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Abstract

Unmanned Aerial Vehicles (UAVs), and more specifically, quadcopters, must be stable
during their flights. Altitude stability is usually achieved using a PID controller built
into the flight controller software. Furthermore, the PID controller has gains that need
to be adjusted to achieve optimal altitude stabilization during the quadcopter’s flight.
Therefore, control system engineers need to adjust those gains using extensive modeling
of the environment, which might change from one environment and condition to another.
As quadcopters penetrate more sectors, from the military to the consumer sectors, they
have been put into complex and challenging environments more than ever before. Hence,
intelligent self-stabilizing quadcopters are needed to maneuver through those complex
environments and situations. Here, we demonstrate that by using online reinforcement
learning with minimal background knowledge, the altitude stability of the quadcopter
can be achieved using a model-free approach. We found that altitude stabilization can
be achieved faster with a small memory footprint using an activation function like Sig-
moid. In addition, using this approach will accelerate development by avoiding extensive
simulations before applying the PID gains to the quadcopter. Our results demonstrate
the possibility of using the trial and error approach of reinforcement learning combined
with activation function and background knowledge to achieve faster quadcopter altitude
stabilization in different environments and conditions.

Keywords: reinforcement learning (RL), Q-learning, PID tuning, unmanned aerial ve-
hicle (UAV), quadcopter
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Abstract in lingua italiana

Unmanned Arial Vehicles (UAV), I veicoli aerei senza pilota, e più specificamente i quadri-
cotteri, devono essere stabili durante i loro voli. La stabilità dell’altitudine si ottiene solita-
mente utilizzando un controllore PID integrato nel software del controller di volo. Inoltre,
il controllore PID ha guadagni che devono essere regolati per raggiungere una stabiliz-
zazione dell’altitudine ottimale durante il volo del quadrirotore. A tal fine, gli ingegneri
dei sistemi di controllo devono ottimizzare questi vantaggi utilizzando un’ampia model-
lazione dell’ambiente, che potrebbe cambiare da un ambiente e condizione a un altro. Man
mano che i quadricotteri penetrano in più settori, dall’esercito al settore dei consumatori,
sono stati inseriti in ambienti complessi e impegnativi più che mai. Quindi, sono neces-
sari quadricotteri intelligenti autostabilizzanti per manovrare attraverso quegli ambienti e
situazioni complesse. Qui mostriamo che utilizzando l’apprendimento per rinforzo online
con una conoscenza di base minima, la stabilizzazione dell’altitudine del quadrirotore può
essere raggiunta utilizzando un approccio senza modello. Abbiamo scoperto che utiliz-
zando una funzione di attivazione come una sigmoide, la stabilizzazione dell’altitudine
può essere ottenuta più velocemente con un uso di memoria ridotto. Inoltre, l’utilizzo
di questo approccio accelererà lo sviluppo evitando simulazioni estese prima di applicare
i guadagni PID al quadrirotore. I nostri risultati dimostrano la possibilità di utilizzare
l’approccio per tentativi ed errori dell’apprendimento per rinforzo combinato con la fun-
zione di attivazione e la conoscenza di base per ottenere una stabilizzazione dell’altitudine
del quadrirotore più rapida in diversi ambienti e condizioni.

Parole chiave: reinforcement learning (RL), Q-learning, PID tuning, unmanned aerial
vehicle (UAV), quadrirotore
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1| Introduction

In recent years, Unmanned Aerial Vehicles (UAVs) are being used in many applications,
some of which are complex and challenging [7]. Areas that UAVs have been applied to be-
long to critical sectors like health [41, 44], and military [21, 23], but also such vehicles can
be seen in the civilian sectors [5, 22, 57]. UAVs applications are inspection [45, 47], surveil-
lance [28, 59], patrolling [42, 65], or rescuing [17, 27, 64], to name a few. Furthermore,
these applications are becoming increasingly challenging. Therefore, autonomy is needed
to assist in solving such complex problems [7]. Problems such as maneuvering through
unknown spaces while avoiding obstacles automatically, intelligently planning and follow-
ing a path, and finally completing the required mission successfully without the need for
human intervention [55]. According to [21], there exist different UAVs constructions to
be used for a given application, and they can generally be

• Fixed-wing

• Rotary-wing

• Flapping-wing

• Multirotor

Multirotor UAVs are attractive because of their compact size, simple construction, low-
cost maintenance, maneuverability, and vertical motion [31, 33], and the most common
member of multirotor UAVs is the quadcopter [14]. On the other hand, quadcopters suffer
from increasingly challenging tasks to achieve. Furthermore, there are too many moving
parts that need to be automated, such as correcting for disturbances, actuator degra-
dation, or communication and processing delays are a few of the issues that need to be
addressed by the flight controller [7]. To altitude stabilize the quadcopter, control algo-
rithms such as Proportional–Integral–Derivative (PID) controller [53], fuzzy control [25],
or linear–quadratic regulators (LQR) [71] is used [39]. PID controllers are widely applied
in quadcopters, due to their simple implementation and tunning flexibility. When UAVs
operate in complex unknown environments, intelligent adaptive controller is needed [33].
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1.1. Reinforcement Learning

Machine learning is making machines learn complex generalized models from data to
achieve a set of usually unforeseen tasks, and is traditionally divided into three main
categories, supervised learning, unsupervised learning, and Reinforcement Learning (RL).
RL is a branch of machine learning where an agent learns by trial and error, that is while
acting in an environment, the agent will get rewarded if the desired action is achieved,
and punished otherwise, the agent learns to do more of the desired actions to maximize its
reward [35]. According to [63], there are three general categories for the RL algorithms.
Each of these has its use cases.

• Dynamic Programming Methods require the model of the environment, but
they are mathematically well developed.

• Monte Carlo Methods simple conceptually and do not require the model of the
environment, but not suited for step-by-step computation.

• Temporal-Difference Learning Methods complex to analyze, but do not require
the model of the environment, and are fully incremental.

RL problems can be formulated as Markov Decision Processes (MDPs). In MDPs, an
agent is interacting with the environment over time. That is, by observing the environment
state at each time step, the agent chooses a proper action to take which will transition the
environment to some state, and therefore the agent will be given a reward as a consequence
of the action taken. So, the agent’s objective is to maximize the overall reward that can
be received from taking a certain sequence of actions in a given environment, that is, the
agent focuses not on the immediate reward but on the overall rewards that the agent will
receive. Therefore, the components of MDPs are the following

• Agent

• Enviroment

• States

• Actions

• Rewards

Formally, in MDPs, S represent the set of states, A represent the set of actions, and
R represent the set of rewards. At each time step t = 0, 1, 2, ..., the agent senses the
enviroment to get its state St ∈ S. Based on the state observed by the agent at time t,
the agent selectes an action At ∈ A which can be represented as state-action pair (St, At).



1| Introduction 3

Figure 1.1: Agent-environment relation in a Markov decision process [3].

Based on the action taken at time t, the envormatoint will transtion to time t + 1 with
an enviroment state St+1 ∈ S. Reward Rt+1 ∈ R will be given to the agent for the action
At in state St whcih can be represented as a function of state-action pair as showen in
equation (1.1). This process is illstrated in Figure 1.1.

f(St, At) = Rt+1 (1.1)

The expected return is what drives the agent to take a specific action in some state at
a certain point in time. Mathematically, the equation (1.2) represents the cumulative
return G at time t, where the T is the final time.

Gt = Rt+1 +Rt+2 + ...+RT (1.2)

The previous definition of expected return makes sense if the time T is defined. In another
word, if that task at hand is continuous, a discounted return is represented instead as
shown in equation (1.3) where γ is the discount rate that will be used to determine how
important future rewards and its number of between 0 and 1. If γ is low it means the
agent cares more about the immediate rewards and less about the future ones. On the
other hand, if γ = 1, then the agent cares about immediate and future rewards equally
to drive its actions.

Gt = Rt+1 + γRt+2 + γ2Rt+2 + ...

=
∞∑
k=0

γkRt+k+1

(1.3)

The agent’s objective therefore is to maximize Gt from equation (1.3). Policies represent



4 1| Introduction

the probability that an agent will select an action given a state. Value functions, on the
other hand, are responsible of measuring how good it is to pursue an action or a state. A
policy π followed by an agent represent the probability distribution over actions a ∈ A(s)

in state s ∈ S, that is, π(a|s). State-value function vπ shows how good a state s is under
the policy π. Mathematically, equation (1.4) gives the expected return for starting with
state s at time t and following policy π.

vπ(s) = E [Gt|St = s]

= E

[
∞∑
k=0

γkRt+k+1|St = s

]
(1.4)

Action-value function qπ shows how good for the agent to take action a in state s under
policy π. Mathematically, equation (1.5) gives the expected return for taking action a

starting with state s at time t and following policy π.

qπ(s, a) = E [Gt|St = s, At = a]

= E

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
(1.5)

RL algorithm is therefore trying to find the optimal policy. TO that matter, in order
to compare policies, we say that policy π is better than π

′ if the expected return of π is
higher or equal to the expected return of π′ . Mathematically,

π ≥ π
′
if and only if vπ(s) ≥ vπ′ (s) for all s ∈ S (1.6)

Optimal state-value function v∗(s) as showen in equation (1.7) is the maximum expected
return achievable in each state by any policy π.

v∗(s) = max
π

vπ(s) (1.7)

Optimal action-value function, Q-function, as showen in equation (1.8) is the maximum
expected return achievable in each state-action pair by any policy π.

q∗(s, a) = max
π

qπ(s, a) (1.8)
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Bellman optimality equation (1.9) considers the expected return given the state-action
pair. The return is composed of the reward for taking an action a in-state s at time t,
and the maximum expected return for the state-action pair (Q-value) that will be taken
in time t+ 1 multiplied with the discount rate γ.

q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗(s

′, a′)
]

(1.9)

1.1.1. Q-learning

The goal of Q-Learning algorithm is to find the optimal policy by learning the optimal
Q-values for every state-action pair. Specifically, the algorithm iteratively updates q∗ for
each state-action pair using the Bellman equation 1.9. The algorithm will iterate updating
the Q-value for each state-action pair using until q converges to q∗, that is, the optimal Q-
function. Q-table is used to store Q-values for each state-action pair. Columns represent
the actions, and rows represent the states. Therefore, the dimension of the Q-table is
the number of actions by the number of states. Since the agent knows nothing about the
environment at the beginning the table may be initialized to zero. In each episode, the
agent chooses an action based on the state and highest Q-value given the state in the
Q-table. But, to prevent the agent from finding a local minimum as the highest value
in the table at the point in time, a factor ϵ is introduced to make the agent explore at
the beginning, and as it learns and gets more experiences, it increases exploiting what
the agent learns to maximize the return. ϵ − greedy strategy is give a balance between
exploration and exploitation to avoid to prevent the agent to exploit a local maximum.
The idea is to make the agent explore the most at the beginning, and by using a decay
factor, this number will be reduced by the decay factor in every episode till reaches zero,
which means the agent is greedy and tries to exploit what has been learned 100% of
the time to maximize the total return. To know if the agent should choose exploration
or exploitation at each episode, a random number between zero and one is drawn and
compared with ϵ, then exploitation takes place, that is, choosing the highest Q-value
in the Q-table given the state. Otherwise, the agent will explore, and action is chosen
randomly given the state. α is the learning rate that is a number between zero and one,
which can be seen as how quickly the agent abandons the previous Q-value in the Q-table
for the new Q-value. In different words, α = 1 means the newly calculated Q-value will
replace the old one in the corresponding state action cell in the Q-table [63].

q(s, a) = (1− α)q(s, a) + α(Rt+1 + γmax
a′

q(s′, a′)) (1.10)
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Figure 1.2: Sigmoid function [60].

1.2. Activation Functions

In neural networks, activation functions are used to introduce a nonlinearity, that is,
a nontrivial mapping from the input to the output passing through cascaded layers of
neurons with corresponding activation functions [60]. Furthermore, activation functions
come in different flavors, to name a few

• Sigmoid

• Tanh

• ReLU

• Leaky ReLU

• SoftMax

• Linear

1.2.1. Sigmoid Function

Sigmoid function as defined in (1.11) is a great tool to squash any input to be in the range
between 0 and 1 (see Figure 1.2). It is not symmetrical around zero, which means the
values will be strictly nonnegative [60].

σ(z) =
1

1− e−z
(1.11)
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Figure 1.3: Quadcopter’s PID controller example [3].

1.3. PID Controller

A control system consists of a plant (ex. quadcopter’s controller), that when given an
input, obtains the target output with a target performance. Control systems have two
general configurations, open-loop, and closed-loop as shown in Figure 1.3. Unlike open-
loop where feedback is not returned to the system to correct for errors, closed-loop allows
for the system to recover from errors by adjusting the plant using a feedback loop [48].

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(1.12)

Due to the simplicity and practicality of the PID controller, many industrial processes are
utilizing it [9]. The PID controller parameters depend on the uncertainty of the process
and operational conditions [16]. When it comes to tuning the PID controller parameters,
there are two general approaches, classical and modern [9]. Classical PID controller tuning
methods are simple and computationally efficient. It gives a starting point to a necessary
further tuning which is a shortcoming of these methods as the use they make assumptions
about the plant and desired output. The following are a few of the well-known classical
tuning methods for the PID controller

• Trial and Error Method

• Ziegler-Nichols Step Response Method

• Ziegler-Nichols Frequency Response Method

• Relay Tuning Method

• Cohen-Coon Method
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Figure 1.4: (a) Without PID (b) P (c) PD (d) PID [34]

1.3.1. Trial and Error Tuning Method

If the system must remain online, one tuning method is to first set Ki and Kd values to
zero. Increase the Kp until the output of the loop oscillates; then set Kp to approximately
half that value for a "quarter amplitude decay"-type response. Then increase Ki until
any offset is corrected in sufficient time for the process, but not until too great a value
causes instability. Finally, increase Kd, if required, until the loop is acceptably quick to
reach its reference after a load disturbance. Too much Kd causes excessive response and
overshoot. A fast PID loop tuning usually overshoots slightly to reach the setpoint more
quickly; however, some systems cannot accept overshoot, in which case an overdamped
closed-loop system is required, which in turn requires a Kp setting significantly less than
half that of the Kp setting that was causing oscillation [13].



1| Introduction 9

1.4. Contributions

A solution has been presented to tackle two main problems raised when using tuning
the quadcopter’s PID controller within the context of reinforcement learning. First, is
the full online tuning problem. Second, the memory footprint might expand rapidly due
to the nature of Q-learning algorithms. The presented solution solves the first problem
by engineering the required function to effectively guide the plant to reach the setpoint.
Furthermore, the second problem has been solved using the sigmoid activation function
to limit the dimension of the Q-table.

Contribution accepted and nominated for Best-Paper Award at the IEEE International
Conference on Mechatronics and Automation (ICMA), 2022.

1.5. Thesis Outline

The thesis is organized into six chapters. Chapter 2 presented an important literature
review concerning the state of the art in tuning the PID controller using RL. Also, tun-
ing quadcopters PID controllers are discussed in chapter 2. Chapter 3 present a novel
approach of tuning quadcopter PID controller using PID. Furthermore, the simulation
setup has been presented in chapter 4. Chapter 5 shows the results with a discussion of
the proposed method. The conclusion is presented in chapter 5 with an overall summary
of the thesis, and possible future developments.





11

2| Literature Review

Using machine learning (ML) to tune the PID controller has been accomplished in the
literature. Methods that utilized supervised learning algorithms such as Gradient descent
have been explored [52, 74]. Those approaches suffer when non-linearity systems are the
ones being investigated in which the PID controller is not stable. Furthermore, fuzzy
logic (FL), genetic algorithms (GA), and artificial neural networks are approaches used
in the artificial intelligence (AI) literature to tune PID controllers [10, 11, 37, 46, 56, 58,
61, 70]. Deep neural network (DNN) and RL are two of the solutions that have been
suggested by the literature to model the PID controller and tune its gains for non-linear
systems [4, 10, 74]. By the same token, RL algorithms such as Q-learning have been
used extensively with different flavors to address such a problem of non-lieanrity [10, 11].
Further, a combination of RL and deep learning called (Deep RL) which is a subfield of
ML shows potential by the work of [62] and [12], the former faced an issue with the reward
function of the RL algorithm, and the latter faced an issue with the controller stability.
In addition, a work proposed by [16] that uses an offline tuning technique based on Deep
RL, but using it for online tuning is computational expensive. RL off-policy algorithms
such as Deep Deterministic Policy Gradient (DDPG) [43], Soft Actor-Critic (SAC) [29]
and Twin Delayed DDPG (TD3) [24] have been used for control applications, and more
specifically in robotics [8].

When it comes to quadcopters, they are highly non-linear systems [1]. Classical PID
tunning methods are not effective in reaching optimal gains with such systems in which an
adaptive controller should be used [8]. Furthermore, a neural network and FL might still
be used to build the required adaptive controller [18, 39]. Also, GA has also been applied
to overcome the complexity of building an adaptive PID controller but the time to settle
is still needed to be minimized for real-world systems [2]. Complexities such as delayed
response, and strong and high-frequency disturbances can complicate the control tasks
and prevent the classical PID controller to generalize to unforeseen situations. On the
other hand, if the goal is to maximize the system adaptability in complex environments,
RL might be used [33].
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Table 2.1: The Q-table of the work in [36].

u1300 . . . d1700

1 v(s1, a1) . . . v(s1, a40)
...

...
...

...

40 v(s40, a1) . . . v(s20, a40)

A review has been presented in [7] using deep reinforcement learning on drones for various
purposes like navigation and PID tuning. One of the reviewed papers proposed a design
to implement a standard PID controller to ensure stable maneuvering. By taking various
learning parameters as an input to the controller, along with the PID controller gains,
and based on the current state of the UAV, and the reward expected, the next state
is updated. The tuning process aims to reach the optimum values for the three gains
of the PID controller. The simulation was done to reach optimum values for the gains
by increasing the reward and decreasing the penalty over time. Applying the algorithm
to a physical quadcopter, using the proposed PID algorithm made the learning process
computationally expensive, and it took more time than the batteries can stand. The
RL algorithm used is Q-learning which aims to maximize the overall reward signal. Q-
learning helps the drone to reach the optimal values for the PID controller gains based on
taking the proper action to get as much reward as possible. The Q-table of the Q-learning
algorithm is used to store the Q-values related to each state which represents the UAV
position. The problem that has been faced is with regards to the Q-table as claimed that
could lead the size of the table to grow in a way that will make it hard to implement
the algorithm in reality due to hardware memory size and battery limitation. This issue
has been fixed by using an approximation technique Fixed Sparse Representation (FSR).
Because the used technique is an approximation, that caused sometimes an overshooting
of the quadcopter.

The work done by [36] in 2020 is similar to the one investigated in this thesis, that is, using
Q-learning for PID controller of quadcopters to hold a given altitude. The work has a Q-
table of 800 cells and a complex reward function. The structure of the Q-table represents
40 actions as columns, and 20 states as rows. The actions consist of the value of the
Pulse Width Modulation (PWM) to activate certain motor speeds either up or down for
the 4 motors of the quadcopter, for example, u1500 means up force with 1500 PWM (see
Table 2.1). The episodes exceed 2000, the first 1000 episodes are for exploration without
decay, from 1000 to 2000 episodes the decay rate λ will reach around half. Thereafter,
exploitation will increase takeover.
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In cases like tuning the PID controller by using RL algorithms, and more specifically,
using Q-learning, the Q-table is the bottleneck as shown in examples from the literature.
The state of the environment is continuous when the sensor is the altitude, even with
discretization, the Q-table is still the bottleneck as discussed in this chapter. Solutions
for such a problem have been presented, like using FSR or moving completely away from
Q-learning to deep Q-learning (DQN) which solves the issue of Q-table, but the approach
might introduce other problems of its own with regards to building a deep neural network,
like defining the network structure (layers) and activation functions. In the next section,
an approach for solving the Q-learning bottleneck, by limiting the expansion of the Q-table
using the Sigmoid function is presented.
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3| Tuning Quadcopter PID
Controller Using Q-learning
and Sigmoid

Following the MDP for sequential decision-making problem formulation. The agent senses
the state S from the environment, and based on the state-action pair (s, a) taken, it
receives a reward r. Using the reward, it updates the Q-table by using the action-value
function q(s, a), then the agent should decide which action at+1 to take in the next time
step based on its current state using ϵ− greedy strategy. We have to face the problem of
tuning the PID controller using a Q-learning algorithm to reach the desired setpoint. In
this case, the quadcopter is the agent, that senses the altitude from the environment using
sensors such as sonar, lidar, camera, etc. The set of states S has a cardinality of 100, i.e.
|S| = 100. The state of the quadcopter will be decided by the output of the state function,
see Algorithm 3.1. The state function has the error as an input, see Algorithm 3.2. The
set of actions has been carefully designed to resemble the natural behavior of adjusting
values of a knob. Knobs are limited by three actions, increase [+1], decrease [-1], or leave
the knob the as is [0]. Therefore, the set of actions A has three elements A = {0, 1,−1}.
Moreover, the reward as shown in the reward function (see Algorithm 3.3) will be assigned
based on the error produced by the error function in Algorithm 3.2.

Algorithm 3.1 State Function
S ← σ(err)× 100

return S

Algorithm 3.2 Error Function
∆alt← alt− alt′

∆d← ∆alt−∆alt_prev

v ← d∆d/dt

E ← ∆alt+ v

return E
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Algorithm 3.3 Reward Function
if err < 0.01 then
R← 1

else if err < 0.1 then
R← 0

else if err < 1 then
R← −1

else
R← −2

end if
return R

To know how good for an agent to take a given action in a given state, a value function
is computed as in Eq. 3.1. The function is called Q-function and produces a Q-value that
will be placed in the Q-table.

qπ(s, a) = E [Gt|St = s, At = a]

= E

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
(3.1)

The optimal action-value function gives the evaluation of how good it is following a policy
π considering all the policies.

q∗(s, a) = max
π

qπ(s, a) (3.2)

It can be seen that the Bellman optimality equation (1.9) considers the expected return
given the state-action pair. The return is composed of the reward for taking an action
a in state s in combination with the optimal action-value function multiplied by γ, the
discount rate. Finally, the Q-value is computed using equation (3.3) and the Q-table
(3.4) [66].

q(s, a) = (1− α)q(s, a) + α(Rt+1 + γmax
a′

q(s′, a′)) (3.3)
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Figure 3.1: How Q-learning will fit in the standard PID controller loop. [3].

3.1. Problem Formulation

To adapt equation (1.10) to the problem of quadcopter altitude stabilization, values for
parameters ϵ, γ, and α need to be defined. As the agent is learning, the ϵ is reduced from
1.0 to 0.001 by 0.001 each time step to give the agent the ability to explore and then
exploit what has been learned at a later stage. To show that the agent does not only
care about the immediate rewards but also the future ones, a choice of γ = 0.99 has been
used. By the same token, to make it a little slower for the agent to replace the Q-value in
the Q-table with the new value, the learning rate α has been chosen as 0.1. The Q-table
used is a 100 × 3 matrix. The rows represent the states that the agent might find itself
in, while the columns represent the three actions. The cells of the table correspond to the
state-action pairs that are computed by equation ( 3.3).

Qt =


qs1,a1 qs1,a2 qs1,a3

qs2,a1 qs2,a2 qs2,a3
...

...
...

qs100,a1 qs100,a2 qs100,a3

 (3.4)

At time t = 0, the agent does not know anything about which action to take as the
learning process just started. Therefore, Q-table is initialized to 0.

Q0 =


0 0 0

0 0 0
...

...
...

0 0 0

 (3.5)
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Figure 3.2: The use of Sigmoid function in the proposed algorithm [3].

The use of the Sigmoid function is to overcome the limitation of the Q-table, and to make
the algorithm generalize to different setpoints or quadcopter settings without modifying
the algorithm or its parameters. As demonstrated by Figure 3.2, the quadcopter senses the
environment for the altitude. The sensed altitude is the distance between the quadcopter
and the ground. The difference between the setpoint and altitude will be passed to
the Sigmoid function to produce a value between 0 and 1. The produced value will be
multiplied by 100 and then converted to an integer. Multiplication by 100 and taking
the integer will allow the algorithm to get the row index that is 0 to 99 (100 rows). The
columns on the other hand represent the actions, and also to generalize the algorithm,
only three general actions are taken. Actions are either positive, that is, increase throttle,
or negative which means the opposite, decreasing the throttle or lastly stay neutral.
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Figure 3.3: An episode of the proposed algorithm [3].

In every episode as illustrated in Figure 3.3, the quadcopter senses the environment for
the altitude. Then, the altitude is passed to the Sigmoid function to locate the row in
which the Q-value will be placed in the Q-table. Based on the action taken and the state
of the previous step and the reward, the Q-value is calculated using the Equation (3.3).
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In the classical approach of tuning the PID controller using the trial and error approach,
the parameters are set to zero, and then start tuning one by one. That is, starting
with proportional part Kp, then moving to the other two parameters, namely Ki and Kd

[40]. Unlike the classical approach, the RL agent is given the ability to adjust all three
Kp, Ki, Kd, in the same or different order as it sees fit to make the quadcopter reach the
required setpoint altitude and continue adapting for new circumstances and conditions.
Also, initializing the PID controller parameters to 0.1 instead of zero helps the tuning
process to be faster, because setting PID parameters to zero, will make the propellers
thrust equal to zero which will take the agent longer time to see any reduction on the
error returned by Algorithm 3.2.

3.2. Experiment Setup

The experiments have been done in a simulated environment that has a physics engine.
Furthermore, the time reported in the experiments is a simulation time. The quadcopter
has been designed to embed the real-world physical properties like mass and materials of
each component, see Figure 3.4. The physical properties that have been used are mass,
gravity, drag, angular drag, and colliders. Since the algorithm is indeterministic in nature,
each experiment illustrated in this study has been executed 100 times and an average has
been reported in tables (4.1, 4.2), along with the upper and lower bounds, first, second,
and third quartiles. In addition, the speed at which the PID controller parameters are
learned by the agent and reach its setpoint has been outlined in Figure 4.2. The starting
condition of the quadcopter is on the ground plane at x=0, y=0 and z=0 with the thrust
set to zero for all the motors. In addition, the stopping criteria is set to an error of ±0.1%
to the target altitude.

Mass Variation

In this variation, the aim is to examine the effect of changing the mass on the speed of
convergence of the algorithm. Drag and angular drag properties have been fixed to 1N and
0.05N respectively, and only mass is changing. For every 100 experiments, an addition of
500 grams is added to the mass of the quadcopter. The experiment is terminated at 500
experiments which are equivalent to the addition of 2kg in total.
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Drag Variation

In this variation, the objective is to examine the effect of changing the drag on the speed
of convergence of the algorithm. Mass and angular drag properties have been fixed and
only mass is changing. For every 100 experiments, an additional force of 0.5N is added to
the drag that affects the quadcopter. The experiment is terminated at 500 trials which is
equivalent to an addition of 5N of drag in total.

Disturbance Variation

As can be seen in Figure 3.5, random rotation (Figure 3.5a) and push (Figure 3.5b) forces
have been applied around the quadcopter during the learning phase. The objective is to
examine the effect of introducing disturbances to the quadcopter and investigate how that
might affect the outcome of the algorithm. The torque (Newton-metre) is added to the
pitch, yaw, and roll angles by 100 Newton-metres. The torque is applied every 1.5 seconds
to all of the angles sequentially, that is roll, pitch then yaw, then applied all at once, and
the procedure is repeated for the whole learning process. Please, refer to Appendix B.2
to see the actual code for the added disturbances.

Setpoint Variation

In this variation, the objective is to examine the effect of changing the setpoint through
the learning phase and investigate how that might affect the outcome of the algorithm.
The setpoint has been set to 5m, 7m, and 9m.
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(a)

(b)

(c)

Figure 3.4: (a) 3D model of quadcopter (b) Simulation settings [Mass, Drag] (c) Simula-
tion viewport of a ground.
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(a)

(b)

Figure 3.5: (a) Apply random rotational force. (b) Apply random force pushing on
different angles around the quadcopter.
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4| Results and Discussion

In Table 4.1 is reported the result of an experiment that consists of 500 trials, that is,
100 trials for each mass variation. A trial consists of the period taken by the algorithm to
converge and tune the PID controller. Further, there are five mass variations, one to three
kilograms as the quadcopter mass. Based on the results shown in the table, the median
has increased by 10 seconds for every half a kilogram added. This is because when the
mass increased, the algorithm takes more time to add force to the motors to tune the PID
controller to reach the setpoint altitude. That is, the change does not happen immediately
after a change in one of the PID controller gains, therefore, more time is needed for the
agent to learn the policy required to reach the stability condition.

Table 4.1: Descriptive statistics for learning time in seconds (variable = Mass)

Variable* Mean Min Max 25th Percentile Median 75th Percentile

1.0 kg 76.1 14.1 266.9 32.9 53.8 114.2

1.5 kg 96.2 17.8 437.3 39.1 67.7 127.2

2.0 kg 102.1 15.0 489.6 41.2 75.1 114.0

2.5 kg 100.6 10.5 754.0 40.3 66.5 110.2

3.0 kg 115.1 22.9 340.0 50.9 91.1 159.3

*Note: 100 trials are taken for each change in the variable value.

The same goes for Table 4.2 that represents applying drag variation on the quadcopter.
Drag simulates a force acting opposite to the relative motion of the quadcopter. As the
drag increased the time to converge also increased. This experiment added drag of 5
different magnitudes, starting from 1N to 3N by adding 0.5N at every drag experiment
variation. The cause of increased time when drag increases time to convergence is due to
the agent needing more time to learn the correct policy that leads to correct tuning of the
PID controller. The change to one of the gains does not result in an immediate outcome,
instead, the system needs more time to figure out the correct sequence of actions that
results in a higher reward, that is, reaching stability at the setpoint altitude.
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Table 4.2: Descriptive statistics for for learning time in seconds (variable = Drag)

Variable* Mean Min Max 25th Percentile Median 75th Percentile

1.0 N 76.1 14.1 266.9 32.9 53.8 114.2

1.5 N 106.9 18.1 458.4 47.9 81.0 140.9

2.0 N 113.2 22.7 613.2 51.4 91.7 142.2

2.5 N 130.3 18.2 1199.6 50.3 87.3 157.6

3.0 N 154.6 23.6 608.4 58.6 119.1 206.9

*Note: 100 trials are taken for each change in the variable values.

In Figure 4.1 a box plot is shown to visualize the data points; the outliers which are
represented by a red cross (+). Either the mass or drag variations can be seen on the
abscissas and it can be observed that the outliers are randomly distributed. Starting with
the mass variation in Figure 4.1a, at one kilogram, the outliers are around the maximum
value of the box plot which is around 250 seconds which is the time took the algorithm
to converge and find the PID controller gains. Thereafter, the outliers start to drift away
from the maximum of the box plot, but when the value of the quadcopter’s mass reached
3 kilograms the outliers are back to around the maximum, which is something expected
from a non-deterministic algorithm like the one proposed. Also, Figure 4.1b represents the
same phenomenon, that is, the randomness of convergence times concerning the outliers.
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Figure 4.1: (a) Box plot for each increase in mass on the horizontal axis, and corresponding
time of convergence on the vertical axis. (b) Box plot that represents the change in drag
on the horizontal axis, with the time of convergence along the vertical axis.
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Another experiment has been done to measure the effect of changing the setpoint on
the number of episodes the proposed algorithm needs to converge. The result of the
experiment consists of 300 trials, that is, 50 trials for each setpoint variation. Mass is
kept at 1kg, 1N for the drag. In Table 4.3 it can be seen that randomness again shows
up as expected, from 5 meters setpoint altitude the number of episodes was under 900
and again on 9 meters. On the other hand, for 6 and 10 meters was around 1500 episodes
and 1000 episodes in the case of 7 meters. Furthermore, at 8 meters mark, the algorithm
needed over 2500 episodes to tune the PID controller altitude gains.

Table 4.3: Episodes needed to tune the PID controller given the altitude.

Altitude (m) Episodes

5 867

6 1632

7 1001

8 2644

9 812

10 1800

First, Figure 4.2a represents the phase where the agent fills up the Q-table and tries
different values to make the quadcopter stable at the setpoint altitude. From 0 (ground)
to just before 5 seconds, the quadcopter reaches 2 meters and falls back to 0, then rises
back again without returning to 0. That also happens in Figure 4.2e but this time it
reaches just before 5 meters to go back again to 0. On the other hand, the experiment
results shown in Figure 4.2c show that the quadcopter stays around 0 then jumps to
around 4 meters to go back to just above 3 meters and then up to 5 meters where it
settles. In the experiment shown in Figures 4.2b, 4.2d, and 4.2f, the chosen setpoints
for altitude were picked to be 5, 7, and 9 meters. Figures 4.2b, 4.2d, and 4.2f show the
training phase for different altitudes, 5m, 7m, 9m respectively. Both sides of Figure 4.2
were plotted with time steps on the horizontal axis and the altitude on the vertical axis.

From an initial initialization of the PID controller parameters to a fully tuned PID con-
troller in under 1.5 minutes on average. The box plots seen in Figures 4.1a, 4.1b with 100
trials for each variation in mass and drag, show that a minimum of 14 seconds is needed
to reach the required setpoint altitude. Furthermore, the quadcopter reaches the setpoint
quickly as shown in Figures 4.2a, 4.2c, and 4.2e as the agent tuned the PID controller
parameters in under 30 seconds. It is worth noting that the 75% percentile, are ranging
from 2 to 4 minutes across the thousand trials.
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On the other hand, due to the non-deterministic nature of the RL algorithms, more
experiments are needed as the results are far from perfect. As seen from the handpicked
experiments in Figure 4.2 the algorithm needs to optimize the learned PID controller
parameters. It can also be seen in Tables 4.1-4.2 that increasing the mass or drag will
increase the convergence time to reach the setpoint. It is easily inferred from Tables 4.1-
4.2 that the average convergence time increases whenever mass or drag increases on the
system.
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Figure 4.2: Handpicked experiments to show the nondeterministic behavior to be expected
from such an algorithm. On the other hand, all converge to the desired setpoint altitude.
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5| Conclusions

In this thesis, a reinforcement learning, model-free, ϵ − greedy policy algorithm is im-
plemented through the use of Q-learning with a modification of the Q-table to make it
appropriate for quadcopters to reach altitude stability in less than half a minute on aver-
age as evident from experiments presented. These results are achievable without the need
for extensive simulations and modeling of the environment. Although minimal proper
knowledge of PID controller and the application at hand is needed to aid the algorithm to
reach desired altitude faster and smoother. Hence, making it applicable to a wide range
of quadcopter sizes and weights. Furthermore, the algorithm outperforms the latest work
found in the literature on the same problem that is discussed in Chapter 2 by [36] where
our Q-table has a smaller memory footprint, 500 fewer cells with 300 cells only. Further-
more, the algorithm is built to be adaptive in terms of motors used by the use of general
actions, increment, decrement, or staying neutral. Unlike the work of [36] where the ac-
tions depend on the PWM of the motors. Also, based on the empirical data presented,
the algorithm reaches a setpoint altitude at a thousand epsiods on average, unlike the
work that has been done by [36] where the number of episodes always exceeds 2000.

5.1. Future Developments

The experimental validation of the proposed adaptive controller is the subject of a future
study. Also, further investigation of other RL algorithms could be considered for use
with PID controller. Algorithms like Deep Q-learning that uses a deep neural network
to replace the Q-table [63]. In addition, optimization of the algorithm used in this thesis
could result in more stable and robust results. Only the altitude stabilization has been
investigated in this thesis, but the pitch, yaw, and roll of the quadcopter were tuned using
a trial and error approach. Therefore, future investigation is necessary to have a solution
to replace the class PID controller with an intelligent adaptive solution. Furthermore, an
investigation of Micro Areia Vehicle (MAV) with the presented algorithm should be tested
as micro quadcopters tend to be sensitive to disturbances [49]. Numerical simulations were
performed and demonstrated the effectiveness of the proposed method.
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(a) (b)

Figure A.1: (a) Quadcopter (b) 3D model 1-to-1 to the quadcopter in (a) with embedded
physical properties.

A| Appendix A: Quadcopter

Assembly and Simulation

To have a result that can be reliable in a simulation, the exact quadcopter built using the
components presented in this appendix has a 1-to-1 3D model with the exact dimensions.
Also, every 3D model encodes the weight and physical operation, for example, for the
motors and propellers. Furthermore, the 3D models have also encoded the material of the
physical characteristics of the component. Also, the colors have been added to give it a
1-to-1 replica as shown in Figure A.1.
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Figure A.2: ZMR250 Quadcopter Frame [73].

A.1. Off-the-shelf Components

Frame

The frame was chosen based on the durability, weight, size, price, and availability of the
component in case of future damage. The frame is made of carbon fiber which gives it
durability and lighter weight.

Table A.1: ZMR250 Quadcopter Frame Specifications [73].

Input voltage Carbon Fiber (1.5mm)

Size 250mm

Weight 146g

Price 16.99 €
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Figure A.3: EMAX RS2205-S 2300KV Brushless CW Motors [19].

Motors

A quadcopter is a multirotor vehicle with four motors placed in a certain configuration to
make the quadcopter able to float and maneuver. A high-quality, low-weight motor and
powerful for future research and matching the frame chosen is EMAX RS2205-S 2300KV
brushless Clockwise (CW) motor. A Brushless motor is chosen over a brushed motor due
to its high power-to-weight ratio, high speed, high efficiency, low maintenance, and nearly
instantaneous control of speed (rpm) and torque [69].

Table A.2: EMAX RS2205-S 2300KV Brushless CW Motors Specifications [19].

Input voltage 3S-4S

KV 2300kv

Weight 30g

Maximum Thrust 1024g

Price 70.98 €
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Figure A.4: Gemfan 5-inch 3-Blade Propeller [26].

Propellers

Propellers are attached to the motors of the quadcopter in cretin configuration, that is,
Counterclockwise (CW) and Counterclockwise (CCW). These configurations make lift-
ing and flying the quadcopter possible. These 3-blades provide more torque and higher
maneuverability, but are less efficient, which in return means lower flight time [38].

Table A.3: Gemfan 5-inch 3-Blade Propeller Specifications [26].

Size 5 inch

Material Plastic

Weight 4.90g

Other 4 CW - 4CCW

Price 8.99
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Figure A.5: HRB LiPo Battery [30].

Battery

To power the quadcopter and all the electronics onboard, a battery is needed. LiPo 11.1V
battery is selected to power the motors at their full power. Also, it has 6000mAh which is
enough power to operate not only the motors but also the onboard electronics Although,
increasing the pack size will give longer flight times however will add weight. Furthermore,
the battery has a 100C burst rate which allows the quadcopter to accelerate faster. The
battery comes in a compact size, small size, and weight. Continuous discharge rating is
often what distinguishes batteries, it refers to how quickly a battery can discharge the
energy it has and is often the limiting factor in a high-performance application, at 50C is
enough for the use cases planned for the quadcopter.

Table A.4: HRB LiPo Battery Specifications [30].

Capacity 6000mAh

Voltage 11.1V

Cells 3S

Continuous Discharge 50C

Burst Rate 100C

Weight 420g

Price 63.99 €
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Figure A.6: XTVTX 35A BLHeli-S Electronic Speed Controller [68].

Electronic Speed Controller

Based on the choice of the battery and motors, XTVTX 35A BLHeli-S has been selected
as the Electronic Speed Controller (ESC). ESC is used to regulate and control the speed
of the motors [51]. 35A is enough for the motors and future-proof in case a stronger and
faster motor becomes available.

Table A.5: XTVTX 35A BLHeli-S Electronic Speed Controller Specifications [68].

Voltage Support 2S-6S

Current 35A DC

Weight 6g

Price 89.99 €
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Figure A.7: ZHITING PDB [72].

Power Distribution Board

To distribute the power from the battery to the motors and other electronics onboard the
quadcopter, a Power Distribution Board (PDB) is required [32]. Furthermore, different
components need different voltage ratings and current flow. Also, a compact package is
preferable. The specifications is shown in Table A.6.

Table A.6: ZHITING PDB Specifications [72].

Input Voltage 9V to 26V

Output Voltage 5V and 12V

ESC Output 4

Continuous Current 20A per output

Price 10.99 €
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Figure A.8: Jetson Nano Developer Kit (Version: B01) [50].

Computer

The goal is to find a small compact computer to run the flight controller onboard the
quadcopter, yet powerful enough for future research. The choice landed on Jetson Nano
Developer Kit from NVIDIA. Specifically, version B01 added a connector to support a
dual camera setup for stereo vision. The specifications is shown in Table A.7.

Table A.7: Jetson Nano Developer Kit Specifications [50].

USB (4x) USB 3.0 Type-A, USB 2.0 Micro-B

Camera (2x) MIPI CSI-2 x2 (15-position Camera Flex Connector)

Display HDMI 2.0, DisplayPort

Wireless M.2 Key-E (PCIe x1)

Ethernet Gigabit Ethernet (RJ45)

Storage MicroSD card slot

Other 40-pin Header - (3x) I2C, (2x) SPI, UART, I2S, GPIOs

Power Micro-USB (5V=2.5A) or DC barrel jack (5V=4A)

Price 400 €
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Figure A.9: MPU6050 Inertial Measurement Unit [6].

Inertial Measurement Unit

The Inertial Measurement Unit (IMU) is used to measure the pitch, yaw, and roll angles.
These angles can help algorithms like PID controller to get the quadcopter to stabilize
despite the existence of disturbances [54].

Table A.8: MPU6050 Inertial Measurement Unit Specifications [6].

Input Voltage 9V to 26V

Output Voltage 5V and 12V

ESC Output 4

Continuous Current 20A per output

Price 5.99 €
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Figure A.10: DF SRF02 Ultrasonic Sensor [15].

Ultrasonic

For the quadcopter to sense how far it is from the ground, an ultrasonic can be used. The
aim is to find a small compact ultrasonic sensor that can be attached to the bottom of
the quadcopter to sense the distance to the ground. DF SRF02 ultrasonic sensor has been
chosen for its quality, size, and price. The size competence is due to the ability to send
and receive ultrasound single, these types of ultrasonic sensors are called transceivers. In
addition, DF SRF02 uses the I2C bus for communication which is required for the under-
lying communication protocol used in the quadcopter between the sensors and actuators.
Furthermore, two or more of these sensors can be attached at the bottom and fuse their
measurements to reduce the effect of the noisy readings using complementary filter [20],
or Kalman filter [67] to name a few.

Table A.9: DF SRF02 Ultrasonic Sensor Specifications [15].

Power 5V

Communication Interface I2C - Serial

Range 16cm to 6m

Frequency 40KHz

Other Full Automatic Tuning

Price 29.29 €
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Figure A.11: 3D printer printing the computer protector.

A.2. 3D Printed Components

Some of the necessary parts needed to be designed to eliminate foreseen issues in the
future. Issues like collisions and stable landing. A basic 3D printer is used with Polylactic
Acid (PLA+) filament to print the designed parts. The goal is to make the part durable
but also lightweight, therefore a choice of 40% infill is made.
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(a)

(b)

Figure A.12: (a) Slid out the battery case from landing gear (b) Landing gear and battery
box are securely locked.

Battery Holder and Landing Gear

Since the frame does not come with proper landing gear, one must be added to safely land
the quadcopter without causing damage either to the frame or to the installed components.
A place to house the battery is also needed, therefore the design makes it easy to reach the
battery to be replaced by sliding on, and of the landing gear. The landing gear has also
a place for the ultrasonic sensor. Furthermore, the design is a bridge-style to distribute
the impact without breaking the landing gear.
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(a)

(b)

Figure A.13: (a) Propeller Protector (b) Computer Protector.

Computer and Propeller Protector

To protect the quadcopter and above all the operation of the quadcopter, the cover of
the propeller has to be installed. The propellers are sharp and very dangerous during the
operation of the motors. Also, the propellers used are made of plastic and they easily
break during any small collisions with walls and obstacles which also can be avoided by
using such a solution. The dimensions have been chosen to also balance the quadcopter
if, during landing operations, it can push back the quadcopter to be on its landing gear.
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B.1. Q-learning Algorithm with Sigmoid Function
public class QL {

public struct RM{

public int s { get; set; }

public int a { get; set; }

public float r { get; set; }

public int s_ { get; set; }

}

RM mem = new RM();

// the discount factor that applies to rewards

float GAMMA = 0.99f;

float ALPHA = 0.1f;

public bool done = false;

float[] ACTIONS = {0f, 0.1f, -0.1f};

float[,] Q_table = new float[101,3];

int r = -2;

double epsilon = 1.0;

System.Random RndB = new System.Random();
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public float getAction(float k){

mem.s = mem.s_;

if(RndB.NextDouble() < epsilon) {

// To avoid gains below zero

if (k <= 0f) {

mem.a = RndB.Next(0, 2);

} else {

mem.a = RndB.Next(0, 3);

}

}

else {

int maxIndex = 2;

if (Q_table[mem.s,0] > Q_table[mem.s,1]){

if (Q_table[mem.s,0] > Q_table[mem.s,2] || k <= 0.1f){

maxIndex = 0;

}

}

else {

if (Q_table[mem.s,1] > Q_table[mem.s,2] || k <= 0.1f){

maxIndex = 1;

}

}

mem.a = maxIndex;

}

return ACTIONS[mem.a];

}

public void updateQTable(float err, float k){

err = System.Math.Abs(err);
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if (err < 0.001f){

done = true;

}

else if (err < 0.01f){

mem.r = 1;

}

else if (err < 0.1f){

mem.r = 0;

}

else if (err < 1f){

mem.r = -1;

}

else {

mem.r = -2;

}

mem.s_ = (int)(sigmoid(err) * 100.0);

Q_table[mem.s,mem.a] = (1-ALPHA) * Q_table[mem.s,mem.a] + ALPHA *

↪→ (mem.r + GAMMA * System.Math.Max(Q_table[mem.s_,0],System.

↪→ Math.Max(Q_table[mem.s_,1],Q_table[mem.s_,2])));

if (epsilon > 0.01){

epsilon -= 0.001;

}

}

double sigmoid(double x){

return 1 / (1 + System.Math.Exp(-x));

}

}
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B.2. PID Controller
public class PID

{

Rigidbody rb;

float x = 0f;

float y = 0f;

float z = 0f;

float w = 0f;

float roll = 0f;

float pitch = 0f;

float yaw = 0f;

float altitude = 0f;

float err_pitch = 0f;

float err_roll = 0f;

float err_yaw = 0f;

float err_altitude = 0f;

float kp_roll = 0f;

float ki_roll = 0f;

float kd_roll = 0f;

float kp_pitch = 0f;

float ki_pitch = 0f;

float kd_pitch = 0f;

float kp_yaw = 0f;

float ki_yaw = 0f;

float kd_yaw = 0f;

float kp_altitude = 0.1f;

float ki_altitude = 0.1f;

float kd_altitude = 0.1f;
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float dt = 0f;

float d_err_pitch = 0f;

float d_err_roll = 0f;

float d_err_yaw = 0f;

float d_err_altitude = 0f;

float pMem_roll = 0f;

float pMem_pitch = 0f;

float pMem_yaw = 0f;

float pMem_altitude = 0f;

float iMem_roll = 0f;

float iMem_pitch = 0f;

float iMem_yaw = 0f;

float iMem_altitude = 0f;

float dMem_roll = 0f;

float dMem_pitch = 0f;

float dMem_yaw = 0f;

float dMem_altitude = 0f;

float prev_time = 0f;

float prev_err_roll = 0f;

float prev_err_pitch = 0f;

float prev_err_yaw = 0f;

float prev_err_altitude = 0f;

QL altitudeKpQL = new QL();

QL altitudeKiQL = new QL();

QL altitudeKdQL = new QL();

bool flag = true;

int frames = 0;

int massExper = 0;
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int dragExper = 0;

int angDragExper = 0;

// Start is called before the first frame update

void Start()

{

rb = GetComponent<Rigidbody>();

// Disturbances

InvokeRepeating("pushRoll", 1.0f, 5f);

InvokeRepeating("pushPitch", 1.5f, 5f);

InvokeRepeating("pushYaw", 2.0f, 5f);

InvokeRepeating("pushRoll", 2.5f, 5f);

InvokeRepeating("pushPitch", 2.5f, 5f);

}

// Update is called once per frame

void FixedUpdate()

{

++frames;

x = transform.rotation.x;

y = transform.rotation.y;

z = transform.rotation.z;

w = transform.rotation.w;

pitch = Mathf.Atan2(2*x*w - 2*y*z, 1 - 2*x*x - 2*z*z);

roll = Mathf.Asin(2*x*y + 2*z*w);

yaw = Mathf.Atan2(2*y*w - 2*x*z, 1 - 2*y*y - 2*z*z);

altitude = transform.position.y;

dt = Time.fixedDeltaTime;

err_pitch = 0 - pitch;

err_roll = 0 - roll;

err_yaw = 0 - yaw;

err_altitude = 5 - altitude;
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if (flag){

flag = false;

return;

}

d_err_pitch = err_pitch - prev_err_pitch;

d_err_roll = err_roll - prev_err_roll;

d_err_yaw = err_yaw - prev_err_yaw;

d_err_altitude = err_altitude - prev_err_altitude;

// Train

if (!altitudeKpQL.done) {

altitudeKpQL.updateQTable(err_altitude + (d_err_altitude / dt)

↪→ , kp_altitude);

} else if (!altitudeKiQL.done){

altitudeKiQL.updateQTable(err_altitude + (d_err_altitude / dt)

↪→ , ki_altitude);

} else if (!altitudeKdQL.done){

altitudeKdQL.updateQTable(err_altitude + (d_err_altitude / dt)

↪→ , kd_altitude);

}

// PID - ROLL

kp_roll = 3f;

ki_roll = 0.001f;

kd_roll = 0.5f;

// PID - PITCH

kp_pitch = kp_roll;

ki_pitch = ki_roll;

kd_pitch = kd_roll;

// PID - YAW

kp_yaw = 1f;

ki_yaw = 0f;

kd_yaw = 0f;
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// PID - ALTITUDE

kp_altitude = 1.0f;

ki_altitude = 0.0f;

kd_altitude = 0.0f;

pMem_roll = kp_roll * err_roll;

pMem_pitch = kp_pitch * err_pitch;

pMem_yaw = kp_yaw * err_yaw;

pMem_altitude = kp_altitude * err_altitude;

iMem_roll += err_pitch * dt;

iMem_pitch += err_roll * dt;

iMem_yaw += err_yaw * dt;

iMem_altitude += err_altitude * dt;

dMem_roll = d_err_roll / dt;

dMem_pitch = d_err_pitch / dt;

dMem_yaw = d_err_yaw / dt;

dMem_altitude = d_err_altitude / dt;

roll = pMem_roll + ki_roll * iMem_roll + kd_roll * dMem_roll;

pitch = pMem_pitch + ki_pitch * iMem_pitch + kd_pitch *

↪→ dMem_pitch;

yaw = pMem_yaw + ki_yaw * iMem_yaw + kd_yaw * dMem_yaw;

altitude = pMem_altitude + ki_altitude * iMem_altitude +

↪→ kd_altitude * dMem_altitude;

transform.Find("BR").GetComponent<Rigidbody>().AddForce(transform.

↪→ up * (altitude + roll + pitch + yaw));

transform.Find("BL").GetComponent<Rigidbody>().AddForce(transform.

↪→ up * (altitude - roll + pitch - yaw));

transform.Find("FR").GetComponent<Rigidbody>().AddForce(transform.

↪→ up * (altitude + roll - pitch - yaw));

transform.Find("FL").GetComponent<Rigidbody>().AddForce(transform.

↪→ up * (altitude - roll - pitch + yaw));
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prev_err_roll = err_roll;

prev_err_pitch = err_pitch;

prev_err_yaw = err_yaw;

prev_err_altitude = err_altitude;

}

void pushYaw()

{

rb.AddTorque(transform.up * 100);

}

void pushRoll()

{

rb.AddTorque(transform.right * 100);

}

void pushPitch()

{

rb.AddTorque(transform.forward * 100);

}

}
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