
politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Master of Science in

Electronic Engineering

Statistical model of resistive switching
memory arrays for neural network

hardware accelerators

Supervisor:

prof . daniele ielmini

Master Graduation Thesis by:

artem glukhov

Student Id n. 920857

Academic Year 2020-2021

A C K N O W L E D G M E N T S

I would like to express my gratitude to my supervisor, Professor Daniele Ielmini,

who guided and assisted me through the whole project.

I would also particularly like to thank Doctor Valerio Milo, for all the support

that he gave me during the last months, helping me with the study, and offering

insights into the project and my path.

I wish to sincerely thank IHP Microelectronics, Eduardo Perez, and Prof. Cristian

Zambelli, for the experimental measurements that they kindly provided, highlight-

ing the importance of this collaboration, and for their willingness to face and help

me with the problems that gradually arose during my thesis path.

iii

C O N T E N T S

Abstract xii

Estratto xiv

1 emerging memory devices and architectures for neuro-

morphic computing 1

1.1 Introduction 1

1.2 Emerging non-volatile memory devices 5

1.2.1 Resistive-switching RAM 6

1.2.2 Phase Change Memory 9

1.2.3 Ferroelectric RAM 11

1.2.4 Spin Transfer Torque Magnetoresistive RAM 11

1.3 Crossbar arrays 13

1.4 In-Memory Computing 15

1.5 Resistive RAM for Neuromorphic computing implementation 17

1.5.1 Neural networks 17

1.5.2 Backpropagation training method for deep neural networks 19

1.5.3 Neural network implementation with crossbar arrays 21

2 resistive-switching random access memory 25

2.1 Introduction 25

2.2 RRAM switching mechanism 26

2.3 Variability of RRAM programming 30

2.4 RRAM modeling 32

3 experimental data analysis 34

3.1 Cell and array structure 34

3.2 Program and verify algorithms 35

3.2.1 ISPVA SET Algorithm 37

3.2.2 IGVVA SET algorithm 39

3.2.3 RESET algorithm 40

iv

3.3 Experimental data 42

3.3.1 Datasets 43

3.3.2 C2C 45

3.3.3 D2D 46

3.3.4 Additional D2D 46

3.3.5 Stuck cells 47

3.4 After switching - End of algorithm distributions 47

3.5 Position and slope of the transient 51

3.6 Noise 52

3.7 Effect of programming steps width on programming time and vari-

ability 54

3.8 RRAM transition values extraction 55

4 statistical analytical model of 4kbit rram array 58

4.1 Introduction 58

4.2 Model description 59

4.2.1 Differential Equation 60

4.2.2 Integration 61

4.2.3 Program and verify algorithms 64

4.3 Parameters’ tuning 65

4.3.1 Ea and A modulations 66

4.4 Fitting of median curves 67

4.5 Distribution fitting through Monte Carlo simulations 69

4.6 Unified model description 70

4.7 Reset transition modeling 74

4.7.1 Reset model rate equation 75

4.7.2 Reset model algorithm 75

4.7.3 Reset model fitting 76

4.8 Simulation container for neural network implementation 77

5 fully-connected neural network implementation using

1t1r hafnium-oxide-based rram arrays 78

5.1 Introduction 78

v

5.2 Fully connected Neural Network 79

5.3 Incremental network quantization algorithm 81

5.4 Neural network accuracy 84

5.5 Variability, nonidealities, and impact on inference accuracy 86

5.5.1 Program and verify algorithms variability 87

5.5.2 Current consumption 89

5.5.3 Size of the network 89

6 conclusion 91

bibliography 93

vi

L I S T O F F I G U R E S

Figure 1.1 Trend in microprocessor’s scaling 3

Figure 1.2 Memory Hierarchy 5

Figure 1.3 emerging memories 6

Figure 1.4 RRAM device structure and operation 7

Figure 1.5 Unipolar vs Bipolar switching 8

Figure 1.6 PCM structure 9

Figure 1.7 FeRAM and FeFET example 10

Figure 1.8 STT-MRAM transitions and characteristic 12

Figure 1.9 Neural network and Crossbar Array 13

Figure 1.10 Linear solver 14

Figure 1.11 crossbar array implementations 16

Figure 1.12 Example of Deep Neural Network 19

Figure 1.13 Backpropagation algorithm for neural network 20

Figure 1.14 Implementation of differential array for positive and nega-

tive weights polarities 22

Figure 1.15 Weight update for a conductive cell 23

Figure 2.1 RRAM filament forming 27

Figure 2.2 Activation energy lowering 29

Figure 2.3 RRAM filament breaking 30

Figure 2.4 RRAM switching variability 31

Figure 2.5 Ecosystem of physical-based models 32

Figure 3.1 1T1R cell structure and IV characteristic 35

Figure 3.2 1T1R chip structure 36

Figure 3.3 Program and verify algorithms 37

Figure 3.4 ISPVA LRS and MOS IV characteristics 38

Figure 3.5 ISPVA100 LRS4 set transition 39

Figure 3.6 Reset after switching value 41

vii

Figure 3.7 Analysis of finite rds,on of the NMOS 42

Figure 3.8 IGVVA 4 levels 44

Figure 3.9 ISPVA and RESET 4 levels 45

Figure 3.10 Cycling of IGVVA100 46

Figure 3.11 8 LRS levels from D2D dataset and stuck cells distribu-

tion 47

Figure 3.12 IGVVA100 40µA - transition and after switching value 48

Figure 3.13 CDF of after switching values for IGVVA10 49

Figure 3.14 IGVVA100 40µA - after switching C2C distribution 50

Figure 3.15 C2C and D2D variability for three algorithms and four

levels 51

Figure 3.16 Vmid transition CDF 52

Figure 3.17 Correlation between the median slope and the programmed

accuracy 53

Figure 3.18 Analysis of read noise during IGVVA10 algorithm 54

Figure 3.19 IGVVA, read current vs RRAM extracted conductance 55

Figure 3.20 Analysis of the voltage partition across the 1T1R cell 56

Figure 4.1 Working point of 1T1R 61

Figure 4.2 Program and Verify algorithm basic principle 64

Figure 4.3 A and α parameters span for model definition 65

Figure 4.4 Ea and A modulation 66

Figure 4.5 Medians fitting 68

Figure 4.6 histograms of parameter variability 69

Figure 4.7 Median behavior of the model with unified parameters 70

Figure 4.8 Cumulative distribution of after switching values 71

Figure 4.9 C2C and D2D variability, data vs model 72

Figure 4.10 Vmid transition CDF model 73

Figure 4.11 Correlation between the slope and the programmed accu-

racy in simulation 74

Figure 4.12 Median value of Iread during reset 76

viii

Figure 4.13 C2C and D2D variabilities, reset data and model compari-

son 77

Figure 5.1 MNIST dataset example 79

Figure 5.2 MNIST image resize example 80

Figure 5.3 Implementation of FC-NN on 64x64 crossbar arrays 82

Figure 5.4 Differential configuration and levels distributions 83

Figure 5.5 Incremental Network Quantization algorithm 84

Figure 5.6 Inference accuracy for different NN configurations 86

Figure 5.7 PDF of After Switching LRS 87

Figure 5.8 Effect of weights combination on inference accuracy 88

L I S T O F TA B L E S

Table 4.1 Ode solvers speed comparison 63

Table 4.2 best fitting model parameters 67

Table 5.1 INQ training accuracy 85

L I S T I N G S

A C R O N Y M S

RRAM Resistive Random-Access Memory

ix

1T1R one Transistor - one Resistor

1S1R one Selector - one Resistor

IMC In-Memory Computing

MVM Matrix-Vector Multiplication

C2C cycle-to-cycle

D2D device-to-device

CF Conductive Filament

CPU Central Processing Unit

PCM Phase-Change Memory

HRS High Resistive State

LRS Low Resistive State

TE Top Electrode

BE Bottom Electrode

STT-MRAM Spin Transfer Torque Magnetic RAM

NMOS N-channel Metal Oxide Silicon Transistor

ISPVA Incremental Step pulse Program and Verify Algorithm

IGVVA Incremental Gate Voltage and Verify Algorithm

FeRAM Ferroelectric RAM

MNIST Modified National Institute of Standards and Technologies database

AS After Switching

EA End of Algorithm

BEOL Back End Of the Line

MIM Metal-Insulator-Metal

x

OxRAM Oxide-based RRAM

CBRAM Conductive Bridge RRAM

SRAM Static RAM

DRAM Dynamic RAM

ASIC Application Specific Integrated Circuit

CMOS Complementary MOS

GPU Graphic Processing Unit

DNN Deep Neural Network

MTJ Magnetic Tunnel Junction

ALD Atomic Layer Deposition

FC-NN Fully connected Neural Network

ANN Artificial Neural Network

SNN Spiking Neural Network

DNN Deep Neural Network

MLC Multi-Level Cell

STDP Spiking Time Dependent Plasticity

SRDP Spiking Rate Dependent Plasticity

xi

A B S T R A C T

For over 50 years, performance of computing systems has been growing expo-

nentially, mostly driven by the CMOS technology scaling predicted by Moore’s

law.

However, over the past decade, this trend has been slowing down because of

strict physical limitations.

At the same time, another limit is becoming more and more important: the

memory wall bottleneck due to the traditional Von Neumann architecture.

This architecture is characterized by the physical separation between memory

and computing unit, causing high latency and high energy consumption in data-

extensive applications.

These limitations are pushing research towards exploring some innovative

architectures that allow increased computing power and efficiency while reducing

energy consumption, size, and costs.

Among the considered architectures, the concept of In-Memory Computing

(IMC) has recently attracted great interest. Because of the compelling physical

properties of emerging non-volatile memories based on innovative materials such

as Resistive Random-Access Memory (RRAM), the IMC paradigm allows unifying

the storage and elaboration of data inside the same nanometric-sized physical

device, enabling the performance of complex algebraic operations such as Matrix-

Vector Multiplication (MVM), leading the way towards new emerging application

such as, for example, the hardware implementation of neural networks.

To build a hardware neural network, the IMC paradigm uses a matrix of RRAM

memory elements in one Transistor - one Resistor (1T1R) configuration that can be

selected through a gate line.

A vector of voltages, corresponding to the input of the network is supplied to

the rows of the matrix, the synaptic weights are mapped on the conductance of

xii

1T1R cells, and along the columns you will naturally find the product between the

input vector and the weight matrix, which is the output of the synaptic layer.

The conductance programming of each 1T1R cell is done through SET and RESET

processes. They consist respectively in forming (an increase of conductance) and

breaking (a decrease of conductance) a conductive filament between the two

metallic electrodes of the device, by applying a sequence of voltage pulses across

the cell and to the gate terminal of the transistor.

This thesis focuses on the study of multilevel programming variability of a

4kbit Hafnium Oxide RRAM array under different program/verify algorithms, and

proposes a statistical model able to accurately predict the cycle-to-cycle (C2C) and

device-to-device (D2D) variability seen on the experimental data.

Chapter 1 focuses on introducing the challenges of the modern semiconductor

industry and proposes a brief overview of the most important emerging memory

technologies, such as RRAM, Phase-Change Memory (PCM), Spin Transfer Torque

Magnetic RAM (STT-MRAM), and Ferroelectric RAM (FeRAM). Then, the main solu-

tions adopted for the physical implementation of neural networks are addressed.

Chapter 2 focuses particularly on the Resistive switching memory, describing its

working principles from a physical standpoint and introducing the typology of the

algorithms used for its programming. Then it explains the sources of variability

that are expected in a physical array of these devices.

Chapter 3 presents the analysis performed on experimental data, with particular

importance given to the differences between the proposed algorithms for set and

reset, and the extracted variability.

Chapter 4 focuses entirely on the development of a stochastic model for the SET

algorithms.

Chapter 5 introduces a real-world application scenario for the RRAM crossbar

arrays, the hardware implementation of a fully connected neural network, trained

in recognizing images from a Modified National Institute of Standards and Tech-

nologies database (MNIST) dataset.

xiii

E S T R AT T O

Per oltre 50 anni le prestazioni di calcolo sono cresciute esponenzialmente, grazie

allo scaling della tecnologia CMOS predetto dalla legge di Moore. Nell’ultimo

decennio però, il processo di miniaturizzazione ha subito un rapido rallentamento

a causa del raggiungimento di dimensioni tali da scontrarsi con limiti fisici sempre

più stringenti. Inoltre, siccome le applicazioni moderne necessitano di processare

una quantità di dati sempre maggiore, a causa della separazione fisica tra unità di

calcolo e unità di memoria tipica dell’ormai universalmente utilizzata architettura

di Von Neumann, i sistemi odierni sono caratterizzati da un enorme consumo di

potenza e da una sempre maggiore latenza.

Queste problematiche hanno spinto la ricerca verso lo studio di architetture

innovative che consentano di continuare a incrementare la potenza e l’efficienza di

calcolo riducendo ulteriormente il consumo energetico, le dimensioni e i costi.

Tra i vari schemi presi in considerazione, il concetto di calcolo in memoria (IMC)

sta attirando grande interesse. Grazie alle interessanti proprietà fisiche che con-

traddistinguono le memorie emergenti non-volatili basate su materiali innovativi,

come per esempio le memorie a switching resistivo (RRAM), il paradigma IMC

prevede di combinare la funzionalità di memorizzazione e di elaborazione in un

unico dispositivo fisico. Ciò permette di eseguire complesse operazioni matriciali

e apre la strada verso nuove applicazioni emergenti come l’implementazione di

reti neurali su hardware.

Per realizzare una rete neurale su hardware, il paradigma IMC prevede tipica-

mente l’utilizzo di una matrice di elementi di memoria RRAM in configurazione one

Transistor - one Resistor (1T1R), ovvero selezionabili tramite un transistore in serie

al dispositivo. Lungo le righe della matrice si applicano le tensioni che descrivono

i dati forniti in ingresso alla rete, la conduttanza delle celle 1T1R rappresenta i

pesi delle connessioni sinaptiche tra i neuroni appartenenti a strati successivi

xiv

della rete, e lungo le colonne è possibile leggere le uscite dello strato sinaptico in

corrente/tensione.

La programmazione della conduttanza delle celle 1T1R si ottiene attraverso

i processi di SET e RESET. Essi consistono rispettivamente nella formazione

(aumento di conduttanza) e rottura (riduzione di conduttanza) di un filamento

conduttivo tra i due elettrodi metallici del dispositivo tramite l’applicazione di

una sequenza di impulsi di tensione ai capi della cella e al terminale di gate del

transistore. Ad oggi sono già stati proposti diversi algoritmi di programmazione

che permettono di avere il controllo abbastanza preciso di più livelli conduttivi in

un singolo dispositivo RRAM.

Per determinare i valori di conduttanza dei pesi sinaptici della rete neurale tipi-

camente si effettua una procedura di apprendimento, detta training, che consiste

nel fornire ripetutamente in ingresso un set molto ampio di dati e nel mini-

mizzare l’errore all’uscita della rete tramite una tecnica di ottimizzazione detta

propagazione all’indietro o backpropagation. Una volta conclusa la fase di training,

la rete sarà in grado di riconoscere la classe associata a nuovi dati mai visti prima

grazie all’avvenuto adattamento dei pesi sinaptici.

Per facilitare lo studio e la progettazione hardware di reti neurali è quindi

importante disporre di un modello analitico basato sulla fisica del dispositivo

di memoria capace di riprodurre accuratamente il funzionamento delle singole

celle, tenendo conto dell’impatto di non idealità deterministiche e statistiche della

matrice, e rimanendo compatto dal punto di vista computazionale.

Questo lavoro di tesi si concentra sull’analisi degli algoritmi di programmazione

di celle 1T1R e propone un modello analitico compatto in grado di simularne

accuratamente il funzionamento.

Il primo capitolo riassume brevemente lo scenario tecnologico in cui ci troviamo

e introduce il motivo per la ricerca di architetture alternative. Dopo una breve

presentazione delle principali tecnologie di memorie emergenti, viene illustrata

l’architettura cross-point focalizzandosi in particolare sui dispositivi RRAM.

Il capitolo 2 si concentra sulle memorie non volatili a filamento resistivo, anal-

izzando le procedure di formazione e rottura del filamento resistico e le cause

xv

primarie di variabilità. Inoltre vengono brevemente descritti alcune tipologie di

modello già esistenti in letteratura.

Il capitolo 3 tratta dell’analisi svolta sui dati sperimentali, ponendo particolare

importanza alla differenza tra i diversi algoritmi e i vari livelli conduttivi e a come

viene influenzata la variabilità ciclo-ciclo e device-device.

Il capitolo 4 presenta un modello analitico statistico per i diversi algoritmi di SET

e di RESET, e un confronto tra le simulazioni e i dati sperimentali focalizzandosi

sui diversi tipi di variabilità.

Il capitolo 5 propone un esempio di applicazione reale di utilizzo di matrici

cross-bar di memorie resistive con l’implementazione hardware di una rete neurale

allenata al riconoscimento e la classificazione di immagini tratte dal dataset MNIST.

xvi

1
E M E R G I N G M E M O RY D E V I C E S A N D A R C H I T E C T U R E S F O R

N E U R O M O R P H I C C O M P U T I N G

This chapter presents the challenges that the semiconductor industry is facing nowadays.

As data-intensive applications such as machine learning or the Internet of Things begin to

increase, current computing systems and architectures begin to show their limits in terms

of power efficiency, latency, and scalability.

One of the most promising solutions is represented by emerging memory technologies,

that thanks to their unique physical properties, can overcome such limitations by replacing

current memory technology and by opening the way for a new computing paradigm, called

neuromorphic computing, which aims at replicating more energy-efficient architecture, such

as a human brain, capable in performing complex operations by consuming an extremely

low amount of energy and at low frequencies. After an exhaustive introduction of the

context, an overview of the available memory technologies is proposed, along with the

architecture where they can be assembled.

1.1 introduction

Over the past 50 years, the growth of computing power in electronic systems

followed almost precisely the prediction made by Gordon Moore in 1965 [1]. He

claimed that the number of transistors per chip would double circa every two years.

This claim, known as Moore’s law, was for many decades a path and a goal for

engineers and manufacturers, who pushed forward the knowledge and technology

to accomplish this incredible growth rate, mainly by scaling the Complementary

MOS (CMOS) technology.

Miniaturization of electronic devices based on silicon technology resulted in

an exponential growth of device density and enabled an exponential increase

1

1.1 introduction 2

of computing power and operating frequencies, giving birth to the concept of

personal computers, mobile phones, wearable gadgets, and so on. The trend

initially followed Dennard’s geometrical scaling rule [2, 3], also called constant

field scaling, in which the transistor’s gate length, gate width, gate oxide thickness,

and supply voltage were reduced all by the same scale factor. Then thanks to the

technological advances in the process integration, a new scaling era begun, called

effective scaling, during which unconventional materials such as high-k dielectric

and unconventional non-planar structures such as FinFETs were introduced to

further scale the effective parameters [4].

However, several problems arose in recent years, causing the slow down of this

trend and giving researchers and manufacturers complex challenges to solve to

continue supply the market with faster and smaller devices at every generation.

With the miniaturization of the CMOS technology, leakage currents limit the

further downscaling of the threshold voltage of MOSFET devices, hindering the

supply voltage and size scaling in digital CMOS devices. In addition, the power

density of modern CMOS-based microprocessors reached values up to 100W/cm2

[5], limiting further operating frequency increase for such devices due to excessive

heating of the chip. This translates into a frequency plateau referred to as Heat

wall [6], which is difficult to overcome, and since the early 2000s, the maximum

frequency of CPUs remained almost unchanged (Figure 1.1).

On the other hand, another limit to modern computing systems is the so-called

memory wall, or von Neumann bottleneck [8]. It is naturally caused by the physical

separation between the processing unit and the memory unit typical of any mod-

ern computer architecture, such as von Neumann architecture [9]. The continuous

increase in processing speed and a slower increase in memory performance trans-

lates into an increase in latency with every technological generation. Statistically,

for every handful of CPU instructions, there is the need to access the memory to

read or write data, and nowadays this can use up to thousands of CPU cycles

during which the processing unit has nothing to do but wait for the memory

operation to complete [8]. To partially mitigate this bottleneck different solutions

1 https://creativecommons.org/licenses/by/4.0/

1.1 introduction 3

Figure 1.1: Trend of microprocessor’s technological scaling over the last 48 years. (Orange)

The transistor’s count following an exponential increase predicted by G.E.

Moore in 1965; (Blue) Increasing performance of a single processing core.

It is noticeable the reach of an asymptotic value, with the increase slowing

down over the last years; (Green) Frequency reached a plateau around mid-

2000 due to the Heat wall problem; (Red) Total power consumed by a single

microprocessor chip; (Black) the number of processing cores integrated inside

a single CPU die, increasing since 2005. Reprinted from [7], licensed under

CC BY 4.01

were proposed, one of them consisting in exploiting the memory hierarchy [10]. By

moving the fastest memory closer to the Central Processing Unit (CPU) and using

it to store the most commonly accessed information, i. e. to exploit the principle

memory locality [11], the CPU has more chances to find the data it is looking

for and to access it within few CPU cycles. This is the principle of caching and it

allowed to push forward the reach of the bottleneck for several years, but it still is

not the solution to completely solve the problem. Since it is not possible to store

all the needed data inside the small cache memory, every now and then a cache

miss occurs, which means that a slower and further memory, such as DRAM, has

to be accessed or even worse, a storage memory like a mechanical HDD or an SSD

https://creativecommons.org/licenses/by/4.0/

1.1 introduction 4

device, whose access times can be in the order of tens of thousands of CPU cycles

(Figure 1.2).

Static RAM (SRAM) is a volatile memory device that gives the fastest read and

write speed, in the order of 1-10ns, yet it is quite large, occupying a cell area larger

than 100F2, with F being the minimum lithographic feature size (Figure 1.3). For

this reason, SRAM is used mostly for cache memory and it is integrated directly

into the CPU die. Its capacity typically is in the order of few Megabytes. Moving

further away from the CPU core, the next memory in the hierarchy that is usually

found is the Dynamic RAM (DRAM). It is a volatile type of memory but as opposed

to the SRAM, DRAM occupies a much smaller area, typically in the order of 6F2,

but features a slower read and write performance. This allows for a much higher

density enabling chips in the order of few Gigabytes. Further down the hierarchy

path, it is common to find a non-volatile memory for the storage of the operating

system and the user data. This memory can be made of solid-state devices, such

as Flash memory, eMMC, or can be mechanical memory (HDD, magnetic tape,

compact disc,...). These devices are much slower than the non-volatile memory,

but enable really big storage sizes, in the order of up to several Terabytes, and can

retain information for many years.

Despite the architectural effort made in delaying the memory wall problem,

unfortunately, it is still one of the major problems of modern computing systems.

Several studies were made on the emerging memory technologies, trying to

find a new device capable of the SRAM performance while maintaining a high

bit-density typical of flash technology. This led to the investigation of a new type of

device that presents itself in a 2-terminal structure, exhibits non-volatile properties

along with high speed, high density, and CMOS process compatibility. It is called

memristor.

As opposed to flash, SRAM, and DRAM technologies, which store information in

form of electrical charge, a memristor stores information by changing the physical

properties of the device. However, although some commercially available memory

devices based on these emerging technologies were produced [12], due to higher

cost and small benefits compared to already existing solutions, while still not

1.2 emerging non-volatile memory devices 5

Figure 1.2: From left to right: two levels of cache memory, usually manufactured in SRAM

technology and integrated inside the same package of the CPU; RAM, a

volatile DRAM memory in the order of few Gigabytes; storage devices such

as mechanical Hard Disk Drive (HDD) or Solid State Drive (SSD). Reprinted

from Wikipedia, authored by William Lau, licensed under CC BY-SA 4.02

overcoming the memory bottleneck, they did not have the hoped-for commercial

success.

1.2 emerging non-volatile memory devices

Figure 1.3 highlights some of the main emerging non-volatile memory technologies

and compares them to the traditional devices, both volatile and non-volatile

such as DRAM and flash memory respectively. The emerging ones, namely Spin

Transfer Torque Magnetic RAM (STT-MRAM), Ferroelectric RAM (FeRAM), Phase-

Change Memory (PCM) and Resistive Random-Access Memory (RRAM), are all

comparable in terms of speed, size, and operating voltages. They are suitable to

2 https://creativecommons.org/licenses/by-sa/4.0/legalcode

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode

1.2 emerging non-volatile memory devices 6

Figure 1.3: Table of memory device characteristics and performance metrics, comparison

between mainstream CMOS-based memories and emerging resistive-switching

memory technologies. Reprinted with permission from [13]. Copyright 2016,

IEEE.

fill the performance gap between DRAM and flash, being at the same time non-

volatile and having high read and write speeds (in the order of up to ∼ 5− 10ns)

comparable to the traditional volatile RAMs. Moreover, they use different materials

and can be scaled down much more than flash memory, and can be monolithically

integrated on-chip with the CPU cores, supporting the Back End Of the Line (BEOL)

process. Next, some of the main typologies of emerging memory will be briefly

introduced.

1.2.1 Resistive-switching RAM

Due to their promising characteristics, Resistive Random-Access Memory (RRAM)

devices are receiving widespread interest as future non-volatile and dynamic

memory technologies. They are promising in terms of BEOL integration and minia-

turization, and offer fast read/write operations allowing also for analog multi-level

programming. By stacking these devices in multiple layers 3D structures, it is

possible to create high-density multi-level memory.

RRAM usually are composed of a sandwiched insulating layer (for example a

transition metal oxide MeOx) between two metal electrodes. The device is initially

1.2 emerging non-volatile memory devices 7

Figure 1.4: RRAM device structure and operation. (a) The pristine device consists of a

Metal-Insulator-Metal (MIM) stack, where the insulator typically is a binary

metal oxide. (b) After the electroforming, a Conductive Filament (CF) connects

the Top Electrode (TE) and the Bottom Electrode (BE) resulting in a Low

Resistive State (LRS), or set state. (c) The CF can be disrupted by a reset

operation, restoring a High Resistive State (HRS) condition, or reset state.

Reprinted with permission from [14]. Copyright 2014, John Wiley & Sons, Inc.

License number 5140710690589.

subject to an operation called electroforming, in which by applying a polarization

voltage across the electrodes, a Conductive Filament (CF) is formed through the

isolating layer by moving charged ions or oxygen vacancies, connecting the two

electrodes in a Low Resistive State (LRS). The reset operation will break this CF

returning the device into a High Resistive State (HRS) (Figure 1.4). By alternating

set and reset operations the CF can be formed and disrupted multiple times [15]

with relatively high endurance (more than 107 cycles [4]).

There are two main methods of resistive switching behavior, namely unipolar

switching and bipolar switching. The first one is characterized by having both

the set and the reset programming voltages of the same polarity, it is based on

thermally accelerated Red-Ox transitions [16], and despite allowing for a simpler

peripheral circuit, it usually shows much more variability and less endurance

retention compared to bipolar switching RRAM devices [17]. In fact, in bipolar

devices, the same defects are re-injected into the depletion region during the next

set operation, maintaining the total number of defects over the cycling [15, 18]

(Figure 1.5a). This last type is the most common one, it is based on ion migration

assisted by temperature and electric field [18] (Figure 1.5b). The bipolar switching

1.2 emerging non-volatile memory devices 8

Figure 1.5: (a) A typical set/reset IV characteristic in a unipolar switching device. (b)

Bipolar switching IV characteristic, set is given by applying a positive volt-

age while reset switching is performed by negatively polarizing the device.

Reprinted with permission from [14]. Copyright 2014, John Wiley & Sons, Inc.

License number 5140710690589.

devices can be further subdivided into two categories, Oxide-based RRAM (OxRAM)

and Conductive Bridge RRAM (CBRAM):

• OxRAM: Electrodes are typically made of transition metal (such as Ti or Hf),

and the insulating layer by a transition metal oxide (for example H f Ox). The

charged ions are usually oxygen vacancies moved through the insulator by

means of an electric field.

• CBRAM: Electrodes are made of active metal (Ag or Cu) and the charged

ions are cations that pass through a chalcogenide material.

The main difference between the two types of devices is the resistive window

between the high and low resistive states, with CBRAM having a span of circa 104

while OxRAM showing a window in the order of 10− 100 between the two states.

Apart from that, both device types show similar electrical and functional properties

and are similar in terms of performance [19, 20]. RRAM in general is convenient

in terms of cycle endurance, power consumption, speed, and miniaturization,

with complete CMOS BEOL compatibility. Despite all these positive properties

they suffer from random telegraph noise (RTN) [21] and a severe variability and

relaxation caused by time and temprature fluctuations, reducing their reliability

and undermining their use in precision-requiring applications.

1.2 emerging non-volatile memory devices 9

Figure 1.6: (a) Cross-section of a mushroom structure in a PCM device, composed by

a pillar-like bottom electrode that acts as a heater, and by a hemispherical

mushroom-shape for the amorphous material development. (b) Temperature

evolution in time for the set, reset, and read pulses. To obtain an amorphous

reset state, a very short but high amplitude pulse is applied to the top electrode,

leading to an overcome of the melting temperature. The set state instead, is

achieved by a longer, lower-amplitude pulse that leads to crystallization.

Reprinted with permission from [22]. Copyright 2010, IEEE.

1.2.2 Phase Change Memory

Phase-Change Memory (PCM) devices rely on a phase transformation of an active

material, a chalcogenide such as Ge2Sb2Te5 (GST) [22]. The active material can

switch between the high resistive - amorphous phase and the low resistive -

crystalline phase. In the case of reset transition, i. e. from LRS to HRS, by applying

a short and high amplitude electrical pulse the chalcogenide material melts and

the resulting amorphous phase has a high resistivity. The crystalline phase can be

obtained back again by the application of a set pulse, a longer and lower-amplitude

pulse, that causes the fast crystallization thanks to Joule heating (Figure 1.6b).

Differently from most RRAM devices, PCMs usually are operated with unipolar

pulses. The cell can be read through a sufficiently small current/voltage so that

1.2 emerging non-volatile memory devices 10

Figure 1.7: (a) sandwich MIM structure of a FeRAM device, consisting of a ferroelectric

layer between two metallic electrodes. (b) Hysteresis cycle of polarization -

voltage (PV). (c) FeFET structure example with the ferroelectric layer in place

of the gate oxide. Reprinted with permission from [25]. Copyright 2019, IOP

Publishing Ltd.

the programmed resistive state is not perturbed. The most common PCM device

is a mushroom-type, depicted in figure 1.6a. It consists of two metal electrodes

separated by a pillar-like heater element surrounded by insulating material, and a

layer of phase-change material in which the amorphous state creates a mushroom-

shaped structure.

PCM devices present a high resistance window between their LRS and HRS states,

enabling for multi-level operation, i. e. programming and storing a wide range of

different resistive values. they also show high endurance (> 1012 cycles, figure 1.3)

and long data retention, up to 10 years even at high temperatures [23]. A drawback

of PCM devices is that the set transition is much slower than the reset transition,

and it is a limiting factor to the write speed of this kind of technology. Like

RRAM, also PCM devices suffer from state relaxation, particularly in the amorphous

phase. Such drift consists in the structural relaxation due to temperature-activated

atomistic rearrangement that leads to an increase of the electrical resistivity over

time [24]. Unfortunately, it is not a controllable effect and it might undermine the

multilevel operation of the device.

1.2 emerging non-volatile memory devices 11

1.2.3 Ferroelectric RAM

Ferroelectric RAM (FeRAM) devices typically present themselves in a MIM structure

with a ferroelectric material as an insulator (Figure 1.7a). By polarizing the insulator

the memory state is determined. Usually, doped-H f O2 [26] or a perovskite material

(PbZrTiO3 or SrBi2Ta2O9) [27] are employed. Applying an external voltage, the

orientation of the electric dipoles inside the ferroelectric materials is imposed, and

it is maintained after the removal of the external bias. To trigger the polarization

switching it is necessary to reach the so-called coercive voltage (Vc), resulting

in a hysteresis cycle (Figure 1.7b). Unfortunately, the readout of the cell state

destroys the stored value, increasing the complexity of the readout circuitry and

costs, in terms of time and energy consumption. Despite the non-volatility of the

technology and the fast read/write operations [28], in the order of ∼ 10ns and

comparable with other emerging memories, FeRAM devices are not suitable for

neuromorphic computing, because of the destructive readout and the absence of

multi-level programming capabilities.

A proposed solution to overcome the destructive readout relies on employing

the ferroelectric device in a FeFET structure [29, 30], as shown in figure 1.7c. A

FeFET is essentially a MOS transistor with a ferroelectric layer as the gate dielectric.

By switching the polarization state it is possible to tune the threshold voltage

resulting in a change of the channel resistance, and thus enabling a non-destructive

readout operation. A drawback of this structure is the presence of three terminals

instead of just two, increasing the complexity of routing and the occupied size of

the device.

1.2.4 Spin Transfer Torque Magnetoresistive RAM

The Spin Transfer Torque Magnetic RAM (STT-MRAM) is a memory device based

on Magnetic Tunnel Junction (MTJ) and made of two thin ferromagnetic layers,

typically of CoFeB, separated by a tunnel oxide barrier as shown in figure 1.8a. The

magnetization direction of one ferromagnetic layer is fixed and used as a reference,

1.2 emerging non-volatile memory devices 12

Figure 1.8: (a) Set transition of STT-MRAM device. Electrons with the same spin polar-

ization to the PL reach the FL and trigger the switching; (b) Reset transition

of STT-MRAM. Electrons with the opposite polarization to the PL are re-

flected back to FL causing the switching to HRS. Reprinted with permission

from [31]. Copyright © 2011 Elsevier Ltd. All rights reserved. License number

5093291368901; (c) R-V characteristic of an STT-MRAM device. Noteworthy is

the factor two between set and reset states, and the abrupt transitions during

both set and reset. Adapted with permission from [32].

it is called pinned layer (PL), while the other layer has a magnetization direction

that is free to rotate under the influence of an external bias, and it is called free

layer (FL). The resistance depends on the mutual orientation of the two magnetic

layers. When the two layers have the same magnetic polarization direction (parallel

configuration - P), the resistance of the MTJ is in its low state. Otherwise, when the

two layers have antiparallel magnetization (anti-parallel configuration - AP), the

resistance has a higher value. During the set transition (from AP to P), electrons

flow from the PL to the FL, and only the ones with the same spin direction as

the pinned layer can pass the barrier (Figure 1.8b). When the current exceeds the

threshold value, the polarization of the free layer is switched, bringing the device

to LRS. On the opposite transition, from P to AP, equivalent to the reset, electrons

flow from FL to PL, and the ones having an opposite spin direction compared

to the pinned layer are reflected and re-injected into the free layer, triggering the

magnetic switching to HRS [31].

The ratio between the high resistive state and the low resistive state is much

lower than in RRAM or in PCM, and it is in the order of 2, making this type of

1.3 crossbar arrays 13

Figure 1.9: (a) Schematic representation of a fully connected neural network. Each neuron

performs the sum of the synaptic signals and passes the result through a

nonlinear activation function; (b) Schematic representation of a 3x3 crossbar

array performing the matrix-vector multiplication I = GV. Reprinted with

permission from [35]. Copyright © 2019, Springer Nature Limited. License

number 5093580908010.

memory not suitable for IMC applications. Despite the low resistive window, they

feature an incredibly high endurance (> 1015) since no mechanical movement is

performed during switching, and very fast switching times [33], as shown in figure

1.8c, so they are interesting in the role of fast caching memory.

1.3 crossbar arrays

Except for FeFETs, which are three-terminal devices, all other technologies pre-

sented in section 1.2 are two-terminal devices. A feature that allows them to be

integrated into a compact architecture, known as the crossbar array. A crossbar

array is a matrix of metal vertical rows and horizontal columns placed on separate

planes, interconnected through a memristive device, as depicted in figure 1.9b.

Such configuration allows building highly dense structures, with a single device

requiring an area of just 4F2 [4]. This device density is not reachable when using

CMOS technology. It is possible to further increase the device density by stacking

these arrays on top of each other creating a 3D structure. In this way, the maximum

density reachable is 4F2

N , being F the lithographic feature and N the number of

stacked layers [34].

1.3 crossbar arrays 14

Figure 1.10: Schematics of two possible applications of a cross-point array: a circuit able

to solve a linear system (a) and a solver of linear regression (b). Adapted

with permission from [36]. Licensed under CC BY 4.0

By simply following Ohm’s law and Kirchhoff’s current law, this array struc-

ture performs a Matrix-Vector Multiplication (MVM) between the matrix G of

programmable conductances and the vector V of applied voltages, giving as the

output at the columns a vector of currents I = GV in just a single step (Figure

1.9b).

The ability to perform instantly this operation is a key factor that enables

this structure to be the perfect candidate for the implementation of In-Memory

Computing (IMC) applications such as machine learning with Artificial Neural

Network (ANN) [35], in which each neuron of a synaptic layer is linked to all the

neurons of the next layer through a matrix of synaptic weights that can be encoded

into the conductance values of the crossbar array (Figure 1.9a).

However, this is just one of the many possible applications for these structures.

Integrating the cross-point arrays with adequate peripheral circuitry and exploiting

a feedback loop it is possible to obtain, for example, linear systems or linear

regression solvers [36] (Figure 1.10).

Unfortunately, various non-idealities affect the performances of this kind of

structure, imposing limitations on the array size and the accuracy of the calcu-

lations. For example, at the device level, a conductance drift might happen, or

imprecise programming causing a variability that lowers the overall precision of

the MVM. At array level, instead, two effects are present: the IR drop, i. e. ohmic

https://creativecommons.org/licenses/by/4.0/

1.4 in-memory computing 15

drop caused by finite conductance of row’s and column’s wires, and sneak paths,

that is a current flowing through unwanted parallel paths resulting in spurious

resistive partitions that pollute the result.

While IR drop can be mitigated by using smaller arrays or higher resistive

values, sneak paths can be limited by placing in series to the memory element a

one-way selector, creating one Selector - one Resistor (1S1R) configuration (Figure

1.11c). The purpose of the selector is to act like a diode and let the current flow only

in a single direction when a certain threshold voltage across the cell is reached.

Another technical difficulty with crossbar arrays is that devices must be selec-

tively programmed, and this can be done by exploiting different schemes. Taking

as an example the simple circuit in figure 1.11a, if we want to program only the

conductance G21, and we apply voltage V1 to the leftmost column, both G11 and

G21 will sense the voltage drop. A possible solution would be to use the V/2 bias

(figure 1.11b), by applying V/2 and −V/2 to the desired row and column. This

way, only the interested device will have the full V drop across its terminals [34].

Another solution, as already discussed earlier, would be to use a selector in

series to the device, forming a 1S1R configuration (Figure 1.11c). A more radical

approach is to use a transistor in series to the memory device, in one Transistor -

one Resistor (1T1R) configuration (Figure 1.11d). While this seems to be the best

solution for this problem, it adds the necessity of a third line for the control of the

gate voltage, thus it increases the complexity and the size of both the array and

the peripheral circuit.

1.4 in-memory computing

Another strategy that is being explored in order to continue the performance

growth trend despite the technological difficulties, is the exploit of parallel pro-

cessing. Since it is unfeasible to increase operating frequencies over a certain value

mainly due to the already discussed heat wall, around mid-2000 manufacturers

began to integrate more computing cores inside the same CPU die, enabling

more operations to be performed in the same clock cycle. This allowed increasing

1.4 in-memory computing 16

Figure 1.11: Different implementations of the cross-point arrays. (a) represents a tradi-

tional 1R structure, (b) shows the V/2 scheme applied to it. (c) represents

1S1R implementation while (d) represents 1T1R configuration. Reprinted

with permission from [36], licensed under CC BY 4.03

the processing performance of many applications while keeping the same power

density and same frequencies as before (Figure 1.1).

In parallel to the already mentioned workarounds, research is studying new

architectures and alternative computing paradigms that can overcome both the

scaling limitations and architectural bottlenecks.

One of the paths of research is directed towards brain-inspired computing and

In-Memory Computing (IMC), by exploiting properties of the already introduced

emerging memory devices. In particular, IMC aims at unifying both the computing

unit and the storage of data into a single physical device, enabling the acceleration

of complex algebraic operations such as matrix inversion [37] and MVM by com-

https://creativecommons.org/licenses/by/4.0/

1.5 resistive ram for neuromorphic computing implementation 17

puting the operations directly in-situ, eliminating the burden of the von Neumann

bottleneck.

Many modern applications that are now widely explored, such as, for example,

image classification or voice recognition, are achieved by running multi-layer

neural networks [38], such as Deep Neural Network (DNN), which are capable of

extracting useful information from huge datasets using deep learning techniques.

Nowadays, these neural networks, and in general, neuromorphic computing are

encoded in software and rely on existing hardware and traditional architectures to

compute the results. The main operation during the training and the inference of a

neural network is the Matrix-Vector Multiplication (MVM) between an input vector

and a matrix of synaptic weights. The combination of Multiply - Accumulate oper-

ations repeatedly performed with the modern hardware based on von Neumann

architecture consumes an incredibly high amount of power and time. By exploiting

parallel vector computation typical of modern Graphics Processing Units (GPU) it

is possible to drastically increase the power and time efficiency of such operations.

Yet, the extensive access to memory containing the synaptic weights suffers from

the same von Neumann bottleneck.

Lately, some Application-Specific Integrated Circuits (ASIC) are designed specif-

ically to perform these operations, but since they rely on the traditional CMOS

technology they suffer the same problems of miniaturization and power dissipation,

limiting factors for high-density devices.

1.5 resistive ram for neuromorphic computing implementation

1.5.1 Neural networks

Neuromorphic computing aims at replicating the operations of a human brain

trying to mimic its high energy efficiency and low operating frequency. While a

supercomputer can have energy consumption in the order of an entire building,

a human brain consumes only a power equivalent to circa 10− 20W and it is

capable of performing very complex operations [39]. Neuromorphic computing

1.5 resistive ram for neuromorphic computing implementation 18

is performed by neural networks, highly interconnected architectures in which

different layers of neurons are connected through synapses [25]. Neural networks

can be divided into two main classes: Artificial Neural Network (ANN) and Spiking

Neural Network (SNN) [40]. The main difference between the two relies on how

the network is trained. An ANN features the presence of several hidden layers, and

it is called also Deep Neural Network (DNN). It typically adopts a supervised type

of training, such as backpropagation technique, in which the error between the

network output layer and the desired output given by a known label is propagated

backward by differentiation, updating the synaptic weights to adapt the network

response to the input in an iterative fashion [41].

SNN, instead, aims at replicating and implementing a brain-inspired Hebbian-

type learning scheme, such as Spiking Time Dependent Plasticity (STDP) [42] or

Spiking Rate Dependent Plasticity (SRDP) [43], in which the weight adaptation is

governed by biological rules with no external supervision.

Recently, fundamental machine learning tasks such as face recognition, speech

recognition, image and pattern classification, have been successfully achieved

mainly due to the implementation of ANNs.

A deep neural network can be schematically represented as in figure 1.12, and it

is composed bofy several neuron layers. The first one, the input layer, receives the

raw signals from the outer world that have to be processed and pass it to the next

layers. Then there are one or more hidden layers that compute an intermediate

solution, and finally, an output layer that gives the final solution. Each neuron of a

layer is connected to all the neurons of the next layer through a synaptic weight,

and it is responsible for performing the summation and the integration of the

signals. The neuron is also responsible for applying the non-linear function to the

weighted sum and for propagating the result to the next synaptic layers.

Synapses, instead, represent the connections between neurons and the weights

by which each signal is multiplied. Synapses, just like in a biological brain, are in

a much larger number than neurons, thus they must be built using extremely fast

and efficient technology, both in terms of occupied size and of consumed power.

In the software implementation of the neural networks, the weight values of each

1.5 resistive ram for neuromorphic computing implementation 19

Figure 1.12: Example of a Deep neural network implementation. It is composed of an

input layer, several hidden layers, and an output layer. Each of the layers is

connected through synaptic connections. Each neuron receives signals from

the previous layer, that are weighted by the synapse and summed to the

output of the other neurons. Adapted with permission from [25]. Copyright

2019, IOP Publishing Ltd.

synapse are stored in memory, and when the multiplication between the signal

and its connected weights occurs, it requires an enormous amount of memory

access, wasting CPU cycles and causing severe inefficiencies [44].

A much more elegant solution can be given by implementing such networks in

large crossbar arrays. Their natural predisposition to perform algebraic operations

like MVM, and their small size and low power consumption make them one of the

most promising devices for artificial synapses implementation.

1.5.2 Backpropagation training method for deep neural networks

Backpropagation is the main supervised machine learning technique for neural

network training [45]. It consists in computing the gradient of the loss function

with respect to each synaptic weight, by exploiting the chain rule. The gradient of

each layer is computed one at a time and the process is iterated from the last layer

backward. The loss function, in this case, is the error function, i. e. the difference

1.5 resistive ram for neuromorphic computing implementation 20

Figure 1.13: Backpropagation algorithm for a multilayer fully-connected neural network.

The network is trained with the backpropagation technique to classify hand-

written digits from the MNIST dataset. Input signals are forward-propagated,

then the yi output results are compared with the corresponding correct an-

swer gi, and then the errors δi = yi− gi are backward-propagated to previous

layers, updating the synaptic weight accordingly to equation (1.1). Reprinted

with permission from [25]. Copyright 2019, IOP Publishing Ltd.

between the output of the network and the expected result of a label. Since each

neuron’s output can be written as a function of its inputs, and each input is an

output of the previous neuron’s layer, the loss function can be also computed

as a function of the outputs of the previous layer, and this procedure can be

backpropagated all the way to the input layer by the chain rule for derivatives.

Figure 1.13 shows an implementation of a DNN with two hidden layers and

the backpropagation algorithm in action to train the network on handwritten

images from the MNIST dataset. It is performed first by supplying the training

dataset to the input of the network. The signals propagate between each synaptic

layer modulated by connection weights. At the output of the last neuron layer, the

signals yi is compared to the label corresponding to the desired output, gi, and

the error is computed δi = yi − gi. The error function is calculated as C = 1
2 ∑N

i δ2
i

where N is the number of output neurons. δi is then backpropagated through all

1.5 resistive ram for neuromorphic computing implementation 21

layers of the network, allowing to extract the synaptic weight update for each

weight wij:

∆wij = η · xj · δi (1.1)

In the formula, η is the learning rate. It defines the speed and the grain of the

training. The procedure is repeated several times, adjusting the learning rate and

shuffling the input training dataset for the best result, and each training cycle is

called an epoch. If η is too small, the network needs to perform many training

epochs to reach the optimal weight configuration. Instead, if η is too large, the

weights update risks to surpass the optimal point and diverge.

After the training is completed, the network is ready to classify images of the

same type without any kind of supervision. This phase is called inference.

1.5.3 Neural network implementation with crossbar arrays

As already mentioned in section 1.5.1, the neurons of a neural network compute

the sum of their input signals and pass the result through a non-linear activation

function, while the synaptic connections between each neuron modulate each

signal accordingly to their training. Since the highly interconnected nature of this

type of architecture, the continuous need to access the weight values and then

perform the multiply and accumulate (MAC) operations, the ideal hardware solution

would be to exploit the properties of the crossbar arrays featuring emerging

memory devices such as RRAM cells.

For each synaptic connection, it is possible to define a pre-synaptic and a post-

synaptic neuron. The signal reaching the POST neuron yi will be a function of its

PRE neurons xj and the connecting weights wij connecting the j-th PRE neuron to

the i-th POST neuron.

yi = ∑
i

wij · xj (1.2)

With the crossbar array architecture discussed earlier, the implementation of

the function in equation (1.2) is straightforward. The multiply and accumulate

1.5 resistive ram for neuromorphic computing implementation 22

Figure 1.14: Schematic representation of a crossbar array. (a) Synaptic weight is repre-

sented as a differential pair of conductances, consisting in a positive Gij

variable conductance and a reference Gr with a fixed value; (b) Synaptic

weight is represented as a differential pair of two variable conductances:

G+
ij and G−ij . Reprinted with permission from [25]. Copyright 2019, IOP

Publishing Ltd.

operation can be naturally processed by the array by simply exploiting the Ohm’s

law and Kirchhoff’s law of current, i. e. by multiplying each input signal by

the corresponding weights and summing all the resulting currents along a row,

respectively, as summarized in the following equation:

Ii = ∑
i

Gij ·Vj (1.3)

The PRE signals are given in the form of voltages Vj along the columns of

the array, and each RRAM cell’s conductance Gij at the intersections represents

the synaptic weight between the i− th PRE neuron and the j− th POST neuron.

Currents Ii are collected along the rows as a result of the MAC operation in

equation (1.3).

This implementation is several orders of magnitude faster and more energy-

efficient than traditional CMOS-based architectures since it can propagate the result

of each synaptic layer in just one clock cycle without the need to access separate

memory storage. However, since the weights trained with the backpropagation

algorithm can have either positive or negative signs, whereas the conductance

value of the RRAM cells can only have a positive value, one of the following

strategies should be implemented.

1.5 resistive ram for neuromorphic computing implementation 23

Figure 1.15: Illustration of the weight update characteristic. Representing the conductance

G as a function of the number of programming pulses. (a) Ideal linear

characteristic; (b) Nonlinear characteristic, with G increases and decreases

faster at the beginning of the curve; (c) Asymmetrical weight update with

the increase faster than the decrease of G; (d) Limited dynamic range of

the weight update; (e) Weight update suffering cycle to cycle variability; (f)

binary update, where no intermediate G values are possible. Reprinted with

permission from [36], licensed under CC BY 4.04

Several solutions were proposed to solve this problem. As shown in figure 1.14a,

one solution is to employ an additional row of conductances with a fixed refer-

ence value of Gr, which will be subtracted from the variable and programmable

conductance Gij. This is the most compact solution as it only requires a single

additional row for each array, however, it reduces the conductive span for each

weight, resulting in a decreased number of programmable levels.

On the other hand, by implementing a fully differential pair of programmable

conductances, as depicted in figure 1.14b where both G+
ij and G−ij can span across

the whole conductive range, the number of programmable levels increases but in

the trade-off with increased current consumption of the array [25].

To accurately implement the backpropagation training, the linear dependence of

the correction value ∆w from the product of x and δ must be preserved during the

https://creativecommons.org/licenses/by/4.0/

1.5 resistive ram for neuromorphic computing implementation 24

weight update and this requires a highly linear response of the cell’s conductance

value for a given input voltage. Unfortunately, most of the emerging memory

technologies do not exhibit the aforementioned required linearity (Figure 1.15).

The nonlinearity of the weight updates can be solved by performing offline train-

ing, by means of a computer simulation exploiting an accurate model representing

the RRAM crossbar array with its variabilities and non-idealities. After the offline

training, just the final value of synaptic weights has to be programmed to the cells

of the array, and the device is then ready for the inference.

However, the nonlinearity of the programming characteristic is only one of the

problems affecting the crossbar array implementation of a DNN. In fact, the RRAM

devices present a high cycle-to-cycle (C2C) and device-to-device (D2D) variabilities,

and some cells in the array happen to be stuck at LRS or HRS levels and not

responding to the programming. In some technologies such as RRAM or PCM,

the conductance relaxation occurs naturally to the cell after some amount of time

and it is accelerated by the temperature increase, and it decreases the fidelity

of the network. On top of that, for bigger array sizes and with the scaling of

the technology, the parasitic wire resistances along rows and columns cause a

non-negligible Ohmic drop, called IR drop [34], reducing the linearity of the MAC

operations and affecting the final neural network accuracy.

In conclusion, despite the crossbar array architecture for DNNs shows many

great advantages over the traditional computing solutions, its practical implemen-

tation suffers from many different non-negligible drawbacks that degrade the

overall functioning of the network. Research is exploring methods to mitigate these

problems with particular programming algorithms such as program and verify

schemes [46] that allow finer control of the programmed conductance enabling for

multilevel cell operations [47], or by exploring different architectural choices. The

next chapters will focus on these topics.

2
R E S I S T I V E - S W I T C H I N G R A N D O M A C C E S S M E M O RY

This chapter presents a detailed description of resistive switching random access memory

devices. After a brief introduction to the technology, the mechanisms of resistive switching

are addressed, both during SET and RESET transitions. In the second part of this chapter,

physical mechanisms causing cycle-to-cycle (C2C) and device-to-device (D2D) variabilities

are investigated. To conclude the chapter, an overview of the models existing in literature is

briefly presented.

2.1 introduction

RRAM devices are among the most promising candidates for next-generation

memory. They feature exceptionally low power operations and allow for high-

speed switching between states. Along with that, they present a very high cycling

endurance, a very important feature for non-volatile memory applications. In ad-

dition to this, their low fabrication cost and compatibility with the BEOL process at

relatively low temperatures enables highly scalable high-density chips compatible

with CMOS devices and 3D stacking integration [15], optimal for the realization of

crosspoint arrays. RRAM devices present also some drawbacks and limitations, the

most important being the programming variability and state fluctuation due to

noise, and Conductive Filament (CF) relaxation. This affects the cell reliability and

puts some limitations on the multi-level operation of such devices.

This work focuses on different program/verify schemes that try to reduce the

effects of variability, allowing this technology to be used for tasks such as hardware

implementation of neural networks.

25

2.2 rram switching mechanism 26

2.2 rram switching mechanism

In literature, switching mechanisms have been attributed to the filamentary mod-

ification of conduction properties [15]. An analytical model for RRAM describes

switching as a voltage-controlled change of the CF size.

Initially, an RRAM cell must be subjected to the operation of electroforming,

where the conductive filament is formed by dielectric breakdown. The forming

process is usually performed by applying a high positive voltage across the device

and results in the oxide layer reduction and creation of oxygen vacancies. This

process must be limited by a compliance current, otherwise, the dielectric layer of

the device may suffer a hard breakdown, becoming unusable.

After forming, the conductance of the device is higher because now there is a CF

connecting the TE and the BE through the oxide layer. Now, by applying proper

voltages across the cell, the CF will break by the effect of Joule’s heating resulting

in a decrease of the conductance between the two electrodes and pushing the cell

into HRS. This conductance will be a little bit higher than the initial state before

forming, because the CF is not completely dissolved, rather only disconnected via

a relatively small depletion gap.

Starting from HRS, now, it is possible to perform multiple transitions between HRS

and LRS by alternating set and reset operations. In RRAM technology, differently

from what happens in modern memory technologies, such as flash, the state

changes by physically altering the structure of the device rather than just modifying

the charge stored in the floating gate. For this reason, this kind of memory is

strongly affected by switching variability, and every time the filament is created

and dissolved, the final value of conductance will be slightly different.

Two main methods of resistive switching exist, and they differ by the polarity

of the set and reset operations. If both set and reset processes take place under

positive voltage, the effect is called unipolar switching, while if the polarity of

the set is the opposite of the polarity of the reset, the process is called bipolar

switching [15].

2.2 rram switching mechanism 27

Figure 2.1: Starting from the reset state (a), first the nucleation process takes place (b)

and then the filament grows (c) until the process is limited by the compliance

current (d). Reprinted with permission from [48]. Copyright 2013, John Wiley

& Sons, Inc. License number 5141851303192.

Unipolar switching has the advantage of being easier to implement from an

architectural standpoint since only positive voltages and unipolar diodes for

device selection are required for all the applications. On the other hand, unipolar

switching typically shows larger switching variability and lower cycling endurance

compared to bipolar switching devices. For this reason, most research and also

this work focuses on the bipolar switching RRAM.

Another distinction can be made among bipolar RRAM devices, depending on the

employed materials in the MIM structure and thus, on the type of migrating defects:

oxygen vacancies for OxRAM and metallic cations for CBRAM. The former devices

are made by employing a transition metal oxide such as H f O2, with a metallic

cap, that is made also with a transition metal. The metallic cap is a buffer layer

that acts as an oxygen getter [14], lowering the voltage barrier for the forming and

set transitions and also increasing the ratio between HRS and LRS. It also dictates

the polarity of the bipolar switching, with the set transitions usually taking place

when a positive voltage is applied to the electrode at the cap side.

CBRAM instead utilizes an electrolyte dielectric layer for cations supplied by the

cap, consisting of a chalcogenide material. Usually, CBRAM devices show a larger

resistance window than OxRAM [15].

This work from now on focuses on OxRAM devices.

2.2 rram switching mechanism 28

The set mechanism consists of two separate parts: nucleation and growth of the

CF. After a reset operation, the filament is not present (Figure 2.1a). By applying a

voltage across the device the filament nucleation takes place (Figure 2.1b), i. e. some

positively charged ions migrate from the ion’s reservoir through the oxide creating

a thin conductive path connecting the TE to the BE. This migration is possible by

the decrease of the energy barrier described by equation (2.2) and it is assisted by

the temperature increase due to the Joule’s heating effect. By further increasing

the voltage (Figure 2.1c), the CF grows by ion migration and deposition, enlarging

its diameter φ and thus decreasing the resistance between the two electrodes until

the desired level is reached (Figure 2.1d). With every increase in the filament’s

diameter φ also the conductance increases. It is a positive feedback for V > VSET

that is limited by the compliance current IC.

This growth dynamic can be modeled by a rate equation following the Arrhenius

expression [49]:

dφ

dt
= Ae

−EA
kT (2.1)

where A is a preexponential constant factor, EA is the energy barrier for ion

migration, k is Boltzman’s constant, and T is the local temperature along the CF.

Equation (2.1) states that the growth rate of the CF is controlled by ion migra-

tion. This equation is an Arrhenius function of temperature, and it describes the

probability of ion hopping by overcoming the energy barrier EA given by:

EA = EA0 − αqV (2.2)

where EA0 is the energy barrier for null voltage, V is the voltage across the cell,

α is the barrier lowering coefficient (Figure 2.2). This enhances the ion migration

rate in presence of an applied electric field, easing the growth of the filament.

The temperature T in equation (2.1) takes into account the Joule heating effect,

which is non-negligible due to the high current density and the electric field

across the filament. The temperature can be found by solving the following 1D

steady-state Fourier equation [50]:

2.2 rram switching mechanism 29

Figure 2.2: Schematic for potential energy ion hopping at (a) zero potential or (b) with

a positive voltage applied. Reprinted with permission from [18]. Copyright

2012, IEEE.

κth
d2T
dz2 + J2ρ = 0 (2.3)

with κth being the thermal conductivity, z the direction along the CF, J the current

density across the device, and ρ the electric resistivity of the medium.

Solving equation (2.3) with boundary conditions of T = T0 at the two metal

contacts considered as ideal heat sinks, i. e. at z = 0 and z = L with L being the

total length of the oxide layer, leads to a parabolic solution with the maximum

temperature Tmax found in z = L/2 with the value of:

Tmax = T0 +
J2ρ

8κth
L2 (2.4)

that can be rewritten as:

Tmax = T0 + RthP (2.5)

by using the following substitutions:

J = V
R

1
ACF

P = V2

R

Rth = L
ACFκth

R = ρL
ACF

2.3 variability of rram programming 30

Figure 2.3: Starting from the set state (a), by applying the voltage across the cell the

filament breaks (b), and then the gap is created (c). Reprinted with permission

from [50]. Copyright 2014, IEEE.

T0 is the room temperature, Rth is the thermal resistance of the CF and P is the

power flowing through the device P = VI.

The reset mechanism, instead, consists in creating and enlarging a gap in the

just-formed CF and it is controlled by applying an opposite polarity voltage to

the electrodes. Starting from the LRS condition featuring a continuous filament as

shown in figure 2.3, as the voltage across the device increases, positively charged

oxygen vacancies start to migrate towards the TE driven by the electric field and

helped by the temperature increase, thus creating a gap in the CF. The gap growth

is controlled by a similar Arrhenius equation already seen for the set transition.

d∆
dt

= Ae
−EA

kT (2.6)

Differently from the set process that shows a quadratic relation between the rate

equation of the diameter φ and the conductance of the cell, the reset transition has

a linear relation between the resistance and the gap size ∆.

2.3 variability of rram programming

The Resistive Random-Access Memory (RRAM) devices rely on the physical voltage-

driven formation/disruption of a Conductive Filament (CF) across a thin insulating

2.3 variability of rram programming 31

Figure 2.4: (a) C2C cumulative distribution of LRS (top) and HRS (bottom) for different

compliance current IC, from 2µA to 500µA. As IC decreases, the conduc-

tance follows, and the distributions bend. Distributions are circa lognormal.;

Adapted with permission from [51]. Copyright 2013, IEEE. (b) Measured I-V

characteristics for IC = 8µA and IC = 80µA (c) blue lines, while the median

behavior is highlighted with the red curve. Adapted with permission from

[52]. Copyright 2014, IEEE.

layer. With the scaling process of the devices and the oxide layer approaching

few-atom size, RRAM becomes vulnerable to variability, statistic fluctuation effects,

and noise, affecting switching precision.

The set and reset processes are performed by moving ions and defects back and

forth through the insulator, and since the defects are discrete, they tend to assume

different geometrical conformations in a stochastic way from cycle to cycle and

from device to device, thus influencing the final conductance value of the CF. As

shown in figure 2.4a, when the compliance current IC increases, the cumulative dis-

tribution of the resistance value becomes steeper, meaning that the programming

variability decreases [51, 52]. This figure highlights also a direct proportionality

between the median value of the resistance µR and its standard deviation σR. From

a practical standpoint, to obtain a cleaner programmed conductance, one should

aim at higher LRS values, thus limiting the usage in very large arrays due to

increased parasitic effects such as the ohmic IR drop. Moreover, a high variability

and the relatively small resistance window affect also the Multi-Level Cell (MLC)

operation limiting the programming accuracy needed for sensible applications

such as synaptic weights.

2.4 rram modeling 32

Figure 2.5: Physical models hierarchy. From bottom to top: material atomistic modeling

relying on density functional theory (DFT); statistical modeling - Kinetic

Monte Carlo (KMC) and finite element method (FEM) to describe the device-

level behavior; Compact modeling describing the global characteristics of the

device using a simple analytical formula. Reprinted with permission from

[53], licensed under CC BY 4.01

2.4 rram modeling

As with every emerging technology, Resistive RAM needs the availability of

accurate models that can to predict the devices’ operation, the variability, and how

they behave with the scaling of technology. Several models have been developed

ranging from materials-level atomistic simulations to device simulations, and to

compact models able to describe the behavior of the RRAM devices at a system

level [53].

As summarized in figure 2.5, different categories of physical-based models exist.

Focusing on RRAM, the main interest resides in understanding how the device

behaves under proper voltage-current conditions, and how the process of resistive

switching happens. Starting from the most precise modeling techniques, such

as ones relying on density functional theory (DFT), the device at the atomistic

https://creativecommons.org/licenses/by/4.0/

2.4 rram modeling 33

scale can be described, yielding to the understanding of the physical structure of

the material and ion migration mechanisms. While providing the most accurate

physical description, this kind of model has a very high computational cost.

Some less heavy models exist, computationally speaking, such as kinetic Monte

Carlo (KMC) or finite element method (FEM). FEM models solve transport equa-

tions in 2D or 3D geometries, discretizing the volume with finite elements. The

aim is to describe the thermal and ionic migration effects in a continuous domain.

On the other hand, KMC models deal with discrete quantities and consider the

generation-recombination of oxygen vacancies as the main factor contributing to

the forming of the conductive filament [54]. By running several simulations and

exploiting the stochasticity of the position of the defects, a Monte Carlo method

can extract an average switching characteristic.

The just-introduced models offer an accurate and detailed physical description

of the device, but are not suitable for a large-scale simulation, for example of a

crossbar array or a memory device, employing both RRAM devices and CMOS

circuitry. A compact model, instead, offers a computationally light description

of the switching phenomena, for example, the conductive filament geometrical

growth/rupture or directly the conductance value, by employing simplified ana-

lytical formulae [50] [49].

3
E X P E R I M E N TA L D ATA A N A LY S I S

This chapter focuses on the analysis of cycling endurance experimental data, measured

on a 4− kbit crossbar array of RRAM devices in a 1T1R configuration manufactured by

IHP Microelectronics. The measurements focus on highlighting statistical C2C and D2D

variability of the resistive switching mechanisms, by employing different program and

verify schemes, namely Incremental Step pulse Program and Verify Algorithm (ISPVA)

and Incremental Gate Voltage and Verify Algorithm (IGVVA) with different voltage steps.

Particular emphasis is put on the algorithms and methods used during this works for

extracting information from the devices.

3.1 cell and array structure

All of the measurements discussed and analyzed in this chapter were performed

and provided by IHP Microelectronics. The chip sample used in the present study

(Figure 3.2) is a 4− kbit crossbar array combined in 64 rows and 64 columns.

The chip contains all the necessary architectural blocks needed to drive the array

(Figure 3.2c). Each cell in the memory array is selected with two address decoders.

The row decoder (XDC MUX) selects a single word line (WL), i. e. one of the 26 gates

of the access transistors. The column decoder (YDC MUX) selects a single bit line

or source line (BL, SR) of the array. An operation control circuitry (Mode) is also

present to control the overall circuitry and select the operation modes. The device

under test is an RRAM element arranged in one Transistor - one Resistor (1T1R)

configuration. Each 1T1R cell is constituted by an N-channel Metal Oxide Silicon

Transistor (NMOS) transistor manufactured in IHP’s 0.25µm CMOS technology,

whose drain is connected in series to the RRAM. This resistor is a MIM device

34

3.2 program and verify algorithms 35

Figure 3.1: (a) Structure of the 1T1R cell and the MIM stack description. (b) bipolar I-V

characteristic for set and reset transition. Reprinted with permission from [55].

Copyright 2021, IEEE.

located on metal line 2 of the CMOS process. The MIM device consists of a stack of

TiN/Ti/H f1−x AlxOy/TiN (Figure 3.1a).

The H f1−x AlxOy dielectric layer is grown by Atomic Layer Deposition (ALD)

and has a thickness of 6nm, with an Al concentration of about 10%. Metal layers

were deposited by magnetron sputtering with a thickness of 150nm for the top and

bottom TiN layer, and 7nm for the Ti layer. The final area of the device is about

0.4µm2, and it is protected by an additional thin Si3N4 layer.

3.2 program and verify algorithms

This work focuses on studying and analyzing the impact of statistical variability

of RRAM cells in multilevel operations. Since the resistive switching mechanism is

the result of ion migration across the device under a certain applied voltage, the

final result can change considerably even between two consecutive programming

cycles, within the same device. This effect can be mitigated by performing a more

controlled transition from one resistive state to another. For this reason, several

different programming algorithms were developed allowing for finer control of

the reached conductive value.

3.2 program and verify algorithms 36

Figure 3.2: (a) Block diagram and (c) micrograph of the 4 kbit memory array with the

surrounding circuitry. (b) Schematic of the 1T1R cells integrated into the array.

Reprinted with permission from [56]. Copyright 2019, IEEE. (d) TEM cross-

sectional image of 1T1R architecture. Reprinted with permission from [57].

Copyright 2017, IEEE.

Instead of directly imposing a high voltage and letting a high amount of current

to flow across the device, the MOSFET device in the 1T1R structure is exploited

in order to limit the compliance current during the set and reset operations, and

to control precisely the formation and the rupture of the CF by applying finely

stepped pulsed voltages to the three terminals of the device (TE, BE, Gate).

Moreover, to increase even more the accuracy and to partially reduce the vari-

ability, between each pulsed programming step P a verify step V is performed, by

applying a small fixed voltage across the 1T1R device to read the resulting current.

The voltage of the Verify phase is chosen to be small enough not to perturb the

RRAM state.

These kinds of programming schemes are called Program and Verify algorithms.

In literature and practice, several different program and verify algorithms were

proposed, for both set and reset transitions. In this work, two different algorithms

are discussed.

Incremental Step pulse Program and Verify Algorithm (ISPVA) (Figure 3.3b) con-

sists in defining a compliance current for a certain level, and gradually increasing

the voltage across the device until the correct programming value is reached;

Incremental Gate Voltage and Verify Algorithm (IGVVA) (Figure 3.3a), instead,

imposes a voltage across the device that is surely high enough for the transition to

3.2 program and verify algorithms 37

Figure 3.3: Examples of the pulsed program and verify algorithms in which are alternated

program pulses (P) and verify pulses (V) at the different nodes: (a) IGVVA, (b)

ISPVA, (c) reset.

occur, and then reaches the desired programming value by gradually increasing

the compliance current, by modulating the gate terminal of the NMOS transistor.

The reset algorithm (Figure 3.3c) used in this work is similar to the ISPVA

programming scheme, but the voltage applied across the device has the opposite

sign.

In the following sections, these algorithms will be analyzed in detail.

3.2.1 ISPVA SET Algorithm

The first program and verify algorithm present in literature is the Incremental Step

pulse Program and Verify Algorithm (ISPVA) [57] (Figure 3.3b), and it is performed

by applying pulsed voltages to both the Top Electrode (TE) and the gate of the

NMOS, keeping BE at ground. The VTE is incremented from 0.5V to 2.0V with steps

of 100mV, while the gate voltage depends on the desired compliance current. In

this work, four different target levels of LRS are studied in-depth, corresponding

to the following four touples of < Itarget, VG >, in particular: < 10µA, 1.0V >,

< 20µA, 1.2V >, < 30µA, 1.4V > and < 40µA, 1.6V > (Figure 3.4).

After every programming pulse, a verify pulse is applied to the device, with

VTE = 0.2V and VG = 1.7V. The verification process consists in reading the current

during each read state, and if it exceeds the target current chosen for the level,

3.2 program and verify algorithms 38

Figure 3.4: (a) Recap of different levels in ISPVA that are programmed by controlling the

compliance current through the VG voltage of the NMOS. (b) Some of the IDS -

VDS characteristics of the NMOS in series to the RRAM cell. ISPVA LES levels

(in blue), reset (in red), and read gate voltage (in green).

the algorithm stops, otherwise, the algorithm continues with applying the next

program pulses.

Taking as an example a single device cycled 1000 times by alternating set and

reset programming, for the highest level LRS4 corresponding to VG = 1.6V and

Itarget = 40µA is shown in figure 3.5a. Each line in the figure corresponds to the

current read during a single cycle after each set pulse. As one can see, from cycle

to cycle the device presents a relatively high variability. This can be explained by

the fact that each time a Conductive Filament (CF) is formed during the set and

disrupted during the reset, the ions in the CF migrate and arrange in different

positions.

One particularity of the ISPVA transition is that the CF growth is triggered only

after a certain VTE is applied across the device, and this voltage, namely VSET,

varies from device to device and from cycle to cycle. In figure 3.5b are highlighted

certain cycles that have an early transition, for lower VSET in red, and higher

VSET in blue. It can be noticed from the figure that when the device switches

early, its conductive filament grows in a more controlled way and follows an

upper bound given by the compliance current of the NMOS, that because of a

3.2 program and verify algorithms 39

Figure 3.5: (a) Extracted Iread during set transitions of LRS4 during ISPVA100 program-

ming (Itarget = 40µA). Device #229, 1000 cycles; (b) Highlight of (read) early

transitions and (blue) late transitions; (c) Histogram of the voltage VTE distri-

bution for which the cell switches from HRS to LRS.

low VTE that consequently limits the VDS falling across the transistor. On the other

hand, when the device switches at a higher VTE, this polarization limit does not

influence anymore the growth of the CF, with the result of a much steeper increase

in conductance. In general, the distribution of VSET assumes an almost Gaussian

distribution, as shown for the device under test in figure 3.5c.

3.2.2 IGVVA SET algorithm

Incremental Gate Voltage and Verify Algorithm (IGVVA) (Figure 3.3a) [58], instead,

is performed by keeping the TE at a constant fixed voltage of VTE = 1.2V, while

increasing VG from 0.5V to 1.7V.

In particular, in this work two different IGVVA variants were analyzed, differing

in the voltage steps made by the gate, ∆VG = 100mV for IGVVA100 and ∆VG =

10mV for IGVVA10. Both the algorithms have a pulse duration of dt = 1µs, and

after each programming pulse a readout pulse of the same duration dt = 1µs is

applied (VTE = 0.2V) and VG = 1.7V).

This kind of algorithm allows for finer control of the final conductive state

because at every next step the current is limited by the NMOS polarization instead

of being limited only by the voltage. Differently from ISPVA, programming the cell

with IGVVA results in a more gradual and controlled conductive increase. With

3.2 program and verify algorithms 40

ISPVA, after reaching a threshold value of VTE = VSET the cell’s conductance grows

abruptly until the compliance level is reached (Figure 3.5a), when programming

with IGVVA the compliance current increases at every step and since the voltage at

the top electrode is chosen to be higher than VSET, the conductance of the RRAM

grows just until the compliance of the step is reached. In the following step, the

compliance increases letting the cell increase its conductance another bit.

Another visible difference between the two approaches is the point at which

the conductance begins to grow. In ISPVA, this was directly connected to the VTE

overpassing the VSET value, and it suffers from high variability, both cycle to cycle

and device to device. In IGVVA, on the other hand, since the VTE > VSET condition

is always reached, this variability is considerably lower.

By reducing the voltage steps from ∆VG = 100mV to ∆VG = 10mV, despite the

increase in time needed to reach the desired state, the accuracy and the control of

the programmed conductance value increase significantly.

The advantages over ISPVA are evident. First of all, by having smaller conductive

increase steps it is possible to control more finely the value of the conductance and

to interrupt the algorithm when a defined target value of current is read during the

readout phase. Another benefit of using IGVVA over ISPVA is that the algorithm

is completely identical for every level and does not differ as it happens in ISPVA,

by changing the VG accordingly.

3.2.3 RESET algorithm

As per the set transitions, also the reset transition is performed with a program

and verify algorithm. The reset algorithm is similar to the ISPVA, but this time the

stair voltage ramp has to be applied to the Bottom Electrode (BE), keeping the TE

at ground, in fact, reversing the voltage direction (Figure 3.3c). VBE is incremented

from 0.5V to 2.0V with steps of 100mV, and VG = 2.7V. After every reset pulse,

there is a verify pulse equal to the two set algorithms (VTE = 0.2V, VBE = 0V, and

VG = 1.7V). The target current that should be reached during the readout phase

3.2 program and verify algorithms 41

Figure 3.6: (a) Extracted reset After switching and End of algorithm values for four

different levels; (b) C2C and D2D distributions of reset after switching values;

(c) distribution of reset values for three devices. The red curve represents the

cleanest device, the blue curve the dirtiest, while the green curve refers to the

median device with the most common behavior.

of the algorithm is Ireset = 5µA, corresponding to a conductance level of 25µS, and

it is not dependent on the previously programmed LRS.

Analyzing the HRS value that is reached after a RESET, shows how it is partly

dependent on the previous programmed LRS value (Figure 3.6a). This can be

explained considering how the processes of growing and the breaking of the CF are

performed. One can suppose that after a forming or a set process with a specific

compliance current, the Conductive Filament (CF) has approximately a cylindrical

form with a diameter φ1. If then a reset transition occurs, it will create a gap in the

CF with the height ∆1 to reach the target read current of the reset transition (5µA

in our study). If instead, the CF was formed with a different compliance current,

the filament will have a diameter φ2 and with the following reset transition the

gap will have a height of ∆2. It is experimentally validated that this geometric

difference brings to a slightly different After Switching (AS) reset value, as if the

reset of a thinner CF (i. e. lower LRS) has a steeper decrease. This emphasizes how

the RRAM cell has a sort of memory of its previous conductive state.

Analyzing the variability distribution of the After Switching (AS) value, it can

be noted that some devices present a more thin distribution over the endurance

cycles while some others have a large span of values (Figure 3.6b,c).

3.3 experimental data 42

Figure 3.7: (a) representation of the 1T1R series during the verify (V) phase. The transistor

is in the Ohmic regime and has a non-negligible resistance value. (b) I-V

characteristics during the program (P) phase (VG = 1.4V) of the LRS3 level

and verify (V) phase (VG = 1.7V). (c) LRS3 read current during the ISPVA. (d)

comparison between the conductance value of the 1T1R cell and of just the

GRRAM value.

3.3 experimental data

The goal of this work is to analyze and study the different program and verify

algorithms that are introduced in the previous sections.

The measurements were performed on the 1T1R chip introduced in section 3.1,

and they consist of the read current Iread that is sampled during the verify phase of

the algorithms (Figure 3.7c).

Along with the read current for the different algorithms and the different levels,

also the exact I-V characteristic for the NMOS transistor is available.

The actual compliance current is given during the programming (P) pulses and

is much higher than the corresponding Itarget of the defined levels (Figure 3.4b) that

is extracted during the readout. Taking as an example ISPVA100 - LRS3, between

each programming pulse (P) and each verify pulse (V) the polarization of the

NMOS changes (Figure 3.7b), and a maximum current value of around 150µA is

reached right after the conductance growth. Instead, during the next verify pulse,

the maximum current that is reached is the desired target value of Itarget = 30µA

(Figure 3.7c). In fact, by applying only 0.2V at the top electrode and 1.7V to the

gate, the NMOS is in the Ohmic region and acts as a resistor of about 1.5kΩ. The

GCELL = Iread/Vread that is considered in the algorithm is a series of the rds,on of

the NMOS and the resistance RRRAM = 1/GRRAM (Figure 3.7a). By intersecting the

3.3 experimental data 43

NMOS characteristic with the verify polarization, it is possible to extract the actual

value of GRRAM (Figure 3.7d) that allows the cell to reach the desired current.

3.3.1 Datasets

The available experimentally measured data represent the current that is read

after each programming (set/reset) step. As stated in section 3.2, the readout of

the cell is performed by applying a Top Electrode voltage VTE = 0.2V and a gate

voltage of VG = 1.7V. This polarizes the NMOS to have low on-channel resistance

(about rds,on = 1.5kΩ) and allows to read the current of the cell without the risk of

perturbing its state.

Four main conductance levels were aimed during this study, corresponding to four

different read currents used as targets during the verify phase of the algorithms.

These levels, LRS1 to LRS4, correspond to read currents of 10µA, 20µA, 30µA, and

40µA, respectively.

These four levels were programmed onto a single 64x64 crossbar array, virtually

separating it into four 16x64 different regions. Each region of 1024 devices is

programmed with only one LRS level, meaning that all of the operations, from

electroforming to set-reset cycling, are performed with the same compliance.

Each 1T1R device was first subjected to electroforming by using an ISPVA algo-

rithm with TE voltage amplitude sweep from VTE = 2.0V to VTE = 5.0V and steps

of 0.01V.

Incremental Gate Voltage and Verify Algorithm (IGVVA) is performed by applying

a fixed voltage VTE = 1.2V to the Top Electrode and sweeping the gate voltage

from 0.5V to 1.7V with steps of 10mV for IGVVA10 (Figure 3.8a) and steps of

100mV for IGVVA100. The Top electrode voltage is chosen to be higher than Vset,

while the gate terminal controls the compliance current of the device by modifying

the polarization of the NMOS.

Incremental Step pulse Program and Verify Algorithm (ISPVA) instead is executed

by applying a fixed gate voltage that limits the NMOS polarization, thus the

compliance current for the desired level, respectively (VG = 1.0V, VG = 1.2V,

3.3 experimental data 44

Figure 3.8: Four LRS levels measured adopting the IGVVA programming scheme. Each

measurement is affected by noise and variability (in grey) and median behavior

is extracted (colored). Two different implementations of IGVVA were analyzed:

(a) IGVVA10 with gate voltage steps of 10mV and (b) IGVVA100 with gate

voltage steps of 100mV.

VG = 1.4V, and VG = 1.6V for IC = 10µA, IC = 20µA, IC = 30µA, and IC = 40µA

respectively). The Top electrode sweeps with steps of 100mV from 0.5V to 2.0V.

The RESET algorithm does not depend on which SET algorithm was previously

used nor on the programmed conductive level. It is similar to ISPVA, in fact, the

gate terminal is kept at a fixed voltage of VG = 2.7V, while the voltage across the

device is set by applying a ramp on Bottom Electrode stepping from 0.5V to 2.0V,

with the Top Electrode at ground.

Every pulse step of the set, reset, and read phases has a duration of 1µs. Since

every algorithm has a different number of steps, depending on the start and stop

voltages and on the voltage increase, the number of measurements during each

algorithm changes accordingly, so the available measured data are composed of:

• 16 points in RESET algorithm

• 16 points in SET - ISPVA100

• 13 points in SET - IGVVA100

• 121 points in SET - IGVVA10

3.3 experimental data 45

Figure 3.9: Four LRS levels measured adopting ISPVA programming scheme with VTE

steps of 100mV for (a) SET and for (b) RESET. Each measurement is affected

by noise and variability (in grey) and median behavior is extracted (colored).

3.3.2 C2C

The main topic of the study is to understand how the different program and verify

algorithms perform in endurance cycling, namely, how the programmed value of

a certain level under a certain algorithm of the same device varies from cycle to

cycle, and how this variability varies from a device to another.

For this scope, endurance cycling measurements were performed on the test

chip for the two previously described algorithms: IGVVA and ISPVA. ISPVA features

a step size of 100mV, while IGVVA is analyzed with both step sizes of 100mV and

10mV. After the initial forming process, each device was continuously subjected to

reset - set algorithms, for a total of 1000 cycles (Figure 3.10).

The data of the IGVVA10 set algorithm, unfortunately, were unavailable for the

whole transition, instead, only a selected part of interest consisting in the last part

of the conductance increase is present.

3.3 experimental data 46

Figure 3.10: Single device cycling through continuous set-reset transitions. Set transition

is performed with IGVVA100. The programming introduces C2C variability

that affects the conductance value at every cycle.

3.3.3 D2D

A second dataset was also analyzed, containing just the single-cycle measurements

of reset-set processes for the same three algorithms: IGVVA10, IGVVA100, and

ISPVA100, but for 8 different conductive levels. In fact, beyond the original four

levels (IC = 10µA, IC = 20µA, IC = 30µA, and IC = 40µA), this dataset features

the measurements to other four intermediate levels: IC = 15µA, IC = 25µA, IC =

35µA, and IC = 45µA. These additional levels allow to increase the information

density from 2bits to 3bits and this can be of great advantage for both data storage

and neural network applications. (Figure 3.11a,b)

3.3.4 Additional D2D

An additional dataset was available, containing the analysis of the original four

levels (IC = 10µA, IC = 20µA, IC = 30µA and IC = 40µA) programmed with

the two algorithms ISPVA and IGVVA. In this dataset, for both algorithms the

analyzed step sizes ∆V are 10mV, 20mV, 50mV and 100mV, in order to understand

how the accuracy of the two programming schemes varies with ∆V.

3.4 after switching - end of algorithm distributions 47

Figure 3.11: (a) Traditional 4 LRS levels and (b) additional 4 LRSs, both programmed

through IGVVA100. The additional levels have the following current targets:

IC = 15µA, IC = 25µA, IC = 35µA and IC = 45µA. (c) representation of

stuck cells (in white) in a 64x64 array. Circa 30% of the total cells are stuck at

LRS or HRS position.

3.3.5 Stuck cells

Unfortunately, a relatively high number of 1T1R cells in the array was in the so-

called stuck state and it happens for both HRS and LRS positions. Some other cells

presented an incorrect transition starting always from the LRS state and growing

to even a higher value, only to be "reset" back again to the LRS value after that,

instead of the HRS. A handful of cells, instead, presented wrong behavior just

during some of the cycles. The total distribution of the stuck cells within a 64x64

array is depicted in figure 3.11c.

Depending on the performed analysis and on the values that were extracted,

these cells were selectively excluded from the study.

3.4 after switching - end of algorithm distributions

The first value of interest that was extracted and analyzed from the given experi-

mental endurance dataset is the so-called After Switching (AS) value, i. e. the first

point of the set transition that overcomes the desired target current value during

the readout (Figure 3.12a).

3.4 after switching - end of algorithm distributions 48

Figure 3.12: (a) Set transition of a single device under IGVVA100 algorithm. After switch-

ing values are highlighted in blue. Examples of devices with (b) low variabil-

ity and (c) high variability over the 1000 cycles endurance measurements.

Figure 3.13 shows the cumulative distributions of the four programmed conduc-

tive levels right after the target crossing, namely, from left to right, 50µS, 100µS,

150µS, and 200µS. Each line in the figure represents one of the devices, and each

of the points along every line is the after switching value at one of the 1000 cy-

cles during the endurance measurements. Ideally, each level should have vertical

and overlapping curves near to the leftmost value, but unfortunately, the RRAM

exhibits strong C2C and D2D variabilities, easily noticeable in the experimental

measurements.

From the same figure 3.13, it is evident how some devices tend to fall closer to

the desired target and have a more vertical distribution. This translates in a device

having both a relatively low median value of the after switching conductance

< GAS >, close to the target, and a small standard deviation σ(GAS) of the desired

programmed value. The full endurance cycling test shows that these devices follow

roughly the same path every time during the programming transition, as shown

in figure 3.12b.

On the contrary, looking at the devices that have a curvier distribution over

the 1000 cycles of the endurance test, one can expect a higher standard deviation

σ(GAS) and also an increase in the median value in comparison to the desired

target.

3.4 after switching - end of algorithm distributions 49

Figure 3.13: cycle-to-cycle (C2C) cumulative distributions of After Switching (AS) conduc-

tance values for the four LRS levels. Each curve denotes a device, and each

point along every curve represents an AS value in one of the 1000 cycles. (a)

IGVVA10, (b) IGVVA100, (c) ISPVA100.

The strong correlation between these two parameters, σ(GAS) and < GAS >, is

expected because, since the distribution has a lower bound at Itarget, a device that

sometimes hits higher values will suffer an increase in both the median value and

in the standard deviation of its conductance (figure 3.12c).

As one can see from figure 3.14, the majority of the devices find themselves

in the middle of the distribution, while a relatively low number of devices has a

particularly clean or particularly dirty behavior.

Comparing the GAS distributions of each device with the corresponding slope

during the set transition shows another interesting correlation: those devices that

have a steeper conductive growth are more inclined to exceed the desired target

value.

Looking instead at the last value of the SET curve, i. e. the End of Algorithm (EA),

two separate effects can be noticed. The first one is the small fluctuation around

the target value given by simple read-out noise in order of σI = 0.85µA. It is

independent of the programmed level or the performed algorithm. The second

effect that can be noticed is a small relaxation of the programmed value of the cell,

which starts after the algorithm stops the programming pulses and is enhanced

by time and temperature. It is a detrimental effect that needs further analysis and

experimental measurements in order to better understand its magnitude and its

implications.

3.4 after switching - end of algorithm distributions 50

Figure 3.14: (a) cycle to cycle distribution of After switching conductance value, the

median value of GAS compared to the standard deviation σ(GAS) for each

device extracted during the 1000 cycles.

Comparing the variability for the three considered algorithms, shown in figure

3.15, highlights how the smallest step of IGVVA10 allows for finer and more precise

control of the conductance value, with the median value of the AS conductance

variability of circa σG = 4µS. For comparison, IGVVA100 has a σG = 9µS and

ISPVA100 around σG = 6µS.

Indeed, using an IGVVA scheme but with a greater step, such as in IGVVA100,

results in worse control of the programmed conductance and increased variability

of the after switching values.

3.5 position and slope of the transient 51

Figure 3.15: C2C (in red) and D2D (in black) variabilities for the four LRS levels for the

following three algorithms (a) IGVVA10, (b) IGVVA100, and (c) ISPVA100.

IGVVA10 results in the most precise programming algorithm and shows the

lowest variability for every level.

ISPVA instead lies right in between the first two algorithms, and it is not

influenced by the variation of the step size.

3.5 position and slope of the transient

Another parameter that caught the interest of this study is how many program

pulses the cell needs to increase the value of its read current up to half of the

desired target, represented in figure 3.16a. This figure of merit is called VMID and

represents the control voltage (VG for IGVVA and VTE for ISPVA) for which this

read current value is reached. In figure 3.16b,c the cumulative distributions of D2D

and C2C for the IGVVA100 LRS4 set transition are depicted, respectively. It can be

seen that the C2C distribution is more widespread than D2D, meaning that some

devices switch earlier while some devices switch later. Another behavior that can

be understood from figure 3.16c is that devices that switch earlier have a more

vertical distribution, while devices that tend to switch later are also the ones that

show a less stable behavior from cycle to cycle.

On the other hand, the median slope for each set transition (Figure 3.17) shows

a nice correlation with the programming accuracy, represented by the standard

deviation of the after switching value of the 1T1R conductance. It is expected

behavior since a device that grows faster tends to overcome the target value by a

3.6 noise 52

Figure 3.16: (a) Example of how VMID is extracted. It is the voltage Vg for which the read

current Iread reaches half of the target current. Cumulative distribution of

VMID for IGVVA100 programming scheme extracted from the experimental

data. (b) On the left, each curve represents a cycle, and each dot on the curve

represents a device. (c) On the right, instead, the C2C behavior is shown,

meaning that each curve represents a device, and the inclination of the curve

represents the variability of that device.

larger amount, compared to a device that increases its conductance more gradually.

These results show that in order to have a more precise and accurate programmed

value, it is important to be able to control the growth rate of the cell, and so choose

an algorithm such as IGVVA10, that by performing smaller programming steps

gives greater control over the whole transition.

3.6 noise

Each value of the dataset presents a fluctuation in amplitude, that can be treated

as a noise happening during the read phase. Its impact is important because,

in some finer algorithms, such as IGVVA10, the amplitude of this fluctuation

is high enough to be the main cause of the variability in the distributions of

the programmed GAS values. Stuck cells resulted to be particularly useful to

understand and quantify the noise affecting the device. In figure 3.18a, the set

transition of the LRS4 level programmed through IGVVA10 from the device-to-

device (D2D) dataset was used to study this phenomenon. This particular set was

chosen because it shows the behavior of 1024 cells during a single set cycle and

3.6 noise 53

Figure 3.17: Correlation between the median slope of each device (C2C), i. e. how many

µA the conductance increases for a single programming step, and the stan-

dard deviation of the programming accuracy. Each point represents a device.

(a) shows IGVVA100 and (b) ISPVA100 programming schemes, both for LRS4

with target Iread = 40µA.

each has 121 points. Unfortunately, many of the cells in the array are affected by

previous reset problems or are in a stuck status that can be both LRS or HRS.

In the case highlighted in figure 3.18a, the cells that have the first value of the

read current higher than the target current Itarget = 40µA, are not affected by the

programming algorithm but are just periodically read during the verify phase

with VTE = 0.2V and VG = 1.7V. This means that the conductance value of each

cell ideally remains unperturbed during the whole process, and the "noise" that is

present is just due to a statistical variability of the readout circuitry.

In particular, of the initial 1024 cells of the array, 85 cells are permanently stuck

at higher current values, and calculating the standard deviation of each curve

around their median value shows that some cells are affected by a slightly lower

noise while some other by a slightly larger. The distribution of this noise from

device to device has a Gaussian shape, as shown in figure 3.18b.

Instead, looking at the stuck LRS cells of the first dataset with cycling endurance

data allows us to quantify how the noise impacts a single cell across a long-

range of measurements. Turns out that the standard deviation has about the same

3.7 effect of programming steps width on programming time and variability 54

Figure 3.18: (a) set transition for IGVVA10 LRS4 (target Iread = 40µA) Some of the cells

result in a stuck state Particularly stuck in LRS(in green) and stuck in HRS

(in red). They are not affected by programming pulses. (b) Each stuck cell

will show a fluctuation around its median value, and it differs from device to

device and also from cycle to cycle. (c) The overall histogram of the standard

deviations of each stuck cell expressed as σI,read[µA].

amplitude, and that the behavior along the cycles is very similar to the behavior

across the different cells, with no evident difference between C2C and D2D.

3.7 effect of programming steps width on programming time and

variability

Since the chip under test cannot be programmed in parallel, but only sequentially

cell per cell, the time needed to fully reprogram the 4 − kbit array can be an

important factor when choosing the algorithm. If one wants to set all the 4096 cells

of an array to the highest LRS value and obtain the cleanest result, the choice would

be to rely on IGVVA10, which requires 121 steps from VG = 0.5V to VG = 1.7V

with an increase of 10mV between each step. The same amount of Verify steps is

needed. All steps have a duration of 1µs and the delay between steps is considered

negligible. This translates in a total time of 2× 121× 1µs = 242µs for each cell

to be programmed. To set the whole array circa one second is needed, which

is roughly a factor 10 increase compared to a less accurate algorithm such as

IGVVA100 that takes a maximum of 13 steps per programming.

3.8 rram transition values extraction 55

Figure 3.19: (a) Four LRS levels programmed through IGVVA10, namely 10µA, 20µA,

30µA, and 40µA. (b) The corresponding conductance of the RRAM element

extracted from the measurements.

The effect of reducing the step size has different impacts whether it is applied to

the ISPVA algorithm or IGVVA. On the former, the difference does not influence

the programming variability, and the HRS to LRS transitions are always abrupt. On

the other hand, the variability of the programmed levels with the IGVVA scheme

is influenced by the size of the steps. The finer they become, the closer the final

conductance value arrives at the desired target. This directly impacts the results in

applications that require precise levels, such as the implementation of a hardware

neural network.

3.8 rram transition values extraction

The read current values and the I-V MOS characteristic enable the extraction of

many useful quantities during the whole set and reset transitions. For example,

with few assumptions, it is possible to extract the trend of the voltages around the

RRAM and currents that flow during the programming pulses, and also how much

each pulse impacts on the change of the conductance. The following analysis was

initially performed on the median values of the curves, in order to abstract the

3.8 rram transition values extraction 56

Figure 3.20: (a) Representation of the 1T1R cell during the programming phase. (b) VR

voltage across the RRAM before and after each applied programming pulse

Pj. (c) Working point extracted through the intersection of the conductance

of the cell and the characteristic of the transistor, for each programming

pulse in the IGVVA100 programming scheme for level LRS4 corresponding to

Iread = 40µA.

trends from the variability impacting each cell and each cycle, and from the noise

affecting the data samples.

As already briefly introduced in section 3.3, from the available data of Iread it is

possible to extract the conductance of the RRAM cell considering also the non-null

channel resistance of the transistor during the readout verification phase of the

algorithm.

For instance, let us consider a single device with a low variability under the

IGVVA100 programming scheme.

After averaging the read current for all the cycles it is straightforward to extract

the value of the GRRAM, which is higher than the total equivalent conductance of

the cell GCELL, which comprehends also the NMOS resistance rds,on. By looking

at figure 3.19, it is noticeable how the levels of cell conductance are not equally

spatiated, and the more the level increases, the more the distance from the previous

layer increases. This can be explained by the partition of GRRAM and rds,on. Since

the NMOS resistance is of fixed value, to reach a higher level the conductance of

the cell has to increase more.

From the available data can be deduced that every value (verify step Vj) cor-

responds to the conductance right after the previous programming pulse Pj but

3.8 rram transition values extraction 57

also to the conductance at the beginning of the next programming pulse Pj+1. If

between two steps j and j + 1 the conductance grows from Gj to Gj+1, it means

that the pulse Pj+1 had an impact on the RRAM causing a variation of ∆Gj+1.

Intersecting each conductance value Gj with its previous and its next program-

ming pulse allows reconstructing all currents and voltages that act on the cell

during the whole transition. (Figure 3.20).

4
S TAT I S T I C A L A N A LY T I C A L M O D E L O F 4 K B I T R R A M A R R AY

This chapter presents the development of a statistical model with the purpose of predicting

the programming variability of the HfAlO RRAM array that was described and analyzed

in the previous chapters. Different program and verify algorithms are implemented on top

of the proposed model and the simulated results are compared with the experimental data

measurements highlighted in the previous chapter, in terms of median value, program-

ming variability, and statistical spread. After the extraction of fitting parameters for all

the analyzed programming schemes, a Monte Carlo simulation implementation will be

discussed, with the aim of fitting the experimentally extracted variability distributions in

terms of cycle-to-cycle and device-to-device variabilities. Then, a similar approach will be

adopted to study and analyze a model for the reset transition, through a similar program

and verify programming scheme. In the end, a brief introduction is made about the case

study of neural network implementation, and about the structure of the model’s algorithm

that will be used in the following chapter to perform large-scale inference simulations.

4.1 introduction

Through this section will be proposed the development of a stochastic analytical

model for the switching transition of an H f Ox-based RRAM. Inserting the afore-

mentioned model in a real case scenario of one Transistor - one Resistor (1T1R)

structure will allow to simulate and analyze, with a unique set of parameters, the

behavior of the device under different applied program and verify algorithms,

starting from the IGVVA and ISPVA discussed in the previous chapter (Section

3.2). In the first place, the implemented formulae will be discussed along with the

simplifications applied to maintain the compactness of the model. Then, a set of

parameters will be extracted to fit the median conductance transition for each of

58

4.2 model description 59

the proposed algorithms. After this, a statistical variability will be added to shape

the distribution of the parameters in a Gaussian form, and a Monte Carlo method

analysis will be performed on the model to reproduce all experimental results in

terms of After Switching (AS) and End of Algorithm (EA) values considering the

cycle-to-cycle (C2C) and device-to-device (D2D) variability distributions. This work

will open the possibility to study and research for new and different programming

schemes to further reduce the variability and enhance the precision of multilevel

programming, considering also the time and the power consumption for the whole

operation.

A similar approach will be applied to deduce and analyze an equation for the

reset transition’s model, for the same RRAM device.

The models derived over this chapter will be implemented as a case study in a

simulation of a hardware neural network, with particular emphasis on the effect

of the programming variability on class accuracy reachable during the inference

phase of the network.

4.2 model description

The goal for this model is to accurately describe the increase of the conductance

value of an RRAM device under the given initial conditions of conductance G0,

the voltage across the device VR, and the flowing current IR. The model should be

able to reproduce deterministic and statistical nonidealities, such as both C2C and

D2D distributions, and the read current noise. It should be compact enough to

enable the simulation of a high number of devices (in the order of 1000 or 10000),

even with a home computer requiring a small amount of time in the order of few

minutes.

4.2 model description 60

4.2.1 Differential Equation

The starting point for the model is the rate equation for the filament growth of

the RRAM device described in section 2.2. It is straightforward to translate the

filament growth into conductance growth using the following steps:

dφ
dt = Ae

−EA
kT

G = 1
ρ

π(φ
2)

2

L = βφ2

φ =
√

G
β

dG
dt = 2βφ

dφ
dt

dG
dt

= A∗
√

Ge
−EA

kT (4.1)

The resulting equation (4.1) expresses the rate of the conductance increase over

time. A∗ is a constant factor regrouping the geometrical parameters β and the pre-

exponential factor A of the rate equation of φ, G is the actual value of conductance,

EA is the activation energy, k the Boltzmann’s constant and T the temperature of

the device expressed in Kelvin. When integrated, the equation (4.1) gives as the

output the conductance of the RRAM cell.

The activation energy EA is affected by the energy barrier lowering effect due

to the applied voltage VR across the device, EA = EA0 − αqVR (Section 2.2). The

temperature T, instead, is subjected to a rise due to the Joule’s effect, T = T0 + RthP,

being P = VR IR the power flowing across the device at any time and Rth the

thermal resistance of the conductive filament. For the sake of simplicity and the

compactness of the proposed model, the thermal resistance will be assumed to

be constant over the whole conductive transition. To summarize, the final rate

equation of the model is expressed as follows:

dG(t)
dt

= A∗
√

G(t)e
− EA0−αqVR(t)

kT0

(
1+

Rth P(t)
T0

)
(4.2)

4.2 model description 61

Figure 4.1: (a) Schematic representation of a 1T1R structure. VR is the voltage across the

device that has to be calculated from the working point, VM is the voltage

across the NMOS; (b) Waveform applied to the top electrode VTE during ISPVA

programming scheme; (c) Computation of VR and of the current flowing

through the series by finding the working point, i. e. the intersection between

the NMOS characteristic for a particular VG (in black) and the load curve of

the RRAM device (in blue).

4.2.2 Integration

The rate equation (4.2) is an Ordinary Differential Equation and it contains both the

integral function G(t) and the parameters that are dependent on time, such as

VR(t) and IR(t). Thus, the integration of equation (4.2) is not straightforward, and

it cannot be resolved analytically.

By knowing the initial conditions G(0), V(0)
R , I(0)R , an iterative method can be

adopted to solve the equation.

Since the purpose of this work is to simulate the switching behavior of a full

1T1R cell, henceforth for device will be intended a series of an RRAM device and

an NMOS transistor as depicted in figure 4.1a, with the bottom electrode of the

resistive memory connected to the drain terminal of the transistor.

The 1T1R structure complicates the implementation of the model because, to

calculate the voltage VR and the current IR of the RRAM, a series of iterative steps

must be performed. Indeed, by knowing the overall applied voltage VTE across

the device (Figure 4.1b), the RRAM conductive value G, and the I-V characteristic

curve of the NMOS for the various VDS and VG, it is possible to find the working

4.2 model description 62

point of the system and extract the desired values of the RRAM cell needed by the

model (Figure 4.1c). Then, it is possible to proceed with the integration of the rate

equation (4.2).

To summarize, the following steps have to be executed to perform one integration

step.

• Compute the device load curve I(k)R = G(k−1)VR = G(k−1)(VTE − V(k−1)
DS)

using the values of the previous step and intersect it with the NMOS I-V

characteristic to extract the new value of V(k)
DS .

• Update the new value V(k)
R = VTE −V(k)

DS .

• Compute the new current value I(k)R = IMOS(V
(k)
G , V(k)

DS). Since the RRAM and

the NMOS are in series, the intersection between the two curves represents

the working point of the system.

• With the updated V(k)
R and I(k)R , compute the conductance update ∆G(k) using

the formula (4.2).

• Compute the conductance value G(k) = G(k−1) + ∆G(k)∆t

Particular attention must be paid to the last step. The integration method here

applied is called Forward Euler’s method, and it is the most basic explicit method

for numerical integration of ordinary differential equations, given the initial values.

But, especially for stiff equations such as the equation (4.2) implemented in this

work, this method can produce unstable output, i. e. the numerical solution grows

very large while the exact solution should not, with the consequent divergence of

the algorithm.

This divergence problem can be avoided most of the time by decreasing the

integration timestep ∆t. Considering that all the programming algorithms in this

work have a step duration of 1µs, ∆t should not be higher than that. In most

cases, ∆t = 1ns is enough to guarantee convergence. This means that, for example,

between two consecutive increases of the VTE voltage during ISPVA programming,

a total of N# = 1µs
1ns = 1000 integration steps will be performed. Further decreasing

∆t directly impacts the performance of the model.

4.2 model description 63

IGVVA10 IGVVA100 ISPVA100

Forward Euler 0.14s 1.41s 1.32s

Heun 0.14s 0.16s 0.95s

ODE23 0.09s 0.12s 0.12s

Table 4.1: Execution time comparison table between the three proposed ODE solvers, for

the three analyzed algorithms. Forward Euler and Heun’s methods are com-

puted by using the maximum ∆t possible for convergence. ODE23 solver is the

fastest overall, and while it gives just a minor speedup for IGVVA10, it results

necessary for IGVVA100 and ISPVA100, enabling a high-speed simulation of a

large number of cells.

A more advanced and improved version of Euler’s method, Heun’s method, can

be implemented. It is a second-order method that uses a two-step procedure

to increase the approximation accuracy of the result. First, an intermediate step

is computed: G∗i+1 = Gi + ∆t f (ti, Gi), in which f () is the right hand term of

the equation (4.2) and G∗ is an intermediate value of conductance at the next

step, called predictor, calculated exactly as with Forward’s Euler method. Then,

the effective conductance value is computed with more accuracy: Gi+1 = Gi +

∆t
2

[
fn + f (ti+1, G∗i+1)

]
By using Heun’s integration method, it is possible to increase the value of

the timestep ∆t even of factor 10 without causing instability, and consequently

decrease of the same factor the computation time.

To further decrease the computational time of the algorithm, a more complex

algorithm will be used to solve the ordinary differential function, ode23 embedded

in the MATLAB suite. Ode23 algorithm features two single-step formulas, one

of the second-order and one of the third-order. It is faster to compute than the

previously discussed solvers because it features also dynamic timesteps, that

are adjusted at every algorithm’s step, in order to guarantee convergence. Since

equation (4.2) has a steep change at the edge but after that follows a relatively flat

behavior, overall the ode23 solver is the fastest between the analyzed algorithms.

4.2 model description 64

Figure 4.2: IGVVA100 - 40µA target. (a) Waveform applied to the gate terminal (program

pulses P, in red) and verify pulses (in violet); Evolution in time of the conduc-

tance value of the RRAM cell (in red); (c) Read current of the 1T1R structure

(in red). The first value that overcomes the target (blue dashed line) represents

the After Switching (AS) current value.

A comparison of the execution times with the three solvers and for the three

algorithms can be seen in table 4.1.

4.2.3 Program and verify algorithms

All of the program and verify algorithms explored in chapter 3 consist in two

separate phases constantly alternating one to each other. In the first phase, the

program (P) phase, the cell’s conductive value is programmed by applying a proper

combination of voltages to the device; the following phase, the verify (V) phase,

is used to read and monitor the conductive value reached during the previous P

phase, by reading the device’s current with a defined applied voltage. If during

the V phase the current overcomes a previously defined threshold value, the cell

is considered correctly programmed and the algorithm stops. On real hardware,

both of these steps must be accurately defined and executed, but in this simulation

only the program P part will be implemented by applying the correct voltages

with correct timings to the model, leaving the verify phase to be easily simulated

via software.

An example programming of the level LRS4 with IGVVA100 is depicted in figure

4.2. With every programming pulse of the duration 1µs, the conductance of the

cell grows and stabilizes at a certain level limited by the compliance current of

4.3 parameters’ tuning 65

Figure 4.3: IGVVA10 - 40µA target. Read current calculated by (a) keeping α at a fixed

value and by increasing A, the curve begins to rise earlier and with a higher

slope; (b) the same can be seen by fixing A and increasing the value of α.

the current programming step (Figure 4.2b). After the programming pulse, the

verify phase is applied (represented as violet pulses in the figure), and the final

conductive value is sampled as Iread, depicted in figure 4.2c. If the read current

overcomes the target of the desired LRS level, the algorithm ends.

For both the two analyzed algorithms, ISPVA and IGVVA, the structure of the

model’s implementation remains the same. In fact, during ISPVA’s P phase, a

constant VG and a ramp of VTE are supplied to the device’s terminals, while during

IGVVA’s P phase the opposite: a constant VTE and a ramp of increasing VG. Both

programming schemes feature the same V phase with VG = 1.7V and VTE = 0.2V.

4.3 parameters’ tuning

It is now the time to fit the experimental data, and the first step to do so is to

simulate the behavior of a nominal cell, chosen to be represented by the median

curve of each algorithm and each level. Note should be taken that the median curve

does not represent a real device and it itself might slightly vary between different

levels or between two different datasets, but it is a great starting point to find

an acceptable range for the free parameters of the model described by equation

4.3 parameters’ tuning 66

Figure 4.4: IGVVA10 - 40µA target. Effect of the modulation of Ea and A on the read

current. (a) Parameters without modulation; (b) Only A (in blue) or EA (in

green) are modulated; (c) Both parameters are modulated.

(4.2), namely A, EA0, α and Rth. Instead, k = 1.38× 10−23
[

m2kg
s2K

]
, T0 = 300[K] and

q = 1.6× 10−19[C] are constans.

The activation energy EA0, as described in the literature, should be around 1eV

The barrier lowering coefficient should be lower than 1. The thermal resistance Rth

instead depends on the geometrical size of the conductive filament, on the material,

and the density of oxygen vacancies inside the oxide layer. In this discussion, an

accepted value for the thermal resistance is around Rth = 0.1 − 1
[

K
µW

]
. The

preexponential factor A will be chosen accordingly to adjust the amplitude of the

rate equation.

By trying different combinations of A and α, it was noticed that these two param-

eters have a correlated effect on the algorithm: by increasing A the conductance

grows faster, and the same happens by increasing α, as shown in figure 4.3.

4.3.1 Ea and A modulations

To better fit the experimental curves, two effects are added to the model, with the

following hypothesis.

As the filament grows and the conductance of the cell increases, the energy

needed for a further increase of the filament size slightly decreases. The magnitude

of the whole variation is considered to be around 0.1eV, and this effect is added

4.4 fitting of median curves 67

A
[√

S
s

]
α[V−1] EA[eV] Rth

[
K

µW

]
IGVVA10 1× 1013 0.5 1.2 0.8

IGVVA100 2× 1010 0.5 1.0 0.8

ISPVA100 3× 1013 0.5 1.2 0.1

Table 4.2: Selection of parameters that best fit each algorithm.

to the formula as EA = EA0 − 400 eV
S · G. G is the conductance of the cell and EA

linearly decreases from circa 1.2eV to 1.1eV during the transition.

On the other hand, as the filament increases in size, the number of ions that

can be moved from the edges to the filament, and thus contribute to the filament

expansion, is constantly decreasing, highly slowing down the process over a certain

threshold. This second behavior is modeled by modulating the preexponential

factor with a rapidly decreasing function: A = A0
1

1+
(

G
150µS

)8 . These two effects are

summarized in figure 4.4.

4.4 fitting of median curves

After a coarse decision of the parameters, it is possible to finely tune them and fit

the median curves of each algorithm.

Figure 4.5(a-i) shows the model in action with the fourth LRS level (40µA) for

all three algorithms. The goal of this part is to fit precisely the experimentally

measured data, and these fittings were obtained by using the parameters listed

in table 4.2. As one can notice, the values slightly change from an algorithm to

another to obtain a complete overlap between median curves and the model. The

left column represents the read current given as the output during the verify

phase after each programming step of the algorithms. The column in the middle

shows the voltage VR across the RRAM device during the programming, while

the rightmost column shows the current during the P phases. Note that when

the algorithm reaches the desired read current target, it stops the P phases and

only the verify phases continue. This means that the last part of the transient after

4.4 fitting of median curves 68

Figure 4.5: Fitting the median curves with parameters shown in table 4.2. (a-c) IGVVA10,

(d-f) IGVVA100, (g-i) ISPVA100. (j-l) instead show the fitting of all the 4 LRS

levels.

the AS shown in the graphs actually does not exist, but it is just the output of the

data extraction process. The last row of the figure, 4.5(j-l), depicts the read current

calculated for all four LRS levels.

4.5 distribution fitting through monte carlo simulations 69

Figure 4.6: Histograms of the variability added to the devices’ parameters, (a) the initial

conductance value G0, (b) the pre-exponential factor A and (c) the parameter

α. For every device, a value having these probability distributions is selected,

and it introduces variability in the model.

4.5 distribution fitting through monte carlo simulations

Since the model is able to reproduce with high precision the set transition of a

single curve, the next step is to extend its functioning to the simulation of a full

array of 1T1R devices by using the previously described equation and to fit the

statistical distributions extracted in chapter 3.

To do so, the parameters will be treated as statistical distributions having a

mean value, corresponding to the previously tuned parameters, and a standard

deviation. For simplicity, the distributions will have a Gaussian shape.

The generic parameter X of a device d can be written as Xd = µX + σXd, with

µX being the median value, or the nominal value of the parameter found in the

previous sections, and σXd the standard deviation of that parameter (Figure 4.6).

By doing so, each device will have its unique set of parameters, and the median

value will remain constant.

By tuning the amplitude of σXd it is possible to recreate accurately the experi-

mentally measured distributions.

On top of that, a second fluctuation can be added around the just defined Xd, so

that at every programming cycle the device suffers from a variability around its

median value, that differs from the fluctuations of other devices. Xd,c = Xd + σXc.

σXc is sampled once per device, and it is the standard deviation responsible for a

4.6 unified model description 70

Figure 4.7: Simulation of the read current featuring four LRS levels, namely 10µA, 20µA,

30µA, and 40µA, for the three algorithms (a) IGVVA10, (b) IGVVA100 and (C)

ISPVA100.

variation during the different cycles. If the value of σXc is small, the device will

follow always a similar path, varying very little between different cycles. Instead, if

σXc is big, that particular device will suffer from high C2C variability. This behavior

is observed and described during the analysis of the experimental data in the

previous chapter.

The electronic noise seen during the current read-out is also modeled into the

simulation, and it can be expressed as a µσI = 0.85µA, i. e. the median value of the

Gaussian distribution of the electronic noise. The standard deviation σσI is chosen

to be 0.2µA. Since there was no evident difference between C2C and D2D behavior

in terms of noise, as discussed in section 3.6, the value will be sampled every time

a new verify phase - V of the algorithm is simulated.

This is the typical Monte Carlo method approach, and it consists in solving

the equation (4.2) hundreds of times with the introduction of random noise and

random fluctuations around parameters’ median values.

4.6 unified model description

Since the goal is to have a model that is agnostic to the applied program and verify

algorithm, and thus able to fit every algorithm with a single set of parameters

obtaining the same results as the experimental data even for the statistical distribu-

4.6 unified model description 71

Figure 4.8: Cumulative distributions of the After Switching conductance value for the

three simulated algorithms, (a) IGVVA10, (b) IGVVA100 and (C) ISPVA100. The

model (in blue) follows with high accuracy the distribution of the experimental

data (in red). IGVVA10 results in a steeper curve, meaning that the standard

deviation of the final value is lower compared with the other two algorithms.

tions, the model shall be finely tuned in the median value of the parameters and

both the C2C and D2D variabilities.

To be able to describe all three algorithms with a single set of parameters and

variability values, some fitting compromises should be made. It is an acceptable

trade-off considering that experimental data naturally present non-negligible

variability even between two adjacent levels or between two different measurement

sets. The closest fitting to every algorithm is reached by choosing the parameters

as follows: α = 0.8V−1, A = 5× 108
√

S
s , EA = 1.0eV, and Rth = 1e5 K

W .

The values for the variabilities used in the simulations are the following:

σA,d = 3e7
√

S/s, σA,c = 0.8e7
√

S/s, σα,d = 0.05V−1, σα,c = 0.01V−1, while noise is

expressed as µσI = 0.85µA and σσI = 0.2µA.

The median values for the current of the four main levels of the three ana-

lyzed algorithms are depicted in figure 4.7. As one can notice, the final value

is reached with discrete accuracy, and most importantly, as shown in figure 4.8,

the distribution of the After Switching values of conductance follow accurately

the experimental data, confirming once again that IGVVA10 is the most accurate

programming scheme.

Comparing the C2C and D2D distributions shown in figure 4.9, it is possible to

notice how the model is able to accurately predict the statistical distributions of the

4.6 unified model description 72

Figure 4.9: C2C vs D2D variability of the experimental data (top row) compared to the

developed model (bottom row) expressed as σG as a function of the median

value µG of the after switching conductance value. From left to right the three

algorithms are simulated: (a,d) IGVVA10, (b,e) IGVVA100, and (c,f) ISPVA100.

devices, for all three algorithms and all the tested LRS levels. Particular attention

must be paid to C2C distribution (represented in red). The elongated shape of the

distribution means that by statistically varying the parameters it is possible to

recreate the presence of different kinds of devices, namely the cleanest ones, i. e.

with a lower variability between cycles, and the dirtiest ones, with higher values of

standard deviation.

Looking instead at the same results from another point of view, in figure 4.10

the cumulative distribution of VMID is represented, showing how early a device is

transitioning from HRS to LRS state. VMID, as described in the previous chapter, is

the control voltage (VG in case of IGVVA), for which the read current reaches half of

the LRS value, in this case Iread = 20µA. On the bottom row 4.8c,d the results from

the simulations of the IGVVA100 programming scheme are shown. Differently

4.6 unified model description 73

Figure 4.10: Cumulative distribution of VMID, comparison between experimental data

(top row) and model simulation (bottom row) for IGVVA100 programming

scheme. On the left, each curve represents a cycle, and each dot on the

curve represents a device. On the right, instead, the C2C behavior is shown,

meaning that each curve represents a device, and the inclination of the curve

represents the variability of that device.

from the experimental data, which represents 1000 cycles of 1000 devices, the

model simulated only 100 devices, each of them for 100 cycles.

Moreover, the experimental data considers all the cells that reach a correct set

value, while our model is targetting particularly the median behavior of the devices.

This explains the thinner and more regular distributions of the model analysis

compared to the experimental data. Since the vast majority of the experimentally

4.7 reset transition modeling 74

Figure 4.11: Correlation between the median slope of each device (C2C), i. e. how many

µA the conductance increases for a single programming step, and the stan-

dard deviation of the programming accuracy. Each point represents a device.

(a) shows IGVVA100 and (b) ISPVA100 programming schemes simulations,

both for LRS4 with target Iread = 40µA.

measured cells follow the median behavior, and only a few of them fall on the

two extremes, this analysis demonstrates that the model can predict the statistic

behavior of the array with good approximation.

Comparing instead, the slope of the set transition with the reached accuracy

in the same way it was done in section 3.5, shows a similar correlation between

the chosen figure of merits. The model, as it is expected, can easily simulate the

desired behavior intrinsically confirming the relevance of the model accuracy.

4.7 reset transition modeling

Through this work, the reset transition performed with an ISPVA algorithm was

also briefly analyzed in section 3.2.3. At this scope, a model similar to the one

discussed above is proposed, following the same developing path that starts from

the median values and goes to the variability analysis, exactly as done before with

the development of the set model.

4.7 reset transition modeling 75

4.7.1 Reset model rate equation

During the set transition, from a geometrical standpoint, the width of conduc-

tive filament changes, increasing with every step until the compliance current is

reached. Instead, during the reset transition as already discussed in section 2.2, the

conductance changes due to a gap that forms in the filament and increases in size.

For this reason, the rate equation of the conductance during the reset transition

is modeled through a different equation than the set model.

dG(t)
dt

= −Ae
− EA0−αqVR(t)

kT0

(
1+

Rth P(t)
T0

)
(4.3)

The differences with the set model are the minus sign in front of the equation, to

express a decrease in the conductance during the process, and the absence of the

square root of G in the right term of the equation. This is justified by the different

relation that connects the geometric and the conductance variations.

4.7.2 Reset model algorithm

The Program and Verify algorithm used to reset the conductive value of the 1T1R

cell is a modified version of the ISPVA programming scheme used during the set

transition.

In fact, during the P phase, the gate terminal is polarized at a fixed voltage

VG = 2.7V, while the voltage across the device is applied with opposite polarity, i. e.

keeping VTE at ground and applying a voltage ramp to VBE. Like during ISPVA100

programming for the set transition, the voltage ramp starts at 0.5V and stops at

2.0V increasing with 100mV steps occurring every 1µs. The V phase instead is

performed exactly in the same way as for the set algorithms, with VG = 1.7V,

VTE = 0.2V, and VBE at ground.

4.7 reset transition modeling 76

Figure 4.12: Reset transitions for levels LRS 1-4 simulated (a) using the same parameters

for all levels and (b) adjusting thermal resistance for each level.

4.7.3 Reset model fitting

To fit the median device curves, a distinction has to be made for the different

programmed levels. The chip analyzed in chapter 3 consists of 4096 devices divided

into four different regions for the four different LRS levels. Each device was initially

formed with the compliance current of that particular level, so that the width of

the filament changes between LRS1, LRS2, LRS3, and LRS4. On an actual chip,

every device will be electroformed with an equal compliance current.

This difference in compliance translates into a difference in the parameters for

each level. To simplify, only the thermal resistance Rth is directly affected in this

model, increasing the value as the filament width decreases.

The parameters chosen for this model are the following: α = 0.2V−1, A =

3× 106 S
s , EA = 1.0eV, and the thermal resistance for levels from LRS 1 to LRS 4

respectively is Rth = 20e6, 11e6, 8e6, 7e6 K
W .

As depicted in figure 4.12b, the median values of the four levels are followed

accurately by the model. Instead, by keeping the same parameters’ values for all

the levels, the result changes slightly, and it can be seen in figure 4.12a.

By adding variability on top of the parameters, in the same way it is done for the

set transition model, the result is the following, showing an accurate representation

4.8 simulation container for neural network implementation 77

Figure 4.13: C2C (in red) variability and D2D (in black) extracted from experimental data

(a) and the model simulation (b).

of the cycle to cycle and device to device variabilities in figure 4.13. This model is

able to accurately simulate the variability distribution occurring during the reset

transition. Similarly to what has been discussed for the set model, the reset model

predicts the behavior of different types of devices, namely the ones with a clean

transition featuring a lower AS variability, and in the same way the more abrupt

that cause a higher C2C variation of the programmed conductance value.

4.8 simulation container for neural network implementation

Now that the models for both set and reset transitions implementing different

program and verify schemes are validated over experimental measurements, it is

possible to integrate everything inside a simulation of a hardware neural network

implementation for image classification.

In the next chapter a deeper analysis will be performed, comparing results of the

neural network’s inference using variability values extracted from experimental

data in chapter 3 and using a fully simulated network by including the model

developed in this chapter.

5
F U L LY- C O N N E C T E D N E U R A L N E T W O R K I M P L E M E N TAT I O N

U S I N G 1 T 1 R H A F N I U M - O X I D E - B A S E D R R A M A R R AY S

This chapter presents the implementation of a fully connected multilayer neural network

with RRAM arrays discussed in the previous chapter. Particular attention will be paid to

the impact of the programming variability affecting the hardware device. Simulations will

highlight the different trade-offs that have to be considered, demonstrating the need for an

accurate statistical model that aims to the optimization of the neural network design in a

real-case scenario.

5.1 introduction

Recent works [59, 60, 61] have investigated the ability to implement neural net-

works in hardware by the use of HfO-based RRAM arrays. In this chapter, such an

application will be proposed, implementing a multilayer Fully connected Neural

Network (FC-NN) for image recognition, using an array of Hafnium Oxide RRAM

devices in a 1T1R configuration. As already introduced in chapter 1, the multi-

level operation is essential to achieve a high inference accuracy with such neural

networks able to reach the performance close to a software implementation of

the same network. In fact, by increasing the number of programmable levels, a

finer synaptic weight closer to analog programming can be achieved. A universal

problem with multilevel programming is the presence of variability and noise that

can be detrimental to the accuracy of the final level, making a further increase

of the level’s number useless. Thus, a common goal is to refine the multilevel

operation of such devices, increasing the number of levels and reducing the pro-

gramming variability. In previous chapters different program and verify schemes

are analyzed and in chapter 4 a stochastic model able to predict such programming

78

5.2 fully connected neural network 79

Figure 5.1: (a) Schematic representation of a two-layer fully connected neural network,

adapted with permission from [62]; (b) Example of some handwritten digits

contained in the MNIST dataset.

variability is developed. A stochastic model is a very powerful tool to predict the

variability with different programming schemes, and if implemented into a neural

network simulation, can be exploited to optimize the network aiming to increase

the inference accuracy.

Through this chapter, different network configurations will be studied with

particular attention to the trade-offs that guide the design choices of the neural

network in order to increase the inference accuracy, while maintaining low power

consumption and compact network size. The programming variability affecting

the physical devices will be taken into consideration and the different program

and verify techniques will be analyzed and exploited to mitigate the programming

variabilities. Some array nonidealities such as IR drop will be also taken into

consideration. After that, the statistical model developed in chapter 4 will be

integrated into the neural network simulation, in order to compare the achieved

results and fully simulate the inference process on a pre-trained network.

5.2 fully connected neural network

As already briefly introduced in chapter 1, a fully-connected Neural Network

can be implemented in a smart way employing emerging memory devices dis-

posed in crossbar structures, taking advantage of the natural predisposition to

perform Matrix-Vector Multiplication (MVM) directly in-situ, thus mitigating the

5.2 fully connected neural network 80

Figure 5.2: (a) Example of a 28x28 pixels greyscale image from MNIST test dataset; (b)

The same image but resized to 14x14 pixels and with only black/white color

depth.

Von Neumann memory bottleneck by avoiding millions of memory accesses and

performing vectorial operations directly.

In this chapter, a particular implementation of a fully connected deep neural

network specialized in classifying handwritten digits will be proposed and devel-

oped (Figure 5.1A). The implementation consists first in a training phase, during

which the synaptic weights of the network are trained, i. e. optimized against a

high number of example images. The second phase of the implementation, namely

the inference, consists in classifying other images that the network has never seen

before. Both the training and the inference datasets used in this work are from

the Modified National Institute of Standards and Technologies database (MNIST)

dataset (Figure 5.1b).

Each image of the MNIST dataset is an 8bit grayscale square (28x28 pixels)

picture, representing a handwritten digit from 0 to 9 (Figure 5.2a). Each image

comes with an attached label representing its value.

The network will be virtually implemented on the 4− kbit 1T1R array from

IHP Microelectronics, already deeply analyzed in chapter 3, however, different

configurations will be considered exploiting the combinations of more than one

array chips in order to increase the complexity and the size of the network to

increase the final accuracy.

Since the array consists of 64x64 cells, it is convenient to reduce the number

of the requested input neurons. To do so, the original dataset was simplified,

5.3 incremental network quantization algorithm 81

reducing the size of the images to just 14x14 pixels, and converting the greyscale

color depth into black and white values, represented by "0" and "1" instead of a

floating-point value (Figure 5.2b).

This allows us to reduce the number of the required cells of the input layer to

just 196. An additional cell is used as bias. The bias is a constant term and it has

the effect of adjusting the output to the activation function [63].

The output layer will be composed of just 10 neurons, each one for each output

class.

In this work, only two-layer neural networks are explored (Figure 5.1a), thus

containing only one hidden layer of neurons between the input and the output

layers. The number of hidden neurons was chosen accordingly to study the

influence of the network size on the final classification accuracy.

The simplest network as described above can be implemented on a 64x64 array

by concatenating 4 different arrays as shown in figure 5.3. The three arrays on

the left act as the first synaptic layer that connects the input of the network to

the input of the second layer. The input signals, entering as voltages from the left

of the network are propagated into the second layer (right array) after the MVM

are performed between the signals and the conductance’s synaptic weights. The

output of the first layer, given as a current, passes through a nonlinear function

such as a sigmoid, here entirely simulated via software, and enters the second

synaptic layer that after an equivalent process generates the output of the system,

firing the neuron that represents the output class, i. e. the label representing the

number given to the network as the input image.

5.3 incremental network quantization algorithm

As shown in chapter 3, the total number of separate conductive levels that can be

successfully programmed on the 1T1R array chip in our study consists of 8 LRS

levels and one HRS level (Figure 5.4c).

The experimental data show that the HRS value, despite being targeted to 25µS,

suffers a sort of relaxation and the median value of the final conductance decreases

5.3 incremental network quantization algorithm 82

Figure 5.3: Implementation of a two-layer fully connected neural network on real-size

crossbar arrays, consisting of 64x64 matrices of 1T1R devices analyzed during

this work. To fully implement the network, four arrays are needed for the first

synaptic layer, and one array for the second layer.

down to about 8µS just after few read cycles. This gave the space to virtually add

another LRS level that can be programmed targetting 25µS. This solution increases

the total number of levels to nine LRS and one HRS (Figure 5.4c).

On the other hand, a software implementation of a neural network typically

employs a virtually continuous distribution of the synaptic weight values, by

representing each weight with a precision of 32 or even 64bit in a floating-point

format. This is one of the main differences between software and hardware im-

plementations of such networks. Reducing the precision of the synaptic weights

decreases the overall accuracy of the network, but this effect can be traded with the

overall speed, size, and power consumption of the network. Finally, by increasing

the size of the network it is possible to increase the overall accuracy compared to

smaller software implementation, while still having a smaller power impact.

5.3 incremental network quantization algorithm 83

Figure 5.4: (a) Schematic representation of the differential configuration of conductance

values used in this work; (b) Example of different weight combinations that

can be selected to form the 19 differential levels. The colors in the color

map represent the standard deviation of the single levels using the IGVVA10

programming scheme; (c) experimentally extracted 8 LRS levels and one

HRS level using the IGVVA10 programming scheme. The figure highlights

the difference between the After Switching (AS) value and the End of the

Algorithm (EA). Adapted with permission from [55]. Copyright 2021, IEEE.

Another way to increase the accuracy of a neural network while using a discrete

number of levels is to act on the quantization method. Instead of simply rounding

all the trained weights to their closest discrete value, an iterative incremental

quantization algorithm can be applied to the network.

For this purpose, an Incremental Network Quantization (INQ) algorithm was

developed by Zhou et al. [64] and it is implemented in this work.

The INQ algorithm is applied during the training of the network and consists of

several steps, as depicted in figure 5.5.

• First, the network is trained with floating-point values.

• Then, 50% of the weights is randomly chosen and get quantized, i. e. rounded

to the next closest value.

• The network is then re-trained, but keeping the previously quantized weights

fixed and updating only the remaining ones, that are free to adapt to the

modified situation.

• Another 50% of the remaining floating point weights is quantized and fixed.

5.4 neural network accuracy 84

Figure 5.5: Schematic representation of the Incremental Network Quantization algorithm

on a 5x5 matrix. (Top row) Half of the floating-point weights in a pre-trained

network are randomly selected and (center) quantized. (right) The remaining

floating point weights of the network are then retrained. The bottom row

shows the next iterations of the algorithm until all the weights are quantized

(bottom left).

• The procedure is repeated until all the cells are quantized.

In this work, the chosen percentages of INQ are: 50%, 75%, 87.5%, 100%. The

number of finite quantized levels is chosen accordingly to the used device. In the

analyzed case study, each cell can be programmed with up to 9 different LRS levels

and one HRS level, but since the cells are used in a differential configuration to

exploit both positive and negative levels (Figure 5.4a), a total number of 19 discrete

levels can be programmed.

5.4 neural network accuracy

A neural network with 196 input neurons, 20 hidden neurons, and 10 output

neurons, trained with a backpropagation algorithm employing floating-point

values for the synaptic weights, can reach a class accuracy of 93.27% during the

inference when supplied with the test dataset from the MNIST database. By simply

quantizing the weights to their closest discrete value, the accuracy drops down to

5.4 neural network accuracy 85

20h 50h 100h

Training FP64 93.27% 95.78% 96.77%

INQ 19L 92.16% 95.41% 96.67%

INQ 17L 91.84% 95.33% 96.58%

INQ 15L 91.56% 95.29% 96.40%

INQ 13L 90.97% 94.98% 96.45%

INQ 11L 89.69% 94.64% 96.44%

INQ 9L 88.72% 94.05% 96.00%

INQ 7L 85.57% 92.86% 95.20%

INQ 5L 70.27% 89.92% 93.14%

Table 5.1: Accuracy of the real network inference after quantizing the synaptic weights to

a different number of levels. The first row indicates the size of the hidden layer.

82.7%, and by applying the INQ training algorithm discussed in section 5.3, the

accuracy increases up back to 92.16%. This means that additional 1000 images of

the 10000 images test dataset are correctly classified in comparison with a network

that has a simple rounding quantization.

Increasing the total number of neural synapses by increasing the size of the

hidden layer from 20 to 50 neurons, can increase the inference accuracy of a

floating-point network up to 95.78%, and if the number of hidden neurons is

brought up to 100, the maximum class accuracy of the inference reached is 96.77%.

These results are summarized in table 5.1.

In figure 5.6, it can be noticed how the decrease of quantization levels affects the

ability of the network to correctly classify the images. This explains the need for

studying and enhancing multilevel programming schemes.

By further decreasing the number of levels, for example, to 7 quantized levels, it

is possible to have a distance ∆W between two consecutive weights of ∆W = 25µS,

or to use more distant levels and have a ∆W = 50µS or even ∆W = 75µS.

One interesting result that is highlighted in figure 5.6b, is that when ∆W in-

creases also the accuracy of the network increases.

5.5 variability, nonidealities , and impact on inference accuracy 86

Figure 5.6: Calculated inference accuracy of the 2-layer FC-NN with NH = 100 as a

function of the number of synaptic weight levels (a) by IGVVA-100, ISPVA,

and IGVVA-10 CDFs. The higher number of levels combined with IGVVA-10

programming leads to an accuracy η close to FP-64. for (b) various steps ∆W

in weight mapping, and (c) increasing size of hidden layer NH . Adapted with

permission from [55]. Copyright 2021, IEEE.

5.5 variability, nonidealities , and impact on inference accuracy

Having the ability to simulate the training and the inference of a neural network

allows us to understand many of the trade-offs weighting on the design choices.

Unfortunately, when the network is transplanted into a real hardware device,

the presence of electronic noise, programming variability, and other types of

nonidealities can influence the performance and the accuracy of the system in a

catastrophic way. For this reason, it is essential to be able to consider all these

kinds of nonidealities at a simulation level.

We know from chapter 3 and chapter 2 that the conductance values programmed

into the RRAM array present some strong variabilities. In this specific application,

it means that every synaptic weight will not be precisely the discrete value given

by the training optimal for the network, but it will likely suffer from variability

and will have a Gaussian shape distribution, as shown in figure 5.7. Another

nonideality that affects the neural network when implemented on a real crossbar

array, is the presence of some stuck cells that can be both at HRS or LRS positions.

Unfortunately, as was already discussed by looking at the experimental data in

chapter 3, the number of stuck cells inside a 4− kbit array can be in the order of

5.5 variability, nonidealities , and impact on inference accuracy 87

Figure 5.7: PDF of the after switching conductance GCELL for the programmed levels

through IGVVA10 programming algorithm.

20-30%. If the network is trained without considering these non-working cells, the

accuracy of the inference performed on a simulated crossbar array and considering

a sparse distribution of these stuck cells will suffer an inevitable reduction.

Fortunately, since the position of the stuck cells is known a priori, it is possible

to exploit this knowledge and train the network considering the presence of some

non-working cells. The network will adapt and this will have a positive impact on

the final value of inference accuracy.

Another detrimental effect on the accuracy of the network is the Ohmic drop

(IR drop) caused by the wire resistances of the array [55]. It depends on different

contributions, namely on the ratio between the cell resistance RLRS and the wire

resistance rwire, on the size of the array, and the voltages applied to the network

during the inference phase.

5.5.1 Program and verify algorithms variability

The program and verify algorithms help to decrease the programming variability

of the set transition in the RRAM cells. In particular, this work focuses on two

5.5 variability, nonidealities , and impact on inference accuracy 88

Figure 5.8: (a) Current consumption as a function of the weight mapping combination; (b)

Impact of the IR drop on the inference accuracy of the calculated FC-NN based

on crossbar arrays of 32x32 RRAM, as a function of the weight combination

for increasing line resistance r; (c) Impact of the IR drop on the calculated

inference accuracy as a function of the size of the crossbar array for increasing

wire resistance r. Adapted with permission from [55]. Copyright 2021, IEEE.

different programming algorithms, already introduced and discussed in previous

chapters.

ISPVA is performed by choosing a particular polarization for the NMOS transis-

tor, and by applying a pulsed voltage ramp to the top electrode of the cell. Each

programming pulse is interleaved with a read pulse with a low top electrode volt-

age, and this way by measuring the current it is possible to extract the conductance

value. At a certain VTE = Vset the RRAM switches from a High Resistive State (HRS)

to the Low Resistive State (LRS) defined by the compliance.

IGVVA, on the other hand, is performed by applying a pulsed voltage ramp on

the gate of the transistor, while keeping the top electrode at a voltage higher than

Vset. This way, the cell increments its conductance at every pulse and it is limited

gradually by the increasing compliance.

The step of the voltage stair in ISPVA was 100mV, while the IGVVA scheme was

stepped with both 100mV and 10mV. There is a direct proportionality between

the precision of the programmed levels and the resulting neural network inference

accuracy (Figure 5.6a).

5.5 variability, nonidealities , and impact on inference accuracy 89

5.5.2 Current consumption

From figure 5.4b, it is evident how the 19 discrete levels can be mapped in different

ways. The same weight W can be obtained by the subtraction of different G+ and

G− conductances. From a variability point of view, it is easy to say that for the

IGVVA10 algorithm the best choice would be combination C10, i. e. the combination

of G+ and G− for which one of the two conductances always assumes the LRS9

value, which provides the cleanest distribution.

From a current consumption point of view, on the other hand, the best solution

would be to use combination C1 in which one of the two conductances is always in

the HRS position, thus has the lowest overall current flowing. This last combination

of course has a detrimental effect on the network accuracy, since the total variability

of the HRS is higher than the variability of the other levels, and this accuracy loss

can be evaluated in figure 5.8b. As one can see, by using a precise algorithm such

as IGVVA10, even if the lower conductive levels present some more variability

compared to the higher levels, the loss in terms of network accuracy is limited

to a range of 0.2%, and the current consumption, with the addition of dissipated

power, can create an interesting trade-off between the two figure of merits (Figure

5.8a).

This trade-off is further complicated if the IR drop is considered. Since the

current amplitude directly impacts the ohmic drop along the wires, the advantages

of using lower conductance values win over the higher level accuracy of cleaner

combinations.

5.5.3 Size of the network

The size of the network, i. e. the number of synaptic neurons directly impacts the

accuracy that can be reached during the inference. In fact, increasing the number

of neurons causes an increase also in the number of synaptic connections. In this

work, several configurations were analyzed in order to better understand how

the size impacts the accuracy. The input layer and the output layer have a fixed

5.5 variability, nonidealities , and impact on inference accuracy 90

number of neurons because each neuron of the input corresponds to a pixel of the

image (14x14 pixels), and each output neuron corresponds to an output class (0 to

9). The topology of the network is a fully connected neural network with only one

layer of hidden neurons. The number of neurons in the hidden layer can vary, and

in this work networks with 20, 50, and 100 hidden neurons were analyzed. The

impact in terms of the inference accuracy is important, increasing by increasing

the size, as can be seen in figure 5.6 and table 5.1.

Since the size of the input layer is higher (14 x 14 + 1 = 197 neurons) than any of

the sides of the array under test (64 x 64), at least four of them must be employed

to create the first layer of synaptic weights that connect the input to the second

layer. An example of the design is shown in figure 5.3.

6
C O N C L U S I O N

In this thesis work, a new statistical model of a 4kbit HfAlO RRAM array was

developed, able to predict the programming variability of set and reset transitions

during the different program and verify algorithms.

First, the physical characteristics of the RRAM device responsible for the con-

ductance increase and the variability were analyzed. The switching mechanism in

OxRAM memories is due to formation and disruption for set and reset transitions

respectively, of a conductive filament made of oxygen vacancies that during an

applied voltage to the top and the bottom electrodes, migrate increasing or de-

creasing the conductance of the RRAM cell. Since the number of these vacancies

is discrete, the resistive switching is strongly impacted by stochastic fluctuations,

which results in the conductance variability of the programmed value.

To reduce such variability and to exploit the multilevel-cell programming, some

program and verify algorithms were analyzed and compared, measuring their

performances in terms of programming accuracy for several Low Resistive State

(LRS) levels.

After that, a statistical model for the RRAM cell was developed starting from

the geometrical variations of the conductive filament during the programming

transitions, and including the I-V characteristic of the NMOS device in series with

the resistive cell that together form a one Transistor - one Resistor (1T1R) structure.

The model was tuned to fit the medians of the transitions measured experimen-

tally for each of the previously described algorithms, achieving up to 8 different

LRSs. Then, the model was enhanced to include stochastic variability on top

of some parameters and tuned to statistically fit the experimentally measured

distributions.

As the last step, implementation of a Fully connected Neural Network (FC-NN)

was studied addressing several trade-offs such as the network size and the accuracy

91

conclusion 92

of the programmed synaptic weights. The model was included inside the neural

network simulation, predicting the inference accuracy drop due to programming

variability.

To conclude, the statistical model developed during this thesis is a useful tool to

predict the programming variability of an RRAM array, enabling the simulation

of large-scale neural network implementations and helping the study of new

programming algorithms aiming at further increasing the accuracy.

B I B L I O G R A P H Y

[1] G.E. Moore. “Cramming more components onto integrated circuits.” In:

Electronics, vol.38 (1965), pp. 114–117 (cit. on p. 1).

[2] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V.L. Rideout, E. Bassous, and

A.R. LeBlanc. “Design of ion-implanted MOSFET’s with very small physical

dimensions.” In: IEEE Journal of Solid-State Circuits 9.5 (1974), pp. 256–268.

doi: 10.1109/JSSC.1974.1050511 (cit. on p. 2).

[3] Mark T. Bohr and Ian A. Young. “CMOS Scaling Trends and Beyond.” In:

IEEE Micro 37.6 (2017), pp. 20–29. doi: 10.1109/MM.2017.4241347 (cit. on

p. 2).

[4] Sayeef Salahuddin, Kai Ni, and Suman Datta. “The era of hyper-scaling

in electronics.” In: Nature Electronics 1.8 (2018), pp. 442–450. doi: 10.1038/

s41928-018-0117-x (cit. on pp. 2, 7, 13).

[5] M. Horowitz. “1.1 Computing’s energy problem (and what we can do about

it).” In: (2014), pp. 10–14. doi: 10.1109/ISSCC.2014.6757323 (cit. on p. 2).

[6] M. M. Waldrop. “The chips are down for Moore’s law.” In: Nature, vol.

530.7589 (2016), pp. 144–147 (cit. on p. 2).

[7] K. Kupp. Microprocessor Trend Data [Online]. url: https://github.com/

karlrupp/microprocessor-trend-data. (accessed: 12.06.2021) (cit. on p. 3).

[8] Wm. A. Wulf and Sally A. McKee. “Hitting the Memory Wall: Implications

of the Obvious.” In: SIGARCH Comput. Archit. News 23.1 (Mar. 1995), 20–24.

issn: 0163-5964. doi: 10.1145/216585.216588 (cit. on p. 2).

[9] J. von Neumann. “First draft of a report on the EDVAC.” In: IEEE Annals

of the History of Computing 15.4 (1993), pp. 27–75. doi: 10.1109/85.238389

(cit. on p. 2).

93

https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/MM.2017.4241347
https://doi.org/10.1038/s41928-018-0117-x
https://doi.org/10.1038/s41928-018-0117-x
https://doi.org/10.1109/ISSCC.2014.6757323
https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data
https://doi.org/10.1145/216585.216588
https://doi.org/10.1109/85.238389

bibliography 94

[10] H. S. Philip Wong and Sayeef Salahuddin. “Memory leads the way to better

computing.” In: Nature Nanotechnology 10.3 (2015), pp. 191–194. doi: 10.

1038/nnano.2015.29 (cit. on p. 3).

[11] Peter J. Denning and Stuart C. Schwartz. “Properties of the Working-Set

Model.” In: 15.3 (1972). issn: 0001-0782. doi: 10.1145/361268.361281 (cit. on

p. 3).

[12] Intel. Intel Optane Technology [Online]. url: https : / / www . intel . com /

content / www / us / en / architecture - and - technology / intel - optane -

technology.html. (accessed: 12.06.2021) (cit. on p. 4).

[13] Shimeng Yu and Pai-Yu Chen. “Emerging Memory Technologies: Recent

Trends and Prospects.” In: IEEE Solid-State Circuits Magazine 8.2 (2016),

pp. 43–56. doi: 10.1109/MSSC.2016.2546199 (cit. on p. 6).

[14] Daniele Ielmini. “Resistive-Switching Memory.” In: (2014), pp. 1–32. doi:

https://doi.org/10.1002/047134608X.W8222. eprint: https://onlinelibrary.

wiley.com/doi/pdf/10.1002/047134608X.W8222 (cit. on pp. 7, 8, 27).

[15] Daniele Ielmini. “Resistive switching memories based on metal oxides: mech-

anisms, reliability and scaling.” In: Semiconductor Science and Technology 31.6

(May 2016), p. 063002. doi: 10.1088/0268-1242/31/6/063002 (cit. on pp. 7,

25–27).

[16] Daniele Ielmini, Rainer Bruchhaus, and Rainer Waser. “Thermochemical

resistive switching: materials, mechanisms, and scaling projections.” In: Phase

Transitions 84.7 (2011), pp. 570–602. doi: 10.1080/01411594.2011.561478.

eprint: https://doi.org/10.1080/01411594.2011.561478 (cit. on p. 7).

[17] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mo-

hamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen,

Tara N. Sainath, and Brian Kingsbury. “Deep Neural Networks for Acous-

tic Modeling in Speech Recognition: The Shared Views of Four Research

Groups.” In: IEEE Signal Processing Magazine 29.6 (2012), pp. 82–97. doi:

10.1109/MSP.2012.2205597 (cit. on p. 7).

https://doi.org/10.1038/nnano.2015.29
https://doi.org/10.1038/nnano.2015.29
https://doi.org/10.1145/361268.361281
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://doi.org/10.1109/MSSC.2016.2546199
https://doi.org/https://doi.org/10.1002/047134608X.W8222
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.W8222
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.W8222
https://doi.org/10.1088/0268-1242/31/6/063002
https://doi.org/10.1080/01411594.2011.561478
https://doi.org/10.1080/01411594.2011.561478
https://doi.org/10.1109/MSP.2012.2205597

bibliography 95

[18] Stefano Larentis, Federico Nardi, Simone Balatti, David C. Gilmer, and

Daniele Ielmini. “Resistive Switching by Voltage-Driven Ion Migration in

Bipolar RRAM—Part II: Modeling.” In: IEEE Transactions on Electron Devices

59.9 (2012), pp. 2468–2475. doi: 10.1109/TED.2012.2202320 (cit. on pp. 7,

29).

[19] Attilio Belmonte, Woosik Kim, (BT) Boon Chan, Nancy Heylen, Andrea

Fantini, Michel Houssa, M. Jurczak, and L. Goux. “A thermally stable and

high-performance 90-nm Al2O3 Cu-based 1T1R CBRAM cell.” In: IEEE

Transactions on Electron Devices 60 (Sept. 2013), pp. 3690–3695. doi: 10.1109/

TED.2013.2282000 (cit. on p. 8).

[20] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin,

F. Chen, C. H. Lien, and M.-J. Tsai. “Low power and high speed bipolar

switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM.”

In: (2008), pp. 1–4. doi: 10.1109/IEDM.2008.4796677 (cit. on p. 8).

[21] Stefano Ambrogio, Simone Balatti, Antonio Cubeta, Alessandro Calderoni,

Nirmal Ramaswamy, and Daniele Ielmini. “Statistical Fluctuations in HfOx

Resistive-Switching Memory: Part II—Random Telegraph Noise.” In: IEEE

Transactions on Electron Devices 61.8 (2014), pp. 2920–2927. doi: 10.1109/TED.

2014.2330202 (cit. on p. 8).

[22] H.-S. Philip Wong, Simone Raoux, Sangbum Kim, Jiale Liang, John Reifen-

berg, Bipin Rajendran, Mehdi Asheghi, and Kenneth Goodson. “Phase

Change Memory.” In: Proceedings of the IEEE 98 (Dec. 2010). doi: 10.1109/

JPROC.2010.2070050 (cit. on p. 9).

[23] Geoffrey W. Burr, Matthew J. Brightsky, Abu Sebastian, Huai-Yu Cheng,

Jau-Yi Wu, Sangbum Kim, Norma E. Sosa, Nikolaos Papandreou, Hsiang-

Lan Lung, Haralampos Pozidis, Evangelos Eleftheriou, and Chung H. Lam.

“Recent Progress in Phase-Change Memory Technology.” In: IEEE Journal

on Emerging and Selected Topics in Circuits and Systems 6.2 (2016), pp. 146–162.

doi: 10.1109/JETCAS.2016.2547718 (cit. on p. 10).

https://doi.org/10.1109/TED.2012.2202320
https://doi.org/10.1109/TED.2013.2282000
https://doi.org/10.1109/TED.2013.2282000
https://doi.org/10.1109/IEDM.2008.4796677
https://doi.org/10.1109/TED.2014.2330202
https://doi.org/10.1109/TED.2014.2330202
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1109/JETCAS.2016.2547718

bibliography 96

[24] D. Ielmini, S. Lavizzari, D. Sharma, and A. L. Lacaita. “Physical interpreta-

tion, modeling and impact on phase change memory (PCM) reliability of

resistance drift due to chalcogenide structural relaxation.” In: (2007), pp. 939–

942. doi: 10.1109/IEDM.2007.4419107 (cit. on p. 10).

[25] Daniele Ielmini and Stefano Ambrogio. “Emerging neuromorphic devices.”

In: Nanotechnology 31.9 (Dec. 2019), p. 092001. doi: 10.1088/1361-6528/

ab554b (cit. on pp. 10, 18–20, 22, 23).

[26] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger. “Ferroelec-

tricity in hafnium oxide thin films.” In: Applied Physics Letters 99.10 (2011),

p. 102903. doi: 10.1063/1.3634052. eprint: https://doi.org/10.1063/1.

3634052 (cit. on p. 11).

[27] T. Mikolajick, C. Dehm, W. Hartner, I. Kasko, M.J. Kastner, N. Nagel, M.

Moert, and C. Mazure. “FeRAM technology for high density applications.”

In: Microelectronics Reliability 41.7 (2001), pp. 947–950. issn: 0026-2714. doi:

https://doi.org/10.1016/S0026-2714(01)00049-X (cit. on p. 11).

[28] Yoshihiro Arimoto and Hiroshi Ishiwara. “Current Status of Ferroelectric

Random-Access Memory.” In: MRS Bulletin 29.11 (2004), 823–828. doi: 10.

1557/mrs2004.235 (cit. on p. 11).

[29] M. Trentzsch, S. Flachowsky, R. Richter, J. Paul, B. Reimer, D. Utess, S. Jansen,

H. Mulaosmanovic, S. Müller, S. Slesazeck, J. Ocker, M. Noack, J. Müller,

P. Polakowski, J. Schreiter, S. Beyer, T. Mikolajick, and B. Rice. “A 28nm

HKMG super low power embedded NVM technology based on ferroelectric

FETs.” In: (2016), pp. 11.5.1–11.5.4. doi: 10.1109/IEDM.2016.7838397 (cit. on

p. 11).

[30] Daniele Ielmini and H. S. Philip Wong. “In-memory computing with resistive

switching devices.” In: Nature Electronics 1.6 (2018), pp. 333–343. doi: 10.

1038/s41928-018-0092-2 (cit. on p. 11).

[31] T. Kawahara, K. Ito, R. Takemura, and H. Ohno. “Spin-transfer torque RAM

technology: Review and prospect.” In: Microelectronics Reliability 52.4 (2012).

https://doi.org/10.1109/IEDM.2007.4419107
https://doi.org/10.1088/1361-6528/ab554b
https://doi.org/10.1088/1361-6528/ab554b
https://doi.org/10.1063/1.3634052
https://doi.org/10.1063/1.3634052
https://doi.org/10.1063/1.3634052
https://doi.org/https://doi.org/10.1016/S0026-2714(01)00049-X
https://doi.org/10.1557/mrs2004.235
https://doi.org/10.1557/mrs2004.235
https://doi.org/10.1109/IEDM.2016.7838397
https://doi.org/10.1038/s41928-018-0092-2
https://doi.org/10.1038/s41928-018-0092-2

bibliography 97

Advances in non-volatile memory technology, pp. 613–627. issn: 0026-2714.

doi: https://doi.org/10.1016/j.microrel.2011.09.028 (cit. on p. 12).

[32] Roberto Carboni, Elena Vernocchi, Manzar Siddik, Jon Harms, Andy Lyle,

Gurtej Sandhu, and Daniele Ielmini. “A Physics-Based Compact Model of

Stochastic Switching in Spin-Transfer Torque Magnetic Memory.” In: IEEE

Transactions on Electron Devices 66.10 (2019), pp. 4176–4182. doi: 10.1109/

TED.2019.2933315 (cit. on p. 12).

[33] Andrew D. Kent and Daniel C. Worledge. “A new spin on magnetic memo-

ries.” In: Nature Nanotechnology 10.3 (2015), pp. 187–191. doi: 10.1038/nnano.

2015.24 (cit. on p. 13).

[34] Geoffrey W. Burr, Rohit S. Shenoy, Kumar Virwani, Pritish Narayanan,

Alvaro Padilla, Bülent Kurdi, and Hyunsang Hwang. “Access devices for 3D

crosspoint memory.” In: Journal of Vacuum Science & Technology B 32.4 (2014),

p. 040802. doi: 10.1116/1.4889999. eprint: https://doi.org/10.1116/1.

4889999 (cit. on pp. 13, 15, 24).

[35] Qiangfei Xia and J. Joshua Yang. “Memristive crossbar arrays for brain-

inspired computing.” In: Nature Materials 18.4 (2019), pp. 309–323. doi:

10.1038/s41563-019-0291-x (cit. on pp. 13, 14).

[36] Daniele Ielmini and Giacomo Pedretti. “Device and Circuit Architectures

for In-Memory Computing.” In: Advanced Intelligent Systems 2.7 (2020),

p. 2000040. doi: https : / / doi . org / 10 . 1002 / aisy . 202000040. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202000040

(cit. on pp. 14, 16, 23).

[37] Zhong Sun, Giacomo Pedretti, Elia Ambrosi, Alessandro Bricalli, Wei Wang,

and D. Ielmini. “Solving matrix equations in one step with cross-point

resistive arrays.” In: Proceedings of the National Academy of Sciences 116 (Feb.

2019). doi: 10.1073/pnas.1815682116 (cit. on p. 16).

[38] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” In:

Nature 521.7553 (2015), pp. 436–444. doi: 10.1038/nature14539 (cit. on

p. 17).

https://doi.org/https://doi.org/10.1016/j.microrel.2011.09.028
https://doi.org/10.1109/TED.2019.2933315
https://doi.org/10.1109/TED.2019.2933315
https://doi.org/10.1038/nnano.2015.24
https://doi.org/10.1038/nnano.2015.24
https://doi.org/10.1116/1.4889999
https://doi.org/10.1116/1.4889999
https://doi.org/10.1116/1.4889999
https://doi.org/10.1038/s41563-019-0291-x
https://doi.org/https://doi.org/10.1002/aisy.202000040
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202000040
https://doi.org/10.1073/pnas.1815682116
https://doi.org/10.1038/nature14539

bibliography 98

[39] Duygu Kuzum, Shimeng Yu, and H-S Philip Wong. “Synaptic electronics: ma-

terials, devices and applications.” In: Nanotechnology 24.38 (2013), p. 382001.

doi: 10.1088/0957-4484/24/38/382001 (cit. on p. 17).

[40] Wolfgang Maass. “Networks of spiking neurons: The third generation of

neural network models.” In: Neural Networks 10.9 (1997), pp. 1659–1671. issn:

0893-6080. doi: https://doi.org/10.1016/S0893-6080(97)00011-7 (cit. on

p. 18).

[41] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. Efficient Processing

of Deep Neural Networks: A Tutorial and Survey. 2017. arXiv: 1703.09039

[cs.CV] (cit. on p. 18).

[42] Guo-qiang Bi and Mu-ming Poo. “Synaptic Modifications in Cultured Hip-

pocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and

Postsynaptic Cell Type.” In: Journal of Neuroscience 18.24 (1998), pp. 10464–

10472. doi: 10.1523/JNEUROSCI.18-24-10464.1998. eprint: https://www.

jneurosci.org/content/18/24/10464.full.pdf (cit. on p. 18).

[43] Per Jesper Sjöström, Gina G Turrigiano, and Sacha B Nelson. “Rate, Timing,

and Cooperativity Jointly Determine Cortical Synaptic Plasticity.” In: Neuron

32.6 (2001), pp. 1149–1164. issn: 0896-6273. doi: https://doi.org/10.1016/

S0896-6273(01)00542-6 (cit. on p. 18).

[44] Hsinyu Tsai, Stefano Ambrogio, Pritish Narayanan, Robert M Shelby, and

Geoffrey W Burr. “Recent progress in analog memory-based accelerators for

deep learning.” In: Journal of Physics D: Applied Physics 51.28 (2018), p. 283001.

doi: 10.1088/1361-6463/aac8a5 (cit. on p. 19).

[45] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning

applied to document recognition.” In: Proceedings of the IEEE 86.11 (1998),

pp. 2278–2324. doi: 10.1109/5.726791 (cit. on p. 19).

[46] Eduardo Pérez, Cristian Zambelli, Mamathamba Kalishettyhalli Mahade-

vaiah, Piero Olivo, and Christian Wenger. “Toward Reliable Multi-Level

Operation in RRAM Arrays: Improving Post-Algorithm Stability and As-

https://doi.org/10.1088/0957-4484/24/38/382001
https://doi.org/https://doi.org/10.1016/S0893-6080(97)00011-7
https://arxiv.org/abs/1703.09039
https://arxiv.org/abs/1703.09039
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://www.jneurosci.org/content/18/24/10464.full.pdf
https://www.jneurosci.org/content/18/24/10464.full.pdf
https://doi.org/https://doi.org/10.1016/S0896-6273(01)00542-6
https://doi.org/https://doi.org/10.1016/S0896-6273(01)00542-6
https://doi.org/10.1088/1361-6463/aac8a5
https://doi.org/10.1109/5.726791

bibliography 99

sessing Endurance/Data Retention.” In: IEEE Journal of the Electron Devices

Society 7 (2019), pp. 740–747. doi: 10.1109/JEDS.2019.2931769 (cit. on p. 24).

[47] Fabien Alibart, Ligang Gao, Brian D Hoskins, and Dmitri B Strukov. “High

precision tuning of state for memristive devices by adaptable variation-

tolerant algorithm.” In: Nanotechnology 23.7 (2012), p. 075201. doi: 10.1088/

0957-4484/23/7/075201 (cit. on p. 24).

[48] S. Balatti, S. Larentis, D. C. Gilmer, and D. Ielmini. “Multiple Memory States

in Resistive Switching Devices Through Controlled Size and Orientation

of the Conductive Filament.” In: Advanced Materials 25.10 (2013), pp. 1474–

1478. doi: https://doi.org/10.1002/adma.201204097. eprint: https:

//onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201204097 (cit. on

p. 27).

[49] Daniele Ielmini. “Modeling the Universal Set/Reset Characteristics of Bipo-

lar RRAM by Field- and Temperature-Driven Filament Growth.” In: IEEE

Transactions on Electron Devices 58.12 (2011), pp. 4309–4317. doi: 10.1109/

TED.2011.2167513 (cit. on pp. 28, 33).

[50] Stefano Ambrogio, Simone Balatti, David C. Gilmer, and Daniele Ielmini.

“Analytical Modeling of Oxide-Based Bipolar Resistive Memories and Com-

plementary Resistive Switches.” In: IEEE Transactions on Electron Devices 61.7

(2014), pp. 2378–2386. doi: 10.1109/TED.2014.2325531 (cit. on pp. 28, 30,

33).

[51] A. Fantini, L. Goux, R. Degraeve, D.J. Wouters, N. Raghavan, G. Kar, A.

Belmonte, Y.-Y. Chen, B. Govoreanu, and M. Jurczak. “Intrinsic switching

variability in HfO2 RRAM.” In: 2013 5th IEEE International Memory Workshop.

2013, pp. 30–33. doi: 10.1109/IMW.2013.6582090 (cit. on p. 31).

[52] Stefano Ambrogio, Simone Balatti, Antonio Cubeta, Alessandro Calderoni,

Nirmal Ramaswamy, and Daniele Ielmini. “Statistical Fluctuations in HfOx

Resistive-Switching Memory: Part I - Set/Reset Variability.” In: IEEE Transac-

tions on Electron Devices 61.8 (2014), pp. 2912–2919. doi: 10.1109/TED.2014.

2330200 (cit. on p. 31).

https://doi.org/10.1109/JEDS.2019.2931769
https://doi.org/10.1088/0957-4484/23/7/075201
https://doi.org/10.1088/0957-4484/23/7/075201
https://doi.org/https://doi.org/10.1002/adma.201204097
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201204097
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201204097
https://doi.org/10.1109/TED.2011.2167513
https://doi.org/10.1109/TED.2011.2167513
https://doi.org/10.1109/TED.2014.2325531
https://doi.org/10.1109/IMW.2013.6582090
https://doi.org/10.1109/TED.2014.2330200
https://doi.org/10.1109/TED.2014.2330200

bibliography 100

[53] Milo V. Ielmini D. “Physics-based modeling approaches of resistive switching

devices for memory and in-memory computing applications.” In: Journal of

Computational Electronics 16.4 (2017), pp. 1121–1143. doi: 10.1007/s10825-

017-1101-9 (cit. on p. 32).

[54] Shimeng Yu, Ximeng Guan, and H.-S. Philip Wong. “On the stochastic nature

of resistive switching in metal oxide RRAM: Physical modeling, monte carlo

simulation, and experimental characterization.” In: (2011), pp. 17.3.1–17.3.4.

doi: 10.1109/IEDM.2011.6131572 (cit. on p. 33).

[55] Valerio Milo, Artem Glukhov, Eduardo Pérez, Cristian Zambelli, Nicola

Lepri, Mamathamba Kalishettyhalli Mahadevaiah, Emilio Pérez-Bosch Que-

sada, Piero Olivo, Christian Wenger, and Daniele Ielmini. “Accurate Pro-

gram/Verify Schemes of Resistive Switching Memory (RRAM) for In-Memory

Neural Network Circuits.” In: IEEE Transactions on Electron Devices 68.8 (2021),

pp. 3832–3837. doi: 10.1109/TED.2021.3089995 (cit. on pp. 35, 83, 86–88).

[56] Óscar G. Ossorio, Eduardo Pérez, Salvador Dueñas, Helena Castán, Héctor

García, and Christian Wenger. “Effective Reduction of the Programing Pulse

Width in Al: HfO2-based RRAM Arrays.” In: (2019), pp. 1–4. doi: 10.1109/

EUROSOI-ULIS45800.2019.9041880 (cit. on p. 36).

[57] E. Pérez, A. Grossi, C. Zambelli, P. Olivo, R. Roelofs, and Ch. Wenger.

“Reduction of the Cell-to-Cell Variability in Hf1-xAlxOy Based RRAM Arrays

by Using Program Algorithms.” In: IEEE Electron Device Letters 38.2 (2017),

pp. 175–178. doi: 10.1109/LED.2016.2646758 (cit. on pp. 36, 37).

[58] Valerio Milo, Francesco Anzalone, Cristian Zambelli, Eduardo Pérez, Ma-

mathamba K. Mahadevaiah, Óscar G. Ossorio, Piero Olivo, Christian Wenger,

and Daniele Ielmini. “Optimized programming algorithms for multilevel

RRAM in hardware neural networks.” In: (2021), pp. 1–6. doi: 10.1109/

IRPS46558.2021.9405119 (cit. on p. 39).

[59] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev,

and D. B. Strukov. “Training and operation of an integrated neuromor-

https://doi.org/10.1007/s10825-017-1101-9
https://doi.org/10.1007/s10825-017-1101-9
https://doi.org/10.1109/IEDM.2011.6131572
https://doi.org/10.1109/TED.2021.3089995
https://doi.org/10.1109/EUROSOI-ULIS45800.2019.9041880
https://doi.org/10.1109/EUROSOI-ULIS45800.2019.9041880
https://doi.org/10.1109/LED.2016.2646758
https://doi.org/10.1109/IRPS46558.2021.9405119
https://doi.org/10.1109/IRPS46558.2021.9405119

bibliography 101

phic network based on metal-oxide memristors.” In: Nature 521.7550 (2015),

pp. 61–64. doi: 10.1038/nature14441 (cit. on p. 78).

[60] Peng Yao, Huaqiang Wu, Bin Gao, Sukru Burc Eryilmaz, Xueyao Huang,

Wenqiang Zhang, Qingtian Zhang, Ning Deng, Luping Shi, H. S. Philip

Wong, and He Qian. “Face classification using electronic synapses.” In:

Nature Communications 8.1 (2017), p. 15199. doi: 10.1038/ncomms15199 (cit.

on p. 78).

[61] Can Li, Daniel Belkin, Yunning Li, Peng Yan, Miao Hu, Ning Ge, Hao

Jiang, Eric Montgomery, Peng Lin, Zhongrui Wang, Wenhao Song, John

Paul Strachan, Mark Barnell, Qing Wu, R. Stanley Williams, J. Joshua Yang,

and Qiangfei Xia. “Efficient and self-adaptive in-situ learning in multilayer

memristor neural networks.” In: Nature Communications 9.1 (2018), p. 2385.

doi: 10.1038/s41467-018-04484-2 (cit. on p. 78).

[62] V. Milo, C. Zambelli, P. Olivo, E. Pérez, M. K. Mahadevaiah, O. G. Ossorio,

Ch. Wenger, and D. Ielmini. “Multilevel HfO2-based RRAM devices for

low-power neuromorphic networks.” In: APL Materials 7.8 (2019), p. 081120.

doi: 10.1063/1.5108650. eprint: https://doi.org/10.1063/1.5108650

(cit. on p. 79).

[63] Simon Haykin. Neural networks and learning machines, 3/E. Pearson Education

India, 2010 (cit. on p. 81).

[64] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. “Incre-

mental Network Quantization: Towards Lossless CNNs with Low-Precision

Weights.” In: CoRR abs/1702.03044 (2017). arXiv: 1702.03044 (cit. on p. 83).

https://doi.org/10.1038/nature14441
https://doi.org/10.1038/ncomms15199
https://doi.org/10.1038/s41467-018-04484-2
https://doi.org/10.1063/1.5108650
https://doi.org/10.1063/1.5108650
https://arxiv.org/abs/1702.03044

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Abstract
	Abstract

	Estratto
	Estratto

	1 Emerging memory devices and Architectures for neuromorphic computing
	1.1 Introduction
	1.2 Emerging non-volatile memory devices
	1.2.1 Resistive-switching RAM
	1.2.2 Phase Change Memory
	1.2.3 Ferroelectric RAM
	1.2.4 Spin Transfer Torque Magnetoresistive RAM

	1.3 Crossbar arrays
	1.4 In-Memory Computing
	1.5 Resistive RAM for Neuromorphic computing implementation
	1.5.1 Neural networks
	1.5.2 Backpropagation training method for deep neural networks
	1.5.3 Neural network implementation with crossbar arrays

	2 Resistive-switching Random Access memory
	2.1 Introduction
	2.2 RRAM switching mechanism
	2.3 Variability of RRAM programming
	2.4 RRAM modeling

	3 Experimental data analysis
	3.1 Cell and array structure
	3.2 Program and verify algorithms
	3.2.1 ISPVA SET Algorithm
	3.2.2 IGVVA SET algorithm
	3.2.3 RESET algorithm

	3.3 Experimental data
	3.3.1 Datasets
	3.3.2 C2C
	3.3.3 D2D
	3.3.4 Additional D2D
	3.3.5 Stuck cells

	3.4 After switching - End of algorithm distributions
	3.5 Position and slope of the transient
	3.6 Noise
	3.7 Effect of programming steps width on programming time and variability
	3.8 RRAM transition values extraction

	4 Statistical Analytical Model of 4kbit RRAM array
	4.1 Introduction
	4.2 Model description
	4.2.1 Differential Equation
	4.2.2 Integration
	4.2.3 Program and verify algorithms

	4.3 Parameters' tuning
	4.3.1 Ea and A modulations

	4.4 Fitting of median curves
	4.5 Distribution fitting through Monte Carlo simulations
	4.6 Unified model description
	4.7 Reset transition modeling
	4.7.1 Reset model rate equation
	4.7.2 Reset model algorithm
	4.7.3 Reset model fitting

	4.8 Simulation container for neural network implementation

	5 Fully-connected Neural network implementation using 1T1R Hafnium-Oxide-based RRAM arrays
	5.1 Introduction
	5.2 Fully connected Neural Network
	5.3 Incremental network quantization algorithm
	5.4 Neural network accuracy
	5.5 Variability, nonidealities, and impact on inference accuracy
	5.5.1 Program and verify algorithms variability
	5.5.2 Current consumption
	5.5.3 Size of the network

	6 Conclusion
	 Bibliography

