are: tall, angry, listening, waiting, kissing, short,

giving, where, hungry, me, peekaboo, happy, yes, no, big, hello, little, pointing and coming

(Figure 3.4). All gestures are inserted in a narrative context consisting of short sentences

Figure 3.4: All gestures performed by NAO.
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organized in small dialogues, for example, “I am hungry”. The quantity and the different

lengths of movements used in IOGIOCO protocol make the learning process of a recognition

algorithm challenging. This recognition algorithm is part of the protocol from Level 3 on.

3.1.2 IOGIOCO Level 3

Level 3 begins only when the child is fully familiarized with the proposed new settings

and with NAO. This phase is the first level in which specific intransitive gestures with

communicative purpose are introduced. To start this phase, the therapist selects a specific

gesture from a screen panel interface, which allows to define which gestures to perform

inside a single session. Moreover, for each repetition it is possible to indicate the modality.

Depending on the mode of interaction chosen (RC or TC), the control is on the robot

or the therapist. RC modality has been implemented with the new gesture recognition

algorithm. In RC modality, once the gesture is selected, the activity is structured as shown

in Figure 3.5. The first “actor” in RC is the therapist, who supervises the therapy’s level

Figure 3.5: IOGIOCO therapy protocol: Level 3 Robot Coach’s phases.

deciding the gesture to be performed and taught to the child. Then, the robot performs

the gesture to be imitated both by the therapist and the child and points at the therapist

first. The moment the therapist starts performing the action, the algorithm begins the

evaluation and, after a specific temporal window (about 10 seconds), the robot gives a

positive or negative sound feedback saying “Well done!” or “Come on, let’s do it again!”
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respectively. After a fixed amount of time, the robot points at the child and the classifier

starts its evaluation again.

3.2 Data Acquisition

In order to acquire movement data, the tool used was a Microsoft Kinect v2 camera, now on

referred as Kinect. It is able to capture keypoints (skeleton 3D coordinates) and jointpoints

(skeleton 2D coordinates in relation to the camera image). Among these, keypoints of each

subject were selected to be analysed, since they allow a spatial analysis of each gesture.

Figure 3.6 represents Kinect Joint Map.

Figure 3.6: Joint Map

Three different datasets were acquired and used for the development of the algorithm

of gesture recognition.

3.2.1 Subsampled Healthy Dataset

The first dataset was constituted by a subsample of gestures: small, hello, pointing, come

and yes. 18 healthy adult subjects performed these gestures, captured by a Kinect. Each

gesture was repeated 14 times with a total number of samples of 1260 (18 healthy adults

× 5 gestures × 14 times). Each sample contained a single repetition of a single gesture,
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Table 3.1: Joints’ Dictionary.

Joint Type Keypoint

Hip Center 0

Middle Trunk 1

Neck 2

Head 3

Left Shoulder 4

Left Elbow 5

Left Wrist 6

Left Hand 7

Right Shoulder 8

Right Elbow center 9

Right Wrist 10

Right Hand 11

Left Hip 12

Joint Type Keypoint

Left Knee 13

Left Ankle 14

Left Foot 15

Right Hip 16

Right Knee 17

Right Ankle 18

Right Foot 19

Shoulder Center 20

Left Hand Tip 21

Left Thumb 22

Right Hand Tip 23

Right Thumb 24

so no segmentation was required. This dataset was used for a first implementation of the

algorithm.

3.2.2 Healthy Dataset

Once the algorithm was implemented, a more comprehensive dataset made of 18 healthy

subjects, 9 adults and 9 children, was exploited. In each acquisition, a “therapist” and a

“child” were asked to perform the 19 therapy protocol’s gestures captured by a Kinect: tall,

angry, listening, waiting, kissing, short, giving, where, hungry, me, peekaboo, happy, yes,

no, big, hello, little, pointing and coming. Unlike the Subsampled Healthy Dataset, each

sample contained all gestures executed by a subject. Therefore, segmentation was required.

Each file was split in several isolated actions according to a starting and an ending frame,

defined manually. The gesture was considered as a combination of movements that could

be repeated different number of times (multiple repetitions per gesture were considered),

since this execution difference was verified in the several subjects. Then, to balance the

dataset, gestures with a low number of samples (less than 23) were neglected. In the end,

actions were reduced from 19 to 14: tall, angry, listening, waiting, kissing, short, giving,

where, hungry, big, hi, little, pointing and coming. The total number of files obtained was

367.

3.2.3 Expanded Dataset

The aforementioned Healthy Dataset was integrated with a small dataset from Portugal,

consisting of three subjects, of which two with ASD and the other was the therapist. Each

subject executed IOGIOCO protocol, including level 3, several times. The segmentation

process was similar to the one described in the previous section. The higher number of

samples for each gesture allowed to consider the entire gesture set (19 gestures).
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3.3 Data Processing

When the whole dataset was ready, each file was processed. Keypoints files contain in

each row a timestamp t (seconds from epoch) followed by 25 skeleton joints (xk, yk, zk
coordinates for each k skeleton joint) describing the human skeleton of every frame as

shown in Equation 3.1.

Frame Ft:

t x0 y0 z0 ... x24 y24 z24 (3.1)

3.3.1 Translation-Invariance and User-Invariance

All coordinates were adjusted to a new reference system and normalized frame by frame.

Each coordinate was first referenced to a particular keypoint to make it translation-invariant:

xnew = x− xr,
ynew = y − yr,
znew = z − zr,

(3.2)

where [xnew, ynew, znew] are the coordinates in the new reference system and [xr, yr, zr] are

the ones of the reference keypoint. Then, in order to make each dataset user-invariant

(i.e. scale-invariant), each coordinate was normalized by h. The value h was computed in

each frame as the Euclidean distance between two coordinates k1 and k2 representing the

subject anatomical characteristics:

h(k1,k2) =
√

(xk1 − xk2)2 + (yk1 − yk2)2 + (zk1 − zk2)2 (3.3)

with [xk1 , yk1 , zk1 ] and [xk2 , yk2 , zk2 ] as the two keypoints coordinates. In this way, each

file was independent of the person doing the gesture. The value h could not reflect the

real body size of the subject because of his undefined position in front of the Kinect

camera, which has low spatial resolution on depth data [12]. For these reasons, it was not

convenient to set h at a fixed value at the beginning of the therapy session and a frame by

frame normalization was chosen. Inspired by [57], Shoulder Center keypoint and the total

height of each subject were first selected as reference point and h, respectively. The total

height was computed as the Euclidean distance between head keypoint and the middle

point between left and right foot. Then, considering this project’s characteristics, different

combinations were tested (Table 3.2).

Table 3.2: Reference keypoints, normalization’s lengths and respective k1 and k2 keypoint’s coordinates.

Note that the height was computed as the Euclidean distance between head keypoint 3 and the point

25* computed as the middle point between left and right foot.

Reference Keypoint h k1 k2 keypoints

Shoulder Center Height 3-25*

Shoulder Center Head-Trunk 3-0

Hip Center Head-Trunk 3-0

Hip center Trunk 20-0
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3.3.2 Filtering

After, a median filter was implemented over a 5-frames window to reduce the impulsive

noise: each coordinate was replaced with the median value of the coordinate in the previous

window:

xo = Median(xi),

yo = Median(yi),

zo = Median(zi),

(3.4)

where [xo, yo, zo] are the output signals and [xi, yi, zi] are the input ones.

3.4 Pose Features

Human body reconstruction is needed in order to highlight the information characterizing

a particular gesture in a single sample and to discard less important details. When using

ANN and the only available motion features are skeletal data, an intermediate image

representation of skeletal sequences can help in data processing and in looking at samples

the net has to learn from. Each sequence representing an action is formed by F1 to FN

frames. Following the work of Pham et al. [9, 33], every frame Ft of a sequence was

transformed in a 3D array to be stacked in a matrix together with the others. The matrix

containing the 3D coordinates (xk, yk, zk) of all frames, with k ranging from 0 to K body

joints, was rearranged according to human physical structure. A single action sequence

was then normalized by a normalization function N(·) and denotes a pose feature. Finally,

a single RGB pose feature representing the motion was obtained through a transformation

function G(·). The entire process is shown in Figure 3.7.

Figure 3.7: Illustration of the data transformation process. Every frame Ft of a sequence has been

transformed in a 3D array to be stacked in a matrix together with the others. N denotes the number of

frames in each sequence and K denotes the number of keypoints in each frame. Each skeleton sequence

is normalized by a normalization function N(·) to obtain a pose feature. Then each pose feature is

transformed in a single RGB pose feature representing the motion through a transformation function

G(·) to get a skeleton-based representation. On the horizontal dimension temporal dynamics is shown,

while the spatial structure (keypoints) is depicted on the vertical one.
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Starting from this skeleton-based representation, further data processing was imple-

mented. The following subsections describe the entire process.

3.4.1 Rearrangement of Body Keypoints

Skeleton joints were ordered in each frame Ft according to human body physical structure to

have an effective representation of each gesture and to keep the local motion characteristics.

In this way, more discriminating features easily distinguishable by the learning model were

generated. Inspired by [35] and [33], each skeleton frame was rearranged into five parts:

two arms, two legs and one trunk. Since the lower body was not crucial in this therapy

protocol’s gesture set, only the upper body segments were preserved. In particular, 16 out

of 25 keypoints were selected to represent the gestures and their action kinematics. They

were grouped in body sets: head and trunk, right arm and left arm. As shown in Table

3.3, each of them was defined by physically ordered keypoints.

Table 3.3: Body sets whose keypoints are detailed in the Joint’s Dictionary of Table 3.1.

Body Sets Related Keypoints

Head and Trunk 3, 2, 20, 4, 8, 1

Right Arm 9, 10, 11, 23, 24

Left Arm 5, 6, 7, 21, 22

Moreover, body sets were organized from top to bottom in different combinations (for

instance, head and trunk first, right arm and left arm then) in order to find the best

keypoints’ arrangement for the algorithm to learn. To evaluate how the network reacts

to these combinations, different body sets orders were used to train, validate and test the

model. Experiments were done on the Healthy Dataset.

3.4.2 From Body Keypoints to Pose Features

In order to describe the temporal dynamics, every action sequence related to a gesture,

which denotes the biomechanics of skeletons, was represented into a 3D matrix by stacking

together each time frame. This 3D matrix is the reconstruction of the human pose during

the movement. To obtain a pose feature, all the 3D coordinates (xk, yk, zk) of each frame

Ft in a sequence were scaled through a normalization function N(·):

(x′k, y
′
k, z

′
k) = N(xk, yk, zk)

x′k =
(xk − xmin)

(xmax − xmin)
,

y′k =
(yk − ymin)

(ymax − ymin)
,

z′k =
(zk − zmin)

(zmax − zmin)
,

(3.5)

where (x′k, y
′
k, z

′
k) are the normalized coordinates of k-th keypoint, cmax = (xmax, ymax, zmax)

and cmin = (xmin, ymin, zmin) are the scaling coordinates as described in the following Sub-

section 3.4.3 Gestures Normalizations. As shown in Figure 3.8, a pose feature is composed
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by keypoints’ position in space at each time instant on the vertical axis and by the series

of frames characterizing the action’s range on the horizontal axis.

Figure 3.8: Representation of the 3D pose feature.

3.4.3 Gestures Normalizations

All coordinates in each sample of each dataset were normalized by the function N(·),
using maximum and minimum coordinates to set the spatial range in which a gesture was

performed. Different gestures normalizations have been tested:

• Gesture-dependent vs gesture-independent normalization;

• Per keypoint vs per body control volume normalization.

In gesture-dependent normalizations, each coordinate could be scaled differently depend-

ing on the type of action executed: maximum and minimum coordinates characterizing

each gesture were selected over the entire dataset. In gesture-independent coordinates nor-

malizations, maximum and minimum coordinates of each channel (x, y, z) were detected

during a movement, whatever gesture executed and used as scaling values. The first normal-

ization makes samples more user-invariant since it defines an action-specific displacement

range equal for all subjects by computing the scaling coordinates with respect to the entire

dataset, thus being dataset-specific. Instead, the second one creates a different bounding

box for each movement executed, thus allowing a dataset-independent approach.

Per keypoint normalization implies that movements are scaled in terms of maximum

and minimum displacement range for each body joint while per body control volume normal-

ization means that a whole-body control volume was defined and maximum and minimum

coordinates are selected independently of body joints.
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Figure 3.9: Normalizations’ Map.

Gesture-dependent normalization could not be replicated during algorithm test phase

since gestures were not recognized yet. Therefore, in such cases, test set normalizations

were carried out without taking into account the type of gesture executed. These trials

were reasonable because, even though gesture-independent normalization is user-variant,

it normalizes the action itself, which actually is gesture-specific. Normalizations were

experimented on the Healthy Dataset and summarized in Table 3.4.

Table 3.4: Gesture Normalizations experiments.

Train and Validation Test

gesture-independent gesture-independent
per body control volume

per keypoint

gesture-dependent gesture-independent
per body control volume

per keypoint

Gesture-dependent Normalization

• Per keypoint : maximum and minimum coordinates were computed for each keypoint

and for each type of gesture, over the entire dataset:

cmax[g][k] = (xmax[g][k], ymax[g][k], zmax[g][k]),

cmin[g][k] = (xmin[g][k], ymin[g][k], zmin[g][k]),
(3.6)

where g is the distinct gesture and k is the k -th keypoint.

Each sample p was then scaled by cmax and cmin according to Equation 3.7.

coord[g][k] =
coord[g][k]− cmin[g][k]

cmax[g][k]− cmin[g][k]
. (3.7)

• Per body control volume: maximum and minimum coordinates were computed for
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each type of gesture considering all body joints, over the entire dataset:

cmax[g] = (xmax[g], ymax[g], zmax[g]),

cmin[g] = (xmin[g], ymin[g], zmin[g]),
(3.8)

where g is the distinct gesture.

Each sample p was then scaled by cmax and cmin according to Equation 3.9.

coord[g][k] =
coord[g][k]− cmin[g]

cmax[g]− cmin[g]
(3.9)

Gesture-independent Normalization

• Per keypoint : maximum and minimum coordinates were computed on each sample

p for each keypoint without taking into account the type of gesture:

cmax[k] = (xmax[k], ymax[k], zmax[k]),

cmin[k] = (xmin[k], ymin[k], zmin[k]),
(3.10)

where k is the k -th keypoint.

Each sample p was then scaled by cmax and cmin according to Equation 3.11.

coord[k] =
coord[k]− cmin[k]

cmax[k]− cmin[k]
(3.11)

• Per body control volume: maximum and minimum coordinates were computed on

each sample p considering all body joints without taking into account the type of

gesture:

cmax = (xmax, ymax, zmax),

cmin = (xmin, ymin, zmin).
(3.12)

Each sample p was then scaled by cmax and cmin according to Equation 3.13:

coord[k] =
coord[k]− cmin

cmax − cmin
(3.13)

In order to analyze the difference between gesture-dependent and gesture-independent

normalizations, some parameters were computed:

Gesture-dependent

For training set, the Euclidean distance d between the maximum and minimum coordinates

cmax and cmin considering the total movements’ kinematics for a particular gesture class

g over the entire dataset was computed according to Equation 3.14.

d(cmax[g], cmin[g]) =
√

(xmax[g]− xmin[g])2 + (ymax[g]− ymin[g])2 + (zmax[g]− zmin[g])2 (3.14)

Gesture-independent :

For test set, the Euclidean distance d between the maximum and minimum coordinates

cmax and cmin of a particular sample p, whatever gesture class, was computed according

to Equation 3.15.

d(cmax[p], cmin[p]) =
√

(xmax[p]− xmin[p])2 + (ymax[p]− ymin[p])2 + (zmax[p]− zmin[p])2 (3.15)
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3.4.4 RGB Pose Features

The normalized pose features were then converted into RGB matrices to get a straight

forward visual representation. All the 3D coordinates (xk, yk, zk) of each frame Ft in a

sequence were transformed into a new color space through a transformation function G(·):

(x′′k, y
′′
k , z

′′
k) = G(x′k, y

′
k, z

′
k),

x′′k = 255× x′k,
y′′k = 255× y′k,
z′′k = 255× z′k,

(3.16)

where (x′′k, y
′′
k , z

′′
k) are the coordinates of k-th keypoint in the new color space and (x′k, y

′
k, z

′
k)

are the normalized coordinates as described in Subsection 3.4.2 From Body Keypoints to

Pose Features. Hence, coordinates were coded into RGB color space, which means scaled

between 0 and 255. The schema of the RGB pose feature is shown in Figure 3.10. In this

Figure 3.10: Representation of the RGB pose feature.

way, kinematics of each action was kept and highlighted by a new representation. During

a movement, a displacement in the x direction is depicted by a variation of red amount,

while a shift in y or z direction corresponds to a change in green or blue, respectively.

Therefore, each skeleton joint in a certain instant was represented by a single pixel in a

2D image. This image representation made pose features processing possible as described

in Subsections 3.4.5 and 3.4.6.

3.4.5 Temporal Interpolation and Reshape

The input images should have the same resolution/size (height and width) in order to be

processed by a neural network. Thus, different ways of resizing were experimented. For
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simplicity, to use symmetric pooling and convolutions during net training, a squared inputs’

format was exploited.

At the beginning, inspired by Pham et al. [9], a resize of 32×32 pixels on each pose

feature was experimented. To this purpose, the Nearest Neighbour resampling filter was

applied to the whole image. The nearest pixel to the interpolated point is picked from

all adjacent pixels in the source image; Figure 3.11 (a) illustrates how this interpolation

works in the upsampling case. Secondly, the resampling process was changed in order to

maintain keypoint’s information distinct one from the other and to involve the temporal

dynamics only. In this way, the nearest pixel is picked only from the previous one and the

next one in the source image (Figure 3.11 (b)). Thus, the Nearest Neighbour resampling

filter was applied row by row to obtain a Temporal Interpolation.

Figure 3.11: (a) Whole image interpolation. Big circles represent existing image pixels. The small dot

stands for the new pixel that have to be created in the scaled image and dx and dy are the offsets

defining its interpolated position with respect to the nearest pixel; (b) Row by row interpolation. The

interpolated point gets the nearest pixel value which, in this case, will be either the previous or the next

one. In both the figures the arrow shows the assignment of the closest pixel to the re-sampling.

As already mentioned in Subsection 3.4.1 Rearrangement of Body Keypoints, the 16

selected keypoints were represented in the pose feature on the vertical dimension. Since a

16×16 resolution would have been too low, a better one was obtained by stacking together

each keypoints’ row three times (aaa− bbb− ccc configuration, Figure 3.12) or triple the

action pose feature (abc− abc− abc configuration, Figure 3.13).

3.4.6 Enhanced Action Images

In order to highlight each RGB pose feature, contrast of images was enhanced exploiting

Contrast Limited Adaptive Histogram Equalization (CLAHE), an upgraded version of the

one used in [34]. Given that CLAHE operates on small regions of the image called tiles,

local contrast is amplified. Moreover, if any histogram bin is above a specified contrast

threshold called Clip Limit, those pixels are redistributed uniformly to other bins before
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Figure 3.12: Illustration of a pose feature after temporal interpolation with 48×48 resolution and

keypoints’ row stacked together three times, aaa− bbb− ccc configuration.

Figure 3.13: Illustration of a pose feature after temporal interpolation with 48×48 resolution and tripling,

abc− abc− abc configuration.
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applying histogram equalization (Figure 3.14). A Clip Limit of 0.01 and a tile of 1 × 48

Figure 3.14: Clipped Limited Histogram Equalization method. (a) Histogram of the original input image.

(b) Clipping the histogram based on predefined Clip Limit. (c) Modified histogram after redistribution

of the Clipped portion.

were exploited on every row (i.e. every keypoint’s dynamics) to keep the spatial structure

of the pose feature.

3.4.7 Net Inputs Preparation

As already mentioned in 3.4.4 RGB Pose Features, RGB matrices were a image represen-

tation of actions’ kinematics. Furthermore, pixel values are unsigned integers in the range

between 0 and 255. Hence, feeding this raw format pixels directly to neural network models

can result in a slower training of the model. Instead, there can be benefit in preparing the

image pixel values prior to training, scaling pixel values to the range 0-1 standardizing the

values [58]. Thus, the net’s input were re-scaled to get pose features again, according to

the following equation:

x′k =
x′′k
255

,

y′k =
y′′k
255

,

z′k =
z′′k
255

.

(3.17)

3.4.8 Data Mirroring

This project’s datasets were composed by actions performed with the right arm. In order

to make the Expanded Dataset more generalized, the original movements were mirrored.

Thus, the x coordinates of each frame were mirrored with respect to the Reference Point

used. In this way, for one-limb gestures, the algorithm could learn to recognize them

independently of the dominant hand. For symmetric two-limbs gestures this represented a

data augmentation process.

3.4.9 Datasets Split

In order to train the recognition algorithm, datasets were split into training set, validation

set and test set each.
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Subsampled Healthy Dataset Split

Since all gestures were performed 14 times by every subject of this dataset (balanced

dataset), the algorithm was trained, validated and tested on all subjects. For each gesture

performed by a specific subject, 10 files out of 14 were used for training, 2 out of 14 for

validation and 2 out of 14 for testing (Table 3.5).

Table 3.5: Subsampled Healthy Dataset Split.

Split Samples (%)

Train 10 files × 18 people × 5 gestures 900 (∼ 71.4%)

Validation 2 files × 18 people × 5 gestures 180 (∼ 14.3%)

Test 2 files × 18 people× 5 gestures 180 (∼ 14.3%)

Tot 1260

Healthy Dataset Split

This dataset was unbalanced because the 18 subjects executed a different number of

repetition per gestures and not all actions in the gesture set were executed. Therefore, two

people among the subjects with all types of gestures performed were left out for testing.

The samples of the rest of the subjects were merged independently of the person in order

to create balanced training and validation sets.

Table 3.6: Healthy Dataset Split. *Note that, for testing, two people unseen during training with an

unbalanced number of files per gesture were selected.

Split Samples (%)

Train 20 files × 14 gestures 280 (∼ 75%)

Validation 3 files × 14 gestures 42 (∼ 11%)

Test 2 people’s files* 45 (∼ 14%)

Tot 367

Expanded Healthy Dataset Split

The expanded dataset was composed by all the 19 gestures with 2 ASD out of 22 subjects,

but still unbalanced. As in the previous dataset split, two people among N subjects with all

type of gestures performed were left out for testing. A Leave-P-Out subject cross-validation

method was exploited for this more comprehensive 19-gestures dataset. In this way, P out

of N sybjects in the dataset were used for testing and P-N for training and validating the

model (P=2 subjects and N=11 subjects). Different net’s hyperparameters were tested to

achieve the best recognition results possible. The samples of the rest of the subjects were

merged independently of the person in order to create balanced training and validation

sets. Table 3.7 shows train, validation and test samples split.
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Table 3.7: Expanded Healthy Dataset Split. *Note that, for testing, two people unseen during training

with an unbalanced number of files per gesture was used. Moreover, two ASD subjects where part of

the dataset.

Split Samples (%)

Train 18 files × 19 gestures 342 (∼70%)

Validation 5 files × 19 gestures 95 (∼20%)

Test 2 people’s files* 50 (∼10%)

Tot 487

Tot after data mirroring 487 × 2

3.5 Classification

In [33, 9, 34], Pham et al. proposed deep residual learning with residual blocks for recog-

nizing human action from skeleton sequences. Inspired by this approach we implemented

a deep learning framework based on ResNet. ResNet allowed the design of a deeper

neural network able to resolve the vanishing gradient problem, without degradation in

performance.

3.5.1 Neural Network design

Based on what has been said about ResNets in Subsection 2.3.4 and following the paper of

Pham et al. [9], a similar architecture was designed (Figure 3.15). The network starts with

a Convolutional (Conv) layer with K ×K filters,a ReLU and a Batch Normalization (BN)

layer, followed by 3 ResNet stages, an Average Pooling layer and a Dense layer for the

final classification (Figure 3.15(a)). The first stage consists of n Identity Residual Blocks.

The second and the third stages consist of one Convolutional Residual Block and n − 1

Identity Residual Blocks. For the reasons given in Subsection 2.3.4, after each stage, the

number of filters is doubled. An Identity Residual Block is formed by Conv-ReLU-BN-

Conv-ReLU-BN layers with the shortcut connection added to the output before another

ReLU layer (Figure 3.15(b)). A Convolution Residual Block is characterized by a first

convolutional layer with stride of 2 followed by ReLU-BN-Conv-ReLU-BN layers. The

shortcut connection added to the output before another ReLU layer is characterized by a

1 × 1 Convolutional layer (Figure 3.15(c)).

3.5.2 Hyperparameters Tuning

To achieve the best results, net’s hyperparameters had to be set. To this purpose, Ax, an

experimentation platform able to optimize any kind of experiment, was exploited. Once

an experiment was launched, multiple trials were performed. Each trial evaluated the

possible combinations of hyperparameter values through a ‘score’ function. The mean

of the validation accuracies of the last ten epochs was chosen as score. Since Ax tracks

the history of parameters and scores, the best set of hyperparameters, corresponding to

the highest output score, was retrieved. The different options of hyperparameters chosen

for Subsampled Healthy Dataset are shown in Table 3.8, while the ones for both Healthy

Dataset and Expanded Dataset are shown in Table 3.9.
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Figure 3.15: ResNet design.
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Table 3.8: Subsampled Healthy Dataset hyperparameters.

Hyperparameters Options

Number of Res Blocks 3, 5, 6, 9

Batch size 8, 16, 32, 64, 128, 256

Activation Sigmoid, ReLU

Optimizer Adam, SGD, RMS

Table 3.9: Healthy Dataset and Expanded Dataset hyperparameters.

Hyperparameters Options

Number of Res Blocks 3, 5, 6, 9

Batch size 8, 16, 32, 64, 128, 256

Activation Sigmoid, ReLU

Optimizer Adam, SGD, RMS

Number of Filters 4, 8, 16, 32

Kernel Size of filters 3, 5, 9, 11

3.6 Online Recognition

Once the algorithm was established offline, an online implementation was designed to be

integrated in Level 3 of the therapy protocol. As mentioned in Subsection 3.1.2, the subject

performs the gesture after NAO points at her/him and the recognition task must occur

within seconds. This implementation was first tested using only Kinect camera, and then

integrated with the robot:

• Kinect-only configuration: the model was set and tested on the continuous data

stream captured by the camera;

• Kinect-NAO configuration: the model was set and tested with the robot.

In fact, when dealing with physical robots timing have to be taken into account and

Kinect’s behaviour changes. For this reason, Kinect camera’s FPS was evaluated in both

configurations.

3.6.1 Kinect-only Settings

In order to exploit the recognition algorithm in a real-time classification, a sliding window

was used. Pose features were computed and analyzed by the classifier on a certain window,

characterized by two configuration parameters: size and step. A fixed size of the window

in terms of number of frames was used on the continuous data stream captured by the

camera. Different configurations were experimented to avoid lag between the performance

of the action and the classification’s output as much as possible. In the end, the average

number of frames for each gesture class was calculated. So, the window size was set to

the mean value over all gesture classes. To detect the presence of a gesture among no

gestures, the highest conditional probability output by the Softmax layer of the classifier
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Figure 3.16: Gesture vs no Gesture. Kinect camera captures frames; when the window is filled with

the proper number of frames (WS, window’s size), a prediction is output. If the highest conditional

probability exceeds the threshold, a gesture is detected and the probabilities’ prediction vector is saved

in the buffer. The window slides of a fixed step and the process re-start.

was compared to a threshold τ ∈ [0,1]:

state =

{
gesture, if probability > τ

no− gesture, if probability < τ
(3.18)

Threshold value τ was chosen as the minimum softmax prediction probability among true

positive’s predictions (true label equal to predicted label). When the detection threshold

was exceeded, the probabilities’ prediction vector was saved in a buffer. Then, the window

slided of a fixed step before predicting again (Figure 3.16). Once the buffer was filled

with N prediction vectors, the algorithm identified the gesture performed with one of the

following two possible methods:

• By averaging buffer ’s prediction vectors’ probabilities;

• By checking whether all buffer ’s predictions were equal.

Moreover, in Kinect-NAO configuration, a positive or negative sound feedback was imple-

mented on the robot to be given as an output depending on the performance assessment.

Once the whole algorithm was established, new acquisitions were performed to test the

effectiveness of the new method.

3.6.2 Kinect-NAO Settings

The next step was characterized by the integration of the recognition algorithm with NAO

robot. In this online version with NAO, the window of fixed size sliding on the continuous

data stream from Kinect and the buffer mentioned in the previews Subsection 3.6.1 were
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preserved. Since Kinect’s performance changed with NAO connection, new parameters

were tested. Moreover, according to the protocol, a sound feedback was implemented on

the robot, to be given as an output. To ensure the feedback was triggered when the gesture

was completed, the algorithm started predicting only after a fixed amount of time. A

flag was also inserted in order to prevent the same action movement from being classified

multiple times and to make NAO speak only once. In this way, the algorithm had a cool

down time interval. Once the algorithm was established, new acquisitions were performed

to test the effectiveness of the new method.

3.7 Acquisitions

To evaluate the effectiveness of the new algorithm, new acquisitions were carried out both

at NearLab in Politecnico di Milano and at CARElab (Computer Assisted Rehabilitation)

in Fondazione Don Gnocchi.

3.7.1 @Politecnico Acquisitions

Before starting with Kinect-only and Kinect-NAO configuration’s acquisitions, to analyze

prediction’s vector probabilities’ trend and to estimate the effectiveness of online settings’

implementation, tall, hello and little gestures where performed by an healthy subject

in Kinect-only configuration. Kinect and robot gesture recognition performances were

then analyzed through acquisitions on two healthy subjects in Kinect-only and Kinect-

NAO configurations. Each subject correclty performed all gestures 2 times mimicking the

therapy protocol and complying with NAO timings in the case of Kinect-NAO configuration.

Accuracy, Precision, Recall, F1-score have been computed for all acquisitions according to

Equations 3.19, where TP = True Positives, TN = True Negatives, FP = False Positives

and FN = False Negatives.

Accuracy =
TP + TN

TN + FP + FN + TP

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F − score =
2×Recall × Precision
Recall + Precision

(3.19)

3.7.2 @CARElab Acquisitions

In weekly sessions of about 10−20 minutes, 6 ASD children aged between 4 and 6 were

part of IOGIOCO therapy-protocol. Each session was developed in a room as empty as

possible to avoid distractions. Kinect camera was placed above a television, while NAO

Robot was sat in the room centre, so that it could be seen as soon as children entered

in the room (Figure 3.17). All data detected by Kinect were saved toward data analysis:

videos, keypoints’ files and gesture algorithm’s predictions. Accuracy, Precision, Recall

and F-score were computed for all acquisitions. Since in clinical acquisitions gestures were

performed a different number of times, the class distribution was uneven. For this reason,

F1-score was a better measure of the incorrectly classified cases than the accuracy metric.
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Figure 3.17: CARElab therapy room’s set up.
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Chapter 4

Results

In this chapter results for the validation of the recognition algorithm are presented. Ac-

quisitions done with healthy adults and with ASD children are analyzed at the end of the

chapter.

4.1 Data Processing

4.1.1 Translation-Invariance and User-Invariance

Right after data acquisition, skeletal data was referenced to a particular keypoint and

normalized by h, computed frame by frame, in order to make the algorithm user-invariant.

Table 4.1 summarize the experiments carried out. The reference keypoint was changed

Table 4.1: Reference keypoints and normalization’s lengths.

Reference Keypoint h

Shoulder Center Height

Shoulder Center Head-Trunk

Hip Center Head-Trunk

Hip center Trunk

from Shoulder Center to Hip Center for stability issues: in fact, given that the protocol’s

gesture set involves the upper body mainly, hip joint’s position is characterized by less

movements and variations in position.

The first normalization experimented was the one suggested by [57], in which h was the

total height of the subject. However, in this project the type of normalization and the tools

exploited for data acquisition must be taken into account. So, the Standard Deviation

(SD) of different values of h along frames over the entire dataset was analyzed. In Figure

4.1, the mean of the SD of normalization segments of all samples is shown for each gesture

through column charts. From the two charts it’s possible to notice that the most unstable

segment during the performances of almost all gestures was the height one. This was due

to Kinect system larger noise behaviour in feet and ankles. Instead, head and trunk and

shoulder-shoulder segments had a lower Standard Deviation, since their computation does

not involve the bottom part of the body. However, these normalization segments were not



Figure 4.1: The mean of the Standard Deviation of different normalization’s segments for each class in

the Expanded Dataset is shown through two column charts.

the most stable due to head and shoulders movements while performing gestures. The arm

length’s mean Standard Deviation was quite the same for all actions, but still high. As a

result, the trunk size turned out to be the most stable length during the performance of

an action for almost all gestures, since is the least action-involved segment.

4.2 Pose Features

4.2.1 Rearrangement of body keypoints

Different body sets orders were tested to find the best keypoints’ arrangement for the

algorithm to learn, as shown in Table 4.2.
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Table 4.2: Upper body sets orders tested.

Shortening Body Sets orders

TRL Head and trunk, Right limb, Left limb

TLR Head and trunk, Left limb, Right limb

RTL Right limb, Head and trunk, Left limb

RLT Right limb, Left limb, Head and trunk

LTR Left limb, Head and trunk, Right limb

LRT Left limb, Right limb, Head and trunk

The respective RGB pose features describing the kinematics of pointing gesture are

shown in Figure 4.2. For each RGB pose feature, keypoints are on the vertical dimension,

while the temporal dynamic is represented on the horizontal dimension. As can be noticed,

each pose feature is characterized by a color changing from pink to yellow in correspondence

to keypoints of the right limb. In fact, pointing gesture was executed by this subject (part

of Expanded Dataset) with the right arm. Joints’ movement with respect to the Reference

point is depicted by a color changing. The amount of red, green or blue changed depending

on the direction of the action (red = x direction, green = y direction, blue = z direction).

This variation is depicted in a different part of the image depending on body set orders

organization.

In order to find the best set of parameters for the net to extract the proper information,

an hyperparameter tuning on each body sets order was done. Hyperparameters and test

accuracies are shown in Table 4.3. Different parameters were found for different body sets

orders. The net structure changed to properly extract the information from pose features.

Table 4.3: Hyperparameters and model test accuracies for each body set order.

Body set

order

Residual

Blocks

Batch size Optimizer Number

of filters

Kernel

size

Test Accuracy (%)

RTL 3 16 SGD 16 5 76

TLR 3 16 ADAM 16 5 80

LTR 5 16 SGD 8 3 83

RLT 3 16 SGD 16 5 81

TRL 3 16 SGD 16 3 85

LRT 3 16 SGD 16 5 85

Since Head and Trunk body set does not characterize gestures’ kinematics (those keypoints

have a smaller action volume with respect to arms body sets), RTL and LTR body sets

orders are harder for the algorithm to learn. In fact, net’s filters try to find local spatial

correlations within images and it is better for the algorithm to have arms body sets adjacent,

especially for symmetric arm gestures. This is true for all gestures, with the exception

of yes and no gestures. Moreover, Head and Trunk, Right limb, Left limb (TRL) body

segments’ organisation and its opposite Left limb, Right limb, Head and Trunk (LRT)

turned out to be the best ones for the algorithm to learn, with a test accuracy of 85%.

Indeed, asymmetric gestures were preformed with the right arm in Healthy Dataset and

the central position of the right arm body set allowed net’s filters to have a higher chance
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Figure 4.2: RGB pose features of pointing gestures with different body set orders. Keypoints on vertical

axis while the total number of frames on the horizontal one.
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to extract more information. In this way, before reaching the edges of the images, sliding

filters passed over the characterizing arm several times, promoting network learning of the

gestures.

4.2.2 Gestures Normalizations

Once the best keypoints’ arrangement was found, this work focused on normalizing skele-

tons’ coordinates. Table 4.4 shows results of the different experiments carried out and

described in Subsection 3.4.3. The best result was achieved with the gesture-independent

Table 4.4: Comparison of different Coordinates Normalizations’ combinations on the basis of Test

Accuracy.

Train and Validation Test Test Accuracy (%)

gesture-independent gesture-independent
per body control volume 74

per keypoint 51

gesture-dependent gesture-independent
per body control volume 38

per keypoint 11

normalization both for training/validation and testing, over the whole-body control volume.

Gesture-dependent normalization should have provided better user-invariant results thanks

to the definition of an action-specific displacement range equal for all subjects. However, in

test phase this approach could not be applied because gestures had not been recognized yet.

Therefore, gesture-independent normalization turned out to be the best choice because,

to this extent, both train/validation and test pose features were normalized in the same

way. The distances computed to analyse the difference between gesture-dependent and

gesture-independent normalizations were compared for each gesture class and results are

shown in the chart of Figure 4.3.

Figure 4.3: The chart shows how the gesture-dependent and gesture-independent normalizations are

characterized by different ranges of normalization. The range of normalization was defined by Equation

3.14 for gesture-dependent normalization and Equation 3.15 for gesture-independent normalization.
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Note that in gesture-independent normalization, each sample had its own normalization’s

range, thus, for the comparison, a mean per gesture class was plotted together with error

bars. The graph shows how the gesture-dependent and gesture-independent normalizations

are characterized by different ranges of normalization. For this reasons, it’s difficult for the

model to “understand” test images different from training ones and lower test accuracies

were obtained in these cases.

Moreover, as expected, per body control volume normalization turned out to be better

with respect to per keypoint one. Per keypoint normalization defines as many control

volumes as keypoints’ number, outlining each keypoint’s kinematics range. To recognize

actions, the net needs to find correlations between keypoints, thus coordinates must be

scaled in the same range. Per body control volume normalization defines a single control

volume for all keypoints, referring each keypoint to the same range. For this reasons per

body control volume normalization turned out to be the best one.

4.2.3 Temporal Interpolation and Reshape

In Figure 4.4, a peekaboo RGB pose feature is shown before the temporal interpolation

with the whole temporal dimension on the horizontal axis. Figure 4.5 (left) illustrates the

RGB pose of the gesture after the temporal interpolation, with a 48× 48 resolution and

keypoints stacked three times (aaa − bbb − ccc configuration). Figure 4.5 (right) shows

the RGB pose after the temporal interpolation, with a 48×48 resolution, tripling the RGB

pose feature vertically (abc− abc− abc configuration).

Figure 4.4: RGB Pose feature before temporal interpolation.

Figure 4.5: Left: aaa − bbb − ccc keypoint configuration of RGB peekaboo pose feature; Right:

abc− abc− abc keypoint configuration of RGB peekaboo pose feature.
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Tests’ results are shown in Table 4.5. abc− abc− abc pose feature configuration turned

out to be the best for the algorithm to learn with a test accuracy of 95 % with respect to

87 % of the other configuration. Tests were carried out with a kernel size of 5 (resulted

from net’s hyperparameters tuning). With aaa− bbb− ccc pose feature configuration each

joint dynamics is tripled and thus emphasized. The net extracts information from a narrow

region of the pose feature relative to only two keypoints at a time. In abc− abc− abc pose

feature configuration, the action is tripled and the net’s filters analyze more keypoints

at a time. As a gesture is defined by the relative position between keypoints, the net

has to focus on more keypoints. This is possibile with the abc − abc − abc pose feature

configuration. With a larger kernel size extracting information on aaa − bbb − ccc pose

features, the sliding filter would have analyzed more keypoints but a lower number of times.

Thus, abc− abc− abc pose configuration would have been the best one even in this case.

Table 4.5: Parameters and model test accuracies for aaa − bbb − ccc pose feature configuration and

abc− abc− abc pose feature configuration

Configuration Residual

Blocks

Batch Optimizer Filters Kernel size Test

Accuracy

(%)

aaa− bbb− ccc 5 16 SGD 16 5 87

abc− abc− abc 5 8 SGD 8 5 95

4.2.4 Enhanced Action Images

In order to highlight each RGB pose feature, contrast of images was enhanced exploiting

CLAHE. Figure 4.6 shows hello RGB pose feature before and after CLAHE application

while in Figure 4.7 pose features’ histograms are illustrated. The original histogram has

been stretched to the far ends and equalized.

Figure 4.6: Before and after CLAHE on “hello” RGB pose features.
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Figure 4.7: Histograms before and after CLAHE on “hello” RGB pose features.

After CLAHE application, local contrast is enhanced thus emphasizing the movements

of each pose feature from the biomechanical point of view. This allows the net to better

recognize a gesture.

4.2.5 Data Mirroring

In Data Mirroring technique, the x coordinates of each frame in each pose feature were

mirrored with respect to the Reference Point. In Figure 4.8 a kissing gesture RGB pose

feature before and after Data Mirroring is shown in TRL body set configuration (aaa−bbb−
ccc configuration for better understanding). As can be seen, the gesture was performed

Figure 4.8: Kissing gesture RGB pose feature before and after Data Mirroring, TRL body set configura-

tion, aaa− bbb− ccc configuration
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with the right hand. After Data Mirroring, all coordinates are mirrored, but the relevant

color changing (thus, displacement) involved the Right limb body set only. In fact, the

color changing from purple/pink to yellow in the RGB pose feature, corresponding to

the right limb’s displacement in doing the gesture, is now depicted in the Left limb body

set with a color changing from purple/blue to green. This led the net to recognize left-

handed gestures. In Figure 4.9 a big gesture RGB pose feature before and after Data

Mirroring is shown in TRL body set configuration (aaa− bbb− ccc configuration for better

understanding). In this case, since the action was symmetric, the mirroring technique

Figure 4.9: Big gesture RGB pose feature before and after Data Mirroring, TRL body set configuration,

aaa− bbb− ccc configuration

resulted in data augmentation. In fact, displacement (thus, color changing) involved both

right arm and left arm. A new sample was added, thus the dataset increased.

4.3 Classification

4.3.1 Hyperparameters Tuning

Net’s hyperparameters have been set after exploiting Ax platform in order to better tune

the algorithm. Parameters’ sets for Subsampled Healthy Dataset, Healthy Dataset and

Expanded Dataset are shown in the following Table 4.6.

Table 4.6: Net’s hyperparameters resulted from the tuning for Subsampled Healthy Dataset, Healthy

Dataset and Expanded Dataset.

Hyperparameters Subsampled Healthy Expanded

Number of Res Blocks 3 3 5

Batch size 8 8 8

Number of Filters - 4 8

Kernel Size of Filters - 5 3
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For what concerns the number of residual blocks (Res Blocks), Subsampled and Healthy

datasets had 3 of them while the Expanded Dataset was characterized by 5 of them. This

result was due to the need of a deeper neural network able to extract more information for

the Expanded Dataset’s wider gesture set.

Batch size could range between [8, 16, 32, 64, 256]. All datasets had a batch size of

8 meaning that in one training epoch, net’s weights were updated n/8 times, with n as

the number of samples in the dataset. This small batch size allowed the model to be more

generalized because it was updated more times in a train epoch with respect to a bigger

batch size.

Number of filters and Kernel size involved Healthy and Expanded datasets only. With

Healthy Dataset, net’s number of filters was lower with respect to the Expanded Dataset

since the first dataset inputs’ size had a lower resolution (32× 32 with respect to 48× 48),

thus a lower information content. On the other hand, Kernel Size was bigger with respect

to the Expanded Dataset beacuse of the pose features’ configuration (aaa− bbb− ccc vs

abc− abc− abc configuration).

4.3.2 Offline Models

In this Subsection all the offline models relative to Subsampled Healthy Dataset, Healthy

Dataset and Expanded Dataset are presented.

5-gestures Model

Since Subsampled Healthy Dataset was used as first approach to gesture recognition al-

gorithms, basic data processing was exploited. All data transformations are shown in

Table 4.7. Data mirroring was not yet implemented, so the algorithm did not recognize

left-handed gestures.

Table 4.7: Subsampled Healthy Dataset Data Transformations.

Reference

Keypoint

Normalization

Value

Gesture

Normalization

Resize Data

Mirroring

Enhanced

Action Images

Shoulder Center Total height gesture-independent

per body control volume

32× 32 No No

With these data transformations and with a 5 gestures set, the model reached 94% test

accuracy. As can be seen from the confusion matrix in Figure 4.10, almost all gestures are

correctly predicted by the model. Some confusions could be due to ordinary inter-subjects

variability in performing gestures. In Table 4.8 metrics scores are shown. pointing and

little gestures, when detected by the algorithm, are always recognized (precision 100%),

while for coming gesture, the algorithm correctly identifies 100% of all that kind of gesture

(recall 100%).

14-gestures Model 1

The same Subsampled Healthy Dataset’s data transformation was applied to Healthy

Dataset with a 14 gesture set (Table 4.9). Data Mirroring was still not implemented, so

this model was not able to recognize left-handed gestures.
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Figure 4.10: Confusion Matrix of the 5-gestures model.

Table 4.8: Metrics scores of 5-gestures model.

Gesture (%) Accuracy (%) F1-Score (%) Precision (%) Recall (%)

Hello 97 92 92 92

Little 99 97 100 94

Pointing 97 93 100 86

Yes 97 93 90 97

Coming 98 95 90 100

Table 4.9: Healthy Dataset Data Transformations 1.

Reference

Keypoint

Normalization

Value

Coordinate

Normalization

Resize Data

Mirroring

Enhanced

Action Images

Shoulder Center Total height gesture-independent

per body control volume

32× 32 No No
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As expected, with a wider gesture set, results were worse than the previous. The model

reached a test accuracy of 78%. Confusion matrix and metrics scores are shown in Figure

4.11 and Table 4.10 respectively. Note that big gesture was mistaken for the tall gesture.

This is due to the way the subject was performing the gesture in data acquisitions. For

this reason F1-score and Precision of big gesture were not computed and Recall was 0

while tall gesture had the lowest Precision value (43%). Hello Precision was 50%, meaning

that only half of gestures predicted as hello were actually part of this gesture class. Where,

short, pointing, hungry and coming gestures had the highest metric scores (100%).

Figure 4.11: Confusion Matrix of 14-gestures Model 1.

14-gestures Model 2

Since trunk size turned out to be the most stable and less variant normalization, as mention

in Subsection 4.1.1, a new model was trained exploiting this data transformation (Table

4.11). The new model reached an higher test accuracy: 85%. Confusion matrix and

metrics scores are shown in Figure 4.12 and Table 4.12 respectively. Note that waiting,

kissing and coming gestures have the lowest recall (33% 60% 33% respectively), since they

have similar action range in space with respect to other gestures.
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Table 4.10: Metrics scores of the 14-gestures Model 1.

Gesture Accuracy (%) F1-Score (%) Precision (%) Recall (%)

Tall 90 60 43 100

Angry 97 89 100 80

Listening 95 75 60 100

Waiting 95 67 67 67

Kissing 97 89 100 80

Short 100 100 100 100

Hello 93 57 50 67

Giving 95 67 100 50

Where 100 100 100 100

Hungry 100 100 100 100

Big 90 nan nan 0

Little 97 80 67 100

Pointing 100 100 100 100

Coming 100 100 100 100

Table 4.11: Healthy Dataset Data Transformations 2.

Reference

Keypoint

Normalization

Value

Gesture

Normalization

Resize Data

Mirroring

Enhanced

Action Images

Shoulder Center Trunk size gesture-independent

per body control volume

32× 32 No No

Table 4.12: Metrics scores of the 14-gestures Model 2.

Gesture Accuracy (%) F1-Score (%) Precision (%) Recall (%)

Tall 100 100 100 100

Angry 100 100 100 100

Listening 93 67 50 100

Waiting 95 50 100 33

Kissing 93 67 75 60

Short 93 67 50 100

Hello 98 80 100 67

Giving 100 100 100 100

Where 100 100 100 100

Hungry 100 100 100 100

Big 100 100 100 100

Little 100 100 100 100

Pointing 100 100 100 100

Coming 95 50 100 33

55



Figure 4.12: Confusion Matrix of the 14-gestures Model 2.
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11-gestures Model

Gestures with similar action range in coordinate’s space are difficult for the algorithm to

distinguish. For this reason, some “tricky” gestures were deleted: waiting, kissing and

coming. The same data transformation reported in the previous model was applied with

no Data Mirroring (Table 4.13). Thus, the model could not recognize left-handed gestures

yet.

Table 4.13: Healthy Dataset Data Transformations 2.

Reference

Keypoint

Normalization

Value

Gesture

Normalization

Resize Data

Mirroring

Enhanced

Action Images

Shoulder Center Trunk size gesture-independent

per body control volume

32× 32 No No

The new model reached 97% test accuracy. The confusion matrix is shown in Figure

4.13 while metrics scores in Table 4.14. As expected, recall and precision are way better

now, but the gesture set is reduced.

Figure 4.13: Confusion Matrix of 11-gestures Model.
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Table 4.14: Metrics scores of 11-gestures Model.

Gesture Accuracy (%) F1-Score (%) Precision (%) Recall (%)

Tall 100 100 100 100

Angry 100 100 100 100

Waiting 100 100 100 100

Short 100 100 100 100

Hello 100 100 100 100

Giving 100 100 100 100

Where 97 80 100 67

Hungry 100 100 100 100

Big 97 89 80 100

Little 100 100 100 100

Pointing 100 100 100 100

19-gestures Model

With Expanded Dataset, new methods’ settings were applied as summarized in Table 4.15.

Table 4.15: Expanded Dataset Data Transformations.

Reference

Keypoint

Normalization

Value

Gesture

Normalization

Resize Data

Mirroring

Enhanced

Action Images

Hip Center Trunk size gesture-independent

per body control volume

48× 48

abc-abc-abc configuration

Yes Yes

As already mentioned in Subsection 4.1.1, hip center reference keypoint was chosen as

the most stable option for frame by frame normalization. Moreover, a new reshape 48× 48

pixels with the best pose feature configuration (abc-abc-abc configuration) and CLAHE

were exploited for training, validating and testing the model. Since Data Mirroring was

included, the model could recognize actions independently of the dominant hand. With all

the 19 gestures a test accuracy of 95% was reached. Confusion matrix and metrics scores

are shown in Figure 4.14 and Table 4.16 respectively. Note that some gestures were still

mistaken for others even after implementing all data processing’s best results. In particular,

actions like short or giving are similar gestures which can be easily mistaken if performed

by different subjects. Considering the wide gesture set and the different temporal dynamics

and duration of actions, results were encouraging in sight of online recognition.
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Figure 4.14: Confusion Matrix of the Expanded Dataset Model with 19 gestures.
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Table 4.16: Metrics scores of 19-gestures Model.

Gesture Accuracy (%) F1-Score (%) Precision (%) Recall (%)

Tall 100 100 100 100

Angry 100 100 100 100

Listening 100 100 100 100

Waiting 99 89 80 100

Kissing 99 93 100 88

Short 98 67 100 50

Hello 100 100 100 100

Peekaboo 100 100 100 100

Giving 98 86 75 100

Where 100 100 100 100

Hungry 100 100 100 100

Happy 100 100 100 100

Big 100 100 100 100

Me 99 86 100 75

No 99 86 100 75

Little 100 100 100 100

Pointing 100 100 100 100

Yes 99 92 86 100

Coming 99 92 86 100

4.4 Online Recognition

Online final settings for Kinect-only and Kinect-NAO configurations with 11-gestures

Model and 19-gestures Model are presented in this section. 11-gestures Model was used

for the first set of new acquisitions. When 19-gestures Model was developed, it was used

for more recent clinical applications and online testing. Thus, the two models were both

set online with different parameters’ configurations. Considering the wider gesture set

involved, parameters’ choice for 19-gestures Model turned out to be more challenging with

respect to 11-gestures Model.

First, to undertand the difference between Kinect-only and Kinect-NAO configurations,

Kinect sampling frequency was recorded. In Figure 4.15 sampling frequency variations

along time are shown and in Table 4.17 Frames Per Second (FPS) mean and variance are

computed for both configurations.

Table 4.17: Frames per second mean and variance for Kinect-only and Kinect-NAO configuration.

Configuration FPS mean FPS variance

Kinect-only 50.48 14.65

Kinect-NAO 11 3.56

As it can be seen, Kinect-NAO configuration slowed down the frames’ capture by the

camera. When performing gestures in front of Kinect camera, Kinect-only FPS’s mean

value was 50.48 fps while, with robot connection, the mean value decreased to 11 fps. A

lower FPS means that an action is described by a lower number of captured frames, thus

reducing the information content. This behaviour had to be taken into account since the
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Figure 4.15: FPS comparison: Kinect-only and Kinect-NAO configurations.

recognition task relies on data acquisition of skeleton poses.

4.4.1 Kinect-only Settings

In order to exploit the recognition algorithm in a real-time classification, a sliding window

was used: the size was set to 68 frames and computed as a mean value. Particularly, for

each gesture class in the dataset the average number of frames was calculated as shown in

Figure 4.16. In order to set window size the mean value over all gestures was estimated.

Number of frames’ mean values and standard deviations for each gesture are shown in

Table 4.18. Note that the same gesture could be performed in a longer or shorter period

Figure 4.16: Frames comparison for each gesture.
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of time. For this reason, gestures like me and angry have a high standard deviation.

Table 4.18: Number of frames’ mean and standard deviation for each gesture. To set the sliding window’s

size, the overall mean was computed.

Gestures Mean number of frames Std

Tall 51 29

Angry 80 108

Listening 64 35

Waiting 60 36

Kissing 61 42

Short 54 33

Hello 64 43

Peekaboo 98 37

Giving 63 41

Where 52 30

Hungry 76 46

Happy 77 38

Big 51 25

Me 105 140

No 88 46

Little 53 42

Pointing 66 41

Yes 76 57

Coming 68 40

Overall Mean 68

Threshold τ was set to 0.55, which is the minimum probability for the algorithm to

recognize correctly a gesture. All minimum probabilities in the gesture set in Expanded

Dataset are shown in Table 4.19.

Since some gestures can be identified even when another gesture is performed (for

instance, short gesture when doing giving gesture), gesture-specific thresholds were also

set. When the detection threshold was exceeded, the probabilities’ prediction vector was

saved in a buffer. Then, the window slided of a fixed step before predicting again. Different

step values in terms of number of frames and different implementations were experimented

for 11-gestures Model and 19-gestures Model.

11-gestures Model

A single frame step was tested for the first online recognition implementation. Therefore,

when the buffer was filled with N prediction vectors, the algorithm checked whether they

were equal. Different buffer’s length were experimented: N=4 probabilities’ prediction

vectors turned out to be the best choice.
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Table 4.19: Minimum softmax probabilities to get a true positive in the gesture set.

Gesture Minimum

probabilities

Tall 0.99

Angry 0.74

Listening 0.51

Waiting 0.60

Kissing 0.64

Short 0.55

Hello 0.70

Peekaboo 0.97

Giving 0.54

Where 0.99

Hungry 0.95

Happy 0.60

Big 0.64

Me 0.86

No 0.64

Little 0.80

Pointing 0.99

Yes 0.89

Coming 0.69
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19-gestures Model

A 30 frames step was proved to be the best choice for the algorithm to predict the gesture.

In fact, if the window’s step is set to 1, consecutive pose features are similar because the

action kinematics does not actually change due to high Kinect’s FPS. Once the buffer was

filled with 8 prediction vectors, the algorithm identified the gesture performed by averaging

buffer ’s prediction vectors’ probabilities. Different buffer’s length were experimented: N=8

probabilities’ prediction vectors turned out to be the best choice in order to detect gestures

with a long action kinematics in terms of time (for instance happy gesture) but even with

a short one (for example kissing gesture). Finally, the algorithm identified the gesture

performed by averaging buffer ’s prediction vectors’ probabilities.

4.4.2 Kinect-NAO Settings

Since Kinect’s performance changed with NAO connection as mentioned before, new pa-

rameters were tested.

11-gestures Model

The first online implementation with NAO implied a further buffer with respect to Kinect-

only implementation: the memory buffer. In fact, to be sure that predictions of the

algorithm were relative to the action performed within the protocol’s timings, the memory

buffer collected 3 output predictions. Only if all of them were equal, the gesture was

properly identified to trigger NAO’s feedback.

19-gestures Model

The lower Kinect’s sampling frequency led to set a shorter window size: 40 frames with

respect to 68 in Kinect-only configuration. A larger window size would have stored more

than the gesture performed, slowing the recognition task. For these reasons, a single frame

step was implemented, with the window sliding over the continuous data stream captured

by the camera. Buffer’s length was preserved: N=8 predictions probabilities vectors were

saved and the output prediction was given by their averaging. This configuration turned

out to be the best for Kinect-NAO acquisitions in order to face the changing FPS problem.

It has to be noted that other setting configurations were implemented before achieving the

final results.

4.5 Acquisitions

New acquisitions were carried out both at Politecnico di Milano and at CARElab in

Fondazione Don Gnocchi with the models presented in Subsection Offline Models.

4.5.1 @Politecnico Acquisitions

Kinect and Robot gesture recognition performances were analyzed through different ac-

quisitions on two healthy subjects with the best model 19-gestures Model and its final

online setup. Yes and no gestures were “silenced” even if the offline 19-gestures Model
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properly recognized them with a 99% accuracy both. These gestures are quite challenging

movements for the Kinect to capture. In fact, their characterizing movements are described

by a small number of joints and a reduced motion range (they involve only the head region)

and would need a finer tracking system to be correctly tracked only when intentionally

performed. For all these reasons, sometimes the recognition time slowed down: yes and no

predictions were discarded while doing other actions but not removed, since the algorithm

still identified them.

Before starting with Kinect-only acquisitions, to analyze prediction’s vector probabili-

ties’ trend, tall, hello and little gestures where performed in Kinect-only configuration (Fig-

ure 4.17). As expected, when the movements were performed, the gesture-corresponding
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Figure 4.17: Probability trends of the prediction vector when performing tall, hello and little gestures.

The step function stands for Ground Truth (GT) i.e. the temporal window in which the gesture was

performed.

probability increased. Note that in little gesture, since at the beginning of the action both

limbs are raised as in tall gesture, tall probability increased too.

Then, Kinect-only acquisitions were carried out. The confusion matrix is shown in

Figure 4.18. Angry gesture was confused with where. This could be due to the fact

that sometimes skeletal joints are not properly captured by Kinect camera. 17 gestures

Accuracies, F1-scores, Precisions and Recalls are shown in Table 4.20. Angry gesture had

a Recall of 50% because 2 out of 4 actions were confused, for this reason where gesture

had a lower precision (67%). Kinect-only acquisitions reached an overall accuracy of 97%

and an F1 score of 97% as shown in Table 4.21.

Then, Kinect-NAO acquisitions for the selected 17 gestures were carried out. The

confusion matrix is shown in Figure 4.19. 17 gestures Accuracies, F1-scores, Precisions

and Recalls are shown in Table 4.22. The confusion matrix and metrics scores show that

waiting gesture was confused with giving : in fact, the two movements have a similar action

volume range. For what concern kissing gesture mistaken with happy, keypoints’ files were

plotted mimicking skeleton movements. It turned out that joints were captured by Kinect

in a wrong position, similar to happy gesture.
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Figure 4.18: Confusion Matrix of the performances of the 19-gestures Model on two healthy adult

subjects.
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Table 4.20: Kinect-only acquisitions: Accuracy, F1-score, Precision and Recall for 17 gestures.

Gesture Accuracy (%) F1(%) Precision(%) Recall(%)

Tall 100 100 100 100

Angry 97 67 100 50

Listening 100 100 100 100

Waiting 100 100 100 100

Kissing 100 100 100 100

Short 100 100 100 100

Hello 100 100 100 100

Peekaboo 100 100 100 100

Giving 100 100 100 100

Where 97 80 67 100

Hungry 100 100 100 100

Happy 100 100 100 100

Big 100 100 100 100

Me 100 100 100 100

Little 100 100 100 100

Pointing 100 100 100 100

Coming 100 100 100 100

Table 4.21: Kinect-only configuration: Accuracy, F1-score, Precision and Recall for 17 gestures.

Configuration Accuracy (%) F1(%) Precision(%) Recall(%)

Kinect-only 97 97 98 97
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Figure 4.19: Confusion Matrix of the 19-gestures Model on two healthy adult subjects for 17 gestures
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Table 4.22: Kinect-NAO acquisitions: Accuracy, F1-score, Precision and Recall for each gesture.

Gesture Accuracy (%) F1(%) Precision(%) Recall(%)

Tall 100 100 100 100

Angry 100 100 100 100

Listening 100 100 100 100

Waiting 98 86 100 75

Kissing 98 86 100 75

Short 98 86 100 75

Hello 100 100 100 100

Peekaboo 100 100 100 100

Giving 98 89 80 100

Where 100 100 100 100

Hungry 97 75 75 75

Happy 98 89 80 100

Big 100 100 100 100

Me 100 100 100 100

Little 98 89 80 100

Pointing 100 100 100 100

Coming 100 100 100 100

The other two mistaken gestures highlight how much timing is important: the preformed

movements started few seconds after NAO pointed and the algorithm analyzed subject’s

position before the actual gesture’s execution. Kinect-NAO acquisitions reached an overall

accuracy of 94% as shown in Table 4.23. These results were promising, but it has to be

Table 4.23: Kinect-NAO configuration: Accuracy, F1-score, Precision and Recall for all gestures.

Configuration Accuracy (%) F1(%) Precision(%) Recall(%)

Kinect-NAO 94 94 95 94

taken into account that the subjects were healthy adults performing gestures in a precise

way.

4.5.2 @CARElab Acquisitions

At CARElab (Computer Assisted Rehabilitation) in Fondazione Don Gnocchi (Milan),

new acquisitions were carried out with 6 ASD children aged between 4 and 6 part of

IOGIOCO therapy. As mentioned in subsection 3.1 IOGIOCO Robot Therapy, the gesture

recognition algorithm was involved only from Level 3 on. Since ASD has a wide variation

in the type and severity of symptoms people can experience, children had a different way of

approaching IOGIOCO therapy, thus NAO robot. For these reasons, depending on the child,

different levels were reached and different gestures were performed. In Level 3, NAO’s

feedback was able to engage children’s attention, thus increasing their interaction with the

therapist. On the other hand, sometimes children lacked of interest in interacting with
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NAO, thus, in these cases, it was difficult for them to keep up with therapy’s exercises.

During acquisitions the best models were tested.

11-gestures Model acquisitions

For the first week of acquisitions, the model able to recognize 11 gestures was experimented

with the related online settings. 3 children reached Level 2 while the other 3 were able

to reach Level 3 of the therapy protocol, testing the gesture recognition algorithm. Given

the reduced number of samples, to analyze data in a consistent way, ASD children and

therapist performances’ assessments were kept together. The confusion matrix and metrics

scores are shown in Figure 4.20 and in Table 4.24 respectively. Some gestures were

Figure 4.20: Confusion Matrix of the 11-gestures Model on three ASD children

not performed. Hello and short gestures were not correctly recognized by the algorithm.

This was because actions were actually well executed, but delayed with respect to therapy

protocol timing’s settings. Thus, the algorithm analyzed subject’s position before or after

the actual gesture’s execution. In Table 4.25, first week total acquisitions’ metrics scores

are presented: Accuracy reached 90% while F1 score was 86%.

19-gestures Model acquisitions

After the first week of acquisitions, the 19-gestures Model was implemented. Note that

for this model, in week 2 and 3 online settings was not yet perfectly suitable as the last
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Table 4.24: Metrics scores of each gesture for children’s and therapist’s acquisitions week 1 with

11-gestures Model

Gesture Accuracy F1-Score Precision Recall

Tall 100 100 100 100

Short 90 86 75 100

Hello 95 nan nan 0

Giving 100 100 100 100

Big 100 100 100 100

Little 95 nan nan 0

Table 4.25: Metrics scores of children’s and therapist’s acquisitions week 1 with 11-gestures Model

Week Subjects Accuracy (%) F1-score (%) Precision (%) Recall (%)

1 Therapist and Children 90 86 82 90

version described in section 4.4.2. From week 4, the final online settings were implemented.

Moreover, as the therapy progressed, 4 children were able to reach Level 3 of the protocol.

The results were analysed by keeping user data separate to compare ASD children’s and

therapist’s acquisition.

Starting with children acquisitions, as can be seen from the confusion matrix (Figure

4.21) and the metrics scores (Table 4.26), almost all actions were correctly recognized by

the algorithm. For what concern hungry gesture, from video analysis resulted that the

action was actually well executed by the child. However, the subsequent raising of the

other hand while performing the action made the algorithm recognize a double handed

gesture, angry. F1 score reached 83% (Table 4.27). It is worth noting that a lower Recall

score (82%) with respect to Precision score (89%) reduces the chances for an incorrect

gesture to be recognized as a correct one, and this may be beneficial for therapy sessions.

In fact, it should be pointed that the net was trained on a dataset mainly composed by

healthy subjects (only 2 ASD adults out of 22 subjects), challenging the recognition task

for ASD users. Moreover, a lower number of acquisitions were done and not all gestures

were tested in the clinical context.

For what concerns therapist acquisitions, the confusion matrix in Figure 4.22 and

the metrics scores in Table 4.28 show that the where gesture was mistaken with short,

underlining once again the importance of timings for the algorithm to proper recognize the

gesture: even if the gesture was properly executed, a delay in the performance made the

algorithm focus on another movement, not concerning the therapy exercise. For the same

reason, hello gesture was confused with short, coming and peekaboo and big gesture was

predicted as a me one. From video analysis sometimes it happened that the therapist did

not respect protocols timings to perform the gesture, because she was focused on keeping

the children engaged, without loosing their attention on the protocol sequence. Thus, as

can be seen from Table 4.29, the accuracy reached was 79% with an F1-score of 81%,

slightly lower than the previous one with ASD children. This result must take into account

the therapist workload during the treatment.
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Figure 4.21: Confusion matrix of 19-gestures Model of children’s performances for week 2-3-4.

Table 4.26: Metrics scores of each gesture for children’s acquisitions week 2 - 3 - 4 with 19-gestures

Model

Gesture Accuracy (%) F1-Score (%) Precision (%) Recall (%)

Angry 95 86 75 100

Listening 100 100 100 100

Kissing 90 nan 0 nan

Hello 86 73 100 57

Peekaboo 95 86 75 100

Where 100 100 100 100

Hungry 95 nan nan 0

Happy 100 100 100 100

Big 100 100 100 100

Me 100 100 100 100

Pointing 100 100 100 100
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Table 4.27: Metrics scores of children’s acquisitions week 2 - 3 - 4 with 19-gestures Model

Week Subjects Accuracy (%) F1-score (%) Precision (%) Recall (%)

2-3-4 Children 82 83 89 82

Figure 4.22: Confusion matrix of 19-gestures Model assessment of therapist’s performances for week

2-3-4.
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Table 4.28: Metrics scores for each gesture of therapist’s acquisitions week 2 - 3 - 4 with 19-gestures

Model

Gesture Accuracy (%) F1-Score (%) Precision (%) Recall (%)

Angry 100 100 100 100

Listening 100 100 100 100

Short 90 67 50 100

Hello 86 88 100 79

Peekaboo 95 67 50 100

Where 95 nan nan 0

Happy 100 100 100 100

Big 95 nan nan 0

Me 95 nan 0 nan

Coming 95 nan 0 nan

Table 4.29: Metrics scores of therapist’s acquisitions week 2 - 3 - 4 with 19-gestures Model

Week Subject Accuracy (%) F1-score (%) Precision (%) Recall (%)

2-3-4 Therapist 79 81 85 79
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Chapter 5

Discussion

5.1 Data Processing

From the first sections of the results it is possible to conclude that reference system and

subjects’ normalization must be suitably chosen. Reference system was defined because,

otherwise, the same action conducted in different positions (caused by the translation of

the person or the camera) would result in a different pose feature, thus being translation

variant. The coordinate system was centred in the hip center joint because it lies on

the human body’s sagittal plane. This allowed the generalization of the algorithm by

the mirroring of movements performed with the right limb, thus making possible for the

algorithm to recognize gestures independently of the dominant hand.

Since healthy and ASD adults and children with different physical structures were

involved in this project, normalization was required to obtain user-invariance properties

for the network. In general, the normalization value can not be too small: the calibration

to a small and limited (in terms of movements) segment would be less reliable because

of optical distortions. This project’s results proved that the normalization value’s choice

makes the difference. It must be taken into account that a frame by frame normalization

changed the length of the normalization segment, computed as Euclidean distance, from

one frame to the adjacent ones: this is true especially when dealing with, for example, yes

gesture or any gestures involving a forward bend of the torso. By the experiments carried

out to find the more stable solution, trunk size’s variance during the performance of an

action resulted lower than the height because hip joint is more stable with respect to feet,

especially when dealing with the Kinect system. For this reason, trunk size turned out to

be the best normalization segment.

To summarize, this project’s data processing resulted in the following properties:

• Translation invariance: The shift of the coordinate system with respect to a reference

point (hip center joint) does not let the translations affect actions’ pose features;

• User invariance: Each subject was normalized by its trunk size to make him/her

scale-invariant;

As future implementation, it would be useful to add an “initialization” phase to the therapy

protocol. In this phase the subject could be asked to perform a standard gesture in order



to get its effective size without any distortion due to either the camera’s resolution or the

subject’s position in front of it.

5.2 Pose Features

Even the type of gesture set can affect data preparation. Since in this project actions

involved only the upper body parts, it was convenient to feed the recognition algorithm only

with those data. Moreover, as the algorithm had to face with kinematics and biomechanics

data, it was important to preserve their physical meaning. Because of this, keypoints were

ordered following the human skeleton structure. Due to the coordinate difference in 3D

skeletons, proper normalizations were needed. Pham et al. [33, 9, 34] proposed to normalize

skeleton joints by the maximum and minimum of all coordinates in the training dataset.

However, as the normalization is conducted with respect to the entire training dataset,

the resultant pose features were dataset-dependant. To tackle this problem, in this work

normalization was made by maximum and minimum coordinates of each channel (x, y, z) of

every skeleton sequence, which included all the movements to complete a gesture, thus being

dataset independent. Overall, gesture normalizations’ results underline the importance of

a proper normalization when dealing with kinematics of human body’s biomechanics.

The ultimate goal of data preparation was to make skeleton sequences as inputs of

an Artificial Neural Network (ANN). Hence, to represent data, a fixed inputs shape

was defined. As the number of keypoints was 16, a size of 48 × 48 was a good trade-off

between the need of a good resolution and the need of preserving a reasonable spatial

structure. This way, keypoints were tripled to achieve the resolution-height required. An

abc− abc− abc pose feature configuration turned out to be the best solution for the net

to extract the information needed to recognize the whole action rather than focusing on

single joint displacement variation. For what concerns the temporal dynamics, each action

had to be set to a fixed width (i.e length in terms of number of frames) to be fed to an

ANN. As a resampling filter was applied to each keypoint, the spatial structure’s definition

was preserved and a temporal interpolation was achieved: some action sequences’ frames

increased, others were reduced. Further developments could focus on keeping the different

lengths of action (in terms of number of frames) to preserve the information related to

gestures specific timings. The skeleton-based representations obtained were subjected to

local contrast enhancement to further highlight the characteristics of the motion. This

technique turned out to improve the capacity of the algorithm to analyze data because it

emphasized the movements of each pose feature from the biomechanical point of view.

5.3 Classification

When data preparation was concluded and properly fit for this project’s goal, the choice

of a suitable classification method was essential. Literature analysis proved that neural

networks are widely used in both online and offline gesture recognition. The net learns

from data first and applies this knowledge to new one then. It is important to point

out that artificial neural networks arrive at complex answers with a lack of transparency

because they create rules by learning from samples, adjusting weights and evaluating

measures without detailing how. For this reason, inputs characteristics and processing
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were essential, especially when dealing with neural networks, since inputs data were the

most reality-related part of the method’s implementation. In fact, even thought the way

nets learned to recognize actions can not be well understood, a proper data preparation

drove the learning process. Residual learning turned out to be a good solution to extract

with precision relevant features from biomechanical sequences, allowing a fast training

process. Since the algorithm was developed with the aim of recognizing gestures in a

real-time therapy for ASD children, the rules and patterns it learned offline from datasets

affected its behaviour in the online recognition task. Speaking of that, in this project

datasets included only healthy subjects (both adults and children) except for two ASD

adults. It would be important that future work focuses on updating the existing dataset.

The data collected from acquisitions could be used to extend the existing one with more

samples of both healthy adult subjects and ASD children. Thus, the algorithm would

learn to identify gestures differently performed by these users and could be tested on more

subjects, becoming more generalized and robust. Another field of research could include the

possible implementation of a “memory module” able to remember the features extracted

by pre-trained networks (such as this work’s ResNet) during the online classifications and

to exploit them in the next ones to output a more solid prediction. Other networks type

could be exploited and tested in sight of an online recognition. Recurrent Neural Network

such as Long Short-Term Memory (LSTM) are widely used too, thanks to their capacity

to model data sequences (in terms of time) so that each sample can be assumed to be

dependent on the previous ones. This could lead to better results for both offline and

online recognition.

Depending on the dataset used, different models were implemented and tested offline.

As expected, a smaller gestures set made it easier for the network to learn how to recognize

actions. The 5-gestures model reached an offline test accuracy of 94% even if data prepara-

tion was not yet the most suitable for this project’s characteristics. With a larger gesture

set, data preparation was essential since some movements had similar action ranges and

could be easily mistaken. A stable normalization value within a skeleton sequence was

also crucial to improve pose features, thus facilitating the recognition task for the ResNet,

and the Data Mirroring enabled the possibility to identify also left-handed gestures. So

far, an offline 95% test accuracy has been reached with the whole gesture set. This result

was encouraging considering:

• the wide gesture set;

• the different temporal dynamics and duration of actions;

• the 100% test accuracy reached by Pham et al. [33, 9, 34] with comparable methods,

but dividing their gesture set into more subsets in order to implement a different

model for each of them.

5.4 Online Recognition

Online recognition depends on data acquisitions instruments. In this project only Kinect

camera was used, even if other wearable capturing system would have helped in a better

position detecting of both therapist and child. Since IOGIOCO therapy protocol involves

77



children with ASD, Kinect camera was the most suitable non-intrusive option, but its

behaviour made it difficult to choose online settings. In fact, since the Kinect sampling

frequency decreased with robot connection, settings changed reducing both window’s size

and window’s step. Kinect’s sampling frequency behaviour and noise with robot connection

should be considered in a future implementation to find a proper method to keep them

apart during acquisitions or to establish a connection without reducing Kinect’s ability to

capture data.

In both configurations (Kinect-NAO and Kinect-only), finding the proper parameters

in order to take into account the wide gesture set and the different action lengths, in

terms of duration, was crucial. Some gestures, such as kissing or angry are performed in

a short period of time thus, in this cases, a short window size would be enough. However,

other gestures, such as happy or listening, would need more frames to be properly analyzed.

When window size and step were not set yet, happy gesture was mistaken with tall because,

if considering only the first part of happy action, the two movements are comparable and

easily confused. Moreover, gestures can be performed with more repetitions (for instance

waving multiple times or just one) and with different velocity. IOGIOCO protocol required

that, within about 10 seconds, a performance assessment was established. If multiple

movements were executed in that time-span, even not relevant for the treatment, the

algorithm could insert those gestures into the analysis, making erroneous the evaluation.

Investigating time settings by which the recognition starts might prove important in the

mis-classification of gestures which were delayed performed with respect to the therapy

protocol’s settings. In addition, if the action was performed too slowly or too fast, or with

joints’ positions never seen before (so, never learned from the algorithm), the assessment

could be wrong. Even in this case, a dataset updating with increased number of samples

would improve the overall results.

5.5 Acquisitions

When the algorithm was properly set, new acquisitions were carried out both at Politecnico

di Milano and at CARElab in Fondazione Don Gnocchi with different models. With healthy

adult subjects, in the most protocol-like configuration (Kinect-NAO), the recognition ca-

pacity of the algorithm was successful and comparable with the offline results: acquisitions

reached an overall accuracy of 94%. These results were evidence of the proper online

settings for the algorithm to recognize a wide range of actions part of the protocol. Only

yes and no predictions were discarded because of their small and similar action ranges. The

algorithm frequently identified those gestures as performed. Further developments would

be needed to better understand if this behaviour was due to Kinect inaccurate caption of

skeletal joint movements of small body segments or inappropriate online setting for gestures

performed within few seconds. Even in this case, Kinect-NAO configuration acquisitions

keeping Kinect and NAO apart (or establishing a FPS decreasing-free connection) should

improve the recognition task.

3 weeks tests with the 19-gestures recognition model tested on 4 ASD children resulted

in an accuracy of 83% while for therapist tests the accuracy reached was 79%. Clinical

acquisitions’ results confirmed the importance of inputs’ information content for training

an ANN. As already mentioned, only 2 out of 22 adults in Expanded Dataset had ASD.
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Thus, for ASD children acquisitions, a lower accuracy was expected with respect to the

other acquisitions. On the other hand, therapist acquisitions sightly lower results must

be correctly interpreted. In those cases, the non-adherence to protocol timings or the

misperformed gestures were due to the therapist focusing on keeping the child engaged in

the learning therapy. The overall results of clinical acquisitions pointed out that a proper

feedback in a teaching-gesture therapy helped the therapist in empowering the child’s

social skills with robot first, and subsequently with humans. In fact, the presence of robots

in the therapy facilitate child’s interaction with humans with respect to therapist-only

treatments. Moreover, both positive and negative feedback motivated the children in

improving their actions mimicking therapist’s gestures and also in repeating the exercises.

Customized stimuli may be more effective at eliciting skills learning especially when dealing

with ASD children. In point of that, child-specific feedback might improve the effectiveness

of the therapy. Furthermore, the implementation should also consider the next challenging

protocol’s levels, in which gesture teaching is inserted in a story-telling scenario.
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Chapter 6

Conclusions and Future Work

The cause of ASD is still being studied and its complete understanding has not been

reached yet. Many facets characterize ASD and it is likely caused by many factors. For

these reasons, a single cure or solution has not been found so far. Newest treatments explore

motor therapies to help ASD children social-interacting in their every-day life. This thesis’

work was integrated within IOGIOCO therapy, an interactive mirroring robotics game which

aims at helping children in developing imitation, motor and gesture skills. The project

demonstrated successfully the use of a gesture recognition algorithm for the purpose of

increasing ASD children engagement and empowering gestures’ learning by means of a

straightforward and robust feedback system in a triadic interaction between therapist,

robot and child.

In this project, skeleton data were used to interpret gestures, as human actions can

be described by the movements of skeleton joints. Data extracted from a Kinect camera

were properly processed to control and drive net’s learning as much as possible. An offline

version of the classification algorithm was first designed in sight of an online implementation.

A ResNet was exploited to generate the offline model for its ability of providing deeper

neural networks able to extract more and more features. The offline recognition model was

able to analyze 19 types of gestures and reached an accuracy of 95%. These results were

promising considering the wide gesture set, the different temporal dynamics and duration

of actions. A Kinect camera was used to track the human body in real-time. A recognition

system able to classify both therapist and children’s actions in a clinical context was set

up. The online recognition algorithm was tested on 2 healthy adult subjects, obtaining an

accuracy of 97%, and on 4 ASD children, reaching an accuracy of 83%. These results were

encouraging since the net was trained on a dataset mainly composed by healthy subjects

(only 2 ASD adults out of 22 subjects), thus challenging the recognition task for ASD

users. Moreover, it has to be taken into account that a lower number of acquisitions were

done and not all gestures were tested in the clinical context. Children had different ways

of approaching IOGIOCO therapy, thus different engagement levels were detected. Even

though not all children managed to keep up with the therapy, robot’s feedback were able

to increase their attention’s level.

It would be important that future work focuses on updating the training dataset which

the model was built on. In particular, the data collected from acquisitions could be used

to extend the existing one with more samples of both healthy adult subjects and ASD



children. In this way, the algorithm would learn to identify gestures differently performed

by these users and could be tested on more subjects, becoming more generalized and

robust. Another field of research could include the possible implementation of a “memory

module” able to remember the features extracted by pre-trained networks (such as this

work’s ResNet) during the online classifications and to exploit them in the next ones to

output a more solid prediction. Moreover, Kinect’s FPS behaviour and noise with robot

connection should be considered in a future implementation to find a proper method to

keep them apart during acquisitions or to establish a connection without lowering Kinect’s

ability of capturing information. Investigating time settings by which the recognition starts

might prove important in the mis-classification of gestures which were delayed performed

with respect to the therapy protocol’s settings. This is an issue for future research to

explore. Also it would be useful to add an “initialization” phase to the therapy protocol.

In this phase the subject could be asked to perform a standard gesture in order to get its

effective size without any distortion due to either the camera’s resolution or the subject’s

position in front of it. Another important aspect is the type of feedback the robot provides.

When dealing with such a broad range of conditions as in the ASD, customized stimuli

may be more effective at eliciting skills learning. In point of that, child-specific feedback

might improve the effectiveness of the therapy. Furthermore, the next challenging protocol’s

levels should be considered in the implementation in which gesture teaching and recognition

system would be integrated in a story-telling scenario.

Up to date, children involved in the robotics therapy are few and there is no unequivocal

evidence that observed improvements will last. A Randomized Controlled Trial (RCT)

would reduce biases when testing this treatment’s efficacy. However, the overall clinical out-

comes were encouraging, demonstrating a successful integration of Biomedical Engineering

in therapeutic applications.
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