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Abstract

Many physical, �nancial and social phenomena can be modeled by means of Partial Dif-

ferential Equations, that may however be very di�cult to be solved analytically. For this

reason their numerical solution is a central topic in the applied mathematics �eld, mostly

focused on Galerkin-type praradigms. Such methods require the construction of a mesh

discretization of spatial domains, that can be very complicated, and heavy operations to

be performed at every node, and then to build a suitable discrete (i.e �nite dimensional)

approximation space on top of that. When problem dimensionality increases, the number

of points and consequently the computational cost arise, incurring in the so-called curse of

dimensionality. Machine learning provides powerful and innovative tools that has proved

to be able to overcome this issue and work with huge quantity of multidimensional data.

This thesis presents therefore a fully data-driven approach to the approximate solution of

Partial Di�erential Equations, based on a coupling of two arti�cial neural networks that

predict the valuation of the solution on coordinate points given as input. One structure

works on the boundary and the other in the interior of the domain, in order to exploit all

the information about the physics of the problem given by the equation and the (bound-

ary, initial) data.

The absence of particular theoretical background in the subject does not allow a rigorous

proof of convergence results and error bounds. On the other hand, the method applied to

a large class of problems appears to be rapidly convergent, even if to values of the error

of order no lower than 10−3. Moreover, the dimensionality increase slows the convergence

down but does not produce relevant obstacles in the training phase.

Fast convergence gives a good black-box method, that cannot however substitute the tra-

ditional approaches since it shows lacks in recognizing particular features of the solution

(e.g. irregularities, boundary/interior layers) even when the number of hidden layers in-

creases.

Keywords: Partial Di�erential Equations, Machine Learning, Arti�cial Neural Networks,

Data-driven approximation schemes.





Abstract in lingua italiana

Molti fenomeni �sici, �nanziari e sociali possono essere modellati per mezzo di equazioni

a derivate parziali, che tuttavia sono spesso di�cili da risolvere in modo analitico. Per

questa ragione la loro soluzione numerica è un argomento centrale nel campo della matem-

atica applicata, soprattutto focalizzata su paradigmi di tipo Galerkin. Tali metodi richiedono

la costruzione di mesh per la discretizzazione di domini spaziali, che possono essere molto

complicati, e l'esecuzione di pesanti operazioni ad ogni nodo. Quando la dimensional-

ità dei problemi aumenta, il numero di punti e di conseguenza il costo computazionale

crescono, incorrendo nella cosiddetta curse of dimensionality. Il machine learning fornisce

strumenti potenti ed innovativi che si sono dimostrati in grado di sorpassare questo prob-

lema e lavorare con grandi quantità di dati multidimensionali. Questa tesi presenta quindi

un approccio completamente data-driven alla risoluzione approssimata delle Equazioni a

Derivate Parziali, basato su un accoppiamento di due reti neurali arti�ciali che predicono

la valutazione della soluzione in coordinate di punti date in input. Una struttura lavora

sul bordo e l'altra all'interno del dominio, con lo scopo di sfruttare tutte le informazioni

riguardanti la �sica del problema fornite dall'equazione e dai dati (al contorno, iniziali).

L'assenza di un background teorico approfondito in materia non permette una dimostrazione

rigorosa di risultati di convergenza o controllo dell'errore. D'altra parte, il metodo appli-

cato a un'ampia classe di problemi sembra essere rapidamente convergente, anche se verso

valori dell'errore di ordine non inferiore a 10−3. Inoltre, l'aumento della dimensionalità

rallenta la convergenza ma non produce ostacoli rilevanti nella fase di training.

La rapida convergenza fornisce un buon metodo black-box, che non può tuttavia sosti-

tuirsi agli approcci tradizionali poiché mostra falle nel riconoscimento di caratteristiche

particolari della soluzione (come irregolarità, strati al bordo/interni) anche quando il nu-

mero di strati nascosti aumenta.

Parole chiave: Equazioni a Derivate Parziali, Machine Learning, Reti neurali arti�ciali,

Schemi di approssimazione data-driven.
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1

Introduction

Partial di�erential equations (PDEs) are one of the main mathematical tools for the

description of physical phenomena, whose main application �elds consist of quantum me-

chanics (Schrödinger equation), relativity, electromagnetism (Maxwell equations), �uid

mechanics (Navier-Stokes) and thermodynamics (heat equation). PDEs are also largely

adopted e.g., for models in �nance (Black-Scholes equation for pricing), chemistry, neu-

roscience and many other �elds. Although the theoretical analysis of PDEs is huge and

extensive, their solution is often very di�cult in practice. As a consequence, many numer-

ical schemes were developed for their approximation, such as Galerkin Finite Elements

[17], Spectral Elements [52], Finite Volumes [53], Finite Di�erences [54]. Such schemes are

mostly based on the de�nition of a suitable discrete space built on top of a suitable mesh,

that is a very expensive computational task [4], especially when the domains are compli-

cated surfaces or volumes, that may also vary over time. Moreover, grid-based methods

su�er from the curse of dimensionality, i.e. the computational cost grows exponentially

with the domain dimension. For example, a grid made of N points per dimension in a

domain of Rm is made of Nm total nodes, in correspondence of which shape functions

must be de�ned and numerical integrals computed. Many modi�cations to these methods

were proposed to overcome the above-mentioned issues, like least squares �nite elements

[13] or even mesh-free Galerkin [29] methods.

Recently a new class of methods was developed for the numerical solution of di�eren-

tial equations, thanks to their proven success in dealing with high-dimensional datasets

[12, 41, 48]. Arti�cial neural networks (ANNs) were introduced in 1943 by McCulloch and

Pitts [63], and were mainly applied to classi�cation [72] and pattern recognition [3, 95]

tasks. ANNs are learning structures that mimic the information processing of synaptic

interactions in the human brain, in order to transform data inputs into numeric outputs.

They are made of nodes that represent neurons, connected to each-other and exchanging

information. These units are no more than very simple parametric functions of the input,

whose speci�c parameters are automatically set during the learning process by optimiza-

tion of a loss functional, often expressed as sum of square errors with respect to the target

output. The ability of this machine learning structure of approximating a large set of
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functions was proved by Cybenko [24], Hornik et al. [39] [38] and Gallant and White [33]

in the early '90s, leading to applications in many �elds, including the approximate solu-

tion of PDEs. Many approaches were introduced for the direct solution of the problems,

based on architectures taking as input data given at coordinate points and learning by

minimization of the approximation error given as the di�erence between the right-hand-

side of the PDE and the equation evaluated at the input points [7, 19, 27, 87]. The initial

conditions in time-dependent problems are usually approximately satis�ed thanks to the

addition of an appropriate penalization term in the loss functional, while the boundary

constraint is often treated independently by specifying a lifting operator that makes the

output of the neural network exactly satisfy it [20, 49, 50, 58]. Some speci�c architectures

based on the Finite Element method were also introduced, for both the approximate so-

lution of a PDE on a grid [9, 78], the creation of adaptive meshes, exploiting their ability

in pattern recognition, [44, 59], or even the automatic tuning of some hyperparameters

in the traditional Galerkin-type schemes [26, 84]. Another powerful application of deep

learning to Partial Di�erential Equations is the data-driven model discovery, where the

form of the PDE is determined by suitable observations [55, 76, 77]. Although the theory

related to ANNs is relatively poor, some convergence results concerning these methods

were proved, in addition to more general approximation properties [12].

ANN-based methods are also able to deal with huge amount of data, just as with high

dimensional problems without incurring in the curse of dimensionality, and more �exible

than the traditional schemes because mesh-free. On the other hand, some downsides

consist in a scarse theoretical background that does not allow to prove convergence results

yet and the disregard of physical information, that is not taken into account by these

totally data-driven models other than weakly in the loss functional.

In this thesis I consider a ANN-based method for the approximate solution of PDEs based

on the work of Xu et al. [91] and Karniadakis, Raissi et al. [77]. This exploits the idea

of numerically solve the equation as an unconstrained problem with an Arti�cial Neural

Network taking as input random points of the domain and then adjust the output by

means of a lifting operator aimed at satisfying the boundary condition, that is not �tted

exactly in this case, unlike in [49], [20] and [58], but only approximately. This choice was

made because of the high computational cost required by the de�nition of such operator

when the condition is not of fully Dirichlet-type [50]. In particular, the estimation is per-

formed by an independent neural network, processing points on the boundary and setting

the nodes parameters by minimizing the sum of square errors related to the constraint.

The two structures are then coupled by expressing the �nal approximation result as a

sum of their outputs, in which the result of the main PDE network is multiplied by a
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function whose value is 0 on the boundary. The test cases analyzed in the last chapters

of this thesis only involve Dirichlet boundary conditions, but the extension to any other

type of boundary conditions is straightforward. As we will see, the boundary network is

a very simple structure, that also works on a domain whose dimensionality is 1 less than

the one of the PDE, and therefore the error produced is much lower and convergence to

the �xed threshold is achieved in very few iterations. This implies that the substitution

of a lifting operator that �ts the boundary condition exactly with an approximate one

does not produce large variations in the overall error. The introduction of Neumann or

Robin-type boundary conditions should not a�ect much the method performance because

no high-order derivatives computations are involved, and therefore the learning process

stability is not a�ected, just like the complexity of the boundary network.

In this thesis I have extended the idea proposed by Xu et al. [91] for elliptic PDEs to

parabolic and hyperbolic PDEs. The time component was just inserted as an additional

dimension of the input variables and no discretization was introduced. I have studied

parabolic and hyperbolic problems, including the Burgers equation and other conservation

laws.

The aim of my work was to provide an intuitive, fast but computationally expensive

testing of the performance of ANN-based approximate solvers for a wide class of PDEs

in terms of approximation error, stability and computational time. As we will see in

Chapters 5 and 6, the approximation error tends to reach similar values for almost all

the examples and many cases show a convergent trend. I have also applied the method

to high dimensional problems and the performance seems not to su�er from the curse of

dimensionality, even though such an extension is not fully exploited in this work. Further

developments can focus on a more systematic study of the networks architecture, that

is not fully automatized in this thesis. However, this issue can be overcome by further

research and application of already known autotuning methods.

The thesis is organized as follows:

Chapter 1

Chapter 1 recalls the main ingredients on Partial Di�erential Equations, starting from the

general formulations and some theoretical results. The partition into elliptic, parabolic

and hyperbolic problems is introduced, in order to explain their roles and applications in

the description of physical problems.

The last section of this chapter introduces the most common numerical scheme for the

approximate solution of PDEs, i.e. the Galerkin method. The most relevant results
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concerning stability and error bounds are also presented.

Chapter 2

Chapter 2 presents an overview on Arti�cial Neural Networks, their functioning and main

applications.

First the neuron-like structure is described, with some pros and cons related to this

approach, followed by speci�c insights into the selection of the activation functions and

learning algorithms based on backpropagation of the error. Finally, some theoretical

results concerning the application of ANNs to function approximation are presented in

the �nal part of this chapter.

Chapter 3

Chapter 3 addresses the application of ANNs to the numerical solution of PDEs. The

chapter starts with a brief introduction to the state of the art of already existing machine

learning approaches, laying the foundations for my thesis, based on the work of Xu et al.

[91].

The architecture consists in the coupling of two structures, made of two independent

networks processing data in the form of locations from the interior and boundary of a

spatial domain Ω in order to give as output the approximate solution of the PDE at those

points. The measures of error related both to the speci�c networks and to the overall

solution are also de�ned here.

In the �rst part of the chapter the method is described for its application to elliptic

PDEs, while in the second part of the chapter its extension to time-dependent parabolic

and hyperbolic PDEs is considered.

Chapter 4

Chapter 4 introduces the main test cases addressed in the numerical testing and constructs

three examples for every class of equation of interest, having analytical solutions with

di�erent regularity.

As elliptic PDEs, the Poisson and stationary advection-di�usion equations are considered,

while their evolution in time is analyzed in the parabolic example. Finally, also hyperbolic

problems are introduced in the form of linear transport.
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Chapter 5

Chapter 5 contains the numerical examples for elliptic-type PDEs.

The �rst test cases are analyzed, starting from the Poisson problem and going on to the

steady advection-di�usion.

The �rst half of the chapter performs the experiments with neural architectures built as

suggested by Xu et al. [91] and then justi�es the choice of hyperparameters like the number

of hidden layers, neurons and learning rate by trial and error. The resulting structure

is then applied to higher dimensional extension of the studied problems and then to the

advection-di�usion equation. In the last part of this chapter, the hyperparameters are

retuned for the speci�c case where also the transport term is considered.

Chapter 6

Chapter 6 deals with the numerical testing of time-dependent extension of the problems

studied in the previous chapter. In the �rst part, the method is applied to parabolic test

cases with the corresponding previously tuned values of the hyperparameters. In the sec-

ond part, we consider the extension of the proposed approach to hyperbolic conservation

laws, in terms of transport equations.

The hyperparameters of the neural architectures are set according to the tuning made for

the Poisson problems.

Chapter 7

Chapter 7 contains some concluding remarks on the application of the proposed method

to the numerical solution of PDEs and a �nal comparison with Finite Element method

presented in Chapter 1 are discussed in terms of approximation error, stability and com-

putational cost.

In the end, some future developments of this approach are presented.
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1| An overview of Partial

Di�erential Equations

A Partial Di�erential Equation is a relation that can be expressed as follows:

F (x1, ..., xn, ux1 , ..., uxn , ..., ux1,x1 , ux1,x2 , ..., uxnxn , ux1x1x1 , ...) = 0, (1.1)

with u = u(x1, ..., xn). The equation order is given by the maximum order of derivative

involved.

If F is linear with respect to u and all of its derivatives, then the equation is called linear,

while if it is nonlinear only with respect to u it is called semilinear and if it is linear

only with respect to the derivatives of maximum order, with coe�cient only dependent

on x and u, quasi-linear. Finally, if F is nonlinear with respect to the derivatives of

u of maxium order, the equation is called completely nonlinear. The theory about

linear PDEs is su�ciently consolidated, while the complexity and variety of nonlinear

ones hampers uni�ed results.

Among second order linear PDEs an additional classi�cation can be introduced. Indeed,

in this case the equation (1.1) can be expressed as follows:

n∑
i,j=1

aij
∂2u

∂xi∂xj
+ lower order terms,

where x1, ..., xn are linearly independent variables.

Then, according to the eigenvalues of the matrix A = (aij)
n
i,j=1, the equation can be

elliptic, parabolic or hyperbolic, as explained in the following sections. For further details,

refer to Salsa [83].

Any problem can moreover be formulated in many ways, and to each of them a notion of

solution is associated:

� Strong solution: u ∈ C 2(Ω) ∩ C (Ω̄)
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Derivatives up to the second order are de�ned in the pointwise sense, boundary data

are assumed by taking limits in a pointwise sense and f is required to be continuous;

� Strong solution: u ∈ H2(Ω)

Distributional derivatives are de�ned up to the second order, the di�erential equa-

tion is satis�ed almost everywhere with respect to the Lebesgue measure and the

boundary condition is intended in the sense of traces;

� Variational/weak solution: u ∈ H1(Ω)

This is the notion of solution we are going to develop. The equation holds in the

weak sense;

� Solution in the distributional sense: u ∈ L1
loc(Ω)

The equation is intended in the sense of distributions, i.e. −
∫

Ω
u∆v =

∫
Ω
fv ∀v ∈

D(Ω), and the boundary condition is satis�ed in a very weak sense;

� Solution in the viscosity sense: both an upper semicontinuous function such that

∀x0 ∈ Ω, ∀φ ∈ C 2(Ω) such that φ(x0) = u(x0), φ ≥ u in a neighborhood of x0, we

have F (x0, φ(x0), Dφ(x0), D2φ(x0)) ≤ 0 (subsolution) and a lower semicontinuous

function such that ∀x0 ∈ Ω, ∀φ ∈ C 2(Ω) such that φ(x0) = u(x0), φ ≤ u in a

neighborhood of x0, we have F (x0, φ(x0), Dφ(x0), D2φ(x0)) ≥ 0 (supersolution).

According to the coherence principle, if the data and the solution are smooth, then all

the notions must coincide.

All the results stated in the following sections are proved in [83].

1.1. Elliptic equations

The �rst type of equations considered is typically invovled in modeling steady state of

phenomena like for instance electromagnetic potentials and elastic vibrations.

De�nition 1.1.1 (Elliptic equation). Let Ω ⊆ Rn be a convex compact domain, A =

A(x) = aij(x) a square real matrix of order n, b = b(x) and c = c(x) vector �elds in

Rn, a = a(x) and f = f(x) real functions. Then, the equation

−∇ · (A∇u) +∇ · (bu) + c · ∇u+ au = f (1.2)

is called elliptic if A is positive de�nite in Ω, i.e. if the following elliptic condition
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holds:
n∑

i,j=1

aij(x)ξiξj > 0, ∀x ∈ Ω, ∀ξ ∈ Rn, ξ 6= 0.

The equation (1.2) is expressed in divergence form, highlighting the structure of the

left hand side, made of three terms. The �rst one usually models di�usion in non-

homogeneous and/or anisotropic means: −∇· (A(x)∇u), with u representing for instance

the temperature or concentration of a substance. ∇ · (bu) + c · ∇u models convection

(or transport), and in particular when ∇ · (b) = 0, it becomes (b + c) · ∇u. Finally, au
is called reaction term and f represents the action of an external source, distributed

over Ω.

The problem we want to solve is to �nd u satisfying equation (1.2) for given speci�c

A, b, c, a, and f and some boundary conditions. In this project we will only consider

Dirichlet boundary conditions, that set the exact value of the solution u = gD on ∂Ω.

1.1.1. Variational formulation

In this section we are going to derive the weak formulation of the elliptic problem with

Dirichlet boundary conditions. We start from the case with homogeneous boundary con-

ditions and then extend the result for the nonhomogeneous case.

Consider a test function v ∈ C 1
0 (Ω), multiply both sides by v and integrate over the

domain:

−
∫

Ω

∇ · (A(x)∇u− bu)v +

∫
Ω

c · ∇uv +

∫
Ω

auv =

∫
Ω

fv.

Integrate by parts (according to the divergence theorem) on the left hand side and apply

the boundary condition:

∫
Ω

A(x)∇u · ∇v −
∫

Ω

ub · ∇v +

∫
Ω

c · ∇uv +

∫
Ω

auv =

∫
Ω

fv ∀v ∈ C 1
0 (Ω). (1.3)

Let us now introduce the Sobolev spaces H1(Ω) and H1
0 (Ω):

De�nition 1.1.2. H1(Ω) := {v : Ω→ R st v ∈ L2(Ω), ∇v ∈ [L2(Ω)]2}.

De�nition 1.1.3. H1
0 (Ω) := {v ∈ H1(Ω) st v = 0 on ∂Ω}.



10 1| An overview of Partial Di�erential Equations

Since H1
0 (Ω) is the closure of C 1

0 (Ω) with respect the norm ||∇(·)||0, then we can look for

a solution u ∈ H1
0 (Ω).

De�nition 1.1.4 (Variational/weak elliptic problem). Find u ∈ H1
0 (Ω) such that equa-

tion (1.3) is satis�ed ∀v ∈ H1
0 (Ω).

Let V = H1
0 (Ω) and introduce an operator F : V −→ R such that F (v) =

∫
Ω
fv ∀v ∈ V

and a bilinear form a : V × V → R such that a(w, v) =
∫

Ω
A(x)∇w · ∇v −

∫
Ω
wb · ∇v +∫

Ω
c · ∇wv +

∫
Ω
awv ∀w, v ∈ V . Then, the abstract weak formulation reads as:Find u ∈ V such that

a(u, v) = F (v) ∀v ∈ V.
(1.4)

According to Theorem 1, the abstract weak problem (1.4) and, therefore, the elliptic

Dirichlet problem, are well posed.

Theorem 1.1. Let f ∈ L2(Ω). If b and c are Lipschitz continuous on Ω and a− 1
2
∇·(c−

b) ≥ 0 ae in Ω, then ∃! a weak solution u ∈ H1
0 (Ω) to the Dirichlet problem, satisfying

the following stability estimate:

||∇u||L2(Ω) ≤
cp
α0

||f ||L2(Ω),

where α0 is the coercivity constant of a(w, v) and cp > 0 is the constant of the Poincaré

inequality on Ω.

If the Dirichlet boundary condition is not homogeneous, i.e. u = gD on ∂Ω, gD ∈ H
1
2 (Ω)

and Ω is at least Lipschitz continuous, so that there exists an extension g̃D of gD in H1(Ω),

then we can de�ne w := u− g̃D ∈ H1
0 (Ω), satisfying the homogeneous Dirichlet equation

with the following right hand side:

f −∇ · (A(x)∇g̃D) +∇ · (bg̃D) + c∇g̃D + ag̃D.

Then, ∃!w ∈ H1
0 (Ω) satisfying the weak-sense equation and the following stability esti-

mate:

||u||H1(Ω) ≤ c̃(||f ||L2(Ω) + ||g||
H

1
2 (Ω)

),

where ||g||
H

1
2 (Ω)

:= inf{v ∈ H1(Ω) such that v = g on ∂Ω}. Therefore, the non-homogeneous
problem is well posed and ∃! solution u ∈ H1(Ω) given by u = w + g̃D.

If we let A = I, b = c = 0 and a = 0, we obtain the �rst problem of our interest:
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De�nition 1.1.5 (Poisson-Dirichlet problem).−∆u = f in Ω,

u = gD on ∂Ω.
(1.5)

In the weak formulation, the bilinear form is de�ned as follows:

a(w, u) =

∫
Ω

∇w · ∇v ∀w, v ∈ V.

If we let instead A = εI, c 6= 0, b = 0 and a = 0, with f ∈ L2(Ω), ε ∈ R, 0 < εx < ε <

ε∗, ||c||L∞(Ω) ≤ c, then we obtain the advection-di�usion problem:

De�nition 1.1.6 (Stationary advection-di�usion problem).−∆u+ c · ∇u = f in Ω,

u = gD on ∂Ω.
(1.6)

In the weak formulation, the bilinear form is de�ned as follows:

a(w, v) = ε

∫
Ω

∇w · ∇v + c

∫
Ω

∇wv ∀w, v ∈ V.

1.2. Parabolic equations

De�nition 1.2.1 (Parabolic equation). Let Ω ⊂ Rn be a limited domain and consider the

spatio-temporal cylinder QT = Ω× (0, T ), with T > 0. Let A = A(x, t) be a square real

matrix of order n, b = b(x, t) and c = c(x, t) vectors in Rn, a = a(x, t) and f = f(x, t)

real functions. Then, the following equation in divergence form:

ut −∇ · (A∇u− bu) + c · ∇u+ au = f

is called parabolic if

A(x, t)ξ · ξ > 0 ∀(x, t) ∈ QT , ∀ξ ∈ Rn, ξ 6= 0. (1.7)

This equation is completed by assigning boundary conditions on ∂Ω, which will be con-

sidered of Dirichlet type (i.e. u = gD on ∂Ω × [0, T ]) in the following chapters, and an
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initial condition

u(x, 0) = g(x) ∀x ∈ Ω.

1.2.1. The abstract parabolic problem

The most common initial-boundary value problems can be reformulated in terms of ab-

stact parabolic problem (APP), so in this section we will analyze its weak formulation

and an existence, uniqueness and stability result.

The functional setting where the APP is de�ned consists of an Hilbert triplet< V,H, V ∗ >,

where H and V are separable, < ·, · >∗ indicates the duality between V and V ∗ and || · ||∗
the norm in V ∗. The choice of V depends on the boundary conditions and usually corre-

sponds to V = H1
0 (Ω) when they are of Dirichlet type. The domain shall be considered

limited and Lipschitz. Moreover, we set the initial datum as g ∈ H and consider the

distributed source

f ∈ L2(0, T ;V ∗) := {f : [0, T ] −→ V measurable such that t 7→ ||f(t)||V is in L2(0, T )}.

Finally, a bilinear form B(w, z; t) : V × V −→ R is de�ned for almos every t ∈ (0, T ),

satisfying the following hypotheses:

� Continuity: ∃M = M (T ) > 0 such that |B(w, z; t)| ≤ M ||w||V ||z||V ∀w, z ∈
V, ae in (0, T ),

� V −H weak coercivity: ∃λ, α > 0 such that B(w,w; t) + λ||w||2H ≥ α||w||2V ∀w ∈
V, ae in (0, T ),

� Measurability with respect to t: t 7→ B(w, z; t) is measurable ∀w, z ∈ V .

De�nition 1.2.2 (Abstract parabolic problem). Find u ∈ H1(0, T ;V, V ∗) such that
∫ T

0
< ut(s), v(s) >∗ ds+

∫ T
0
B(u(s)v(s); s)ds =

∫ T
0
< f(s), v(s) >∗ ds ∀v ∈ L2(0, T ;V ),

u(0) = g.

The following theorem assures the well posedness of the problem:

Theorem 1.2. The APP has a unique solution u ∈ V = H1(0, T ;V, V ∗) := {u : u ∈
L2(0, T ;V ), ut ∈ L2(0, T ;V ∗)}. Moreover, the following energy estimates hold:

||u(t)||2V , α
∫ t

0

||u(s)||2V ds ≤ e2λt

(
||g||2H +

1

α

∫ t

0

||f(s)||2V ∗ds
)
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and ∫ t

0

||ut(s)||2V ∗ds ≤
(
C0||g||2H + C1

∫ t

0

||f(s)||2V ∗ds
)

∀t ∈ [0, T ], with C0 = 2α−1M 2e2λt, C1 = α−2M 2e2λt + 2.

In the case of parabolic problems, B(u, v; t) =
∫

Ω
(A(x, t)∇u · ∇v + (c(x, t) · ∇u)v + a(x, t)uv) dx

can be proved to satisfy the conditions discussed above. Therefore, the following result

holds:

Theorem 1.3. If f ∈ L2(0, T ;V ∗) and g ∈ L2(Ω), then there exists a unique weak solution

to the parabolic problem. Moreover, the following estimates hold:

max
t∈[0,T ]

||u(t)||20,
∫ T

0

||u||2V dt ≤ C

(∫ T

0

||f(t)||2∗dt+ ||g||20
)

and ∫ T

0

||u(t)||2∗dt ≤ C

(∫ T

0

||f(t)||2∗dt+ ||g||20
)
.

As well as in the elliptic case, the regularity of the solution increases with the regularity

of the data.

The heat equation is a particular case of parabolic problem, describing the heat propaga-

tion by conduction in an homogeneous and isotrpic means.

In the following de�nition, u(x, t) describes the temperature in the space location x at

the time instant t of a metal object occupying the volume Ω. The temperature on the

boundary is controlled by a function gD, while f represents an external heat source. The

temperature at time t = 0 is known as well and described by a function g.

De�nition 1.2.3 (Heat equation).
ut −∆u = f in Ω× [0, T ],

u = gD on ∂Ω× (0, T ],

u(x, 0) = g(x) ∀x ∈ Ω

(1.8)

If we add to the PDE of problem (1.8) a transport term c · ∇u, then we obtain the

evolutionary counterpart of the problem (1.6) introduced in Section 1.1.1:
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De�nition 1.2.4 (Advection-di�usion problem).
ut −∆u+ c · ∇u = f in Ω,

u = gD on ∂Ω,

u(x, 0) = g(x), ∀x ∈ Ω.

1.3. Hyperbolic equations

Second order hyperbolic equations derive from a generalization of the wave equation

utt − c2∆u = f to

utt −∇ · (A(x, t)∇u) + b(x, t) · ∇u+ c(x, t)u = f(x, t),

under the condition (1.7).

Typical problems require both boundary conditions on the lateral domain ∂Ω× (0, T ] and

initial conditions

u(x, 0) = g(x), ut(x, 0) = h(x) in Ω.

Since the general theory is very complex, we will limit the analysis on the problems of

our interest. In partcular, we will talk about conservation laws:

ut +∇ · F(u) = 0 in Ω× (0, T ]. (1.9)

In general, u represents the concentration of a physical quantity and F its �ux func-

tion, and the associated problems are initial value ones. Equation (1.9) often appears

in 1-dimensional �uid-dynamics describing the formation and propoagation of shock and

rarefaction waves.

If we take as �ux of u the linear function F(u) = βu, the �rst kind of conservation law

that we will consider as test case is derived:

De�nition 1.3.1 (Linear advection).
ut + β · ∇u = f in Ω× [0, T ],

u = gD on ∂Ω× (0, T ],

u(x, 0) = g in Ω.

(1.10)
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1.4. Galerkin discretization

A traditional method for the approximate solution of a PDE problem, based on the domain

discretization and numeric integration is the Galerkin method.

Consider a sequence {Vh}h of �nite-dimensional spaces Vh ⊆ V such that dim(Vh) = Nh <

∞, and restrict the abstract weak problems (1.4) to each Vh:

De�nition 1.4.1 (Discrete weak formulation).Find uh ∈ Vh such that

a(uh, vh) = F (vh) ∀vh ∈ Vh
(1.11)

Theorem 1.4. The solution of the discrete weak problem (1.11) is equivalent to the solu-

tion of a linear system of the form Auh = F, where A ∈ RNh×Nh, F ∈ RNh and uh ∈ RNh.

Let {φ1, ...., φNh
} be a basis for the �nite-dimensional subspace Vh. Then, the matrix A

has elements aij = a(φj, φi) ∀i, j = 1, ..., Nh, F = [F (φ1), ..., F (φNh
)]T and uh is the

vector of the expansion coe�cients of u with respect to the given basis functions.

The algebraic problem is well-posed, and so is the discrete weak problem. Moreover, a

quasi-optimal error bound holds:

Theorem 1.5. Let u ∈ V be the solution of the weak problem (1.3) and uh ∈ Vh be the

solution of the discrete problem (1.11). Then,

||u− uh||V ≤
M

α
inf
vh∈Vh

||u− vh||V ,

where M is the continuity constant of f(·) and α is the coercivity constant of a(·, ·).

1.4.1. The Finite Element method

We are now left to construct the �nite-dimensional spaces Vh with the �nite element

method.

The discretization is based on a triangular mesh τh = {T}T of granularity h, such that

Ω = ∪T∈τhT , under the following assumptions:

� Shape regularity: ∃c > 0 st ∀T ∈ τh ρT
hT
≥ c, where ρT is the radius of the

greatest ball contained in the triangle T and hT = maxx,y∈T |x − y| is called the
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diameter of the element T .

� Mesh conformity: the intersection of two triangles of the mesh is either ∅, or a
vertex or a full edge.

De�nition 1.4.2 (Finite element space). Let Vh := {vh ∈ C0(Ω̄) st vh
∣∣
T
∈ Pn(T ) ∀T ∈

τh, vh = 0 on ∂Ω}, where Pn(T ) is the space of polynomials of degree at most n de-

�ned on T.

In order to be uniquely identi�ed on the mesh, a function must be de�ned on the set of the

degrees of freedom, which varies according to the mesh shape and dimensionality. In

the 2D conforming triangular case, the set of degrees of freedom is given by {Vi}i=1,...,Nh
,

where Vi, i = 1, 2, ..., Nh is an interior vertex of the mesh, since on the boundary nodes

the Dirichlet condition is already imposed.

Finally, consider as shape functions the Lagrange functions φi(Vj) = δij ∀i, j = 1, 2, ..., Nh,

forming a basis for the �nite-dimensional vector space Vh.

For the numerical solution of the proposed problem with Galerkin Finite Element method

the following result concerning the L2 norm of the approximation error holds:

Theorem 1.6. Let Ω be a convex polygonal domain, u ∈ V the solution of the weak

problem (1.3) and uh ∈ Vh the solution of the discrete problem (1.11). If u ∈ Hr+1(Ω) for

some integer r ≥ 1, then

||u− uh||L2(Ω) ≤ c(r)hr+1|u|Hr+1(Ω).

Moreover, we know that the exact solution to the weak problem (2.3) belongs to H1(Ω),

and the following error estimate holds:

Theorem 1.7. Let Ω be a convex polynomial domain, u ∈ V be the solutiion to the weak

problem (1.3) and uh ∈ Vh be the solution to the discrete problem (1.11). If u ∈ Hr+1(Ω)

for some integer r ≥ 1, then

||u− uh||H1(Ω) ≤ c(r)hr|u|Hr+1(Ω)

In the advection-di�usion case some oscillations may arise. In order to make the method

more stable, an arti�cial viscosity parameter is added, giving rise to particular schemes,
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like the upwind FEM, where the L2 error is controlled by h instead of h2.

For further results and the application of the Galerking Finite Element method, refer to

[74].





19

2| An overview of Arti�cial

Neural Networks

An arti�cial neural network (ANN) is a computational learning system, based on the

mechanisms underlying the way neurons and synapses in the human brain recognize pat-

terns. It consists in a network of functions able to understand and translate a data input

into a numeric output. The task of actually mimicking the functioning of human brain

for the creation of neurocomputers able to interact with the environment has not been

achieved yet, even if it is not theoretically forbidden [40]. The idea of neurocomput-

ing was �rst introduced in 1943 by McCulloch and Pitts [63], who suggested that even

simple neural networks could compute arithmetic and logical functions, followed by the

construction of the �rst functioning neurocomputer by Frank Rosenblatt and others in

1958. Up to now arti�cial intelligence is only capable of executing some given learning

tasks, mainly applied to classi�cation [72], pattern recognition [3, 95], and prediction in

many disciplines, usually providing reasonable robustness. Some examples can be found

in image processing [31, 48], handwriting [22, 61] and speech recognition [37], face iden-

ti�cation [85], medical diagnosis [1, 75, 94] and biology [35]. Neural networks have also

proved success in the �eld of physics [56] and mathematics [68, 96].

As shown in Figure 2.1, the building blocks of the networks structure are simple nodes,

grouped in layers. We will only consider feedforward dense neural networks, where

the �ux of data processing follows the scheme:

input layer −→ hidden layers −→ output layer.

The left-most layer is called input layer, and consists of a given data set, while the

right-most one is the output layer and is usually a single node containing the estimation

result. Between input and output there are some hidden layers, whose nodes, called

neurons, perform the actual classi�cation tasks, each one taking several inputs x =

[x1, ..., xj, ..., xN ]T and giving a monodimensional output y. Both the inputs xj, j =

1, ..., NT , and the otuput y can be either scalars or vectors.
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Figure 2.1: Feedforward dense neural network structure with 2 hidden layers composed

by 6 neurons each.

Graphic connections between nodes belonging to di�erent layers mean that the output

of the one is taken as input from the other, forming a hierarchical structure that allows

more and more complex decisions as the number of layers increase. A network with many

hidden layers is called deep neural network, and it can be decomposed into smaller

subnetworks. In feedforward neural networks no loops among layers are allowed and in

dense networks each neuron takes as input the output from all the neurons in the previous

layer only (see Figure 2.1).

There exist no proven "recipes" for setting the correct number of layers or neurons for

speci�c problems, as well as many other features like the size of the training set, the

weights initialization range, the stopping criterion, etc., called hyperparameters [88].

We will see at the end of this chapter that an ANN with a single layer can approximate

continuous functions, thus it is generally su�cient for most problems, especially for clas-

si�cation tasks. However, if on the one hand a low number of layers helps preventing

over�tting of the input data, on the other a deeper structure can learn complex relations

among data in a more e�cient way. The most trivial tuning technique is based on trial

and error, but some more advanced heuristics were proposed, like the one based on Kol-

mogorov theorem for the approximation of continuous functions in [0, 1]n [36], or pruning

and constructive algorithms as Optimal Brain Surgeon method [73]. Since the networks

performance appears to be strongly dependent on the choice of the hyperparameters, and

in order to make machine learning algorithms more autonomous, automatic tuning tech-

niques were also introduced: some of the most promising are based on random search
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[10] and Bayesian optimization [11, 64]. Finally, metalearning, i.e. learning based on

prior experience on other tasks, can also improve the design of these architectures by the

creation of recurrent neural networks [62].

As far as this thesis is concerned, we will tune the hyperparameters by trial and error,

analyzing the e�ects of varying the number of hidden layers and the relative number of

neurons contained in each layer, and �nally adjusting the learning rate (a real parameter,

whose speci�c de�nition will be introduced in Section 2.3.)

2.1. Activation function

The most simple type of neuron is the perceptron, introduced for the �rst time in 1958

by Rosenblatt [80], that transforms several input data x = [x1, ..., xj, ..., xN ]T into a single

output

y =

0 if w · x ≤ b,

1 if w · x > b.

The parameters wj ∈ RN and b ∈ R, are the weights and threshold (or bias), respec-

tively, and are speci�c for each learning unit and updated at every iteration in order to

minimize the classi�cation error, usually in the least squares sense. In the perceptron

case, the binary output is traduced in activation or non-activation of the associated neu-

ron if the weighted sum of the inputs is su�ciently large. The parameters are optimized

during the training phase, when di�erences between the exact and predicted outputs

propagate backwards from the output through the hidden layers. After the optimization,

the network is fed with a new set of data, called test set, for the validation. Finally, it

can be applied to predictions corresponding to new inputs.

The main theoretical result concerning the perceptron is a convergence theorem, rigorously

stated and proved in [69], a�rming that the output of this simple algorithm, with any

parameters initialization, is compatible with its training examples.

However, this conclusion only takes into account pattern recognition tasks, and the bad

performance of this approach in other tasks were pointed out by Minsky and Papert

[66]. In fact, we would expect small variations in the weights and biases to produce little

changes in the output, but this is not true for networks made of perceptrons. Therefore,

for better stability sigmoid neurons are prefered, since they produce smaller variations

in the output with respect to variations in the weights. Their output is computed as

follows:

y = σ(w · x+ b),
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where σ(·) is given by:

σ(z) =
1

1 + e−z
=

1

2

(
1 + tanh

(
z

2

))
.

As shown in Figure 2.3, the behaviour of σ(·) is asymptotically equivalent to the step

function used for the computation of the output of the perceptron.

Moreover, in this case if we consider variations ∆wj and ∆b in the parameters, then each

neuron's output changes as follows:

∆out ≤
∑
j

∂out

∂wj
∆wj +

∂out

∂b
∆b.

More in general, many functions can be used for the output determination by normalizing

the product w · x between 0 and 1 (or -1 and 1), and they are called activation func-

tions. In Figure 2.2 we can observe the schematic functioning of a generic neuron that,

given an input x, computes the output y as the evaluation of the activation function at

the weighted sum of the data {xi}ni=1.

Figure 2.2: Scheme of neurons functioning: the output y is computed as the evaluation

of the activation function f at the weighted sum of the inputs {xi}ni=1 with respect to

{wi}nj=1.

The step function, signature of the perceptron, has zero gradient at every point, that

implies saturation of the neurons and consequently is e�cient for binary class�cation

only. Its most simple smoothing brings to the nonlinear sigmoid function, that presents

no jumps but still provides an output in [0, 1] and can make clear predictions. On the

other hand, also the gradient of this activation is almost 0 almost everywhere, implying a

slow learning as well. Moreover, the sigmoid is not centred around 0 and computationally

expensive.

The centering around 0 can be easily �xed by passing to the tanh activation function:
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σ(x) = tanh x,

whose output is still bounded, but this time in [−1, 1]. This activation function pro-

vides better recognition accuracy, as proved in [45] and [46]. However, its shape is just

the stretching of the sigmoid, so the issues about the gradient and expensive computa-

tional time are still present, due to the di�culties in evaluating the exponential function,

overcome by the implementation of approximation techniques, such as [60].

It is also possible to use a linear activation function, even if it is not recommended for

the hidden layers but only for the output one, since it is not able to represent complexity

in practical applications, the ReLU activation function is de�ned by:

σ(x) = max{x, 0}.

The ReLU is still not everywhere linear, so it can �t complex problems, but is very easy

to compute, and has non-null gradient for every positive real value, so backpropagation

of the error ensures no saturation of the neurons. Even better for backpropagation is the

leaky ReLU, whose gradient is di�erent from 0 also for negative real values:

σ(x) = max{αx, x},

with α > 0. Finally, a smoothed version of the ReLU activation function consists of the

so-called softplus activation, whose derivative is de�ned at every point as:

σ(x) = ln(1 + ex).

For further examples of activation functions and their comparison see [86].

As anticipated in the previous section, the choice of activation function is typically hand-

crafted and based on experience of some heuristics. However, as well as for the quanti-

tative hyperparameters, also this feature can be automatically chosen by the ANN. The

structures performing this additional task are called Evolutionary ANNs (EANNs),

and combine evolution algorithms to learning [89, 93], allowing the adaptation of their

topology to di�erent tasks without the need for human intervention. Moreover, EANNs

are less sensitive to weights initialization and network depth, do not require everywhere

di�erentiability of the activation function and can avoid local minima. An example of

such structure, based on learning a piecewise-linear activation function for every neuron
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independently during training, is proposed by Agostinelli et al. [2].

Figure 2.3: Plots of the most common activation functions

2.2. Backpropagation

The error produced by the network on the output depends both on the estimates of the

parameters and on how many times the optimization is performed, i.e. on the hyperpa-

rameters introduced above.

Let {wljk}j,k,l, j = 1, ..., N l, k = 1, ..., N l−1, l = 1, ..., L, where Nl is the number of

neurons in layer l and L the total number of layers, be the weight associated to the kth

neuron in layer l−1 connected to the jth neuron in layer l, blj the bias of neuron j in layer
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l and alj its output, called activation (see Figure 2.4 for a scheme). Then,

alj = σ

(∑
j

wljka
l−1
k + blj

)
. (2.1)

Equation (2.1) can be rewritten as:

σ(zl) = al = σ(W lal−1 + bl), (2.2)

by de�ning zl := W lal−1 + bl, with l = 1, ..., L, and W l = {wljk}j,k,l, j = 1, ..., N l, k =

1, ..., N l−1, al = {alj}N
l

k=1 and bl = {blj}N
l

j=1, ∀l = 1, ..., L.

Figure 2.4: Scheme of backpropagation neurons.

Assume that the cost function to be minimized is given in terms of mean square errors

(MSE):

J(x;W,b) =
||yout(x)− ytrue||2

2N
, (2.3)

and denoted by Jn = Jn(aL) the cost function for a single input xn, with L = index of

the output layer.

De�ne now the error related to neuron j in layer l as follows:

δlj :=
∂J

∂zlj
, ∀j = 1, ..., N l, ∀l = 1, ..., L.

Then, δlj should be small in principle and we want it to get smaller.
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In this framework, four equations describing the behaviour of the error depending on the

network structure can be proved:

� Equation for the error of the output layer L:

δLj =
∂J

∂aLj
σ′(zLj ), ∀j = 1, ..., NL; (2.4)

� Equation for the error of layer l in terms of δl+1:

δlj =
∑
k

wl+1
kj σ

′(zlj)δ
l+1
k ∀j = 1, ..., N l, ∀l = 1, ..., L; (2.5)

� Equation of the variation of J with respect to b:

∂J

∂blj
= δlj ∀j = 1, ..., N l, ∀l = 1, ..., L; (2.6)

� Equation for the variation of J with respect to W :

∂J

∂wljk
= al−1

k δlj ∀j = 1, ..., N l, ∀k = 1, ..., N l−1, ∀l = 1, ..., L. (2.7)

From (2.7) we notice that, if the output of one layer is small, i.e. al−1
k ≈ 0, then the loss

function does strongly depend on the weights in the following one, i.e. ∂J
∂wl

jk
is small. We

say that the neuron learns slowly.

Moreover, since σ′ ≈ 0 for zlj << 0 or zlj >> 0, then in this cases ∂J
∂blj

is small as well, as

a consequence of (2.5) and (2.6). Again the jth neuron of layer l learns slowly. We say

that it is saurated.

Equations (2.4)-(2.7) can be of help when tuning the hyperparameters and chosing the

activation function.

However, in feedforward ANNs the hidden neurons are not directly connected to the input

data and the �nal output, thus the backpropagation algorithm shown in Algorithm 2.1

was introduced by Rumelhart et al. [82] for the iterative adjustment of the parameters in

multilayered structures, based on the chain rule and the minimization of a function using

the gradient descent algorithm, explained in the next section. The goal of this method is

to build an internal representation that is suitable for performing the task.
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Algorithm 2.1 Backpropagation Algorithm (input: data x, target solution ytrue; output:
approximate solution yout)

1: Initialize the weights wljk = wljk(0), ∀k = 1, ..., nl−1, j = 1, ..., nl, l = 1, ..., L, set the

learning rate η ∈ (0, 1), a convergence threshold ε > 0 and a maximum number of

training iterations T

2: while |J(x;W,b)| < ε & t ≤ T do

3: Compute the activation al of the hidden layers l = 1, ..., L− 1, according to equa-

tion (2.2)

4: Compute the activation aL of the output layer, according to equation (2.2)

5: Compute the error of each output unit (chain rule):

δLk =
[
(ytrue)k − aLk

]
σ′L(zLk )

6: Compute the error of each output unit (chain rule):

δlk =

(∑
j

δl+1
j wkj

)
σ′l(z

l
k)

7: Update weights of the output layer:

wLkj(t+ 1) = wLkj(t) + ηδLk zj

8: Update weights of the hidden layers l = 1, ..., L− 1:

wlkj(t+ 1) = wlkj(t) + ηδlka
l−1
j

9: Compute the MSE J(x;W (t),b), according to equation (2.3)

10: end while

11: The output value is yout = aL.

At the same time Rumelhart et al. [82], Parker [71] and Cun [23] have proposed similar

ideas, based on the generalization of the single-layered perceptron network, and succes-

sively other derivations and generalizations of the algorithms were introduced. Indeed,

it implements a highly e�cient and simple neural network, but the convergence rate is

rather slow. The generalizations are mainly divided into three categories: numerical-
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based, heuristic-based and learning strategy-based algorithms. The �rst two rely on

second-order optimization method instead of the gradient descent [8], the second kind

on the systematic analysis of the learning process and the dynamic adaptation of learn-

ing rate [18, 42]. Finally, the process can be sped up by a selective presentation of the

samples, for instance dividing them into groups according to the di�culty in learning [67]

or preprocessing them in order to reduce redundancy. Cho and Kim [21] present some

accelerated algorithms and conclude that the best performance is given by combinations

of the three discussed approaches.

Finally, an important alternative derivation of the backpropagation was proposed by

LeCun [51]. It is based on the Largangian formalism and consists in an alternative formu-

lation as an optimization problem with nonlinear constraints, centred on the evaluation

of a parametric function computed in several elementary steps. In next section we will

analyze the network training phase from this perspective and introduce the most common

algorithms for the optimization.

2.3. Gradient descent optimization algorithm

The learning phase consists of the estimation of the paramters v = (w, b), w ∈ RN , b ∈ R,
corresponding to each neuron, through the minimization of a given loss function. The

loss function is usually expressed in terms of least square classi�cation error, de�ned as:

C(x,y; v) =
N∑
i=1

(σ(xi; v)− yi)2, (2.8)

where x = [x1, x2, ..., xN ]T are the input data and y the corresponding exact values.

A classical optimization method for the minimization of a general loss function C(v) is

the gradient descent method. It is based on the progressive improvement of an initial

guess towards a local minimum moving along the gradient direction.

In Algorithm 2.2 we report the gradient descent method.

Since ∆Ck = C(vk+1) − C(vk) ≈ −η
∥∥∇C(vk)

∥∥2 ≤ 0, then C(vk+1) = C(vk) + ∆Ck ≤
C(vk) , and therefore the algorithm moves towards a local minimum. Here || · || is the
Euclidean norm and η the �xed learning rate.

We oberse that, since C also depends on the data, they must be taken into account in the

determination of ∆vk. A basic method to do so is called batch gradient descent, that

simply sums the gradient evaluated at all the training data, substituting the computation

of the optimization delta in Algorithm 2.2, step 4, as follows:
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∆vk = − η

N

N∑
i=1

∇vC(xi, yi,v
k). (2.9)

Algorithm 2.2 Gradient Descent Algorithm (input: loss function C(·); output: optimal
parameters vector v)

1: Set a learning rate η ∈ (0, 1] and a convergence condition

2: Initialize the parameters v0 and compute the corresponding loss function C(v0)

3: for k = 0, 1, 2, ... up to convergence do

4: Compute the optimization step:

∆vk = −η∇C(vk)

5: Update the parameters:

vk+1 = vk + ∆vk

6: Compute the corresponding loss function C(vk+1)

7: end for

Du et al. [28] proved that the batch gradient descent can obtain 0 training loss in mul-

tilayered fully connected or convolutional Arti�cial Neural Networks with regular non-

polynomial activation functions and objective function given by equation (2.8). The loss

moreover decreases with geometric rate at every step and, under some balancing condi-

tions on the weights initialization, also linear convergence to the global minimum can be

achieved [5].

As we can easily observe from the expression of equation (2.9), every iteration of the

batch gradient descent algorithm possibly requires the evaluation of the gradient of the

loss function at each sample {xi, yi}Ni=1, introducing redundancy that results into a slow

method.

In order to overtake this limitation, the stochastic gradient descent method has been

introduced by Bottou et al. [16], de�ned as Algorithm 2.3:
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Algorithm 2.3 Stochastic Gradient descent Algorithm (input: loss function C(·); output:
optimal parameters vector v)

1: Set a learning rate η ∈ (0, 1] and a stopping criterion

2: Initialize the parameters v0 and compute the corresponding loss function C(v0)

3: for k = 1, 2, ... up to convergence do

4: Randomly shu�e the data

5: Compute the optimization step

∆vk = −η∇C(xi, yi,v
k+1)

6: Update the parameters

vk+1 = vk + ∆vk (2.10)

7: Compute the corresponding loss function C(vk+1)

8: end for

Stochastic gradient descent method provides faster convergence when the samples are

redundant, is able to escape from local stationary points and achieves better minima than

the batch gradient descent algorithm. However, it is not optimal. Some generalization are

also proposed by Bottou et al. [16] for the application of this method even to functions

that are non-di�erentiable on sets of zero measure, where the gradient for the computation

of the increment in Algorithm 2.3, step 5, is modi�ed as follows:

∆vk+10 = −ηH(vk), with E[H(v)] = ∇v(v) ∀v.

In particular, this coincides with the stochastic gradient descent when J is di�erentiable

everywhere.

A compromise between batch and stochastic gradient is the mini batch gradient de-

scent method, that groups the data into Nb small batches of �xed size B, and performs

a step of batch method on each group, as shown in Algorithm 2.4:
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Algorithm 2.4 Mini Batch Gradient descent Algorithm (input: loss function C(·); output:
optimal parameters vector v)

1: Set a learning rate η ∈ (0, 1] and a convergence condition

2: Set the number of batches B to divide the samples set into

3: Initialize the parameters v0 and compute the corresponding loss function C(v0)

4: for k = 1, 2, ... up to convergence do

5: Randomly shu�e the data

6: Divide the samples set into Nb = n/B batches

7: Compute the optimization step

∆vk = −η
B(n+1)∑
i=1+nB

∇vC(xi, yi,v
k+1).

8: Update the parameters: vk+1 = vk + ∆vk.

9: for n = 2, 3, ..., Nb do

10: Randomly shu�e the data

11: Compute the optimization step

∆vk = −η
B(n+1)∑
i=1+nB

∇vC(xi, yi,v
k+1).

12: Update the parameters: vk+1 += ∆vk.

13: end for

14: Compute the corresponding loss function C(vk+1).

15: end for

This method provides variance reduction in the gradient estimation with noisy data and

better scalability in the stochastic gradient descent by converting it into a parallel and

distributed algorithm [25].

2.3.1. Adam optimizer

Unlike the algorithms listed above, the learning rate may be adapted over the iterations,

and its periodic reduction can speed up the learning, in addition to reduce the probability

of settling into a local minimum [81].

The method applied in this report, called Adam optimizer, is based on this idea and is

widely used in machine learning [43, 90].
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This algorithm relies on the Root Mean Square propagation (RMSprop) method, that

works well in on-line and non-stationary settings, for problems where the loss function

has saddle points, and it is coupled with a mini batch approach. The concept is applied

in practice by dividing at each step η by the square root of the second moment of the

gradient, i.e.

∆vk = − η√
E[∇C(vk)2]

∇C(vk).

The Adam optimizer uses biased-corrected estimations of the �rst and second moment of

the gradients to compute each optimization step ∆vk.

For k ≥ 1, de�ne gk = ∇C(vk), and let mk and uk be the (biased) estimates of the

�rst and second order moments of gk, for every iteration k. The algorithm updates

exponential moving averages of the gradient and the squared gradient with the hyper-

parameters β1, β2 ∈ [0, 1) controlling their exponential decay rates.

The pseudo-code of the Adam method proposed by Kingma and Ba [47] is reported in

Algorithm 2.5. The authors also prove that it has O(
√
K), withK = number of iterations,

convergence order. This estimate has been improved for convex loss functions with convex

and bounded gradient as follows:

R(K)

K
= O

(
1√
K

)
,

where R(K) =
∑K

k=1

[
Jk(w

k)− Jk(w∗)
]
is the considered measure of error [15]. Further-

more Bock and Weiÿ [14] also proved local convergence with exponential rate.

Finally, some of the advantages of the Adam optimizer are that the magnitudes of param-

eter updates are invariant to rescaling of the gradient, the step sizes are approximately

bounded by the parameter η, stationarity of the loss function is not required, and the

method works with sparse gradients. The only drawback of this algorithm and of adap-

tive learning rate methods in general with respect to the stochastic gradient descent

consists in their poor generalization capabilities. However, some extensions of the Adam

optimizer seem to perform better and �ll the gap [97].
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Algorithm 2.5 Adam Optimization Algorithm (input: loss function C(·); output: optimal
parameters vector v)

1: Fix a learning rate η the exponential decay rates β1 and β2 and a convergence condition

2: Initialize the parameters v0 and the moments mk = 0, uk = 0, and compute the

corresponding loss function C(v0)

3: for k = 1, 2, ..., up to convergence do

4: Set gk = ∇vC(vk−1)

5: Set mk = β1m
k−1 + (1− β1)gk

6: Update uk = β2u
k−1 + (1− β2)(gk)2

7: Compute the unbiased �rst moment estimate: m̂k = mk

1−βk
1

8: Compute the unbiased second moment estimate: ûk = uk

1−βk
2
;

9: Compute the optimization step:

∆vk = −η m̂k√
ûk + ε

10: Update the parameters

vk+1 = vk + ∆vk

11: Compute the corresponding loss function C(vk+1).

12: end for

2.4. Universal approximation property

From the previous sections, we have understood that neural networks can be seen as rules

for computing output values given inputs. Indeed, backpropagation allows multilayered

feedforward ANNs to learn input-output mappings from training samples. Thus, we can

think of approximating unknown functions given some observed values in points of their

de�nition domains.

The choice of activation plays an important role in the approximation of a function via

neural networks. In this section we will prove some results regarding the ability of the sig-

moid function in doing so. The conclusions reported in this section rely on the dissertation

[24] by Cybenko.
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Let us �rst introduce some de�nitions:

De�nition 2.4.1 (n-discriminatory function). Consider the measurable space (In, M )

and let µ ∈ M , with In = [0, 1]n, be a measure. Then, a function σ is n-discriminatory

using µ if ∫
In

σ(wx+ θ)dµ(x) = 0 ∀w ∈ R =⇒ µ = 0.

As a consequence, an n-discriminatory function does not lose any information about the

input, since it does not map the a�ne space of type wx− θ into a 0-measure set.

De�nition 2.4.2 (Discriminatory function). A function σ is discriminatory with respect

to a measure µ if∫
σ(wx+ θ)dµ = 0 ∀w ∈ Rn ∀b ∈ R ∀n ∈ N =⇒ µ = 0.

Then, the following result holds:

Theorem 2.1. Let σ be a sigmoidal continuous function. Then, σ is discriminatory for

every measure.

Consider now a generic functional space S with a metric d and let f ∈ (S, d) be the target

function to be approximated and g ∈ U ⊂ S the approximate solution.

De�nition 2.4.3 (Universal approximator). A neural network is a universal approxima-

tor in a metric space (S, d) if

∀f ∈ S, ∀ε > 0 ∃g ∈ U such that d(f, g) < ε,

i.e. U is dense in S.

The output of a generic single-layered neural network with N neurons can be expressed

as the following sum:

G(x) =
N∑
J=1

αjσ(wjx + bj). (2.11)

Then,

U =

{
G : G(x) =

N∑
J=1

αjσ(wjx + bj) for some wj ∈ Rn, αj, bj ∈ R

}
(2.12)

is the output space of such network, and the following result holds:
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Theorem 2.2 (Cybenko). Let σ be a sigmoidal function and consider a network whose

output can be expressed as in equation (2.11). Then, the linear space of functions (2.12)

is dense in C (In).

In conclusion, feedforward dense neural networks with sigmoid activation functions are

universal approximators for continuous functions (see [38] for details), i.e.

∀f ∈ C (In) ∃f̂ ∈ U such that d(f, f̂) < ε for some ε > 0.

Hornik et al. [38] also proved that neural networks satisfying the hypotheses of Stone-

Weierstrass theorem can even approximate any bounded measurable function, based on

the proof of Funahashi [32] of the ability of neural networks with at least one hidden layer

to approximate any measurable function on compact sets:

Theorem 2.3. For any measurable function f : Rd −→ R there exist a compact subset

K ⊂ Rd and a feedforward neural network f̂(·; θ) such that ∀ε > 0 ∃µ(K) < 1 − ε and
∀x ∈ K |f(x)− f̂(x; θ)| < ε.

An error bound for neural network approximation was proved by Barron [6] as is summa-

rized in the following theorem:

Theorem 2.4. Let f be a function in Rd and f̃(ω) its Fourier transform. De�ne Cf :=∫
Rd |ω||f̃(ω)|dω.
If Cf is �nite, then there exists a linear combination of sigmoidal functions {fn}n∈N such

that ∫
Br

[f(x)− fn(x)]2µ(dx) ≤ (2rCf )
2

n
∀n ∈ N.

Another powerful application of ANNs is the possibility to approximate functions that

are not di�erentiable everywhere but possess generalized derivative, such as piecewise

di�erentiable ones. Moreover, Hornik et al. [39] and Gallant and White [33] proved

that both functions belonging to Sobolev spaces and their generalized derivatives can be

estimated with arbitrary accuracy by multiple-input-single-output neural network with

at least one hidden layer. This has many applications, for instance in economics [30], and

paves the way to approximation of the solution to di�erential equations [49], as we will

se in next chapter.
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ANNs

In this section we present a method for the approximate solution of general PDEs, based

on the one proposed by Xu et al. [91].

As anticipated in Chapter 1, it involves deep feedforward neural networks. In particular,

it is made of two structures, one taking as input random points on the boundary and the

another independent one taking as input random points from the inner domain. They

both give as output the approximate solution at those locations, and then their results

are summed to obtain the �nal lifted estimation, as explained in detail in the following.

Before entering in the details we provide a brief overview of the state of the art. Let

us start with a brief overview of the main results in the application of ANNs for the

approximate solution of di�erential equations. An extensive introduction to the subject

can be found in [92].

As explained in the previous chapter, to each node of a neural network corresponds

a set of parameters, updated at every learning iteration so that a given loss function

is minimized, and then used for the computation of an output, according to a given

activation function. According to Cybenko [24] and Hornik et al. [38][39], neural networks

are universal approximators for a large class of functions and are also able to estimate their

derivatives. Therefore, many deep learning approaches were proposed for the estimation

of PDE solutions.

Consider a generic boundary value problem of the form:Lu(x) = f(x) in Ω,

u = gD on ∂Ω.

The �rst approach to approximate the solution of a di�erential problem with Dirichlet

boundary conditions with ANNs was made by Dissanayake and Phan-Thien [27]. The
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approach was based on a multilayered perceptron, taking as input locations {xi}Ni=1 over

the domain and giving as output the evaluation of u there, where the optimal weights and

biases p = {W,b} are determined by minimization of the following loss function:

J(x; p) =
n∑
i=1

[(LΨt(xi, p)− f(xi))
2 + (Ψt(x, p)− gD(xi))

2],

involving a penalty term for the enforcement of the boundary constraint.

Later, Lagaris et al. [49] proposed to evaluate the parameters (weights and biases) p =

{W,b} of the network û(·; p) describing the solution u by an optimization least square

error problem trying to �t the right-hand-side of the PDE, subject to the boundary

conditions, i.e. p∗ = argminp[Lû(x, p)− f(x)]2

st boundary conditions.
(3.1)

This can be solved either with constrained nonlinear programming techniques or by trans-

forming it into an unconstrained problem and solve it with the corresponding (more e�-

cient) algorithms.

In order to exploit the second option, the trial solution can be de�ned as follows:

Ψt(x; p) = Ψ̂(x) + F (x)N(x; p), (3.2)

where Ψ̂(x) is a function satisfying the bounday conditions, N(x; p) an ANN and F (x) a

real function whose value on the bounday is 0. The feedforward neural network N(x; p) of

parameters p, approximates the solution at every point x of the domain, whithout taking

into account the boundary conditions. It is then mutiplied by a function F (x) such that

F = 0 on the boundary and summed to a smooth extension of the boundary condition

to the whole domain Ψ̂(x). Notice that, the boundary conditions are exactly satis�ed by

construction by Ψt, thanks to the additive term Ψ̂.

The training set is given by a discretization of the domain Ω̂ = {x(i) ∈ Ω : i = 1, 2, ..., N}
and the loss minimized during the learning process is the following:

J(p) =
N∑
i=1

(
∇Ψt

(
x(i); p

)
− f

(
x(i)
))2

.

Many proposals on the shape of Ψ̂ were introduced, starting by Lagaris et al. [50], who
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apply a multilayer perceptron for the basic PDE approximation and a radial basis function

(RBF) network [70] for an initialization of Ψ̂, followed by the exact imposition of the

boundary condition. Malek and Beidokhti [58] derived general formulations for F and

Ψ̂ for di�erent high order di�erential equations, while Chiaramonte et al. [20] takes Ψ̂ =

0 in Ω.

Finally, the optimal solution Ψt(x; p?) is given by the trial solution with parameters p? =

arg minp J(p).

A proof of the existence of an approximating neural network, whose error can be con-

trolled, for the solution of elliptic PDEs with given boundary conditions can be found in

[34]. The authors also point out that such machine learning-based methods are free from

the curse of dimensionality. However, a drawback of these approaches is the arbitrary

construction of the architecture, but it can be easily overcome by the introduction of

Finite Element NNs, made of exactly M inputs and one hidden layer with N groups

of N neurons each, where M is the number of elements in the FEM mesh and and N the

number of nodes [9, 78].

An extension to parabolic problems was proposed by Sirignano and Spiliopoulos [87] with

their Deep Galerkin Method (DGM). In DGM, N random points (tn, xn) ∈ [0, T ]×Ω and

(τn, zn) ∈ [0, T ] × ∂Ω, n = 1, ..., N , are sampled according to two probability densities

ν1, ν2, then the loss function is computed as the sum of square errors with penalization

terms related to the �tting of the boundary and initial condition, de�ned as follows:

J(t,x; θ, s) =
N∑
n=1

(∂tΨt(tn, xn; θ) +∇Ψt(tn, xn; θ)− f)2+

+ (Ψt(τn, zn; s)− gD(τn, zn))2 + (Ψt(0, xn; θ)− u0(xn))2,

where θ and s are network parameters learned in the training phase.

In this case two independent networks are used, one with parameters θ taking as in-

put data {(tn, xn)}Nn=1 ⊂ [0, T ] × Ω and the other with parameters s taking as input

{(τn, zn)}Nn=1 ⊂ [0, T ] × ∂Ω, approximating the solution respectively in [0, T ] × Ω and

[0, T ]× ∂Ω. The authors in [87] have proved that the solution given by a neural network

with one hidden layer and k neurons strongly converges to the exact solution as k → ∞
in Lp ∀p < 2.

The DGM was also reformulated in order to avoid the computation of high order deriva-

tives, that were proved to introduce instability in the estimation, by Lyu et al. [57],
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rewriting the PDE as a �rst order system thanks to the introduction of auxiliary vari-

ables.

Another neural network approach for time-dependent problems was introduced by Chen

et al. [19], focused on the solution of the linear transport equation. The authors propose

as trial solution the output of a single network

ψnn(x, t; p),

whose learning parameters are set by the minimization of the following loss function:

J(x, t; p) = JGE(x, t; p) + JIC(x; p) + JBC(x, t; p),

made of three components, aiming at the minimization of the error corresponding to the

general equation, the initial condition and the boundary condition, respectively.

As a consequence to the universal approximation property, it is possible to prove the

convergence of this method in the L∞ norm to the exact solution.

More complicated PDE problems have been also studied. A solution to the Stokes problem

was proposed by Baymani et al. [7], and consists of the transformation of the Stokes

system into three independent Poisson problems, each one solved by a feedforward neural

network, while in [65] compressible Euler equations is analyzed.

All the previously discussed methods require physical knowledge of the system, given by

the di�erential equation. Raissi [76] and Long et al. [55] have instead applied a deep

learning algorithm to a set of scattered data, aiming at discovering the underlying PDE

space-time model, starting from the following representation of a generic nonlinear PDE:

ut = F (x, u,∇u,∇2u, ...), ∀x ∈ Ω ⊂ R2, t ∈ [0, T ]. In the �rst paper [76], both u and F

are represented by feedforward neural networks, respectively made of 5 hidden layers with

50 neurons each and 2 hidden layers with 100 neurons each, both trained by minimizing

the sum of square errors
∑N

n=1(|u(tn, xn) − un|2 + |ut − F (tn, xn,∇un,∇2un, ...)|2). The

second approach [55] proposes a much more complex blocks structure where each block

corresponds to a feedforward neural network, whose parameters are shared among all

the blocks. Moreover, Raissi et al. [77] propose a machine learning method based on

backpropagation for the automatic di�erentiation of the network output with respect to

its training variables, introducing more stability.
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3.1. Network structure

The method proposed in this project is based on the work of K. Xu, B. Shi and S. Yin

[91] and implements coupled feedforward deep neural networks, one approximating the

solution on the boundary and the other in the interior of the domain. In this section it is

introduced for the solution of the Poisson problem, while at the end of the chapter I discuss

the extension to general elliptic equations (Section 3.4.1, in particular, the advection-

di�usion problem) and time-dependent problems (Section 3.4.2).

The expression of the trial solution is based on the equation (3.2) of Lagaris et al. [49].

As anticipated in the previous section, the shape of the boundary term Ψ̂ can be adjusted

for improving speci�c performance of the deep learning method. When look for the

minimum error possible, it can be directly substituted with the boundary value if it is set

by Dirichlet conditions or by some functions constructed in order to exactly satisfy any

other type of boundary condition. These methods are however often very expensive from

the computational point of view, thus in this thesis the investigated method involves an

expression of Ψ̂ that guarantees only approximate imposition of the boundary condition.

This choice makes the algorithm less expensive and more intuitive.

In two dimensions, the trial solution in is expressed as follows:

uh(x, y;w1, w2) = A(x, y;w1) +B(x, y)N(x, y;w2), (3.3)

where A(x, y;w1) is the boundary network and N(x, y;w2) is the PDE network.

Here w1 ans w2 are the parameters learned by the neural networks A and N during

the training phase, respectively. Both A and N are feedforward dense neural networks

made of sigmoid neurons. The choice of the activation function for the hidden layers

is based on the discussion made in Section 2.1, and in particular the conclusion about

the high recognition accuracy of the hyperbolic tangent (tanh) proved in [45, 46], while

for the output layer linear activation is chosen. Both structures are trained using the

backpropagation algorithm with Adam optimizer, chosen for its fast convergence and the

error estimate discussed in Section 2.3.1. The number of layers and neurons and the

learning rate of the optimization algorithm will be set by trial and error, as we will see

in Chapter 5, concerning stationary numerical experiments, and none of the autotuning

techniques introduced in Chapter 2 are implemented. These hyperparameters will be �xed

for both architectures with the same values, in order to maintain symmetry and reduce

the human intervention in the tuning to the minimum. Moreover, since neural networks

with only one hidden layer are theoretically able to approximate any continuous functions
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[24], we will observe the behaviour of the coupling made of structures with a number of

hidden layers that varies among 1, 2 and 3, in order to understand if growing depth can

actually detect additional features of the solution.

In (3.3) N(·, ·;w2) plays the same role as the neural network N(·, p) in the trial solution

(3.2), giving as output the approximate solution of the PDE without taking into account

the boundary condition. It is then multiplied by a function B that is 0 on the boundary,

and the lifting operator in this case is substituted by another independent neural network

A(·, ·;w2), that approximates the solution on ∂Ω by exploiting the information given by

the boundary condition.

Figure 3.1 shows the structure of the coupling between A and N .

Figure 3.1: Coupled neural network structure. The value of the solution on the boundary

is given by the network A taking as input some points on the boundary, while in the inner

domain it is the sum between the outputs of A and the PDE network N, multiplied by a

function B whose value on the boundary is 0.

(Taken from [91])

The inputs of the two networks are given by coordinate points in the domain and the

corresponding evaluation of the problem data, i.e. f for the PDE network and gD for

the boundary one. In particular, a �nite number nb of points {x̂i}nb
i=1 is sampled on the

boundary and a �nite number np of points {xi}np

i=1 in the interior of Ω (see Figure 3.2),

then {f(xi)}np

i=1 and {gD(x̂i)}nb
i=1 are computed.

The di�erence between this method and the ones presented in the previous chapter is

that the Dirichlet condition is not directly imposed by a deterministic function, but it

is approximated by an independent network, so that A(x, y;w1)∣∣∂Ω
≈ gD ∀(x, y) ∈ ∂Ω.

At every learning iteration for N(x, y;w2) a new set of boundary points is sampled and
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Figure 3.2: Data sampling: boundary points (°) and interior points (×)

A(x, y;w1) is trained on them, updating its parameters w1 by minimizing the boundary

loss function

Jb(x̂, ŷ) =

nb∑
i=1

[(gD)i − A(x̂i, ŷi;w1)]2. (3.4)

The network N(x, y;w2) approximates the solution to the partial di�erential equation,

minimizing the error with respect to the external source f , through the following loss

function:

Jp(x,y) =

np∑
i=1

[f(xi, yi)−∆N(xi, yi;w2)]2. (3.5)

The PDE output is then multiplied by the function B that is zero on the boundary. In

the case Ω = (0, 1)2, we consider:

B(x, y) = x(x− 1)y(y − 1),

and add to the output of A(x, y;w1), so that at every learning iteration the approximate

solution minimizes the overall error. Notice that, beacuse of the non-exact term A, the

boundary condition is not satis�ed by construction but only approximately.

Refer to Algorithm 3.1 for details.
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Algorithm 3.1 Networks coupling Algorithm (input: a coordinate point (x, y) ∈ Ω, ex-
pression of B such that B

∣∣
∂Ω

= 0; output: approximate solution of the PDE u)

1: Obtain the optimal parameters w∗1 and w∗2 by training the boundary network A and

the PDE network N according to Algorithm 3.2

2: Predict the value ub as the output of the network A(x, y;w∗1) corresponding to (x, y)

3: Predict the value up as the output of the network N(x, y;w∗2) corresponding to (x, y)

4: Compute the approximate solution of the PDE at the point (x, y):

u = ub +B(x, y)up.

3.2. Training algorithm

In this section the main steps of the coupled training algorithm are presented. For a more

detailed explanation of the Python code, see Appendix A.

The number of training iterations of the PDE network is manually set for every exper-

iment. Each training iteration of N(·, ·;w2) actually starts with a training loop for the

boundary network, followed by a random sampling of points over Ω, used as input, and

the minimization with the Adam optimizer of the loss function (3.5). The number of

training iterations of A(·, ·;w2) at every step of the loops we have just discussed cannot

be manually set, instead. Indeed, we are guaranteed at least the same number of itera-

tions as the ones chosen for N , and in order to maintain the symmetry discussed above

it could be enough. However, we know that the boundary condition is much more easy

to estimate than the PDE solution and less computationally expensive, since it does not

require the computation of high order derivatives (or none at all in the Dirichlet case)

and because its domain has dimension equal to the PDE input domain minus 1. As a

consequence, we expect the boundary loss to achieve small values in less steps, thus we

train A once and stop if the loss order is lower than a threshold, that we will �x to 10−5

or otherwise perform more iterations.

At each step the sum of square errors is minimized:

SSE(x̂i, ŷi, xi, yi;w1, w2) =

=

nb∑
i=1

[gD(x̂i, ŷi)− uh(x̂i, ŷi, w1, w2))]2 +

np∑
i=1

[f(xi, yi)−∆uh(xi, yi;w1, w2))]2 . (3.6)
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Algorithm 3.2 Training Algorithm (input: expression of the PDE data gD and f ; output:
optimal networks parameters w1 and w2)

1: Initialize the boundary network parameters w1

2: Initialize the PDE network parameters w2

3: Set a convergence threshold for the training of the boundary network ε = 10−5 and a

number of training iterations for the PDE network

4: for i = 1, 2, ...,M do

5: for j = 1, 2, .., N do

6: Sample nb random points on the boundary {(x̂i, ŷi)}nb
i=1

7: Evaluate the boundary condition on the training set gD(x̂i, ŷi) ∀i = 1, 2, ..., nb

8: Train the boundary network A and update the parameters w1 by minimizing the

loss function

Jb(x,y;w1) =

nb∑
i=1

[gD(x̂i)− A(x̂i, ŷi;w1)]2

9: if j == 1 and Jb(x,y;w1) < ε then

10: stop

11: end if

12: end for

13: Sample np random points in the interior of the domain {(xi, yi)}nb
i=1

14: Evaluate the external source on the training set f(xi, yi) ∀i = 1, 2, ..., np

15: Compute the numerical Laplacian ∆N(xi, yi;w2) of the output of the PDE network,

∀i = 1, ..., np

16: Train the PDE network N and update the parameters w2 by minimizing the loss

function

Jp(x,y;w2) =

np∑
i=1

[f(xi, yi)−∆N(xi, yi;w2)]2

17: end for
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3.3. Error metrics

In order to compare the performance of the method, three di�erent error metrics are

computed.

De�nition 3.3.1 (Bounding loss).

Lb =

nb∑
i=1

[A(xi, yi;w1)− gD(xi, yi)]
2 . (3.7)

De�nition 3.3.2 (PDE loss).

Lp =

np∑
i=1

[∆uh(xi, yi;w1, w2)− f(xi, yi)]
2 . (3.8)

De�nition 3.3.3 (Approximation error).

err2 =

√√√√ 1

m

m∑
i=1

|uh(xi, yi;w1, w2)− u(xi, yi)|2. (3.9)

The de�nitions appearing in (3.7) and (3.8) correspond to the sum of square errors min-

imized by every hidden neuron of the respective network during the training process at

each learning iteration using the Adam optimizer.

The error de�ned by (3.9) measures the di�erence between the exact analytic solution and

the output of the neural network in terms of sum of square errors, and allows us to com-

pare the results obtained with the Finite Element method, introduced in Chapter 1. In

two dimensions, it is evaluated on a test set taken as a bidimensional regular 50×50 grid

on (0, 1)2 (and for the N-dimesnional problems, as the extension of such grid generated

by 64 equispaced locations along each coordinate).

3.4. Extensions

In the following section I propose a way for applying the method to the other types of

di�erential equations introduced in Chapter 1. The boundary conditions will always be

considered of Dirichlet type, but the extension other to types of bounday conditions is
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straightforward.

3.4.1. Steady advection-di�usion equation

Consider a generic stationary PDE, characterised by the di�erential operator L : V −→ R
: Lu = f in Ω,

u = gD on ∂Ω.

Then, u can be approximated by the same algorithm introduced in the previous sections,

made of a boundary and a PDE network, trained alike.

The boundary network remains unchanged: A(x, y;w1)∣∣∂Ω
≈ gD ∀(x, y) ∈ ∂Ω, with

loss function given by (3.4). The only adjustment is introduced on the PDE network

N(x, y;w2), and speci�cally in its loss function: in equation (3.5) the term ∆N(xi, yi;w2)

will be substituted by the evaluation of the di�erential operator L at the output of the

network. The PDE loss becomes:

np∑
i=1

[f(xi, yi)− L(N(xi, yi;w2))]2 .

In particular, in the advection-di�usion case,

Lu = −∆u+ β · ∇u,

where β ∈ R2 is given, and therefore the loss function (3.5) is substituted by the following

functional:

Jp(x,y;w2) =

np∑
i=1

[f(xi, yi) + ∆N(xi, yi;w2)− β · ∇N(xi, yi;w2)]2 .

Finally, the approximate solution of the problem is still given by:

uh(x, y;w1, w2) = A(x, y;w1) +B(x, y)N(x, y;w2),

where B(x, y) is a function in Ω, whose restriction to the boundary is zero, i.e. B : Ω→ R,
such that B

∣∣
∂Ω

= 0.

The training algorithm is not modi�ed, except for the expression of the PDE loss function

in step 15, as discussed above.
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3.4.2. Evolutionary problems

A time-dependent PDE problem can be expressed in generic terms as follows:
ut − Lu = f in Ω× (0, T ],

u = gD on ∂Ω× (0, T ],

u(x, 0) = g(x) in Ω.

In addition to the (Dirichlet) boundary condition u = gD also an initial condition is given,

�xing the value of u at time 0.

The corresponding optimization problem, analogous to (3.1) presented in Section 3.1,

has an additional constraint due to the initial condition and is consequently modi�ed as

follows:


p∗ = argiminp [ût(x, t; p)− Lû(x, t; p)− f(x, t)]2 st

û = gD on ∂Ω× [0, T ] and

û(x, 0; p) = g(x) in Ω.

The �rst constraint can be eliminated by the introduction of an independent neural net-

work for the estimation of the solution on the boundary, while the second one can be

incorporated as a penalization in the objective functional. In this way we obtain an

unconstrained problem, whose minimization can be performed by the Gradient Descent-

based algorithms.

If we simply extend the concept like we did for the steady advection-di�usion problem,

we consider the time just as a third input variable for both networks.

The input data for the PDE and boundary networks will be given respectively by {xi, yi, ti}np

i=1

and {x̂i, ŷi, t̂i}nb
i=1, random samples in the domain and on ∂Ω along the time interval [0, T ].

As well as the elimination of a discrete triangulation as space discretization of Ω, also no

time discretization is introduced on [0, T ], like in [87].

We obtain a coupling between the extension of usual boundary network A(x, y, t;w1)∣∣∂Ω
≈

gD ∀(x, y, t) ∈ ∂Ω × [0, T ], with loss function given by a slight modi�cation of equa-

tion (3.4), where also the time variable is taken into consideration:
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Jb(x̂, ŷ, t̂;w2) =

nb∑
i=1

[(gD)i − A(x̂i, ŷi, t̂;w1)]2, (3.10)

and a new PDE network N̂(x, y, t;w2), whose corresponding loss function is expressed as

follows:

JN̂(x,y, t;w2) =

np∑
i=1

[
g(xi, yi)− N̂(xi, yi, ti;w2)

]2

+

+

np∑
i=1

[
f(xi, yi, ti)−

∂N̂(xi, yi, ti;w2)

∂t
+ L(N̂(xi, yi, ti;w2))

]2

. (3.11)

The output of this coupling, as an extension of (3.3), is given by:

uh(x, y, t;w1, w2) = A(x, y, t;w1) +B(x, y)N̂(x, y, t;w2).

Notice that the coupling structure has remained unchanged, and so has the training

algorithm, except the steps 6 and 13, where the training sets are de�ned. Indeed, also

a sequence of time points {t̂i}nb
i=1 must be randomly sampled as input of the boundary

network and another one {ti}np

i=1 for the PDE network. Therefore, the training sets become

{(x̂i, ŷi, t̂i)}nb
i=1 on the boundary and {(xi, yi, ti)}

np

i=1 in Ω× [0, T ]. Moreover, at steps 8 and

15 the functionals to be minimized are respectively given by (3.10) and (3.11).

As a consequence, the overall sum of square errors (3.6), minimized at each training step,

is modi�ed as follows:

ˆSSE(x̂i, ŷi, xi, yi;w1, w2) =

=

nb∑
i=1

[
gD(x̂i, ŷi, t̂i)− uh(x̂i, ŷi, t̂i;w1, w2)

]2
+

np∑
i=1

[g(xi, yi)− uh(xi, yi, ti;w1, w2)]2 +

+

np∑
i=1

[
f(xi, yi, ti)−

∂uh(xi, yi, ti;w1, w2)

∂t
+ Luh(xi, yi, ti;w1, w2)

]2

.

Observe that the penalty term related to the initial condition in equation (3.11) is not

only considered for t = 0 but also for samples corresponding to any time. This allows

the de�nition of a smaller dataset, without the necessity of a pre-training on Ω×{t = 0}
and, as we will see in the experiments in Chapter 6, it does not produce over�tting of the

initial condition. A smaller set of input data reduces the computational cost and makes
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the method faster.

Finally, the measures of error analyzed for the evolutionary problems are the same as

introduced in the De�nitions 3.3.1 3.3.2 and 3.3.3, but modi�ed in order to take into

account also the variable t and a measure of �tting of the initial condition g. their precise

de�nition is given by:

� Bounding loss:

Lb =

nb∑
i=1

[A(xi, yi, ti;w1)− gD(xi, yi, ti)]
2 ; (3.12)

� PDE loss:

Lp =

np∑
i=1

[
∂uh
∂t

(xi, yi, ti;w1, w2)−∆uh(xi, yi, ti;w1, w2)− f(xi, yi, ti)

]2

+

+

np∑
i=1

[uh(xi, yi, ti;w1)− g(xi, yi)]
2 ; (3.13)

� Approximation error:

err2 =

√√√√ 1

m

m∑
i=1

|uh(xi, yi, ti;w1, w2)− u(xi, yi, ti)|2. (3.14)

The �rst two measures correspond to the loss functions of the boundary and PDE network,

respectively, while the last one is comparable with the error in terms of sum of square

errors. They will be evaluated again on regular grids, this time of dimension 20×20×20,

except for the test cases involving an exact solution with a particular feature in a restricted

region of the domain (test cases TC.P2, TC.P5 and TC.H2 of Chapter 6), where we will

consider a 50× 50× 50 grid in order to better �t that characteristic.
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the test cases

The numerical results are presented �rst in the simple case of the Poisson equation (1.5),

applied to solutions with di�erent levels of regularity and de�ned on domains with dif-

ferent dimensions. In this framework, we will analyze the e�ect of variations in some

hyperparameters of the network model and its behaviour when the dimension of the do-

main increases.

Subsequently, the deep learning approach will be extended to the stationary advection-

di�usion problem (1.6) in Section 5.2 and �nally also evolutionary problems will be con-

sidered, both parabolic and hyperbolic (Chapter 6). The heat equation of the form (1.8)

and advection-di�usion problem de�ned in equation (1.6) are presented (see Section 4.2),

while the hyperbolic test cases consist of linear transport equations (see Section 4.3).

This chapter introduces the problems that will be analyzed in Chapters 5 and 6. They are

built using the method of manufactured solutions [79], that is a way of de�ning examples

of equations having solutions with given characteristics, without any physical meaning,

with the only purpose of method veri�cation. We will start from the analytical expression

of the desired exact solutions u and the general form of the PDE we want to test, and

then deduce the problem data by evaluating the equation at u in order to compute the

external source f , the boundary and initial conditions.

The examined solutions will be of three types: a very smooth one (usmooth), a regular

solution with a steep peak (upeak) in the centre of the domain and a solution with low

regularity (uirregular). Their expressions are given by:


usmooth(x, y) = sin(πx) sin(πy) in (0, 1)2,

upeak(x, y) = e−1000(x−0.5)2−1000(y−0.5)2 in (0, 1)2,

uirregular(ρ, θ) = ρ
2
3 sin

(
2
3
θ
)

∀ρ ∈ (0, 1) ∀θ ∈
(
0, π

2

)
.
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Notice that uirregular is de�ned in polar coordinates and does not belong to the Sobolev

space H2, since it is analytical in the closure of the domain Ω = (0, 1)2 but its gradient is

singular in (x, y) = (0, 0).

The time-dependent tests will instead be constructed by starting from solutions that

correspond to the exponential evolution in time of the above ones: i.e.


usmooth,t(x, y, t) = usmoothe−t in (0, 1)2 × [0, 1],

upeak,t(x, y, t) = upeake−t in (0, 1)2 × [0, 1],

uirregular,t(x, y, t) = uirregulare−t in (0, 1)2 × [0, 1].

(4.1a)

(4.1b)

(4.1c)

In the following sections the di�erent test cases are introduced, while the detailed deriva-

tion of the problems data will be reported in the following chapters, together with the

experiments results.

We point out that all the functions presented above are at least in H1. According to the

results presented in Chapter 1, we expect the approxiation error in the L2 norm produced

by the Finite Element Galerkin method with a mesh of granularity h to be controlled by

h2 in the Poisson and parabolic case and h when also the transport term is included for

all the problems with exact solution also in H2.

4.1. Elliptic problems

The �rst type of PDE considered is the elliptic one. In particular, the Poisson equation,

only involving second order derivatives, that will be deeply investigated in Section 5.1,

and the advection-di�usion equation, derived by adding a transport term to the Poisson

problem.

4.1.1. Poisson problem

Three Poisson problems on the domain Ω = (0, 1)2 are analyzed and solved with a deep

learning approach in 2 and higher dimensions, each one constructed in such a way that

the corresponding solutions have di�erent behaviours. Here we rapidly introduce them in

the 2D case.

The �rst one is
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∆u = −2π2 sin(πx) sin(πy) ∀(x, y) ∈ Ω

u = 0 on ∂Ω
(TC.E1)

and has a very smooth solution.

The second solution presents a peak in the middle of Ω, and the corresponding problem

is


∆u = [−4000 + 20002((x− 0.5)2 + (y − 0.5)2)]e−1000(x−0.5)2−1000(y−0.5)2 in Ω,

u(x, y) = e−250−1000(y−0.5)2 ∀y ∈ [0, 1], x = 0 ∨ x = 1,

u(x, y) = e−250−1000(x−0.5)2 ∀x ∈ [0, 1], y = 0 ∨ y = 1.

(TC.E2)

The last example consists of a problem whose solution presents a singularity at (x, y) =

(0, 0):

∆u = f in Ω,

u = gD on ∂Ω,
(TC.E3)

where f and gD are chosen so that the exact solution is given, in polar coordinates, by

u(ρ, θ) = ρ2/3 sin
(

2
3
θ
)
.

4.1.2. Steady state advection-di�usion problem

The �rst extension to a more complex problem consists of the steady advection-di�usion

de�ned in equation (1.6) with β = [1, 1]T . The test cases are de�ned again on the domain

Ω = (0, 1)2 so that their exact solutions are equivalent to the ones of the previously

introduced Poisson problems.

In particular, the �rst example presenting a smooth exact solution reads as:
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−∆u+ ∂u

∂x
+ ∂u

∂y
=

= 2π2 sin(πx) sin(πy)− π sin(πx) cos(πy)− π cos(πx) sin(πy) in Ω,

u = 0 on ∂Ω,

(TC.E4)

the second one with a peak in the middle of the domain:



−∆u(x, y) + ∂u
∂x

+ ∂u
∂y

=

= [6000− 20002((x− 0.5)2 + (y − 0.5)2)− 2000(x+ y)]·

·e−1000(x−0.5)2−1000(y−0.5)2 in Ω,

u(x, y) = e−250−1000(y−0.5)2 ∀y ∈ [0, 1], x = 0 ∨ x = 1,

u(x, y) = e−250−1000(x−0.5)2 ∀x ∈ [0, 1], y = 0 ∨ y = 1,

(TC.E5)

and the third one involving an irregular behaviour of the gradient is expressed as follows:

−∆u+ ∂u
∂x

+ ∂u
∂y

= f(x, y) in Ω,

u = gD(x, y) on ∂Ω,
(TC.E6)

where f and gD are chosen so that the exact solution is given, in polar coordinates, by

u(ρ, θ) = ρ2/3 sin
(

2
3
θ
)
.

The goal of this analysis is to �nd out whether the regularity of the solution a�ects the

accuracy more than the complexity of the equation or viceversa. These tests will only be

performed on a bidimensional domain.

4.2. Parabolic problems

As parabolic problems, we will study three heat equations and two time-dependent advection-

di�usion equations, with initial solutions with di�erent regularity, given by the solutions

of the stationary problems introduced in Sections 2.1 and 2.2. All the following examples

are de�ned in the spatial domain Ω = (0, 1)2 and within the time interval [0, 1].
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4.2.1. Heat equation

The �rst parabolic problem is characterized by a smooth initial condition:


ut −∆u = (2π2 − 1) sin(πx) sin(πy)e−t in (0, 1)2 × (0, 1],

u = 0 if x = 0 ∨ x = 1 ∨ y = 0 ∨ y = 1 in (0, 1],

u(x, y, 0) = sin(πx) sin(πy) ∀(x, y) ∈ (0, 1)2.

(TC.P1)

The second one presents a peak in the middle of the domain at time 0:



ut −∆u = [3999− 4 · 104((x− 0.5)2 + (y − 0.5)2)] ·

·e−1000[(x−0.5)2+(y−0.5)2]e−t in (0, 1)2 × (0, 1],

u = e−[t+250+1000(y−0.5)2] if x = 0 ∨ x = 1, ∀t ∈ (0, 1],

u = e−[t+250+1000(x−0.5)2] if y = 0 ∨ y = 1, ∀t ∈ (0, 1],

u(x, y, 0) = e−1000[(x−0.5)2+(y−0.5)2] ∀(x, y) ∈ (0, 1)2.

(TC.P2)

The last initial condition considered for the heat equation examples has a singularity on

the boundary. The corresponding problem reads as follows:


ut −∆u = f in (0, 1)2 × [0, 1],

u = gD(x, y, t) ∀t ∈ (0, 1], x = 0 ∨ x = 1 ∨ y = 0 ∨ y = 1

u(x, y, 0) = g(x, y) in Ω.

(TC.P3)

where f , gD and g are chosen so that the exact solution is given, in polar coordinates, by

u(ρ, θ, t) = ρ2/3 sin(2
3
θ)e−t.
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4.2.2. Time-dependent advection-di�usion equation

The advection-di�usion problem with smooth initial solution is given by the following

expression:



ut −∆u+ ∂u
∂x

+ ∂u
∂y

= (2π2 − 1) sin(πx) sin(πy)e−t+

+π sin(πx) cos(πy) + π cos(πx) sin(πy)]e−t in (0, 1)2 × (0, 1],

u = 0 if x = 0 ∨ x = 1 ∨ y = 0 ∨ y = 1, ∀t ∈ (0, 1],

u(x, y, 0) = sin(πx) sin(πy) ∀(x, y) ∈ (0, 1)2.

(TC.P4)

The second one presents a peak in the middle of the domain at time 0:



ut −∆u+ ∂u
∂x

+ ∂u
∂y

= e−1000[(x−0.5)2+(y−0.5)2]e−t·

· [5999− 20002((x− 0.5)2 + (y − 0.5)2)− 2000(x+ y)]

in (0, 1)2 × (0, 1],

u = e−(t+250+1000(y−0.5)2) if x = 0 ∨ x = 1, ∀t ∈ (0, 1],

u = e−(t+250+1000(x−0.5)2) if y = 0 ∨ y = 1, ∀t ∈ (0, 1],

u(x, y, 0) = e−1000[(x−0.5)2+(y−0.5)2] ∀(x, y) ∈ (0, 1)2.

(TC.P5)

The last initial condition considered for the heat equation examples has a singularity on

the boundary. The corresponding problem reads as follows:

4.3. Hyperbolic problems

We will analyze two examples, corresponding to the two continuous initial conditions.

Linear advection should not produce discontinuities in the solutions when the initial data

are smooth, while it may happen for irregular ones.

Also in this section the domain is QT = Ω× [0, T ] with Ω = (0, 1)2 and T = 1.

Two bidimensional linear transport problems are analyzed with β = [1, 1]T .

We start by analyzing a case with smooth initial condition, expressed as follows:
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ut + ux + uy = π[cos(πx) sin(πy) + sin(πx) cos(πy)]e−t+

− sin(πx) sin(πy)e−t in (0, 1)2 × (0, 1],

u(x, y, t) = 0 if x = 0 ∨ x = 1 ∨ y = 0 ∨ y = 1, ∀t ∈ (0, 1],

u(x, y, 0) = sin(πx) sin(πy) ∀(x, y) ∈ (0, 1)2.

(TC.H1)

Then, we move on to an initial condition presenting a steep peak in the middle of Ω:



ut + ux + uy = −[2000(x+ y) + 2001]e−1000[(x−0.5)2+(y−0.5)2]e−t in (0, 1)2 × (0, 1],

u(x, y, t) = e[−t+250+1000(y−0.5)2] if x = 0 ∨ x = 1, ∀y ∈ [0, 1], ∀t ∈ (0, 1],

u(x, y, t) = e[−t+250+1000(x−0.5)2] if y = 0 ∨ y = 1, ∀x ∈ [0, 1], ∀t ∈ (0, 1],

u(x, y, 0) = e−1000[(x−0.5)2+(y−0.5)2] ∀(x, y) ∈ (0, 1)2.

(TC.H2)
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problems

The choice of the speci�c problems to be solved in this section is based on the method

of manufactured solutions: the equation and boundary data are constructed starting

from a corresponding known analytic solution, with di�erent regularity features in the

three examples proposed.

The considered solutions are the same for both the di�usion and advection-di�usion, so

that the e�ciency of the network on the two types of problems can be compared.

The bidimensional problems are de�ned on the domain Ω = (0, 1)2, and the data given as

input to the neural network consist of a 50 × 50 grid on Ω, constructed by starting from a

sampling on the boundary at every iteration. In the most simple case (Poisson problem,

Section 6.1) also the extension to generic N-dimensional domains Ω = (0, 1)N , N > 1,

are presented, since the method is completely mesh free and therefore theoretically apt

to higher-dimensional settings.

We �rst discuss the results obtained by �xing the number of hidden layers to 3, with 256

neurons each, 0.001 learning rate and 1000 training iterations, as suggested by [91], and

then in the last parts of Sections 5.1 and 5.2 we try to tune these hyperparameters in

order to achieve the best performance. Such �nal network structures will then be applied

in Chapter 6 to the corresponding problems evolving in time.

In the 2-dimensional Poisson cases (TC.E1-TC.E3) also a comparison with the perfor-

mance of the Finite Element Galerkin method introduced in Section 1.4 is discussed in

terms of approximation error and execution time.

5.1. Poisson-Dirichlet problem

In the �rst part of this section we will discuss the numerical results obtained by �xing the

number of layers, neurons and the value of the learning rate as suggested in [91]. Then
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we will try to tune these hyperparameters according to the speci�c problems, so that

when the solution is unknown the most suitable model can be applied, according to the

boundary data, type of problem, and regularity of the potential initial condition.

In this section we also report the results obtained for di�erent number of data in the train-

ing set with the relative approximation errors and execution times. The computational

times are measured using the Python package time and all the tests are performed on a

PC with Windows 10 and 8 GB RAM.

5.1.1. TC.E1: Smooth solution

We solve TC.E1, cf. Chapter 4.

In Figures 5.2a, 5.2b and 5.2c the red surface represents the exact solution, while the

green one is the plot of the approximated solution at the �rst iteration and after 500 and

1000 steps. After 500 iterations we can see that the two graphs are indistinguishable.

Indeed, the overall loss behaviour (Figure 5.1a) decreases and reaches 10−3 in almost 300

training iterations. Then, the networks coupling starts �uctuating around values of its

convergence order 10−4.

The boundary loss de�ned in (3.7) has the fastest decreasing among the considered error

measures (Figure 5.1c), since the condition to be approximated there, i.e. u = 0, is

extremely simple. Its value reaches almost immediately 10−5 and, after a small peak

around the 100th iteration, it stabilizes on 3× 10−6.

The obstacle that makes the overall function di�cult be approximated by the coupling

resides in the PDE loss de�ned in (3.8), that needs the numerical computation of the

second order partial derivatives in every direction. Indeed, as we can observe from the

plot in Figure 5.1b, it reaches order 10−1 in less than 400 training steps and and then

presents a lower decrease. Moreover, if on the one hand the bounding loss has �uctuations

with amplitude smaller than 10−5, on the other hand, they grow wider in the global output

error because of the instability introduced by the PDE network.

Finally, in Table 5.2 containing the performance of the Galerkin Finite Element Method

applied to the problem (TC.E1), we can observe that the minimum order reached with

the ANN-based method 10−4 is attained after 6 re�nements of the domain, corresponding

to 4225 degrees of freedom. Moreover, the FEM L2 error strictly depends on the mesh

granularity h, as anticipated in Section 1.4, and in particular it is controlled by h2. On

the contrary, the error produced by the ANN-based method does not seem to depend on

the number of training points, as we can read in Table 5.1. I have decided to stop the

networks training after 400 iterations, that is almost the point where the error plot starts

to stabilize around a convergence value in Figure 5.1a, and I found out that with only
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60 coordinate points the machine-learning-based method can attain the same accuracy as

the FEM with a mesh of 4225 points in a comparable time.

The number of degrees of freedom in the Finite Element Galerkin method considered is

equivalent to the number of internal mesh nodes, since on the boundary ones the Dirichlet

condition is imposed exactly, while in the machine-learning-based method it is equivalent

to the total number of training points of both networks. As a reference, the number of

degrees of freedom corresponding to 64 training points for the PDE network is 256.

On the other hand, the execution time of the Finite Element Method is much less depen-

dent on the mesh granularity than the ANN-based one and, since the error is controlled

by h, it can be decreased up to much lower values. For intance, in the same time needed

by the ANN-based method for processing 4225 data and reaching an error of order 10−4,

several mesh re�nements can be performed in order to make the FEM error gain much

lower values.

Degrees of freedom Number of training points err2 Execution time

80 16 1.6250e-03 1.5883+01 seconds

300 60 5.5904e-04 2.9499e+01 seconds

1100 220 3.2004e-04 8.6556e+01 seconds

4225 845 3.9255e-04 2.5783e+02 seconds

Table 5.1: TC.E1: Performance of the ANN-based method stopped after 400 training

iterations.

Degrees of freedom Mesh granularity L2 error Execution time

81 8.8388e-02 2.2564e-02 5.0286e+00 seconds

289 4.4194e-02 5.7270e-03 9.2943e+00 second

1089 2.2097e-02 1.4373e-03 3.1812e+01 seconds

4225 1.1048e-02 3.5967e-04 3.7323e+01 seconds

Table 5.2: TC.E1: Performance the of Finite Element Galerkin method.
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(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.1: TC.E1: Measures of error as a function of the iteration counts; networks with

3 layers, 256 neurons and η = 0.001. The approximation error (5.1a) has an initially

fast decrease and then keeps oscillating around 10−3 - 10−4. The PDE loss (5.1b) �rst

decreases very rapidly and then slows down, reaching 10−1 within 1000 iterations. The

bounding loss (5.1c) converges very fast to 10−5.

(a) Computed and exact solu-

tions at iteration 0.

(b) Computed and exact solu-

tions after 500 iterations.

(c) Computed ans exact solu-

tions after 1000 iterations.

Figure 5.2: TC.E1: Computed (green) and exact (orange) solutions after 0, 500 and 1000

training iterations; networks with 3 layers, 256 neurons and η = 0.001. The initial guess

(5.2a) is almost �at and very di�erent from the exact solution, but the two almost coincide

after 400 iterations (5.2b) and at the end of training (5.2c).

5.1.2. TC.E2: Solution with a peak

We solve TC.E2, cf. Chapter 4.

In this case convergence is not attained in 1000 iterations: after a fast initial decrease

towards almost 10−2, the error increases and starts oscillating around 10−1 until the end

of training (see Figure 5.3). The reason for this behaviour is that, even if the approximate

solution converges on the boundary, the same does not happen in the inner domain, where

the PDE loss does not even present an overall decreasing trend, aside from the instability.

This is due to the dramatic change of the exact solution near the peak, where it suddenly
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becomes very large, compared to its value in the other points, making the function too

complex for the approximation with this relatively simple network con�guration. Indeed,

we can observe in Figure 5.4 that not only does the approximate curve not �t the peak,

but it also presents an opposite curvature to the expected one. This problem is not

overcome by increasing the number of input data, as we can read from Table 5.3: indeed,

the approximation error does not seem to decrease with respect to the number of samples

given as input, that only noticeably increases the exectution time.

In Table 5.4 I have reported the value of err2 reached after 400 iterations when the data

are not randomly sampled allover Ω but instead gathered around the peak region. We

can notice that this does not really improve the performance of the method, even when

increasing the number of coordinate points given as input. The Galerkin Finite Element

method gains better accuracy than the ANN-based one in this case for every mesh with

granularity of order at least 10−2, requiring a very low computational cost.

Degrees of freedom Number of training points err2 Execution time

1100 220 1.5225e-01 9.5856e+01 seconds

4225 845 1.5136e-01 3.2192e+02 seconds

16640 3328 1.5850e-01 1.1151e+03 seconds

Table 5.3: TC.E2: Performance of ANN-based method on a regular grid, stopped after

400 training iterations.

Degrees of freedom Number of training points err2 Execution time

1100 220 8.6977e-02 7.9462e+01 seconds

4225 845 1.5895e-01 3.2724e+02 seconds

16640 3328 1.8727e-01 1.0621e+03 seconds

Table 5.4: TC.E2: Performance of the ANN-based method stopped after 400 training

iterations, data gathered around the peak.
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Degrees of freedom Mesh granularity L2 error Execution time

1089 2.2097e-02 1.0648e-02 3.0334e+01 seconds

4225 1.1048e-02 3.4479e-03 2.2489e+01 seconds

16641 5.5242e-03 9.1166e-04 8.5010e+01 seconds

Table 5.5: TC.E2: Performance of the Galerkin Finite Element method.

Figure 5.3: TC.E2: Measure of error as a function of the iteration counts; networks with

3 layers, 256 neurons and η = 0.001. After few iterations the minimum value is achieved

by the error err2, but then the curve starts to show an increasing trend and then settles

around 10−1 for the �rst 1000 training iterations.

(a) Computed and exact solu-

tions after 0 iterations.

(b) Computed and exact solu-

tions after 500 iterations.

(c) Computed and exact solu-

tions after 1000 iterations.

Figure 5.4: TC.E2: Computed (green) and exact (orange) solutions after 0, 500 and 1000

training iterations; networks with 3 layers, 256 neurons and η = 0.001. The two plots after

500 iterations (5.4b) almost coincide on the boundary but in the interior of the domain

and especially near the peak they have very di�erent shapes and the approximation is

opposite to the exact plot.
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If we sum a smooth function to the considered solution as follows:

ũ(x, y) = u(x, y) + v(x, y), in Ω (5.1)

with

v(x, y) = sin(πx),

then the peak is softened, so that the variation in the Laplacian is less steep, and therefore

we expect the region around it to be better approximated.

We expect the method to perform better since the peak is no more as steep as before.

However, this does not happen. Indeed, the approximate and exact solutions are still

very di�erent even after 1000 iterations (Figure 5.4) and the overall sum of square errors

(Figure 5.5) is increasing towards 101.

The issue presented by TC.E2 is not overcome by the smooth correction in the exact

solution because it relies on the dimension of the neighbourhood of the peak, where the

derivatives start to vary. The critical region is indeed very small and, having chosen as

test set a random group of coordinate points, not enough points are sampled in there for

this peak to be correctly learned. However, selecting too many input positions gathered

in this narrow area may lead to an over�tting of the corresponding high values taken by

the solution, that results in a worse estimation of the function over the remaining part of

the domain. As we have previously observed, this does not produce an improvement in

the approximation accuracy.

Figure 5.5: TC.E2 with smooth correction: Approximation error as a function of the

iteration counts; networks with 3 layers, 256 neurons and η = 0.001. An initial decreasing

trend of the approximation error is followed by an increase towards the value 101.
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(a) Computed and exact solu-

tions after 0 iterations.

(b) Computed and exact solu-

tions after 500 iterations.

(c) Computed and exact solu-

tions after 1000 iterations.

Figure 5.6: TC.E2 with smooth correction: Computed (green) and exact (orange) solu-

tions after 0, 500 and 1000 iterations; networks with 3 layers, 256 neurons and η = 0.001.

The initial guess (5.6a) is almost �at, then after 500 (5.6b) and 1000 (5.6c) iterations the

plots have opposite curvature.

5.1.3. TC.E3: Solution with low regularity

As �nal and more delicate example, we choose the setting of TC.E3, cf. Chapter 4. We

recall that in this case the gradient ∇u(·, ·) presents a singularity on the boundary point

(x, y) = (0, 0).

As a consequence, we can observe in Figure 5.8, where the red surface represents the exact

solution and the green one is the plot of its approximation after 0, 500 and 1000 learning

steps, that the method has di�culties in estimating the solution for x ≈ 0 and y ≈ 0

and in general on the boundary since this singularity complicates the Dirichlet condition

and slows down the convergence of the boundary network. The error err2 presents an

overall decreasing trend and attains values of order 10−3 in less than 200 iterations, but

presents very high �uctuations during all the training process (Figure 5.7). Finally, the

low regularity introduces an obstacle in the learning process of the PDE network as well,

since the function is not in H2(Ω) and thus its derivatives, computed for the optimization

of the PDE loss, are not smooth.

All in all, the global convergence rate obtained by the application of the proposed deep

learning method to a problem whose analytical solution presents a singularity on the

boundary is not very distant from the one achieved for smooth solution (TC.E1, Section

5.1.1) for the Poisson problem.

Finally, in this case, as we can observe from the results in Table 5.6, the error err2 is of

order 10−3 for every consider number of input data, and does not seem to depend on the

input dimensionality, while the L2 error given by the Galerkin Finite Element method
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is decreasing with the mesh granularity and attains order 10−4 with only 289 degrees of

freedom in very little time.

Degrees of freedom Number of training points err2 Execution time

300 60 3.7942e-03 2.5882e+01 seconds

1100 220 4.2510e-03 8.8374e+01 seconds

4225 845 7.0128e-03 3.0840e+02 seconds

16640 3328 1.9899e-03 1.2557e+03 seconds

Table 5.6: TC.E3: Performance of the ANN-based method stopped after 400 training

iterations.

Degrees of freedom Mesh granularity L2 error Execution time

289 4.4194e-02 6.4676e-04 5.3279e+00 second

1089 2.2097e-02 2.0725e-04 1.0514e+01 seconds

4225 1.1048e-02 6.5980e-05 4.1542e+01 seconds

16641 5.5242e-03 2.0921e-05 2.2249e+02 seconds

Table 5.7: TC.E3: Performance the of Finite Element Galerkin method.

Figure 5.7: TC.E3: Measure of error as a function of the iteration counts; networks with

3 layers, 256 neurons and η = 0.001. The approximation error err2 presents an overall

decreasing trend towards values of order 10−3 but also very high oscillations.
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(a) Computed and exact solu-

tions after 0 iterations.

(b) Computed and exact solu-

tions after 500 iterations.

(c) Computed and exact solu-

tions after 1000 iterations.

Figure 5.8: TC.E3: Computed (green) and exact (orange) after 0, 500 and 1000 iterations;

networks with 3 layers, 256 neurons and η = 0.001. The plots almost coincide after 1000

iterations (5.8c).

5.1.4. Tuning of the hyperparameters

In this section we will analyze the relation between the performance of the method pro-

posed in Section 3 and the hyperparameters of the networks. I have decided to assign

to both structures the same value for every hyperparameter �rstly because in general, as

we will see later on, the behaviour of the overall coupling and the of the single learning

system is a�ected in a similar way by the choice. Moreover, even if in some cases only

one of the two independent loss functions seems to bene�t of a modi�cation in the hyper-

parameters while the other is indi�erent or even slightly disadvantaged by it, the global

stability seems to be negatively in�uenced by an asymmetry in the networks structure.

We will start by varying the number of hidden layers from 1 to 3, maintaining the quantity

of neurons they contain and the learning rate of the optimization algorithm to 256 and

0.001 respectively, as in the previously considered tests.

Afterwards, keeping the quantity of layers �xed to the optimal according to our empirical

analysis, we will study the impact of the number of neurons per layer and �nally we will

tune the best value for the learning rate of each network.

All the following observations are based on 20000 training iterations per networks, so that

we are able to assess the possible asymptotic trend of the method.

Figures 5.9 - 5.12 show the computed errors of the four experiments TC.E1-TC.E3 (in-

cluding the test case TC.E2 with smooth correction) when varying the number of hidden

layers. The blue lines correspond to the coupling with 1, the orange ones with to 2 and

the green ones to 3 hidden layers. The most evident trend we notice from these images

is that increasing the value of this hyperparameter leads to a faster method: both loss
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functions reach their minimum in less iterations. However, the wide oscillations presented

by the interior loss of test TC.E2 with smooth correction and TC.E3 (reported in Fig-

ures 5.11 and 5.12, respectively) is not reduced. In both cases, the error err2 does not

present a decreasing trend and the networks loss functions oscillate a lot, even if the

bounding ones rapidly achieve order 10−4 (see Figures 5.11c and 5.12c). The �uctuations

seem to be reduced by an increasing number of hidden layers, even if the PDE loss func-

tions (Figures 5.11b and 5.12b) increase after a few thousands of iterations. This does

not allow, as a consequence, convergence of the method for TC.E2 and leads to almost

constant approximation error of order 100 (Figure 5.11a). The results in terms of mini-

mization of the objective functions are better in the problem with smooth exact solution

(Figures 5.9b and 5.9c), even if in the interior of Ω the lowest error is of order 10−3. An

improvement is also registered in the performance of both networks in TC.E2, where the

bounding loss (Figure 5.10c) reaches almost immediately convergence to a value of order

10−6 when the number of layers is increased, and the PDE network, although it does settle

on values of order 10−5 instead of 10−6 like when only one hidden layer is used, is much

more stable with 3 layers, except for a single isolated peak around the 12000th training

step (see Figure 5.10b). As to the approximation error, the best result is achieved by the

problem with smooth analytical solution (Figure 5.9a), whose approximation converges in

very few iterations, with oscillations always between small values of order 10−3 and 10−6.

Similarly, the problem with singularity presents an approximation error that �uctuates

between 10−2 and 10−5 (Figure 5.9a).

All in all, Figure 5.9b shows a noticeable improvement in the learning speed of the coupled

model applied to TC.E1 when the number of layers increases, and a subsequent lower order

of the PDE loss. When passing from 1 to 2 layers some oscillations arise, and they become

wider when using 3 layers. This problem might be however overcome by tuning correctly

the other hyperparameters. On the other hand, in Figure 5.9c we can observe that not

only the boundary network learns faster but also it becomes more stable when the number

of layers increase. Indeed, up to 2 layers some initial oscillations are present, while they

disappear adding one more layer.

TC.E2 never reaches convergence to the desired order, but both losses reach lower values

when the number of layers is set to 3 (see Figures 5.10b and 5.10c). Moreover, the PDE

loss shows a signi�cant decrease when passing from 2 to 3 layers.

Finally, the 2-dimensional problem with irregular solution (TC.E3) both networks are

maximally stable when composed of 3 layers.

I have observed that the deeper the networks become, the higher the training execu-

tion time is, but here we are looking for a fast and intuitive black-box approach, so the
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computational time has to be taken into account.

(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.9: TC.E1: Measures of error as a function of the iteration counts when varying

the number of layers among 1, 2 and 3; networks with 256 neurons per layer and η = 0.001.

Convergence is attained by the error err2 (5.9a) with any number of layers, oscillating

around values of order 10−5. The interior loss (5.9b) always reaches values of order 10−3

but with 2 and 3 layers it happens faster; the �uctuations increase with the number of

layers. The bounding loss (5.9c) rapidly converges to values of order 10−6 in every case.

(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.10: TC.E2: Measures of error as a function of the iteration counts when varying

the number of layers among 1, 2 and 3; networks with 256 neurons per layer and η = 0.001.

The approximation error (5.10a) is constant and of order 100 with some oscillations that

get wider with the number of layers. The behaviour of the interior (5.10b) and bounding

(5.10c) is not generally a�ected by the number of layers but with 3 layers they both reach

values of lower order.
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(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.11: TC.E2 with smooth correction: Measures of error as a function of the it-

eration counts when varying the number of layers among 1, 2 and 3; networks with 256

neurons per layer and η = 0.001. The approximation error (5.11a) is almost constant of

value 100. The interior loss (5.11b) has high oscillations that get worse with the number

of layers and presents an increasing trend with 3 layers. Wide oscillations arise almost

immediately for any number of layers in the bounding loss (5.11c).

(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.12: TC.E3: Measures of error as a function of the iteration counts when varying

the number of layers among 1, 2 and 3; networks with 256 neurons per layer and η = 0.001.

All the graphs present very high oscillations for any number of layers and the PDE loss

5.12b increases and �uctuates widely after almost 1000 iterations.

Let us now analyze the impact of the number of neurons per layer. Since we have noticed

that no signi�cant improvement is introduced in the test case with peak and smooth

correction with respect to the original one, we will focus only on TC.E1, TC.E2 and

TC.E3.

The networks learn faster and the oscillations presented by the plot of the boundary loss

disappear when increasing the number of neurons. However, the results are not as evident

as for the other hyperparameters, so it seems su�cient to keep the number of neurons per

layer of both networks �xed to 256.
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As for TC.E2, Figure 5.14a shows once again a constant behaviour of the approximation

error corresponding to any choice of the hyperparameters. However, the PDE network

becomes more stable when the number of neurons per layer increases, even if the loss

order remains between 10−4 and 10−5 and does not decrease, as displayed in Figure 5.14b.

Figure 5.14c shows instead that the convergence value of the boundary loss is higher in

the case of 512 neurons, and no oscillations are presented even with 128. Therefore, in this

case this hyperparameter could be reduced to 128. On the other hand, the PDE network

can become a bit more stable when passing to 512 neurons per layer, but implying a

signi�cant increase in the computational time, thus also in this case it seems that 256 is

a good compromise.

The graphs related to TC.E3 (Figure 5.15) show the same dependence of the error on the

number of neurons per layer and on the number of layers. However, this hyperparamter

shall be set to the intermediate value 256, that keeps a decreasing trend of the bounding

loss and also avoids wide oscillations in the approximation error err2.

(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.13: TC.E1: Measures of error as a function of the iteration counts when varying

the number of neurons; networks with 256 neurons per layer and η = 0.001. The approx-

imation error (5.13a) oscillates around values of order 10−4 and the �uctuations do not

change their amplitude with the number of neurons per layer. The interior loss (5.13b)

decreases faster when increasing the number of neurons and reaches 10−2 in less than

2500 iterations in any case with the same amplitude of the oscillations. The bounding

loss converges to 10−5 in very few iterations.
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(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.14: TC.E2: Measures of error as a function of the iteration counts when varying

the number of neurons; networks with 256 neurons per layer and η = 0.001. The approx-

imation error (5.14a) is constant and of order 100. The oscillations of the interior loss

(5.14b) become less wide when increasing the number of neurons, especially in the last

iterations where the loss �uctuate between 10−4 and 10−6.

(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.15: TC.E3: Measures of error as a function of the iteration counts when varying

the number of neurons; networks with 256 neurons per layer and η = 0.001. All the plots

present very huge oscillations for any number of neurons per layer, the PDE loss (5.12b)

never presents a decreasing trend and the error (5.12a) oscillaes between 10−1 and 10−5

for every number of neurons per layer.

Figures 5.16-5.18 show the e�ect of modifying the learning rate of the two networks on

the three usual error metrics introduced in Section 3.4.

We can immediately observe that an excessively high learning rate does in general produce

instability and may even increase the loss order.

However, simple boundary conditions as the ones imposed for TC.E1 and TC.E2 are well

approximated and highlight no additional instabilities when the learning rate increases.

Indeed, the loss value in the peak case (Figure 5.17c) is lower with η = 0.1 than all

the other cases and its plot converges to a value between 10−5 and 10−6 without any
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oscillation. In the smooth case (TC.E1), the loss function value is almost equivalent for

any chosen learning rate, but again no �uctuations arise even with a high value of η, as

shown in Figure 5.16c.

On the other hand, when the boundary condition to be approximated is as in TC.E3, an

increase in the learning rate creates wider oscillations and a marked increase in the loss

order. Indeed, Figure 5.18c reports a 101 − 103 boundary loss corresponding to η = 0.1

(blue line) and, after an initial decrease un to 10−2, �uctuations between 10−1 and 101

when η = 0.01 (orange line) for the �rst 2500 iterations, before stabilizing on 101. For

η = 0.01 and η = 0.1, moreover, the PDE network is visibly untable and the corresponding

loss function presents values of order 10−10 − 105 and 10−16 − 102, respectively. However,

when η varies from η = 0.001 to η = 0.0001 the learning process does not become slower,

but never presents a decreasing trend and settles around 100 after few iterations.

Ideally, we would expect a faster learning every-time we increase the value of η, since

we do not change the optimization direction in our algorithm but simply accelerate the

procedure. However, it can happen that it misses the local minimum and kind of ini-

tializes a new application of the method that brings to another stationary point, that

may correspond to higher value of the loss functions. This is likely the case of the PDE

networks of TC.E1 and TC.E2, whose bounding loss is represented in Figures 5.16b and

5.17b, respectively. In these pictures the green line, corresponding to η = 0.01, initially

oscillates around 10−4 and suddenly jumps to 10−2 after 15000 iterations. In the �rst case,

it goes from 10−1 − 101 to 103, but gaining stability, while in the second one it is stable

around 10−3 in the beginning and starts oscillating up to 101 after 12500 iterations.

Figure 5.18b presents an increasing trend corresponding to η = 0.01. Even if in this ex-

ample the plot obtained with η = 0.1 seems to present a better behaviour, the loss value

is much higher than the one around which the orange plot corresponding to η = 0.001

oscillates.

Another issue that can arise from a too large learning rate is instability of the network, as

shown in TC.E2, cf. Figure 5.17b, with very large oscillations between 10−19 and 105. In

this case the excessive learning rate makes the algorithm jump around a local minimum,

without the possibility of reaching it. Indeed, the direction of the gradient is the fastest

optimization direction, but if the steps are too large, from an iteration to the other, it

may point towards a maximization of the loss function, and then again a minimization,

missing the stationary points. For this PDE network the best learning rate seems to be

η = 0.001 (corresponding to the orange line in Figure 5.17).

In TC.E1, as we have already pointed out above, a too high learning rate worsens the

performance of the network. Therefore, even if wide oscillations are sill present, according
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to Figure 5.16b, the best learning rate seems to be η = 0.001.

Finally, since in the �rst two examples (TC.E1 and TC.E2) the PDE network is the most

complex and therefore the interior loss is the predominant component of the overall error,

also the graphs of the the error err2 follow the same trend. In particular, we can observe a

higher order of the global error for TC.E1 in Figure 5.16a and wide oscillations for TC.E2

in Figure 5.17a. As for TC.E3, also the approximation error seems to present a more

stable behaviour and lower order of the global error when both networks have the chosen

learning rates (green plot in Figure 5.18a). In this last case, an improvement in stability

is also given by a further reduction of the hyperparameter to η = 0.0001.

(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.16: TC.E1: Measures of error as a function of the iteration counts when varying

the learning rate; networks with 3 layers and 256 neurons each. Convergence is not

attained by the error err2 (5.16a) for η = 0.1 and the interior loss (5.16b) never decreases

below 103. For η = 0.01 both the err2 and PDE loss plots present a sudden increase to a

much higher value. For η ≤ 0.005 the interior loss oscillates around 10−3

(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.17: TC.E2: Measures of error as a function of the iteration counts when varying

the learning rate; networks with 3 layers and 256 neurons each. Convergence is never

attained by the approximation error (5.17a) and presents wide oscillations around this

value between 10−2 and 102 for η = 0.1. For every learning rate the interior loss (5.17b)

is around 10−3, except for η = 0.1, that causes oscillations between 10−19 and 105.
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(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.18: TC.E3: Measures of error as a function of the iteration counts when varying

the learning rate; networks with 3 layers and 256 neurons each. For η = 0.1 the oscillations

in the interior loss (5.18b) are the most narrow but it has an increasing behaviour and

reaches the order 107. The bounding loss (5.18c) is greater than 102 for η = 0.1, and

presents very wide oscillations between 10−1 and 101 for η = 0.01. For η = 0.001 and

η = 0.0001 the approximation error 5.18a is very stable but does not present a decreasing

trend anyway.

In conclusion, we have found out that the best values for the hyperparameters seem to be

the ones applied in the previous section, thus in the following examples we will start the

analysis by setting them as above. Only the test case with singularity requires a lower

learning rate. Indeed, as we can observe in Figure 5.19, the method is more stable and

the approximation error is still decreasing and reaches order 10−3 in 1000 iterations.

Figure 5.19: TC.E3 with tuned hyperparameters: Measures of error as a function of the

iteration counts; networks with 3 layers, 256 neurons and η = 0.0001.
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5.1.5. Extension to N-dimensional elliptic PDEs

In this section we will repeat the experiments for analogue test cases but in higher-

dimensional spaces. Here we vary the number of hidden layers between 1, 2 and 3.

For the de�nition of the test cases the method of manufactured solutions is again used,

applied to the N-dimensional version of the �rst two examples presented in the previous

sections and di�erent test case with irregular solution substituting TC.E3, that cannot

be extended to higher-dimensional spaces since it is de�ned in polar coordinates:

� TC.E1b (Smooth solution):

u(x) =
N∏
k=1

sin(πxk) (TC.E1b)

� TC.E2b (Solution with a peak):

u(x) = e−1000
∑N

K=1(xk−0.5)2 (TC.E2b)

� TC.E3b (Solution with low regularity):

u(x) = x2
0.6 (TC.E3b)

Since this method is mesh-free, it can virtually be applied to spaces of any dimension,

higher than 2 and 3. Figures 5.20 - 5.22 represent all the errors measured in the numerical

examples discussed above, obtained by applying neural networks with 1, 2 and 3 hidden

layers and 256 neurons per layer in the 5-dimensional domain Ω = (0, 1)5.

The convergence speed always increases with the number of layers, and the behaviour of

the bounding and PDE loss is almost the same for the peak and singularity cases.

The solution with peak (TC.E2b) still reaches the threshold 10−5 in less iterations when

2 or 3 layers are considered, and the oscillations in the boundary loss are �attened by

the usage of 3 layers. The overall approximation error err2 does not converge and is still

constant and of order 100 (see Figures 5.21a, 5.21c and 5.21b).

The oscillations in the PDE loss with solution with a singularity near y=0 (TC.E3b)

become too wide and vary between 100 and 104, so the approximation error has an irregular

behaviour and is never stably reduced under 10−2. The best results are still obtained in

the smooth case (TC.E1b), where three hidden layers minimize the boundary loss function
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to the order 10−5 with no oscillations in less than 2000 iterations and the PDE loss has

a decreasing trend, even if the minimum order reached within 20000 iterations is 10−1,

much higher than the 2D case (see Figures 5.20b and 5.20c). This leads to a decreasing

approximation error, reaching the value 10−2, in 10000 and 15000 iterations with 2 and 3

hidden layers respectively (plot in Figure 5.20a). After getting to an error of order 10−2

in a 5-dimensional space also the approximation of the smooth solution begins presenting

oscillations without stabilizing around the threshold 10−5.

(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.20: TC.E1b: Measures of error as a function of the iteration counts when varying

the number of layers among 1, 2 and 3; networks with 256 neurons per layer and η = 0.001.

After reaching values of order 10−2 the approximation error starts to oscillate, but unlike

the 2D case �uctuations are tighter when the number of layers increase.

(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.21: TC.E2b: Measures of error as a function of the iteration counts when varying

the number of layers among 1, 2 and 3; networks with 256 neurons per layer and η = 0.001.

The approximation error (5.21a) is constant and of order 100 with some oscillations that

get wider with the number of layers. The behaviour of the interior (5.21b) and bounding

(5.21c) is not generally a�ected by the number of layers, except that they both reach

values of lower order when it increases.
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(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.22: TC.E3b: Measures of error as a function of the iteration counts when varying

the number of layers among 1, 2 and 3; networks with 256 neurons per layer and η = 0.001.

All the graphs present very huge oscillations for any number of layers. The approximation

error (5.22a) becomes more regular with a higher number of layers and its value tends to

stabilize around 10−2.

5.2. Advection-di�usion problem

In this section we discuss the results obtained with TC.E4-TC.E6, cf. Chapter 4.

Figures 5.24a, 5.24b and 5.24c show that after 500 iterations the exact and approximate

solutions of test case TC.E4 are almost indistinguishable. Indeed, the plot of the error

err2 reaches 10−3 in less than 300 iterations (Figure 5.23a) and settles on values of order

10−4 until the end of the training process, always preserving a decreasing trend, even if

slower and sided by arising oscillations.

The results are almost equivalent to the ones obtained in TC.E1 (Section 5.1.1), but

here the boundary network learns less quickly and achieves a higher convergence value.

Actually, the decrease towards order 10−5 is almost immediate but the plot in Figure 5.23c

shows that the bounding loss settles around its equilibrium no sooner than 400 iterations.

Finally, the plot of the interior loss in Figure 5.23b is equivalent to its reciprocal in the

Poisson example (Figure 5.1b), rapidly decreasing towards 100 in about 200 iterations and

then slowing down and reaching lowest order 10−2 within 1000 iterations.

The late convergence with higher order of the boundary network does not produce mean-

ingful variation in overall error with respect to the Poisson case analyzed in Section 5.1.1

(compare the graphs in Figures 5.23a and 5.1a for reference). This is due to the signi�-

cant di�erence between the values obtained by the bounding and PDE loss, that is not

much reduced even with this performance decline. As a consequence, we can deduce that

the separation of the two networks is useful for a stronger imposition of the boundary

condition, that helps attenuate the overall error, but does not in�uence in a subtle way
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the �nal result. Hence, we should focus on the performance of the PDE approximation

as well and try to make the corresponding structure as stable as possible.

(a) err2. (b) PDE loss. (c) Bounding loss.

Figure 5.23: TC.E4: Measures of error as a function of the iteration counts; networks with

3 layers, 256 neurons and η = 0.001. The approximation error (5.23a) has an initially fast

decrease and the keeps oscillating around 10−3 - 10−4. The PDE loss (5.1b) reaches 100

in 200 iterations and then slows down its decrease, reaching 10−1 within 1000 iterations.

The bounding loss (5.1c) converges in almost 400 iterations to 10−5

(a) Computed and exact solu-

tions after 0 iterations.

(b) Computed and exact solu-

tions after 500 iterations.

(c) Computed and exact solu-

tions after 1000 iterations.

Figure 5.24: TC.E4: Computed (green) and exact (orange) solutions after 0, 500 and 1000

iterations; networks with 3 layers, 256 neurons and η = 0.001. The initial guess (5.24a) is

almost �at but the two curves almost coincide after 500 (5.2b) and 1000 5.24c iterations.

We next address TC.E5, cf. Chapter 4.

As observed in Section 5.1.2, in the region surrounding the peak the partial derivatives of

both �rst and second order present a rapid increase, that strongly a�ects the approxima-

tion e�ciency of the PDE network.

The evaluation of the �rst derivatives allows a better approximation of the solution inside

the domain, as shown in Figures 5.26b and 5.26c. Indeed, in the corresponding Poisson

problem (TC.E2), the interior network used to produce a solution that was opposite in sign



5| Numerical results: elliptic problems 81

with respect to the expected one (Figures 5.6b, 5.6c), while in this case the approximation

is closer to real value because not only the curvature but also the slope of the correct plot

are learned. This result is re�ected in the approximation error, that seems to stabilize at

4× 10−2 after about 400 iterations.

The �uctuations in the plot of the overall error, although isolated and only relatively

wide, are caused by the instability of the PDE network, due to the di�culty in evaluating

the output corresponding to the small critical area where little data are provided. In this

case not only the Laplacian but also the gradient change very rapidly around that zone,

introducing an additional obstacle to learning.

Figure 5.25: TC.E5: Approximation error as a function of the iteration counts; networks

with 3 layers, 256 neurons and η = 0.001. The error tends to 4 × 10−2 in very few

itetrations.

(a) Computed and exact solu-

tions after 0 iterations.

(b) Computed and exact solu-

tions after 500 iterations.

(c) Computed and exact solu-

tions after 1000 iterations.

Figure 5.26: TC.E5: Computed (green) and exact (orange) solutions after 0, 500 and

1000 iterations; networks with 3 layers, 256 neurons and η = 0.001. After 500 iterations

(5.26b) the two plots are very close everywhere but around the peak region, where they

even have opposite curvature. At the �nal iteration (5.26c) the two graphs have same

curvature but the peak is still not �tted.
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Finally, we present the results obtained with TC.E6.

After 500 iterations the networks output is already close to the expected solution, as we

can observe in Figure 5.28b, but the boundary condition is not correctly approximated

even after 1000 iterations (Figure 5.28c). The plot of the computed solution is visibly less

similar to the exact one in this case than in the corresponding Poisson problem TC.E3

(Figure 5.12).

The overall approximation error err2 has an irregular behaviour, reported in Figure 5.27,

and after few iterations starts oscillating around 2× 10−2. It does not present an overall

decreasing trend and the method in this case is very unstable. This behaviour is due

to the singularity presented by the �rst order partial derivatives of u, that have to be

numerically computed for the evaluation of the PDE loss function.

Figure 5.27: TC.E6: Approximation error as a function of the iteration counts; networks

with 3 layers, 256 neurons and η = 0.001. The error starts �uctuating around 2 × 10−2

after almost 100 iterations and does not present an overall decreasing trend.

(a) Computed and exact solu-

tions after 0 iterations.

(b) Computed and exact solu-

tions after 500 iterations.

(c) Computed and exact solu-

tions after 1000 iterations.

Figure 5.28: TC.E6: Computed (green) and exact (orange) solutions after 0, 500 and

1000 iterations; networks with 3 layers, 256 neurons and η = 0.001. The estimation is not

very accurate on the boundary, especially around (0, 0).
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5.2.1. Solution with the tuned hyperparameters

The hyperparameters were tuned by trial and error for the problems TC.E4-TC.E6 in the

same way as TC.E1-TC.E3 in Section 5.1.4.

The analysis of the incidence of the adjusted hyperparameters on the error produced

by the method validate again the proposal of [91] when the exact solution is smooth

(TC.E4). In general we expect better approximation when the structure of the networks

is more complex, since every hidden layer allows a deeper learning level and more neurons

improve the capacity of processing many data. This is actually true in the most simple

examples and asymptotically in any case, and we have actually recognized it on the

boundary networks of almost all the examples, where the loss function is easy to evaluate.

Conversely, in TC.E5 the coupling has di�culties in the computation of the numerical

derivatives since both the �rst and second derivative rapidly change around x = (0.5, 0.5)

and this issue is not overcome by a deeper architecture.

In this section we will observe how the coupling with 1 hidden layer and 128 neurons

behaves in the example with peak (TC.E5) and how the coupling with 3 hidden layers

made of 256 neurons each and learning rate η = 0.0001 behaves in the least regular

example (TC.E6), and compare the performance to the errors obtained at the beginning

of Section 5.2.

Figure 5.30, representing the comparison between the plot of the exact solution, corre-

sponding to the orange curve, and of its estimation, coloured in green, shows that the

peak is not exactly approximated even with the tuned hyperparameters. On the other

hand, the method is overall more stable, since the global approximation error, displayed

in Figure 5.29, remains equal to 4×10−2 up to 1000 iterations, while it previously used to

oscillate up to 10−1. We can stop the training after a few hundreds iterations and obtain

the optimal result.

The most evident improvement is however introduced in the test TC.E6. We can observe

in Figures 5.32b and 5.32c that the approximation of the solution inside the domain follows

the plot of the exact one, even though on the boundary edges adjacent to (x, y) = (0, 0)

it does not show an accurate estimation. Nevertheless, the approximation error is no

more as unstable as before, as shown in Figure 5.25: after an immediate initial descent

to 3 × 10−2, it converges to 2 × 10−2 with very little oscillations within the �rst 1000

iterations (Figure 5.29).

The irregularity in the gradient of the exact solution does not allow the approximation

error to decrease below order 10−2.
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Figure 5.29: TC.E5 solved with tuned hyperparameters: Approximation error as a func-

tion of the iteration counts. The error is stably around 4× 10−2. Networks with 1 layer,

128 neurons and η = 0.001.

(a) Computed and exact solu-

tions after 0 iterations.

(b) Computed and exact solu-

tions after 500 iterations.

(c) Computed and exact solu-

tions after 1000 iterations.

Figure 5.30: TC.E5 solved with tuned hyperparameters: Computed (green) and exact

(orange) solutions after 0, 500 and 1000 iterations; networks with 1 layer, 128 neurons

and η = 0.001. The orange surface represents the exact solution an the green one its

numerical approximation. After 500 iterations (5.30b) the two graphs are very close

everywhere but around the peak region, where they even have opposite curvature. The

same happens at the �nal iteration (5.30c).
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Figure 5.31: TC.E6 solved with tuned hyperparameters: Approximation error as a func-

tion of the iteration counts; networks with 3 layers, 256 neurons and η = 0.0001. The

error converges after very few iterations to 2× 10−2.

(a) Computed and exact solu-

tions after 0 iterations.

(b) Computed and exact solu-

tions after 500 iterations.

(c) Computed and exact solu-

tions after 1000 iterations.

Figure 5.32: TC.E6 solved with tuned hyperparameters: Computed (green) and exact

(orange) solutions after 0, 500 and 1000 iterations; networks with 3 layers, 256 neurons

and η = 0.0001. After 500 iterations (5.32b) the two plots are very close but especially

when approaching the vertex (0, 0) the estimation becomes more di�cult. At the �nal

iteration (5.32c) the graphs are almost identical, but for (x, y) ≈ (0, 0).
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evolutionary problems

In this chapter we analyze the time dependent problems introduced in Sections 4.2 and

4.3, constructed from the solutions de�ned in equations (4.1a)-(4.1c).

6.1. Parabolic problems

We start by presenting the numerical results on TC.P1-TC.P5, cf. Chapter 4.

Here the hyperparameters of the networks are set according to the results from Sec-

tion 5.1.5 for TC.P1-TC.P3, namely 3 hidden layers with 256 neurons each and learning

rate η = 0.001 for the smooth problem and the problem with peak, while for the case

with singularity the chose learning rate is η = 0.0001, and from Section 5.2 for TC.P4 and

TC.P5. As in the previous chapter, we observe the behavior of the coupling within 1000

iterations, examining as evaluation benchmark only the approximation error err2 de�ned

by equation (3.14).

Finally, as input data for the PDE network a set of 64 random points in Ω× [0, T ] is em-

ployed at each training iteration, while on the boundary 64 points per edge are sampled

on ∂Ω.

6.1.1. TC.P1: smooth initial condition

We present the results obtained for TC.P1, cf. Section 4.2.1.

The overall learning is slower than the corresponding stationary example and, as we can

see in Figure 6.2, within 1000 iterations the approximation error reaches at most the order

10−2, even if it shows a continuously decreasing trend. Moreover, the error plot presents

very little oscillations, proving that the hyperparameters choice is still valid. Finally,

Figure 6.1 shows the plot of the approximate solution compared to the expected one at

three time snapshots. The �rst row shows the computed initial condition after 0, 400 and

1000 training steps. We would expect an almost exact interpolation of g, or at most a
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very small loss, similar to the boundary one, since the condition is very similar. However,

this does not happen, and in fact the corresponding PDE loss, as pointed out before,

has high order. This is due to the fact that the initial condition, unlike the boundary

one, is not learned by an independent network, so the parameters are mostly in�uenced

by the di�erence between the approximation error of the proper PDE with respect to

the right-hand-side functional f . Indeed, for t = 0 the approximate curve is lower than

expected. The time evolution of the �eld u is simply characterized by a rescaling of the

initial solution, that gets smaller and smaller values as t increases. The approximation

is not able to perfectly �t the exact solution at any time within 1000 iterations, but the

di�erence between the two plots decreases according to the range. The fact that the

estimated values of u are slightly greater than the exact ones is caused by the additive

term concerning the �tting of the initial condition in the PDE loss, that gives a small (as

we notice in the imperfect �tting of g(·, ·) when t = 0) but signi�cative e�ect.

Figure 6.1: TC.P1: Computed (green) and exact (orange) solutions after 0, 400 and 1000

iterations (from left to right); networks with 3 hidden layers, 256 neurons and η = 0.001.

Each row shows a di�erent time snapshot: t = 0 (top), t = 0.5 (middle) and t = 1

(bottom).
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Figure 6.2: TC.P1: Computed error as a function of the iteration counts; networks with

3 hidden layers, 256 neurons and η = 0.001.

6.1.2. TC.P2: initial condition with a peak

The second test case refers to TC.P2, see Chapter 4.

We can notice a signi�cant improvement in the approximation error shown in Figure 6.4,

that does not present and increasing trend anymore, di�erently from what observed in

TC.E2 (Figure 5.5), and is stably of order 10−2, suggesting convergence to 3×10−2, despite

some oscillations. The better global approximation error may be due to evaluations of

the solution for t ≈ 1, when the peak is substantially reduced and, even if not exactly

�tted, the numerical and exact graphs are much closer than in correspondence of t = 0.

Indeed, the better approximation error is re�ected in the plots shown in Figure 6.3, where

the approximate curves are closer but at the expense of a worse estimation allover the

remaining domain area.

I recall that I do not to treat the initial condition as an additional network because it

would lead to an over�tting of u(x, y, 0) that spreads along all the time interval [0, T ].

Moreover, in this case the peak could still remain undetected for the usual reason, i.e.

lack of data in its neighbourhood, or on the contrary add a further risk of not being able

to estimate the solution corresponding to the remaining domain area.
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Figure 6.3: TC.P2: Computed (green) and exact (orange) solutions after 0, 400 and 1000

iterations (from left to right); networks with 3 hidden layers, 256 neurons and η = 0.001.

Each row shows a di�erent time snapshot: t = 0 (top), t = 0.5 (middle) and t = 1

(bottom).

Figure 6.4: TC.P2: Computed error as a function of the iteration counts; networks with

3 hidden layers, 256 neurons and η = 0.001.
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6.1.3. TC.P3: Solution with low regularity

We now present the numerical results obtained with TC.P3, see Chapter 4.

Because of the di�culty in learning form the PDE, we would expect that the minimization

of the global error (Figure 6.6) is driven by the component related to the initial condition

g, and a consequential over�tting of this information. Apparently, it does not really a�ect

the approximation, in fact the the plot corresponding to t = 0 is not exactly equal to the

expected one after 1000 iterations, as we can observe in Figure 6.5, and in particular the

two curves are di�erent for (x, y) ≈ (0, 0). This results however in a good estimations

also for t > 0, where we can observe that at the �nal iteration the approximation is very

accurate everywhere but around (0, 0).

Moreover, the approximation error has a decreasing trend and attains values of order

1.5×10−3 within the �rst 1000 iterations, with small oscillations during the whole training

process, except for the last 300 steps.

Figure 6.5: TC.P3: Computed (green) and exact (orange) solutions after 0, 400 and 1000

iterations (from left to right); networks with 3 hidden layers, 256 neurons and η = 0.0001.

Each row shows a di�erent time snapshot: t = 0 (top), t = 0.5 (middle) and t = 1

(bottom)
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Figure 6.6: TC.P3: Computed error as a function of the iteration counts; networks with

3 hidden layers, 256 neurons and η = 0.0001.

6.1.4. Time-dependent advection-di�usion equation

In this section we present the results obtained for TC.P4 and TC.P5. We refer to Chap-

ter 4 for the details of the test cases. The time-dependent extension of TC.E6, whose exact

solution corresponds to uirregular,t (4.1c), is not considered since, as we have observed in

Section 5.2.1, the method is not e�cient when the transport term is introduced.

The performance of the method applied to TC.P4 with a smooth initial condition are

almost the same as for the corresponding heat equation (TC.E4, Section 6.1.1): the ap-

proximation error is decreasing and converges to 3 × 10−2 in 200 iterations (Figure 6.8).

The very narrow oscillations presented by the error plot suggest that the choice of param-

eters is still valid also in this case.

Finally, Figure 6.7 shows a better approximation of the solution at every time instant

than in TC.P1 (Figure 6.1), since the exact and approximate plot are very close for every

t and in particular the maximum value is almost perfectly estimated.

The exact solution of TC.P5 presents a peak in the middle of the spatial domain Ω that

becomes less severe as t increases. The data for this test case are those given in Section

4.3.2.

The networks applied to this example have one hidden layer with 128 neurons and learning

rate η = 0.001, as discussed in Section 5.2.4 for the stationary case. The coupling is very

stable, as we can observe in Figure 6.10 representing the plot of the approximation error.

Indeed, not only it always remains of order 10−2 within the �rst 1000 iterations, but it

also converges almost immediately at the value 3× 10−2 with negligible oscillations. This

means that in the case of regular solution with sudden variation of both the derivatives

and the corresponding value of the function the method with just one layer and 128

neurons learns very fast and can be stopped after a few hundreds of iterations.
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Figure 6.7: TC.P4: Computed (green) and exact (orange) solutions after 0, 400 and 1000

iterations (from left to right); networks with 3 hidden layers, 256 neurons and η = 0.001.

Each row shows a di�erent time snapshot: t = 0 (top), t = 0.5 (middle) and t = 1

(bottom).

Figure 6.8: TC.P4: Computed error as a function of the iteration counts; networks with

3 hidden layers, 256 neurons and η = 0.001.
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In fact, we see in Figure 6.9 that the di�erence among the three columns, representing the

approximate solution after 0, 400 and 1000 training iterations, is not very evident. The

initial guess is already very close to the exact plot for all the three time instants considered,

and waiting for the training process to reach the 1000th repetition is not apparently useful.

This observation is in line with the approximation error that does never change its order

of magnitude and has �uctuations of amplitude no greater than 0.001.

Figure 6.9: TC.P5: Computed (green) and exact (orange) solutions after 0, 400 and 1000

iterations (from left to right); networks with 3 hidden layers, 256 neurons and η = 0.001.

Each row shows a di�erent time snapshot: t = 0 (top), t = 0.5 (middle) and t = 1

(bottom).
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Figure 6.10: TC.P5: Computed error as a function of the iteration counts; networks with

1 hidden layer, 128 neurons and η = 0.001.

6.2. Hyperbolic problems

The last test cases concern hyperbolic problems, speci�cally linear transport equations, as

speci�ed in Chapter 4. On the boundary, Dirichlet constraints are given as in the previous

examples. The speci�c problems are built again by applying the method of manufactured

solutions on the same �elds u(x, y, t) considered for the parabolic advection-di�usion tests

in Section 6.1.4.

The training set is de�ned in the same way as for the other evolutionary problems, by

sampling 64 space-time locations for the PDE network and 64 points per edge for the

boundary one.

The hyperparameters for the examples discussed in this chapter are set according to the

choices made in Section 5.1.4, i.e. 3 hidden layers with 256 neurons each and learning

rate η = 0.001.

The tests TC.H1 and TC.H2 represent the evolution in time of the exact solutions of the

problems studied in Chapter 5, according to the conservation law de�ned by the linear

transport equation (1.10).

6.2.1. TC.H1: smooth initial condition

The �rst problem has a smooth solution u(x, y, t) at every time t ∈ [0, 1], de�ned by the

function usmooth,t (4.1a) de�ned in Chapter 4.

Although the simple shape of gD makes the boundary condition very easy to be learned,

the overall approximation error converges to a value around 2× 10−2. This is due to the

performance of the PDE network, whose loss function, involving numerical derivatives in
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every direction, is more di�cult to be evaluated. One proposal for faster reduction of

the PDE approximation error could be to increase the learning rate of the corresponding

network but, as we can observe in Figure 6.11, after 800 iterations the �uctuations around

the convergence value already start to become wider, and they would be made even worse

by a greater η.

However, the estimation obtained for the solution of this example with smooth data is

good and the convergence to the optimal result very fast.

Figure 6.11: TC.H1: Computed error as a function of the iteration counts.

Networks with 3 hidden layers, 256 neurons and η = 0.001.

6.2.2. TC.H2: initial condition with a peak

Here we present the results relative to (TC.H2). We have repeated the same numerical

experiments as before and the results are shown in Figure 6.12.

The plot of the error err2 stably attains its minimum after almost 300 iterations, and

then it essentially becomes constant.

In this case the fast convergence entails that the process may be stopped after just a

couple hundreds steps for reaching the best possible approximation. This suggests that

the peak, not recognized in 1000 iterations, will never be learned. The reason behind the

inability of the method to detect that sudden variation of the solution is maybe due to

the lack of data, in terms of space-time locations gathered in the peak region, given as

input to the PDE network, but a downside of this solution is a possible over�tting of the

high values taken by the function in that area.
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Figure 6.12: TC.H2: Computed error as a function of the iteration counts.

Networks with 3 hidden layers, 256 neurons and η = 0.001.
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7| Conclusions and future

developments

We have extensively investigated an ANN-based approach to numerically solve elliptic,

parabolic and hyperbolic problems. The extensive testing is justi�ed by a lack of strong

theoretical results. We observed the behaviour of the machine-learning-based approach on

di�erent types of problems and deduced some general conclusions about its performance.

1. From the hyperparameters tuning performed in Section 5.1.4, where the training al-

gorithm was repeated up to 20000 times, we can notice that the approximation error

stops decreasing after the very few hundreds of initial iterations, then it seems to

stagnate and starts presenting oscillations with increasing amplitude. In particular,

most examples end up attaining the minimum global error within 300-400 training

iterations at least for the considered con�gurations. As expected, both the type of

PDE (i.e. elliptic, parabolic, hyperbolic) and the regularity of the solution have a

central role in the choice of the ideal number of training iterations. Indeed, they

are maximally reduced in all the test cases with smooth solution, and we can also

observe a shrink in the hyperbolic examples with solutions having singularity on the

boundary when the di�usion term is dropped and only �rst order partial derivatives

need to be approximated. In the test cases with peak the approximation proper-

ties of the network seem to be less accurate because the chosen input locations do

not allow a better learning. On the other hand, this issue could only be overcome

by sampling many data points in the neighbourhood of the peak, but this decision

cannot be made apriori, without knowing the shape of the solutions.

2. In the approximation of the solution with peak no signi�cant improvement is intro-

duced by increasing the number of layers or neurons, and in fact in the di�usion-

transport cases we have observed that the best choice was to actually reduce them.

For this reason, we can conclude that the proposed method, at least in our test

cases, is not able to detect particular local features such as steep peaks.
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3. Although no theoretical result was proven, we can observe that all the examples

show that the overall error is not better than 10−3. This appears to depend on the

solution regularity in the interior of the domain, since the examples corresponding

to the smooth one and to the one with singularity on the boundary in some cases

reach order 10−4. In particular, in the test cases with smooth solution the best

results are achieved for second order elliptic operators.

Moreover, this method seems to be computationally e�cient in the time-dependent cases,

since it does not require a discretization in time of the problem and allows us to treat t as

an additional input variable that does not imply a high increase in the training execution

time.

In conclusion, the proposed method is suitable for fast black-box approximations, also

because any extension to other types of PDE or boundary conditions is very intuitive,

but cannot be substituted to the traditional grid-based methods. The main technical

drawback consists in the minimum errors achieved. A huge concern also regard the lack of

physical knowledge, since the system law is only taken into account for the loss de�nition.

Future developments of this idea could overcome these issues following two di�erent paths:

a) Exploiting more the structure of the neural networks involved;

b) Changing the focus and trying to combine the machine learning approach and

Galerkin-type schemes.

A possible extension also consists in applying autotuning techniques, as mentioned in

Chapter 2, in order to set the optimal values of the hyperparameters and improve the e�-

ciency. Another further development could be to apply physics-informed neural networks

to the calibration of the values assigned to some parameters in the traditional methods.

Moreover, the extension to other types of boundary conditions and nonlinear problems,

such as the Burgers equation, should be investigated in order to fully exploit the poten-

tiality of the proposed fully ANN-based approach.
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A| Python code

The implementation of the method is based on Python TensorFlow library, an open-

source platform for creation and training of machine learning models.

Three base classes are de�ned for networks solving generic bidimensional PDE problems

and their extension to d ∈ N dimensions.

For more details about the code see

https://github.com/beatricecrippa/ANNs-for-PDEs.

Starting from the base classes (contained in the �le pdebase.py) some derived ones are

de�ned in �le problems.py, each one related to a speci�c example among those discussed

in Chapters 5 and 6.

For the execution of this code the installation of the Pyhton libraries TensorFlow and

NumPy, for training, and MatplotLib, mpl_toolkits.mplot3d and drawnow, for

the plots, is required. After checking the installation of these packages, download the git

repository linked above, modify the �le training.py, according to the desired problem

de�ned in problems.py, and run it in order to obtain the plots reported in Chapters 5

and 6.

Let's start from some fundamental functions for the computation of the partial derivatives

and their evaluation at some locations x in the domain. In particular, compute_dx and

compute_dy return the derivatives with respect to x and y coordinates, while com-

pute_delta returns the approximate Laplacian. All of them rely on the same tensor�ow

method gradients(y,x), that computes the derivatives in every direction of a function

u, given a tensor x of coordinates and a tensor y of the corresponding images u(x), by

interpolating the input points.

#compute_delta : approximate l a p l a c i a n

de f compute_delta (u , x ) :

grad = t f . g r ad i en t s (u , x ) [ 0 ]

g1 = t f . g r ad i en t s ( grad [ : , 0 ] , x ) [ 0 ]

g2 = t f . g r ad i en t s ( grad [ : , 1 ] , x ) [ 0 ]

d e l t a = g1 [ : , 0 ] + g2 [ : , 1 ]
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r e turn de l t a

#compute_dx : x=d e r i v a t i v e

de f compute_dx (u , x ) :

grad = t f . g r ad i en t s (u , x ) [ 0 ]

dudx = grad [ : , 0 ]

r e turn dudx

#compute_dy : y=d e r i v a t i v e

de f compute_dy (u , x ) :

grad = t f . g r ad i en t s (u , x ) [ 0 ]

dudy = grad [ : , 1 ]

r e turn dudy

In this appendix we will focus on NNPDE, the class implementing the proposed method

for the Poisson-Dirichlet problem.

NNPDE is initialized by the variables batch_size (size of batches for Adam optimizer),

N (number of hidden dense layers) and refn (number of reference points), whose values

are assigned to homonymous class variables. In the initialization phase the three measures

of error discussed in Chapter 3, represented by the tensors rloss, rbloss and rl2 are set

to NULL.

The neural networks are implemented as two member functions self.subnetwork and

self.bsubnetwork, whose variable scopes are respectively called "inner" and "boundary".

The two subnetworks are equivalent and constructed with N hidden dense layers with 64

nodes each and tanh activation function and a 1-dimensional linear output layer. The

networks are trained by the member function self.train, that evaluates �rst the boundary

one until it has loss ≤ 10−5 and then the PDE ones, with learning rate 0.001 and objective

functions bloss, given by the sum of square errors on the boundary, and loss, de�ned by

a method loss_function that returns the sum of square errors in the PDE equation,

making use of the previously introduced function compute_delta.

Finally, the approximation given by the training on the boundary is saved in the variable

self.u_b and the approximation in the inner domain is recorded in self.u, given by the

sum of self.u_b and the result returned by the PDE network, multiplied by a function

B such that B
∣∣
∂Ω

= 0, B(x, y) = x(1− x)y(1− y) ∀(x, y) ∈ Ω.

In order to apply this class to a concrete problem, the function members self.f, self.exactsol

and self.tfexactsol, corresponding to the external source data and analytic solution (in
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terms of numpy and tensor�ow libraries) must be de�ned in derived classes. The ex-

act solution is not necessary for the learning process, but it is only used for the plot

representation of the approximation error.

In the following lines, the class initializer and the de�nition of the functions B and of the

PDE loss:

c l a s s NNPDE:

de f __init__( s e l f , batch_size , N, r e f n ) :

# measures o f e r r o r

s e l f . r l o s s = [ ] # i n t e r i o r l o s s

s e l f . r b l o s s = [ ] # bounding l o s s

s e l f . r l 2 = [ ] # err_2

# gr id f o r the e r r o r computation

s e l f . r e f n = re fn # r e f e r e n c e po in t s f o r the e r r o r computation

x = np . l i n s p a c e (0 , 1 , r e f n )

y = np . l i n s p a c e (0 , 1 , r e f n )

s e l f .X, s e l f .Y = np . meshgrid (x , y )

s e l f . refX = np . concatenate ( [ s e l f .X. reshape ((=1 , 1 ) ) ,

s e l f .Y. reshape ((=1 , 1 ) ) ] , a x i s=1)

s e l f . batch_size = batch_size # bat ch s i z e ( input d imens i ona l i t y )

s e l f .N = N # number o f hidden l a y e r s

s e l f . x = t f . p l a c eho ld e r ( t f . f l o a t64 , (None , 2 ) )

s e l f . x_b = t f . p l a c eho ld e r ( t f . f l o a t64 , (None , 2 ) )

s e l f . u_b = s e l f . bsubnetwork ( s e l f . x_b , Fa l se )

s e l f . u = s e l f . bsubnetwork ( s e l f . x , True ) +

s e l f .B( s e l f . x ) * s e l f . subnetwork ( s e l f . x , Fa l se )

s e l f . b l o s s = t f . reduce_sum ( ( s e l f . t f e x a c t s o l ( s e l f . x_b)

= s e l f . u_b)**2)

s e l f . l o s s = s e l f . l o s s_ func t i on ( )

va r_ l i s t 1 =

t f . g e t_co l l e c t i on ( t f . GraphKeys .TRAINABLE_VARIABLES,
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"boundary ")

s e l f . opt1 = t f . t r a i n . AdamOptimizer ( l ea rn ing_rate=

0 . 0 0 1 ) . minimize ( s e l f . b lo s s , v a r_ l i s t=var_ l i s t 1 )

va r_ l i s t 2 =

t f . g e t_co l l e c t i on ( t f . GraphKeys .TRAINABLE_VARIABLES,

" inner ")

s e l f . opt2 = t f . t r a i n . AdamOptimizer ( l ea rn ing_rate=

0 . 0 0 1 ) . minimize ( s e l f . l o s s , v a r_ l i s t=var_ l i s t 2 )

s e l f . i n i t = t f . g l o b a l_v a r i a b l e s_ i n i t i a l i z e r ( )

# B = 0 on the boundary

de f B( s e l f , x ) :

r e turn (0=x [ : , 0]*(1=x [ : , 0])*(0=x [ : , 1])*(=x [ : , 1 ] )

de f l o s s_func t i on ( s e l f ) :

de l tah = compute_delta ( s e l f . u , s e l f . x )

d e l t a = s e l f . f ( s e l f . x )

r e s = t f . reduce_sum ( ( de l tah = de l t a ) ** 2)

assert_shape ( res , ( ) )

r e turn r e s

In the class NNPDE the following two methods de�ne the networks structure:

#subnetwork d e f i n e s a dense neura l network on inner po in t s

#with tanh a c t i v a t i o n

de f subnetwork ( s e l f , x , r euse = Fal se ) :

with t f . var iab le_scope (" inner " ) :

f o r i in range ( s e l f .N) :

x = t f . l a y e r s . dense (x , 256 ,

a c t i v a t i o n=t f . nn . tanh ,

name="dense {}" . format ( i ) , r euse=reuse )

x = t f . l a y e r s . dense (x , 1 , a c t i v a t i o n=None , name=" l a s t " ,

r euse=reuse )

x = t f . squeeze (x , ax i s=1)

re turn x

#bsubnetwork d e f i n e s a dense neura l network on boundary

#po in t s with tanh a c t i v a t i o n
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de f bsubnetwork ( s e l f , x , r euse = False ) :

with t f . var iab le_scope (" boundary " ) :

f o r i in range ( s e l f .N) :

x = t f . l a y e r s . dense (x , 256 ,

a c t i v a t i o n=t f . nn . tanh ,

name="bdense {}" . format ( i ) , r euse=reuse )

x = t f . l a y e r s . dense (x , 1 , a c t i v a t i o n=None ,

name="b l a s t " , r euse=reuse )

x = t f . squeeze (x , ax i s=1)

re turn x

Finally, the method self.train of the class NNPDE must be called in order to perform the

training session:

de f t r a i n ( s e l f , s e s s , i ==1):

#random ( boundary ) coo rd ina t e s

bX = np . z e r o s ( (4* s e l f . batch_size , 2 ) )

bX [ : s e l f . batch_size , 0 ] = np . random . rand ( s e l f . batch_size )

bX [ : s e l f . batch_size , 1 ] = 0 .0

bX[ s e l f . batch_size : 2* s e l f . batch_size , 0 ] =

np . random . rand ( s e l f . batch_size )

bX[ s e l f . batch_size : 2* s e l f . batch_size , 1 ] = 1 .0

bX[2* s e l f . batch_size : 3* s e l f . batch_size , 0 ] = 0 .0

bX[2* s e l f . batch_size : 3* s e l f . batch_size , 1 ] =

np . random . rand ( s e l f . batch_size )

bX[3* s e l f . batch_size : 4* s e l f . batch_size , 0 ] = 1 .0

bX[3 * s e l f . batch_size : 4 * s e l f . batch_size , 1 ] =

np . random . rand ( s e l f . batch_size )

# t r a i n i n g o f the boudnary network

b l o s s = s e s s . run ( [ s e l f . b l o s s ] , f eed_dict={ s e l f . x_b : bX} ) [ 0 ]

i f b lo s s >1e=5:

f o r _ in range ( 5 ) :

_, b l o s s = s e s s . run ( [ s e l f . opt1 , s e l f . b l o s s ] ,

f eed_dict={ s e l f . x_b : bX})

# random coo rd ina t e s

X = np . random . rand ( s e l f . batch_size , 2)
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# t r a i n i n g o f the PDE network

_, l o s s = s e s s . run ( [ s e l f . opt2 , s e l f . l o s s ] ,

f eed_dict={ s e l f . x : X})

########## record l o s s ############

s e l f . r b l o s s . append ( b l o s s )

s e l f . r l o s s . append ( l o s s )

uh = s e s s . run ( s e l f . u , f eed_dict={ s e l f . x : s e l f . refX })

Z = uh . reshape ( ( s e l f . re fn , s e l f . r e f n ) )

uhre f = s e l f . e x a c t s o l ( s e l f .X, s e l f .Y)

s e l f . r l 2 . append ( np . s q r t (np .mean ( (Z=uhre f )**2 ) ) )

########## record l o s s ############

The problems de�nition is made by de�ning derived class of NNPDE where the methods

must be de�ned:

s e l f . f , s e l f . e x a c t s o l and s e l f . t f e x a c t s o l .
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