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Abstract

Dealing with complex data often presents challenges that can be successfully tackled
with the use of some geometrical tools. In this thesis we approach two such challenges:
extracting information from data considered up to equivalence classes and doing sta-
tistical analysis in non-Euclidean spaces. The first kind of issues is faced with the use
of Topological Data Analysis techniques. We contribute to this field with the introduc-
tion of a new family of topological summaries which can be visually represented as
trees. To analyze sets of such objects, we introduce also a novel metric structure along
with an algorithm to compute it. Next, we develop an application of such framework
in the field of Functional Data Analysis, working with functions up to homeomorphic
reparametrization.

Moving the problem of doing statistical analysis from raw data to a space of rep-
resentations, for instance topological summaries, immediately poses the challenge of
defining statistical tools in spaces which are often non-Euclidean and badly behaved
from many perspectives. Nevertheless, we start to formalize a language to work in
the space of the topological representations previously defined and, as a first result, we
obtain approximations of Frechét Means in those spaces.

Lastly we propose a novel class of methods to work with probability distributions
on the real line, with the 2—Wasserstein metric. This metric space is richer in structure
compared to the others considered in this dissertation, but still has a constrained nature
which must be properly taken into account.






COJA VEREUA LUl, CHE SFUGGIVAM A me?

3 ME e SO0
gg&ggﬁl Vil AT O RO
occuaLL., ngMct -

“What could he see, that I was missing?
It had to be the glasses.
So I made myself an identical pair. (Better, though)
And, with those on, I looked around.”

Gipi, La mia vita disegnata male, pg. 141

III






Acknowledgments

Every piece of this thesis is born within a precise human and scientific environment -
which extends both to the professional and non professional sphere. And this environ-
ment ended up affecting, enriching and insipiring, in many unpredictable and precious
ways my scientific work.

For these reasons I would like to thank my supervisor Piercesare, who allowed me
to freely explore ideas and topics, even when links with his usual research fields where
far from obvious. With constant trust and dialogues he greatly enriched my scientific
perspectives and this, in turn, allowed me to get the most out of collaborations and dis-
cussions with other colleagues. I want to thank Anna Calissano for having introduced
me to the field of geometric statistics, which opened up a whole new set of directions in
my research. Similarly, I thank Samuele Mongodi for all the applied aspects of differen-
tial and Riemannian geometry that I discovered through him. A special thanks goes also
to Mario Beraha, who got me into Wasserstein metrics and Optimal transport, as well
as being a very fruitful research partner. With him I made a clear experience of how en-
riching is the daily collaboration between researches with a very diverse mathematical
background.

Finally, I thank my family and my friends.






Contents

1

General Introduction 1
1.1 Between Equivalence Classes and non-Euclidean Data . . . . . . . . .. 2
1.2 Datain Equivalence Classes . . . . . .. .. ... ... ... ...... 3
1.3 Statistics in non-Euclidean Spaces . . . . . . ... ... .. ... .. 5
1.3.1 Probability Distributions . . . . . . ... ... ... ... ... 7
1.4 Outline of the Dissertation . . . . . . . . .. ... ... ... ...... 7
1.5 Notetothereader . . . ... ... ... .. ... ... ... ... 8
1.6 Further Comments . . . . . . .. ... .. ... .. .. .. ... 9
A Metric for Tree-Like Topological Summaries 11
2.1 Introduction . . . . . . .. .. ... 11
2.2 Main Ideas and Driving Examples . . . . . . ... .. ... .. ..... 15
2.2.1 Hierarchical clustering . . . . . . . ... ... ... .. ... . 15
2.2.2 Merge Treesof functions . . . . . . . .. .. ... .. ...... 17
223 Intuitions . . . . . . . ... 17
2.3 Tree-Like Summaries . . . . . . . . . .. ... o 19
23.1 MergeTrees . . . . . . . o e 20
2.3.2 Generalized Dendrograms . . . . . . ... ... ... ... ... 21
2.4 Edit Distance for Generalized Dendrograms . . . . . . ... ... ... 22
2.4.1 Editsof Dendrograms . . . .. ... ... ... ......... 22
242 Order 2 vertices . . . . . . . . oo v i 25
243 EditsandCosts . . . . . . .. Lo 25
244 Mappings . . . . ..o i e e e e 26
2.5 Back to Vector Spaces Filtrations . . . . . .. ... ... ... ..... 29
25.1 MergeTrees . . . . . . . o e 31
2.5.2 Clustering Dendrograms . . . . . .. .. ... ... ....... 32



Contents

2.5.3 Dendrograms of Functions . . . . . . ... ... ... ...... 33

2.6 Decomposition Properties and Optimization Problems . . . . . . . . .. 34
2.6.1 DecompositionResult . . . . . . ... ... 0000 36
2.6.2 Dynamical Integer Linear Programming problems . . . . . . .. 37

2.7 Bottom-Up Algorithm . . . . . ... ... ... ... .. ... ..., 39
27.1 Example . . ... ... 40

2.8 Numerical Simulations . . . . . . . . ... ... oL oL 43
2.8.1 Edit Distance Simulations . . . . . . ... ... ... ...... 43
282 Pruning . . . . . ... e 43
283 Examples . . . . . . .. 44

2.9 Conclusions . . . . . .. . L 48
210 Proofs . . . .o 49
201 Merge Trees . . . . . . . o o o 56
2.12 Persistence Diagrams . . . . . . . . ... ..o oo 57
3 Functional Data Representation with Merge Trees 59
3.1 Introduction . . . . . .. ... ... 60
3.2 Merge Trees of Functions . . . . . ... ... ... .. ......... 63
32.1 Sublevel Sets . . . . . . . ... 63
3.2.2 Path Connected Components . . . . . . . . ... ......... 64
323 Tree Structures . . . . . . . . . .o 64
3.24 [Isomorphismclasses . . . . . ... ... ... .. ........ 65
3.2.5 Height and Weight Functions . . . . . .. ... ... ...... 66

3.3 Persistence Diagrams . . . . . ... ... Lo 66
3.4 Properties . . . . . ... 67
35 Metrics . . . . L e e 69
3.5.1 Metrics for Persistence Diagrams . . . . . . ... ... ..... 69
352 MetricforMerge Trees. . . . . . . . . ... ... ... ..... 69

3.6 Pruning & Stability . . . ... ... 71
3.6.1 Pruning . . . . . . . . ... 72
3.6.2 Stability . . . ... 73
3.63 SplineSpaces. . . . . .. . . ... 73

3.7 Visualizationtrick . . . . ... ... Lo L 74
3.8 Examples . . . . . . ... 75
38.1 ExampleI . ... ... .. ... ... 75
382 ExampleIl . . . .. ... .. .. 76

39 CaseStudy . . . . . . . . 77
39.1 Dataset . . . ... ... 78
392 Analysis . . .. ... 79

310 Discussion . . . ..o e 85
3.11 Acknoweldgements . . . . . . .. ... ... .. ... .. .. ..., 90
302 Proofs . . L. 90



Contents

3.12.1 Combining Metrics . . . . . . . . . . .. ..o

4 The Space of Merge Trees

Preliminaries . . . . . . . . . . .. ... ...
Subspaces . . . . ..
Topology . . . . . . . e
Metric Structure . . . . . . . ... e e e e e e e
FrechétMeans . . . . . . . . . .. . ... . ... ...
Tangent spaces and geodesics decomposition . . . . . . .. .. ... ..

4.1
4.2
4.3
4.4
4.5
4.6

4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8

Category of Edges and Interval Partitions . . . . ... ... ...
Merge Trees as Functors . . . . . . . . ... ... ... ...,
Functors parametrizing directions . . . . . . . . ... ... ...
Pre-Tangent space and pre-exponential map . . . . . .. ... ..
Splitting Sets . . . . . . ...
Tangent space and exponential . . . . . . .. ... ... ... ..
Linear Structure . . . . . . .. ... .. ...
Geodesics Decomposition . . . . . ... ... ... .. ... ..

4.7 Frechét Mean Approximation . . . . . . . . . . .. ... .. ... ..

4.8 Proofs

5 Further Directions for Tree-Like topological summaries

Further Comparisons with other Metrics for Trees and Merge Trees . . .
Stability iSsues . . . . . . . . ..
Tangent Structure and Statistical Tools . . . . . .. .. ... ... ...
Locally & Weakly Editable Spaces and Multipersistence . . . . . . . . .
ReebGraphs . . . . . . . . . . ...
Total Variation of Functions . . . . . . . ... ... ... ........
Stability properties in applications . . . . . . . ... ... oL L.

5.1
5.2
5.3
54
5.5
5.6
5.7

6 Projected Methods in 1-D Wasserstein Spaces
6.1 Introduction . . . . .. ... ... ... ...

6.2

6.3

6.1.1
6.1.2

Previous work on distributional data analysis . . . . .. ... ..
Contributions and outline . . . . . . ... ... ... ......

Preliminaries . . . . . . . . . . ..

6.2.1
6.2.2
6.2.3
6.2.4

Wasserstein metric and Wasserstein spaces . . . . . . . .. . ..
Weak Riemannian structure of the Wasserstein Space . . . . . . .
Intrinsic and extrinsic methods in the Wasserstein space . . . . .
Tangentvs. LY . . . . . . ... ...

Projected Models in the Wasserstein Space . . . . . . .. ... ... ..

6.3.1
6.3.2
6.3.3
6.3.4

Principal component analysis . . . . . . .. ... ... ... ..
Regression . . . . . .. .. ... ...
Comparison with intrinsic methods . . . . . . ... ... .. ..
Comparison with other extrinsic methods . . . . .. ... .. ..

IX



Contents

6.4 Computing the metric projection through B-spline approximation . . . . 155
6.4.1 Choosing p as the uniform distribution on [0,1] . . . .. .. .. 156
6.4.2 Metric Projection . . . . . . ... ... oL 156
6.4.3 Monotone B-splines representation . . . . . .. . ... ... .. 157

6.5 Empirical Models with B-splines . . . . . ... ... .......... 158
6.5.1 Empirical PCA . . . . . .. ... .. 159
6.5.2 Empirical Regression . . . ... ... ... ........... 160
6.5.3 An alternative optimization routine for the geodesic PCA and a

comment on the computational costs . . . . . . ... ... ... 161

6.6 Asymptotic Properties . . . . .. .. ..o 162
6.6.1 Convergence of Quadratic B-splines . . . . . ... ... ..... 162
6.6.2 ConsiStenCy . . . . . . . ... 163

6.7 Numerical Illustrations forthe PCA . . . . . . .. ... .. ... .... 166
6.7.1 Simulationstudies . . . . ... ... ... oL 167
6.7.2 Assessing the reliability of the projected PCA . . . . . . . .. .. 171
6.7.3 Analysis of the Covid-19 mortality dataset . . . . .. ... ... 173

6.8 Numerical Illustrations for the Distribution on Distribution Regression . 175
6.8.1 SimulationStudy . . . . . ... ... oo 175
6.8.2 Wind speed distribution forecasting from a set of experts . . . . . 177

6.9 Discussion and Further Directions . . . . . . .. ... ... .. ..... 179

6.10 Acknoweldgements . . . . . ... ... Lo Lo 181

6.11 Proofs . . . . . . .. 181

6.12 The simplicial approach . . . . . . ... ... .. ... .. ....... 187

6.13 Additional Simulations . . . . .. .. ... oL oo 189
6.13.1 Sensitivity Analysis to the Number of Basis Functions . . . . . . 189
6.13.2 Empirical Verification of Consistency Results and Choosing J . . 190

6.14 Limitations of the projected framework . . . . . . .. .. .. ... ... 195
6.14.1 When the projected PCA performs poorly . . . . . .. ... ... 195
6.14.2 Inconsistent scores when increasing dimensions . . . . . . . . . 196

7 Conclusion 197
8 Code 199

8.1 Dendrograms . . . . . . . . . . ... 199
8.1.1 Trees_OPTpy . . . ... . . . . . . i .. 200
8.1.2 Utils_OPTpy . . . . . . o i i i e e e e e 201
8.1.3 Utils_dendrograms_OPTpy . . . .. . ... .. ... ...... 201
8.1.4 top_TED_lineare_multiplicity.py . . . . . .. . ... ... ... 202
8.1.5 Jupyter Notebooks . . . . . ... ... ... L. 203

8.2 Projected Methods in 1-D Wasserstein Spaces . . . . . . ... ... .. 203

Bibliography 205



CHAPTER

General Introduction

How do we automatically recognize anomalies in the shape of objects in a production
line? Which anomalies should still be accepted and which ones rejected? Are there
any relationships between the shape of the brain and neural illnesses? Can we detect
the presence of such illnesses at early stages by predicting the evolution of the organ’s
shape? How do we separate features in a blood vessel which are due to the patient’s
unique anathomy from features shared among a class of patients? Questions like these
are increasingly frequent in data analysis, coming from the most diverse fields, and they
all share the problem of facing highly complex data whose variability cannot be naively
handled with usual statistical techniques.

Each time new challenges appear, especially in quantitative fields, the first pivotal
step towards their solution is the search for the right vocabulary to describe and to talk
about the newfound problems. Modeling from scratch the space of statistical units,
talking about functions, continuity, distances, curves, deformation of objects, and gen-
eralizing concepts like mean and variance, are all aspects of the analysis which need to
be carefully and formally addressed. Among the fields of mathematics, the one which
is most suited to describe and tackle those fundational challenges is geometry. For
this reason the interactions between geometry and data analysis are countless and aris-
ing with increasing frequency and potential (Bone, 2020; Bronstein et al., 2021; Curry,
2014; Davis, 2008; Pennec et al., 2019; Tralie, 2017) to the point that terms like “Geo-
metric Statistics”, “Geometric Data Analysis” and “Geometric Machine Learning” are
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Chapter 1. General Introduction

commonly used and attract more and more researchers.

1.1 Between Equivalence Classes and non-Euclidean Data

Among the areas of research which interact with the broad concept of geometry, two im-
portant research directions can be recognized: the first one is investigating information
in geometric objects which is invariant to some kinds of transformations, the second one
aims at generalizing vector and differential calculus beyond Euclidean spaces.

Within the first macro area we can find all the different interplays between geome-
try, topology and algebra. Topological spaces of different nature are often understood
in terms of information collected by polynomials and group structures (groups of au-
tomorphisms, cohomology groups, groups of bundles etc) and the relationsphips be-
tween these algebraic objects and the geometry of the underlying topological spaces
are studied in order to grasp how the transformation of a topological space changes the
associated groups.

The second main direction is strictly connected with the mathematical questions
posed by physics and engineering. Modeling points or quantities bound by certain laws
often involves calculation of basic differential quantities like derivatives along some
“direction”. Problems like studing the change of one quantity with respect to small per-
turbations of another quantity have always been of main interest in mathematics and
physics. However many of such differential problems involve constraints which greatly
increase the modeling and calculation complexity. The “curved” and non-Euclidean na-
ture of many constraints asks for non-trivial generalization of operations which are very
well understood in linear spaces and go from vector sums and directional derivatives, to
the behaviour all kinds of differential operators.

Both research directions provide ideas and results which can help the analyst in deal-
ing with complex data analysis situations of different kinds. The approach which studies
the most appropriate mathematical structure whose points are the atoms of the statistical
analysis, being it the statistical units or a particular representation of such units, goes
under the name of Object Oriented Data Analysis (OODA) (Wang and Marron, 2007).
This term is intended as a very broad research field which collects the efforts of all the
analyses for which the complexity of the data set go far beyond “big n” or “big p” and
require non-trivial mathematical modeling of the “sufficient statistics”.

This dissertation aims at investigating some constributions that geometry can pro-
vide to OODA in both the directions presented in this paragraph.

2



1.2. Data in Equivalence Classes

1.2 Data in Equivalence Classes

Transforming variables is one of the most used approaches in statistics. Usually vari-
ables are transformed to meet some modellistic hypoteses or to allow a more fruitful
comparison or visualization. One of the most used transformations is the standardiza-
tion of variables, which means measuring them in terms of standard deviations from
their mean. In this way the variables are represented with a scale which enables the
comparison between phaenomena with different ranges of variability and thus allow-
ing for certain kind of inference and interpretability in the analysis. In other words the
statistician is implicitly considering a set of possible representations of such variables
and chosing the “optimal” one according to some criterion: among all the possibible
scales with which one can express the variables, standardization is selected for its ap-
pealing properties. Behind this simple and standard approach there is already the idea
of considering not the datum as it is, but a whole equivalence class of possible represen-
tations of the same object, among which the practitioner chooses the one that is most
suited for the analysis.

This same workflow is applied in many areas of statistics. Consider for instance the
case of Functional Data Analysis (FDA). There are many reasons (see Chapter 3 and
Ramsay and Silverman (2005) for details) for which functions in a data set may need
to be optimally reparametrized: functions are often aligned or registered, according to
some criterion and with parametrization functions belonging to some particular group
of transformations. Thus, the real datum is not the single function, but the whole set of
possible functions which can be obtained by reparametrizing the “observed” one. Using
the language of group actions (Krupka and Saunders, 2011) this set is called the orbit of
a function under the action of the reparametrization group. From the orbit one optimal
representation is usually chosen and, on such representation, the analysis is carried out.

The idea of considering a datum as the orbit of a point under some group action
is very powerful and its fruitfully used in many areas of statistics (Eaton, 1989) and
machine learning (Bergomi et al., 2019). A different example is given by data augmen-
tation techniques; consider for instance the problem of finding a completely data-driven
way to recognize a number, for instance number 9, whenever it appears in an image. In
a completely supervised fashion, a dataset of labelled images is fed to the algorithm to
train it for the recognition purpose. In particular, one would like the classification tool
to minimize the amount of labelled images required to have good performances on a
test set. Clearly the number 9 can appear in any portion of the image, with any scale
and with any perspective. So usually, each labelled image is used to obtain a whole
new set of training images for instance by zooming-in in different points, adding noise
or applying symmetries, trying to “teach” the algortihm that the number 9 can appear
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Chapter 1. General Introduction

in many different forms and places in an image. That is, practitioners aim at including
in the training set of an algorithm as many points as possible in the orbit of a certain
datum, starting from the ones which are observed, and obtaining part of the remaining
ones via different techniques. Ideally one would like the algorithm to “recognize” and
“learn” the group action involved, in order to be able to recognize as many instances as
possible of the same object.

In some sense the two examples proposed - FDA and data augmentation - provide
two different approaches to the same problem: in the case of FDA a convenient repre-
sentation of the starting object is chosen, while with data augmentation one would like
the output of the analysis not to depend on the one representative which is fed to the
algorithm, but to be well defined on the whole equivalence class. Where being well
defined means that the analysis/pipeline does not distinguish points in the same equiva-
lence class.

The right language to deal with the problem of being well defined up to equivalence
relationships is given by quotient spaces, which are literally the sets of equivalence
classes of some space under an equivalence relationship. In the case of group actions,
the equivalence classes are given by the orbits themselves: each orbit is a single point
of the quotient space. Using the language of quotient spaces one can properly define the
steps and the tools to be employed in the analysis (Huckemann et al., 2010a) so that the
outcome does not depend on a particular representation of the single datum.

A key point which then arises is what kind of information can be extracted from
quotient spaces. Topology in this sense, has always be interested in classifying topo-
logical spaces considered inside very large equivalence classes. Consider for instance
the case of homology and cohomology groups, which are basic topology tools to sum-
marize some topological information of a space (Hatcher, 2000; Munkres, 2018). The
information they capture can be interpreted in terms of holes and obstructions and in
many cases is easily accessible from the computational point of view, especially if con-
sidered with field coefficients. Moreover these groups are invariant to large sets of
deformations of the base topological space, induced by homotopy equivalence. These
facts make homology an excellent starting points to build tools to extract information
from data considered in some quotient space.

Topological data analysis (TDA) is the name given to a set of techniques which go
exactly in this direction: exploiting homology groups to extract information from data.
Consider the following examples, concerning two different kinds of data: points clouds
and functions. Start with the case of a finite point cloud in R™. The subspace topology
of such object is very poor, and the only information contained in homology groups is
the number of connected components, that is the number of points. There are however
many ways to build topological spaces starting from a point cloud, which try to capture
the “shape” of such point cloud (Chazal and Michel, 2017). It is then quite natural to
think that, instead of comparing the information associated to the point clouds, one can
compare the homology groups of the topological spaces obtained from the point clouds.
Moreover the induced topological spaces are often dependent on one real parameter and

4



1.3. Statistics in non-Euclidean Spaces

thus one can obtain a whole set of topological spaces parametrized by a subset of the
real line. Relationships between spaces obtained at different values of the parameter
in many cases allow for a very interesting approach: the homology groups information
can in fact be tracked along the ordered family of topological spaces, capturing the most
persistent homological features that appear in this sequence. This idea is in fact the
foundation of persistent homology (Edelsbrunner and Harer, 2008). Since the family
of induced spaces usually depends only on the pairwise distances between the points
in the cloud, applying an isometry to the point cloud does not change the output of the
procedure and thus these methods can be used for instance when one wants to consider
sets of points up to rigid transformations.

Turn now to the case of a scalar function defined on a topological space. The func-
tion can be used to (partially) order the points in the domain: the first points in this
ordering are those with lower values, that is the minima, and the last points are the ones
where the functions reaches its maxima. To be more precise let f : X — R. We can
induce a sequence of nested topological spaces X; := f~!((—oo,t]), which is heavily
dependent on the values of f. Thus observing different functions on the same domain
produces different filtrations {X,;},cr. These sequences of topological spaces can be
analyzed again by following along ¢ the evolution of the homology groups. Focus on
the topological space X: if there is some kind of map ¢ : ¥ — X, one can consider
the function f' : Y — R given by f’' := f o ¢. If ¢! ensures that the topological
information contained in X, (obtained with f), is the same as the topological informa-
tion contained in Y; (obtained with f’), then the evolution of the homology groups in
{X;} and {Y;} is “the same”, and thus the functions f and f’ are considered as equal
by this pipeline. This for instance means that treating functions with this topological
approach might find information which is invariant to some kind of reparametrization
of the function.

These examples are intended to show that the TDA is a very promising field to
design and develop tools which play with the idea of considering data up to certain kind
of transformations: the general approach and framework provide a language and a point
of view which is a potential fertile ground for new sources of information about data,
which present some kind of invariance properties.

1.3 Statistics in non-Euclidean Spaces

As highlighted in the previous Section, there are many examples of analyses carried out
on data not liying (at least naively) in R™ or other vector spaces. Quotient spaces of
functions up to reparametrizaion, point clouds up to isometries, matrices up to some
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Chapter 1. General Introduction

kind of base change, numbers up to unit of measure all require complex mathematical
frameworks to be treated, since even things like moving from one point to another must
be carefully defined and most of the linear structure of the base spaces often becomes
useless. The same problem occurs in other situations where data can be seen as em-
bedded in some ambient space but they possess a subspace structure, that is, roughly,
that the image of the embedding doesn’t naturally fill up the whole space. It is the case
for many interesting type of data: symmetric positive definite matrices (like covariance
matrices, see Arsigny et al. (2006); Moakher and Zérai (2011); Pigoli et al. (2014)),
sets of orthonormal vectors (James, 1976; Turaga et al., 2011), rotation matrices, den-
sities of probability distributions, even patches of images (Carlsson et al., 2008) cannot
be analyzed using the linear structure of the ambient space but must be approached by
considering their the structure of subspace they belong to. One can then distinguish
between two main different situations: the classical situation where one can explicitly
describe and model the space or the subspace structure, usually via a set of constraints,
but there are also cases in which this structure cannot be modeled a priori, and it must be
learned in some way from data, with procedures of manifold learning (see for instance
Breiding et al. (2018); Budninskiy et al. (2019)). Both the aforementioned situations
have attracted a lot of research, but here we focus on the cases in which we have ex-
plicit access to the space structure, being it a manifold/submanifold structure, a stratified
space structure or other more general kind of spaces.

When the space of interest is determined by a series of constraints inside a linear
space, there are two approaches to carry out the statistical analysis: the class of in-
trinsic approaches and the class of extrinsic ones. Intrinsic methods (Pennec, 2006)
are tools which just rely on the intrinsic structure of the “substructure” the data points
belong to (often a manifold structure), not on the ambient space, and correctly take
into account the real metric structure among data units. The extrinsic approach (Bhat-
tacharya et al., 2012), instead, focuses on how to use the linear space which sorrounds
the data points to capture reliable information about data on the subspace. Usually this
approach is pursued when intrinsic methods fail to be of any practical use since they
are computationally our of reach for the intended purpose. However the intepretability
of extrinsic methods is often heavily dependent on the data set: if the variability of the
data is small enough, they can often be approximated using a linear subspace of the
ambient space (for instance a tangent space), and thus extrinsic methods have a high
level of intepretability. When an embedding into a linear space is not avaiable, clearly,
the intrinsic approach is the only viable one.

The situation becomes further challenging when one cannot build a differential or
even a topological structure which falls into the realm of well-known and deeply studied
geometrical objects like manifolds. In this case ad-hoc, meaningful tools and definitions
must be carefully obtained in order to be able to work in such spaces (Calissano et al.,
2020; Garba et al., 2021; Turner et al., 2014).
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1.4. Outline of the Dissertation

1.3.1 Probability Distributions

A very interesting class of constrained, non-Euclidean data which arises quite often in
data analysis, is the one of probability distributions. There are situations in which either
data is given in an aggregated form, or one needs to aggregate data to get reasonable
results. For instance it may happen that due to missing information, mistakes, privacy
and other reasons, raw data are not avaiable and the analyst only receives summaries of
the collected pieces of information. In some other cases modeling the single statistical
unit is very complex and one may want to resort some kind of unstructured information
which is more readily available, for instance in the case of images in radiomics (Kumar
et al.,, 2012). In these and in many other situations, frequencies of units inside aggre-
gated objects become very important sources of information. Moreover one may want to
carry out some statistical analysis to compare situations where the same phaenomenon
produces radically different numbers for intrinsic reasons, for instance one may wish to
compare frequencies of some events in populations with very different sizes. All these
pieces, put together, lead to the analysis of sets of probability distributions.

Probability distributions are constrained objects in that the measure they induce on
the whole space is fixed and equal to one. For instance the space of densities of proba-
bility measures, is a space of integrable positive functions which integrate to 1. The non-
algebraic nature of these constraints is usually overcome by considering parametrized
families of distributions, with either a naive metric on the parameters space, or metrics
induced by distances between probability distributions, or even Riemannian metrics,
often used in information geometry (Amari, 2021; Ay et al., 2018). There are however
some frameworks providing handy representations of big sets of probability distribu-
tions, asking for other kinds of assumptions. For instance a set of continuous densities
on R with fixed compact support and satisfying SR log(f) < oo, can be given an Hilbert
space structure via Bayes spaces (Pawlowsky-Glahn et al., 2014). Another very im-
portant case is the one of Wasserstein spaces of probability distributions on R (Panare-
tos and Zemel, 2020). The mildness of the assumptions, along the tractability of the
spaces’ geometric structure, really make Wasserstein spaces a useful tool to work with
probability distributions on the real line. On top of that, the Wasserstein metric is also
interpretabile, in terms of optimal transport. For all these reasons, a good number of
statistical tools have already been defined to work in such spaces.

1.4 Outline of the Dissertation

In this thesis we deal with the issues presented in the previous sections. The chapters
collect the contributions of the manuscript dividing them between different areas and
different research perspectives.

In Chapter 2 and Chapter 3 we present a novel set of topological summaries in the
field of TDA, generalizing objects like merge trees and hierarchical dendrograms. In
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particular in Chapter 2 we build a theoretic framework to work with representations of
data whose invariance properties are different from the ones of the most widely used
TDA tool: persistence diagrams. In the same chapter we also develop the computa-
tional tools which allow the evaluation of the defined metric in all the examples and
case studies carried out in the manuscript. In Chapter 3, instead, we test both a particu-
lar instance of the summaries previously defined (merge trees) and persistence diagrams
on a benchmark case study in FDA, in order to showcase the effectiveness of the topo-
logical data analysis approach in OODA: in this case study, considering functions up
to some preparametrization group is almost mandatory. In Chapter 4 we explore the
- non-Euclidean - structure of the metric spaces defined in Chapter 2, considering the
particular case of merge trees. We start to investigate its topological and metric prop-
erties with an ad-hoc definition of the “tangent bundle”, paying particular attention to
Frechét means, which are objects of great interest in data analysis. We end up this part
of the thesis with Chapter 5 in which we discuss possible further developments of the
research topics presented in the first part of the thesis. In Chapter 6, we change topic
and tackle the problem of developing statistical methods to work in the 2-Wasserstein
space of probability measures on R. We conclude the dissertation drawing some general
conclusions and suggesting some other further research directions in Chapter 7. In the
last chapter, Chapter 8, we describe the implementations and the code needed to run all
the simulations an analyses of the dissertation.

1.5 Note to the reader

As already stated, this PhD thesis investigates two kinds of interactions between data
analysis and geometry: first employing representations of data based on some kind of
topological information, second trying to generalize objects which are well defined and
understood in usual linear spaces. Moreover, Chapter 2, Chapter 3 and Chapter 4 are
all focused on the use of some novel topological representations of data, while Chap-
ter 6, deals with a separated topic, namely distributional data analysis, sharing with the
previous chapters the philosophy of the approach which leads to the novel techinques
defined. Chapter 2 and Chapter 3 can be read independently; in this case however, some
results exploited in Chapter 3 must be taken for granted since their proofs belong to
Chapter 2. Chapter 4 assumes the reader is familiar either with the ideas formulated in
Chapter 2 or in Chapter 3. Chapter 6 is a completely standalone chapter.

The separation in chapters, along with their titles, helps the reader in distinguishing
between parts devoted to topological data analysis and parts devoted to distributional
data analysis. To further help the reader, at the beginning of each chapter we state with
a small image the nature of the chapter itself, expressing whether is focused on us-
ing/defining topological summaries, or on the developement of tools for non-Euclidean
spaces.

The trefoil knot in Figure 1.1(a) indicates a chapter which aims at developing the

8
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topological perspective in the dissertation, while the sketch of a smooth surface, as
in Figure 1.1(b), stands for the developement of tools for data analysis outside linear
spaces.

(b) Sketch of a
(a) Trefoil knot. smooth sur-
face.

Figure 1.2: The two symbols which are used at the beginning of each chapter to guide the reader.

The trefoil knot is an important object in topology, especially in knot theory, and
represents a class, up to homotopy equivalence, of non trivial knots. The surface repre-
sentation, instead, expresses the more basic operations which one would like to define
outside linear spaces: local coordinates to parametrize neighborhoods of points, tangent
spaces to obtain a linear structure viable close to the tangent point, and a normal space
to talk about covariant derivatives and so geodesics.

Note that these symbols have already been used in the previous sections of the in-
troduction.

1.6 Further Comments

The content of the main chapters of the thesis is also part of the following papers:
e Chapter 2: A Metric for Tree-like Topological Summaries (Pegoraro, 2021)

e Chapter 3: Functional Data Representation with Merge Trees (Pegoraro and Sec-
chi, 2021)

e Chapter 4: Frechét Means of Finite Sets of Merge Trees [Preliminary stage]

e Chapter 6: Projected Statistical Methods for Distributional Data on the Real Line
with the Wasserstein Metric (Pegoraro and Beraha, 2021)






CHAPTER

A Metric for Tree-Like Topological Summaries

The content of this chapter is also part of the paper Pegoraro (2021).

In this chapter we define a novel metric structure for a family of tree-like topo-
logical summaries. This family of objects is a natural combinatoric generalization of
merge trees of scalar fields and hierarchical dendrograms. The metric introduced can
be computed with a dynamical integer linear programming approach and we showcase
its feasibility and the effectiveness of the whole framework with simulated data sets. In
particular we stress the versatility of these topological summaries, which prove to be
very effective in situation where other topological data analysis tools, like persistence
diagrams, can not be meaningfully employed.

2.1 Introduction

Topological Data Analysis (TDA) is the name given to an ensemble of techniques which
are mainly focused on retrieving topological information from different kinds of data
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Chapter 2. A Metric for Tree-Like Topological Summaries

(Lum et al., 2013). Consider for instance the case of point clouds: the topology of
a point cloud itself is quite poor and it would be much more interesting if, using the
point cloud, one could gather information about the topological space data was sam-
pled from. Since, in practice, this is often not possible, one can still try to capture the
“shape” of the point cloud. The idea of persistent homology (PH) (Edelsbrunner and
Harer, 2008) is an attempt to do so: using the initial point cloud, a nested sequence
of topological spaces is built, which are heavily dependent on the initial point cloud,
and PH tracks along this sequence the persistence of the different topological features
which appear and disappear. As the name persistent homology suggests, the topolog-
ical features are understood in terms of generators of the homology groups (Hatcher,
2000) taken along the sequence of spaces. One of the fundational results in TDA is that
this information can be represented by a set of points on the plane (Edelsbrunner et al.,
2002; Zomorodian and Carlsson, 2005), with a point of coordinates (x,y) representing
a topological feature being born at time = along the sequence, and disappearing at time
y. Such representation is called persistence diagram (PD). Persistence diagrams can be
given a metric structure through the Bottleneck and Wasserstein metrics, which, despite
having good properties in terms of continuity with respect to perturbation of the original
data (Cohen-Steiner et al., 2007, 2010), provide badly behaved metric spaces. Various
attempts to define tools to work in such spaces have been made (Fasy et al., 2014; La-
combe et al., 2018; Mileyko et al., 2011; Turner et al., 2012), but still it proves to be an
hard problem. In order to obtain spaces with better properties and information which
is more easily represented in terms of fixed length vectors (needed for many Machine
Learning techniques) a number of topological summaries, alternative to PDs, have been
proposed, such as: persistence landscapes (Bubenik, 2015), persistence images (Adams
et al., 2017) and persistence silhouettes (Chazal et al., 2015).

All the aforementioned machinery has been successfully applied to a great number
of problems in a very diverse set of scientific fields: complex shape analysis (MacPher-
son and Schweinhart, 2010), sensor network coverage (Silva and Ghrist, 2007), pro-
tein structures (Gameiro et al., 2014; Kovacev-Nikolic et al., 2016), DNA and RNA
structures (Emmett et al., 2015; Rizvi et al., 2017), robotics (Bhattacharya et al., 2015;
Pokorny et al., 2015), signal analysis and dynamical systems (Maleti€ et al., 2015; Perea
and Harer, 2013; Perea et al., 2015), materials science (Kramadr et al., 2013; Xia et al.,
2015), neuroscience (Curto, 2016; Giusti et al., 2016), network analysis (Pal et al., 2017;
Sizemore et al., 2015), and even deep learning theory (Hofer et al., 2017; Naitzat et al.,
2020).

Related Works

Close to the definition of persistent homology for O dimensional homology groups, lie
the ideas of merge trees of functions, phylogenetic trees and hierarchical clustering den-
drograms. Merge trees of functions (Morozov and Weber, 2013) are a particular case
of Reeb Graphs (Biasotti et al., 2008; Shinagawa et al., 1991), occurring when using
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the sublevel sets of a bounded Morse function (Audin et al., 2014) defined on a simply
connected domain. Phylogenetic trees and clustering dendrograms are very similar ob-
jects which describe the evolution of a set of labels under some similarity measure or
agglomerative criterion. Both objects are widely used respectively in phylogenetic and
statistics and many complete overviews can be found, for instance see Felsenstein and
Felenstein (2004); Garba et al. (2021) for phylogenetic trees and Murtagh and Contr-
eras (2017); Xu and Tian (2015) for clustering dendrograms. Informally speaking, while
persistence diagrams record only that, at certain level along a sequence of topological
spaces, some path connected components merge, merge trees, phylogenetic trees and
clustering dendrograms encode also the information about which components merge
with which. Usually tools like phylogenetic trees and clustering dendrograms are used
to infer something about a fixed set of labels, for instance an appropriate clustering
structure, however, we are more interested in looking at the information they carry as
unlabeled objects obtained with different sets of labels. For this reason most of the met-
rics available for phylogenetic trees and clustering dendrograms are not valuable for our
purposes.

In the last years a lot of research sparkled on such topics, starting from the more
general case of Reeb graphs, to some more specific works on merge trees. Different but
related metrics have been proposed to compare Reeb graphs (Bauer et al., 2014a,b, 2016,
2020; Carriere and Oudot, 2017; De Silva et al., 2016; Di Fabio and Landi, 2012, 2016),
which have been shown to posses very interesting properties in terms of Morse functions
on manifolds, connecting the combinatorial nature of Reeb Graphs with deformation-
invariant characterizations of manifolds which are smooth, compact, orientable and
without boundary. On the specific case of merge trees, there has been some research on
their computation (Morozov and Weber, 2013; Pascucci and Cole-McLaughlin, 2003)
and on using them as visualization tools (Bock et al., 2017; wu and Zhang, 2013), while
other works (Beketayev et al., 2014; Morozov et al., 2013) started to build frameworks
to analyze sets of merge trees, mainly proposing a suitable metric structure to compare
them, as do some recent preprints (Gasparovic et al., 2019; Touli, 2020). The main issue
with all the proposed metrics is their computational cost, causing a lack for examples
and applications also when approximation algorithms are available (Touli and Wang,
2018). When applications and analysis are carried out (Sridharamurthy et al., 2020), the
employed metric does not have suitable properties and thus the authors must resort to a
“computational solution to handle instabilities” ((Sridharamurthy et al., 2020), Section
1.2) to use their framework. Along with that, such metrics are difficult to be extended
to more general objects than merge trees. Lastly, there is a recent preprint investigating
structures lying in between merge trees and persistence diagrams, to avoid computa-
tional complexity while retaining some of the additional information provided by such
objects (Elkin and Kurlin, 2020).
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Main Contributions

The success of PDs highlighted before, strongly motivates the development of more re-
fined and computable techniques to work with merge trees, phylogenetic trees and clus-
tering dendrograms. Our contribution to such topic is three folded: first we introduce
a novel use of tree-like structures as topological summaries with objects called gener-
alized dendrograms, second we propose a metric structure for the space of generalized
dendrograms in the form of a novel edit distance between weighted (in a very broad
sense), unlabeled, unordered trees; lastly we develop a dynamical integer programming
algorithm to make this metric viable for a good range of applications.

If we consider our framework restricted just to the case of merge trees, the works
Bauer et al. (2016); Di Fabio and Landi (2012, 2016) contain a perspective which is very
similar to ours, since they define edit distances for Reeb Graphs, and thus, for merge
trees. However, at a closer look, the two approaches diverge immediately: the approach
in Bauer et al. (2016); Di Fabio and Landi (2012, 2016) is focused of interpreting mod-
ifications of the graphs in terms of deformations of the initial topological space, while
our is more concerned on the computational advantages offered by accurately defined
edit distances and the possibility to extend the metric to more general kinds of trees.
Thus, we end up with very different definitions and properties (see Section 2.4 and
Remark 6 for more details).

The edit distance we propose starts from usual tree edit distances (Bille, 2005; Tai,
1979) but adds fundamental modifications in order to obtain the properties needed to
compare topological information. A simplified but similar definition has already been
considered in Koperwas and Walczak (2011), but it is just cited in few lines as a pos-
sibility without a real motivation, which lacks any kind of investigation (even whether
or not it defines a proper metric). As already stated, instead of modifying other metrics
for trees (Billera et al., 2001; Feragen et al., 2012; Wang and Marron, 2007) in order
to allow for different sets of leaves with different cardinalities, we follow the path of
edit distances because of the computational properties which they often possess, mak-
ing them suited for dealing with unordered and unlabelled trees (Hong et al., 2017).
The computational issues raised by those kind of trees are in fact a primary obstacle to
designing feasible algorithms (Hein et al., 1995). Nevertheless, we are able to obtain an
Integer Linear Programming (ILP) algorithm which can compute the distance between
two binary trees with N and M leaves respectively, by solving O(/N - M) ILP problems
with O(N - log(N) - M - log(M)) variables and O(N + M) constraints.

Outline

The chapter is organized as follows. In Section 2.2 we describe the main facts that mo-
tivate our work. In Section 2.3 we give formal definitions of generalized dendrograms.
In high generality, with Section 2.4 we tackle the problem of finding a suitable metric
structure to compare those objects. In Section 2.5 we detail how generalized dendro-
grams can be employed to build new topological summaries. In Section 2.6 we prove
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some properties of the metric previously defined, which lead to the algorithm presented
in Section 2.7. In Section 2.8 we present some simulations and examples to showcase
the effectiveness of the proposed framework and we end up with some conclusions in
Section 2.9. Proofs of results are found in Section 2.10.

2.2 Main Ideas and Driving Examples

In TDA the main sources of information are sequences of homology groups with field
coefficients: using different pipelines a single datum is turned into a sequence of topo-
logical spaces, which, in turn, induces - via some homology functor with coefficients in

the field K - a sequence of vector spaces with linear maps which are usually all isomor-
2:+1

phisms but for a finite set of points in the sequence. Any such sequence A; —— A;1

is then turned into a topological summary, for instance a persistence diagram, which

completely classifies such objects up to sequence isomorphisms. That is, if for two
i+1 i+1

vector spaces sequences A; — A, and B; SLANN B, exists a family of linear iso-
morphisms ¢; : A; — B; such that for all 4 holds 7™ o g; = g;;1 0 ¥!*", then they
are represented by the same persistence diagram. As already highlighted in the intro-
duction, PDs have proven to be useful in a wide variety of tasks. However there might
be cases where a more discriminative topological summary is needed, or a summary to
which additional information can be meaningfully attached. In Elkin and Kurlin (2020)
this topic is discussed and some motivational case studies are carried out, but we want
to go further in this direction. To do so we present two simple examples and then try
to give some informal intuition of the ideas which are going to be formalized in the
following sections.

2.2.1 Hierarchical clustering

Consider the single linkage dendrograms and the zero dimensional PDs obtained from
point clouds as in Figure 2.1 (for a quick introduction to persistence diagrams see Sec-
tion 2.12). The persistence diagrams (in Figure 2.1(c) and Figure 2.1(f)) are very simi-
lar, in fact they simply record that there are four major clusters which merge at similar
times across the Vietoris-Rips filtrations (Edelsbrunner and Harer, 2008) of the two
point clouds. The hierarchical dendrograms, instead, are clearly very different since
they show that in the first case (Figure 2.1(a), Figure 2.1(b), Figure 2.1(c)) the clus-
ter with most points is the one which is more separated from the others in the point
cloud; while in the second case (Figure 2.1(d), Figure 2.1(e), Figure 2.1(f)) the two big-
ger clusters are the first that get merged and the farthest cluster of points on the right
could be considered as made by outliers. In many applications it would be important
to distinguish between these two scenarios, since the two main clusters get merged at
very different heights on the respective dendrograms. We use this example to point out
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Figure 2.1: Data clouds, hierarchical clustering dendrograms and PDs involved in the first

example.
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(a) Sublevel sets of a function (b) A function with its associated merge tree.

Figure 2.2: Merge Trees of Functions

another fact: while both dendrograms have as many leaves as there are points in the
point clouds, if one attaches to a vertex of the dendrogram the cardinality of the cluster
obtained by cutting the edge above the vertex itself, then most of the information con-
tained in the dendrogram could be summarized using a much smaller tree (in terms of
number of leaves). For instance one could decide to remove all the vertices associated
to clusters whose cardinality is smaller than a certain threshold.

2.2.2 Merge Trees of functions

Given a continuous function f : [a,b] — R we can extract its merge tree. For a detailed
definition of the procedure refer to Morozov and Weber (2013) or Chapter 3. Roughly
speaking the merge tree tracks the evolution of the path connected components of the
sublevel sets f~!((—o0, t]), for an example see Figure 2.2(b).

Again, we point out two facts. First PDs may not be able to distinguish functions one
may wish to distinguish, as made clear by Figure 2.3. Second, Proposition 5 in Chap-
ter 3 states that if one changes the parametrization of a function by means of homeo-
morphisms, then, both the associated merge tree and persistence diagram do not change.
A consequence of such result is that one can linearly shrink or spread the domain of the
function f : [a,b] — R at will, without changing its merge tree (and PD). There are
cases in which such property may be useful but surely there are times when one may
want to distinguish if an oscillation lasted for a time interval of 1075 or 10°.

2.2.3 Intuitions

Behind the examples in Section 2.2.1 and Section 2.2.2 there is the following phe-
nomenon. Especially in the case of 0 dimensional homology, one can naturally fix a
basis in the homology vector spaces (for instance the one induced by the connected
components) such that the maps in the sequence coherently map the basis fixed in one
space into the basis fixed into the following one. Both dendrograms and merge trees
capture the information given by such maps and bases along their respective sequences.
In addition to that, having fixed a basis inside every homology group, one can gather in-
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Figure 2.3: We see a comparison of four functions with the same PD in dimension 0 but different
merge trees. The function is displayed on the first row of each subplot, while on the second
we have on the left the PD and on the right the merge tree.
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formation about that basis and follow it at every step along the vector spaces sequence.
For instance, in the Vietoris-Rips filtration of a finite point cloud, one could count the
number of points in each connected component along the sequence of homology groups.

Remark 1. This idea of gathering additional information along the homology groups,
a priori, can be applied also to PDs and the basis which is used to find the diagram
representation. But we argue that this cannot be done meaningfully because minimal
changes in the sequence of vector spaces, for instance exchanging the birth order of two
classes, yields big changes in terms of basis representation, due to the elder rule. For
more details see the second example in Section 2.5.3.

2.3 Tree-Like Summaries

In this section we start to formalize our ideas: we start from merge trees, built in a
combinatorial fashion, then we define more general objects, called generalized dendro-
grams, on which we focus for the remaining of the manuscript. To begin with, we state
which are the vector spaces sequences we want to work with.

Definition 1. A fixed basis vector spaces filtration is a family of couples {( Ay, a;) }ier
where a, is a finite dimensional vector space of dimension ny and a, = {a}, ..., al, } is
a basis for A;; there are also maps for every t < t' € R: @bf . Ay — Ay which must
satisfy the following conditions:

1. givent <t <t theny! opt) =, this is called the cocycle condition;

2. 9 (ay) < ay;

3. for any t, {{!'}y are all isomorphisms but for a finite set of t' € R; such t' are
called critical points;

4. there exists a value t~ such that for any t < t~, (v, V;) = (&, {0});
5. there exists a value t* such that, for any t* > t, dim(V;) = 1

Remark 2. In Topology and more in general in Category Theory, filtrations (and fil-
tered objects) are obtained with sequences of objects and morphisms (usually monomor-
phisms). For this reason, with a slight abuse of notation, we use the terms filtration and
sequence to refer to ordered sets of objects indexed on the real line, but where “relevant
changes” happen only in a finite set of values.

The the cocycle condition can be exploited to observe some facts about the critical
points.
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Remark 3. If t' is the first critical point for t, that is, it is the smallest value t' bigger
than t such that V! is not an isomorphism, then for all t" € [t, ') the value t' is critical
and there are no other critical points for t" in the interval (t",t"). This holds thanks
to the cocycle condition. In other words the critical points split the interval [t~ 1]
in a finite set of intervals [t;,t;+1) where t; are the critical points. Note that for any
t, v € [ti,tip1), t <U, 2! is an isomorphism.

Now we define which equivalence classes of sequences we want to work with.

Definition 2. Consider two fixed basis vector spaces filtrations V = {(A, a;) }er and
W = {(By, b)) }er, with maps ¢ : A, — Ay and ' . B, — By respectively. A
basis preserving isomorphism of sequences {g;}icr is family of linear isomorphisms
gi + Ay — By such that g, induces a bijection between a, and by, and, for all t, the
following square commutes:

e
A —— Ay

tl

n,
Bt —t> Bt/

2.3.1 Merge Trees

The definition of merge trees is not novel but usually is obtained in a more topolog-
ical fashion and starting from functions (Morozov and Weber, 2013). Instead we use
the more combinatorial approach found in Chapter 3 which we report in the follow-
ing lines. Such definition relies on graph-based representations of unordered, unlabeled
trees, which are called free structures throughout the dissertation.

Definition 3. A tree structure T' is given by a set of vertices Vi and set of edges Er <
Vir x Vip which form a connected rooted acyclic graph. The order of a vertex is the
number of edges which have that vertex as one of the extremes. Any vertex with an edge
connecting it to the root is its child and the root is its father. In this way we recursively
define father and children (possibly none) relationships for any vertex on the tree. The
vertices with no children are called leaves or taxa. The relationship father > child
induces a partial order on V. Similarly, the edges Er are given in the form of ordered
couples (a,b) with a < b. For any vertex v € Vi, suby(v) is the subtree of T rooted in
v, that is the tree structure given by the set of vertices v' < v. If clear from the context
we might omit the subscript T
A finite tree structure is a tree structure with Vi being a finite set.

Note that, identifying an edge (v, v’) with its lower vertex v, gives a bijection be-
tween Vr — {rp} and E7, thatis Ep ~ Vp as sets, and thus one can interpret the infor-
mation associated to vertices as information associated to edges. Given this bijection,
we often use Fr to indicate the vertices v € Vi — {rr}, to simplify the notation.
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Moreover, we do not want the vertex set of tree structures to carry any relevant
structure, since we are going to consistently add pieces of information to a tree structure
in a different way. For this reason we treat such objects up to the following isomorphism
classes.

Definition 4. Two tree structures T and T" are isomorphic if exists a bijection g : Vi —
Vi that induces a bijection between the edges sets Er and E7:: (a,b) — (g(a), g(b)).
Such g is an isomorphism of tree structures.

Now we can borrow from Chapter 3 the following definition.

Definition 5. A merge tree is a finite tree structure I with a monotone increasing height
function h : Vi — R. Two merge trees (T, h) and (1", 1) are isomorphic if T and
T’ are isomorphic as tree structures and the isomorphism g : Vi — Vpi is such that
h = h' o g. Such g is an isomorphism of merge trees.

Section 3.2 of Chapter 3 details how, given a function f : [a,b] — R, witha,b € R, a
merge tree can be used to represent the fixed basis vector spaces filtration given by A; =
Ho(f'((—o0,t])) and with a; being the basis induced by path connected components.

The same procedure can be used to represent any fixed basis vector spaces filtration
{(A¢, a;) }ier up to basis preserving isomorphism. The merge tree obtain is unique up
to the choice of the vertex set, that is, up to isomorphism of merge trees. The general
idea is the following. We consider only the maps wfjff Ay — Ay, with {ti}io

1) = ¢, we have a leaf

being the critical points of the filtration: any time (¢;’ ) ~'(a
v with hr(v) = t;, and when we have v}’ (al™) = Ur (a; ') we have a vertex v’
whose children are the vertices of the tree structure associated to the path connected
components which merge, with hp(v') = t;. For more details see Section 2.11. Note

that the image of the height function Ay is the set of critical values of the filtration.

2.3.2 Generalized Dendrograms

Merge trees are the most natural starting point, since they can be used to represent fixed
basis vector spaces filtration up to basis preserving isomorphism. But know we want to
take a step forward, collecting and representing other kind of information about those
sequences of vector spaces, generalizing merge trees.

Since deciding what kind of information we want to track along a fixed basis vector
spaces filtration and deciding how to attach it to the tree-structure may end up overload-
ing the notation and making too restrictive hypotheses, we take a more general approach,
developing the theory forgetting about homology groups and fixed bases, but recovering
such more specific point of view in Section 2.5.

Definition 6. Given two sets X and Y, consider their disjoint union X [[Y, and a
tree structure T. A multiplicity function ¢ is a function ¢ : Vi — X[V, such that

o(Er) < X and p(rr) €Y.
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Definition 7. A generalized dendrogram is a tree structure with a multiplicity function.
Two generalized dendrograms (T, @) and (T, ') are isomorphic if there is a bijection
g = Vi — Vi which makes them isomorphic as tree structures and is such that ¢(v) =

©'(g(v)).

2.4 Edit Distance for Generalized Dendrograms

The main goal of the following Sections is to propose a computable (pseudo) metric
between generalized dendrograms. We want this metric to be suitable to compare topo-
logical information, in the sense explained by Section 2.4.2.

2.4.1 Edits of Dendrograms

The approach we follow is to define a distance which is inspired by the Tree Edit Dis-
tances (Tai, 1979), but with substantial differences in the edit operations. The philoso-
phy of these distances is to allow certain modifications of the base object, called edits,
each being associated to a cost, and to define the distance between two objects as the
minimal cost that is needed to transform the first object into the second with a finite se-
quence of edits. Edit distances in fact frequently enjoy some decomposition properties
which simplify the calculations (Hong et al., 2017), which are notoriously very heavy
(Hein et al., 1995).

First of all, let us make some hypotheses on the multiplicity functions and their
codomains.

Definition 8. A set X is called editable if the following conditions are satisfied:
(P1) (X,d) is a metric space

(P2) (X,®,0) is a monoid (that is X has an associative operation ® with zero element
0)

(P3) the map d(-,0) : X — R is a map of monoids between (X,®) and (R, +): d(z @
y,0) = d(0,z) +d(0,y).

(P4) d is @ invariant, that is: d(z,y) = d(z@z,2Dy) =d(z D2,y D 2)

Note that in property (P3), d(z @ y,0) = d(z,0) + d(y,0), implies that z ® y # 0.
Moreover (P3)-(P4) imply that the points 0, x, y and = @ y form a rectangle which can
be isometrically embedded in an Euclidean plane with the Manhattan geometry (that is,
with the norm || - ||1): d(z,x @ y) = d(0,y), d(y,x ®y) = d(0,z) and d(z D y,0) =
d(0,x) + d(0,y).

With these additional pieces of structure there are situations which we want to avoid,
because they represent “degenerate” dendrograms which introduce formal complica-
tions.
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2.4. Edit Distance for Generalized Dendrograms

Definition 9. Given an editable space X and a tree-structure T', a proper multiplicity
function is a multiplicity function p such that ¢ : Er — X and 0 ¢ p(Er).

From now on we only work with editable spaces, and we want to consider exclu-
sively proper multiplicity functions. To lighten the notation, however, we omit to write
“proper” explicitly.

Definition 10. Given an editable space X and a metric space Y, the editable dendro-
gram space (D,Y || X) is given by the set of generalized dendrograms with (proper)
multiplicity functions with values in Y | [ X.

Given an editable dendrogram space (D, Y [ [ X), with (X, @, 0) editable space, we
can define our edits.

e We call shrinking of a vertex/edge a change of the multiplicity function. The
new multiplicity function must be equal to the previous one on all vertices, apart
from the “shrunk” one. In other words, for an edge e, this means changing the
value ¢(e) with another non zero value in X. For the root, this means changing
arbitrarily its multiplicity value inside Y.

e A deletion is an edit with which a vertex/edge is deleted from the dendrogram.
Consider an edge (vq,v2). The result of deleting v; is a new tree structure, with
the same vertices a part from v; (the smaller one), and with the father of the deleted
vertex which gains all of its children. The inverse of the deletion is the insertion of
an edge along with its lower vertex. We can insert an edge at a vertex v specifying
the name of the new child of v, the children of the newly added vertex (that can be
either none, or any portion of the children of v), and the value of the multiplicity
function on the new edge. This edit cannot be done on the root.

e Lastly we define a transformation which eliminates an order two vertex, connect-
ing the two adjacent edges which arrive and depart from it. Suppose we have two
edges e = (v1,v2) and €' = (vq, v3), with v; < vy < v3. And suppose vy is of or-
der two. Then, we can remove v, and merge e and e’ into a new edge ¢’ = (v, v3),
with p(e”) := ¢(e) @ p(€’). This transformation is called the ghosting of the ver-
tex. This edit cannot be done on the root. Its inverse transformation is called the
splitting of an edge.

A generalized dendrogram 7" can be edited to obtain another dendrogram, on which
one can apply a new edit to obtain a third dendrogram and so on. One can think of
this as composing two edits ey, e; which are not defined on the same dendrogram, since
the second edit is defined on the already edited dendrogram. This is what we mean by
composition of edits. Any finite composition of edits is called edit path. The notations
we use are functional notations, even if the edits are not operators, since an edit is not
defined on the whole space of dendrograms but on a single dendrogram; for example
e1 o eo(T') means that 7" is edited with ey, and then ey (7") with e;.
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(a) Deletion (b) Deletion Result (¢) Ghosting

(d) Ghosting Result (e) Shrinking

Figure 2.4: (a)—(e) form an edit path made by one deletion , one ghosting and a final shrinking,
between merge trees.

Merge Trees

An example of editable space is (R, +, 0) with the metric given by d(x,y) = |z — y|.
Given a merge tree 7', with its height function i, upon replacing hp with a weight
function wr, such that for each edge e = (v,v') € Ep, wp(v) = hp(v') — hy(v),
and wy(rr) = hr(ry), we retrieve a framework to work with merge trees. In fact,
by the monotonicity of hp, wr is a proper multiplicity function. Note that the “map”
hr — wr can be naturally inverted, so that from any weight function wr : Vp — Ry
we can recover a unique height function h7. In Figure 2.4 we can see examples of edit
operations for such dendrograms.

Curves in Editable Spaces

Consider an editable space X . Then the space of functions {f : R — X| {, d(f(t),0)dt <
oo} induces an editable space. The monoid operation is defined pointwise: (f@g)(t) :=
f(t)@g(t) and a pseudo-metric is given by d(f, ) := {5 d(f(t), g(t))dt. If then all func-
tions which differ on zero measure sets (with respect to the Lebesgue measure on R) are
identified with an equivalence relationship, this becomes a metric space. The function
d is always non negative, so if properties (P3) and (P4) hold pointwise, then they hold
also for integrals. For instance we verify (P3) as follows:

d(f@g,0)=J

R

d(f(t) @ g(t),0)dt = J d(f(t),0) + d(g(t),0)dt = d(f,0) + d(g,0)

R

We name such editable space L; (R, X) := {f : R — X|{, d(f(t),0)dt < 0}/ ~.
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Finite Products of Spaces

Consider two editable spaces X and X', that is (X,®,0x) and (X', ¢, 0x/) satisfying
properties (P1)-(P4). Then (X x X', @, (0x,0x)) is an editable space, with @ being
the component-wise operations ® and ¢, and the metric d on X x X’ being the sum of
the component-wise metrics of X and X'.

2.4.2 Order 2 vertices

When deleting an edge in a merge tree, the father of the deleted vertex becomes an order
two vertex. Such vertex carries no topological information, since the merging that the
point was representing, is no more happening (was indeed deleted). This fact gives the
intuition that order 2 vertices (a part from the root) are completely irrelevant and must
not be taken into account when comparing dendrograms: they appear when nothing
interesting happens topologically. Thus, informally speaking, dendrograms “equal” up
to order two vertices, should be considered equal. This means that the isomorphism
classes considered in Definition 5 and Definition 7 might be “too small” in the sense
that one would like to regard as equivalent bigger sets of merge trees or dendrograms.
Thanks to the definitions in Section 2.4.1 we can formalize the meaning of “equal up to
order 2 vertices”.

Definition 11. Generalized dendrograms are equal up to order 2 vertices if they become
isomorphic after applying a finite number of ghostings or splittings.

Definition 11 induces an equivalence relationship. The set of generalized dendro-
grams inside (D, X [[Y') that we want to treat as equal are exactly the equivalence
classes given by Definition 11. We call (D2, X [ [Y) the space of equivalence classes
of dendrograms in (Dy, X [ [ Y), equal up to order 2 vertices.

Definition 12. A pseudo-metric on (D, X [[Y) which induces a non trivial pseudo-
metric on (Dy, X [ [Y') is called topologically stable.

In other words a topologically stable pseudo-metric for dendrograms is a (non trivial)
pseudo-metric which identifies dendrograms which are equivalent up to order 2 vertices.
2.4.3 Edits and Costs

Now we associate to every edit a cost, that is a length measure in the space (D, X [[Y).
The costs of the edit operations are defined as follows:

e if, via shrinking, an edge goes from multiplicity = to multiplicity y, then the cost
of such operation is d(x,y). This holds both for shrinkages happening in X and
for shrinkages done on the root, which take place in Y;

e for any deletion/insertion of an edge with multiplicity xz, the cost is equal to
d(z,0);
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e the cost of ghosting operations is |d(x @ y,0) — d(z,0) — d(y,0)| = 0.

Remark 4. With such costs, it would be natural to try to define a family of metrics
indexed by integers p > 1 by saying that the costs of compositions are the p-th root of
sum of the costs of the edit operations to the p-th power. But one immediately sees that
for any p > 1 this has no hope of being a meaningful pseudo metric. In fact consider the
case of merge trees (with multiplicity given by the weight function wr) and in particular
a tree made by a segment of length 1. The cost of shrinking it would be ||1||, = 1. At
the same time one can split it in half with O cost and the cost of shrinking this other
tree would be ||(1/2,1/2)||, < 1. Splitting the segment again and again will make its
shrinking cost go to 0. In other words all trees would be in the same equivalence class
of the tree with no branches.

Definition 13. Given two dendrograms T and T" in (D, X | |Y), define:
o ['(T,T") as the set of all finite edit paths between T and T";
e cost(7y) as the sum of the costs of the edits for any v € I'(T, T");

o the dendrogram edit distance as:
de(T,T") = infrer(rrycost(y)

By definition the triangle inequality and symmetry must hold, but, up to now, this
edit distance is intractable; one would have to search for all the possible finite edit paths
which connect two dendrograms in order to find the minimal ones. And from Remark 4
we see that is not even obvious that dg(7,7") > 0 for some dendrograms. However,
since the cost of ghostings is zero, it is clear that d induces a pseudo-metric on classes
of dendrograms up to order two vertices.

Remark 5. From the definition of the edit operations and their costs, it is clear that the
roots play little to no role in editing a dendrogram: if one wants to turn a dendrogram T’
in a dendrogram T', he has no choice but shrinking the root r1 to match the multiplicity
of rr. So there are no degrees of freedom involved. For this reason, from now on, to
lighten the notation, we simply forget Y and the multiplicity of the root and just focus
on the weight space X. Moreover we always assume to be working in an editable
dendrogram space.

2.4.4 Mappings

Now we introduce a fundamental tool, called mapping, that, by parametrizing certain
sets of edit paths, makes dr computable and its properties more readily available. The
idea of mappings is not novel (Tai, 1979) and often it is a the key ingredient both for
proofs and calculations in Tree Edit Distances (Hong et al., 2017). From now on we
suppose that in the set of vertices of any dendrogram there are not the letters “D” and
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“G” (which are used to indicate “deletion” and “ghosting”). Recall that £ identifies
the vertices Vp — {rr}.

A mapping between T and T" is a set M < (Ep v {D,G}) x (Ep v {D,G}) with
the following properties:

(M1) consider the projection of the Cartesian product (Eru{D, G})x(Epru{D,G}) —
(Eru{D,G}); we can restrict this map to M obtaining 77 : M — (Eru{D,G}).
The maps 77 and 77+ are surjective on By < (Er u {D,G}) and Ep < (Ep v
{D, G}) respectively;

(M2) 7 and 7 are injective;

(M3) M n (Vp x V) is such that, given (a,b) and (¢,d) € M n (Vi x V), a > ¢, if
and only if b > d;

(M4) if (a,G) (or (G,a)) is in M, let by, .., b, be the children of a. Then there is one
and only one i such that for all j # i, for all z € Vi), we have (z,D) € M
(respectively (D, x)); and there is one and only one c¢ such that ¢ = maz{z’ €
sub(b;)|(z',y) € M for any y € Vi }.

Conditions (M1)-(M2) are asking that every point is assigned to one and only one
“transformation”; (M3) ensures that the associations induced by M n (Vi x V) respect
the tree structures of 7" and 7”; lastly (M4) means that, once all vertices v appearing in
the couples (v, D) or (D, v) in M are deleted, the points which are coupled with G (that
is (a, G) or (G, a)) are all vertices of order two and therefore they can be ghosted.

Using M, we can parametrize a set of edit paths in the dendrogram space, starting
from 7" and ending in 7", which are collected under the name ~,,. The properties of M
allow the definition the following edit paths:

° 7;{ is a path made by the deletions to be done in 7, that is, the couples (v, D),
executed in any order. So we obtain 7))/ = ~T(T'), which, instead, is well defined
and not depending on the order of the deletions.

e One then proceeds with ghosting all the vertices (v, G) in M, in any order, getting
a path 7/ and the dendrogram Ty, := ) o~ (T).

e Since all the remaining points in M are couples, the two dendrograms 77}, (defined
in the same way as 7T, but starting from 7”) and T}, must be isomorphic as tree
structures. This is guaranteed by the properties of M. So one can shrink 7}, onto
T}, and the composition of the shrinkings, executed in any order is an edit path

Vs
By definition:
Y 0% ©7a(T) = Tiy,
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R R’
c A/
A B
(aT (b) TV

Figure 2.5: The edit path in Figure 2.4 is represented by the mapping M =
{(B,D),(C,G),(A, A", (R,R)} between T and T'. Figure 2.4(b) represents T}, Fig-
ure 2.4(d) presents Ty, in this case Ty, = T".

and:
(g ) o (v ) oyl ot o (T) =T

where the inverse of an edit path is thought as the composition of the inverses of the
single edit operations, taken in the inverse order.
Lastly, we call v,, the set of all possible edit paths:
(a )7 o (g )T o s 0 0
obtained by changing the order in which the edit operations are executed inside g4, 7,
and . Observe that, even if 7, is a set of paths, its cost is well defined:
cost(M) := cost(yar) = cost(y}) + cost(yF) + cost(vL).

See Figure 2.5 for an example of a mapping between merge trees.

Before moving on, we fix some notation and call Mapp(7T,T") the set of all map-
pings between 7" and 7". This set is never empty, in fact M = {(v,D) : v € Er} u
{(D,v") : v' € Ep} is always a mapping between 7" and 7”. In other words one can
always delete all the edges of a generalized dendrogram, and then insert all the edges of
the other.

Theorem 1 (Main Theorem). Given two generalized dendrograms T and T", for every
finite edit path v, exists a mapping M € Mapp(T,T") such that cost(M) < cost(7).

A first Corollary immediately follows.

Corollary 1. Since Mapp(T,T") is a finite set we have the following well defined
pseudo-metric:

dg(T, T") = inf{cost(y)|y € T(T,T")} = min{cost(M)|M € Mapp(T,T")}
which we will refer to as the edit distance between T and T".

A second Corollary is obtained observing that, if a mapping has cost equal to zero,
then it must contain only ghostings.
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Corollary 2. Given T and T' dendrograms, dg(T,T") = 0 if and only if T and T' are
equal up to order 2 vertices. In other words dg is a metric for generalized dendrograms
considered up to order 2 vertices.

Remark 6. If we compare the definitions and the results carried out in this section, with
the ones in Bauer et al. (2016); Di Fabio and Landi (2012, 2016), we can recognize the
different perspectives with which the different edit distances have been developed: in the
cited works, the authors are more focused on transformations of the base topological
space, while we are focused on local modifications of dendrograms. In fact, the avail-
able edit operations are different: in Bauer et al. (2016); Di Fabio and Landi (2012,
2016) there are six kinds of edits to be done on edges, along with their inverses, which
avoid having to deal with the removal of single vertices, situation which, instead, we
treat with ghostings. Moreover, even in the case of merge trees, there are some edits in
Bauer et al. (2016); Di Fabio and Landi (2012, 2016) which cannot be seen as mod-
ifications involving just a single vertex, and this makes difficult to employ something
like the mappings as we define, since a mapping is solely based on the fact that we can
completely encode any edit with a couple of elements: being it two vertices (of different
dendrograms) or a vertex and a letter (either “D” or “G”).

We can appreciate the different behaviours of the metrics looking at the stability re-
sults with respect to uniform convergence of functions: comparing for instance Theorem
28 in Di Fabio and Landi (2016) and Theorem 1 in Chapter 3 we see that the behaviour
of the two metrics is very different, with the metric in Bauer et al. (2016); Di Fabio and
Landi (2012, 2016) being more stable with respect to sup norm between functions.

2.5 Back to Vector Spaces Filtrations

At this point we go back to fixed basis vector spaces filtrations and we employ the
machinery defined in Section 2.3.2 and Section 2.4 to extract information from such
families of vector spaces. We want to define a pipeline to build proper multiplicity
functions with values in an editable space, obtaining dendrograms which in some sense
generalize merge trees. The precise meaning of “generalizing” merge trees is the fol-
lowing: starting from two fixed basis vector spaces filtrations, if we obtain generalized
dendrograms which are isomorphic, we ask that also their merge trees are isomorphic.

Consider {(A;, a;)}.r fixed basis vector spaces filtration with maps ! : A, — Ay.
An information function for {(As, a;)}er is a function © : B — X such that a;, < B
for all t € R, with X being an editable space. One should think at © as a kind of
“sufficient statistic” to be extracted from the fixed basis a;: it is the information one
wants to extract from the elements of the basis at time ¢ along the chosen filtration and
it must be carefully designed depending on the aim of the analysis.

Consider the merge tree obtained from {(A;, a;)},cr With its tree structure 7" and
its height function hy. Moreover consider an edge e = (v,v’), with ¢; = hp(v) and
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t; = hp(v'). We know by construction that there is a basis element, which we call
a%i € ay,, associated to v, which is such that (¢} )~ (¢! (a%)) = {ali} for all ¢’ € [t;, ¢;).
We define the multiplicity function 2 so that p9(e) : R — X is defined as follows:

P (e)(t') = Oy (af))
for all ¢’ € [t;,t;), and p2(e)(t') = 0 otherwise.

Definition 14. Given S a set of fixed basis vector spaces filtrations and X editable
space, an S-proper information function © : B — X, with X editable space, is a
function such that:

o forevery {(As, a)licr € S, a; = B
o 02 is a proper multiplicity function with values in L, (R, X) for every T € S

o if (T,92) and (T', ©3,) obtained from two elements of S are isomorphic as gener-
alized dendrograms, then the merge trees (T, hr) and (T’ hy') associated to the
same filtrations are isomorphic as merge trees.

Since ¢2(e) is by construction zero outside a compact interval, there are many nat-
ural conditions to be required for © so that ¢ is a multiplicity function with values
in the editable space L;(R, X). For instance we could ask that d(O(-),0) is bounded
by some positive constant. Similarly, if we want ¢ to be a proper multiplicity func-
tion, it is enough that ©(¢{ (a%)) = 0 only for ¢’ belonging to measure zero subsets
(wrt Lebesgue measure) of [¢;,¢;]. Both conditions, as well as the last one requested by
Definition 14, which, again, has to do with the zeros of the function O, can be attained
without much effort in many interesting situations, as shown in the upcoming examples.

Note that the operation of ghosting a vertex, with this structure, assumes a quite
natural form. Suppose we have two edges ¢ = (vq,v2) and € = (vq, v3), With v; <
vy < v3 and vy of order two. We have ¢ (e) with support on [t,,, t,,| and p2(e’) with
support on [t,,, t,, |, with t,, being hy(v;). If we ghost vy obtaining ¢” = (v, v3), then
w(e”) = p2(e) +p2(e’) is supported on [t,,, t,, ] and is such that @ (e”)(t) = 2 (e)(t)
on [t,,,t,,] and p2(e")(t) = ©2(e')(t) on [t,,,t,,]. Which means that we track down
the information collected by © as if vy did not exist.

Remark 7. From Definition 1, it is clear that the values t~ and t* are not unique for a
fixed basis vector spaces filtration. When building merge trees this is not a concern, be-
cause all relevant topological changes happen between the minimum and the maximum
critical values. When tracking down some kind of information with ©, it may happen, for
instance, that it is valuable to collect values of ©(al) fort > max;_1, . nti, and thus one
can fix t~ and t* according to the aim of the analysis. In particular t~ = min,_y__nt; is
a sensible choice in most cases, since ift~ < min;_y_pt;, then al” = . Instead, fixing
t* > max,_1__nt; can be useful for instance when considering sublevel set filtrations
of functions, as in Section 2.5.3. In this case, one should consider t as being another
critical value for the filtration, so that information is tracked with © up to t*.
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Remark 8. The one presented in this Section is not the only way to design multiplicity
Sfunctions which track some kind of information along a fixed basis vector spaces filtra-
tion, but for the aforementioned reasons and, as motivated by the following examples, it
is a quite natural and flexible framework to consider.

2.5.1 Merge Trees

Consider the special case the constant function © : Sets — R, such that O(s) = 1 for
all sets s, that is () = X[, ,) for an edge e spanning from height ¢; to height ¢;, with
X1 being the characteristic function over the set I = R. If two dendrograms (7, ©9)
and (T’ p2,) obtained with such information function are isomorphic, then they must
have isomorphic tree structures and the associated fixed basis vector spaces filtrations
must share all critical values. Otherwise, for any isomorphism of dendrograms 7 :
Er — Ep, the functions ¢2(e) and 2, (¢), for at least one couple of edges such that
n(e) = €', are characteristic functions over different intervals of the form [a,b) and
thus their distance in L;(R,R() is positive. This immediately implies that © = 1
is a proper information function with values in R~ for all fixed basis vector spaces
filtrations. With such function one can recover the information contained in merge trees:
isomorphism between dendrograms implies isomorphism of merge trees and viceversa.
These bijections between merge trees and dendrograms induced by © = 1, however, are
not isometries wrt the distance dg.

Example Consider for instance the functions f = ||z| — 1| and g = ||| — 1] + 1,
both defined on the interval [—2, 2]. See Figure 2.6(a). Let A, = Ho(f~!((—0,t])) and
By = Hy(97'((—0,])), both with the bases given by path connected components.

For the sequence {(A;, a;)}er Wwe can fix t~ = Oand t* = 1. Forany ¢ € [t—,t7],
a; = {a%,a' }, witha! = [1—t,1+t] and a* ; = [-1—¢, —1+¢]. The critical points are
to =t~ and t; = t*. Thus the merge tree (7', hr) associated to {(A;, a;)}er has a tree
structure given by a root with two children being the leaves. We represent this with the
vertex set {vy,v_1,ry} and edges e; = (vy,7r7) and ey = (v_y, 77). The height function
has values hr(vy) = hp(v_1) =t~ = 0 and hy(ry) = t* = 1. See Figure 2.6(b). The
multiplicity function 2, instead, is defined as follows: p2(e1) = p2(e2) = x[0,1) and
P2 (rr) = xqy-

In a similar fashion the sequence {(B, b;)}ir has t~ = 1 and t* = 2. For any
telt,tT], by = {bi,b" ;}, with b = [1 —¢,1+¢]and b'; = [-1 —¢,—1 + t]. The
critical points are ty = ¢t~ and t; = t*. Again the merge tree (7", hy) associated to
{(By, b;) }1cr has a tree structure given by a root with two children being the leaves. We
fix the vertex set {wy,w_q,r7+} and the edges €] = (wy, 77 ) and €, = (w_q,r7). The
height function has values hy(w;) = hy(w_q) =t~ = 1 and hy(rp) = tT = 2. The
multiplicity function ¢9,, instead, is defined as follows: %, (¢}) = %, (€}) = X[1,2) and
PP (rr) = X2y-

Consider the mapping M = {(v1,w1), (v_1,w_1), (ry, r7/)}. Its easy to check, be-
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cause of the small size of the sets V/ and Vv, that this is a minimizing mapping both for
the merge trees (7', wy) and (1", wy), and for the dendrograms (7', %) and (17, ¢$,).
The cost of M for the merge trees is:

D fwr(vi) = wrr(wy)| + [wr(re) — wr(re)| = 0+ 0 + 1
1=—1,1

while for the dendrograms is

D1 lleR() = e@w)ll + [1e2(rr) — e2(rr)lh = lIxp2ll + lIxpalh +0 = 4
i=—1,1

2.5.2 Clustering Dendrograms

Consider now the case of an agglomerative clustering dendrogram (7', A7) built on a
finite set {x1, ..., z,} with some linkage rule. We can look at clustering dendrograms
as the merge trees associated to the filtration given by ¢t~ = 0 and for ¢ > 0, A; is
the vector space generated by the clusters obtained by cutting the dendrogram at height
t. The basis is the one given by a; = {{x11,...,Z1m,}s-- s {Tk1,- .., Thn, }} Where
{j1,....%jn,} is the j-th cluster, which has cardinality n;, obtained by cutting the
dendrogram at height t. We call clustering filtrations all the fixed basis vector spaces
filtrations obtained from agglomerative clustering dendrograms following the procedure
just outlined.

A sensible information that one may want to track down along {(A;, a;) }scr is the
cardinality of the clusters. Thus we can take © : F'Sets — Ry, defined on all finite

sets (F'sets), such that ©({z;1,...,7;n,;}) = n;. Clearly, for a clustering filtration on
n elements, 1 < © < n and so p2(e) € Li(R,R>0). Note that p(e) = mxq, ), for
some positive cardinality m and some critical points ;,¢;. Thus, ©({z;1,...,2;,,}) =

n; is a proper family of information functions for all clustering filtrations.

Example Consider the finite set {v_; = —1,v9 = 0,vy = 2} and build the single
linkage hierarchical dendrogram of such set using the euclidean metric. The filtration
obtained from such hierarchical dendrogram is A; ~ K3 for ¢ € [0,1), A, ~ K? for
te[1,2)and A, ~ Kfort > t* = 2. The fixed bases are a; = {{v_1}, {vo}, {ve}} for
te[0,1), a; = {{v_1,v0}, {vo}} fort € [1,2) and a; = {{v_1,v0,ve}} fort = t* = 2.
The associated merge tree (7', hy) - see Figure 2.6(c) - can be represented with the
vertex set Vi = {{v_1}, {vo}, {v2}, {v_1,v0},7r}. The leaves are {v_;}, {vo} and {va};
the children of {v_1, vy} are {v_1} and {vy}, and the ones of r are {v_1, vy} and {v,}.
The height function hr is given by hr({v;}) = 0 fori = —1,0,2, hp({v_1,v0}) = 1
and hr(rr) = 2. The multiplicity function ¢S is thus the following: »2({v;}) = xjo,1)
fori = —1,0, 92({va}) = X2 ¥5({v_1,v0}) = 2x[1.2) and Y2 (rr) = 3x(2;. See
Figure 2.6(d).
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2.5.3 Dendrograms of Functions

Now turn to the situation showcased in Section 2.2.2. Consider U < R™ convex
bounded open set, with U being its topological closure, and let £ be the Lebesgue
measure in R™. Let f : U — R be a tame (Chazal et al., 2016) continuous function.
Consider the sublevel set filtration A; = Hy(f~'((—o0,t])) with a; = {U},..., Ut}
being the path connected components of f~!((—o0,t]). Here the tameness condition is
simply asking that a; is a finite set for every ¢. Call zﬂf the functions w,’f/ Ay — Ay We
choose as information function © = £, thatis: ©(U}) = L(U}). We can set t~ = infy f
and t* = supy, f. Let (T, hr) being the merge tree representing {(A;, a;)}icr, and ¢
the associated multiplicity function. Being f continuous, for and edge ¢ = (v,v’) € Er
spanning from height hr(v) = t; to hy(v') = t;, now we prove that 2(e) > 0 on
(ti;t;). We now that v is associated to a connected component U, for some k. If v
represents the merging of two or more path connected components U ,Z_e and U ,ﬁ;‘g, for
some small € > 0, with L(U,?l_a), L’(U,i;_a) > 0, then, since U,ii_a, U,i;_s c U,?, we
have £(U}?) > 0. Thus if we prove the statement for v leaf, we are done.

So, suppose v is a leaf and consider zy € U;'. We know f(x) = t;. By the
continuity of f, for every ¢ > 0 there is § > 0 such that if ||z — x¢|| < 0, then
f(zo) < flz) < fl(zo) + &. Since {z € Ul||z — xo|| < &} is convex (and so path
connected), then it is contained in ¢;""*(U}’). Moreover, since it contains the non-
empty open set {z € Ul|||lz — zo|| < 8}, we have L(¢;"(U}")) > 0 for every € > 0.
As a consequence, supp(p2(e)) = [t;,;]. Putting the pieces together this means that
© = L is a proper information function for sublevel set filtrations obtained from real
valued, bounded, tame functions defined over the closure of convex, bounded, open
subsets of R".

Example Consider again the function f = ||z| — 1| defined on the interval [—2, 2].
Let A; = Ho(f'((—o0,t])) with the bases given by path connected components. The
Example in Section 2.5.1 shows how to obtain the merge tree (7, hr) associated to the
sequence {(A¢, a;)}wer. Using the same notation of Section 2.5.1, now we obtain the
multiplicity functions ¢f (e;), with © being the Lebesgue measure as just discussed.

We then have ¢f(e;) = |1+t —1+t| =2t fort € [0, 1), and 0 otherwise. Clearly

2(e1) = p2(e2). Lastly o (rr) = 4x{ay.

Example Lastly we consider the following functions defined on [—1,2]: f(x) =
|t — 1|+ eifx = 0and f(z) = |2z — 1| if z < 0; while g(z) = |[x — 1| ifz > 0
and g(z) = |2z — 1| + e if x < 0 for a fixed ¢ > 0; as in Figure 2.6(e). Let (7', hr)
and (7", hy/) be the merge trees associated to the sublevel set filtrations of f and g;
moreover let ¢ and 9, the two respective multiplicity functions with © being the
Lebesgue measure on R. Note that ||f — g|| = 2¢. The local minima of the functions
are the points {—0.5, 1}, with f(—0.5) =0, f(1) = ¢, g(—0.5) = € and g(1) = 0. Thus
the merge trees have isomorphic tree structures: we represent 7' with the vertex set
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{v_o5,v1,r7} and edges {(v_q5,77), (v1,77)}; and T" with vertices {v_g 5, v1, 772} and
edges {(v_o.5,71), (v1,777)}. The height functions are the following: hr(v_g5) = 0,
hT/(U_0.5) =g, hT(Ul) =g, hT/(Ul) = (0 and hT(TT) = hT/<TT/) =1+e.

Lastly, the multiplicity functions (see Figure 2.6(f)) are given by: ©2(v_g5)(t) =
tX[0,1) + X[114e)s PRV () = 2(t — €)X 11 and @i (v_0.5)(t) = (t — €)X[e,14¢) and
P (v)(t) =2t - X[0,1) + 2X[1,14¢)-

The zero-dimensional persistence diagram associated to f (we name it PDy(f))
is given by a point with coordinates (0, 4+0), associated to the connected component
[—t/2—0.5,t/2 —0.5] which is born at ¢ = 0, and the point (g, 1 + ¢), associated to the
component [1 — (t —¢), 1+ (¢t —€)], born at level ¢ = ¢ and “dying” at level ¢t = 1 + ¢,
due to the elder rule, since it merges an older component, being the other component
born at a lower level.

For the function g, the persistence diagram P Dy(g) is made by the same points, but
the situation is in some sense “reversed”. In fact, the point (0, +00) is associated to the
connected component “centered” in 1, which is [1 — ¢, 1 + ¢], and the point (e, 1 + ¢), is
associated to the component “centered” in 0.5, thatis [—(t —¢)/2—0.5, (t +¢)/2—0.5].

The consequence of this change in the associations between points and the compo-
nents originating the points of the diagrams is that the information regarding the two
components, end up being associated to very different spatial locations in the two dia-
grams: (0, +o0) and (¢, 1 + ¢). And this holds for every £ > 0. Thus it seems very hard
to design a way to “enrich” PDy(f) and PDy(g) with additional information, originat-
ing the “enriched diagrams” Dy and D, respectively, and design a suitable metric d, so
that d(Dy, D;) — 0 ase — 0.

Instead, if we consider the mapping M = {(v_g5,v_05), (v1,v1), (ro, r70)} we have
dp((T,©2), (T', v2)) < cost(M) = 3¢. Thus it is very likely that some kinds of con-
tinuity/“stability” results, depending on the application, can be proven with our frame-
work, while it seems much harder to do the same for persistence diagrams.

Remark 9. In the previous Sections we presented three frameworks dealing with merge
trees, clustering dendrograms and sublevel sets filtrations of functions. More general
and complex frameworks can be defined, for instance we could consider suitable func-
tions defined on Riemannian manifolds, with © being the Riemannian volume. Simi-
larly, instead of taking information functions with values in X = R, we could design
Sfunctions with values in other editable spaces, such as R~y x R,.

2.6 Decomposition Properties and Optimization Problems

In this section we develop some results and formulations needed to obtain the algorithm
presented in Section 2.7. In Section 2.6.1 we prove the theoretical result that allows to
recursively split up the calculations (following ideas found in Hong et al. (2017)) and in
Section 2.6.2 such result is translated in terms of integer optimization problems.
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2.6.1 Decomposition Result

Since dp is topologically stable one can always suppose that a generalized dendrogram
is given without order 2 vertices. Name 75, the only representative without order 2
vertices inside the equivalence class of T". For notational convenience, from now on we
suppose 7' = Ty and 7" = T7,. To help us in the calculations define the following set of
mappings: M(T',T") < Mapp(T,T") made by mappings M such that (v, G) or (G, w)
is in M if and only if, respectively, v € V or w € Vi is of order 2 after the deletions.
The following Lemma then applies.

Lemma 1.
min{cost(M)|M € Mapp(T,T")} = min{cost(M)|M € M(T,T")}

In addition to that, we consider some particular subsets of Fp x E;» which play a
fundamental role from now on. Recall that, using Er ~ Vp — {rp}, we can induce
T . ET X ET/ - VT.

Aset M* ¢ Ep x Ep isin C*(T,T") if:

(A1) the points in 77 (M*) form antichains in V7 (and the same for 7y (M*) in Vi),
with respect to the partial order given by father > son. This means that any two
distinct vertices of 7" (respectively of 7") which appear in M* are incomparable
with respect to “>";

(A2) the projections 7y : M* — Vp and @ M* — Vv are injective.

Consider now M* € C*(T,T"). Starting from such set of couples we build a set of
edits which form a “partial” mapping between 7" and 7”. The meaning of “partial” will
be made clear by Proposition 1. The main idea is that M * is used as a “dimensionality
reduction tool””: instead of considering the problem of finding directly the optimal map-
ping between 7" and 7", we split up the problem in smaller subproblems, and put the
pieces together using M *. To do that, some other pieces of notation are needed.

Let v € Ep. One can walk on the (unweighted) graph of the tree-structure of 7" going
towards any other vertex. For any v € Er, (, is the shortest (in terms of vertices touched)
graph-path connecting v to r7. Note that this is the ordered set (, = {v' € VT‘U/ > v}.
Similarly, denote with C;f' the shortest path on the graph of 7" connecting = and z’. By
Property (A1), given z € Vi n mp(M™), there exist T # x such that:

,% = min{u{(z/’y/)eM*,x/;ém}(CCC N C:L‘/)}

And the same holds for y € Vi n o (M™).
With these bits of notation, given M* € C*(T,T"), we now build the partial mapping
a(M*) with the following rules. Consider v € V7

1. if (v, w) € M*, then (v, w) € a(M*);
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2. if there is not = € Vi such that v < & or v > Z, then (v, D) € a(M*);
3. if there is = € Vi such that v > 7 then (v, D) € a(M*);
4. if there i1s x € Vp such that v < 7:

(a) if v € (% then (v, G) € a(M*)
(b) if v < v; for some v; € (2 = {vg < v; < ... <w,} then (v, D) € a(M*);

(¢) if v < x no edit is associated to v.

Remark 10. By Properties (Al) and (A2), the conditions used to build o(M*) are mu-
tually exclusive. This means that each v € Vi satisfies one and only one of the above
conditions and so o(M*) is well defined.

The idea behind «/(M*) is that, for all couples (x,y) € M*, we want to turn ¢Z and
¢Y into single edges of the form (-, ¥) and (y, §) respectively, and then shrink one in the
other. Informally speaking, a(M*) is a mapping that takes care of all the vertices in T’
and 7", a part from the vertices U, ,)en+ {2 € ET]x’ <zyand U em{y € Eply <
y}, that is the vertices which are below z, for x € Vi n 7 (M*). For this reason we say
that o(M*) is a partial mapping.

Consider 7" and 7" and M* € C*(T,T"). We obtain from such dendrograms, respec-
tively, the dendrograms TM* and 1" m+ by deleting all the points v < x and w < y for
each couple (z,y) € M*. With the following Proposition we give a formal description
of the set of edits a(M*).

Proposition 1. The set o(M*) is a mapping in M(fM* , YNVM*).
Now we have all the pieces to obtain the following result.

Theorem 2 (Decomposition). Given T, T" dendrograms:

Z dg(subr(z), subp (y)) + cost(a(M*))  (2.1)

dE<T, T’) = minM*ec*(T,T/)
(z,y)eM*

2.6.2 Dynamical Integer Linear Programming problems

We want to use the Decomposition Theorem to write a dynamical, integer linear op-
timization algorithm to calculate dg: by translating Theorem 2 into a Integer Linear
Programming (ILP) problem, one obtains a single step in a bottom-up procedure. Here
we give a concise description of the optimization problems involved in calculating dg;
a more detailed and comprehensive explanation can be found in the proof of Proposi-
tion 2.
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Notation

Consider z € Vp and y € V. Along with keeping the notation defined in Section 2.6.1,
define T, := subr(z) and T, := subp(y), N, := dim(T,) = #Er and N, :=
dim(T,) = #E7. In particular, given v € V7, the sequence vy = v < vy < ... < 7p
indicates the points in ¢,. The same with w € Vr, .

Setup and Variables

Suppose we already have IW,,, which is a N, x N, matrix such that (W, ), ., = dg(T}, T\)
forall v € By, and w € Er,. Note that:

e if x and y are leaves, W, = 0.
e if v, w are vertices of 17, T;, then W,,, is a submatrix of W,,.

The function to be optimized is defined on the following set of binary variables: for
every v € By, and w € Er,, for v; € (, v; < 71, and w; € (G, w; < 77, take
a binary variable 52’7 ]“’ We write a constrained optimization problem such that having
6;;" = 1 means pairing the segments ¢,"*" (that is, the sequence of edges which starts
Wlth (v,v;) and ends with (v, v;41)) and Gt
induced mapping.

and shrinking one in the other in the

Objective Function

Consider v € Er, and interpret 4;’ = 1 as coupling the segments ¢,*** and (,,’*"; then
v is coupled with some w € Er, if C(v) := >, -6;"" = 1 and is ghosted if G(v) :=

,w,J 1]

D v <v<u 8" = 1. The vertex v is instead deleted if D(v) := 1—C(v)—G(v) = 1.

i1 WeJ 6T
We introduce also the following quantities, which correspond to the cost of shrinking
CU1+1 on ij+1

Afjjw = d(®v’edﬁ pr, (v), ®w’64$j Ty (w))

Use ¢ to indicate the matrix of variables (;;")yw,i;- The function which computes
the cost given by coupled points is therefore:

Z Avw 6vw

v,W,5,J

The contribution of deleted points is: F'2(§) — F~(4), where

FP(6):= Y} D(v)- d(er,(v),0) + Y D(w) - d(pr,(w),0)

veT, weTy

and
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= > C(v) - |[subg, (v)[| + ] C(w) - ||subg, (w)]|

veT, weTy

where the “norm” of a tree T'is [|T'|| = > ... d(¢(e), 0).
Finally, one must take into account the values of dg(T,, T,,), whenever v and w are
coupled; this information is contained in (W), .

F3(8) := D (Way)ow - (D5075")

v,W

Constraints

The last piece of the equation is given by the constraints Which must be satisﬁed by

the variables d;;". For each v' € V7, we call ®(v') := ‘v =] € (, ”1} In an
analogous way We define o(w") for w’ € V7. Call K the set of values of 0 such that for

each leaf [ in V7 :
MdTan (2.2)
v'e(; ®(v’)

Z Z o<1 (2.3)

w'eCy ®(w')

and for each leaf I" in V7, :

Proposition 2. With the notation previously introduced.:
dp(T,,T,) = minsec FC(8) + FP(8) — F~(8) + F*(6) (2.4)

Remark 11. A solution to Problem Equation (2.4) exists because the minimization do-
main is finite; it is not unique in general.

2.7 Bottom-Up Algorithm

In this section the results obtained in Section 2.6 are used to obtain the algorithm imple-
mented to compute the metric dr between generalized dendrograms. Some last pieces
of notation are introduced in order to describe the “bottom-up” nature of the algorithm.

Given x € Vp, define len(x) to be the number of vertices in (, and len(T) =
mazyevylen(v). Therefore, lvl(z) = len(T) — len(x). Lastly, lvlp(n) = {v €
Vrllvl(v) = n}

The key property is that: (vl(z) > [vl(v) for any v € sub(z). Thus, if W, is
known for any = € lvlp(n) and y € lvlp(m), then for any v, w in Vi, Vp/ such that
ll(v) < n and lwl(w) < m, W,, is known as well. With this notation we can write
down Algorithm 2.1.
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Result: dg(T,T")
initialization: N = len(T), M = len(T"),n = m = 0;
while n < N orm < M do
for (z,y) € Vi x Vi such that lvl(x) < n and lvl(y) < m do
| Calculate (W, ).y solving Problem (2.4);

TTTT
end
n=n+lym=m+1;

end

l‘etlll'n (WT’TT‘T/ )TT7TT’

Algorithm 2.1: Bottom-Up Algorithm.

We end up with a result to analyze the performances of Algorithm 2.1 in the case of
dendrograms with binary tree structures.

Proposition 3. Let T and T be two generalized dendrograms with full binary tree
structures with dim(T') := #Er = N and dim(T") = M.

Then dg(T,T") can be computed bu solving O(N - M) ILP problems with O(N
log(N) - M - log(M)) variables and O(N + M) constraints.

Note that binary dendrograms are dense (with respect to dg) in any generalized
dendrogram space as long as for any ¢ > 0, there is = € (X, ®, 0) such that d(z,0) < e.
So this is indeed a quite general result.

2.7.1 Example

Here we present in details the first steps of the Algorithm 2.1, used to calculate the
distance between two merge trees.
We consider the following couple of merge trees. Let (7, hy) be the merge tree
given by: Vp = {aa b, ¢, d, TT}’ Er = {<a7 d)7 (b7 d)a (da TT), (Cﬂ TT)} and wT(a) =
wr(b) = wr(d ) = 1, wr(c) = b; the merge tree (7", hy) instead, is defined by:
VT/ = {d V0, d rp}, Ep = {(d,d),V,d),(d,rr),(d,rr)} and wp(a) = 1,
U}T/(b) = wT/( ) = 2 and U)T/(d) = 3.

Step: n=m =0

This step is trivial since we only have couples between leaves, like (a, a’), which have
trivial subtrees and thus dg(subr(a), subp(a’)) = 0.

Step: n=m =1

The points x € Vp with lvlr(z) < 1 are {a,b,c,d} and the points y € Vp with
Wl (y) < 1are {da’, ¥, c,d'}. Thus the couples (x, y) which are considered are: (d, d’),
(d,a), (d,V), (d,c) and (a,d’), (b,d'), (¢, d"). The couples between leaves, like (a, a’)
have already been considered.
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Couple: (d,d’) Let Ty = subyp(d) and Ty = subp(d'). The set of internal vertices
are respectively By, = {a,b} and Ep, = {a’,b'}. For each vertex v < root in each
subtree, where “root” stands for d or d’, roots of T, and Ty respectively, we have (, =
{vo =v U1 = root}. Thus, the binary variables we need to consider, are the following:

0o, o 500 ; 58:8/ and 58:31. The quantities A" are given by: Ag;g 0, Agl v,
Agfé =0and Ag”%/ = 1. Thus:
FO©B) = 0838 + 050 +0-850 +o0h
While:
FP(6) = (1055 —d6 ) 1+ (1005 — g ) 1+ (1=855 — 055 ) -1+ (1~ —055)-2
and:
— a,a’ a,b’ ,a’ b a,a’ b,a’ a,b’ b
F~(3) = (p% +50,8)'0+(58,0 +58,0)‘0+< 00 T 900) 0+ (d +58,g)'0
and:
FS(8) = 035 0+ 03 -0+ dgg - 0+ 03¢
Lastly the constraints are:
S OeY < 1y S b <15 05 b < 1 agl ot <1
A solution is given by &5y = 500 = 1 and 500 = 58’78, = 0, which entails F'°(4) = 1,
FP(5) =0, F~(6) =0and Fs(é) =0and dg(Ty, Ty) = 1.

Couple: (d,a’) Obviously: dg(subr(d), subp:(a’)) = ||subp(d)||. All the couples
featuring a leaf and an internal vertex (that is, a vertex which is not a leaf), such as
(d,b), (a,d') etc. behave similarly.

Step: n =m =2

The points z € Vi with lvlr(x) < 2 are {a,b,c,d,rr} and the points y € Vi with
Wilr(y) < 2are {da’,b,c,d,rr}. Thus the couples (z,y) which are considered are
(d,r7), (rr,d’), (rr, rr) and then the trivial ones: (ry, a’), (ry, '), (rr, ') and (a, r1),
(b, 1), (¢, r7+). Some couples have already been considered and thus are not repeated.

Couple: (d,rp) LetT; = subp(d)andT" = subT/ (r7+). The set of internal vertices
are respectively £, = {a,b} and B, = {a b',c,d'}. Thus, the binary variables we

Voot d' cba' ha! bbbl
need to consider, are the following: 600,501,580,681, 38,680,608,60‘f,500,6

b,e/ bd
000> and oy -
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The quantities A" are given by: Agy = 0, Ay = 3, Ag:g =1, Ag;’; = 4,
AYS = LAY =2, A% = 0,A5% =3, A0 = LAGY =4, A05 = Land AJj = 2.
The function F'°(4) is easily obtained by summing over 4;" - AJ"".

While:

FP(8) = (1= 058 — 631 — dg0 — 030 — 065 — 066 ) - 1+...+ (1 =565 —55) -3
and:
F~(5) = 6a,a/ 6a,a’ 5a,b’ (5a,b/ 6a,c/ 6a,d/ 0 5a,d/ 5b,d’ 3
( )—(0,0 + 091 t 09 T 091 T9 + 0,0)' +---+( 00 T 0,0)'
and:
FS(8) = (658 +05%) -0+ (88 +057) -0+ ...+ 858 -3+ 000 -3
Lastly the constraints are:
a,a’ + 5a,a’ + 5a,b' + 5a,b’ + a,c’ + 5a,d’ <1
0,0 0,1 0,0 0,1 0,0 0,0 =
RIS o ) R N
S + 05 + 800 + 005 + o + 058 <1
50 + 001 + 000 + 605 + 068 + g8 <1
a,c’ b,c/
0,0 + 50,0 < 1

In this case there are many minimizing solutions. One is given by: (587?/ = 58:8/ =1 and
all other variables equal to 0. This value of ¢ is feasible since the variables (53;?/ and (58:8,

never appear in the same constraint. This value of § entails F©(§) = 3+ 1, FP(J) = 2,
F~(0) = 0and F*(§) = 0, and thus dp(Ty, T") = 6.

Another solution can be obtained with: 63}’8!/ = 58:8/ = 1 and all other variables equal

to 0. Also this value of ¢ is feasible since the variables 53”3/ and 58:8’ never appear in the
same constraint. This value of § entails F'°(0) = 2+1, FP(§) = wp(a')+wp (V) = 1+
2, F=(0) = ||subp (d)|| = 3 and F*°(§) = dg(subr(a), subp(d')) = ||subp (d')|| = 3,
and thus dg(7;,7") =3 +3 -3+ 3 =6.

Couple: (rp,d’) This and the other couples are left to the reader.
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2.8 Numerical Simulations

In this section, the feasibility of the algorithm presented in Section 2.7 is assessed by
means of some numerical simulations. We also deal with the problem of approximating
the metric dr when the number of leaves in the tree structures in the data set is too
big to be handled. The effectiveness of such approximations is showcased using some
simple case studies, which also give some practical examples of the issues raised in
Section 2.2. In the implementations, dendrograms are always considered with a binary
tree structure, obtained by adding negligible edges, that is edges e with arbitrary small
d(y(e),0), when the number of children of a vertex exceeds 2.

2.8.1 Edit Distance Simulations

To get some concrete ideas of proper runtimes needed to calculate distances, we fix the
number of leaves n and for 100 times the following procedure is repeated: generate two
random samples of n points from the uniform distribution on a compact, real interval,
take their single linkage hierarchical dendrograms (with multiplicity function equal to
the weight function wy) and compare them with dg. This whole pipeline is repeated for
any integer n in the interval [5,20]. In Figure 2.7 there are the average runtimes as a
function of the number of leaves of the involved binary trees. The standard deviations
over the repetitions are also reported, which show a quite large band around the mean.
The different curves in Figure 2.7 concern the portion of time effectively spent by the
solver to compute the solution of the ILP problems, and the amount of time employed to
setup such problems. All code is written in Python and thus this second part of the run-
times can likely be greatly reduced by using more performing programming languages.
The green line of total time is computed parallelizing the for loop in Algorithm 2.1.
Note that dendrograms with the same number of leaves may end up having different
tree-structures and so different dimensions. This is the main reason for the big shaded
regions around the mean. If the trees were aggregated by dimension, the standard devi-
ation of runtimes would decrease. Nevertheless, in applications, the only thing one can
reasonably control is the number of leaves (which is given by the number of minima in
the function, the number of clusters in a dendrogram, etc.) and for this reason the trees
are aggregated as in Figure 2.7.

The computations are carried out on a 2016 laptop with Intel(R) processor Core(TM)
17-6700HQ CPU @ 2.60GHz, 4 cores (8 logical) and 16 GB of RAM. The employed
ILP solver is the freely available IBM CPLEX Optimization Studio 12.9.0.

2.8.2 Pruning

In Section 2.2.1 we point out that the merging information carried by the dendrograms
in Figure 2.1 is mostly contained in a number of vertices which is much lower than
the actual number of leaves in the dendrogram. Another perspective on the same fact
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Figure 2.7: Graph of the computational times as function of the number of leaves. The curves
represent running times to calculated dg between couples of merge trees, averaged over 100
random couples of trees, with shaded regions including intervals of +/— one standard devi-
ation. “Building time” means the time spent by Python to setup the ILP problems. “Solving
time” is the time used by the solver to solve the LIP problems. “Total time” is the time spent
computing the distance using parallel computing of the ILP problems: both for the building
and solving steps.

is that, if one defines a proper multiplicity function, with values in an editable space
X, coherently with the aim of the analysis, then the value d(¢(e),0) can be thought as
the amount of information carried by the edge e. The bigger such value is, the more
important that edge will be for the dendrogram. In fact such edges are the ones most
relevant in terms of dg.

A sensible way to reduce the computational complexity of the metric dg, losing as
little information as possible, is therefore the following: consider any couple of leaves,
if the “amount of information” d(¢(e),0) of one of the two leaves is below a certain
threshold, that leaf is deleted and its father ghosted. If both are below the threshold,
only the leaf with smaller d(¢(e), 0) is deleted (if d((e), 0) is equal across two siblings,
one of them is randomly deleted). This operation is repeated recursively until no leaf
with multiplicity under the fixed threshold is left. This operation is called pruning; the
operator which assigns to a dendrogram the pruned dendrogram with £ > 0 threshold
is called P.. Note that pruning a dendrogram removes leaves, but keeps unchanged the
distance from the root to the leaves which are not deleted. For instance, in the case of
merge trees, this means that the range of the height function hr does not change upon
pruning the tree. We can quantify the (normalized) lost information with what we call
pruning error (PE): (||T|| — ||P-(T)|)/||T|-

2.8.3 Examples

Now we use two simulated data sets to put to work the frameworks defined in Sec-
tion 2.5. The examples are basic, but suited to assert that generalized dendrograms and
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Figure 2.8: Data and pairwise distance matrices involved in the hierarchical clustering exam-
ple.

the metric dg capture the information we designed them to grasp. In particular, since
examples in Section 2.2.1 and Section 2.2.2 already give insights into the role of the
tree-structured information, we want to isolate and emphasize the key role of multiplic-
ity functions. The examples presented concern hierarchical clustering dendrograms and
dendrograms representing scalar fields.

Hierarchical Clustering Dendrograms

We consider a data set of 30 points clouds in R?, each with 150 or 151 points. Point
clouds are generated according to three different processes and are accordingly divided
into three classes. Each of the first 10 point clouds is obtained by sampling indepen-
dently two clusters of 75 points respectively from normal distributions centered in (5, 0)
and (—5,0), both with 0.5 - Ids,» covariance. Each of the subsequent 10 point clouds
is obtained by sampling independently 50 points from each of the following Gaussian
distributions: one centered in (5,0), one in (—5,0) and one in (—10,0). All with co-
variance 0.5 - Idyyo. Lastly, to obtain each of the last 10 point clouds, we sample
independently 150 points as done for the first 10 clouds, that is 75 independent samples
from a Gaussian centered (5,0) and 75 from one centered in (—5,0), an then, to such
samples, we add an outlier placed in (—10,0).

Some clouds belonging to the second class and third classes are plotted respectively
in Figure 2.8(a) and Figure 2.8(b). We resort to pruning because of the high number of
leaves, but we still expect to be able to easily separate point clouds belonging to the first
and third classes (that is, with two major clusters) from clouds belonging to the second
class, which feature three clusters, thanks to the cardinality information function defined
in Section 2.5.2. All dendrograms have been pruned with the same threshold, giving an
average pruning error of 0.15.

We can see in Figure 2.8(c) that this indeed the case. It is also no surprise that
persistence diagrams do not perform equally good in this classification task, as displayed
in Figure 2.8(d). In fact PDs have no information about the importance of the cluster,
making it impossible to properly recognize the similarity between data from the first and
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third class. They are, however, able to distinguish clouds belonging to class two from
clouds belonging to class three since the persistence of the homology class associated
to the leftmost cluster in clouds belonging to class two is smaller compared to what
happens in clouds from the third class. The cluster centered in —10 and the one in —5
are in fact closer when the first one is a proper cloud, than when it is a cluster made by
a single point.

Dendrograms of Functions

This time our aim is to work with merge trees of functions, adding the multiplicity func-
tion induced by the Lebesgue measure of the sublevel sets, as defined in Section 2.5.3,
and using them to discriminate between two classes in a functional data set.

We simulate the data set so that the discriminative information is contained in the
size of the sublevel sets and not in the structure of the critical points . To do so a situation
which is very similar to the one shown by Sangalli et al. (2010) for the Berkeley Growth
Study data is reproduced, where all the variability between groups in a classification
task is explained by warping functions. We fix a sine function defined over a compact
1D real interval (with the Lebesgue measure) and we apply to its domain 100 random
non linear warping functions belonging to two different, but balanced, groups. Warpings
from the first group are more likely to obtain smaller sublevel sets, while in the second
groups we should see larger sublevel sets and so “bigger” multiplicity functions defined
on the edges. Note that, being the Lebesgue measure invariant with the translation of
sets, any horizontal shifting of the functions would not change the distances between
dendrograms.

The base interval is I = [0, 30] and the base function is f(x) = sin(z). The warping
functions are drawn in the following way. Pick NV equispaced control points in / and
then we draw N samples from a Gaussian distribution truncated to obtain only positive

values. We thus have z, ... xy control points and vy, . . . , vy random positive numbers.
Define y; = 22:1 vj. The warping is then obtained interpolating with monotone cu-

bic splines the couples (x;,y;). Being the analysis invariant to horizontal shifts in the
functions, we fix xy = yo = 0 for visualization purposes.

The groups are discriminated by the parameters of the Gaussian distribution from
which we sample the positive values v; to set up the warping. For the first class we
sample N = 10 positive numbers from a truncated Gaussian with mean 3 and standard
deviation 2; for the second the mean of the Gaussian is 5 and the standard deviation is 2.
Thus we obtain each of the first 50 functions sampling 10 values v; from the truncated
Gaussian centered in 3, building the warping function as explained in the previous lines,
and then reparametrizing the sine function accordingly. The following 50 functions are
obtained with the same pipeline but employing a Gaussian centered in 5. Note that, by
construction, all the functions in the data set share the same merge tree.

Examples of the warping functions can be seen in Figure 2.9(c); the resulting func-
tions can be seen in Figure 2.9(a). The key point here is that we want to see if the
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Figure 2.9: Overview of the example of Section 2.8.3.
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dendrograms can retrieve the information contained in the warping functions. For this
reason we compare the Lo pairwise distances between such functions (see Figure 2.9(f))
and the pairwise distances obtained with dendrograms (see Figure 2.9(d)). The visual
inspection confirms the close relationships between the two sources of information.
Moreover, if we vectorize the arrays given by the two matrices (considering only en-
tries above the diagonal) and compute the Fisher correlation, we get a score of 0.85
(see Figure 2.9(g)). Instead, a naive approach with the L, metric applied directly to
the data set would capture no information at all, as we can observe from Figure 2.9(e)
and the Fisher correlation with the matrix obtained from warping functions is 0.15 (see
Figure 2.9(h)).

Note that, in general, the problem of finding warping functions to align functional
data is deeply studied and with no easy solution (see, for instance, the special issue of
the Electronic Journal of Statistics dedicated to phase and amplitude variability - year
2014, volume 8 or Srivastava et al. (2011)) especially for non-linear warping of multidi-
mensional or non-euclidean domains. Instead, generalized dendrograms less sensitive to
such dimensionality issues, in the sense that they only arise in calculating the connected
components and measure of the sublevel sets.

2.9 Conclusions

Starting from the problems outlined in Section 2.2, we develop a framework to work
with topological information which can be represented with tree-like structures. As mo-
tivated throughout the manuscript, we argue that these kinds of topological summaries
can succeed in many situations where persistence diagrams are not effective. They also
provide a great level of versatility because of the wide range of additional information
that can be extracted from data. Possibly the greatest drawback in these representa-
tions is the computational complexity involved in comparing them. We define a novel
metric structure which works locally on the trees and can be calculated by solving a
set of smaller and easier subproblems. This metric proves to be feasible and we carry
out some examples to showcase its effectiveness in situations which are of interest in
different branches of data analysis.

Along with the more general perspective of finding other ways to enrich the infor-
mation extracted by TDA from data, this work leaves many paths that can be followed.
We think that the hypotheses on the set of weights which can be added to dendrograms
can be relaxed; however, the algorithm presented in this manuscript may need to be
adapted to the properties of the chosen weight space. Even without increasing the range
of available weights, case-specific pipelines can be designed and studied, as done in
the case of merge trees of functions in Chapter 3. Moreover interaction with the more
general case of Reeb Graphs can be investigated, possibly following the decomposition
presented in Stefanou (2020). Lastly other families of metrics can be defined, starting
from dg, aiming at emphasizing or overlooking on certain kinds of variability in the
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dendrograms, providing more “stable” metrics.

2.10 Proofs

Proof of Theorem 1.

To lighten the notation we use the following symbols:

e the edit induced by (v, D) is called vz and v * stands for (D, v).
e the edit induced by (v, G) is called v, and v, ! stands for (G, v).

o the edit induced by (v,v’) is called v, with ¢ being the original multiplicity
function, and ¢’ the multiplicity function after the shrinking.

We know that the set of finite edit paths between two dendrograms is nonempty.

Suppose that v is a finite edit path. This means that +y is the composition of a finite set
of edits. We indicate such ordered composition with v = Hz‘]\io e; with e; edit operation.
We would like to change the order of the edit operations without raising the cost and
changing the extremes of the edit path. This is not always possible. However we can
work it around in the useful cases using properties (P1)-(P4). In particular, we would

like to know when we can commute a generic edit e; in the following situations:

e v 0e; and ¢; ovcjl

e vyoe;ande; ov,

Moreover we want to reduce the edit path to max one edit for any vertex of 7" and
T/

We divide the upcoming part of the proof in subsections, each devoted to different
combinations of edits.

vg and le

When we delete or insert one vertex, we are modifying the tree structure at the level of
its father and its children. Therefore, we are only taking into account operations on the
father, on the vertex himself or on the children of the deleted/inserted vertex.

e vy o v, with v son of v/, can be safely replaced with vq o v;. Instead of ghosting
the father and then deleting the whole edge, we can delete both edges one by one;
conserving the length of the path (P3). If v is father of v’ then we can safely
commute the operations.
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® 1y 0 vg_l can be replaced with v, , with v’ father of v (after the insertion) and ¢’
properly defined not to raise the cost of the path. In fact we are inserting v on an
edge and then deleting it. This can obviously be achieved by shrinking the original
edge (without changing the path length - (P4)).

e similarly, v,y o v;‘l with ¢’ to be father of v can again be replaced safely by a

proper shrinking: instead of inserting a point in an edge, and deleting then the
edge below, we can directly shrink the original edge (P4). If v’ is to be inserted
below v this is the same situation, but seen from the point of view of the son of v.

® vy o v, s can be replaced by vg potentially diminishing the length of the path, but
surely not raising it (P1).

° v; o vd_l. If v is the father of v, this edit can be replaced with just v;w, with
appropriate weights: we are inserting an edge under a vertex which (in this case)
becomes of order two and is ghosted. We can directly modify the edge without
changing the length of the path (P4). If v’ is the vertex which would become son
of v, we can simply shrink v to obtain the same result without raising the cost
(P4).

° vgl o vd_l, with v’ to appear on the edge inserted with vgl cannot commute (oth-
erwise can always commute), but can be replaced by two insertions: instead of
inserting an edge and then splitting it, we can directly insert two smaller edges;

without changing the cost of the path (P3).

e v, ov;" can be replaced with an insertion directly with multiplicity ¢’, possibly
shortening the path (P1).

e consider vé‘l o vy with v’ to be inserted with, as father, the father of v; if the
children of v are different from the children of v, this operation cannot commute.
If the children are the same, it can be changed with a shrinking of v, reducing the
length of the path by at most cost(v; ') + cost(vg) (P1).

—1
vg and v,

Like in the previous case, we only take into account transformations concerning the
father and the son of the added/ghosted order two vertex.

e v, o vy, with v and v’ being on adjacent edges, can commute (P2).

® vy 0 v;_l, with v and v’ being on adjacent edges, can commute provided we define

carefully the splitting v, (P2).

® v, o v, means that we are shrinking a vertex before ghosting it. However, we
can achieve the same result, without increasing the path length, by ghosting the
vertex at first, and then shrinking its son (P1)-(P4).
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Vw,w!

v, ow;

o , cither with v' = wv, or with v father of v/, can be replaced with an
appropriate shrinking of the (future) son of v, and then an appropriate insertion of

v" without changing the length of the path (P3)-(P4).

1

v, o v, with v father of v cannot be commuted and cannot be replaced by a similar
operation which inverts ghosting and deletion.

Uy o7 O Uy o Can be replaced by v, ,» which is either conserving or shortening the
path (P1).

-1

Voo = Vo

Thanks to these properties we can take a given pathy = [ [,_, 5 e; and modify the
edit operations in order to obtain the following situation:

the first operations are all in the form v4; this can be achieved because vy 0 —
can be always rearranged, potentially by changing the path as shown before and
shortening it. Of course there can be only one deletion for each vertex of 77

then we have all the edits in the form v,; since v, o — is exchangeable any time but
when we have v, o v/, this is not a problem. Observe that all order two vertices
which were not deleted can be ghosted (at most one time);

in the same way we can put last all the paths in the form v;' and before them
vg_l. All the new vertices appearing with the insertion of edges and the splitting of
edges with order two vertices are all nodes which remain in 7" and which are not
further edited;

in the middle we are left with the shrinking paths. Since we can substitute v, s ©
vy o With v, 7, we can obtain just one single transformation on a vertex.

Thus

F=(a) ol )T oy 0 -

with:

va =1Tva

’Yg =[1v,

Vs = [Tvey
SRRt
(va )7t =TTva"
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is such that v(7T") = 7(T") = T” and cost(7) < cost(7y). The key point is that 7 can
be easily realized as a mapping in the following way:

e (v,D) Vg€t

o (v,G) Yy, € 75

e (v,V) Yo, €I, where v’ is the renaming of v, with multiplicity given by .
o (G,v) va_l € (fyg")_l

o (D,v) Vvt e (vd)™

Proof of Lemma 1.

Any order 2 vertex which is not ghosted is paired with another order 2 vertex. Ghosting
both of them does not increase the cost of the mapping.

Proof of Proposition 1.

Condition (M2) coincide with condition (A2). Condition (M3) is clearly satisfied
because of the antichain condition (Al). Consider a vertex v € Ep. The only case in
which v is not edited is when v < z with x € vy n mp(M*). However, in this case

v does not appear in T+, and thus (M1) is satisfied. Moreover, all and only order 2
vertices, after the deletions, are ghosted, and (M4) follows .
|

Proof of Theorem 2.

Let M € M(T,T") such that dg(T,T") = cost(M).

We note that father > son induces a partial order relationship also on the pairs
given by coupled points in M: (z,y) > (v,w) if z > v and y > w. In fact, by property
(M3), x > v if and only if y > w. So we can select (z;,y;), the maxima with respect
to this partial order relationship. Thus, we obtain (xg, Yo),..-,(%n, Yn) Which form an
antichain (both in V- and V).

Clearly M* = {(x0,Y0)ss(Tn,yn)} € C*(T,T"). Now we build o(M*) and com-
pare the cost of its edits with the ones in M. Let z be the minimal common parent
between x; and z;. Since T > x;, ;, it is not coupled in M. Since x; and x; are cou-
pled, z cannot be ghosted, so it is deleted in M. Any point z above Z is deleted for the
same reasons. So the edits above 7 are shared between «(M*) and M.

In a(M*) we ghost any point between Z and x; (and the same for z;) and this is not
certain to happen in M (some points could be deleted). Nevertheless, even in the worst
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case, these ghostings are guaranteed not to increase the distance. For instance, suppose
x; < x < T is deleted in M and ghosted by «(M*), then:

d(z; @ z,y) < d(z; @2,y © ) + d(y; @ w,y;) = d(wi,y;) + d(z,0)
by properties (P1)-(P4). Since ao(M*) € M(Tys+, T 5+ ) by Proposition 1, we have:
Z dg(subp(x), subr (y)) + cost(a(M™*)) < cost(M)

(z,y)eM*

Now we prove the other inequality.

Consider M* which realizes the minimum of the right side of Equation (2.1), and
M; which realizes dg(sub(x;), sub(y;)) with (x;,y;) € M*. We build a mapping M
collecting edits in the following way: for every 2’ € Er if 2’ € sub(x;), we take the edit
associated to it from M;, otherwise we know that it is edited by a/(M*), and we take
it from there; the set of these assignments gives M € M(T,T’) whose cost is exactly
2(as goyenrs Cost(M;) + cost(a(M™)). This gives the second inequality.

|

Proof of Proposition 2.

We use all pieces of notation defined in Section 2.6.1. Consider x € Ep and y €
Er. Recall that T, := subp(x) and T, := subp(y), and N, := dim(T},) and N, :=
dim(T,). Moreover, given v € Vr,, we use the sequence vg = v < v; < ... < rp to
indicate the points in ¢,. The same with w € V7, .

Setup

We have W,,, whichis a (N, — 1) x (NN, — 1) matrix such that (W), = dp(T}, Ty)
forallv # x € T, and w # y € T),.

We would like to find M* € C*(T,T,) minimizing Equation (2.1) for T, and T,
but this is a difficult task. In fact, as evident in the construction of «(M*), a set M* €
C*(T,,T,) has the role of pairing segments of dendrograms: if (v, w) € M*, then the
paths ¢V and (? are paired and then shrunk one on the other by a(M*). But the points v
and @ depend on the whole set M/*, and not simply on the couple (v, w). Modeling such
global dependence gives rise to non-linear relationships between coupled points, and so
leading to a non linear cost function, in terms of points interactions, to be minimized.
For this reason we “weaken” the last term in Equation (2.1), allowing also mappings
different from «(M*) to be built from M*. In other words we minimize the following
equation:

Z dg(subr(z), subp (y)) + cost(5(M™)) (2.5)
(z,y)eM*
where M* is the set of coupled points in S(M*) and lies in C = (T, T"), and S(M*) is
a mapping in M (Tyz«, T"ys+). Since a(M*) fits these conditions, minimizing Equation
(2.1) or Equation (2.5) gives the same result.
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Variables

As already stated, we are considering the following set of binary variables: for every
v € by, andw € Er,, for v; € G, v; < rr,, and w; € (y, w; < r1,, We have a binary
variable ¢; ’jw. We want to write a constrained optimization problem such that having
6;" = 1 means that we pair the segments ¢,"*" and G, and shrink one in the other in
the induced mapping. This, for instance implies that (v, w) € M* and, when designing
the constraints, v;;1 (and the same for w;, 1) is the first point going from v towards rr,,
such that there can be another point in subr, (v;, 1) paired in 5(M*).

Now we state how d;;" = 1 contributes to define edits in $(M*), which is then
given by the edits induced by all the variables equal to 1. In order to pair and shrink
the segments (""" = {v = vy, vy,...,v;41} and ('™ we need to induce the following
edits on T,:

e all the points vy, € (,""" with 0 < k < i + 1 are ghosted, that is (vg, G) € B(M*);

e if v/ < v forsome 0 < k < i+ 1, then (v, D) € 5(M*),

o if v > v; 1 and v’ # 77, then (v', D) € S(M*)

e (v,w) e B(M*).

Of course analogous edits must be induced on points in 7},. Thus, the edit (v, w) €
B(M*), in the edit paths given by the mapping S(M*), means shrinking the edge

(v,vi41) onto (w,wjy1)). Recall that, if 6;;° = 1, we do not need to define edits for
subr, (v) and subr, (w) since, by assumption, we already know dg(7T,, T,,).

Constraints

Clearly, not all combinations of 52 ’jw are acceptable, in that they do not induce a proper
partial mapping 5(M*), with M* € C*(1}, T,). Segments could even be paired multiple
times. To avoid such issues, we build a set of constraints for the variable §. Recall that
the set of acceptable values /C is defined by Equation (2.2) and Equation (2.3).

The following Proposition clarifies the properties of any value of § € K.
Proposition 4. If € K:

e the couples (v, w) such that §;;" = 1 define a set M* € C*(T,T,);

e the edits induced by all 6;;° = 1 give a mapping B(M*) in M(YN}M* , TyM*).
Remark 12. If for every 0;;" = 1, viy1 = 0, then B(M*) = a(M*).
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Objective Function

Now we build a linear cost functions which calculates the results of Equation (2.5) for
d € K. The key point we need to address is how to calculate the cost of 5(M*).
Consider v € Erp,; it is clear that v is coupled if C'(v) = 1 and ghosted if G(v) = 1.
If C(v) = G(v) = 0, then v can be either deleted or be in the subtree of some coupled
point and it is not edited by S(M*) since it does not appear in Tx m#. One simple way
to take care of this difference is to simply considered deleted all points that are not
paired nor ghosted, and then subtract the cost of the points which are not supposed to
be deleted, that is, the ones in sub(v) with C(v) = 1. In other words, the vertex v is
considered deleted if D(v) = 1, but, if C'(v) = 1, we must correct the total cost by:

[subr, (v)]] = Y d(er,(¢),0)

v <v

Now we calculate the costs associated to these three possibilities. If G(v) = 1,
v is ghosted then the cost of such edit is zero. If D(v) = 1 the cost of this edit is
d(¢r,(v),0). If v is coupled, and so §;;" = 1 for some unique i, w, j, the cost is :

ALY = d@egor. ) @1, )

Thus, the contribution of coupled points is F'“ () and the contribution of deleted
points is F'P(8) — F~(6).

Now it is straightforward to write down the linear function that calculates the cost of
B(M*): FA(§) := FC(8) + FP(8) — F~(6). Lastly, F¥(6) takes into account the value
of dg(T,, Ty), if v and w are coupled.

By Theorem 2, combined with Proposition 4, the solution of the following optimiza-
tion problem:

minsex F°(8) + F2(6) (2.6)

is equal to dp(T;,T)).
|

Proof of Proposition 4.

Having fixed a leaf /, the constraint in Equation (2.2) allows for at most one path
»"* < (; which is kept after the editing induced by the variables equal to 1. Moreover
if 52;’“’ € ®(v) N ®(v'), then v = v/ = v'. Thus, variables are added at most one time
in the constraint. Which means that for any v" € V7, we are forcing that v' can be an
internal vertex of at most one of the kept segments (,"*"'. In other words if two “kept”
segments (,""" and C:f’“ intersect each other, it means that they just share the upper
extreme v;,; = vj ;. These facts together imply that (if the constraints are satisfied)

the edits induced on 7, by ¢, = 1 and 6;’,:’3?, = 1 are always compatible. Lastly, by
noticing that if ¢;* € ®(v') then 6;”]3’/ € ®(v') for all other possible w" and j', we see
that every segment ¥ is paired with at most one segment (,,’, and viceversa.
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As a consequence, at most one point on the path (s is coupled in M*, for any vertex

v in any of the tree structures, guaranteeing the antichain condition. Moreover any point

of T, which is in M* is assigned to one and only point of 7, and viceversa. The edits

induced by d;;" = 1 clearly satisfy properties (M2)-(M4). Passing to Tors and T" yps,
also (M1) is satisfied.

|

Proof of Proposition 3.

In a full binary tree structure, at each level [ we have 2! vertices. Let L = len(T) and
L’ = len(T"). We have that, for any vertex v € V7 at level [, the cardinality of the path
from v to any of the leaves in subr(v) is L — [ and the number of leaves in suby(v) is
2L,

So, given v € Vr atlevel [ and w € Vv atlevel I/, to calculate dg (subr(v), subp (w))
(having already W,,,,) we need to solve a integer linear problem with 2-~- (L —1)-25 V"
(L' —I') variables and 25~ 4 25~ linear constraints.

Thus, to calculate d (T, T"), we need to solve (2641 — 1) - (21'+1 — 1) linear integer
optimization problems, each with equal or less than 2% - L - 2 . [/ variables and equal
or less that 2% + 2% constraints. Substituting L = logo(N) and L' = logy(M) in these
equations gives the result. ]

2.11 Merge Trees

Denote #C' the cardinality of a finite set C'. Given a fixed basis vector spaces filtration
{(Ay, ar) }ier, with maps wf : Ay — Ay, we build a merge tree (7, hr) which represents
it up to isomorphisms. The tree structure 7" and the height function iy are built along
the following rules:

e set a leaf with height ¢, for every element in a,,;

i+1

e for every afj“ € ay, 41 such that a',if“ ¢ I m(zﬂf ), set a leaf with height ¢;,1;

t: . t; . . : .
e for every ¢; such that ¢,'"" (ay) = ¢,""(a%), with a} and a% € ay,, set a ver-

tex with height ¢;, 1, where the vertices associated to respectively (w:,i“)_l(afj)
and (¢;") " (al) merge. Where t* = min{t;|#(¢y) " (a)) = 1} and t* =
min{t;|# (¢;) 7" (a¥) = 1}.

The last merging happens at height ¢,,, which is the root of the tree structure. In
this way, from {(A;, a;) }«cr, We obtain a merge tree which is unique up merge tree iso-
morphism. Viceversa, through the merge tree (7', hr) we can build a fixed basis vector
spaces filtration by cutting (7', hr) at every height ¢ and taking as a; = {eq,...,ex}
the edges in F; which are met at height . The vector spaces are generated over K by
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a;. The maps are then given by the tree structure: if two edges merge at height ¢, then,
at height ¢, the two corresponding basis elements are sent into the edge in which they
merge. Otherwise the edges are just sent into themselves. The root 71 gives the basis
element at height Ar(rr).

2.12 Persistence Diagrams

Persistence diagrams are arguably among the most well known tools of TDA; for a
detailed survey see, for instance, Edelsbrunner and Harer (2008).

A zero-dimensional persistence diagram extracted from a filtration of topological
spaces { X }ier, With X; © X if t < ¢/, represents, up to isomorphism of sequence the
vector spaces filtration { Hy(X}) }+er. Loosely speaking it is a collection of points (c,, ¢;)
in the first quadrant of R?, with ¢, > ¢, and such that: ¢, is the value of ¢ corresponding
to the first appearance of a path connected component in X, (birth), while ¢, is the
“time” ¢ where the same class merges with a different class appeared before c, (death).
A similar definition holds for homology classes in higher dimensions. For details about
homology see Hatcher (2000). The convention that states that the “older” components
survive and the “younger” die, is called elder rule.
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CHAPTER

Functional Data Representation with Merge Trees

The content of this chapter is also part of the paper Pegoraro and Secchi (2021).

In this chapter we face the problem of representation of functional data with the
tools of algebraic topology. We represent functions by means of merge trees and this
representation is compared with that offered by persistence diagrams. We show that
these two structures, although not equivalent, are both invariant under homeomorphic
re-parametrizations of the functions they represent, thus allowing for a statistical anal-
ysis which is indifferent to functional misalignment. We employ the metric for merge
trees defined in Chapter 2 and we prove a few theoretical results related to its specific
implementation when merge trees represent functions. To showcase the good properties
of our topological approach to functional data analysis, we first go through a few exam-
ples using data generated in silico and employed to illustrate and compare the different
representations provided by merge trees and persistence diagrams, and then we test it
on the Aneurisk65 dataset replicating, from our different perspective, the supervised
classification analysis which contributed to make this dataset a benchmark for methods
dealing with misaligned functional data.
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3.1 Introduction

Since the publication of the seminal books by Ramsay and Silverman (Ramsay and Sil-
verman, 2005) and Ferraty and Vieu (Ferraty and Vieu, 2006), Functional Data Analysis
(FDA) has become a staple of researchers dealing with data where each statistical unit
is represented by the measurements of a real random variable observed on a fine grid
of points belonging to a continuous, often one dimensional, domain D. In FDA these
individual data are better represented as the sampled values of a function defined on
D and with values in R. Hence, at the onset of any particular functional data analysis
stands the three-faceted problem of representation, described by: (1) the smoothing of
the raw and discrete individual data to obtain a functional descriptor of each unit in the
data set, (2) the identification of a suitable embedding space for the sample of functional
data thus obtained and, finally, (3) the eventual alignment of these functional data con-
sistently with the structure of the embedding space. As a reference benchmark of the
typical FDA pipeline applied to a real world dataset, we take the paper by Sangalli et al.
(2009b) where the first functional data analysis of the AneuRisk65 dataset is illustrated.

Smoothing is the first step of a functional data analysis. For each statistical unit,
individual raw data come in the form of a discrete set of observations regarded as partial
observations of a function. Smoothing is the process by means of which the analyst
generates the individual functional object out of the raw data. This functional object
will be the atom of the subsequent analysis, a point of a functional space whose struc-
ture is apt to sustain the statistical analysis required by the problem at hand. A common
approach to obtain functional representations is to fit the data with a member of a finite
dimensional functional space generated by some basis, for instance, splines or trigono-
metric polynomials. Signal-to-noise ratio and the degree of differentiability required
for the functional representation, as well as the structure of the embedding space, drive
the smoothing process. Functional representations interpolating the raw data are of no
practical use when the analysis requires to consider functions and their derivatives or,
for instance, the natural embedding space is Sobolev’s; see, for instance, Sangalli et al.
(2009a) for a detailed analysis of the trade-off between goodness of fit and smoothness
of the functional representation when dealing with the Aneurisk65 dataset.

Functional data express different types of variability (Vantini, 2009) which the an-
alyst might want to decouple before carrying on the statistical analysis. Indeed the
Aneurisk65 dataset is by now considered a benchmark for methods aimed at the iden-
tification of phase and amplitude variation (see the Special Section on Time Warpings
and Phase Variation on the Electronic Journal of Statistics, Vol 8 (2), and references
therein). In many applications phase variation captures ancillary non-informative vari-
ability which could alter the results of the analysis if not properly taken into account
(Lavine and Workman, 2008; Marron et al., 2014). A common approach to this issue is
to embed the functional data in an appropriate Hilbert space where equivalence classes
are defined, based on a notion of alignment or registration, and then to look for the most
suitable representative for any of these classes (Marron et al., 2015). Such approach
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evokes ideas from shape analysis (Dryden and Mardia, 1998) and pattern theory (Rip-
ley and Grenander, 1995), where configurations of landmark points are identified up to
rigid transformations and global re-scalings. In close analogy with what has been done
for curves (Michor et al., 2007; Srivastava et al., 2010), functions defined on compact
real intervals D are aligned by means of warping functions mapping D into another
interval, that is, they are identified up to some re-parametrization. Different kinds of
warping functions have been investigated: affine warpings are studied for instance in
Sangalli et al. (2010) while more general diffeomorphic warpings have been introduced
in Srivastava et al. (2011). Once the best representatives are selected, the analysis is
carried out on them leveraging the well behaved Hilbert structure of the embedding
space. Classically, the optimal representatives are found by minimizing some loss cri-
terion with carefully studied properties (Sangalli et al., 2014). This approach however
has some limitations, arising from the fact that the metric structure of the embedding
space might not be compatible with the equivalence classes collecting aligned functions
(Yu et al., 2013). An alternative is to employ metrics directly defined on equivalence
classes of functions such as the Fisher Rao metric, originally introduced for probability
densities (Srivastava et al., 2007), which allows for the introduction of diffeomorphic
warpings (Srivastava et al., 2011). It must be pointed out that all these ways of dealing
with the issue of ancillary phase variability encounter some serious challenges when the
domain D is not a compact real interval.

A different approach to the problem of phase variation is to capture the information
content provided by a functional datum by means of a statistic which is insensitive to
the functional data re-parametrization, but sufficient for the analysis. Algebraic topol-
ogy can help since it provides tools for identifying information which is invariant to
deformations of a given topological space (Hatcher, 2000). Topological Data Analysis
(TDA) is a quite recent field in data analysis and consists of different methods and al-
gorithms whose foundations rely on the theory developed by algebraic topology (Edels-
brunner and Harer, 2008). The main source of information collected by TDA algorithms
are homology groups (see, for instance, Hatcher (2000)) with fields coefficients which,
roughly speaking, count the number of holes (of different kinds) in a topological space.
For instance zero dimensional holes are given by path connected components and one
dimensional holes are given by classes of loops (up to continuous deformations) which
cannot be shrunk to one point. One of the most interesting and effective ideas in TDA is
that of persistent homology (Edelsbrunner et al., 2002): instead of fixing a topological
space and extracting the homology groups from that space, a sequence of topological
spaces is obtained along various pipelines, and the evolution of the homology groups is
tracked along this sequence. The available pipelines are many, but the one which is most
interesting for the purposes of this work is that concerning real valued functions. Let
the domain D be a topological space X and consider a real valued function defined on
X, f: X — R. One can associate to f the sequence of topological spaces given by the
sublevel sets X; = f~!((—c0,t]), with ¢ ranging in R. The evolution of the connected
components along { X },cg is thus analysed for the purpose of generating a topological
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representation of f.

In this work, we consider specific topological representations of f constructed along
this general scheme and we show that they are invariant with respect to homeomorphic
warpings of the domain X. Moreover, these representations are also able to separate big
shape features of f from small oscillations; the overall shape of the function captured
by the topological representations we will deal with is unaffected by the presence of
smaller oscillations, which are captured as well, but separately. These two properties
make the TDA approach pursued in this manuscript a candidate for the representation
of functional data, indeed a robust competitor able to deal in a natural way with phase
variation and insensitive to the fine tuning of the preliminary smoothing phase, since
functional features likely generated by overfitted representations are easily identified as
ancillary in the subsequent topological representation.

To allow for the statistical analysis of functional data summarised by their topo-
logical representations, we need to embed the latter in a metric space. The choice of
persistence diagrams (PD) (Cohen-Steiner et al., 2007) as summaries obtained through
persistent homology drives many successful applications (Bhattacharya et al., 2015;
Chung et al., 2009; Kramér et al., 2013; Pokorny et al., 2015; Wang et al., 2018; Xia
et al., 2016), although other topological summaries are in fact known in the literature
(Adams et al., 2017; Bubenik, 2015; Chazal et al., 2015). In this work we exploit a
topological alternative — not equivalent — to a persistence diagram, called merge tree.
Merge trees representations of functions are not new (Morozov and Weber, 2013) and
are obtained as a particular case of Reeb Graphs (Biasotti et al., 2008; Shinagawa et al.,
1991). Different frameworks have been proposed to work with merge trees (Beketayev
et al., 2014; Morozov et al., 2013), mainly defining a suitable metric structure to com-
pare them (Gasparovic et al., 2019; Touli, 2020). However all such metrics have a very
high computational cost, causing a lack of examples and applications even when ap-
proximation algorithms are available (Touli and Wang, 2018), or they require complex
workarounds to be effectively used (Sridharamurthy et al., 2020). We employ the metric
for merge trees introduced in Chapter 2, showing that its computational complexity is
reasonable when the trees involved are not too large. When working with representa-
tions of data, it is fundamental to study the behaviour of the operator which maps the
single datum into the chosen representation to assess which kind of information is trans-
ferred from the initial data to the space of representations. For this reason we develop a
new theoretical analysis on the stability/continuity of merge trees with respect to pertur-
bations of the original functions. We also carry out examples to showcase differences
between merge trees and persistence diagrams of functions. Having devoted the initial
sections of this work to the understanding of the behaviour of these topological tools,
we finally tackle, with our TDA approach, the benchmark functional classification case
study detailed in Sangalli et al. (2009b).

The dissertation is organized as follows. In Section 3.2, we introduce the merge tree
representation of a function. In Section 3.3 we briefly recall the definition of persistence
diagrams in order to draw, in Section 3.4, some comparison between them and merge
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(a) Sublevel sets of a function (b) A function with its associated merge tree.

trees, before proving the invariance property which holds true for both topological rep-
resentations. In Section 3.5 we present the metric structure for the space of merge trees
which is used in the examples and in the final case study. In Section 3.6 we investigate
the continuity properties of the operator which assigns to a function its merge tree, with
respect to the aforementioned metric. After a short Section 3.7 on a visualization trick
for the graphical representation of merge trees, in Section 3.8 we propose some in silico
examples for illustrating differences and similarities between persistence diagrams and
merge trees. Lastly, in Section 3.9, we tackle the functional data classification problem
explored in Sangalli et al. (2009b) and we compare their results with those obtained fol-
lowing the TDA approach we advocate in this paper. We finally conclude the manuscript
with a discussion, in Section 3.10, which points out some ideas pertaining our topolog-
ical approach to functional data analysis. Section 3.12 collects the proofs of the results
of the paper.

3.2 Merge Trees of Functions

We now define the merge tree representation of a function. Merge trees are an already
established tool in topology and, to some extent, also in statistics since dendrograms
can be regarded as merge trees. Nevertheless, we are going to spend a few lines to
define them, in accordance with the framework defined in Chapter 2, which differs from
the classical one, found for instance in Morozov and Weber (2013). Roughly speaking,
the pipeline to obtain a merge tree is the following: we transform the given function
into a sequence of nested subsets and then we track the topological changes along this
sequence. Such information is then turned into a tree.
The details are described in the following subsections.

3.2.1 Sublevel Sets

Consider a function f : X — R, with X being any topological space. We call sublevel
set at height ¢ € R, the set X; := f~1((—o0,t]) € X . The key property of the family
{ X }ier is that such subsets are nested: if ¢ < ' then X; < X,. Note that the sequence
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{X}ier is fully determined by the shape of the function f; see Figure 3.1(a). In fact,
for z € X, f(r) = inf,cg{¢ such that z € X}, hence no information carried by f is lost
by its representation { X };cg.

3.2.2 Path Connected Components

A topological space X is path connected if for every couple of points z,y € X there is
a continuous curve « : [0,1] — X such that «(0) = x and (1) = y. The biggest path
connected subsets contained in a topological space are called path-connected compo-
nents. Path connected components are the source of information we want to track along
the sequence {X;}cr.

Given X; < X we call U" = {U}},c; the set of its path-connected components,
which is indexed by some set /. We will make some very strict assumptions on such
but for now we do not need them. The main fact about path connected components is
that if X; < Xy, then, for every i, there is a unique j such that U < U ;/.

Thus, we can define:

of Ut U

such that
Ul = of (UF)

for all U} € U".
At € Ris called critical value if, for every € > 0, Oéifs 1s not bijective.

3.2.3 Tree Structures

Coherently with Chapter 2, we now define what we mean with tree and with merge tree.

Definition 15. A tree structure T' is given by a set of vertices Vi and a set of edges
Er < Vip x Vip which form a connected rooted acyclic graph. We indicate the root of
the tree with rp. We say that T is finite if Vi is finite. The order of a vertex of T’ is
the number of edges which have that vertex as one of the extremes. Any vertex with an
edge connecting it to the root is its child and the root is its father: this is the first step
of a recursion which defines the father and children relationship for all vertices in Vr.
The vertices with no children are called leaves or taxa. The relation father > child
induces a partial order on V. The edges in Er are identified in the form of ordered
couples (a,b) with a < b. A subtree of a vertex v is the tree structure whose set of
vertices is {x € Vr|r < v}.

Definition 16. A finite tree structure T coupled with a monotone increasing height func-
tion hy : Vi — R is called merge tree.

Let us see how, starting from a real valued function f : X — R, we can represent it
by means of a merge tree. We use the following notation: given a finite set C', then #C'
is its cardinality.
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Consider f : X — R, and assume X to be a path connected topological space and
f a tame function. We recall that a function is tame if for every X, the set U’ is finite
and along the sequence {X;};cr there are only a finite set of critical values. The idea is
that, since path-connected components in every X; can only arise, merge with others, or
stay the same, it is quite natural to represent this merging structure with a tree structure.
However, a tree structure 7" is not enough to represent the information contained in U*
and af, so we also define a monotone increasing height function Ay : Vi — R which
encodes the critical values ¢y < ... < t,, of f.

The tree structure 7" and the height function i are built along the following rules:

e set a leaf with height ¢, for every element in U,

e for every U € U'*! such that U ¢ Im(ozZ“), set a leaf with height ¢, ,1;

e for every ¢; such that aZ“(U ) = aij“(U "), with U and U’ in U%, set a vertex

with height ¢; 1, where vertices associated to (}};) "' (U) and (a:}'], )~H(U’) merge.
With ¢V = min{t;|#(a;) )~ (U) = 1} and tY" = min{t;|#(ey’) "1 (U') = 1}.

The last merging happens at height ¢,, and, since X is path connected, at height ¢,,
there is only one point, which is the root of the tree structure.

Look at Figure 3.1(b) for a first example. The height function is given by the dotted
red lines. We can appreciate that the merge tree of f is heavily dependent on the shape
of f, in particular on the displacement of its maxima and minima.

3.2.4 Isomorphism classes

Before continuing we must decide on the topological information which we regard as
equivalent. In other words, which merge trees we want to distinguish and which we do
not. This step is essential and decisive to tackle the phase variation problem presented in
the introduction: to select information that is insensitive to some kind of transformation
amounts to defining classes of functions which are represented by the same tree. We
opt for a very general solution: we remove from the vertices of the tree any information
regarding the connected components they are associated to, for instance, size, shape,
position, the actual points contained etc..

Definition 17. Two tree structures T and T' are isomorphic if there exists a bijection
n : Vr — Vp inducing a bijection between the edges sets Ep and Ep.: (a,b) —
(n(a),n(b)). Such n is an isomorphism of tree structures.

Definition 18. Two merge trees (T, hy) and (T', hy) are isomorphic if T and T' are
isomorphic as tree structures and the isomorphism n : Vi — Vi is such that hy =
hpr on. Such n is an isomorphism of merge trees.

The rationale behind Definition 17, and the equivalence classes of isomorphic merge
trees it generates, is analogous to that moving the introduction of persistence diagrams,
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where no specific information about individual path connected components is retained
(see Section 3.3 for more details). Moreover, Definition 17 does not require any addi-
tional structure for the space X. Other choices are possible; for instance, if X = R the
path connected components of f could be given a natural ordering.

3.2.5 Height and Weight Functions

A final step is needed to complete the construction of the merge trees we are going to use
in the following sections. The height function A of a tree 1" takes values in R, but this is
not an editable space, as defined in Chapter 2. Hence we transform the height function
hy into a weight function wy defined on V7 and such that the image of Vi — {rr} is a
subset of the editable space R-.

For every vertex v € Vi — {ry}, we consider the unique edge between v and its
father w and we define wr(v) = hr(w) — hy(v). We set wr(rr) = hy(ry). Note that
there is a one-to-one correspondence between iy and wyp. Finally, the monotonicity of
hp guarantees that wr(v) € Rx, forall v € Vi — {ry}.

The height function introduced in Definition 16 turns out to be quite natural for the
definition of a merge tree, but from now on we replace the height function hr with the
induced weight functions wy.

3.3 Persistence Diagrams

Persistence diagrams are arguably among the most well known tools of TDA; for a
detailed survey see, for instance, (Edelsbrunner and Harer, 2008). We here briefly intro-
duce them since in the following sections we use them to draw comparisons with merge
trees.

Loosely speaking a persistence diagram is a collection of points (c,, ¢,) in the first
quadrant of R?, with ¢, > ¢, and such that: ¢, is the ¢ corresponding to the first appear-
ance of an homology class in X, (birth), while ¢, is the ¢ where the same class merges
with a different class appeared before ¢, (death). Homology classes are a generalization
of path-connected components to “holes in higher dimension”; path-connected compo-
nents can be seen as zero dimensional holes. For more details see Hatcher (2000).

In this work we focus on persistence diagrams associated to path-connected compo-
nents, since we want to compare them with the merge trees introduced in the previous
section. Given a function f : X — R, we associate to f the zero dimensional persis-
tence diagram (P D( f)) of the sequence of sublevel sets { X;},cr. In such representation
there is no information about which path-connected component merges with which; in
fact a component represented by the point (c,, ¢, ), at height ¢, could merge with any
of the earlier born and still alive components. Of course this collection of points de-
pends on the shape of the function and in particular depends on its amplitude and the
number of its oscillations. See Figure 3.2. Note that, while for merge trees one needs to
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Figure 3.2: A function with its associated persistence diagram (left) and merge tree (right).
On the PD axes we see the birth and death coordinates of its points. The plot of the merge
tree features the length of its branches (given by the weight function) on the horizontal axis,
and the leaves (taxa) are displaced on the vertical axis. The vertical axis scale is only for
visualization purposes.

be careful and consider appropriate isomorphism classes so that the representation does
not depend on, for instance, the names chosen for the vertices (that is, the set V), this
issue does not appear with persistence diagrams. Topological features are represented
as points in the plane, without labels or other kinds of set-dependent information. Thus,
two persistence diagrams are isomorphic if and only if they are made of the same set of
points.

3.4 Properties

In this section we state the main invariance result anticipated in the introduction and we
also point out a few differences between persistence diagrams and merge trees.

Proposition 5 (Invariance). The (isomorphism class of the) merge tree and the persis-
tence diagram of the function f : X — R, are both invariant under homeomorphic
re-parametrization of f.

Remark 13. As an immediate consequence of Proposition 5 we obtain that, if the func-
tions f and g can be aligned by means of an homeomorphism, that is if f = g on being
1 an homeomorphism, then their associated merge trees I’y and T, are isomorphic and
the same holds for PD(f) and PD(g).

In other words, we can warp, deform, move the domain X of a function f by means
of any homeomorphism, and this will have no effect on its associated PD or merge tree.
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Figure 3.3: We compare four functions; they are all associated to the same PD but to different
merge trees. Functions are displayed in the first row of each subplot, while on the second we
have on the left the associated PD and on the right the merge tree.

As a consequence, if each element of a sample of functions is represented by its merge
tree, or by its persistence diagram, one can carry out the statistical analysis without wor-
rying about possible misalignement, that is without first singling out, for each function
of the sample, the specific warping function, identified by an homeomorphism, which
decouples its phase and amplitude variabilities.

Despite sharing this important invariance property, a persistence diagram and a
merge tree are not equivalent representations of a function. Indeed, persistence dia-
grams do not record information about the merging components. This is an important
difference, since merge trees can capture also this local structure of a function (see Fig-
ure 3.3). Moreover, the next proposition proves that the information contained in the
persistence diagram of a function f can be retrieved from the merge tree associated to
f, but the converse is not true as shown in Figure 3.3

Proposition 6. For all f : X — R, the associated PD(f) can be obtained by the
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associated merge tree T.

Thus, if two functions induce isomorphic merge trees, they also have the same per-
sistence diagrams.

3.5 Metrics

We want to analyze sets of functions using merge trees and PDs, exploiting metrics
which have already been defined respectively in Chapter 2 and in Cohen-Steiner et al.
(2010). Here we quickly present such metrics, with a special focus on the metric for
merge trees, since we use it to develop novel stability results in the next sections.

3.5.1 Metrics for Persistence Diagrams

The space of persistence diagrams can be given a metric structure by means of a family
of metrics which derives from Wasserstein distances for bivariate distributions.
Given two diagrams D; and D, the expression of such metrics is the following:

W(D1, Do) = inf, ) [lx = y(@)]l%

where ~ are functions partially matching points between diagrams D; and D-, and
matching remaining points with the line y = x on the plane. In other words we measure
the distances between the points of the two diagrams, pairing each point of a diagram
either with a point on the other diagram, or with a point on y = x. Each point can be
matched once and only once. The minimal cost of such matching provides the distance.

3.5.2 Metric for Merge Trees

The metric for tree-like objects defined in Chapter 2 is based on edit distances (Bille,
2005; Hong et al., 2017): they allow for modifications of a starting object, each with its
own cost, to obtain a second object. Merge trees equipped with their weight function
wr, as defined in Section 3.2.5, fit into this framework; hence the space of merge trees
can be endowed with a metric based on an edit distance and called dg in the following.

The distance dg is very different from previously defined edit distances, since it
is specifically designed for comparing topological summaries. It satisfies the property
of topological stability (see Section 3.5.2), roughly meaning that all points which are
topologically irrelevant can be eliminated by a merge tree without paying any cost.
To make things more formal we here introduce the edits, as defined in Chapter 2, but
directly in the context of merge trees, since they were originally defined for more general
objects.

The edits are the followings:
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(a) Deletion (b) Deletion Result (¢) Ghosting

(d) Ghosting Result (e) Shrinking

Figure 3.4: (a)—(e) form an edit path made by one deletion , one ghosting and a final shrinking.

e shrinking an edge means changing the weight value of the edge with a new posi-
tive value. The inverse of this transformation is the shrinking which restores the
original edge weight.

e deleting an edge (v, v9) results into a new tree, with the same vertices apart from
vy (the lower one), and with the father of the deleted vertex which gains all of its
children. This edit cannot be done on the root. With a slight abuse of language, we
might also refer to this edit as the deletion of the vertex v;, which indeed means
deleting the edge between v, and its father.

The inverse of deletion is the insertion of an edge along with its child vertex. We
can insert an edge at a vertex v specifying the child of v and its children (that can
be either none or any portion of the children of v) and the weight of the edge.

e Lastly, we can eliminate an order two vertex v, that is a father with an only child,
connecting the two adjacent edges which arrive and depart from v. The weight of
the resulting edge is the sum of the weights of the joined edges. This transforma-
tion is the ghosting of the vertex v and it cannot be done on the root. Its inverse
transformation is called the splitting of an edge.

Remark 14. Edit operations are not globally defined as operators mapping merge trees
into merge trees. They are defined on the individual tree. Similarly, their inverse is not
the inverse in the sense of operators, but it indicates that any time we travel from a tree
T to a tree T" by making a sequence of edits, we can also travel the inverse path going
from T" to T and restore the original tree.

The costs of the edit operations are defined as follows:

e the cost of shrinking an edge is equal to the absolute value of the difference of the
two weights;
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e for any deletion/insertion, the cost is equal to the weight of the edge deleted/in-
serted;

e the cost of ghosting is zero.

The root of a merge tree can only be edited by changing its weight and the cost of
such editing is the absolute value of the weight change.

Given a tree 7" we can edit it, thus obtaining another tree, on which we can apply a
new edit to obtain a third tree and so on. Any finite composition of edits is called edit
path. The cost of an edit path is the sum of the costs of its edit operations. Putting all
the pieces together, we can define the edit distance dp as:

de(T,T") = infyer(r,rcost(y)

where I'(7', T7") indicates the set of edit paths which start in 7" and end in 7".

Order Two Vertices

The null cost of ghosting guarantees that order 2 vertices are completely irrelevant when
computing the cost of an edit path.

Definition 19. If there is an edit path from the tree T to the tree T’ consisting only of
ghosting edits, we say that the two trees are equal up to order 2 vertices. By definition,
the length of the edit path starting in T and ending in T" is equal to .

In Chapter 2 it is proved that dg is a metric on the space of merge trees, identified
up to order 2 vertices. As explained in Chapter 2, the fact that order 2 vertices are
irrelevant is precisely what makes the metric dg suitable for comparing merge trees and
is fundamental to obtain the results of the following Section 3.6.

3.6 Pruning & Stability

As stated in the introduction of the paper, any time we use a data representation — or
we further transform a representation — it is important to understand and explore the
properties of the operators involved. In particular, in this section we establish some
continuity properties for the operator f — 7, which maps a function to its merge
tree. Conditional on the topology endowing the functional space where the function f
is embedded, these properties dictate how the variability between functions is captured
by the variability between their merge tree representations.

Proposition 5 implies that the merge tree representation of a function f is unaffected
by a large class of warpings of its domain, which would strongly perturb f if it was
embedded, for instance, in an L,, space, with p # c0. As an example, if f : R — R has
compact support, shrinking f by setting f,(z) = f(z - \,) with A, — +o0, produces
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no effect on the merge tree representation of f since Ty, = T, while the p-norm of f,
goes to zero.

It might therefore be more natural to study the behavior of f — T endowing the
space of functions f : X — R with the topology of pointwise convergence, which
captures pointwise closeness between functions. This topology, available for any do-
main X, has also the advantage of showing the effect of pointwise noise on merge tree
representations.

3.6.1 Pruning

We know that, given f, the merge tree T's will mostly depend on the critical points of f:
as the number of spikes of f grows, also the size of the tree grows, while the weights of
its branches grow with the height of the spikes. Similarly, if two functions f,g : X — R
are pointwise € close, we can say that the shape of the functions is the same up to spikes
of height 2 - €. Each such spike would cause the birth of a leaf whose branch is shorter
than 2 - ¢; the trees must therefore be the same up to branches of weight 2 - . These
considerations move the idea of pruning, which consists of removing unessential edges
from a tree.

Given a merge tree without order 2 vertices, we delete the small weight leaves, that
is those whose weight is smaller than or equal to a given fixed threshold. However, if
two or more small weight leaves are siblings, we only remove that of smallest weight,
or one of the leaves chosen at random if they have the same weight, and then ghost
its father if it becomes an order 2 vertex. This procedure is done recursively until no
small weight leaves are found. Note that removing only one leaf in case of siblings of
small weight, prevents the possible removal of information relative to spikes of f with
amplitude larger than the threshold.

We can thus define the pruning operator:

P.:T—>T

such that P.(T') is the tree obtained by pruning with threshold . Notice that P. is
idempotent, that is P.(P.(T)) = P.(T).

Remark 15. P. is not a continuous operator. Consider T' formed by just one edge with
weight ¢; take & > 0 and consider T', with the same tree topology as T but made by
one edge of weight € + . Now, dg(T,T") = 6 and dg(P.(T), P.(T")) = e + 6. If we let
d — 0, then dg(P.(T), P-(T")) > .

For what has been said up to now, the operator P. can be considered as a smoothing
operator. We fix some threshold which we think captures meaningful shape changes
in a function and then, consistently, we remove what is deemed to be noise from the
representation, obtaining a more regular merge tree. This has also the effect of greatly
decreasing the number of leaves of the tree, a fact that is important from the computa-
tional perspective.
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3.6.2 Stability

Now we study the case of two merge trees Ty and 7T, representing functions f and g
which are pointwise ¢ close.
The main theorem of this section is the following.

Theorem 3. Let f, g be tame functions defined on a path connected topological space
X and such that

sup,ex|f(x) = g(z)] < e.

Let Ty and T, be the merge trees associated to f and g respectively and let N and M
be the cardinalities of Vr, and Vr,.

Then, there exists an edit path ey o .. .o en.y € I'(Ty, T,) such that cost(e;) <2 -¢,
fori=1,...,N-M.

Theorem 3 states that if two functions are pointwise close, then we can turn the
merge tree associated to the first function into the merge tree associated to the second
function, using edits of small cost, at most one per vertex. Note, however, that if the
two functions have a very high number of oscillations, the distance between their merge
trees could still be large. Indeed if ||f, — f||x — 0 with #V, = o0, we are not
guaranteed that dg (7, Ty,) — 0. Theorem 3 however implies that, if the cardinalities
\Vr,, | are bounded, then dp(Ty, T}, ) indeed converges to 0.

Problems could then arise when we expect a possibly unbound number of infor-
mative spikes, that is spikes which should not be removed by pruning. In this case,
however, the computational cost of the metric dg would also be prohibitive due to the
high number of leaves in the trees; indeed this supports the claim that the only practical
limitation to the use of the metric dg is given by its computational cost.

3.6.3 Spline Spaces

We here emphasize for spline spaces the consequences of the results of the previous two
subsections, since splines are often used in FDA applications for smoothing the discrete
raw data profiling each statistical unit in the sample.

As already noted in the introduction, spline spaces are a preferred tool for smooth-
ing functional data since they provide finite dimensional vector spaces of functions with
convenient properties. In particular, spline functions are piecewise polynomials deter-
mined by a grid of knots; fixing the knots determines a finite upper bound for the number
of critical points of the spline. Consider for instance S2, the space of piecewise cubic
polynomials over a grid on [0, 1] with n equispaced knots. On each interval the first
derivative of the function is a quadratic polynomial and thus its zero set is composed by
at most two points. This means that the number of critical points of f € S3 is at most
2(n — 1); therefore the number of leaves of the tree 7' associated to f cannot be greater
than 2(n — 1). The following Corollary of Theorem 3 is in fact easily obtained:
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Corollary 3. Let S be a space of piecewise polynomial functions of some fixed degree,
all defined by means of the same finite grid of nodes. Then the operator f € S — T} is
COntinuous.

Smoothing raw data with splines entails a delicate trade-off between being flexible,
to capture the salient features of the function the raw data have been sampled from, and
avoiding the introduction of artifacts, due, for instance, to noise overfitting or caused
by forcing the spline to fit an abrupt spike. Representing the smoothed spline function
by means of a merge tree can help in handling this trade-off, by allowing the analyst a
certain degree of casualness in the smoothing phase, since the small artifacts generated
by a possible overfitting will then be controlled by pruning the tree.

For instance, consider the problem of approximating f : [0,1] — R with a cubic
spline function defined by an equispaced grid of knots. Suppose f satisfies some regu-
larity conditions, usually implied by its embedding in a Sobolev space. The parameter
which controls the bias-variance trade-off is just the number of knots n. Many results
are known in the literature concerning the uniform convergence of spline functions as
the step of the grid of knots goes to zero (see for instance De Boor and Daniel (1974a))
and most of them are given in terms of a factor 1/n® and the norm of the derivatives
or the modulus of continuity of f. In other words, the pointwise error can be reduced
as needed by increasing n. When f is approximated by the spline function sy with an
error of € in terms of uniform norm, this means that whatever happens in intervals of
+¢ around f is inessential. Stated in different terms, oscillations of s; taking place
in such zone are to be considered uninformative with respect to the analysis. Thus a
sensible choice is to represent the function f fitted by the spline s; by means of the
pruned merge tree Po. (T f). If € is small enough with respect to the oscillations of f,
Theorem 3 implies that pruning 7, by 2¢ removes only inessential edges of sy, without
loosing important information about f.

The same argument applies when smoothing observations sampled from a function
f. The analyst may allow the spline to overfit the data and then decide that oscillations
under a certain amplitude are irrelevant, controlling them by pruning the merge tree
associated to the fitted spline.

3.7 Visualization trick

Before showcasing the examples and a case study, we point out a visualization trick
employed when we graphically represent merge trees for visual comparison and evalu-
ation.

Given a set of functions, each represented by a merge tree, we let M be the maximum
value attained by any function in the set, and to each representing tree, say 7', we add
an edge connecting its root 7y to a new point, which becomes the new root, at height
M. The new edge of course is given weight M — w(rr). In this way all merge trees in
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(a) Tree structure T. Suppose hr(rr) = (b) Tree structure T with the added edge
1land M = 2. of lenght 1 and the new root.

Figure 3.5: On the left we can partially see a merge tree: namely we see its tree structure with
the weights represented by the length of the edges. The information about the height value
of the root is not visualized. On the right we see the same merge tree represented with the
visualization trick: the red edge allows a visual comparison between different merge trees
represented in such way.

the dataset are "hanging" from height M, and can therefore be visually compared using
existing libraries for trees representation. See Figure 3.5.

Moreover, apply this visualization trick to two trees Ty and T,. The cost of shrinking
the edge of weight M — wr, (rr,) added to the tree T to the corresponding edge added
to the tree T} is exactly |wr, (rr;) — wr, (rr, )| and this is the cost of editing the roots 7,
and r7, to match heights. Hence, the visual comparison of the merge tree representations
is consistent with the metric d.

3.8 Examples

These examples are intended to show the differences between persistence diagrams and
merge trees, already highlighted in Section 3.4.

3.8.1 Example I

We generate two clusters of functional data such that the membership of a function to
one cluster or the other should depend on the amplitude of its oscillations and not on
the merging structure of its path connected components. We then look at the matrices
of pairwise distances between functions, comparing merge tree and persistence diagram
representations in terms of their goodness in identifying the clustering structure.

To generate each cluster of functions, we draw, for each cluster, an independent
sample of 16 critical points, 8 maxima and 8 minima, from two univariate Gaussian dis-
tributions with means equal to +100 for maxima and to —100 for minima, respectively.
The standard deviations of the two Guassian distributions are the same and they are set
equal to 50. To generate a function inside a cluster, we draw a random permutation of
8 elements and according to that permutation we reorder both the set of maxima and
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Figure 3.6: Example 1. In the first row we can see few data from the two clusters. In the second
row we see the matrices of pairwise distance extracted with trees and PDs. The data are
ordered according to their cluster. It is clear how PDs perform much better in separating
the two clusters.

the set of minima associated to the cluster. Then, we take a regular grid of 16 nodes on
the abscissa axis: on the ordinate axis we associate to the first point on the grid the first
minimun, to the second the first maximum, to the third the second minimum and so on.
To obtain a function we interpolate such points with a cubic spline. We thus generate
50 functions in each cluster. The key point is that, within the same cluster, the critical
points are the same but for their order, while the two clusters correspond to two different
sets of critical points.

In this example, we expect that the clustering structure carried by the amplitude of
the functions will be shadowed by the differences in the merging order, when adopting
the merge tree representation; while persistence diagrams should perform much better
because they are less sensitive to peak reordering. This is in fact confirmed by inspecting
the distance matrices in Figure 3.6(b) and Figure 3.6(c).

3.8.2 Example II

Here we reverse the state of affairs and we set the feature for discriminating between
clusters to be the merging structure of the functions. Hence, we generate two clusters
of functions: the members of each cluster have the same merging structure which is
however different between clusters.

To generate the two clusters of 50 functions each, we first draw an independent sam-
ple of 10 critical values, 10 maxima and 10 minima, shared between the clusters. Such
samples are drawn from Gaussian distributions with means 100 and —100 respectively
and standard deviation 200. Given a regular grid of 20 nodes on the abscissa axis, on
the ordinate axis we associate to the first point of the grid a maximum, to the second
a minimum, and so on, as is Example I. To generate every member of one cluster or
the other, we add to the ordinate of each maximum or minimum critical point a random
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(a) Simulated data.
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Figure 3.7: Example II. In the first row we can see a few data from the two clusters. In the
second row we see the matrices of pairwise distances between merge tree representations
and P Ds, respectively. The data are ordered according to their cluster. It is clear how in this
example merge trees are more suitable to separate the two clusters.

noise generated by a Gaussian with mean O and standard deviation 100. Then we re-
order such points following a cluster-specific order. And, lastly, we interpolate with a
cubic spline. We remark that the ordering of the maxima and that of the minima now
becomes essential. For the two clusters, these orderings are fixed but different and they
are set as follows (0 indicates the smallest value and 9 being the largest value):

e first cluster: maxima are ordered along the sequence (0,1,2,3,4,5,6,7,8,9),
minima along the sequence (0, 1,2,3,4,5,6,7,8,9);

e second cluster: maxima are ordered along the sequence(3,2,1,0,8,9,7,6,4,5),
minima along the sequence (3,2,1,0,8,9,7,6,4,5).

Such different orderings provide non-isomorphic tree structures for the merge trees
associated to the functions of the two clusters, as we can see in Figure 3.8, while keeping
a similar structure in terms of persistence diagrams.

In this example, we expect PDs to be unable to recognise the clustering structure
among the data; indeed, the only discriminant feature available to P Ds is the different
height of critical points, but this bears little information about the clusters.

We can visually observe this by comparing Figure 3.7(b) with Figure 3.7(c).

3.9 Case Study

We now run a comparative analysis of the real world Aneurisk65 dataset. This dataset —
and the clinical problem for which it was generated and studied — was first described in
Sangalli et al. (2009b), but it has since become a benchmark for the assessment of FDA
methods aimed at the supervised or unsupervised classification of misaligned functional
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(a) Tree structure of the first cluster. (b) Tree structure of the second cluster.

Figure 3.8: Example II. The tree structures of the two clusters.

data (see, for instance, the special issue of the Electronic Journal of Statistics dedicated
to phase and amplitude variability - year 2014, volume 8). We then repeat the classifi-
cation exercise illustrated in Sangalli et al. (2009b) with the double scope of comparing
merge trees and persistent diagrams when used as representations of the Aneurisk65
misaligned functional data, and of evaluating the performance of these representations
for classification purposes when compared with the results obtained with the more tra-
ditional FDA approach followed by Sangalli et al. (2009b).

3.9.1 Dataset

The data of the Aneurisk65 dataset were generated by the Aneurisk Project, a multi-
disciplinary research aimed at investigating the role of vessel morphology, blood fluid
dynamics, and biomechanical properties of the vascular wall, on the pathogenesis of
cerebral aneurysms. The project gathered together researchers of different scientific
fields, ranging from neurosurgery and neuroradiology to statistics, numerical analysis
and bio-engineering. For a detailed description of the project scope and aims as well
as the results it obtained see its web page (https://statistics.mox.polimi.
it/aneurisk) and the list of publications cited therein.

Since the main aim of the project was to discover and study possible relationships
between the morphology of the inner carotid artery (ICA) and the presence and location
of cerebral aneurysms, a set of three-dimensional angiographic images was taken as part
of an observational study involving 65 patients suspected of being affected by cerebral
aneurysms and selected by the neuroradiologist of Ospedale Niguarda, Milano. These
3D images where then processed to produce 3D geometrical reconstructions of the inner
carotid arteries for the 65 patients. In particular, these image reconstructions allowed to
extract, for the observed ICA of each patient, its centerline “raw” curve, defined as the
curve connecting the centres of the maximal spheres inscribed in the vessel, along with
the values of the radius of such spheres. A detailed description of the pipeline followed
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to identify the vessel geometries expressed by the AneuRisk65 functional data can be
found in Sangalli et al. (2014).

Different difficulties arise when dealing with this data. First, as detailed in Sangalli
et al. (2009a), to properly capture information affecting the local hemodynamics of the
vessels, the curvature of the centerline must be obtained in a sensible way. Retrieving
the salient features of the centerline and of its derivatives is a delicate operation, which
is heavily affected by measurement errors and reconstruction errors, due to the complex
pipeline involved. Consequently the “raw” curves appear to be very wiggly and it is not
obvious how to produce reasonable smooth representations. At the same time the 3D
volume captured by the angiography varies from patient to patient. This is due to many
factors, such as: the position of the head with respect to the instrument, which in turns
depends on the suspected position of the aneurysm, the disposition of the vessels inside
the head of the patient, the size of the patient. We can recognize these differences even
by visual inspection in Figure 3.9: for instance, in Figure 3.9(a) and Figure 3.9(g) we
see a longer portion of the ICA than in Figure 3.9(d). Therefore the reconstructed ICAs
cannot be directly compared: we need methods that take into account that the center-
lines are not embedded in R? in the same way, and that we cannot expect potentially
interesting features to appear in exactly the same spots along the centerline. This is the
typical situation where one should resort to alignment.

Hence, this dataset is paradigmatic of the three-faceted representation problem high-
lighted in the introduction; data smoothing, embedding, and alignment present difficult
challenges, which propelled a number of original works in FDA.

The AneuRisk65 data have been already partially processed; in particular centerlines
have been smoothed following the free-knot regression spline procedure described in
Sangalli et al. (2009a), and their curvatures were thus obtained after computing the first
two derivatives of the smoothed curves. The data relative to the radius of the blood
vessel, instead, although measured on a very fine grid of points along the centerline,
is still in its raw format. Hence the AneuRisk65 data also allow us to compare the
behaviour of tree representations on smoothed data and on raw data.

3.9.2 Analysis

Patients represented in the AneuRisk65 dataset are organized in three groups: the Upper
group (U) collects patients with an aneurysm in the Willis circle at or after the terminal
bifurcation of the ICA, the Lower group (L) gathers patients with an aneurysm on the
ICA before its terminal bifurcation, and finally the patients in the None group (N) do
not have a cerebral aneurysm. Our main goal is supervised classification with the aim to
develop a classifier able to discriminate membership to the group L | J NV against mem-
bership to the group U based on the geometric features of the ICA. We complement this
supervised analysis with an unsupervised exercise with the aim of clustering patients
solely on the basis of the similarity of geometric features of their ICA, recovering a
clear structure between the groups listed above and thus providing further support to the
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(a) ICA patient 1
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Figure 3.9: Three patients in the AneuRisk65 dataset; on the left column, ICAs are coloured
according to the radius value, on the central column the radius functions, on the right column
their associated merge trees. Patient 1 belongs to the Lower group, the other two patients to

the Upper group.
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discriminating power of the geometric features of the ICA.

The pipeline for supervised classification

We develop a classification pipeline in close analogy with the one illustrated in San-
galli et al. (2009b) which, after smoothing, reduces the data dimensionality by means of
Functional Principal Components Analysis (FPCA) applied to the curvature functions of
the ICA centerlines and to the respective radius functions, and then fits a quadratic dis-
criminant analysis (QDA) based on the first two FPCA scores of the curvature functions
and of the radius functions respectively.
We interpolate the data points representing the smoothed curvature functions and the
raw radius functions provided in the Aneurisk65 dataset with a piecewise linear spline
and, for each patient, we consider the merge tree associated to its curvature and the
merge tree associated to its radius. We then prune our tree representations; to use a
uniform scale across all patients (but of course different for curvature and radius) we
parametrize the pruning threshold as a fraction of the total range covered by the curva-
ture and radius functions, respectively, across patients: / = [min;(min, (f(x)), max(max,(f(x)))].
For both sets of trees, we then calculate the pairwise distances with the metric dg and
we organize them in two distance matrices. Blending the discriminatory information
provided by curvature and radius, we also produce a new distance matrix collecting the
pairwise distances obtained by convex linear combination of the distances for curvature
and radius, according to the formula:
A= w-d

mixed — curvature

+ (1 —w)-d? (3.1)

radius’

where 0 < w < 1. For lack of references, we prove in Section 3.12.1 that djxeq 1S a
metric, for all w € [0, 1]. We then apply Multi Dimensional Scaling (MDS) to each of
the above distance matrices, to map the results in a finite dimensional Euclidean space
of dimension m. Lastly, and following Sangalli et al. (2009b), we fit a QDA on such
embedded points.

This pipeline requires the setting of three hyperparameters: the pruning threshold,
the weight w appearing in Equation (3.1) and, finally, the dimension m of the Euclidean
embedding for MDS. While the pruning threshold is chosen with an elbow analysis,
see Section 3.9.2, the weight w and the dimension m of the multidimensional scaling
are selected by maximising the discriminatory power of QDA estimated by means of
leave-one-out (L1out) cross-validation.

Pruning

In this section, we take a closer look at the smoothing carried out by pruning the merge
trees representations of curvature and radius. From the plots in Figure 3.9 we see that
the radius functions appear to be very wiggly and, given the complex data-generating
pipeline, we might assume that some portion of that amplitude variability is uninforma-
tive and due to different kinds of errors, which is the same conclusion drawn by Sangalli
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Figure 3.10: The distance matrices of merge trees associated to curvature and radius func-
tions.Patients belonging to group L appear in first rows, followed by patients in the N group
and patients in the U group.

et al. (2009a) with respect to the raw curvature data. As detailed in Section 3.6.1, re-
moving those little spikes from functions amounts to removing little branches from trees
(up to smaller siblings). Thus, the number of leaves in a pruned tree is a monotone de-
creasing function of the pruning threshold: as the parameter grows, the number of leaves
decreases.

We expect to find some separation in terms of amplitude between the proper features
of the analyzed functions and the unwanted, “noisy” ones. Otherwise it would mean that
the signal-to-noise ratio is so low that the uninformative errors shadow the informative
features of the functions, and thus that the data are hopelessly corrupted. For this rea-
son, we choose the pruning parameter through an elbow analysis of the curve plotting
the number of leaves of the pruned trees, averaged over the whole dataset, against the
corresponding threshold. Thus, we look for an elbow in the curves depicted in Fig-
ure 3.11.

We want here to emphasise the different behaviours of the curvature trees and of the
radius trees. There is no clear elbow in Figure 3.11(a), showing that there is no reason
to believe that data show a large number of small uninformative noisy oscillations. This
is not surprising because the curvature functions of the Aneursik65 dataset are the result
of a very careful smoothing process. The curve in Figure 3.11(b), related to radius, has
instead a clear elbow structure (between 1% and 2%) in accordance with our expecta-
tions. Thus, we choose 2% as pruning threshold for the radius curves, whilst we do not
prune curvature trees. We later discuss the robustness of our results with respect to these
choices.
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Classification Results

We compare our classification results with those illustrated Sangalli et al. (2009b). The
goal is the same: separating the class U from the classes L and N.

Table 3.1 reports the prediction errors obtained after L1out cross-validation. As in
Sangalli et al. (2009b), we obtain the best classifier by simultaneously considering the
combined information conveyed by the couple of curvature and radius functions; the
dissimilarity between different couples is measured by the distance in Equation (3.1),
where the parameter w = 0.46, being this the value which minimizes prediction error
computed by L1out.

The same pipeline is followed when curvature and radius functions are represented
by merge trees or by persistence diagrams. In the case of PDs’, we first removed the
points (that is, the topological features) with persistence lower than a certain threshold
(where the persistence is ¢, — c,, according to the notation used in Section 3.3). The
threshold has been taken equal to the pruning parameter of the merge trees.

The first two rows in Table 3.1 compare prediction errors when merge trees or PD
representations are used. From left to right, the table shows the L1out confusion ma-
trices when distances between curvatures, radii or their joint couple are respectively
considered. We see that PDs do a better job in extracting useful information from ei-
ther curvature or radius, when examined separately. This could be due to a situation
not dissimilar from that illustrated in the example of Section 3.8.1: the discriminant
information contained in the curvature and radius functions lies more in the number and
amplitude of oscillations than in their ordering. However, when curvature and radius of
the ICA are jointly considered as descriptors and the distance of Equation (3.1) is used,
we obtain a better classifier for merge trees while there is no improvement for PDs.

This situation highlights that merge trees and persistence diagrams capture different
pieces of information about the represented functions; moreover, PDs suggest that most
of the information they capture is due to the radius function, while merge trees clearly
show some informative interactions between curvature and radius.

For comparison, the third column of Table 3.1 reports the prediction errors of the
best classifiers based on merge trees and on PDs, respectively, while the last row shows
the prediction errors of the classifier described in Sangalli et al. (2009b). Although the
number of patients misclassified by the best classifier based on merge trees is smaller
than that of the best classifier based on PDs, we stress once again that the two methods
are capturing different discriminant information; indeed, comparing the two analysis we
found that only 6 patients were misclassified by both methods.

Robustness with respect to the pruning threshold

To argument in favor of the robustness of our results with respect to the choice of the
pruning threshold, or, from another point of view, in favor of the robustness of the in-
formation conveyed by our tree representations of functions, we go through the same
classification pipeline varying the value of the pruning threshold. In Figure 3.12 we
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Chapter 3. Functional Data Representation with Merge Trees

show the prediction accuracy, estimated by L1out cross-validation, as a function of the
pruning threshold. We notice that the accuracy is quite stable and, in particular for
merge trees, slowly decreases as the threshold increases. This fact, on one hand further
supports the elbow analysis approach described in Section 3.9.2, on the other is also
showing that the results obtained with the information captured by merge trees and per-
sistence diagrams does not depend on a finely tuned choice of the threshold parameters.

Clustering

We now explore the Aneurisk65 data clustering structure by endowing the merge tree
space with the metric dixeq figuring in Equation (3.1), with w = 0.46. To get multiple
perspectives on this issue, we resort to hierarchical clustering dendrograms with differ-
ent linkages. The visual inspection of Figure 3.10 suggests that, upon blending together
the information of radius and curvature, the Upper class should display a low variability
while the Lower and None classes should behave more heterogeneously. Thus, a clear
clustering structure should not be recognizable: we expect possibly one cluster made
by points belonging to the Upper class and then a series of points scattered around this
central nucleus with no easily recognizable pattern.

The hierarchical dendrograms obtained with single, average and complete linkages
are displayed in Figure 3.13. The first obvious observation is that all three linkages iden-
tify the point associated to patient 2 as an outlier. The single linkage dendrogram shows
that, as the height on the dendrogram increases, there is only one major cluster which
slowly becomes larger and incorporates all points in the data set. No other relevant clus-
ters are found. Average and complete linkages further support this finding: there are no
obvious heights where to cut the tree in the average linkage dendrogram; complete link-
age instead shows perhaps a two cluster (plus one outlier) structure. The smaller cluster
identified by this dendrogram, is also visible with the average linkage and is contained
within the group of singletons obtained by cutting the single linkage tree at height 1.3.
The overall picture is thus that of a major cluster, with possibly another group of points
clustered together, but with much higher heterogeneity.

These findings can indeed be related with the labels declaring membership of the
patients to the U, the N and the L group respectively. To grasp if there is an overall
pattern in the merging structure of the data point cloud, for each leaf (a patient) of a
dendrogram, we collect its merging height defined as the height of its father in the graph,
that is the height at which that point is no longer considered as a singleton but instead it is
clustered with some other point. In other words, we record the distance between the leaf
and the closest cluster in terms of the cophenetic distance induced by the dendrogram.
Note that, for the single linkage dendrogram, this is equivalent, for almost all leaves,
to the height at which the leaf is merged with the major cluster. Results are shown in
Figure 3.14. The interpretation of these plots is consistent across the different linkages
and is pretty straightforward: the points corresponding to patients of the Upper group
get merged within a small range of heights, and the distribution of their merging height

84



3.10. Discussion

y 30 e 1%
B e 2%
§ § s
87 2
5 4w 20
g6 5
o 0
5 5 E 15
o S
E 4 @ 10
z 2
<L <L
3 5
00 25 50 75 woe 125 150 175 200 0o 25 50 15 woe 125 150 175 200
% of total range % of total range
(a) Average number of leaves for curvature (b) Average number of leaves for radius

Figure 3.11: The average numbers of leaves in the merge trees, plotted against the percentage
of total range used as pruning threshold.

is stochastically smaller than the distributions for groups L and NV, respectively. The
merging heights of the leaves corresponding to patients belonging to the Lower group,
instead, display a larger variability and their distribution is stochastically larger than
those of the of the leaves belonging to the other two groups. Patients of the class None,
merge at heights in between the Upper and the Lower groups and their merging height
seems to display a low variability. The plot (d) of Figure 3.14 shows the smoothed
densities of the distributions of merging height for leaves belonging to the three groups,
in the case of average linkage. Analogous representations could be obtained for the
other two linkages; they all confirm the stochastic ordering described above.

This cluster analysis is consistent with our expectations, which, in turn, are in accor-
dance to the findings of Sangalli et al. (2009b). On top of that, we also get two further
insights: first, data are scattered around the Upper group with a possibly non uniform
structure, as shown by the small and sparse cluster of Lower class patients visible with
complete linkage clustering and, second, that the None group of patients lies in a sort of
in between situation in the space separating the two other groups of aneurysm-affected
patients. This could also explain the good performance of QDA: a quadratic boundary is
able to isolate the core of the Upper group of patients from the others, which lie mainly
on one side of the quadratic discriminant function.

3.10 Discussion

We believe that methods from TDA can be fruitfully added to the toolbox of functional
data analysis, especially when non trivial smoothing and alignment are required for data
representation. In this chapter we focused on two topological representations of func-
tions: persistence diagrams, which, being the most classical tool in TDA, are regarded as
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Chapter 3. Functional Data Representation with Merge Trees

Merge Trees

Predicted
Curvature Radius Mixed
U | LUN U | LUN U | LUN
True U 22 10 U 16 16 U 25 7
LUN | 7 26 LN | 2 31 LN | 3 30
w=1n=3 w=0,n=3 w=0.46,n=9
Persistence Diagrams
Predicted
Curvature Radius Mixed
U | LN U | LN U | LUN
True U 21 11 U 26 6 U 26 6
LN | 3 30 LN | 6 27 L 6 27
w=1n=3 w=0,n=9 w=0,n=9
Benchmark
Predicted
U | LUN
True U 26 6
LN | 6 27

Table 3.1: Confusion matrices for Llout. Below each confusion matrix, the values of the metric
coefficient w and of the dimension m for MDS corresponding to the tested classifier are
reported. The first row refers to the classifiers receiving as input merge tree representations,
the second row PDs. The last row reports the benchmark Llout confusion matrix for the
classifier illustrated in Sangalli et al. (2009D).
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Figure 3.12: We can visually inspect robustness of the Llout accuracy of the classification
pipeline - both for merge trees and persistence diagrams - with respect of the pruning thresh-
old. The horizontal green line shows the accuracy obtained by Sangalli et al. (2009b). Note
that the accuracy of persistence diagrams and merge trees is above or equal to the green line
also for large values of the pruning threshold.

a benchmark, and merge trees, which are rarely used in real data analysis applications.
The framework for merge trees is the very recent metric structure defined in Chapter 2,
for which we also developed theoretical results specific for the application to functional
data.

To support our narrative, we used as paradigmatic real world application the classifi-
cation analysis of the AneuRisk65 functional data set. This data set poses all the desired
challenges: careful smoothing procedures and alignment techniques must be employed
to obtain meaningful results. Reanalyzing the seminal case study described in Sangalli
et al. (2009b), we show the advantages of having a representation of functional data
which is invariant with respect to homeomorphic transformations of the abscissa — thus
lightening the burden of careful alignment — and also allows for agile smoothing — pos-
sibly causing some overfitting — thanks to the pruning of the trees which takes care of
this aspect of FDA which practitioners often find problematic. Following a classifica-
tion approach based on QDA applied to proper reduced representations of the data, as in
Sangalli et al. (2009b), we obtain robust results with comparable, if not better, accuracy
in terms of L1out prediction error, and we confirm some facts about the variability of
the data in the groups of patients characterized by the different location of the cerebral
aneurysm, consistently with the findings of previous works.

To be sure, we want to stress that careful smoothing is still mandatory when precise
differential information about the data is needed, since small oscillations in a function
can still cause high amplitude oscillations in the derivatives, which cannot be removed
by pruning. Moreover, not all FDA applications are adapted to the representations of-
fered by merge trees or persistent diagrams. Indeed, the information collected by merge
trees is contained in the ordering and in the amplitude of the extremal points of a func-
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Figure 3.13: Hierarchical clustering dendrograms obtained with single, average and complete

linkages.
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Figure 3.14: For each patient belonging to group U, L or N, the plots (a), (b) and (c) represent
the merging height at which their corresponding leaf gets merged in the clustering dendro-
grams, according to single linkage, average linkage and complete linkage, respectively. Plot
(d) represents the smoothed densities of merging height for the leaves of the three groups, in
the case of average linkage.
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tion, and not on their exact abscissa. Hence, if the abscissa carries valuable information
for the analysis — for instance, a wavelength, or a precise landmark point in space or time
— the TDA approach followed in this work for data representation is not indicated, pre-
cisely because of its invariance property with respect to homeomorphic transformations
of the abscissa. But this criticism also applies to many alignment procedures proposed
in the literature. Similarly, in Section 3.8.2 we point out that there are functions which
have equivalent representations in terms of merge trees although the order on the ab-
scissa of their critical points is different, although merge tree are much less sensitive to
such issue when compared to persistence diagrams. If the order of critical points of the
function is of importance for the analysis, then surely persistence diagrams, but possibly
also merge trees, should be avoided.

Going general, we point out that whenever the datum designating a statistical unit is
only a representative of an equivalence class, the analyst must be sure that the variability
differentiating the members of the same class is ancillary with respect to the statistical
analysis performed on the statistical units. This consideration always applies in FDA,
whenever data are aligned according to transformations belonging to a group. Merge
trees offer a representation of functional data in terms of equivalence classes whose
members are invariant with respect to homeomorphic transformations of the abscissa.
Persistence diagrams partition the space of functional data in even coarser equivalence
classes, although they could be enough for the analysis, as we saw in the case study
illustrated in Section 3.9. Occam’s razor should guide the analyst’s final choice.

3.11 Acknoweldgements
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3.12 Proofs

Proof of Proposition 5.

Let f : X — R be a bounded function defined on a path connected topological space
X andlet ¢ : Y — X be an homeomorphism. We need to prove that the merge tree and
the persistence diagram associated to the function f and f’ = f o ¢ are isomorphic.
We know that:

Yo = {f 7 (o0, t])} = {ylf'(y) <t} = {z = o()|f(x) < t}
This means that iy € Y; if and only if ¢(y) € X;, and so Y; = o~ !(X;). In other words, ¢
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maps sublevel sets into sublevel sets. Since the restriction of an homeomorphism is still
an homeomorphism, it also sends connected components into connected components.
As a consequence Hy(X;) ~ Hy(Y;) and if {z, ..., z,,} is a basis made by connected
components for Hy(X;) and {yo, ..., yn} for Hy(Y;), ¢ induces the following isomor-
phism of groups on the homologies: ¢ : Hy(X;) — Hy(Y;), such that ¢(x;) = y; for
some j.
Given t' < t, we have the following commutative diagram:

Xt/ —> Xt

L

Yy — Y,

and passing to homologies:

Ho(Xy) =5 Hy(X;)

l@ l@

HO(E’) s Ho(Yt)

where we remark that the ¢’s are homeomorphisms and the @’s are isomorphisms of
groups.

The last diagram gives the isomorphism of PDg(f) and PDy(f").

Since connected components are sent to connected components (with both maps),
this also becomes an isomorphism of merge trees: building the merge tree for Y; and X,
would give isomorphic results. [

Proof of Proposition 6.

Each leaf in 7" corresponds to a point in PD( f). The x coordinate of each point is given
by its height, which can be retrieved through A ;. Consider v € Ly and 7,,, the path from
v to 7 which corresponds to the ordered set {v € Vy|v' > v}. The y coordinate of the
points associated to v is the minimal height at which +, intersects ~y;, with [ being a leaf
with height less than v. |

Proof of Theorem 3.

To prove the theorem, we need some notation and a couple of Lemmas.

Let f, g be tame functions on the path connected topological space X and such that
sup,. | f(z) —g(z)| <e. Fort e R, weset X{ = f~((—o0,t]). Since | f(x) — g(x)| <
e we have X/ ¢ X7, _and of course X! c X/, _.
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If F, := {path connected components of X/} and, analogously, G; := {path con-
nected components of X7}, we induce the following commutative diagram:

t+e
t
F, —— Foe —— Fy —— Fy,e

2K ><

B B
Gt t—> Gt+a > Gt’ > Gt’+s

Wecall p : F; —» Gy.. and 5 : G; — F,,.. Note that the vertices of the merge trees
associated to f and g are contained in some F; or G respectively. The maps are all
induced by inclusion and are defined in analogous ways on the basis of path connected
components (p.c.c.). So we specify only ©:

(U c X/ pcc.)— (Vc XY, p.cc. containing U)

To define 4 we simply exchange the role of f and g.

We indicate the path connected components of F; with F{, ..., F{ and analogously
for G;. Since f and g are tame, we know that these are always finite. Clearly, we have
that o (F!) = Fj?/ for some j. Usually we avoid the subscript and the superscript on «
referring to its domain and codomain; if needed, we specify them.

If of (F}) = of (F}) = F! then F} and F}\ have merged between ¢ and ¢. Similarly
if Ff ¢ im(af,) then F} is born between ¢’ and ¢. Since f and g are tame, we know that
merging and the birth of new components happens only in a finite set of critical points.

We recall that the leaves of the trees are associated to the birth of path-connected
components, and the internal vertices of the trees to the points where components merge.

Given a path connected component x € F;, we can always find ¢’ = min{s <
t|#a~(z) = 1}; we call I';(z) the preimage of = with af,. It is the closest point on
the tree, going towards the leaves, in which z is involved in some merging. It is a way
to associate to any component alive at time ¢, a vertex on the tree. In other words the
function I'y maps any connected component of F; (for any ¢), to a vertex of the tree T'.
An analogous map can be defined also for G, and Tj; call this functions T',.

Having set notation, we now use it to establish some connections with merge trees
as defined in Section 3.2.5.

Let T’ be the merge tree associated to f, with tree structure 7" and height function h;
similarly T, is associated to g, with tree structure 7" and height function h,. Define the
functions ¢ and -, respectively by considering: F! — T'y(@(F})) or Gt — T'¢(5(GY)).
We will mainly use these functions restricted to the sets of vertices Vi and Vv, to obtain

QDZVT—>VT/

v = Tg((v))

’)/ZVT/—>VT
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w = Tr(y(w))
We now prove two lemmas which help in the proof of the theorem. We also introduce

the following notation: given a vertex v € Vr, then, the set (, is the set (, := {v' €
UT’U/ > v}. In other words ¢, collects all the points between v and r-.

Lemma 2. Consider v € Vp. If |hf(v) — hy(p(v))| > &, then there cannot be two or
more distinct vertices v' and v" such that v = min (y N G with hy(v) —hg(v') > € and
h¢(v) — hs(v") > . Moreover, for all vertices v" in subr(v) with hy(v) — hp(v") < e
we have p(v") = ¢(v).

Proof. We prove this lemma by contradiction. Assume there are v’ and v” vertices
which contradict the thesis.

Note that ¢(v') and @(v”) are less than or equal to ¢(v) in V. But by hypothesis
hg(p(v)) < hy(v)—e, which means that h¢(Y(p(v))) < hy(v). Which s a contradiction
because the components associated to v’ and v” cannot merge before h(v).

The last part of the lemma follows because h,(7(v")) > hy(p(v)).

O

Lemma 3. Consider F} and F! witht < t' and o(F}) = ¢(F!"). Then F! and F! get
merged before height t' + 2e.

Proof. 1 Q(F!) = o(F) then P(F}) = @(FY'). This, in turn, implies that 5(3(F})) <
Y(@(F})) and so F} and F} get merged before height ¢’ + 2e. O

Clearly the role of 7" and 7" can be exchanged in the formulation of the lemmas.

Using these two lemmas we build a bottom-up procedure to turn 7" into 7" via an
edit path with at most one edit per vertex, each with cost less then 2¢.

Start from the leaves of 7" and order them according to increasing heights. If there
are more leaves with the same height, order them at random. For each leaf v either (a)
IRy (v) — hy(p(v))] > £ or (b) [y () — hy(i2(v)] < < holds.

Consider the first leaf v. Since |min (f) — min (g)| <  then (b) must hold. Thus we
take the couple (v, p(v)). Consider now the second leaf +’. If (a) holds, then p(v') =
©(7(e(v"))) and hs(v') > he(F(p(v))). Since v’ is a leaf, then I'f(Y(p(v))) belongs
to another branch, with respect to v’, since hy(v') > hy(5(p(v'))). Thus, by Lemma 3,
v’ can be deleted with cost at most 2. The same happens if ¢(v') = ¢(v). Therefore,
for each leaf v of T either we take the couple (v, ¢(v)) - if (b) holds, and with vertices
appearing in couples at most once - or we delete v with cost less than 2¢. Consider now
the leaves of T". If w is left uncoupled and (a) holds, then v(w) = v(p(y(w))) with
w > @(y(w)); reasoning as above, we deduce that w can be deleted with cost at most
2e. If (b) holds, then |hy(w) —hy(p(y(w)))| < 2¢, since |hf(y(w))—hy(e(y(w)))] < e.
Thus we can delete w with cost less than 2¢ in any case.

Therefore, we either couple or delete each leaf of 7" and 7".

These deletions may force some vertices to become leaves. Thus we can repeat
recursively the same procedure until we obtain two merge trees whose leaves are all
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coupled. From such trees we remove all order two vertices. Since these trees are ob-
tained from 7" and 7" with deletions of cost less than 2¢ and ghostings, if we prove the
result for such trees the theorem is proven. So with an abuse of notation we call 7" and
T’ these new merge trees.

To conclude the proof we must first prove that the internal vertices of 7" and 7’
satistfy (b) and can be coupled respecting the tree structures.

Consider v an internal vertex of 7" and suppose |hs(v) — hy(¢(v))] > . Let
v1, . .., U, be its children. By hypotesis n > 1. We know that all the leaves in suby(v;)
are coupled. In particular consider two leaves v, € Viup,(v) and vy € Viypp(v,). We
know that ¢(v,) # ¢(vp), and that those two components are merged in ¢(v). But then
they are merged in 7(¢(v)) which has height less then h;(v); a contradiction. This of
course holds also for 7".

Consider now the set ¢ *(¢(v)) = {v1,...,v,}. We know that for all 4, |hs(v;) —
hg(p(v))] < € and all the vertices get merged before max;{hs(v;)} + . Let k =
argmax,{hs(v;)}. We can pair (v, ¢(v)) and delete all other v;, with cost less than
2e. In this way we either couple or delete all vertices of 7'. Consider now w € Vi
which is left uncoupled. Since for w (b) holds, then |h,(w) — hy(o(y(w)))| < 2e,
because |hf(y(w)) — hy(p(y(w)))| < . Thus we can delete all uncoupled vertices with
deletions whose cost is less than 2¢.

In this way all vertices of 7" are either coupled, ghosted or deleted. Lastly, since
p(v) = @(v') then the coupling respects the tree structures of 7" and 7”’. Therefore,
once we delete all vertices which are not coupled, and remove all order 2 vertices,
we obtain from 7" and 7" two trees with isomorphic tree structures - the isomorphism
being ¢. Again to avoid the introduction of new notation, we call these trees 7' and
T'. At this point we can intepret the couples (v, p(v)) as defining shrinkings. Let
e = (v,0), wrle) = hy(v)) = hy(v). € = ((v), (V') and wr(€) = hy (), p(t))).
Since |hs(v) — hy(p(v))| < € and |hf(v') — hy(p(v'))] < €, then cost((v, ¢(v))) =
lwr(e) — wr ()] < 2e.

|

3.12.1 Combining Metrics

To aggregate curvature and radius, we make use of the following Proposition.

Proposition 7. Given (X, dy) and (X, d,) metric spaces, then d,,, := (a-dy+b-d})'/P,
with a,b e Ry and p > 1, is a metric on X.

Proof. dus,y(,y) = [|(@V? - o, y), 57 - i, )] -

Since, given k > 0, k - d; is a metric if and only if d; is a metric, we can rescale d
and d; and take a = b = 1. We refer to d; 1, as d,,.

So:

o dy(z,y) = 0iff dy(x,y) = 0 = dy(x, y) and this happens if and only if z = y.
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e symmetry is obvious
o weuse |[h-+qll, < [[hl],+lall, with h = (do(x, =), di(x, 2)) and g = (do(=, ), di (2, 9)).
Since d;(z,y) < d;(x, 2) + d;(z,y) we get:

(do(z,y), di(z,y))llp < [|(do(z, 2)+do(z,y), di(z, 2)+di (2, y))|lp = [|(do(z, 2), dr(x, 2))+
(d0(27y)7d1(27y))||p < H(do(x?Z)’dl(x?Z))Hp + ||(d0(z7y)7d1<z>y))||p‘

Therefore:
dp(l'7y) § dp(xv Z) + dp(za y)

95






CHAPTER

The Space of Merge Trees

The content of this chapter is also part of the paper: “Frechét Means of Finite Sets of
Merge Trees” which is at a preliminary stage.

In this chapter we consider possibly the simplest interesting case of generalized den-
drograms, which is the one of merge trees, and we start an investigation of the properties
of such space. This investigation is intended as a first step into a geometric understand-
ing of the spaces of generalized dendrograms, which is fundamental for developing ex-
ploratory tools and other differential structures. In particular, we call (7, dg) the metric
space of merge trees identified up to order 2 vertices and present some results about its
topological properties and its metric structure, with particular attention to objects called
Frechét Means.

4.1 Preliminaries
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Chapter 4. The Space of Merge Trees

In this chapter we make use of the following mathematical structures: categories and
multivalued functions.

Category theory is a very big field in mathematics and there is plenty of introductory
textbooks which can be used to acquire the basic notions we employ in this part of
the dissertation. Namely these notions are the definition of a category, of functors and
natural transformations, of partially ordered sets (posets) seen as categories and lastly
of coproducts, which can be found for instance in Borceux (1994).

Multivalued functions instead are much more basic objects. Given two sets A and
B, a multivalued function is an association rule f : A — B such that f(a) c B.

4.2 Subspaces

The first structure we notice in the space (7, dg) is that it can be stratified, covered with
a nested family of subsets of merge trees grouped according to the dimension of their
representative without order 2 vertices. If we denote with dim/(T") the number of edges
in the tree structure 7', we can give the following definition.

Definition 20. 7V = {T'|dim(Ty) < N} forany N € N.

Remark 16. Throughout Section 4.2, Section 4.3 and Section 4.4, unless specified oth-
erwise, we always assume that 'T' = T, for any merge tree we consider.

The results proved in Chapter 2, tells us that for any pair of trees the distance between
them is given by the length of a path connecting them. Such path is a geodesic. More-
over, looking at how mappings parametrize finite edit paths, we see thatif T, 7" € TV,
then there is at least a geodesic between them which does not exit 7. We sum up these
things with the following proposition.

Proposition 8. (7 ,dg) and (TV,dg) are geodesic spaces.

Understanding how these strata interact with each other and how we can navigate
between them can shed some light on the structure of the space (7, dg).

4.3 Topology

Topology plays a central role when investigating the properties of a space. For instance,
being able to characterize or identify open, closed and in particular compact sets is
fundamental to work with real valued operators defined on such space.

Firstly we observe that the reversed triangle inequality in the case of generalized
dendrogram spaces has the following form.
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Proposition 9. Given T, T" generalized dendrograms, then:
IIT[) = 1T"]|| < de(T, T")

The following result presents some topological properties of the space 7 and its
subspaces T 7.

Theorem 4. For any N € N:
1. (T,dg) is a contractible geodesic space.
2. (T,dg) is not locally compact.
3. (TN,dg) is a locally compact, contractible geodesic space.

Theorem 4 states that our spaces are “without holes”, that is we can continuously
shrink the whole space onto the tree with one vertex and no edges and so 7 and 7%
are contractible. As predictable 7 has at every point issues with losing compactness
because of the growing dimension of the trees, issues which can be solved by setting
an upper bound on the dimension, which means working in 77 for some N. Thanks to
these results we can further characterize the subspaces 77, with the following results.

Theorem 5. (T, dg) is a complete metric space.

Completeness is a fundamental property, which if very important if one wants to
achieve some kind of compactness inside the space of interest. In fact there are many
sufficient conditions for compactness, when the completeness of a space is proven.

Proposition 10. The set ||T|| < C in (T, dg) is complete and totally bounded.

Since a metric space which is complete and totally bounded is compact, we have the
following Corollary which tells us that, from the compactness point of view, when we
bound the dimension of the trees we are not far away from the behaviour of R,

Corollary 4. The set ||T|| < C in (T",d) is compact.

As a consequence, whenever we can bound the norm of some merge trees and their
dimension, we know that we are moving inside a compact set.

4.4 Metric structure

When working outside linear spaces there are many definitions that must be reinter-
preted and generalized to work where no linear structure is available. In the case of
manifold, the most common way to do so is exploiting locally the linear structure of the
tangent space and to focus on the geodesic nature of straight lines in linear spaces. For
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@T b) T’

Figure 4.1: With the weights properly defined, it is clear that the tree T' can be mapped both in
the left and in the right subtrees of the root r1 with equal cost.

instance in Geodesic Principal Component analysis (Huckemann et al., 2010a), prin-
cipal components are replaced by geodesic minimizing the average distance from data
points and orthogonality if verified in the tangent space at the barycenter.

For this reasons we want to get a better understanding of the metric structure of the
tree space, with particular attention to its geodesic paths.

Proposition 11. For every T' € T, for every ¢, exists T" € T such that T and T" are
connected by multiple minimizing mappings and dg(T,T") < e.

For example consider the trees in Figure 2.5. Suppose w(A) = w(B) < ¢/2 and
w(A’") = w(C);thenboth M = {(B, D), (C,G), (A, A")}and M’ = {(A, D), (B, D), (C, A")}
are minimizing mappings with costs less than e. We can replicate this situation for any
leaf of any trees. The set of points with non-unique minimizing mappings (and so
geodesics) is therefore the whole space.

There are two reasons for this non uniqueness to arise:

e similarity between subtrees of the same tree;
e exchange of father-son relationships through the deletion of internal edges.

We can see in Figure 4.1 a more general example of non uniqueness because of
similar subtrees, and also in the proof of Proposition 11 we see this problem in action
between subtrees made by a branch each.

In Figure 4.2, on the other hand, we can see uniqueness being broken by topological
changes made with internal edges: if we need to change lengths of branches sometimes
it can be less expensive to make topological changes like deleting internal edges, and re-
growing them to swap children. When this kind of mapping is as expensive as adjusting
the children we have of course multiple mappings.

To hope to achieve some kind of general uniqueness for mappings we must therefore
prevent these things to happen.

Given a merge tree 7', we use/recall the following pieces of notation:

e the vertices with no children are called leaves (Lr);
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e vertices which are not leaves are called internal (Ir);
e for any vertex v € Vi, sub(v) is the subtree of 7" rooted in v;
o sub(T) = {sub(v)|v e Vr};

e let child(v) = {vy,...,v,} be the children of v, then sub;(v) = sub(v;) U (v;,v),
rooted in v;

o Sub(v) = {sub;(v)|v; € child(v)};
e dim(T) is the number of edges in the tree 7.

Using this notation, define:

. !
ko = ming rresuv), 21 dE (7", 7")

and similarly:

kT = minUEVT—LT kl}

Lastly let my = minyev,—r,w(v) and K = min{mr, kr}.

We want to prove that for trees with K > 0, if we don’t go too far, at least on
internal vertices the minimizing mappings are uniquely determined. But we need some
preliminary results and tools.

Using the partial ordering induced on the coupled points (seen in Section 2.7), any
mapping can be restricted to a subtree rooted in a point v which is neither deleted
nor ghosted: in fact if (v,v") € M, M € Mapp(T,T"), then restricts to Msup) €
Mapp(sub(v), sub(v')). If v has some children v;, consider sub;(v). Then M sends any
non deleted sub;(v) into one or more of sub;(v'); thus, upon adding the trivial subtree
(one vertex, no edges) to Sub(v) and Sub(v'), we can induce a multivalued function
between Sub(v) and Sub(w), which associates subtrees according to M and sends the
deleted subtrees into the trivial tree. Note that sub;(v) — {sub;(w), suby(w)} means
that there are deletions of internal edges in sub;(v) which allows two of its subtrees
to be matched one with sub;(w) and one suby(w). The others are deleted. So in the
previously defined multivalued function the associations we have are either one-to-one,
one-to-many and many-to-one. Thus we can make the multivalued function a bijective
function by pinching together set of subtrees at their roots.

For example, suppose {V,V’} — {WW}, then pinch together V, V" and form the tree

— —

VV' whichis sentin W; similarly if V, V', V" are deleted we map: {VV'V"} — {}.
We want to pinch as few merge trees as possible to make all the associations one-to-
one, so subtrees which are already mapped one to one are not pinched. For example

— —
if {V} — {W} and {V'} — {W’} we do not take { VV' } — { W'}, but keep the
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two single associations. This function is called: FE\Z’“}) : Sub(v) — Sub(w) where, with
an abuse of notation we identify Sub(v) and Sub(v’) with the sets of pinched subtrees
which turn the multivalued function into a function.

One obvious consequence is that the cost of a mapping M can be calculated subtree

by subtree using FE\ZT’TT'); so for instance if M is a geodesic mapping between 71" and

T, CoSt(M) = ZVESub(rT) dE(V, FS\CITWT/)(V))-

Lemma 4. Given a tree T, let Sub(rr) = {V4, ..., V,,}. Suppose it exists € > 0 such that
for every i # j, dp(V;,V;) > € and mingey, cost(vy) > €. Then, for {i, ..., i} and

(s gny < {12, n), if Vi, o Vi, # ViV, then:

N 7

dp(Viy, o Vil Vi Vi) > e

()

Using this Lemma we can start to build up some characterizations of the mappings
which parametrize geodesics for dg(T,T") < K.

Remark 17. In what follows sometimes we need to consider “sequences” of edges.
First notice that, given a tree structure T', being Vi partially ordered, then by Ep ~ Vip—
{rr}, also Er inherits a partial order structure. The sequences of edges we consider
are always sequences of adjacent ordered edges {ei, ..., e,}. It means that we have
e1 < ... < e,and that e; and e; 1 share a vertex. Sometimes, for the sake of simplicity,
we just refer to such sequences as sequences of adjacent edges, omitting the ordered
property. We may refer to one such sequence of edges as [v,v'], meaning a sequence
which starts in the vertex v and ends with the vertex v', with v < v'.

Corollary 5. Let dg(T,T") < Kr and M and M' minimizing mappings. We have
FE\ZT:TT/) _ FE\ZIT’TT/)
Lemma 5. Let dg(T,T") < Kt and M and M’ minimizing mappings. There cannot be
any edge (or sequence of edges) of T that goes from coupled to a single edge of T in
M, to deleted in M’ (or viceversa).

Moreover the deletions on T’ shared between M and M’, turn T’ to a tree, whose
representative without order two vertices has the same tree structure of I' (up to iso-
morphisms).

Using Lemma 5 we can prove the following Corollary, which must old otherwise
Lemma 5 is contradicted.

Corollary 6. Let dg(T,T") < Ky and M and M’ minimizing mappings and let w be
an internal vertex of T".

1. If sub(w) or subj(w) is deleted by M, then is deleted also by M'.
2. If after the deletions in M, w is of order 2, the same holds after the deletions in
M.
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N /N

@T (b) T
(¢) Deletion of internal ege (d) Deletion Result (e) Insertion

K

(f) Shrinking path

Figure 4.2: We see in the first line the two merge trees T and T, which admit a minimizing path
through deletion and insertion of an internal edge, and a minimizing path which just shrinks
the edges. The first path from T to T' is represented, from left to right, in the second line.
The third line represents the path made only by shrinkings.

Finally we can prove the following Theorem.

Theorem 6. If dg(T,T") < Kr, then there is a unique way to define a minimizing
mapping on internal vertices.

4.5 Frechét Means

In this section we take the next step in the study of the space (7, dg), focusing on the
Frechét means of a set of trees.

Frechét means are objects of particular interest in data analysis. They are defined
as the minimizers of operators which look for central points in the distribution of a
random variable. More formally, given X random variable with values in (M, dy)

103



Chapter 4. The Space of Merge Trees

metric space, a p—Frechét mean is defined as argmin, ,,Ex (dy(q, 7)) - if it exists.
Often this definition is given with p = 2 but, at this point we have no reasons to make
this choice. As generalization of the idea of “average”, or 0-dimensional summary of a
random variable, Frechét means are among the most used statistics and data analysis for
manifold valued data (Davis, 2008; Pennec, 2006) but not only (Calissano et al., 2020;
Turner et al., 2014), and are used as starting points to build more refined tools.

Proposition 12. Given T,. .., T, merge trees and p > 0; then exist at least one T such
that: -
T = argming Z dn(T,T;)

Thus, for any finite set of trees, we can minimize the function 7' — . d7, (T, T;),
obtaining a p-Frechét mean of the subset. We also make the following claim which is
still to be investigated.

Claim 1. Given Ty,. . ., T, merge trees, if T; € TV, then T € TV.

This claim is supported by the fact that 77 are geodesic spaces, and thus is reason-
able that we do not need to increase the dimension to find a Frechét mean.

4.6 Tangent spaces and geodesics decomposition

To try to get further insights into the metric structure of the space of merge trees we
want to setup some sort of vector calculus for this space. For differential manifolds vec-
tor calculus is defined by attaching to a point a linear space parametrizing the possible
velocities of curves going through that point. The linear structure of such space can
be exploited as a local approximation of the manifold to carry out some linear opera-
tions and then map the result back to the manifold. If we look at things the other way
round, tangent velocity vectors help understanding how the manifold behaves close to
the tangent point. And this is the perspective with which we develop a notion of tangent
space in the space of merge trees (7, dg): we try to parametrize the possible directions
which can be taken starting from a merge tree 7. In this way we hope to get a better
understanding of the local behaviour of the space (7, dg).

Throughout the remaining sections of the chapter we need to jump back and forth
between merge trees and merge trees identified up to order 2 vertices. To be more careful
with the notation, in this section we use T to indicate a merge tree and [T'] to indicate
its equivalence class up to order 2 vertices. Differently from the previous sections, we
are no more assuming 7' = 75.

We also make use of the following construction. Given a finite set A = {ay, ..., a,}
we can build a real vector space indexed by A, which is given by R? := {a; - k; +
.ot a, - kn]kl € R}. This means that a vector v € R4 has components v, indexed
by a € A. If the vector v has some other subscripts, like v;, we indicate its component
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using parenteses as follows: (v;),, a € A. Consider now A’ = A. Given v € R4
we can “restrict” it to A’, by selecting the components of v indexed by elements in A’
Vjar = vg,a€ A

Lastly, for the results in the following Sections, we do not report the proofs in Sec-
tion 4.8, but keep them in line, since we think that they help understanding the meaning
and the role of all the new definitions which are introduced.

4.6.1 Category of Edges and Interval Partitions

We consider the two following categories: Part([0,1]) and £. The first one is simply
given by the finite partitions of [0, 1], that is finite ordered sets of points 0 = v; < vy <

. < Upy1 = 1. This category is a poset with A < B if A < B. In this category
the coproduct is given by the union of two partitions. The category £ instead, is the
category obtained by considering the set of edges of finite tree-structures 7', with the
partial order induced by Er ~ Vi — {rr}. These sets are exactly the finite posets A
such that for every a € A, the set {a’ € A|a’ > a} is a totally ordered set. The arrows
in this category are monotone increasing, injective functions between posets. Being a
poset, A € £ can be seen as a category itself. Inside £ we consider the subcategory &,
made by the set of edges of tree structures without order two vertices, thatis A € £ such
that, for all @ € A, the set max{a’ € Ala’ < a} cannot be of cardinality 1. It is a full
subcategory of £.

4.6.2 Merge Trees as Functors

Given any tree structure 7' we can represent it with a functor F7r from the edge set Er,,
considered as a poset, to the category Part([0,1]) plus a function wy : Ep, — R,
which is just a function from Ep, to R.(, with no added properties. In fact, if we
consider a merge tree 7', every edge e € L, is split in a certain set of edges by the path
that goes from 75 to 7, which means that the interval [0, wr, (e)] is partitioned by 7". Up
to a scale factor, this means choosing a finite partition of [0, 1].

So, having fixed a function wr : Er, — R.q, any functor F' : E7, — Part([0,1])
identifies a merge tree equal up to order 2 vertices to 75: for each e € Ep,, the functor
uniquely identifies the merge tree which splits [0, wyz,(e)] using the partition F'(e) -
wr,(e) = {aywr,(e) = 0,a2wr,(€), ..., an1wr,(e) = wy,(e)}. Given a tree structure
T call Fr the associated functor. We can build an association in the other directions
for any F' : E — Part([0,1]) with E' € €. Given w : E — R., we can first identify
the unique tree structure (up to renaming of the vertices) identified by F, set w as the
weight function and then split the edges according to /'. We call such merge tree 7%,
omitting the reference to the weight function when there are no possible ambiguities.

We spend some time to better formalize the space of functors, which is going to be
fundamental for the next sections. We set D := {(F' : E — Part([0,1]),w : E —
R-) ’E e £}, with arrows induced by arrows in £:

f:(F:FE — Part([0,1]),w) - (G : E' — Part([0, 1]), w’)
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isanarrow f : E — E’in € such that F'(e) c G(f(e)) and w(e) = w'(e) forall e € E.
If F(e) = G(f(e)) then we indicate the arrow with f : F' — G. Composition follows
naturally by composing arrows between the sets of edges in .

The subcategory D, := {(F : E — Part([0,1]),w : E — R.)|E € &} is a full
subcategory of D.

Now we can formalize the aforementioned correspondences. We define F(7T') =
(Fr,wr) € Dy which transforms a merge tree into the couple functor-weight function;
viceversa S((F,wr)) = TF takes a couple (F,wr) € D and builds the associated
merge tree 7. Moreover let Uy : A — Part([0, 1]), being the canonical tree structure
on A € &, that is the functor such that Us(a) = {0, 1} for every a € A. Clearly
F(Ty) = (Ugy,, wr,) and S(F(T3)) ~ T. With this notation we can define C(T', wr) =
(Ug,,wr). Note that if " = S(Ujy) then Er ~ A.

We resorted to functors because they allow to easily switch between two kind of
representations of one merge tree 7: C(7T') is in some sense a canonical representation
because each edge is sent to {0, 1} and so there is no added information to the edge set,
from the functor; F(7') instead is a representation of 7" in terms of 75: it tells how do
we have to split each edge in 75 to obtain 7. Note that [1'] € T is in bijection with
{F : Ep, — Part([0,1])} x {wr,}.

We have the following isomorphisms which just depend on the vertex set chosen
when passing from functors to merge trees: SF(T') = T, SC(T') ~ T. Moreover, if
T =T, F(T)=C(T).

4.6.3 Functors parametrizing directions

When referring to elements of D or D, we sometimes omit the weight function, refer-
ring just to the functor, for notational convenience. For instance we refer to F' € D and
S(F) instead of (F,wpr) € D and S((F,wr)). A weight function named wp is always
going to be paired with a functor F' such that (F,wpg) € D.

Given (H : A — Part([0,1]),wy : A —> R.) € D we call:

D" = {(F, f)|F : A’ - Part([0,1]) e D, f : A= A’ inducing H — F}

The set D is given by all the functors which are defined on the same edge set
as H, up to isomorphism, and which contain the partitions given by H. In fact f :
A = A’ induces H — F if wy(a) = wr(f(a)) (and thus S(H); ~ S(F)) and
H(a) = F(f(a)). Note that, if ', G € D, then S(F) is equal to S(G) in 7. In
particular if H = F(T3) then D¥ contains [T'], represented via F(1"), T" € [T]. Note
that each F(7") can appear multiple times depending on the number of isomorphisms
between the set of edges. Moreover, consider (F,w) € D with S(F) = T given
H = F(Ty), then there is (H', f) € D such that S(H’) = T. H' is unique up to
isomorphism, while there can be multiple f.

As a consequence we have the following Lemma.
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Lemma 6. Given ' = C(T), F' = C(T"), if D D" # & then F ~ F' in D and so
D" = D,

Proof. Suppose F" : E — Part([0,1]) € DF \D*. Then E ~ E; ~ Ep. But
since F'(e) = {0,1} and F'(¢’) = {0,1} for e € Er and € € Ep respectively, then
F~F. [

We have an arrow in D between (F, f) and (F’, f’) when f'o f~!: A’ - A”isan
arrow in D. Given (F,w, ) € D, we can build (F”, w’, id) such that F’(a) = F(f(a))
forall a € A and w'(a) = w(f(a)) = wg(a). Clearly (F, f) ~ (F’,id). Thus often
we can give definitions using (F”, wy,id) and extend them naturally to (F,w, f) ~
(F',wg,id). Given (F,wy,id) and (G, wy,id) in D¥ we can define (F® G : A —
Part([0, 1]), wg, id) € D with the rule F ® G(e) = F(e) u G(e). Given F' € DY,
H : A — Part(|0,1]), a refinement of F is any functor F” € D* such that we have
F — F’, or in other words, up to isomorphism, F'(a) = F’(a) forevery a € A. We write
F < F'. This defines a partial order relationship. If /', G in D¥ then F,G < F® G
and Uy < F,G.

Now we can define

Dy = {(F,f:CS(H') — FS(F))|F e D and H' € D7)}

We try to make as explicit as possible the meaning of this definition.
First it is clear that Dy = D zg(s). Thus we can assume H ~ FS(H).
Consider (F' : E' — Part([0,1]),wr) € D and (H' : A’ — Part([0, 1]), wg, id) € DX,
Let FS(F) : E — Part([0, 1]) and CS(H') : A — Part([0, 1]).
An arrow [ : CS(H') — FS(F)is an arrow f : A — FE in & such that CS(H')(a) =
FS(F)(f(a)) = {0,1} and wesmry(a) = wrsry(f(a)) for every a € A. In other
words, upon choosing the most convenient functor representation, we are taking a merge
tree S(H), splitting some of its edges obtaining S(H’), and these edges can be embed-
ded into the merge tree S(F).
Note that, if H ~ CS(H), then D < Dy. In particular this holds for H = F(T3).

Proposition 13. An arrow f : CS(H) — FS(F) induces a unique arrow CS(f) :
CS(H) — F.

Proof. We have CS(H)(e) = FS(F)(f(e)) = {0,1} for any edge e in the edge set

of CS(H). Since the edge set of FS(F') is given by S(F'); and those edges are not

split by FS(F') Then we can find those edges also in the edge set of F, and since
SFS(F) ~ S(F), those edges are not split by F.
Thus we have an arrow CS(f) : CS(H) — F.

0

We close this section by defining arrows in Dy as arrows between functors inside
D¢, for some functor G.
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4.6.4 Pre-Tangent space and pre-exponential map

With a slight abuse of notation, we call Dr the set of functors D r(7,) and similarly we
used D7 for D7("2), With these pieces of notation we can make a first step towards the
definition of a tangent space.

Definition 21. Given [T'] € T, the pre-tangent space at [T'] is the following set:
pre-Tan7|(T) := {(v, F)|F € Dr,v e R}
where F' € Dy stands for the triplet
(F: E — Part([0,1]),wr : E > Reog, f: CS(H) — FS(F))
withCS(H) : E' — R.o, H € DT, and R°S™) stands for R¥'.
Proposition 14. Take (v, F') € pre-Tany((T). That is, an element:
(v, F : E — Part([0,1]),wp : E — Ry, f : CS(H) — FS(F))

with H € DT.

Consider CS(f) : CS(H) — F.

If ve + wr(e) < 0 for every e € Im(CS(f)) then we can induce a sequence of edits
onT = S(H) € [T).

Proof. LetT' = S(F).

By definition, for any e € E» we have CS(f)(e) € Ep with wza(e) = wy(e). If
wr(€e) + ve = 0 then we can induce the following edits on 7", obtaining a merge tree
T".

Starting from 7" we can edit the edges e € E5 via well defined shrinkings wy»(e) =
ws(e) + v (which can possibly result in wyv(e) = 0). Since CS(f) : E;7 — Ep is
injective and monotone increasing, we can insert in T the other edges of 7", deleting in
the end all the edges with zero valued weights to obtain a valid merge tree 7”. 0

With Proposition 14 we have a consistent way to go from the pre-tangent space, to
the space of merge trees. Thus we give the following definitions.

Definition 22. Given [T']| € T, define:
Uiy == {(v, F,CS(H) — FS(F)) € pre-Tanz(T) wsm)(e) +ve = 0 for e € Esy}

where Egmy is the edge set of the merge tree S(H).
The pre-exponential map at [T is the following function:

~

pre-exppy : Ui — T
with pre-expr)((v, F')) defined as in Proposition 14.
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Proposition 15. Consider [T'| € T. For every |[T"] € T there is (v, F) € ﬁm such that
pre-expyry((v, F)) € [T"].

—
Proof. Consider the merge tree 7”7 = TyT5 . Then H = F(T3) is such that H —

C(T"). The vector v € R is given with components v. = —wy(e) for every edge.
Then the edit path induced by (v,C(7")) is the deletion of all edges of 75, and the
insertion of all edges of T5,. O

Remark 18. The edit paths induced by the elements (v, I') € LNI[T] on the merge trees in
[T'] coincide with the set of edit paths which start from some T" € [T'| such that all the
edits can be applied simultaneously on T".

4.6.5 Splitting Sets

In our particular situation, we are defining tangent vectors for a space which is a quotient
space and thus at every point we have multiple representations of the same object. In
the previous sections we provided a first definition of tangent vectors which is strictly
bound to the chosen representation of a merge tree, through the choice of a functor F'.
We want to treat some of these representations as equivalent and thus we also need a
proper way to transport the vectors v between those representations.

Definition 23. The splitting set in R™ of a vector v € R" is the set V,m(v) = {v' €

R™| Y, v = 2 Vit
Note that V,,m(v) + V,,m(w) = V,m(v + w).

Definition 24. Consider F < F' in some DT. Let A = Esryand B = Egsry. By
construction A ¢ B. The unique edit path made of ghostings between S(F') and S(F)
(unique up to reordering the edits and up to isomorphisms of merge trees) induces a
unique correspondence between B and A. For every a € A there are a sequence of
edges by, ..., b, in B which get merged to the edge a along the edit path which turns I’
in F. Thus we set f : B — A such that f(b;) = a. Call B := f~(a). Then we define
a multivalued function Vi F' : R — R such that:

VeF'(v)={v e RF,’UfBa € Vi#B forall a € A}

Similarly, define the following linear function pk, : RP — RA:

(P F(0)a= D, v

beBa
The maps p, is a left inverse to V- F” as proven in the following lemma.

Lemma 7. Consider F' < F' in some D'. Let A = Esr) and B = Es(z and
[ : B — A the unique correspondence induced as before. Then p%, o VrF'(v) = v.
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Proof. For each a € A by definition we have:

Vo = (Vp)bepa = Z (vp) = Va
be B

for any v' € VpF'(v). N

The following proposition suggests the idea that p%, and V F’ are attempt to trans-
port weight functions inside a class of tree structures [T'], trying not to lose information.
The proof is straightforward.

Proposition 16. Consider F' < F’ in some DT. Let A = Egr) and B = Eg(r
and f : B — A the unique correspondence induced as before. Let vy € RY defined as
(vr)a = wr(a) and similarly v € RY defined as (vp), = wi(b). Then vy = pl, (vp)
and vp € VpF' (vp).

Finally, we prove that along with transporting vectors, we can also transport pertur-
bations of vectors preserving the sign of the single components.

Lemma 8. Consider {v;}}_, and {w;}7., sequences of positive numbers, with Y v; =
> w;. Then, given {v0;}I, such that v; < v, there is a sequence {W;}!", such that
W; < wjand Y, v; = Y, W;

Proof. If Y 0; < 0 then we can take w; = >, ; and w; = 0 for all other j.

Suppose then > 9; > 0. Since > v; < > v, there is K € N, K > 0, such that
Z;il w; < >, 0; and ZJK;T w; > > U; with the extreme case of K = m and },0; =
> v;. Then we can take w; = w; forall j = 1,..., K and Wx41 = D, v, — D, 0. O
4.6.6 Tangent space and exponential

Now we define a tangent space with the exponential map, by quotienting the pre-tangent
space identifying sets of equivalent directions.

Definition 25.
Tangr(7T) = pre-Tanyy(T)/ ~

where (v, F, f : CS(H) — FS(F)) ~ (v, F', f' : CS(H') — FS(F")) if
o FS(F)and FS(F') € Dy for some T'

e there is an isomorphism g : S(F)y — S(F')y which induces by restriction an
isomorphism g : S(H) — S(H');

e the map g which gives S(H) ~ S(H'), by changing the name of the edges, induces
amap g : RESUH) — RESU) sych that g'(v) = v
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4.6. Tangent spaces and geodesics decomposition

The fact that ~ is an equivalence relationship is clarified by the following propo-
sition. Here we just point that inside elements (v, F,CS(H) — FS(F)) in v €
Tan(r)(7), we have “fixed” - up to isomorphisms - a representation of H € Dy, and
thus the vectors v are all of the same dimension.

Proposition 17. For each v € Tanr(T), up to isomorphism, there exists (v, F,CS(H) —
FS(F)) € vwith F' = C(Ty) for some Ty, such that for every (v',CS(H') — FS(F")) €
v, FF < FS(F"). We call such (v, F') a canonical representation of v.

Proof. Since D' (D" = (¥ then there is 7" such that for all (v/, CS(H') — FS(F")) €
v, fS(F/) € DT/.

Let F' := C(Ty) ~ F(T3%) and consider (v/, f : CS(H') — FS(F')) € v. We
know that for any edge e € Esy, FS(F”)(e) = {0,1}. Since the edge set of FS(F”)
is exactly Epy, f : Esuy — Ery (which gives CS(H') — FS(F")) induces f' :
CS(H') — F. Recall that FS(F) ~ F.

In this way S(H’) identifies the exact same subtree (with the very same vertices) in
S(F)Q and S(F,)g

For any other (v”, f” : CS(H") — FS(F")) € v we have that the isomorphism
S(H') ~ S(H") induces an isomorphism CS(H') ~ CS(H"). Thus if we build f” :
CS(H") — F we obtain isomorphic elements in D.

So (v, F, f') is a canonical representation of v. O

The following proposition explains how the pre-exponential map behaves on the
equivalence classes just defined.

Proposition 18. The pre-exponential map is well defined on v € Ui = ﬁm / ~.

Proof. Consider (v, f : CS(H) — FS(F)) and (v, f' : CS(H') — FS(F')) in
v. First we know that S(H) ~ S(H') and thusup to isomorphisms, we can consider
H' = H. In this way the edit paths to obtain pre-exp,((v, F')) and pre-exp,((v', F”)),
can be considered starting from the same 7' = S(H) = S(H'). We also have v = v'.
Those edit paths can be split in two parts: one in which we apply on T the edits induced
by v, and the other in which there are all the insertions determined by F' and F’. We can
clearly start from the second part and obtain S(F') and S(F"), which, by hypothesis are
equal up to order two vertices. Then, inside those trees, we edit the edges corresponding
to S(H) with shrinking induced by the same vector v. Since CS(H) — C(S(F)a2),
ghosting and splittings to turn S(F) into S(F'), (and S(F") into S(F”)3) do not impact
S(H). Thus the final trees are equal up to order two vertices. [l

Now we can give the following definition.

Definition 26. Since pre-expyr) is well defined on equivalence classes of Z/N{[T] / ~, we
can define:

expr(v) := pre-expr((v, F))
with v € Uy and (v, F') canonical representation of v.
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Chapter 4. The Space of Merge Trees

Given the tangent structure and the exponential map, we can define a length notion
for tangent vectors.

Definition 27. Given v € Tany|(T) we define ||v|| = inf, r r.cs(m)—csryenl V] +
IS(E)][ = [ISCH)]].

Note that for any H € D7, since S(H) € [T, then ||S(H)|| = ||T||. The same
clearly holds also for F, I’ € D", Moreover CS(H) ~ FS(F) implies ||S(H)|| <
[|S(F)||. Thus, ||v][1 + [|S(F)|| — ||S(H)|| is actually constant on the representatives
of v, and we immediately obtain the following result.

Lemma 9. For each v € Tanyy(T), let (v, F, f) be any representative of v. Then
Il = ol + IS = [T

We start investigating the continuity properties of the exponential map with respect
to this notion of length in the tangent space.

Proposition 19. For every v € Uy we have: dp(T, expr(v)) < ||v|].

Proof. Consider (v, F, f : CS(H) ~— F) € v. By definition exp; () is obtained via a
sequence of edits each with cost equal to the absolute value of the components of v or
deletions of edges in /" which are not in S(H). Thus ||v|| is exactly the cost of the edit
path induced by (v, F), f) in I'(T, exp,(v)). O

In some special cases the exponential map preserves the length of vectors.

Proposition 20. For every v € Tangr(T) such that its canonical representation (v, F, f)
has v, = 0 for all e, we have dg (T, expr(v)) = ||V||.

Proof. The merge tree 7" = exp;(v) is obtained from 7" with with an edit path. If
we take 75 and (v, F), f) the canonical representation of v. Any edge e in T} is either
obtained via shrinking by v an edge of T, or by inserting an edge of weight wry (e).
Thus:

Z wry(e) = Z wr, (€)+ve+ Z wry(e) = Z wr,(e)+ Z wry(e)

GEETé eef(Er,) eeE‘Té —f(ET,) eef(ET,) eeETé

Which implies |||T| — ||T"||| = [|v|| < dg(T,T").

4.6.7 Linear Structure

The tangent space at a point [7] is very complicated and the directions that can be taken
starting from [7'] are so different that it is not easy to define a linear structure to combine
them. We start by considering some subsets of the tangent space, whose direction go
parallel to TV, with N = dim(T) := dim(T3).
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4.6. Tangent spaces and geodesics decomposition

Definition 28. For every [T| we can consider the following subset of the tangent space:
Tanyr(T)! = {(v,F, f : CS(H) — FS(F))|H,F € Dy}/ ~

Similarly we call L{[”T] = U N Tanr (T)||-

Note that, since two elements (v, ) and (v/, F”) are equivalent with respect to ~
only if FS(F) and FS(F") € Dy for some 1", then Tan7)(7)! < Tanry(7). That
is, the equivalence classes in Tanr (7)) are compatible with the ones of Tan7 (7).
Thus U}y, is well defined.

Moreover Tan7((7)! can be strongly characterized. Since the edge set of FS(F)
is Er,,, this must hold also for CS(H). In fact if £ is the edge set of CS(H ), we have
Er, ¢ E < Ep,. Thus we have H ~ F' ~ C(T5). In turns this implies that, up to
isomorphism, Tany)(7)! can be represented by couples (v, C(T3)) with v € R, We
indicate this fact with the notation R ~ Tanr(7)!.

This notation allows a local linear structure to be recovered in the space of merge
trees, as we formalize in the following lemma.

Lemma 10. Consider [T| with T = Ty, and v € Ur = RT ~ Tany(T)l. Let
vr := (wr,(€))eeny,. Then the merge tree expr)(v) can be identified with the vector
v + V.

Consequently we have expyr(Ur) ~ Ur + vp = RL, where R is the set of
vectors (Ve)ec i, Such that v, = 0.

Proof. Starting from 7', we obtain 7' + v = expy(v) by editing every edge e € Er
with v, such that wr,(e) = wr(e) + v.. Therefore the vector v" = v + v can be seen
as the set of weights on the set of edges Ep, with possibly zero valued weights. The
merge tree 1"+ v is the unique merge tree up to isomorphism obtained by deleting from
Er the edges with v, = 0 and with the other weights given by the support of v’ (its non
zero components). O]

However, as we will point out with some other results, this linear structure is not in
general compatible with the metric dg: straight lines between trees are not geodesics,
in general.

In a similar fashion, we define a linear structure on Tan[T](’T)H. Since there is
always the choice of some vertex set involved, for us it is enough to define a linear
structure up to isomorphism of functors.

Definition 29. Having fixed a representation of T, the linear structure on isomorphism
classes of Tanr(T)! is given by the one of RP72.

Moreover, since ||T'|| = ||H|| for all (v, F, f : CS(H) — FS(F')) with H, F' € Dr,
we have ||v|| = ||v||1, which induces a proper norm on Tanz(7)l.
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Proposition 21. Consider [T] € TV, with N = dim(Ty), and v € Z/{[HT]. Then T =
expr(v) € TV and there is a map, induced by v, p : Tany(T) — Tany(T),
called parallel transport map.

Moreover we can induce a linear map: pl : Tanr(T)! — Tanqz(T)l.

Proof. Since v € Tanz|(T)! can only shrink or delete edges of T5, clearly [T"] =
expr(v) e TV,

Consider (v, Ty, id : C(T3) — C(T3)) canonical representation of v and (v', F”, f’ :
CS(H') — F’) canonical representation of v/ € Tan(7), with C(T3) < H'. We have
g : Epw — Erp, injective map in £ and thus we can consider H, |’ o(Epr)” In fact we have:

Er % Ep, 2 Part([0,1])
In order to obtain the following map in D:
CS(H‘/Q(ET/)) — CS(H/) — F/

we need to take care of the weight functions, which must take into account that we
moved from [T] to [T"]. Clearly we have the following injective maps between edge
sets:

Es, g, ) = Esny = Esw)

Call f: ES(H\/g(E ) Es(ry this composition.
TI

We modify the weight functions using wy». The functor H |’ o(Er) is coupled with

the function wy» : g(FEr) — R.g defined as wy~(g(e)) = wy(e). Now that we have
a proper couple (H(Q(ET/)), wpyr), which we refer to as H”, as opposed to H(Q(ET/) =
(Hy(p,,) Warlg(E,)), and we can consider the merge tree S(H"). Note that C(T3) <
H".

To change wps and obtain wj, we must be very careful. For any e € Egp) —

f'(Es(nry), we define wh,(e) = wp(e). For any edge in e € f(ES(H\/g(ET,))) we

set wi(e) = wsun(f~'(e)). The remaining edges are the ones in f'(Es) —
J(Es H\IQ(ET/)))’ which correspond to the edges which are obtained by splitting edges
in Er, which have already been deleted to obtain 7”. For such edges we set w), () =
max{0, v.}. Lastly, we call I = (F',w',), which may require some deletions to re-
move edges e with w’, (e) = 0.

In this way we obtain:

f// . CS(H”) NN F//

arrow in D.

Similarly, from v/ € R we can obtain by restriction the vector v{,g o) €
9(Empr
eS|

R Hlorn) by selecting the components v/, such that e lies in the image of CS(H o ET/)) —
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4.6. Tangent spaces and geodesics decomposition

CS(H'). Since the edge set of H” and H(Q(ET/) is the same we obtain U‘/CS(H\/g(ET/)) =

Vs € RS, We call this vector v”.
Thus we define p((v/, F', f')) :== (v", F", f" : CS(H") — F").
The tangent vector p((v', F’, f')) is a canonical representation of an element in
Tanr (7).
Note that p in general does not preserve the lenght of tangent vectors.

b F = S W S weee 5 ——
eeIm(f") GEES(F’)_f/(ES(H’)) ee'f/(ES(Hl))_f(ES(H\/g(ET,)))

So any time v, < 0 for some e € f'(Es)) — f(ES(H\'ng,

))) the lenght of vectors
changes.
Thus if v, > 0foralle € f'(Escrn)—f (Esqy,,, ) [lo(' F O =11 F -
Now we turn to pl. Suppose (v, Ty, id : C(Ty) — C(T3)) such that v € Uy, ~ L{[”T],
and (v', Ty, id : C(Ty) — C(T3)) represented by v' € RF ~ Tany(T)!. Starting
from Tj, we can edit it obtaining 7" = expy(v) whose set of edges is £, built as
follows. Take vy € R”™:, with components (vr). = wr,(e). Then £, is the sete € Er,
such that (vr)e — ve > 0.
Fix a representation R ~ Tanr (7). Consider H = C(T3) and H' = C(T");

H < H'. If H' is not isomorphic to H, then E;IZ ¢ & and, of course, v|’E+ ¢ RY. Thus
T

2
the solution is to consider H, and transport the vector v" ot from RCSH) to R with
Ty

H
P
) ) E. .
Putting all the pieces together the map pll : R — R is defined as pll(v') =
pg/ (v" B ). This map is linear and, in general, it does not preserve the norm of vectors.
2

O

Remark 19. The fact that p does not preserve the lenght of all tangent vectors, suggests
that we could tweak the tangent space definition. By “enlarging” the set of tangent
vectors, allowing also “negative” values, we could avoid taking max{0,v.} (using the
notation of the proof) to obtain positive weights, and simply take v.. This may result in
a more natural definition of p.

It is clear that pl it is an isomorphism of vector spaces any time dim(exp,(v)) =
dim(T), that is Ej; = Er, (and so H = H’), but when we lose for instance one
dimension and in some sense we reach the border of 7V — TN~1 also the parallel
tangent space drops one dimension. Thus pl is no more injective. We further investigate
the properties of such maps with a series of results.

Proposition 22. Consider [T] € TV, with N = dim(T3), v € Tang(T)! and T" =
expr(v)).
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Then induce the map: pl : Tangr(T)! — Tanq(T)I.
We can build at least one linear map V' : Tan[T/](T)” — Tan|p () such that
oWl =id
pll o 1d.

Proof. As in the previous proposition we fix a representation of 75 along with the corre-
spondence R”% ~ Tanz(7)!l. Let v represent v and, as before, obtain 7" = exp(v)

whose set of edges is E,. Thus £, < Ep, and we fix also R ~ Tanr (7).
Let H = C(T3) and H' = C(T"); H < H'. Then pll : RF2 — R is defined as
AI(W) = Pty )
2

Lets call ¢ : Efj — Erp, and consider Vi H' : R” — R, Given v € R, we take
v' € Vg H'(v) and extend it to 0 € R”™: by setting 0;) = v, foralle € Ef, and 0 = 0
forall ¢’ € Ep, — EJ,.
Finally, the map VI : R”% — RP% is defined as V/ (v) := 7.
This map depends on the choice of v' € Vz H'(v) and is well defined up to isomorphism
classes in Tany7)(7)!l. For us the choice of v € VH'(v) is irrelevant, so we indicate
with V! any map obtained with a choice of ¢’ for any v.
Lastly, we have: pll o VI (v) = pl (3) = pZ, @|E;2) = pi,(v') = v.

[

Remark 20. For notational convenience, in what follows we sometimes use the follow-
ing notation: if T" = expypy(v) we say T' =T + v.

Having established a normed space structure in Tan|z, (7)) we can investigate the
continuity properties of the exponential map. We have already verified that such map
is continuous on “lines going through the origin” of the tangent space, in the sense
that dg(7T,T + v) < ||v||, but now we obtain a stronger continuity result, which only
holds for Z/{[HT]. Before doing so, the following lemma tells us that the parallel transport

previously defined is compatible with the linear structure induced by the representation
RE7:,

Lemma 11. Consider [f] e T. Suppose T = Ty and fix a representation RT ~
Let T = expyp(v) and T" = expyz (V). Consider v and v' representing respec-

tively v and V' in RT. Then T + p(v' —v) =T". Inparticular T + p(—v) = T.

Proof. Let vz € RT be the vector with (v:). = ws(e). The merge tree T can be

identified with v; + v. We call E;CQ its support (components with positive values).
Consider the vector v’ — v. Since v/, v € Ug,, then v,, v, > ws(e) for all e € Er,.

Thus for any e ¢ E;EQ we have v, = —ws(e), and so v, — v, > 0. In other words the

A~

parallel transport of v — v from the tangent in [7'] to the tangent in [T'], leaves v/ — v
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unchanged, since the components (v — v’ )| Ef, are left as they are, but since v, — v, = 0
2
fore ¢ E;CZ also the others are unchanged.

Let v+ be the vector in R such that (v5)e = ws(e). Then T can be identified with
the vector v2 +v. Thus T+ p(v' —v) becomes the vector v4 + v+ v’ — v which identifies
T'. The case v" = 0 holds the particular case p(—v). O

With the previous lemma we easily obtain the continuity of the exponential map
when restricted to Ur,.

Proposition 23. Consider [f] e T. Suppose T = Ty and fix a representation RT ~
Let T = expyy(v) and T" = expyz (V). Consider v and v' representing respec-

tively v and v/ in RT, then de(T,T") < |jlv —1||.

Proof. We apply Lemma 11 and since p preserves the lenght of v — v, we conclude
with Proposition 19. [

4.6.8 Geodesics Decomposition

In this section we develop some decomposition properties for geodesics in the merge
trees space, parametrized by mappings. The ideal situation would be to retrieve some
sort of Pythagora’s Theorem to decompose ‘““variance” between merge trees. Since our
metric space is much closer to the Manhattan norm || - ||;, compared to the one induced
by the standard scalar product in R”, we do not expect an equally strong result, but still
we are able to retrieve some useful decomposition properties using tangent spaces.
Before the next proposition we recall some pieces of notation used to introduce
mappings (see Chapter 2). Consider 7', 7" € T and M € Mapp(T,T"). Then M

. . Yg9Vd T , (731 O’Ygl )t ,
parametrizes edit paths of the form T' —— T, = T}, T". Where v, 0 7q

is a path given by deletions and ghostings on 7', then with 77" we apply some shrinkages
on 7', and lastly we split and insert edges with (ygT/ e 75’)_1 to obtain 7”.
Now we start establishing relationships between mappings and tangent vectors.

Definition 30. Consider [T'], [T'| € T and M € Mapp(T3,T5).

A couple of vectors vp € Tanyy(T) and vy € Tang(T) such that
expr)(vr) = exppy(vrr) and dp(T,T") = ||vr|| + |[vr|| is called a tangent geodesic
decomposition.
A tangent geodesic decomposition, vy and vy, such that vy € Tan|p ('T)H and vy €
Tanexp,.(vr)] (T is called parallel tangent geodesic decomposition.
Moreover; if the edits induced by vy and vy are contained in a minimizing mapping

M € Mapp(T,T') then those same vectors form a (parallel) tangent decomposition of
M.
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Proposition 24. Given vy, vy tangent geodesic decomposition, we have dg(T,T +
vr) = |zl and dg(T', T + vpr) = v

Proof. We know from previous results that dg(7,T + vr) < ||vr|| and dg(T",T" +
vr) < ||lvg||. Moreover, by hypothesis we have T'+ vy = T' + vy, Suppose dp (T, T +
I/T) < ||VT|| Then dE(T, T/) < dE(T/, T + VT/) + dE(T,T + VT) < ||VT|| + ||VT/|| =
dg(T,T"), which is a contradiction. ]

Proposition 25. Consider [T'], [T'] € T and M € Mapp(Tz, Ty).

Then we can find a parallel tangent geodesic decomposition of M, called V# and
1/4,, such that V¥ e Tang(T)! and V%, e Tang(T)l, with T + Vl} = Ty, and
T + ), =T},

Proof. By selecting the deletions of the form (D,v') € M, we obtain vector yéL, €

Tangr(7T)!! such that expT,(yl,) = T},. Then we observe that there is a vector v €

Tan7)(7)!, obtained in a similar fashion, such that exp;(v) = Ty. The shrinkings
contained in the mapping then induce v/ € Tanyr,,;(7T)! such that exp,,, (V') = T},.
Let pll : Tany(T)! - Tangr,,;(7)! induced by v.

We can consider a map V! : Tan[TM]('T)H — Tan[T](T)” such that pll o VI = id.

We claim that 1/9 := v + VI (/) is such that expT(Vllp) = T},. Let v and v’ representa-

tions in R”2 of v and V(1) respectively. Note that, by construction, the supports of v
and v’ do not intersect: v only delete edges and v" only shrinks edges in 7.
Then, for any edge e € E7, which is deleted by v, we have v, = —wr,(e). For any other
edge we shrink it by v/. Once we do all the deletions in v, we obtain 7),;. We are left to
apply the edits induced by v’. However, editing T, with those edits is equal to editing
it with pll(VI(v')) = o/, that is exp,, (V) = T},

The result about the costs follows immediately. [

Thus for any couple of trees [T] and [7”] in T, we can use a minimizing mapping
to find a geodesic which can be decomposed into two parts: one parallel to [T'] and the
second parallel to [7”]. These two parts are also geodesics on their own, as pointed out
by Proposition 24.

We complement Proposition 24 with the following propositions.

Proposition 26. If dg (T, exp,(v)) = ||v||, then for any V' and V" such thatv = v' + 1"
and ||v|| = |[V/||+||"]], we have dp(T', expr(v')) = ||V'|| and dg(expr(v), expr(v")) =
[l

Proof. Suppose that dg (T, exp, (V') < [|V/||. Then ||v]| = ||V||+]||V"|| > de(T, expy(V'))+
|V"|| > dg(T,expy(v)). Absurd. Similarly we prove dg(exp,(v),expp(v")) =
[1V7]]- O
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Proposition 27. If dg(T, expy(v)) = ||v|| then expy(A\v)) for X € [0, 1] is an always
minimizing geodesic.

Proof. Since A € [0, 1], from v = Av + (1 — A\)v we have ||[v|| = Al|[v|| + (1 = A)||V|]
and thus the result follows from the previous proposition. [

We propose one last definition, which is yet to be investigated, but we think that can
play an important role when working in tangent spaces since, from the point of view
of the tangent point, allows to travel parallel to the tangent point for as much length
as possible. Thus, for instance, we can capture as much as possible of the variability
between two merge trees staying in the parallel tangent space.

Definition 31. A T-maximal (parallel) tangent geodesic decomposition is a (parallel)
decomposition vij* and Vi such that ||v|| = ||vr|| for all other (parallel) decomposi-
tions vt and V.

Claim 2. The decomposition of a minimizing mapping M found as in Proposition 25 is
a T'-maximal parallel geodesic decomposition.

4.7 Frechét Mean Approximation

We conclude this chapter by employing all the machinery defined in the previous sec-
tions to build an iterative variational algorithm to approximate a Frechét Mean of a finite
set of merge trees. The main idea behind the algorithm is to try to exploit the continu-
ity of the exponential map to solve some optimization problem in a tangent space and
then map the results back to the space of merge trees. The followed approach and the
final result are not far from the algorithm proposed by Pennec (2006) exploiting results
obtained by Karcher (1977).

Consider a set of merge trees {[7;]}? ,; consider a merge tree [T'] € TV and T = Tb.
For all 4, to lighten the notation, we call v; and v, a parallel decomposition of a M;
minimizing mapping between 7" and 7;. Thus we can write 7" + v; — v/, which is to be
interpreted as (T + v;) + p(—;), with p : Tanyq(T)! — Tangg, (7). Recall that
we have cost(M;) = ||v;|| + [|V/]]. Thus let Y, cost(M;) = >, ||wi]| + ||v}]|. If we call
T! = T + v; we can look for:

v =argmin ) (dg(T + v, T) + [V < D (Il + ll])?

VEU, [HT] 7 7

Define vy := (wr(e))eer, and consider v; + vy representations of 77 in RZ (and
thus v; representation of v; € Up,). Then we can consider the following optimization
problem:

UEUT

V= argminZ(HUT + v — (v +op)|| + [[¥])P
i
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V= argminZ(HU — || + [|[4]])
v i

Which is a constrained minimization problem in RP7: . For instance, with p=1,we
obtain:
v = argminZ [lv — vl
veUrp i
and thus ? is given by the median of v; on each component.
Recall that, by previous results, dg(T + 0, T + v;) < ||0 — vy]].
Suppose we obtain a minimizer v; the we have a merge tree T = T + 9 such that:

2 du(T, T +dp(T] T < Y (o=ul [+ < Y (Wl Il = ZdE(T,E)p

(2 3 3

and so: ~
D dp(T, T)" < dp(T, T))

Note thatif > (||o—v;||+||v; )" < X5;(||vil|+]|¥]])? then actually >, dE(f, TP <
This can be considered a step in an iterative procedure to approximate a Frechét Mean
of {[T}]}. Suppose we are at the k—th iteration. Then starting from 7" what we do is:

1. calculate the mappings M = dg(Ty, T;);

k

. calculate the decompositions of Mik, ~ and 1/;’“, using V!l as in Proposition 25;

. “align the trees ” to obtain v, the representations of v in R

I

2
3

4. solve = argmin, 3, (||v — vf[| +||v;*]|)?
5. obtain T}, = T}, + ©;

Of course if the vectors v/ in the decomposition of the mappings between 7T}, and T;
are given by —0 + vf‘l we are in a fixed point of the algorithm.

We close the chapter with a series of claims regarding this approximation procedure,
which are going to be investigated by future works.

Claim 3. If'T}, = T}, we are almost surely (wrt the Lebesgue measure in the tangent
space) in a local minimum of the functional T — ) . dg(T;,T)?.

Claim 4. The algorithm converges in a finite number of steps.

Claim 5. The algorithm converges faster if Ti.-maximal parallel decompositions of map-
pings M; are employed at every iteration.

Claim 6. Upon extending the correspondence RFm2 ~ Tan[T](T)”, Ty.-maximal de-
compositions of mappings M; can be employed at every iteration, further enhancing the
convergence speed of the algorithm.
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Note that we are moving T}, only parallel to 77, that is, dim(Ty) < dim(Tj_,).
Trying the algorithm for Ty € 77 for big enough N and different weights initializations
should bear good approximations.

4.8 Proofs

Proof of Theorem 4.

1. given A € [0,1] and 7" € T we define A - T' to be the tree obtained by shrinking
each edge of T" by a factor of A i.e. if w’ is the weight function of A - T', we have
w'(v) = X w(v).

Now consider M € Mapp(T,T"). We call M, the same mapping but inside
Mapp(X - T, X -T"). Since we can take A outside the cost of all the edits, then
cost(My) = X - cost(M). In other words dg(A - T, A -T") < X -dg(T,T') <
de(T,T").

This of course implies that F' : [0,1] x T — T, such that F'(¢t,7) = t - T is
continuous, and so 7 is contractible.

2. given any tree 7' and any € > 0 we build the following Cauchy sequence: let
Ty = 1" and we obtain the tree 7;, by attaching to a leaf of 7,,_; a pair of edges,

each with length 5.

Suppose that exists 7" such that T,, — T".

We know #V, — o0.

Let M,, € Mapp(T,,,T") minimizing mapping. We know cost(M,,) — 0. We call
C, the elements of V. paired with elements of V» by M,,.

We know #C,, < K = dim(T"). We know that all the vertices in V;, — Vi have
one sibling since they are added as couples. This means that, even if we take away
K vertices, at least one out of every pair of the remaining siblings will be deleted
once dim(T,) > dim(T"). We indicate the deleted vertices of V,, with D,,.

Of course cost(M,,) = cost(C,,) + cost(D,,) and so cost(D,,) — 0.

But cost(D,,) > ¢ - £ 3% 5+ and so it does not go to zero.

This shows that C' = B.(T) is not compact. In fact {7,,} < C is a Cauchy
sequence but it is not converging.

3. We just need to prove local compactness and we do so via sequential compactness.

Consider T € TV and {T,} = B.(T) with ¢ < min,ey,.cost(vy).

If we consider an edge [ = (v,v’) in T, along the sequence T,, we know that [ will
never get wholly deleted. It might be split, shrunk but it will never disappear.
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So we fix a sequence of geodesic mappings M,, such that M,, € Mapp(T,T,,). For
any edge [ = (v,?’) in T, with v < v', we consider the set E!, = {e*} such that
ek e M, edits the edge [. With that we mean: shrinkings of /, splittings inserting
points w with v < w < v’ (note that these appear only after the shrinkings),
insertion of edges in points w with v < w < v'. Of course for each n, we might
have el, €2,... acting on the same edge. While there can be at most one shrinking
on [ for each n, there can be multiple insertions or splittings; of course this number
is uniformly bounded because of the dimension constraints.

For a fixed n we have a natural order between splittings, given by the height at
which the new point is inserted, and a similarly induced partial ordering between
insertions. Insertion are comparable with respect to this partial order if they hap-
pen at different heights. We fix a random order on insertions happening at the
same vertex so that all insertions are completely ordered. For a fixed [ we parti-
tion these edits into Sh™, S}’ and [, ",7k, which, for each n, collects the elements in
E! which are respectively the shrinking, the k-th splitting and the k-th insertion
at the k’-th inserted vertex. One can set k' = 0 being the index of v, and ¥’ = —1
being the index of v'.

We know that for each edge I:

e Sh = u,Sh™ is at most countable, and the sequence given by the different
weights of [ obtained through the shrinkings, is a sequence in [L — ¢, L + ¢],
with L the original length of [. Then we can extract a converging subse-
quence.

e S, = uU,S} is at most countable, then the ratio of the distance in height
between v and the splitting point, over the length of [ (after the shrinking of
the n-th mapping) form a sequence in [0, 1]. So we can extract a converging
subsequence in [0,1]. In other words we can find a subsequence of edits
which converges to a certain splitting.

o [, = Uyl}, . 1s at most countable, then the insertions at v, form a sequence
in [0, L], and the length of the inserted edges form a sequence in [0, ¢]. So
we can extract a converging subsequence.

If some of the sets defined above are not countable we discard from the sequence
the indexes n which appear in the collection of edit, being it Sh, Sy, or I /. Note
that, by the dimension bounds, we have a finite number of such sets, for a finite
number of edges.

Thus, for every edge [, we proceed in this way:

(a) since Sh is countable we extract a converging subsequence of shrinkings.

(b) starting from k£ = 1, from the subsequence just obtained we extract a con-
verging subsequence of splitting locations. Starting from this sequence we
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repeat the extraction procedure for £ = 2, then recursively till we reach k
such that Sj, is empty. Again if, for some k, Sy, is finite, we simply discard
elements of the subsequence appearing in Sj.

(c) lastly, from the last set if indexes we obtained, we extract from I, a con-
verging subsequence of insertions for every k and k’; working on & and £’ as
in the previous point. In a finite number of steps we reach I, ; such that for

all ¥ > & and k > /k\:, Iy = .

Given any ordering on the edges, we recursively apply this for every /.

Thus, taking for every edge and for a fixed n the edits in Sh" Uy Sy Upr g It
along the final subsequence of merge trees, we obtain a sequence of mappings
N,,, defined on T, each contained in M,,. Let call ST,, the tree obtained from T’
with the edits in N,,. Then clearly N,, € Mapp(T, ST,). Moreover, T,, can be
obtained from S7T,, with the edits in M,, — N,,, which are only insertions.

By construction, any edit in [V, is part of a converging sequence of edits. We call
N the mapping obtained with the limit of the edits of N,. Let ST be the tree
obtained from 7" with N. We have ST, — ST In fact, consider one edge | € Er.
Take for instance the sequence of shrinkings in Sh = {ey,...,e,} parametrized
such that wgr, (I) = e,. For any fixed € and for n big enough we know |e,, —
en+1| < €. Thus |wsy, (1) — wsr,,, ()] < € is a shrinking with cost less then
e. For the same edge [ there are at most N splittings, each edit splits [ in Fgp,
at a certain height. The difference in heights between splittings in S}’ and S,’j“
is going to zero, and thus we can again choose n big enough so that the k—th
splitting of ST}, can be turned in the k—th splitting of ST, 4, for all k, with cost
less than e.

The same reasoning can be done on the weights of the insertions. Thus we can
go from ST, to ST, with a finite set of edits, with cost less that e and whose
number is uniformly bound. For instance we know that on every tree we can have
at most N shrinkings, N ghostings, and N insertions. Thus,for every e, there is n
big enough such that dg (ST, ST, +1) < 3Ne.

Working always with the subsequence obtained in the previous steps, we take each
M, and we substitute each edit in N,, ¢ M,, with its limit V.

We can obtain a new sequence of trees 7, and mappings M, € Mapp(ST,T)) in
this way:
e T is obtained from 7, taking the limit on S7,, — ST.

e M is the mapping given by the identity on the subtree S7" < 7, and the
edits in M,, — N,,, which, as already noted, are only insertions.

We know that, since cost(M,, — N,,) < cost(M,,) < &,{T)} < B:(ST); of course
we do not know if the relationship ¢ < min,ey,.cost(vy) holds also for ST, but
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nevertheless we know by construction that on S7" there are no more shrinking and
deletions to be done by any M.

So we can do the same steps performed up to now on this other sequence, obtain-
ing a subsequence of {7} with subtrees ST < T, such that ST/ — ST’ and
with mappings N| € Mapp(ST,,ST"), N} < M. If N| = M) then ST, =
and viceversa.

By construction idsr < M, where with idgr we mean a mapping which doesn’t
delete, ghost or change weight to any vertex of S7'; idsr is equal to N/, iff Sh, Sk
and I ;, are empty for all the edges of 7}, , and so T, = ST'; otherwise idsr & N;,.
This means that there exists a limit for the edits in N,, U (N, — idsy) < M,, and
so a limit for a sequence of trees S.ST,,, T,, obtained from SST;, with insertions,
with Eggr,, which is either strictly bigger than Egr, or equal to Egr, = Ep,

Being the number of edges in 7}, uniformly bound, in a finite number of steps we
can extract a converging subsequence of {T,,}.

|
Proof of Theorem 5.

Thus, {||7,||} is a Cauchy sequence and thus, it converges in R. In other Words,
|7, = C. If C = 0 then T,, — 0, the tree with one vertex and no edges. There-
fore, we can suppose C' > 0.

Define €(T) := mincp, cost(eg). In the proof of Theorem 4 we show that B,.(T,,) is
compact for every r < €(T,,). We know {¢(7},)} is a bounded sequence in R and thus,
up to taking a subsequence, it converges. If e(T ) — ¢ > 0 then, the sequence {7},} is
definitely in a compact ball centered in some Tm, obtalned from 7, by p0551b1y raising
the weight of its maximal edges, so that €(T},) < €(T.,,) and d(T, Tp) < €(T},). Thus
{T} converges.

Suppose then ¢(7},) — 0. For all n, take T},, and obtain 7! by deleting argmin,_ By, COSt(€a).
By construction we know d(7T},, 7)) — 0. Thus if {7} converges, also {T,,} converges.
We repeat the same reasoning as above, considering {¢(7,)}; if €(T}) — g > 0 we are
done, otherwise we take {T''} and obtain {7?} removing the smallest edge and repeat
again the procedure. Since #L7, < N, weknow #E71 < N—landso #L;; < N—j
etc. Since T} — C, 0 < #E,; and thus in a finite number of step we obtain {7} which
converges and so does {7}, }.
|

Proof of Proposition 10.

Completeness is easily obtained because, given a Cauchy sequence {7,,} with dim/(7T,,) <
N and ||T,|| < C, then by Theorem 5 and Proposition 9 we have: 7,, — 7T and
Tl = 1T < C.
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Now we prove the second statement of the proposition. For a fixed N we only have
a finite number of available tree structures (without order two vertices). The weight
of every edge in such tree structures is bound to be in (0,C]. Fix ¢ > 0 and take a
sequence of numbers 0 = a; < ... < ap; = C such that a; ;1 —a; < £/N. Let Consider
w; = (ai+1 + az)/2

For each of the available tree structures, take all possible combinations of weights
wy, ..., wy in the edges. For instance, if we consider the tree structure 7" with just two
vertices a < b = rr and one edge e = (a, b); then we have N possible merge trees given
by wr(e) = w;. When we have three vertices and two edges E7 = {e, e’} we need to
take all the combinations wr(e) = w; and wy(€e’) = w; and so on and so forth. We call
this finite set of merge trees .A..

Take now a merge tree 7" with dim(7T) < N and ||T|| < C. There is at least one
tree 7" € A. and such that there is g : Vp — Vv isomorphism of tree structures with
lwr(e) —wr(g(e))| < e/N. Which implies dg(T,1") < e.

|

Proof of Proposition 11.

It is enough to attach to any of the leaves of T a pair of equal branches of length less
than /2 each. Deleting both edges or deleting one, ghosting the vertex and shrinking
the other are both geodesics.

[
Proof of Lemma 4.

Consider M minimizing mapping for dE(f/il, e V;;, f/jl, e V};) we will call r and
r’ their roots. /

Consider Fg@r ). If M does not contain deletions, for any couple (V, FS\T )(V)) we
have V' = sub;(r) and FE\TJ)(V) = sub;(r"), so clearly cost(M) > «.

Otherwise we have at least one deletion, with cost at least ¢.

Proof of Corollary 5.
1. Let Sub(rr) = {V1, ..., V,,}. Suppose:

rier (W)=t = ViV

T Tt —_ /—N_\
Ly (W)= =V, v,

f—/% .
# Vi, ..., V;, and so by the definition of K we can apply

- Vin

———
We know V;, ..., V;,
Lemma 4.

cost(M) + cost(M') < 2Kr
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cost(M)+cost(M') = Z dE(Fﬁ\ZT’TT’)(W)_I, W)+dE(FE\Z7TT/)(W)_Ia W)
WeSub(rpr)

Suppose exists W € Sub(rq) such that T\ (W) =1 2 TV 1) (W)= Then:
(TS5 (W)™ W) + de(T5E ™ (W)™ W) > 2K

which is absurd.

Proof of Lemma 5.

1. First we prove that there can be at most one edge (or sequence of consecutive
edges) of T” that goes from coupled to a single edge of 7" in M, to deleted in M’
or that goes from being deleted in M’, to being coupled to a single edge of 1" in
M.

Consider two edges (or sequences of adjacent edges) of 1" of length a, b which in
M are coupled with edges of T" with length A and B respectively contributing to
the distance with |A — a| + |B — b|. If in M’ they are deleted, the contribute to
that cost bt a + b. This situation gives the following set of equations:

a,b,A,B >0
A B> Kpr>0
|A—a|l+|B—b| < Kr
a+b< Ky

This system of course has solution only if K > a and K > b, and so it becomes:
a,b,A, B >0
A B> Kpr >0
A+B—-Kr<a+b
a+b< Ky
which is impossible since it gives:
2K < A+ B <2Kr

The roles of M and M’ can of course be reversed.
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2. Now we prove the thesis of the Lemma.
Consider M, M' € Mapp(T’,T") minimizing mappings.

Suppose there is an edge [w,w’] (or let w < w’ be extremes of a sequence of
adjacent edges, which become an edge after deletions and ghostings) in 7" such
that (w, D) € (M’ — M), and such that (w,x) € M for some = € V. By the
previous point we know that this is not happening for any other edge or sequences
of adjacent edges.

We note that, by hypothesis, w’ and w are not ghosted by M. To lighten the
notation, here we call M the set of deletions in a mapping M.

Apply on 7" all the deletions in Mp n M}, to be applied on it, obtaining 7”. We
induce in a natural way mappings N and N’ from 7" to T', simply removing from
M and M’ the deletions already done.

All the edges still to be deleted by N, cannot be paired with any other edge by N’
(nor can they be deleted, since these deletions do not lie in Mp n M},). So such
edges are left by N, with one of the two extremes of order 2.

To recap, we start from 7" and each deletion we have in Np or N}, deletes an
edge which is left with at least one order 2 vertex by the other mapping. For both
mappings there are no insertions to be done to obtain 7', because their cost would
be over K.

Consider (v,v") edge in 7" which is deleted by N and not by N’. Suppose v’ is
of order two after Nj,. Let vy, .., v, be the children of v in 7”. We know that
sub;(v") is deleted by N7, for every i but one, be it h, such that v, = v. This in
turns tells us that sub;(v') with @ # h are not deleted by N and all their edges
must have at least one vertex of order two. Having removed all ghost vertices in
sub;(v'), all the edges remaining pass from being deleted to being coupled. This
means that 7 < 2, w’ = v, v; = v and v, = w.

Notice that, by supposing that v instead of v’ is of order 2 after N},, we can repeat
the same reasoning for some edge (v”, v) for which v is the extreme closer to the
root.

By the uniqueness of [w, w’], we know that for any other edge of 7" deleted by IV
and not by V', the extreme of order two after N}, can have no siblings in 77, i.e.
they are already of order two. And the same reversing the role of NV and N'.

So, apart from the deletion of (w,w’) by N}, the others in Np or Nj, — {wg}
provide no changes in the tree structures, up to order 2 vertices.

So the tree structure obtained from their deletions or the one resulting from the
ghosting of their order two extremes is the same, up to order two vertices.

Since 7" has no order 2 vertices, and since there are no insertions to be done on
T", |w,w'] is paired with an edge with no vertices of order two, and so its deletion
change the topology of the tree T”.
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In other words we obtain the same tree structure, which is the one of 7', both by
removing from 7" the order 2 vertices, and from first removing the order 2 vertices
and then deleting the internal edge [w, w'] which is absurd.

|
Proof of Theorem 6.

Suppose we have M and M’ minimizing mappings. We know FE\ZT’TT’) = FS\ZT’TT/)
by Corollary 5; so to lighten the notation we will just write I'.

First suppose I'(sub;(rr)) = subj(ry). We shall call V' = sub;(ry) and W =
subj(ry) .

Let v be the only child of rr belonging to V. Since we have no deletions on 7', v
must be assigned to a vertex of 7”.

Let the couple (v, w) € M and the couple (v, w’) € M’, so that the edge [v, 7] is
shrunk to [w, r1] by M, and to [w’, rp/] by M’. All after deletions and ghostings.

If v is a leaf, we have nothing to prove. Thus, suppose v is not a leaf. The first claim
we prove is that either w > w’, or w’ > w or w = w’ in T”, according to the partial
order relationship given by father > son.

Suppose this does not happen. This means that w and w’ are not on the same path
from some leaf to the root. In other words sub(w) and sub(w’) have empty intersection.
Since sub(v) is mapped in sub(w) and sub(w’) respectively by M and M’, we know
that sub(w’) and sub(w) must be deleted by M and M’ respectively. However, sub(w'’)
and sub(w) are assigned in the other mapping. This contradicts Lemma 5.

Now we prove w = w'. If w # w’, we know w > w’ or “w > w holds. Suppose
w >" w. Thus, this means that w is on the path from w’ to r,. This implies that in M’,
w is either ghosted or deleted.

Suppose it is ghosted: then M’ must delete all but one children of w. Since v is of
order greater than two, and M assigns v to w, there are edges which go from assigned
in M to deleted in M’, contradicting Lemma 5. However, for the same reason w cannot
be deleted by M’ coupled by M.

Thus, we conclude that w = w'.

Since w = w', we are in the position to apply all this machinery on sub(v) and
sub(w) (until we reach the leaves) if the hypothesis I'(sub;(7supv))) = Sub;(7sub(w))
holds again. In that case, we end up with M equal to M’ on all internal vertices.

Now we need to reduce the general case to the case I'(sub;(rr)) = sub;(rq).

Suppose F(;ubil (rT)...sub,-h(rTS) = sub;(rq).

We shall call V' = ;ubil(rT)...subih (TTS, Vi, = sub;, (rr), and W = sub;(rq).

This hypothesis means that, both for M and M’, after the deletions 7y (the root
of W) has h children. Consider Mp n M},. We call W’ the tree obtained from W and
applying the deletions of its internal edges appearing in M N M},. Then we consider N
and N’, the mapping induced by M and M’ between V' and W’. They are well defined
since we obtained W’ applying deletions contained in both mappings. By Lemma 5 we
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know we are left only with deletions of order two vertices, the order of the vertices will
not change in any of the mappings. That is, up to order two vertices, the tree structures
of W is isomorphic to the one of V.

This in particular means that the root of W’ has order h since 7y has order h, and
that I'(sub;(ry)) = sub;(rw-). Therefore, by the first part of the proof, N = N’ on
internal edges, and consequently, on such vertices, M = M’. [ |

Proof of Proposition 12.

Since F(T) = >, d%.(T,T;) is a continuous real valued function, if we can restrict
the minimization domain in some compact subset of 7, we obtain the result, since
continuous functions preserve compactness.

First we know that, if T exists, then ||T|| < Y., ||T;]|*. Otherwise F(0) < F(T),
with 0 being the tree with no edges.

Lets call N; = dim(T;) and N = ), N;. Consider T such that #L,; = R with
R > N. Then, for all 7, any geodesic between 7" and 7; deletes at least R — # L1, edges
of T. Since #Ly, < N;, wehave Y. R — #Ly, > >, R — #N, > R(n — 1). This
implies that there is at least one leaf of 7" which is deleted all the times. However, then,
if we delete it, we obtain 7" such that, for all i, dg(T",T;) < dg(T,T;).

Thus, the number of leaves of T’ cannot exceed N. But this immediately implies
that, if it exists, dim(T) < 2N.

Since we have a bound on the norm and the dimension of T, we can restrict the
optimization domain on a compact set, which means that 7" exists.
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CHAPTER

Further Directions for Tree-Like topological
summaries

In this chapter we present some possibile future developments of the content of Chap-
ter 2, Chapter 3 and Chapter 4. These research directions are very diversified and include
both possible generalizations of the topological summaries introduced in Chapter 2 and
ways to exploit the objects defined in Chapter 4 to further develop tools to work with
sets of generalized dendrograms.

5.1 Further Comparisons with other Metrics for Trees and Merge Trees

The edit distance presented and employed in Chapter 2 and Chapter 3 is novel and
designed with the aim of comparing topological information whilst retaining a fea-
sible complexity. Throughout the previous chapters some very important differences
with already existing metrics defined for merge trees have been stressed. However, we
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think that a deeper comparison with other edit distances for Reeb Graphs, interleav-
ing distances, Gromov-Hausdorff related distances between ultrametrics and possibily
other more classic metrics for trees could help further highlighting the strengths and
weaknesses of our approach and establish relationships between the different theoreti-
cal frameworks.

5.2 Stability issues

As highlighted in Chapter 3, the metric dg is quite sensitive to large amount of noise
and, in general, to the size of the tree: large trees (in terms of number of leaves), tend to
have bigger distances, because they need more edits to be modified. Going in the direc-
tion of Section 5.1, we see that interleaving distances (De Silva et al., 2016; Gasparovic
et al., 2019; Morozov et al., 2013) solve this problem by “moving simultaneously” the
whole tree by the same amount along the real line, obtaining a more “‘stable” metric: the
operator which maps functions into summaries is 1-Lipschitz. As pointed out by Re-
mark 4, such approach is not naively applicable with our edit distance, because splitting
edges allows for simultaneous movement of more pieces of the tree, shortening paths
at will. However, the pruning operator P. suggests that the following definition could
be very suited for handling noise (that is, a possibly big number of leaves with small
weights):
de(T. T = | ds(PAT), PAT")du(e)
[0,+00)

where p is a finite measure on R. Since pruning a tree simultaneously removes noisy
branches with weight below some threshold, we are going towards the idea of interleav-
ing distance; the noise disappear after a low value of ¢, and its contribution to the final
distance can easily be controlled with .

Note that if we work with functions with bounded total persistence (with the degree
k total persistence of a diagram D being the sum > _, pers®(p), with p being the points
of the diagram, and pers(p) being their persistence - see Cohen-Steiner et al. (2010)),
with, for instance, degree 1 total persistence being less or equal some constant C' > 0,
then for any fixed ¢ > 0, we know that any persistence diagram obtained from such
functions can have at most C'/e features with persistence equal or greater than €. Since
every feature in the persistence diagram is associated to a leaf of the corresponding
merge tree 7' and the persistence of a feature v is always equal or lower than the weight
wy(v), if we compose the merge tree operator f — 7y with a fixed pruning operator P,
we obtain a continuous operator wrt the sup norm for functions and the edit distance for
merge trees.

Another possible approach which could be pursued to obtain a more “stable” metric
is to try mimicking the interleaving distance in a different way and at the same time
avoiding the situation showcased in Remark 4. In this sense we think that a sensible
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definition to be considered could be the following one. We recall that L, with 7" being
a tree structure, is the set of leaves of 7" and (,, with v being a vertex of 7', is the
ordered set {v' € VT"U/ > wv}. Moreover, for each vertex v in V7, we know that a
mapping induces a unique edit for v; thus we can indicate with cost(v) the cost of the
edit associated to v by the mapping.

Definition 32. Consider T, T" merge trees and let M € Mapp(T,T"). Then:

[[M||eo = maziery Ly Z cost(v)

vEQ

Claim 7. The rule d.(T,T") := minyemappr,r)||M || defines a metric for merge
trees identified up to order 2 vertices.

Instead of adding all the local contributions of the cost of turning 7" into 7", with
d,, we are in some sense capturing the least amount of editing we need to do on each
“branch” (; (with [ leaf), to turn 7" into 7”. Thus, instead of considering the whole tree,
we are limiting ourselves to “branches” considered singularly.

We think that the following example motivates this research path. Suppose we have
I[fn — gllc < &5 with #Vp, = n and, for simplicity, suppose T, has a full binary
tree structure. We know that, for a full binary tree structure, if n is the number of
leaves, the number of edges of the tree grows like n, while the cardinality of (,, for
some leaf v, grows like logs(n). Thus, for n > #VTQ, from Theorem 3 we know that
dw(Ty,, T,) < 2eloge(n), which is a number that grows much slower than the bound
for the edit distance, and can be easily bound using bounded total persistence.

Exploiting the following claim, we are also able to code a promising hands-on ex-
ample.

Claim 8. The metric d., sastisfies the same decomposition properties as dp.

Consider the functions f,,(z) = sin(2nz) + = defined on [—, 7| and the functions
Gne(z) = (L +¢) - sin(2nz) + x, withn € N and € > 0. See Figure 5.2(a). Note that
[ fn— Gn.elloo = supp_, esin(2nx) = e. In Figure 5.2(b) we can see an instance of 77,.
We compute do.(T%,, Ty, .) and dg(T},, Ty, ) to compare their evolution as n grows.
Note that the total persistence of f,, and g, . is unbound as n grows and, since #Vr, =
#Vr,,. = 4n + 1, using Theorem 3 we have dg(T},, Ty, .) < 2(4n + 1)%e. Moreover,
since #(y, = #Cw, = 2n (with vy and wy, being the leaves associated to the minimum
of f, and g, . respectively), we have, again through Theorem 3, d,(T7,, Ty, .) < 4ne.
We see from Figure 5.2(c) that these bounds are very large and indeed dp shows a
linear growth and not a quadratic one, while d,, quickly flattens and is below even a

logarithmic growth.

5.3 Tangent Structure and Statistical Tools
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Figure 5.2: Plots referring to the hands-on example showcasing the potential of the definition
of dop.
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As evident from Chapter 4, the dendrogram spaces are in general not very well behaved
in terms of geometric properties. Thus there are not many naive statistical tools that can
be employed. However, at least for merge trees, there some particular properties, like
the decomposition of mappings and the linear structure parallel to the strata 7 that can
be employed to capture some features of finite sets of merge trees. For instance a “zero
dimensional” summary given by a Frechét mean. A natural step forward in this direction
would be the definition of higher dimensional summaries, according to some notion of
dimension, which would allow the definition of a PCA technique in such space.

In a similar fashion, the local linear parallel structure could be exploited to build
some linear models in the tangent space. A major obstacle to be faced, in this sense, is
the definition of a log map which can move merge trees into a tangent space. The defini-
tion of such map is very delicate due to the presence of multiple minimizing geodesics,
which imply that the exponential map is non injective for large sets of merge trees.
Trying to define an inverse for the exponential map very likely causes issues with the
continuity of such inverse. Another issue which must be overcome is that the standard
inner product is naturally bound with the 2-norm || - || in RY, which is not compatible
with the edit distance df.

Along with that, we are not completely satisfied by the tangent structure defined in
Chapter 4, which has some theoretical drawbacks and is quite convoluted. We think
that some tweaks in the definitions and notation in Section 4.6 could lead to clearer
discussions, proofs and results.

5.4 Locally & Weakly Editable Spaces and Multipersistence

One of the most natural directions in which the content presented in Chapter 2 can be
expanded is the one of generalizing the set of weights for which the metric dg is well
defined and computable. We propose two definitions which include some interesting
kind of spaces and which are likely to still induce an edit distance with good properties.

Definition 33. A set X is called weakly editable if the following conditions are satisfied:
(P1) (X,d) is a metric space

(P2) (X,,0) is a monoid (that is X has an associative operation ® with zero element
0)

(P3) d(x ®y,0) < d(0,z) + d(0,y), that is splitting edges lenghten deletions

(P4) d(z,y)+d(v,w) = dv@®z,wdy) and d(x,y) + d(v,w) = d(x Dv,yDw), that
is, ghosting vertices shortens shrinkings.

Weakly editable spaces include: normed spaces, the set of finite Sets, with d(A, B) =
#(A U B) — #(A n B) and the space of persistence diagrams with the operation given
by the disjoint union of sets of points.
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These families of spaces account for some quite interesting approaches. We can put
labels on leaves of dendrograms, which for instance can be used to compare clustering
structures on the same set of labels. The set of labels could be only partially overlap-
ping. Similarly this could open up the possibility of working with left-right ordered
tree structures, which make sense in particular for merge trees representing functions
defined on the real line.

When working with merge trees of functions, we could also record the point giving
birth to a connected component (that is, the local minimum) as well as many other kind
of data. This situation allows to play with the invariance properties of merge trees of
functions, since the more information we embedd on the tree-like representation of the
function, the more the class of functions represented by the same topological summary,
shrinks. Lastly, using persistence diagrams to induce weights on edges can introduce
a novel approach to multipersistence: we could use a function to build the dendrogram
and (use another function to) extract persistence diagrams on the connected components
induced by the first function.

We consider also this second definition.

Definition 34. Given a X weakly editable and a set S of dendrograms with X -valued
multiplicity functions, X is called S-locally editable if o(T') is an editable subset of X,
foreveryT € S.

Examples of locally editable spaces can easily be obtained by taking curves into
weakly editable spaces as in Section 2.5. We have seen that such framework very well
suited to record valuable information about a fixed basis along along a fixed basis vector
spaces filtration.

Claim 9. If X is a weakly editable space, then dg is a metric for (Dy, X [[Y'). More-
over, if X is locally editable on {T,T'}, then dg(T,T") can be computed with the algo-
rithm presented in Section 2.7.

5.5 Reeb Graphs

Recently Stefanou (2020) proposed a decomposition of Reeb Graphs in terms of ordered
sets of merge trees. This could open up the possibility of defining a metric framework
on Reeb Graphs starting from merge trees. Many aspects of this possibility should be
investigated, but probably the most important ones are:

o the interpretability: the way in which distances between sets of merge trees be-
come distances between Reeb Graphs must be reasonable;

e can the decomposition property be extended to work with Reeb Graphs with more
general multiplicity functions?
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Even if this decomposition fails to be of any practical interest for our metric dg, we
believe that upon adding enough variables to take into account the possible cycles con-
tained into Reeb Graphs, our edit distance, along with the proposed algorithm, could be
extended to work also with such more general objects.

5.6 Total Variation of Functions

The Edit Distance defined for Reeb Graphs in Bauer et al. (2016); Di Fabio and Landi
(2012, 2016) posseses a very elegant characterization in terms of || - ||,, between con-
tinuous functions on a manifold (with some further hypotheses), up to homeomorphic
reparametrization. We think that, at least in the case of curves, our metric should behave
similarly with respect to the total variation of a function.

5.7 Stability properties in applications

As done in Chapter 3, when applying the framework discussed in Chapter 2, the continu-
ity properties of the operator assigning dendrograms to data, must be carefully studied,
because from such properties depends the interpretability of the results.

Consider for instance the following proposition.

Proposition 28. Let C' = {x,...,z,} and C' = {yo, ..., y,} two point clouds in R",
with x; = y; for all i > 0. And let p = d(xq, yo).

Consider the trees T and T which are the single linkage hierarchical dendro-
grams obtained from the point clouds C' and C' respectively.

Then dp(Tc, Ter) < 4np.

Proof. We obtain this result by applying Theorem 3.

Consider the simplicial complex A obtained with the 0-simplexes {ay, . .., a,} and
the complete set of 1-simplexes {[a;, a;]}. Define f,g : A — R such that f(a;) =
g(a;) =0, f(ag,a;) = d(xg,x;) and g(ag,a;) = d(yo,x;). Then, the merge trees 7
and 7}, coincide with 7 and T¢v; moreover || f — g||c = p. By Theorem 3 we conclude
the proof. [

This suggest that d z has some continuity properties when applied to point clouds and
hierarchical dendrograms. In turn, this points out that the metric dg could be used to
compare, for instance clustering structures. It also indicates that there might be similar
results in other kinds of applications.
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CHAPTER

Projected Methods in 1-D Wasserstein Spaces

The content of this chapter is also part of the paper Pegoraro and Beraha (2021).

In this chapter we present a novel class of projected methods to perform statistical
analysis on a data set of probability distributions on the real line, with the 2-Wasserstein
metric. We focus in particular on Principal Component Analysis (PCA) and regression.
To define these models, we exploit a representation of the Wasserstein space closely
related to its weak Riemannian structure, by mapping the data to a suitable linear space
and using a metric projection operator to constrain the results in the Wasserstein space.
By carefully choosing the tangent point, we are able to derive fast empirical meth-
ods, exploiting a constrained B-spline approximation. As a byproduct of our approach,
we are also able to derive faster routines for previous work on PCA for distributions.
By means of simulation studies, we compare our approaches to previously proposed
methods, showing that our projected PCA has similar performance for a fraction of
the computational cost and that the projected regression is extremely flexible even un-
der misspecification. Several theoretical properties of the models are investigated, and
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asymptotic consistency is proven. Two real world applications to Covid-19 mortality in
the US and wind speed forecasting are discussed.

6.1 Introduction

In many fields of machine learning and statistics, performing inference on a set of distri-
butions is an ubiquitous but arduous task. The Wasserstein distance provides a powerful
tool to compare distributions, as it requires very little assumptions on them and is at the
same time reasonably easy to compute numerically. In fact, many other distances for
distributions either require the existence of a probability density function or are impos-
sible to evaluate, cf. Cuturi (2013), Peyré et al. (2019), Panaretos and Zemel (2020).

The Wasserstein distance recently gained popularity both in the statistics and ma-
chine learning community. See for instance Bassetti et al. (2006), Bernton et al. (2019a),
Catalano et al. (2021) for statistical properties of the Wasserstein distance, Cao et al.
(2019), Cuturi et al. (2019) and Cuturi and Doucet (2014) for applications in the field
of machine and deep learning, Bernton et al. (2019b) and Srivastava et al. (2015) for
applications in Bayesian computation.

In this work, we focus on the situation in which the single observation itself can be
seen as a distribution, as in the analysis of images (Banerjee et al., 2015; Cuturi and
Doucet, 2014), census data (Cazelles et al., 2018), econometric surveys Potter et al.
(2017) and process monitoring (Hron et al., 2014). In particular, we consider observa-
tions to be distributions on the real line. There exist several possible ways to represent
distributions, such as histograms, probability density functions (pdfs) and cumulative
density functions (cdfs), each characterized by different constraints. For instance, his-
tograms sum to one, pdfs integrate to one, and the limits for cdfs are 0 and 1, moreover
all of these functions are nonnegative. These constraints translate into complex geomet-
rical structures that characterize the underlying spaces these objects live in.

6.1.1 Previous work on distributional data analysis

One of the first works defining PCA for a data set of distributions is Kneip and Utikal
(2001), where the authors apply tools from functional data analysis (FDA) directly to a
collection of probability density functions. This approach, however, completely ignores
the constrained nature of probability density functions, leading to poor interpretability
of the results.

Based on theoretical results in Egozcue et al. (2006), who defines a Hilbert structure
on a space of probability density functions on a compact interval (called a Bayes space),
Delicado (2011) and Hron et al. (2014), propose a more reasonable approach to the
problem of PCA for density functions. In particular, in Hron et al. (2014), the authors
use the geometric properties of the Bayes space, coupled with a suitable transformation
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from the Bayes space to an Ls space, to perform PCA on a set of pdfs using FDA tools,
and then map back the results to the Bayes space.

Another, perhaps less widely used, approach focuses on borrowing tools from sym-
bolic data analysis (SDA) in the context of histogram data (Le-Rademacher and Billard,
2017; Nagabhushan and Pradeep Kumar, 2007; Rodriguez et al., 2000). Moreover, in
Verde et al. (2015) some of these attempts are extended to generic distributional data
using Wasserstein metrics.

Finally, Bigot et al. (2017) and Cazelles et al. (2018) propose two PCA formulations
based on the geometric structure of the Wasserstein space: a geodesic PCA and a log
PCA. In a similar fashion, the recent preprints of Chen et al. (2020) and Zhang et al.
(2020) propose linear regression and autoregressive models, respectively, for distribu-
tional data using the Wasserstein geometry.

We now highlight some key aspects of the aforementioned approaches. Hron et al.
(2014) assumes that all the probability measures have the same support. This is hardly
verified in practice, so that to apply their techniques one needs either to truncate the
support of some of the probability density functions, or to extend others (for instance,
by adding a small constant value and renormalizing), leading to numerical instability as
discussed in Sections 6.7 and 6.8.

The SDA-based methods in Le-Rademacher and Billard (2017); Nagabhushan and
Pradeep Kumar (2007); Rodriguez et al. (2000) and Verde et al. (2015) share the poor
interpretability of SDA.

The methods in Bigot et al. (2017), Cazelles et al. (2018), Chen et al. (2020) and
Zhang et al. (2020) are based on the weak Riemannian structure of the Wasserstein
space, cf. Section 6.2.2. Such structure enables the authors to borrow ideas and termi-
nologies from statistical frameworks defined on Riemannian manifolds (see Banerjee
et al., 2015; Bhattacharya et al., 2012; Fletcher, 2013; Huckemann et al., 2010b; Pa-
trangenaru and Ellingson, 2015; Pennec, 2006, 2008). We can roughly distinguish those
frameworks in two main approaches: the intrinsic/geodesic one and extrinsic/log one.

Briefly, intrinsic methods are defined using the metric structure of the Wasserstein
space, working with geodesic curves and geodesic subsets, so that they faithfully respect
the metric of the underlying space. However, in general, intrinsic methods present many
practical difficulties in that the optimization problems they lead to are usually nontrivial,
as we discuss in Section 6.5.3. Instances of intrinsic methods for distributional data are
the geodesic PCA in Bigot et al. (2017) and, under some rather restrictive assumptions,
the linear models in Chen et al. (2020) and the autoregressive models in Zhang et al.
(2020), see Sections 6.3.3 and 6.3.4.

On the other hand, extrinsic methods resort to the linear structure of suitably defined
tangent spaces, by mapping data from the Wasserstein space to the tangent (through the
so-called log map) and then mapping back the results to the Wasserstein space (through
the exp map). Of course, this approach is less respectful of the underlying geometry
than the intrinsic one, but usually presents several numerical advantages. An example
of such extrinsic methods defined in the Wasserstein space is the log PCA in Cazelles
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et al. (2018).

The main issue with this log PCA is that the image of the log map inside the tangent
of the Wasserstein space is not a linear space, but rather a convex cone embedded in
a linear space (see Section 6.2.2). Hence, while exploiting the linear structure of the
tangent, it is possible that the projection of some points onto the principal components
end up outside of the cone. For these points, the exp map from the tangent to the
Wasserstein space used in Cazelles et al. (2018) is not a metric projection, which in
general is not available, so that the results in this setting are hardly interpretable.

6.1.2 Contributions and outline

The contribution of this work is three folded. First, we propose alternative PCA and
regression models for distributional data in the Wasserstein space. We term these models
projected, in opposition to the log PCA in Cazelles et al. (2018). Second, by exploiting a
geometric characterization of Wasserstein space closely related to its weak Riemannian
structure, we build a novel approximation of the Wasserstein space using monotone
B-spline. This allows us to represent the space of probability measures as a convex
polytope in R”. Lastly, we obtain faster optimization routines for the geodesic PCAs
defined in Bigot et al. (2017), exploiting the aforementioned B-spline representation.

Our projected framework lies in between the log one and the geodesic one, since
we use an analogous to the log map to transform our data, as for extrinsic methods,
but do not resort to the exp map to return to the Wasserstein space, using instead the
metric projection operator. Thanks to this, our projected methods are more respectful
of the underlying geometry than the /og ones, while at the same time retaining the same
reduced computational complexity. Thus, the projected methods expand the range of
situations where extrinsic methods are an effective and efficient alternative to intrinsic
tools: in our examples, the performance loss in general is marginal (see Section 6.7).

By centering the analysis in appropriate points of the Wasserstein space, one can
identify the space of probability measures (with finite second moment) with the space
of square integrable monotonically non-decreasing functions on a compact set. We
use a suitable quadratic B-spline expansion to get a very handy representation of such
functions. Through such B-spline expansion, it is possible to approximate the metric
projection onto the Wasserstein space as a constrained quadratic optimization problem
over a convex polytope, that is a well-established problem, cf. Potra and Wright (2000).
This allows us to exploit the underlying linear structure of an L, space, so that all the
machinery developed for functional data analysis can be directly applied to this setting.
We address the issue of interpretability of the results, tackling a number of diverse
applications and developing different ways to measure the loss of information caused
by the extrinsic nature of our methods.

We observe that the idea of representing nondecreasing functions through B-splines
for statistical purposes has been proposed also by Das and Ghosal (2017), in the con-
text of Bayesian quantile regression, where the authors use B-splines with (random)
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monotonic coefficients as a generative model for random quantile functions. However,
their focus is on defining a generative model, and not on developing a statistical setting
exploiting the geometry given by the constrained representation. Along this direction,
they do not restrict their attention to quadratic splines and consider cubic ones.

As already mentioned, a further contribution of this work is the derivation of alter-
native numerical optimization schemes for the geodesic PCA in Bigot et al. (2017) and
Cazelles et al. (2018), based on the proposed quadratic B-spline expansion.

The remaining of the paper is organized as follows. Section 6.2 covers the basic
concepts of Wasserstein distance and the weak Riemannian structure of the Wasser-
stein space, along with a brief discussion on a suitable way to exploit such structure
for our purposes. Section 6.3 defines the projected PCA and projected regression in
a general setting. In Section 6.4 we discuss the choice of the base point in which we
center our analysis and how to efficiently approximate the metric projection through
B-splines; in Section 6.5 we present the numerical algorithms needed to compute our
projected methods and an alternative optimization routine for the geodesic PCA in
Cazelles et al. (2018). Section 6.6 discusses the asymptotic properties of the spline
approximation and of the projected models, establishing consistency of the estimators
under some assumptions. Numerical illustrations on real and simulated data sets are
shown in Sections 6.7 and 6.8. In particular, we apply our projected methods to two
real world problems: we perform PCA on the US data on Covid-19 mortality by age
and sex and perform a distribution regression to forecast the wind speed near a wind
farm. Finally, the article concludes in Section 6.9. The Appendix collects all the
proofs of the theoretical results, additional details on the simplicial PCA and regres-
sion, and further simulations. Code for reproducing the numerical results is available at
https://github.com/mberaha/ProjectedWasserstein.

6.2 Preliminaries

In the following, we will consider probability measures on the real line R endowed with

the usual Borel o-field, we will skip references to the o-field whenever it is obvious.
Given a measure ;. on R define its cumulative distribution function F),(z) = u((—o0, z])

for z € R and the associated quantile function £ (t) = inf{z e R: ¢ < F),(z)}. When

F), is continuous and strictly monotonically increasing, F = (FN)*l.

6.2.1 Wasserstein metric and Wasserstein spaces

We start by recalling the definition of the 2-Wasserstein distance between two probabil-
ity measures i, v on R:

W2(u,v) = int f & — yPdr(z, ). 6.1)
RxR

vl (p,v)
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where I'(11, v) is the collection of all probability measures on R x R with marginals
and v. Closely related to the definition of Wasserstein distance lies the one of Optimal
Transport (OT). In particular, (6.1) identifies the Wasserstein distance with the minimal
total transportation cost between p and v in the Kantorovich problem with quadratic
cost (Ambrosio et al., 2008).

For our purposes, it is convenient to consider another formulation of the OT problem,
originally introduced in Monge (1781). Given two measures i, v as before, the optimal
transport map from g to v is the solution of the problem

it | o= TP duta), 62
where # denotes the pushfoward operator, that is for any measurable set B and measur-
able function
FiR-R, (f#1)(B) = u(fH(B)). (6.3)

Note that any solution of (6.2) induces one and only one solution of (6.1); moreover
if the OT problem has a unique solution, then also the Wasserstein distance problem
has only one solution. However not all Wasserstein distance problems can be solved
through Monge’s formulation (Ambrosio et al., 2008).

The unidimensional setting is a remarkable exception in that there exist explicit for-
mulas for both problems. In particular, the Wasserstein distance can be computed as

W2 (u, v f |F, (s) = F, (s)|*ds, (6.4)

and, if the measure ;. has no atoms, then there exists a unique solution to Monge’s
problem given by T'Y = I, o F,,. For a proof of these results, see Chapter 6 of Ambrosio
et al. (2008).

It is clear that, in general, the Wasserstein distance between two probability measures
can be unbounded (for instance when in (6.4) Fﬂ_ is not square integrable on [0, 1]).
Nonetheless, when restricting the focus on the set of probability measures with finite
second moment, then it holds that W5 defines a metric (see, for instance, Chapter 7 of
Villani, 2008). Formally, let the Wasserstein space:

Wh(R) = {,u e P(R) : J ridy < —i—oc}
R
then (W, (R), W) is a separable complete metric space.

6.2.2 Weak Riemannian structure of the Wasserstein Space

Thanks to the uniqueness of the transport maps, by fixing an absolutely continuous

(a.c.) probability measure p € Wy(R), we can associate to any v € W5(RR) the optimal

transport map 7. Since §, |T)/(x)[*du = §, #*dv we can define the following map
i Wa(R) — L5 (IR) with the rule: ¢, (v) = T};.
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We note several immediate but interesting properties of the map ¢,,. First, it is an
isometry (and so a homeomorphism onto its image) since

| 17~ T Pan = |

[0,1

] |F,, — F, |*ds = W3 (v,n).

Second, the image of ¢, is a closed convex cone in L5 (R): a set closed under addition
and positive scalar multiplication. In fact, for any A > 0, AT/ is still a transport map
from p to another measure whose quantile is A\F;"; and similarly 7)) + 707 = (F,” +
F7) o F,. Being Wh(IR) complete, ¢, (Wa(R)) is closed in L4 (R). Third, ¢, (1) = idg
(where id: denotes the identity map of the set (). Finally, as shown in Panaretos and
Zemel (2020), ¢,, is not surjective and ¢, (W>(R)) is the set of yi-a.e. non decreasing
functions in L5 (R).

The inverse of the map of ¢,, is the measure pushforward (see Equation 6.3) and it is
defined on the whole L5 (R): given f € L5(R), then v = f#u is a measure in Wh(R).
In fact:

JMMV=JU@W@FﬂfZ

A natural way to define a tangent structure for YW, (RR) is therefore to take advantage
of the cone structure given by ¢,. In fact for closed convex cones, there are already
notions of tangent cones. Similarly to Rockafellar and Wets (1998), Theorem 6.9, we
can define:

Ly (R)

(6.5)

We remark that Theorem 6.9 in Rockafellar and Wets (1998) is stated in R”, but it
holds also more generally, for instance in an Hilbert space (see Aubin and Frankowska
(2009), Chapter 4).

A geometric interpretation of (6.5) is the following. The tangent space consists of
all the vectors f that move the base point inside the cone ¢, (W>(R)), when considered
up to a scale factor h. Hence, f plays the role of direction of a tangent vector going
out from the tangent point. Furthermore, since for every f € ¢, (W,(R)) then f + id €
©,(Wa(R)) we have that ¢, (WV,(IR)) is included in the tangent space. As shown later in
this Section, the inclusion is strict and the tangent space is much larger than ¢, (W, (R)).

Note that we can recover the definition of tangent space given by Ambrosio et al.
(2008) and Panaretos and Zemel (2020) by a simple “change of variable”: calling g =
id + hf then substituting (¢ — id)/h in (6.5) gives the following definition of tangent

Tan,(W5(R)) := Tan;q, (L5 (R)) = {f € L5(R)|3h > 0 :id + hf € ¢,(W2(R))}

Tan,(W:2(R)) = {A\(f —id)|f € o,(Wa(R)); A > O}LQ‘(R)’

which is the one given in Ambrosio et al. (2008) and Panaretos and Zemel (2020). As
shown in Panaretos and Zemel (2020) the tangent cone Tan,, (W, (RR)) is indeed a linear
space. For this reason we refer to it as tangent space, instead of cone.
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In analogy to Riemannian geometry, following Ambrosio et al. (2008) and Panare-
tos and Zemel (2020), we define the log,, and exp, maps. Having fixed ;1 absolutely
continuous:

log,, : Wa(R) — Tan, (W (R)) exp,, : Tan,(Wh(R)) — Wh(R)
v T —id [ (id+ f#up

We briefly highlight some properties of these maps; properties which immediately
follows from the discussion above.

(6.6)

Remark 21. The map log,, is defined on the whole space Ws(R). Moreover, it is clearly
an isometry: Wy(n,v) = |log,(n) — log, (v)| e ) (Panaretos and Zemel, 2020). This
shows that there is no local-approximation issue when working in the tangent space, in
contrast with the usual Riemannian manifold setting. There, the tangent space usually
provides good approximation only in a neighborhood of the tangent point.

Remark 22. The map log,, is not surjective on Tan,, indeed its image Im(log,) is a
closed convex subset of L' (R) given by all the maps [ such that f + id € ¢, (Ws(R)),
that is, f + id is p-a.e. increasing. The restriction of exp, on Im(logu), henceforth
denoted by exp,, log,, (Wa (R))’ is an isometric homeomorphism and its inverse is log . In

particular, we observe that log, oexp,, is not a metric projection in LY. That is, in
general IOgH © expu(.f) 7 arg minge]m(logu) Hf - g| ’Lg .

6.2.3 Intrinsic and extrinsic methods in the Wasserstein space

As mentioned in Section 6.1.1, borrowing ideas from Riemannian geometry leads to
discerning statistical methods on the Wasserstein space in the classes of intrinsic and
extrinsic methods.

The Weak Riemannian structure presented in Section 6.2.2 provides a suitable en-
vironment for developing intrinsic methods. In fact, the geodesic structure of W5 (RR)
can be recovered through the linear structure of any L5 (R) space through the isometry
¢,. Pointwise interpolation of the transport maps coincide with the geodesic between
measures. In other words, given y a.c., the geodesic between v and 7 is given by:

Y(@t) = (1 =1) - T, +t-T#nu (6.7)

Thus, such geodesic structure can be recovered in many different (but equivalent) ways,
depending on .

On the other hand, Remark 21 motivates the development of extrinsic tools, since
working in the image of log,, inside the tangent space Tan,, is exactly like working in
Wsh(R). This is not common in Riemannian manifold framework, since usually the
tangent space provides a good approximation only near to the tangent point. As a con-
sequence, if in the general Riemannian manifold framework the choice of the tangent
point y is crucial (since results for extrinsic methods might be significantly altered for
different choices of 1) when working with W, (R) this is not the case.
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To further motivate this key point, consider x and v a.c. measures; the maps
log,, O(eXpMUOgH(Wz (r))) and ¢, o gp;l are isometric homeomorphisms (as composition
of isometries and homeomorphisms). In other words, they preserve distances and send
border elements of log, (Wa(R)) or ¢, (Wa(R)) into border elements of log, (W2 (R))
and ¢, (Wsh(R)), respectively, and the same with internal points (and so in particular,
they preserve distances from any point to the border). In Chen et al. (2020), Bigot
et al. (2017) and Zhang et al. (2020) u is chosen as the barycentric measure = of the
observations x; € W5(R). The discussion above implies that considering the tangent
space at the Wasserstein barycenter = and working on log_(x;) = log.(z;) — log.(Z)
is exactly the same as considering the tangent space at any p a.c. and working on
log, (7;) — log,(7) for our statistical purposes. So the choice of the tangent space from
the theoretical point of view is completely arbitrary.

Moreover, centering the analysis in the barycenter presents a drawback when study-
ing asymptotic properties of the models under consideration, since Z changes as the
sample size grows. In Section 6.4.1 we propose to fix ;. as the uniform measure on
[0,1]. This choice not only allows us to derive empirical methods that are extremely
simple to implement, cf. Section 6.5, but also allows us to study asymptotic proper-
ties of the models in Section 6.6.2 without resorting to parallel transport, as done for
instance in Chen et al. (2020).

6.2.4 Tangent vs. L}

Lastly, we briefly discuss the major differences between using a tangent space represen-
tation of W (R) and using the representation given by some ¢,,.

We recall that, for a fixed i a.c., the two representations are indeed quite similar
ou(v) =Ty, log,(v) = T, —id; a priori one may prefer the tangent representation, be-
cause it already expresses data as vectors coming out of a point. Therefore, for instance,
it might result practically more convenient to center the analysis in the barycenter and
work on vectors, taking away any ‘“data centering” issues. At the same time, also nota-
tional coherence with already existing methods might benefit from this choice.

However, especially when dealing with extrinsic techniques, we found slightly more
practical to use the ¢, representation in that it is more straightforward to represent
©u(W2(R)) compared to log, (W5(R)): the first one can in fact be represented directly
as the cone of the p-a.e non-decreasing functions.

6.3 Projected Models in the Wasserstein Space

In this section, exploiting the embeddings given by ¢,,, we define a class of projected
statistical methods to perform extrinsic analysis for data in the Wasserstein space.

To give a general framework, we do not restrict our attention to a particular ¢,
yet, even though in Section 6.4 we argue that a natural choice which allows an easier
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implementation of the empirical methods is letting x be the uniform distribution on
[0,1]. Hence, for the sake of notation, we consider a generic case of data lying in a
closed convex cone X inside a separable Hilbert space . In our setting, // would be
L5(R) and X = ¢,(W(R)), for some 1 € W, (RR) absolutely continuous.

6.3.1 Principal component analysis

We start by defining one of the main contributions of our work: the projected PCA.
We recall that for an H-valued random variable X', PCA is a well established technique
and amounts to finding the eigenfunctions of the Karhunen-Loéve expansion of the
covariance operator of X, see Ramsay (2004). Observe that any X-valued random
variable can be considered as an H-valued one (by the inclusion map), so that a notion
of PCA is already available.

When defining principal components, a key notion is the one of dimension of the
principal component (PC). In this work, principal components will be closed convex
subsets of H, and we will always define the dimension of a subset of A as the dimension
of the smallest affine subset of H containing it. For a generic closed convex set C' ¢ H,
let IT denote the metric projection onto C: Il (z) := arg min . ||z — ¢|| and, for a set
of vectors U, denote with Sp(U) its linear span.

In what follows, we denote by z, the “center” of the PCA. For us, 2o = E[X], or its
empirical counterpart. To have a well defined PCA, we always assume that x( belongs
to the relative interior of the convex hull of the support of X', see Appendix 6.11 for the
definition of relative interior and further details. This is a rather technical hypothesis
but it is not a restrictive one. For instance, it is always verified for empirical measures
and when X < R? and hence for our empirical methods, cf. Section 6.5.1.

Definition 35. (Projected PCA). Given X a random variable with values in X < H,
let Uy = {wy, ..., wy} be its first k H-principal components centered in zo = E[X]. A

(k, xo)—projected principal component of X is the biggest closed convex subset Uf(o’k
of X such that:

1 Xg € U;O’k,
2. dim(US*) = k, and
3. URF < T (Sp(Uy)).

In other words, the projected principal component is obtained by approximating the
span of the principal components found in H, with convex subsets in X. Note that the
principal components in /7 might “capture” some variability which is not present when
measuring distances inside X. In fact the projection of a point belonging to X onto a
direction w; might end up being outside X, see Section 6.3.3. However, as we will show
in Section 6.7, in our examples the projected PCA behaves well and this issue does not
seem to affect significantly the performance.
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Remark 23. Convex sets are essential in our analysis since, thanks to (6.7) convex sets
in X are precisely the subsets of W5 (R) which are geodesically complete: the geodesic
connecting any pair of points in the subset, is contained in the subset. Geodesic subsets
are a natural generalization of linear spaces.

Remark 24. The metric projection of a linear subspace onto a convex subset can end
up being a nonconvex set. In addition to that, while loosing convexity, the dimension of
the metric projection of a convex subset can be bigger of the dimension of the original
subset. A simple example where both cases happen is the projection of y = —x onto
x,y = 0in R

We observe that inside a projected principal component, we have a preferential
orthonormal basis given by the principal components in H; for this reason we call
Uk, = {wy, ..., wy} principal directions.

Although it might seem impractical to find the projected component, the following
Lemma provides a more convenient alternative characterization.

Lemma 12. Let 2y and U" be as in Definition 35, then U>* = (z¢ + Sp(Uy)) n X.

Natural alternatives to Definition 35 would be, for instance, to let the projected prin-
cipal directions (component) be the metric projection of wy, . .., wy (the linear span of
{wy,...,w})onto X, respectively. In the former case, the projection would not guaran-
tee the orthogonality of the projected directions, which is instead essential to properly
explore the variability. Moreover, since the “tip” of the projected unit vectors would
likely lie on the border of X, the projection of a new observations on a direction would
still lie outside of X as soon as the score associated to that direction is larger than 1.
The latter case, instead, presents the drawbacks pointed out in Remark 24.

We argue that, despite its simplicity, Definition 35 is indeed very well suited for
statistical analysis in the Wasserstein Space. For instance, we are guaranteed that, as the
dimension grows up, the & projected components provide a monotonically better fit to
the data. This is easily verified because IIx is a strictly non-expansive operator, being
X closed and convex (see Deutsch (2012)), which implies the following Proposition.

Proposition 29. With the same notation as Definition 35, for any v € X we have:
L, o (1) — || = [IT 00,641 (7) — 2| — O with k — +o0.
X X

Once a principal component is found, a classical task that one may want to perform
is to project a new “observation” x* € X onto Uf(o’k, for instance for dimensionality
reduction purposes. In general, the metric projection on generic convex subsets might
be arduous to find, we will deal with this issue in Section 6.4. Nevertheless, we can
use the following Proposition to reduce in advance the dimension of the parameters in-
volved in the problem; turning it into a projection problem inside the principal projected
component, which allows for faster computations (see Equation 6.13).
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Proposition 30. Let z* € X and let 11}, be the orthogonal projection on Span(Uy,). The
projection of ©* onto U)x(o’k is given by

argmin |z* — v'| = ey, )n(x—w0) k(2™ — 20)) + 0. (6.8)

/ z,k
v'eUy

Lastly, we observe that, since projected principal components are not linear sub-
spaces, the scores of some points on a principal direction can vary as we increase the
dimension of the principal component.

6.3.2 Regression

Broadly speaking, a regression model between two variables with values in two different
spaces is given by an operator between such spaces, which for every input value of
the independent variable, returns a predicted value for the dependent variable. In the
following, let us denote with Z the independent variable and with ) the dependent one.
A regression model is usually understood as an operator [' specifying the conditional
value of ) given Z, thatis, E[V|Z] = ['(Z).

If the spaces where Z and ) take values possess a linear structure, this linearity is
usually exploited by means of a (kernel) linear operator, with possibly an “intercept”
term. To define our projected regression model, we want to exploit the cone structure of
X 1n a similar fashion. In fact, such linear kernel operators combine good optimization
properties and interpretability since their kernels can provide insights into the analysis,
much like coefficients in multivariate linear regression.

We treat separately the cases where the X-valued variable is the independent or
the dependent one. The case when both variables are X-valued follows naturally. To
keep the notation light, in what follows we will not distinguish between “proper” linear
operators and linear operators with an added intercept term, which could as well be
employed in all the incoming definitions to gain flexibility.

Consider the case in which we have an independent X -valued random variable, and
denote with V' the space where the dependent variable takes value. Despite the fact that
X 1is not a linear space, with an abuse of notation, we call “linear” an operator which
respect sum and positive scalar multiplication for elements in X. Such operators are in
fact obtained by restricting on X linear operators defined on /7. Following this idea,
in order to define linear regression for an X-valued independent random variable, we
consider such variable as H-valued, obtain the regression operator and then take the
restriction of the operator on X. In this way, when H = L5(R) and X = ¢,(W:(R)),
it is possible to exploit the classical FDA framework to perform all kinds of distribution
on scalar/vector/etc... regression. For brevity, we report only the definition with V' = R.

Definition 36. Let Z an X-valued random variable, and Y a real valued one. Let I's :
H — R be a functional linear regression model for such variables, with Z considered
as H-valued and T'g(v) = (B,v). A projected linear regression model for (Z,)) is
given by (I'g) x.
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Now we turn to the cases which feature an X valued independent variable and a 2
valued dependent one, for Z a generic Hilbert space. Through the inclusion X — H,
we can consider a regression problem with X -valued dependent variable, as a problem
with -valued dependent variable. Comparing this situation with the previous one, it
is clear that we now face a “dual” problem. Indeed, while before we needed to restrict
the domain from H to X, we now need to force the codomain of I' to lie inside X. We
would like to retain the same properties that make linear kernel operators appealing as
regression operators between Hilbert spaces. A possibility could be considering a linear
kernel operator I' with values in H and restricting it to I'"}(X). However, this would
imply that for any z ¢ I'"!(X') no prediction would be available.

We argue that a more reasonable approach consists in finding an operator I'p : Z —
X as close as possible (in some sense that will be clear later) to the linear kernel operator
[' aforementioned. Hence, we relax the linearity assumption in favor of Lipschitzianity,
and take as regression operator Iy o I', whose image always lies in X. Note that I'p
inherits the interpretability of the kernel of I

To motivate such choice, we give the following notion of a projected operator.

Definition 37. Let Z be a normed space and consider Z a Z-valued random variable.
Let ' : Z — H a generic Lipschitz operator between Z and H. A (Z, X)-projection of
I' is an operator I'p : Z — X such that:

Ie = arg min Ez[|T(v) — T(v)]?]
T:Z—X
In other words, I'p provides the best pointwise approximation of the H-valued oper-
ator I', averaged w.r.t. the measure induced by Z. Hence, given a Z a Z-valued random
variable and ) an X-valued random variable and a linear regression model I' : 7 — H
for (Z,)), the projected regression model induced by I" is I'p.

Proposition 31. With the same notation as above, if E[| Z||*] < oo, then Tp = Tlx oT.

Proof. Forany T : Z — X, itholds: |I'(z) — IIx(T'(2))| < |T'(v) — T'(v)|. Moreover,
I and ITy o I' are Lipschitz, and being 1Ix non-expansive, they share the same constant
L>0:

IT(v) = Ix o T(v)|* < 2L|jv*

and thus Ez[||T'(z) — IIx o I'(2)|?] is bounded iff Z has finite second moment. O

The only case left out from the treatment above is when both the independent and the
dependent variables are X-valued. This case, however, follows naturally by combining
the two approaches and we report the definition below.

Definition 38. Let Z and ) two X -valued random variables. Let I’ : H — H be a func-
tional linear regression model for the variables considered as H-valued. A projected
linear regression model for (Z,)) is given by (Ilx o I') x.
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35
304 — projected
—— geodesic

2 3 4 5

Figure 6.1: Comparison of projected and geodesic PCA when H = R? and X is the shaded
rectangle. The projected principal direction is rather different from the geodesic one because
most of the observations (blue dots) are concentrated around the borders

Remark 25. When considering a regression with X -valued independent variable, one
may want to relax the restriction on X in Definition 36 for various reasons, for instance
one may have measurement errors, or by design the test set may consider points also
outside X. In such cases it is worth considering the problem of how many continuous
linear extensions of I'\x are possible on the whole H. A sufficient condition for the
uniqueness of such extension is the following: there exist a sequence of linear subspaces
of H, say {H}j=1, such that ), H; is dense in H and X ; :== H ;0 X contains a basis
of Hjy for every J.

Remark 26. When H = L45(R) and X = ¢,(Ws(R)) the condition in Remark 25 is
verified, for instance, by Remark 28 in Section 6.4.3. Moreover, observe that the unique-
ness of the extension can also be proven thank to Jordan’s representation of functions
f + R — R with bounded variation (BV). In fact any f with BV can be written as
the difference of monotone functions and thus T(f) is fixed. Then by the density of BV
functions in H, we define ' on the remaining elements of H.

6.3.3 Comparison with intrinsic methods

We now compare the projected methods defined earlier in this Section and the intrinsic
counterparts. In particular, we focus on the geodesic PCA defined in Bigot et al. (2017)
and Cazelles et al. (2018) and on the distribution on distribution regression model in
Chen et al. (2020).

Bigot et al. (2017) and Cazelles et al. (2018) define two different PCA, namely a
global and a nested one; in particular the nested approach presents analogies with other
PCAs developed for manifold valued random variables (Huckemann and Eltzner, 2018;
Jung et al., 2012; Pennec, 2018); we report the two definitions below.

Definition 39. (Global geodesic PCA) Let X a random variable with values in X with
E[X] = zo. A (k, x0)-global geodesic PC is a set C* minimizing E [d(X, C)?] over the
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closed convex sets C X such that xo € C and dim(C') < k

Definition 40. (Nested geodesic PCA) Let X a random variable with values in X with
E[X] = xo. For k = 1, a (k,xq)-nested geodesic PC is a set C} such that C} is a
minimizer of E [d(X,C)?] over the closed convex sets C = X such that vq € C and
dim(C) < k; for k = 1, a (k,x¢)-nested geodesic PC is a set C} such that C} is
a minimizer of E[d(X,C)?] over the closed convex sets C = X such that: xo € C,
dim(C) < k, and C = C}_,, where C}}_, is a (k — 1, x)-nested geodesic PC.

The first key difference between the global and the nested geodesic PCA 1is that the
latter provides a notion of preferential directions in the principal component, while the
first one does not. In fact, the first nested principal component corresponds to the first
principal direction, and it is possible to find the remaining principal directions by impos-
ing orthogonality constraints as we obtain nested PCs of higher dimensions. Thus, the
nested geodesic PCA is more suitable to explore and visualize the variability in a data
set, see also Section 6.7. On the other hand, exactly because of the lack of such con-
straints, the global PCA is in general more flexible and provides superior performance
in terms of reconstruction error, cf. Section 6.7.

Comparing these definitions with the one of our projected PCA, the key difference
is that geodesic PCAs do not exploit the Hilbert structure of H. Thus, as we discuss
in Section 6.5.3, the numerical routines needed to find such principal components rely
on nonlinear constrained optimization, which can be extremely demanding and nontriv-
ial to implement. This is in sharp contrast with our projected PCA in Definition 35,
that, thanks to Lemma 12 can be straightforwardly computed. However, as a result, the
projected PCA is in general less respectful of the underlying metric structure. By in-
vestigating this issue in simpler settings, for instance when H = R and X is a convex
polytope in R?, we noticed that the differences between the projected principal direc-
tions and the nested geodesic ones become appreciable only if the random variable X
gives significant probability to values near the borders of X. See for instance Figure 6.1.
While this intuition remains valid also in the more complex setting that we investigate
in this paper, it is harder to imagine realizations of X near the borders of X.

Note that the interpretability of the projected PCA is determined by the level of
discrepancy between the definitions, as in Figure 6.1, which depends on how much
variability it is correctly captured by the component, that is how much of the variability
captured by the projected component lies in X. This intuition is formalized in Sec-
tion 6.7.2 where two measures of “reliability” of the projected PCA are proposed.

Turning to the regression context, Chen et al. (2020) define a distribution on dis-
tribution linear regression model in the Wasserstein space. Their approach considers
two different tangent spaces of W5 (R) (the first one centered in the barycenter of the
independent variable and the second one centered in the barycenter of the dependent
variable) and map the observations to the corresponding tangent spaces. They then use
FDA tools to estimate a functional linear model I between those two spaces. When
the image of the regression operator I lies inside the image of the log map centered

153



Chapter 6. Projected Methods in 1-D Wasserstein Spaces
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Figure 6.2: Comparison between different projections onto X for a point x € H\X (blue
line) in the tangent space (left panel) and the associated cumulative distribution functions
(right panel) when the base point (i is the uniform measure on [0,1]. The orange, green
and red curves are obtained with metric projection, boundary projection and log,, o exp,,
respectively.

in the dependent variable’s barycenter, their distribution on distribution regression can
be considered a properly intrinsic method. This assumption is used to prove asymptotic
properties of their methodology, but as the authors in Chen et al. (2020) notice, is hardly
verified in practice, so that whenever the output of the regression operator is not a dis-
tribution, they resort to squeezing such a value with some scalar multiplication, namely
“boundary projection”, which in general is not a metric projection. The boundary pro-
jection step gives an extrinsic nature to their model and we provide further comparisons
with our methods in Section 6.3.4.

6.3.4 Comparison with other extrinsic methods

In this section, we offer a comparison of our projected methods with other extrinsic
methods, namely the log PCA in Cazelles et al. (2018) and the distribution on distribu-
tion regression in Chen et al. (2020), which, as outlined in the previous section, may
behave as an extrinsic method. Let us start with the former.

Cazelles et al. (2018) propose the definition of a log PCA as an alternative to the
geodesic PCAs in Bigot et al. (2017). Both the log and the projected PCA are extrinsic
methods: they proceed by carrying out the PCA in a linear space H and then map back
the results to the Wasserstein space, following an approach which had already been
proposed by Fletcher et al. (2004).
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For the log PCA, H is the tangent space at p, for the projected H is L5 (R). Given
Ui = {ws,...,w} the first k H-principal components, the log principal component
in Wh(R) is exp,(Sp(Uy)) . Analogously, by considering the convex cone X =:
log,,(W2(R)) = H, the principal component in X is log, (exp, (Sp(Uy))).

We notice two key differences between the log and projected PCA. First, as pointed
out in Remark 22, log, o exp,, is not a metric projection in L% so that given a point
v € H\X, log,(exp,(z)) might end up being extremely different from . See for
instance Figure 6.2 where for a point x (blue line) that is close (in the L5 norm) to X,
log,(exp,,(2)) turns out to be quite far from x. In the context of PCA, this means that as
soon as the projection onto Sp(Uy,) of observation lies outside of X, the log PCA quickly
loses its interpretability. Second, as discussed in Remark 24, there is no guarantee that
log,, (exp,(Sp(Uy))) is contained in Sp(Uy), its dimension might increase and it might
not even be convex. For this same reason, in general, log PCA cannot define a set of
(orthogonal) principal directions which span the principal component. Hence, it is not
possible to work directly on the scores of the PCA.

Combined, we believe that the above mentioned issues present a major drawback of
the log PCA when compared to the projected PCA, as they prevent the possibility of
doing proper dimensionality reduction and working on the scores of data points on the
principal components. Finally, we also point out that approximating the exp, map is
a nontrivial task, involving computing numerically the preimages of an arbitrary large
number of sets and numerical differentiation, that can lead to numerical instability of
the log PCA.

We end this disccussion with a comparison between the boundary projection in Chen
et al. (2020) and the metric projection. Their difference, for a possible regression output
x € H\X is depicted in Figure 6.2. Note that, by construction, such a procedure shrinks
the tails of the output. Even when the regression output is slightly outside the image
of the log map, the boundary projection result can be extremely far from the regression
output and from the metric projection in terms of Wasserstein distance. For example, in
Figure 6.2, the regression output and the projected method assign positive probability
to values in the range [—45,45], while the output of the boundary projection assigns
zero probability to values outside [—17, 17]. This underrepresentation of the variability
might be a crucial issue depending on the application considered.

6.4 Computing the metric projection through B-spline approximation

The projected methods defined in Section 6.3 depend heavily on the availability of pro-
jection operators on the closed convex cone X = ¢,(W,(R)). Being X a cone inside
a linear space, such operators are always well defined, but their implementation might
be nontrivial. In this Section, we present a possible solution to this problem, based on
choosing a particular p as base point and constructing a B-spline representation of the
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cone X.

6.4.1 Choosing /. as the uniform distribution on [0, 1]

As already mentioned, our projected methods can be carried out by choosing p arbitrar-
ily and there is no theoretical difference between different choices of 1, cf. Section 6.2.2.
Nonetheless, in practice, a clever choice of 1 can lead to substantially easier and more
numerically stable algorithms. For instance, by choosing a measure p with compact
support C' in R, then the ambient space becomes L5(C') since we work up to zero-
measure sets. This greatly simplifies any numerical procedure since we could work
with grids over bounded sets, and do not need to resort to any truncation procedure,
which would be mandatory in case the support of  was unbounded. Moreover, note
that evaluating the maps ¢, in a certain measure v amounts to computing the transport
map T = F," o F,, hence it is clear that the choice of F, numerically influences the
results.

For the aforementioned reasons, we argue that a reasonable choice is to center our
analysis in 1 = U([0,1]). In fact, in this case, L5(R) = L»([0,1]), and F,, = idjp 1)
(the transport maps are simply given by quantile functions).

6.4.2 Metric Projection

Having chosen y as Section 6.4.1 leads to an explicit characterization of the image of
¢,, as the set of square integrable a.e. non-decreasing functions on [0, 1]. Hence, the
operator IIx in Section 6.3 is the metric projection onto the cone of a.e. non-decreasing
functions in Ly([0, 1]).

Projection onto monotone functions has been widely studied in the field of order re-
stricted inference, (Anevski et al., 2006; Dykstra et al., 2012). For instance, in Anevski
and Soulier (2011) an explicit characterization of such a projection is given, which how-
ever does not lead to a closed form solution, while in Ayer et al. (1955) several numerical
algorithms to approximate the projection operator are proposed. Those algorithms are
based on approximating the function to be projected with a step function defined on n
intervals and can be shown to have a computational complexity that is linear in n (Best
and Chakravarti, 1990).

Despite the numerical convenience of the aforementioned approximations, we be-
lieve that they are not suited for distributional data analysis. First and foremost, suppose
that observations are given as probability density functions, so that one may want to in-
terpret the results of a PCA, for instance, in terms of pdfs and not of quantile functions.
If one were to estimate discontinuous principal directions through any of the algorithms
in Ayer et al. (1955), it would not be possible to do so, as the corresponding cdfs would
not be differentiable. In addition to that, the choice of the number of intervals n is not
obvious when quantile functions are not directly observed but obtained with transfor-
mation. If n needs to be big to faithfully approximate the true quantile functions, this
projection can be quite slow.
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For these reasons, we propose to resort to a B-spline expansion, through which we
can derive an alternative approximation of the projection operator IIx, without incurring
in the issues of the algorithms in Ayer et al. (1955). Moreover, we will also show in
Section 6.5.3 that the proposed B-spline expansion also leads us to a simpler and faster
reformulation of the geodesic PCA in Bigot et al. (2017).

6.4.3 Monotone B-splines representation

In what follows, let © = U([0, 1]). Moreover, denote with = [zy,...,7;] € R¥ a
generic vector.
As already said, through the ¢, map, we can identify W, (R) with the space

Ly([0,1])" := {F~ € Ly([0,1]) s.t. F~ is monotonically nondecreasing}

This leads us to consider a suitable B-spline basis for the space, to efficiently evaluate
all the computations needed in our algorithms and for a convenient way to express the
constraints which define L?([0, 1])". In particular, we consider the basis of quadratic
splines with equispaced knots in [0, 1]. The reason for this particular choice is two-
folded. First of all, splines of degree greater than one enjoy the nice property of uniform
approximation of all continuous functions as the maximum distance between knots goes
to zero, in turn this means that the closure of the linear space generated by the spline
basis w.r.t the L, norm coincides with Lo ([0, 1]). Secondly, quadratic splines are par-
ticularly well suited to characterize monotonic functions by looking at the coefficients
of the (quadratic) B-spline expansion, as shown in the next Proposition.

Proposition 32. Let {z/Jf ‘]-]:1 be a basis of B-splines of order k defined over the knots
X1, ..., ke Let f(x) = ijl a; % (x), then:

1. If the coefficients {a;} are monotonically increasing (decreasing) f is monotoni-
cally increasing (decreasing)

2. If k = 2, then 1. holds with an “if and only if”

Before proceeding, let us fix some notation. From now on, we omit the dimension
index “k” for the spline basis, writing ¢; for @/)12., moreover we will let {1; 3-7:1 with fixed
J > 0 denote a B-spline basis in L ([0, 1]).

Remark 27. Let R'" be the set of vectors v € R’ with nondecreasing coefficients. That
is, letting G = {gi;} be the J x J binary matrix such that }; g;jv; = v; — v;i_1, for any
element v € R’ it holds that Gv > 0. Using Proposition 32, through the coordinates
operator; the set Ly([0,1])" n Span{i;}7_, is fully identifiable with R”', endowed with
the metric given by the symmetric positive definite matrix E with entries

Ei; = (i, 5 1o (j0.1])- (6.9

The norm induced is therefore ||x|% = =T Ex.
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Remark 28. It is possible to find a basis for R” with vectors lying in R’" (and so in X ;),
namely the vectors (0,...,0,1), (0,...,0,1,1) etc. In other words, Span(Ly([0,1])T n
Span{i; JJ:1) = Span{@bj}j:l for every J > 0. This tells us that the convex cone
of monotone splines is indeed quite big inside the spline space, and this a priori is
beneficial for extrinsic methods, especially for PCA.

From now on, to lighten the notation, we deliberately confuse the coefficients of the
splines, living in R or R/ (with the metric given by E), with the corresponding spline
functions living in the subsets of Ly([0,1]) given by Ly ([0, 1])! n Span{t;}7_, and

j=1
Span{i;}]_,.

Remark 29. Lastly, we point out that R’" has the structure of a convex polytope, since
the constraints given by Gv > 0 (guaranteeing that v € R’") are linear. Such geo-
metric property makes optimization on R’" handy and is key for the empirical methods
developed in the remaining of the paper.

As a consequence of Remark 29, the optimization problem given by the projection
of a vector v € R’ onto R’" can be formulated as follows:

gt (v) = argmin v — w||g. (6.10)
w=0
The computational complexity required to solve (6.10) is at most cubic in the number
of basis elements J (Potra and Wright, 2000).

Preliminary analysis showed that solving the optimization problem in (6.10) com-
pares favorably with the Pool Adjacent Violators Algorithm (PAVA) in Ayer et al. (1955).
In particular, computing PAVA with n = 100 approximation intervals is roughly eight
times slower than (6.10) with J = 20 (a reasonable choice, leading to negligible ap-
proximation error, in our examples, with a quadratic spline basis). Increasing n = 1000
for PAVA makes it 700 times slower than (6.10).

In addition to that, resorting to a discretized approximation of quantiles would also
increase the cost of the projected PCA, due to the need of using some functional PCA
implementation, as opposed to the low-dimensional multivariate model we are able to
implement with the B-spline basis functions.

6.5 Empirical Models with B-splines

In this Section, we present the empirical counterparts of the projected PCA defined in
Section 6.3 and provide an illustrative example of projected linear regression, namely
when both the dependent and independent variables are distributions.

Let {¢, }3]:1 be a fixed quadratic B-spline basis. Upon approximating the observed
quantile functions with their spline expansion, thanks to Remark 27, we can develop
our methodology in R”, considering the metric induced by E instead of the usual one.
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6.5. Empirical Models with B-splines

Indeed, given a vector w € R”, we can identify the corresponding function in L, by the
map w — 31/,

For the projected PCA in Section 6.5.1 and for the geodesic PCA in Section 6.5.3
we consider observations F; , ..., F ", and let [, be the centering point of the PCA. In
our examples, Fj;” will always be the barycenter of the observations. As a preprocessing
step, we approximate each of these quantile functions through a B-spline expansion and
denote by a; = {a;;}; and ag = {ao,}, the coefficients of the spline representation asso-
ciated to I, and Fj; respectively, thatis, I, ~ Z;]: a;;1;. For the projected regression
in Section 6.5.2, let observations {(F, F,");}7-,, where the F;’s are realizations of the
independent variable Z and the F;’s are realizations of the dependent variable ). We

apply the same preprocessing step and let agz) and agy) denote the coefficient of the

spline approximation of F; and F; respectively.

6.5.1 Empirical PCA

Denote with A the (n x J) matrix with rows @y, ..., a,. As in standard PCA, the first
principal component centered in a is found by solving the optimization problem:

wi = arg maxz a; — ag, w)p|* = arg max | AFw|? (6.11)

w:w|p=1" wi|w|p=1

where A is the matrix whose i—th row is given a; — aq. The optimization problem (6.11)
can be solved similarly to a Rayleigh quotient: using Lagrange multipliers, (6.11) is
equivalent to

Lw):=w (AE)Y Y AEw— \Nw' Ew —1) (6.12)

Deriving (6.12) w.r.t w and equating the derivative to zero shows that the solutions to
dL(w)/dw = 0 are the eigenvectors of the matrix AT AE. Hence, ordering the eigen-
values of AT AFE in decreasing order, the first principal component w} corresponds to
the first eigenvector. Using similar arguments it can be shown that w3, ... w7 corre-
spond to the remaining eigenvectors.

Once the first £ principal directions w, ..., w; are found, the projection of a new
observation z* = Z}]:1 a;j1; onto U)k{’“"0 (see Definition 35) is found exploiting Propo-
sition 30. In particular, the following optimization problem is to be solved:

arg min| ({a* — ag, w*>p — \)¥_||
)\jER

k (6.13)
s.t. G(Z Aw] + a0> >0
i—1

which is equivalent to the minimization of a norm inside a polytope, that is a well-
studied problem in R’ (see Sekitani and Yamamoto, 1993) and there exist a variety of
fast numerical routines to solve it.
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6.5.2 Empirical Regression

In this section, we provide the details of the estimation procedure for a projected regres-
sion model where both the independent and the dependent variables are distribution-
valued. It is straightforward to extend our methodology to cases when only one of these
variables is distribution-valued and the other one takes values in RY.

First, we outline how to obtain an estimator for the linear operator I in Definition 38.
Following Section 6.3.2 we first embed both ) and Z in L ([0, 1]) through the inclusion
operator Lo([0,1])" < L([0, 1]), and assume the functional linear model presented in
Ramsay (2004) and Prchal and Sarda (2007)

V() =alt) + fol B(t,s)Z(s)ds + &(t), te0,1] (6.14)

so that I' = I, g is the operator I',, 5(v)(¢t) = a(t) + Sé B(t, s)v(s)ds. The goal is then
to estimate « € Lo([0,1]) and 8 € Lo([0,1]?). Further, we assume that ¢ and Z are
uncorrelated: E[Z(s)e(t)] = 0 for every t, s € [0, 1].

Consider now observations {(F, F,");}i_, and the corresponding spline coeffi-

cients. Further, we project () on the same spline basis, so that o ~ Z}le 0.9 (j) and
/3(t, s) on the basis on [0, 1]* with J x .J elements, so that 3(¢, s) ~ Z;{j,:l Osij0i(t);(s).
Neglecting the spline approximation error, model (6.14) entails

a =6, +0sEa” +a?,  i=1..n (6.15)

2

where al@ denotes the spline expansion coefficients of the unobserved error ¢;().

We propose to estimate (6.15) using the same approach of Prchal and Sarda (2007),
but extending it to account for spline approximations for both dependent and indepen-
dent variables. We focus only on the estimate O3 of O3 since once such estimate is
obtained, the estimate for a,, can be straightforwardly derived, (see Cai and Hall, 2006)
as:

0, =a — OsEa

where a(¥) and a(?) are the means of a¥) and a*) respectively.
The estimator ©p is found by penalized least square minimization:

~ 1& - Jy—
Op = argmin — Z I <a§y) — a(y)> — OF (ag ) a(z)) |I> + pPen(1,0)  (6.16)
e "3

where p > 0 is a penalization parameter to be fixed (usually through cross-validation)
and Pen(1, ©) is a penalization term defined in Prchal and Sarda (2007).

Briefly, the term Pen(1, ©) in (6.16) penalizes both the norm of 3(t, s) and its deriva-
tives, thus favoring smoother solutions. As shown in Prchal and Sarda (2007), (6.16)
has a closed form solution. Nonetheless, the form of our solution differs from the one
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6.5. Empirical Models with B-splines

presented in Prchal and Sarda (2007), since they work directly on discretized functions
while we propose to estimate spline coefficients, and some care must be taken since
they can use (up to scaling) the usual inner product in the Euclidean space of discretized
functions, while we must consider the inner product induced by £. However, the proce-
dure for obtaining our result is identical to the one in Prchal and Sarda (2007). Hence,
we only report the expression for the estimate.

Let C be the matrix with entries

A 1 = z z
Cks = <E Z=21<a§ )7 bk>E a'z(' )7 bs>E>

where by, and b, are the k-th and s-th elements of the standard Euclidean basis in R”.
Further let D the matrix with entries

. 1<,
Dy = <ﬁ Z<a§ )7 br)E a,(y), bs k-
i=1

Finally, let £’ denote the matrix with entries E; =< 1;,1; > (where ¢ denotes the

first derivative of the B-spline basis function 1), C, = ET ® (C' + pE'), and P =
ET® E + ET ® E', where ® denotes the Kronecker product. Then the solution of
(6.16) can be expressed as

vec(@g) = (C, + pP)"'vec(D)

where vec(-) denotes the vectorization of the matrix.
Finally, our projected regression model is the composition of the operator induced
by (0., Op) with the projection on R'/:

E[az(y) | az(‘Z)] = FP(GEZ)) = g (éa + @ﬁEa52)> .

6.5.3 An alternative optimization routine for the geodesic PCA and a comment
on the computational costs

We now show how the framework in Section 6.4 can be employed also to derive faster
numerical algorithms to find the global and nested geodesic PCA as of Definition 39
and Definition 40.

Proposition 33. (Global geodesic PCA) A k dimensional global geodesic PC centered
in ay is the subset of R’! spanned by {w, - - - , wy}, linearly independent, which solve:

n k
arg min ZHai —ag — Z Aij - w;l|
o} i 6.17)

S.1. G(Z)\U’lﬂ] + ao) =0
J
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Proposition 34. (Nested geodesic PCA) With the same notation as above, a k dimen-
sional nested geodesic PC, centered in ay is the set spanned by {w, - ,wy} in R,
where the w;s are found recursively from w to wy, such that wy, is a solution, for every

h, of:

n
arg min Z la; — ap — Nw|?%,
A wimy

st {wj,wyp =0, j=1,...
G(hw+ao) >0, Jwlp =1

o1 (6.18)

To solve (6.17) and (6.18) we employ an interior point method using the solver
Ipopt (Waechter and Biegler, 2006). When comparing our implementation with J = 20
spline basis and the one in Cazelles et al. (2018), we notice a substantial performance
improvement, by a factor of 35 for a data set of n = 100 distributions, due to the fact
working with spline approximations reduces greatly the number of parameters in the
optimization problem.

Further, note that (6.17) and (6.8) seem extremely similar. However, in (6.8) the
optimization is carried out having fixed w7, ..., w; and for a single observation, while
in (6.17) the optimization is done over a much larger set of parameters. In fact, the
number of parameters in (6.17) is (n+ k).J, hence the computational complexity needed
to solve (6.17) is cubic in both the number of bases and the number of observations. On
the other hand, the projected PCA requires a linear time in the number of observations
(computation of AT AFE) and cubic time in the number of basis .J (eigendecomposition
and projections of new observations).

6.6 Asymptotic Properties

In this section, we study the convergence of the proposed projected empirical methods.
First of all, we show that as the number of spline basis .J increases, the error due to the
spline approximation vanishes if the data is sufficiently regular. Further, under a suitable
set of assumptions, we establish consistency results for the projected PCA and for the
projected distribution on distribution regression.

6.6.1 Convergence of Quadratic B-splines

In the following, denote with W/ ([0, 1]) the space of functions whose weak derivatives
up to order k belong to L,.([0, 1]), further denote with D the (weak) derivative operator,
sothat Df = f', D?f = f” and so on,

Proposition 35. Let p a probability measure on R, F, its quantile function such that
F e W5°. For each J let {1; 3]:1 denote a quadratic B-spline basis on J equispaced
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knots in |0, 1]. Then there exist a sequence of spline functions S; = ijl AN YD pith

j ’

)\;J) monotonically non-decreasing in j for every J, such that:

1S5 = Fy oo < CID*f oo 2
with - = DF, and C' > 0 constant.
Let us remark two important facts.

Remark 30. Since the inclusion Ly ([0, 1]) < Lo([0, 1]) is continuous, thanks to Holder
inequality, the convergence rates hold also for the Lo norm. By default we will use the
Lo norm if not stated differently.

Remark 31. By Poincaré inequality, if |D?f|l,, < C then f belongs to a sphere in
Wi ([0,1]) whose radius depends on C' and on the Poincaré constant of [0, 1]; vicev-
ersa, all the elements in the sphere of radius C' in W3°([0,1]) clearly have (weak)
derivatives bounded by C.

6.6.2 Consistency

In this Section we prove the consistency of the projected methods under some assump-
tions on the data-generating process. In particular, we show that that there exists a
number of basis functions J > 0 and a sample size n such that the error committed by
the empirical models in Section 6.5 is smaller than € > 0, for any fixed ¢.

PCA

Consistency of spline-based PCA for functional data has been addressed, among the
first, by Silverman et al. (1996) and Qi and Zhao (2011). As one of the main building
blocks of our projected PCA is the PCA in the ambient space, that is Ly([0, 1]), it is
natural to follow Qi and Zhao (2011) in making the following assumptions. Consider
data pi1, ..., ., Fy ..., F, the corresponding quantile functions, then:

(P1) The data generating process satisfies |, ..., F,~ ~ F with the I, independent
and E[F] = 0.

(P2) Fy,...,F, can be approximated by functions in W3° with uniformly bounded
third derivative.

(P3) E[|F, (t)|*] <0, i=1,...,n.
(P4) The eigenvalues of the covariance operator of / have multiplicity 1.

(P5) The eigenfunctions of the covariance operator of F belong to some bounded set
in W5°([0,1]) = WZ([0, 1]).
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Before stating the main results, let us comment on assumptions (P1)-(P5). First
of all, (P2) is essential in order to apply Proposition 35 and get uniform errors on the
data set. Moreover, (P2) is satisfied, for instance, if the [ ’s lie in the Lo-closure of
a ball of radius M > 0 in W3". (P4) is a rather standard condition and is satisfied if
Wiy -y i € Wy(R). (P4) and (P5) imply the assumptions that in Qi and Zhao (2011)
are used for the consistency results. In particular, (P5) is stronger than the corresponding
assumption in Qi and Zhao (2011), where the eigenfunctions are assumed to belong to
W2([a,b]). Similarly, in such work, there is no counterpart of assumption (P2); in fact
we need these stronger regularity conditions to get uniform errors when using B-splines.
Still some of the examples Qi and Zhao (2011) provide of situations satisfying their
assumptions, meet also our requirements. Finally, the zero-mean assumption in (P1)
might seem a little odd, since we know that the quantile functions are monotonically
nondecreasing. However, observe that it is always possible to subtract the empirical
mean from the observations to satisfy (asymptotically) this assumption.

Let J denote the dimension of a quadratic B-spline basis on [0, 1] and let a; the
coefficients of the B-spline approximation of F; . In what follows, to lighten the nota-
tion, we refer to a set of spline coefficients both as elements of R’ with the E-norm, or
as functions in L, without making explicit reference to the coordinate operator and its
inverse.

Proposition 36. Under assumptions (P1)-(P5), for any € > 0 there exists a sample size
n > 0 and a number of basis functions J > 0 such that:

1 1
— N2 J N2
max — E (Fy,w)j, — max — E <ai,w>E‘ < Ke
wlzy=1n 4 =17 %

for some constant K > 0.

Proposition 36 ensures the consistency of the B-spline approximation of the PCA
for monotone functional data in /' which is equivalent to the consistent estimation of
the projected principal directions.

Suppose now to have computed U = {w;*}¥_,, that is the approximations of the
principal directions U, = {w;}F_, found with J basis functions. We observe that
Sp(U!) n Ly([0,1])T = Sp(UY) n R7T. Since for any set of coefficients A, we have
the convergence >, \yw;* — Y \,w;, we obtain that the projection of a point onto
Sp(U{) n Ly([0,1])" converges to the projection onto Sp(Uy) N Ly ([0, 1])T. Thus we

also have convergence of the projection onto the principal components.

Regression

We consider model (6.14) given samples {(F, F;");}i_,. We make the following as-
sumptions:

(R1) The data generating process satisfies (6.14) and E[Z(s)e(t)] = 0 for every ¢, s €
[0, 1].
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(R2) av e Ly([0,1]) and B € Ly([0, 1] x [0, 1]).

(R3) With probability 1, each quantile function in the samples {(F, F},");}i-, lies in-
side a sphere of radius K > 0 in W3 ([0, 1]).

Without loss of generality, suppose that both the dependent and the independent
variables have been centered by subtracting their mean so that E[Z] = E[)] = 0 and
a=0.

The strategy to prove the consistency of the projected linear regression is the follow-
ing. First of all, we prove that the estimator &) J converges to the estimator éps, defined
in Prchal and Sarda (2007), for large enough n and J. Second, we exploit the con-
sistency of the estimator in Prchal and Sarda (2007) combined with the approximation
results of the metric projection, to establish consistency in terms of the prediction error
of our projected regression operator.

Briefly @ps is obtained by minimizing an objective function similar to the one in
(6.16), but where the spline approximation is used only for ©, while the F;’s and the
F,;’s are assumed fully observed, and not approximated through splines. Calling B the

vector of functions with entries ¢y, ..., ¥, (:)ps is defined as:

~ 1
Ops = in— Y ||F> —(F;,BTOB)|* + pPen(1, O).
PS arg(;mnnzilll i — (F )| + pPen(1, ©)

Convergence of ©; to Opg is shown in the next proposition

Proposition 37. Under assumptions (R1)-(R3), if the number of samples is big enough
© and O exists with probability close to 1, and there is J > 0 such that ||Ops —
@JHE®E < E.

Let Bps and /3, be the kernels Bps = BTOps B and 3; = BTO, B. Since ngs(s, t) —
A 7(8,t)| Lo0,172) = |Gps — O o, we established strong convergence of our kernel
to the estimator of Prchal and Sarda (2007). This implies that the consistency results
for the estimator éps holds also for © 7, with respect to the seminorm induced by the
covariance operator of Z.

Specifically, given Z H-valued random variable and its covariance operator Cz, for
any o € Lo([0,1]?), we consider the semi-norm on Lo ([0, 1]?) given by:

el = f[ (ool ). )

Thus, the following result is immediately implied since strong convergence implies
seminorm convergence (see Appendix 6.11).

Corollary 7. For J > 0 big enough E[||3 — BJHCZ] <e.
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Proof. We use the seminorm triangle inequality:

18 = Bilez < 18— Blez + 18— Bile-
The first term on the right hand side converges to zero thanks to Theorem 2 in Prchal

and Sarda (2007), while the second term converges to zero thanks to Proposition 37 and
the previous observations. 0

Lastly, we need to take into account the projection step. First, we notice that || —
B|r, corresponds to the expected prediction error, in fact, as in Prchal and Sarda (2007):

8= Brlec = | B[800 - Bta? 1]

further, by Holder’s inequality E [KZ ) Dl ‘ 3 J] — 0, which straightforwardly

yields E | [(z) = I, ()| B | — 0.

Thus, the following simple lemma ensures the consistency of the spline approxi-
mation of the projection on X and leads to the consistency of the projected regression
in terms of prediction error. Again, following Remark 27, we can identify the space
monotone B-splines with .J basis functions with R’". Hence, to lighten the notation,
we denote IIps+ the metric projection operator onto the space of monotone B-splines
with J basis functions.

Lemma 13. Given 3, — S in H, for any € > 0 there exists n,J > 0 such that
Mgt (Bn) — Mpyopt (B)] < e

6.7 Numerical lllustrations for the PCA

In this section we perform PCA on different simulated data sets and on a real data
set of Covid-19 mortality data in the US. In particular, on the simulated data sets we
compare the performance of our projected PCA (in terms of approximation error and
interpretability of the directions) with the ones of intrinsic methods, showing that the
projected PCA is a valid competitor in a diverse set of situations. For the Covid-19 data
set, we compare inference obtained using the projected, nested and log PCA, highlight-
ing the practical benefits of the projected PCA over the log one.

For the projected, nested and global PCAs we need to fix a B-spline basis to express
the quantile functions. In particular, we fix an equispaced quadratic B-spline basis with
J interior knots on [0, 1]. Here, the number of basis J is always fixed to 20, which
provided a negligible approximation error of the quantile functions. We did not observe
any appreciable change when increasing it. In Appendix 6.13 we show further simula-
tions where we perform sensitivity analysis as the number of basis increases for a fixed
sample size, we provide empirical confirmation of the consistency results in Section 6.6
and give practical guidance on how to choose J.
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6.7.1 Simulation studies

We consider three different simulations to compare both the interpretability and the
ability to compress information of different PCAs.

We compare our projected PCA with the nested and global geodesic PCAs (Bigot
et al., 2017; Cazelles et al., 2018) and the simplicial PCA (Hron et al., 2014).

Briefly, the simplicial PCA applies a transformation that maps densities defined on
the same compact interval [ into functions in Lo([), called centered log ratio. Then,
a standard L, PCA is performed on the transformed pdfs and, by the inverse of the
centered log ratio transform, the results are mapped back to the space of densities, called
Bayes space (for a more accurate definition, see Egozcue et al., 2006). In particular, we
remark that, to be well defined, the simplicial PCA requires that all the pdfs have support
equal to I, which is a strong assumption in practice. Further details about simplicial
PCA are given in Appendix 6.12.

As for the projected PCA, to compute the simplicial PCA, we resort to a B-spline
approximation, but this time of the transformed pdfs. Hence, we need to select a B-
spline basis on the support of the pdfs /. In this case, we fix a cubic B-spline basis
with

J =J=20

interior knots on /, as this choice yielded a negligible approximation error for the trans-
formed pdfs.
In the first scenario, we simulate data from

pi(x)océ exp ((z — p;)?/(207)) I(x € [-10,10]), i=1,...100

i ~ 0.5N (=3, (0.2)%) + 0.5N (3, (0.2)?)
o; ~ Uniform([0.5,2.0])

(6.19)

Where “proportional to” stands for the fact that we confine the density to the support
[—10, 10] and renormalize it so that it integrates to 1.

Observe that there are two sources of variability across the pdfs from the data gen-
erating process (6.19). The first one is the location of the peak 1; and the second one is
the width of the distribution around the peak, controlled by o;. See Figure 6.3.

Figure 6.4 shows the first two principal directions obtained using the different meth-
ods. We can notice several differences between them. Focusing on the first principal
direction, we can see that the simplicial, projected and nested PCAs detect a change in
the location of the peak of the pdf. In particular, the first direction for the Wasserstein
PCAs represents a shift from left to right of this peak, while for the simplicial PCA the
first direction is associated to a peak in 3 (blue lines, negative values of the scores) or to
a peak in —3 (red lines, positive value of the scores). This also highlights the difference
in the geometries underlying the Wasserstein and Bayes spaces. Looking at the second
principal direction instead, we can see how in the Wasserstein PCAs it clearly represents
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-10.0 -75 =50 =25 0.0 25 5.0 7.5 10.0

Figure 6.3: Data set of pdfs generated from (6.19)

SIMPLICIAL WASS - PROJECTED WASS - GLOBAL WASS - NESTED
. 0.30
0.8 0.4 4
0.6 0.3 1
o
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0.0 T 0.0
-4 -2 0 2 4 -5 0 5
0.7 0.7 1
0.8 0.6 4
0.6 0.6
0.5 1
0.6 0.51 0.5
0.4 1
2 0.4+ 0.4
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0.2 1 ﬁ
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0.0+ . 0.0 - 0.0 - 0.0 -
-10 -5 0 5 10 -5 0 5 -5 0 5 -5 0 5

Figure 6.4: Top row: first principal direction. Bottom row: second principal direction. Each
line represents the pdf associated to Aw; where w; is the i—th principal direction (i = 1,2)
and X is a score ranging from —2 (darkest blue) to +2 (darkest red).
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a change in the width of the distribution, while for the simplicial PCA the interpretation
is somewhat obscure.

The global geodesic PCA deserves a separate discussion. Indeed, from Definition 39
it is clear that a global principal component is a convex set without any notion of prefer-
ential directions, so that it is not possible to interpret separately the variation along the
first and second direction found by the global PCA.

Now we present two additional simulations that quantify the amount of information
that is “lost” by performing the PCA. As a metric, we consider the reconstruction error,
that is, the quantity

REj, = — ZW2 ) (6.20)

z 1

where the F; ’s are the observed probability measures, }?’[ are the reconstructed ones
and k is the dimension of the principal component. More in detail E‘ is found by first
projecting (F;” — Fy ) into R* using the PCA and then applying the inverse transfor-
mation. Informally, the reconstruction error is a measure of the quantity of information
lost by applying the PCA as a black-box dimensionality reduction.

As evident in Equation (6.20), we measure the performance of PCAs just in terms of
Wasserstein metric. This is likely to favor the performance of the Wasserstein PCAs over
the simplicial one. Thus, the interesting performance comparison is the one between the
geodesic PCAs and the projected PCA. Nevertheless, we think that is worth reporting
also the results for the simplicial PCA, which is an intrinsic method in the Bayes space,
to show that the underlying metric structures are extremely different. This also helps
to appreciate the results in Section 6.8. Given the difference in the metric structure
between Wasserstein and Bayes spaces, we believe that the choice between simplicial
and Wasserstein frameworks is not trivial and should be application-driven.

To measure raw performance differences between geodesic and projected PCAs, we
simulate data so that there is little recognizable structure in them, unlike in the previous
example. The data generating process is as follows:

Zw” eXp (z — pij)?/(20%)) I(z € [-10,10]) + 10, i =1,...100

~ DII‘IChletK(l /K)
(11i5, aij) ~ N (dp;; 0, 2%)Uniform(do;, 0.5, 2.0)
(6.21)
Observe that (6.21) is a finite dimensional approximation of the Dirichlet Process mix-
ture model, a popular workhorse in Bayesian nonparametric statistics, that is well known
to be dense in the space of densities on R, see for instance Ferguson (1983). An example
of the kind of pdfs generated from (6.21) is shown in Figure 6.5(a).
To separate the effect of the B-spline smoothing procedure, in this scenario we eval-
uate the reconstruction error in (6.20) considering fi; to be the reconstructed quantile
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Figure 6.5: Left panel: example of simulated data set for Scenario 2. Right panel: recon-
struction error as a function of the dimension of the principal component employed for the
different methods. The solid lines represent the mean of 10 independent runs on independent
data sets from (6.21) and the shaded area represent + one standard deviation.

functions (for the Wasserstein PCAs) or pdfs (for the simplicial PCA) and p; to be the
probability measure represented by the B-spline approximation of the quantile function
or the (centered log ratio of) the pdf respectively.

Figure 6.5(b) shows the reconstruction error as a function of the dimension of the
principal component, that is, R}, as a function of k. We can see how the three Wasser-
stein PCAs consistently outperform the simplicial one. Moreover, as to be expected,
the global geodesic PCA obtains the lowest reconstruction error for all the choices of
dimension &, with the nested geodesic PCA being a close runner-up. However, the com-
putational cost of finding the nested or global geodesic PCA can become prohibitive
as the sample size or the number of bases in the B-spline expansion or the dimen-
sion k increases. For comparison, finding the 10-dimensional projected PCA is around
1,000 times quicker than finding the corresponding global geodesic PCA and 200 times
quicker than finding the nested geodesic one.

As an additional simulation, in Appendix 6.13 we investigate the effect of the num-
ber of B-spline basis J. In particular, we conclude that, for a fixed dimension k the
reconstruction error (6.20) increases with the number of basis functions, both for the
projected and the simplicial PCA. Furthermore, we also observe that the reconstruction
error for the simplicial PCA exhibits a larger variance than the reconstruction error for
the projected PCA. Our insight is that this is due to the different degree of smoothness of
the pdfs and the quantile functions. Since the quantile functions are in general smoother
than the pdfs, their B-spline expansion should have lower variance.
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6.7.2 Assessing the reliability of the projected PCA

A classical measure of performance of the standard Euclidean PCA, also useful to deter-
mine the dimension of the principal component to use, is the proportion of the explained
variance. For a k-dimensional Euclidean principal component, this quantity is easily
computed as a ratio of eigenvalues: Z;‘le Aj / > =1 j- Upon truncating the series at the
denominator, the same quantity can also be computed for PCA in infinite dimensional
Hilbert spaces.

Due to the projection step involved in our definition of PCA, we argue that the pro-
portion of explained variance might not be a reliable indicator of performance, nor
should it be used to guide the choice of the dimension k. Instead, we propose a fast
alternative based on the Wasserstein distance that we believe better represents the prop-
erties of the projected PCA, that is, the normalized reconstruction error:

%Z?:l W2(Ff> ﬁ’zi)
%Z?zl WQ(F;'ia F(;>’

NRE), =

where the numerator corresponds to the reconstruction error in (6.20) and the denomina-
tor is the average distance between the observed measures and their barycenter. Observe
that in Euclidean spaces, this quantity is closely related to the proportion of explained
variance, since in Euclidean spaces maximizing variance in a subspace, amounts to min-
imizing the average distance from the subspace to data points.

Given its extrinsic nature, for a fixed dimension, the projected PCA might sometimes
fail to capture the variability of some particular data set and, in those situations, an
intrinsic approach should be preferred. However, given the high computational cost
associated to geodesic PCAs, one would carry out such analysis only knowing that the
results would be significantly better than the ones obtained by projected PCA. This calls
for discerning whether the poor performance of projected PCA is due to its extrinsic
nature or rather to the scarceness of structure in the data set under consideration: in the
former situation it is likely that a geodesic approach would yield better results, in the
latter instead, it is likely that results remain the same.

We propose now two empirical indicators of the “reliability” of the empirical pro-
jected PCA. The first one measures, once a k-dimensional principal component is found,
how reliable are the projected principal directions and the second one gives an idea of
how different the projected PCA and the L, PCA are. To assess the interpretability of
the principal directions and the scores obtained with the projected PCA, we first com-

min

pute for every principal direction wj; the quantities 7;"" and n;"** such that

min

™ = min{ag + nwj, € RJT}
neR

where ay is the spline coefficient vector associated with the barycenter F;;". The scalar
nre* is found analogously. Hence (n)* wj, n***w;) is the segment spanned by the
principal direction living inside the convex cone R”". If the scores of all observations
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min ,,max

along this direction lie within the range (7™, 7j"**), then the variability captured by
(empirical) projected PCA can be decomposed along the principal directions, whose
scores are then highly interpretable. Contrary, the PCA scores outside (7", n®*) will
be associated with functions which are not quantiles, and thus limiting the interpretabil-
ity of the direction. Hence, we propose the following interpretability score

1 .
IS, =1-— - ; d (sin, [0 021) /|5l (6.22)

where s;;, is the score of observation ¢ along direction / according to the projected PCA.
A value of 15, equal to one corresponds to perfect interpretability, that is, projected
PCA behaves like a standard Euclidean PCA along direction . On the other hand,
values of 1.5}, closer to zero indicate that the decomposition of the variance along the
principal directions lies outside R/ for direction 4. The interpretability score can be
fruitfully used also to evaluate the directions found with the nested PCA, upon replacing
the s;’s in (6.22) with the scores given by the nested PCA.

Note that the 1.5}, score is useful to interpret the directions one at a time. However,
it can be the case that some scores along one direction A’ lie outside the (3™, 7i*>)
range but that the L, projection on the h > h’ component still lies within the pro-
jected component. For instance, this could imply that a projected PC could be similar
to a nested one despite having very different directions. A discrepancy between the
two can appear when the projections of some data points on the Ly PCA lie outside
R/, Using the terminology of Proposition 30 this can be measured in terms of dif-
ference between the projections I, (F~* — Fy") and sy, )n(x—a0)(F* — Fy ) =
Hspw)n(x—z0) Hp(F~* — Fy)), for a given observation F~*. To quantify the loss of
information at the level of the component (instead of direction), we propose to measure
the “ghost variance” captured by the L, PCA:

Vi = = N (Fy — Fy) 1 (0~ By ) /IF — Fy [l
ni3 Ux
that is, the G'V}, score measures the quantity of information that is lost due to the projec-
tion step or, in other words, the information that we trained our PCA on, but that does
not appear in the Wasserstein Space. If GV, = 0 then all the information captured by
the L, PCA is inside the Wasserstein Space, then the projected PCA coincide with the
nested one by definition.

Finally, although this situation never occurred in our experience, it might happen
that GV}, is small but some 1.5, (k' < k) is large. This means that the subspace identi-
fied by the projected PCA 1is suitable for representing the data, but the single principal
directions are not interpretable. In this case, we suggest to take a hybrid approach: use
the projected PCA as a fast black-box dimensionality reduction step, thus reducing the
dimensionality of each observation from J to k, and then use the nested PCA, in di-
mension k, to estimate the directions, the main advantage being the reduction in the
computational cost to estimate the nested PCA in this lower dimensional space.
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Figure 6.6: Left panel: distributions of age at the time of death for Covid-19 patients divided by
sex.: orange corresponds to female and blue to males. Different lines correspond to different
US states / inhabited territories. Right panel: reconstruction error as a function of the di-
mension of the component for different PCAs. The 0-th principal component is the empirical
mean.

6.7.3 Analysis of the Covid-19 mortality data set

We perform PCA analysis on the Covid-19 mortality data publicly available at data.
cdc . gov as of the first December 2020. The data set collects the total number of deaths
due to Covid 19 in the US from January 1st 2020 to the current date, data are subdivided
by state, sex, and age. In particular, the ages of the deceased are grouped in eleven bins:
[0,1),[1,5),[5,15),[15,25),[25, 35),[35,45), [45, 55), [55, 65), [ 75, 85), [85, +0) but
we truncate the last bin to 95 years for numerical convenience. Further, we remove
Puerto Rico from the analysis because it presented too many missing values. Our final
data set, shown in Figure 6.6(a), consists of 106 samples of the distribution of the ages
of patients deceased due to Covid-19, divided by sex and pertaining 53 between US
states and inhabited territories.

We apply our usual B-spline approximation with J = 20 basis to the quantile func-
tions obtained starting from the histograms in Figure 6.6. This choice of .J yields an
average approximation error, in terms of Wasserstein distance, of 0.02. An error this
low is to be expected since the quantile functions are piecewise linear functions defined
on eleven intervals.

We use this real data set to make a hands-on comparison of the inference that can be
obtained employing the projected, nested and log PCA.

We start by comparing the projected and nested PCAs. The first direction found
by the nested PCA is identical to the one found by the projected while the second is
extremely close: the cosine between the two principal directions is approximately 0.99.
In line with this, the interpretability scores equal /57 = 1 and IS ~ 0.89, while
GV, = 0.05. Moreover, the two-dimensional projected principal component explains
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more than 90% of the Ly variability and N RE> ~ 0.05 for both projected and nested
PCA. Given the reconstruction error and the GV, score, we can conclude that the two-
dimensional projected principal component provides a very good fit to the data, and
that both selected principal directions are well behaved with respect to their scores,
guaranteeing interpretable results.

Considering the discussion above and the fact that both the projected and nested
PCA employ metric projection to map data points to the k-dimensional principal com-
ponent, inference obtained with the nested PCA and with the projected one is almost
identical in this case and we show results only for the projected PCA in Figure 6.7. In
particular, the first principal direction shows that the greatest variability is due to the
elders: low negative values along this direction correspond to most of the mortality be-
ing concentrated among in the 80+ range. The red and the green distributions shown in
the rightmost panel show two antithetic behaviors which correspond to scores along the
first principal direction of roughly —8.5 and 7 as shown in the third panel of Figure 6.7.
In fact, the red distribution is concentrated almost exclusively on the last two bins of
the histogram, with the 85+ bin weighting for more of 60% of the deaths. At the oppo-
site, the green distribution gives more weight to lower age values. The second direction
instead shows variability in the 40 — 80 range. The purple distribution, characterized
by the highest score along this direction, shows that a significant percentage of deaths
occurred in the age range 60 — 75. Finally, the third panel of Figure 6.7 reports the
scores along the first two principal directions for the whole data set, blue dots represent-
ing males and orange dots women. We can appreciate how women tend to have lower
scores on both directions. This is in line with our understanding that Covid-19 is more
severe among the male population (see for instance Lawton, 2020), which explains why
males are more susceptible to death even at younger ages, while deaths among women
are more concentrated in the 70+ age range, being the elders in general more fragile.

The comparison with log PCA requires more attention. First of all, note that the di-
rections obtained with the projected and log PCA are the same by definition, since they
are both obtained performing PCA in Ly([0, 1]), but the principal components may dif-
fer because different projection operators are employed when the orthogonal projection
of a point onto the principal component lies outside of the image of ¢,,, as discussed in
Section 6.3.4. As expected from the comparison between the metric projection and the
pushforward operator in Figure 6.2, the fit to the data of the projected and log PCAs will
be different. In particular, in this case we observe that the log PCA does a worse job
in term of NRE, as shown in Figure 6.6(b), especially when the dimension increases.
This behavior can be also in part explained by the complexity of the numerical routines
needed to approximate the pushforward operator (required by the log PCA) where it is
natural to expect some numerical errors.

More in general, as discussed also in Cazelles et al. (2018), we can conclude that the
log PCA is not suited to study this particular data set because the L, PCA is different
from the nested geodesic PCA (as testified by the GV, score). In fact, apart from the
visual inspection of the Lo principal directions — which are not guaranteed to span the
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Figure 6.7: The first two panels show the variability along the first two principal directions (first
and second panel), using the same visualization technique as in Figure 6.4. The third panel
reports the scores of the projections on the two dimensional principal component (orange
for women and blue for men) and the fourth panel shows three particular distributions, also
highlighted in the third panel. In particular, the red distribution is the one of women in
Vermont, the green one are males in Alaska and the purple one are women in West Virginia.

log-principal components — not much can be obtained from the log PCA in this case,
since it does not provide a consistent way of projecting data points on the principal
component as pointed out in Section 6.3.4.

6.8 Numerical lllustrations for the Distribution on Distribution Regres-
sion

In this section, we propose a comparison between the Wasserstein projected and simpli-
cial (see Appendix 6.12) approaches when the task at hand is distribution on distribution
regression, and show an application of the Wasserstein projected regression framework
to a problem of wind speed forecasting.

6.8.1 Simulation Study

We consider two data generating processes as follows. In the first setting, data are

generating from the Wasserstein regression: independent variables 24, ..., z, are gen-
erated by considering quantile functions F,, ..., F, such that F,; = 2021 a§2)¢§3)
where @Dfn, NN éf’)) is a cubic spline basis over equispaced knots in [0, 1] and agf) =0,
ag) = i1, agj-) = agll + 0ij—1, and (0j2, ..., 0;30) ~ Dirichlet(1,...,1). This data
generating procedure ensures the F;(0) = 0, F;(1) = 1 and F; is monotonically
increasing, cf. Proposition 32. The dependent variables F;, ..., F, are generated us-

ing the same spline expansion of the dependent variables and letting al? = Baz(z). B

i
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‘ First scenario ‘ Second scenario
Wasserstein | (4 x 1077,7 x 1078) | (5 x 1073,6 x 10793)
Simplicial (0.9,2.66) (4 x 10745 x 107%)

Table 6.1: Cross validation (leave one out) errors and standard deviations for the Wasserstein
and Simplicial regression under the two simulated examples

is a randomly generated matrix with rows by, ..., b3, and each b; is generated as fol-
lows: b;; ~ Uniform(0,0,5) b;; = b;j_1 + b;; and b;; ~ Uniform(0, 0, 5), so that the
coefficients al@ are monotonically non decreasing for each ¢ and thus the F);’s can be
considered quantile functions.

We compute the pushforward of the uniform distribution via numerical inversion and
differentiation and obtain the pdf associated to each quantile function. Observe that this
task is easier than approximating the pushforward of a generic . through a generic f (as
Cazelles et al. (2018) do) since the quantile functions are monotonic and we have simple
expressions for all the quantities related to p. Since the simplicial regression takes as
input (a transformation of) the pdfs while the Wasserstein regression works directly on
the quantile functions, and also due to the fact that numerical errors can be introduced
in the data set during the inversion and differentiation, we consider as ground truth the
pdfs and, for the Wasserstein approach, re-compute numerically the quantile functions.

In the second setting instead, we generate data from the simplicial regression model:
independent variables z, ..., 2, are generated by applying the inverse of the centered
log ratio to a random spline expansion as follows. For each i = 1,...,n let p,; =

2?21 aﬁj)@bj(-:)’) where the 1/)](-3)’s are the same B-spline basis as in the previous setting.
(2)
ij

deviation 0.2. The dependent variables are generated by letting p,; = 250:1 az(]y.)wj(-g) and

Here, the a;;”’s are generated iid from a Gaussian distribution with mean 0 and standard

agy) = Bagz), where B is a randomly generated 30 x 30 matrix with entries drawn iid
from a standard normal distribution. Finally the pdfs p.; (p,;) are recovered by applying
the inverse of the centered log ratio to p.; (py;), see Appendix 6.12 for more details.

Note that under the second data generating process, both the dependent and inde-
pendent distributions have support in [0, 1] by construction, whereas under the first data
generating process the independent variables might have a larger support. Thus, to fit
the simplicial regression in the first scenario, as common practice (cf. Appendix 6.12),
we extend the support of all the distributions (both dependent and independent) to the
smallest interval of the real line containing all the supports. This is done by adding a
small term to the pdfs (in our example, 1072) and then renormalizing them.

For both examples, we simulated 100 observations and compared the projected-
Wasserstein and simplicial regression using leave-one-out cross-validation. In partic-
ular, for both approaches we use J = 20 quadratic spline basis and choose the penalty
term p in (6.16) through grid search. Table 6.1 shows the pairs of mean squared error
and standard deviation of the cross validation, the metric to compare the ground truth
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Figure 6.8: Daily average wind speed

and the prediction is the 2-Wasserstein distance. As one might expect, the Wasserstein
regression performs better in the first scenario while the simplicial regression performs
better in the second scenario. However, it is surprising how the Wasserstein geometry
can capture (in terms of Wasserstein metric) dependence generated by a linear struc-
ture which we have shown to be very different from the Wasserstein one, making the
projected regression a promising tool for such inferential problems

6.8.2 Wind speed distribution forecasting from a set of experts

We consider the problem of forecasting the distribution of the wind speed nearby a wind
farm from a set of experts. The data set is publicly available at www .kaggle.com/
theforcecoder/wind-power-forecasting. In particular, data consists of
measurements of the wind speed collected every ten minutes for a period of 821 days
starting from the 31st December 2017. The daily average wind speed is shown in Fig-
ure 6.8.

We assume to have access to a set of experts, that is a set of trained models, that
provide a probabilistic one-day-ahead forecast for the average wind speed. Here, our
goal is to combine this set of experts and provide a point estimate of the wind speed
distribution for the whole day, which can be helpful when planning the maintenance of
the wind mills for instance.

Formally, let K denote the number of experts considered, I, is the quantile func-
tion associated to the probabilistic forecast of the average wind speed for day ¢ given by
expert j = 1,..., K F; is the empirical quantile function of the wind speed for day
1. In particular, we consider K = 4 experts built from the Prophet model by Facebook
(Taylor and Letham, 2018) as follows: model M1 is the classical Prophet, without addi-
tional covariates or seasonality trends; model M 2 includes the ambient temperature as
covariate but not seasonality; model ) 3 includes a yearly seasonality and no covariates
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| R1 R2 R3 R2 RF
MSE | (1.22+1.32) (1.19+1.26) (1.15+1.07) (1.24+1.23) (0.86 + 0.82)

Table 6.2: Mean square prediction error + one standard deviation on the held-out test set.

and model M4 includes both yearly seasonality and ambient temperature as covariate.
The models are estimated using variational inference on rolling samples of 365 days
and produce one day ahead probabilistic forecasts for the average wind speed. The final
sample size corresponds to n = 456.

We consider a trivial extension of the distribution on distribution regression model
in Section 6.5.2 as follows:

K r1
E[Fy; | Fa oo Fagd = Mooy (@ + ) L Bt FL (1 dt)  (6.23)
j=1
Having approximated all the functions through a B-spline expansion, the model reads
K
E[a |a?, ... al)] = Mg (0a + 2 @BanE;)).
j=1

The procedure for estimating 8, and Op,, ... Og, is analogous to the one outlined in
Section 6.5.2.

We compare the prediction performance of five distribution on distribution regres-
sion models. Models R1 to R4 are obtained by fitting model (6.23) using only one of
the four experts, M1 to M4, while the fifth model (RF’) is the “full” model in (6.23)
considering all the four experts. For this comparison, we perform a train-test split of
the 456 days for which the experts produced the prediction, considering the last 100
days as test. We select hyperparameters (namely, the penalty coefficient p in (6.16) and
whether to include or not the intercept term «) by a grid search cross validation on the
training set, and compare the mean square error on the held-out test set. Results of the
comparison are reported in Table 6.2. As expected, the model with the four predictors
(RF) is the best performer. Interestingly, all the other models R1-R4 perform similarly
and present a much higher mean square error when compared to RF’, thus suggesting
that the best performance is achieved by combining the different experts together and no
expert alone can be a good predictor. This is possibly explained by some experts being
able to better forecast one scenario (for instance, light winds) and other experts being
able to better forecast other scenarios.

We conclude with some descriptive analysis. Figure 6.9 shows the point estimates
for the coefficients ;. We can interpret as highly influential for the regression the areas
of the 3;’s with high absolute value, and as negligible area with values close to zero.

We can highlight some differences among the coefficients in Figure 6.9. In particu-
lar, model M1, seems influent when predicting the tails of the distribution, in particular
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Figure 6.9: Estimates of the f3;(t, s)’s evaluated on [0, 1]%. The variable t runs across columns,
and variable s across rows

with negative weights for the left tail and positive weights for the right tail. Model M 2,
seems to be affecting all the steps of the prediction and in particular to be model affect-
ing the most the median of the distribution. Model M3, appears to be, with M2, the
most important model for the prediction: the absolute value in the corresponding regres-
sor (3 is often very high and with noticeable peaks corresponding to areas predicting
the left tail and towards the right tail. Finally, the regressor corresponding to M4 has
very low values thus resulting in minor importance in terms of regression influence.

Interestingly, the experts providing the most precious inputs to our regression model
are M2 and M3, that incorporate only the seasonality effect and the temperature co-
variate respectively, while M4, which incorporates both, seems to be less important.
Hence, the regression model in (6.23) finds more effective combining experts trained
on different covariates than correcting an expert already trained on all the covariates. In
particular, our insight is that M2 is responsible for centering the median of the output
distribution. The tails of the distribution seem to need also the contribution of seasonal-
ity data, given by M 3. Finally, we also observe that the left tail of the wind distribution
seems the most difficult to be predicted, needing very high positive and negative weights
across different models, to be obtained.

6.9 Discussion and Further Directions

In this chapter, we propose a novel class of projected statistical methods for distribu-
tional data on the real line, focusing in particular on the definition of a projected PCA
and a projected linear regression. By investigating the weak Riemannian structure of the
Wasserstein space and the transport maps between probability measures, we represent
the Wasserstein space as a closed convex cone inside an Hilbert space.

Similar to log methods, our models exploit the possibility to map data into a linear
space to perform statistics in an extrinsic fashion. However, instead of using operators
like the exp map or a some kind of boundary projection to return to the Wasserstein
space, we rely on a metric projection operator that is more respectful of the underlying
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Figure 6.10: Estimate of « (left) and prediction of one F, of the test set (right). In the right
panel, the blue line corresponds to the empirical quantile function, the orange one to the

prediction from RF' and the green ones to the average wind predictions obtained from the
experts M1-M4.

metric.

By choosing as base point the uniform measure on [0, 1], we are able to efficiently
approximate the metric projection operator so that our models combine the ease of im-
plementation of extrinsic methods while retaining a performance similar to the one of
intrinsic methods. Further, through a quadratic B-spline approximation, we can greatly
reduce the dimensionality of the optimization problems involved, resulting in fast empir-
ical methods. As a byproduct of this approach, we also derive faster numerical routines
for the geodesic PCA in Bigot et al. (2017).

We study asymptotic properties of the proposed methods, concluding that, under rea-
sonable regularity assumptions, our projected models provide consistent estimates and
that the B-spline approximation error becomes negligible. We showcase our approach in
several simulation studies and using two real world data sets, comparing our models to
intrinsic and extrinsic ones and to the simplicial approach in Hron et al. (2014), conclud-
ing that the projected PCA and regression constitute a valid candidate for performing
inference on a data set of distributions.

Although our projected framework was proven to be viable in many practical situ-
ations, some care must be taken when adopting it, especially when performing PCA.
In fact, the extrinsic nature of our method might not fit every data set, in which case
a more computationally demanding intrinsic PCA might be preferred, see for instance
Appendix 6.14.1 for an example where the projected principal directions are not in-
terpretable. On top of that, performing PCA in the Wasserstein space requires more
attention than performing the usual Euclidean PCA: as pointed out in Appendix 6.14.2,
since principal components are not linear subspaces, decomposing the variance along
the directions (i.e., looking at the scores) must be done carefully, and making sure that
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the directions are indeed interpretable. To assist practitioners, in Section 6.7.2 we have
also proposed two scores that quantify the interpretability of the principal directions and
the discrepancy between the nested and projected principal components.

Several extensions and modifications of our approach are possible. One possibil-
ity is to extend our framework to encompass more models, such as generalized linear
models and independent component analysis. Although this should be straightforward
in theory, the numerical computations could become more burdensome. Furthermore,
as an alternative to our approach based on B-splines approximation, one could use such
B-spline expansion only to approximate the metric projection operator. Another inter-
esting line of research would consist in building hybrid approaches (as anticipated in
Section 6.7.2) to analyze distributions in the Wasserstein space, using both extrinsic and
intrinsic methods to exploit the advantages of both worlds, while mitigating the dis-
advantages. We also think that a deeper comparison between the Wasserstein and the
simplicial geometries could help practitioners in choosing between them.

Finally, as pointed out by an anonymous referee, extensions to encompass measures
supported on R%, d > 1, are of great interest. This is surely a very challenging problem,
due to the geometric structure of W, (IR?). We identify three main obstacles in this
sense. First, the map onto the tangent space is not an isometry because the Wasserstein
space is curved. Second, we lose the nice characterization of the tangent space and
of the image of log,, so that the metric projection operator becomes harder to derive.
Third, the computational cost would greatly increase due to the need of numerically
approximating the transport maps needed to compute the distances.
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6.11 Proofs

Assumptions on x.

Let B:(zg) = {z € H|||z — || < ¢}, a ball of radius ¢ in H. Given a set C, we
refer to aff(C') as the smallest affine subset containing C', found as the intersection of
all affine subspaces containing C'. Similarly 7 (C') is the convex hull of C, the smallest
convex subset of H containing it. The relative interior of a set C'is defined as its interior
considering as ambient space aff(C): relint(C') = {x € C'| 3B.(z) such that B.(zq) N
aff(C') < C}.
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Throughout our paper we assume that the random variable X is such that (1) there
exists o = E[X] and (ii) x¢ € relint(H (supp(X'))) where supp(X) is the support of X'
These assumptions are indeed quite natural and require that the distribution of A has
a well defined barycenter, which is not in a “degenerate” position with respect to the
convex hull of its support, which may happen in infinite dimensional Hilbert Spaces.
See, for instance, Berezin and Miftakhov (2019) for an example of distributions not
verifying this second assumption.

Proof of Lemma 12.

The proof is divided in two steps. First, we prove that (xo+ Sp(Uy)) n X has dimension
k. Then, we show that U" = (zo + Sp(Uy)) n X. Without loss of generality, for ease
of notation, we perform an affine change of variable so that o = 0, but, with a slight
abuse of notation, we keep denoting with X and X the transformed random variable
and the convex cone respectively.

To prove the first part, let #(X') be the convex hull of the support of X" and aff(H (X))
K be the smallest affine subset of H containing H(X). We know by assumption
that there is an open ball in K which contains xy = 0 and is contained in H(X).
Moreover, for every k < dim(K), Sp(U,) < K. Note that we can clearly suppose
k < dim(K), otherwise principal components analysis is useless. With this assumption,
since zyp = 0 is in the relative intern of H(X'), we have k = dim(Sp(Uy) n H(X)) <
dim(Sp(Uy) n X) < k.

Now we prove that a (k, 0)-projected principal component is given by Sp(Uy) n X.
To prove this, let C* be a (k, 0)-projected principal component and A* = A n X, with
A = Sp(Uy): we know (i) g = 0 € A*, (ii) dim(A*) = k by definition and (iii)
A* < IIx(A), so we have A* < C*.

Since dim(C™*) = k there is C linear subspace of dimension % such that C* < C.
Consider C" = C n X: clearly C* < (', so that A* ¢ C* < (. Moreover, A* c (',
which implies A n X < C n X and thus Sp(A n X) < Sp(C n X). The proof
is concluded if dim(Sp(A n X)) = dim(Sp(C n X)) = k. In fact, in this case
A= Sp(An X)and C = Sp(C n X) which means that A — C' and since dim(A) =
dim(C) = k, A and C coincide, proving A* = C*.

To prove this final claim, observe that dim(Sp(An X)) < k implies dim(An X) <
k, which contradicts the proof of the first part of this Lemma. Similarly, dim(Sp(C n
X)) = k since dim(C*) = k by hypothesis.

|
Proof of Proposition 29.
The fact that [T ok (z) — 2| = [II 2pk+1(z) — x| follows easily by noticing that
X X

U)I(O’k - U;o,k-i-l‘
Now, to prove that [T z.x(2) — 2| — 0 as k increases, we first notice that, by the
X

properties of the principal components in H we have Ilg,w,)(r — x¢) Ly xo for
every x € X, which implies |[Is,,)12,(z) — || — 0. Then, denote 2y = ITzo.1 (x)
X
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and let r;, be the line between z; and x. Let:

Ty = argmin |2’ — x|
z'ernSp(Ug)+x0

We clearly have have z;, — x. Finally, by convexity we know z; € U)“;O’k, which implies
[Myzo () = 2] < g, — 2 — 0.
|

Proof of Proposition 30.

Again, without loss of generality, for ease of notation, we perform an affine change of
variable so that xy = 0, but, with a slight abuse of notation, we keep denoting with X
and X the transformed random variable and convex cone respectively.

We start by noticing that being II; the orthogonal projection onto a subspace, z —
k() LSpan(Uy) and thus for v € Span(Uy):

Ja* — vl = 2" — (@) |* + |1k (z") — o]

Then
argmin |z* —v| = argmin |g(z*) — ||
vEU?(’k veSp(Uk)nX
and the result follows. |
Proof of Proposition 32.

1. As shown in the supplementary of Pya and Wood (2015) by standard B-spline
formulas we obtain that given f(x) = Z}]:1 a;iP%(x), then f'(x) = Zj;l(aj -
aj_1) - w;?_l(x). Being the B-spline basis function nonnegative by definition, we
obtain the result.

2. With k& = 2, f'(x) on the interval [z, z;] has the following expression:

T — Tjy—T
—— (o — 1) + (a1 — @)
Lj+1 — Ly Tj+1 — T
S0:
y / _— pp— .
lzml,_wj—ﬂf (r) = oy — j4
and the result follows. L

Proof of Proposition 33 and 34.

We report here Propositions 3.3 and 3.4 of Bigot et al. (2017), with the notation adapted
to our manuscript. In the following H is a separable Hilbert space, X is a closed convex
subset of H, X is an X-valued square integrable random variable, xy a point in X and
k = 1 an integer.
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Proposition 38. Ler U* = {u},..,u;} be a minimizer over orthonormal sets U of H
of cardinality k, of DY (X,U) = Bd*(X, (xog + Sp(U)) n X), then Uy = (zo +
Sp(U)) n X is a (k, xo)—global principal component of X.

Proposition 39. Ler U* = {u7, .., u}} be an orthonormal set such that U} = {uf, .., u}
is a minimimizer of DY (X, U) over the orthonormal sets of cardinality “i” such that
U S U, then U™ is a (k, xo)—nested principal convex component of X.

Applying Propositions 38 and 39 we can obtain equivalent definitions of geodesic
and nested PCA as optimization problems in Ls([0, 1]). If we fix J € N > 0 and
a quadratic B-spline basis {1, 3]:1, we can use Propositions 38 and 39 with X =
Ly([0,1])7T and H = Ly([0, 1])”. Thanks to Remark 27 we obtain the results.

n
Proof of Proposition 35.
LetS; = Z‘jjzl >\§-J)'¢J(»J) and its derivative s; = ) j()\g‘]) —Aﬂl)%‘” where {/;j(-‘]) denotes
the linear spline basis on the same equispaced grid in [0, 1].

Let f, = (F,)’, of course it can be seen that f is non-negative. Moreover, it is
obvious that f,; € W;*([0,1]). Then, from De Boor and Daniel (1974b) we get that
there exist s; such that |s; — f, | < C|D*f, |2, where C'is a constant depending
on the interval [0, 1] but not on n.

Hence, we can determine the coefficients {)\g-‘]) }, starting from the spline s, up to a
translation factor.

We fix a particular set of coefficients by letting S;(0) = Aﬁ"’ = F,(0) for each J.
So that:

T

$1(0) = Fy (o) = [ sttt = [0t = $500) + £ 0) = [ sa0) = i 0

0 0

By using the previous result, the integral we have that S;(z) — F,, (z) < C.J~* for all

x which proves the proposition. ]

Proof of Proposition 36.
By the Assumptions in Section 6.6.2 and Remark 30 there exists a ball By in W5°([0, 1])

~

of radius K for some K > 0, such that each F;” can be c-approximated by F, €

W ([0,1]) with F~ € By. We can suppose that also the eigenvectors of the covariance
operator of the generating process belong to such sphere, otherwise we just increase its
radius of some finite amount.

By Proposition 35 we can choose a spline basis (that is, a number of elements J >
0), such that we get a e-uniformly good approximation of By (and thus we can 2e-
approximate its Lo closure). To lighten notation, thanks to Remark 27 we deliberately
confuse R”" and the space monotone B-splines with .J basis functions, the inner product
we are referring to will always be clear by looking at its entries.

184



6.11. Proofs

Now consider the following inequalities, with a; obtained as 2¢ approximations of
F,w’ e R, we Ly([0,1]):

LSE - LS el | <
S - Yat o + Yadw? - Yt

)

where the inner product (a],w) is to be intended as the L, inner product between the
spline function with coefficients a; and the L, function w. Consider now:

%;«ﬂ,wf ~(a w)?) =
%;«F;, w) — (ol w)((Fy,w) + (o], w)) =
ST af w)E el w) <
%;‘<E—_a5,w>(-\<ﬂ—+a{,w> <
% 2 2elw| 2K = deK |w]?

Similarly:

2 S (¢al wy ~ af w” )| < Jaf| - w0’ - (] + ]

We know that a solution to the problem maxjy/,, -1 LN (F w)? is given by the
first eigenfunction w of the covariance operator of the empirical process. Now we are
in the condition to apply results in Dauxois et al. (1982), or in Qi and Zhao (2011) (with
a — 0) to conclude that w converges to the first eigenfunction w of the covariance
operator of the process that generates F, . By hypothesis, such eigenfunction w lies in
By and thus can be approximated with our fixed spline basis. Thus for high enough n,
also W can be approximated up to 2¢.

Let a4 be the coefficients of the spline expansion of @ spline approximation, that is,

|w — ay| < 2¢. Observe that ||@]|s — ||auA,HE‘ < 2¢, just as ||a’|| < K + 2¢. Thus, up

to adding another ¢ to the approximation error | — a;|, we can suppose |agl2 = 1.
Hence:

(a0~ (ol ag))| < (K +29) 322
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Which leads to:
J\2
max ,W)" — max a;,w K +2¢)-3¢-2
lwll Ly =1 2 lw’ e *1Z< ’ ) ( )

Finally, comblmng the above results and the fact that | max f —max g| < max |f—g|
for any pair of real valued functions f and g, we obtain:

max —Z — max ZCL ’U)J 2‘
Jwlz, =17 oy i 7 209

max 4eK|w| + (K + 2¢) - 6e < 6K (1 + 2¢)

Jwlr,=1
Thus for instance if we ask that ¢ < 1, we obtain the desired result with D = 18- K.
Consistency follows since ||ag; — 0| < ||ag — @] + |w — ©|. |

Proof of Lemma 13.
Since for any x € X we have Iz (z) — x, forany v € H:
[ =gt ()] < Jlo =gt (x ()] < o = Tx (V)] + [Tx (v) = gt (Hx ()]

which implies 11 (v) — IIx(v). Consider now (3, — [ in H; we have the inequality:

[Tt (Bn) = T(B) || < Mgt (Bn) — T (Ba) | + [Tx (Bn) — Tx (B)]

the first term of the right hand side of the inequality can be sent to 0 by increasing .J,
the other by increasing n. |

Proof of Proposition 37.

We call a; the spline coefficients associated to x; and b; the ones associated to y;. Again
we deliberately confuse the spaces where the coefficients live to lighten the notation.
Since the penalty term does not depend on the data, we have:

1
ﬁ‘ D llys = Cai, BTAB)|” = ) || — {ai, BT AB) 1, o1 1*| =

1
m 2 (lyi = (o, BTAB)|? — [bi = {ai, B"AB) 1, 0.1 |*)] <

S i = G, BYABY? by~ oo, BTAB oy )
Now, since
lyi = G, BT AB)|? = b = (o, B" AB) oy || =
Iy = s, B*AB)| = [b; = Cas, B"AB)) x

(Ilyi = Cos, BTAB)| + [b; = <ai, BTAB) )|
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Then for some constant K depending on the bounds in the Assumptions, we get:

‘Hyi — (3, BPAB)|? — b — {as, BT AB) 1,0 I*| <
lyi — (x:, BTAB) — b; + {a;, BTABY|2K =
(ly: — b3l + <a; — z:, BTAB) 2K

Thus, if J is such that we have e-approximations of the data, by Cauchy-Schwartz
we obtain:

1
E’ Z lyi — {as, B"AB)|* — 2 |b; — {a;s, B"AB) o |?| < K- €

for some K’ constant.

Thanks to the results in Prchal and Sarda (2007), for any € > 0, if the number of
samples is big, ©and © s exist with probability 1 — ¢ and are unique. Since the value of
the minimization problem the solve are arbitrarily close, then the minimizers converge
in R7*/ with the metric given by the spline basis. |

Strong convergence implies semi-norm convergence.

Let Z be an H-valued random variable and Cz the covariance operator associated to Z,
that is:

@ﬁ@=f<w@$mmmm.

[0,1]
In the following, we denote with | - ||z, the Lo([0, 1]?) norm. Further, recall that
lcov(Z(s), Z(t))] 1o(0,112) = E[||Z]?]. We want to look at the behavior of | Sps — 5] c, -

]<CZ(BPS(57t) — EJ(S,t)), BPS(SJ) — BJ(S,t)>dt <

IC2(Bes(5,t) — Ba(s.t))|1s - | Bes(s.t) — B(s, )], <
E[l2|?] - |Bes(s,t) — B(s,t), - |Bes(s.t) — Byls,t)] 1

So ||/§ps - BJHCZ < M- HBPS - BJH%Z for some constant M. Thus || - ||, convergence
implies | - ||c, convergence.

[0,1

6.12 The simplicial approach

The simplicial approach to distributional data analysis is based on the definition of
Bayes space B?(I) (Egozcue et al., 2006). Formally, let I = R a closed interval, the
Bayes spaces B%(I) is defined the equivalence class of probability densities p(z) on [
(thatis p(z) > 0 and {, p(x)dz = 1) with square integrable logarithm.
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The Bayes space is endowed with a linear space starting from the definition of the
perturbation and powering operators, that are analogous to the sum and multiplication
times a scalar, and inner product. Moreover Menafoglio et al. (2014) defines an isomet-
ric isomorphism between B2(I) and L,([0, 1]) through the so-called centered log ratio
(cIr) map defined as

Pla) = clr(p) (&) = ogp(a) ~ ;| logp(tdt (624

for every p € B%(I). The inverse map is defined as

exp(P(z))

Thus, it is possible to define a simplicial PCA and simplicial regression on the Bayes
space starting from the clr map. In particular, let py, . . ., p,, be observed densities on the
interval [ and let p; = clr(p;). Denote with Wy, ..., W, the first k principal directions
estimated from the p;’s, then a k dimensional simplicial principal component is the span
of {w; = clr ™ (@) }E_, in B(I).

Similarly, for pdfs {(p.,p,):}/-, a simplicial regression model is defined starting
from the clr transformed variables. Let I denote a functional regression model in L, for
variables {(p., D, )i}, then the simplicial regression states:

Elpy: | p=i] = clr <f(ﬁzz)> .

Apart from the different geometries of the Wasserstein and Bayes space, which are
discussed in Sections 6.7 and 6.8, we can highlight one particular drawback from the
simplicial approach, which we believe poses a significant limit to its usefulness. In fact,
the main assumption is that all the pdfs p; share the same support, which might not be
the case (for instance, it is not the case for our example in Section 6.8.2). In practice,
one may circumvent this need by either “padding” all the pdfs to the same support, i.e
considering

pi(x)ocpi(x) + el[z € 1], (6.25)

where [[-] denotes the indicator function, and the proportionality is due to the need of
re-normalizing the p,’s so that they integrate to 1. Another approach could consist in
considering [ as the intersection of all the supports of the different p;’s let truncate all
the pdfs to the shared interval .

Both approaches present undesired side effects that can greatly alter the results. The
second approach might end up with a very small interval /, so that a lot of information
is lost due to this pre-processing step. The drawback of the first approach instead is
due to numerical instability. In fact, one would like € in (6.25) to be small in order
not to corrupt the true signal, given by p;. However, considering the transformation in
(6.24) having a small € would cause the p; to present some extreme values (negative) in
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30 A

25 A

20 A

15

104

Figure 6.11: Example of data set from (6.26)

correspondence to €. Performing PCA on a data set processed in this way would greatly
alter the results, as most of the variability of the p;’s would be masked by a difference
in their support.

6.13 Additional Simulations

6.13.1 Sensitivity Analysis to the Number of Basis Functions

In this simulation, we show how the number of B-spline basis functions affects the in-
ference in our projected PCA and in the simplicial one. In this Scenario, the probability
measures are simulated as mixture of beta densities, also known as Bernstein polyno-
mials, as follows:

K
Pz(@ _;wijﬁ($;J>K—J) (6.26)

w; ~ Dirichletx (0.01)

Where 5(z;a,b) denotes the density of a beta distributed random variable with param-
eters (a,b) evaluated in x. By definition, the p;s generated from (6.26) have a fixed
support / = [0, 1]. See Figure 6.11.

In this setting instead, we let u; in (6.20) be the probability measure associated to
p; and not its smoothed version. Hence, in addition to the amount of information lost
during the PCA another factor comes into play: the amount of information that is lost
due to the B-spline representation.

Figure 6.12 shows the results. We can see that the reconstruction errors decrease
when the dimension of the principal component increases both for the simplicial and
projected PCA. Moreover, as the number of B-spline basis increase, the performance
tend to get a little bit worse for both the approaches. We believe that this is due to
an increased variance in the B-spline estimation of the quantile functions and (clr of)
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0.25 0.25 0.25
—— projected
simplicial
0.20 A 0.20 A 0.20 A
0.15 A 0.15 A 0.15 A
0.10 A 0.10 A 0.10 A
I ——
0.05 A 0.05 A N 0.05 A
\—/
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50

Figure 6.12: Results for the third scenario. All the panels show the reconstruction error as a
function of the number of the spline basis functions. From left to right the results are obtained
using the 2, 5 and 10 dimensional PCA. The solid lines represent the mean of 10 independent
runs on independent data sets from (6.26) and the shaded area represent + one standard
deviation.

pdfs. In fact, computing the spline approximation for a single function amounts to
solving a linear regression problem and increasing the dimension of the B-spline basis
corresponds to increasing the number of regressors. Hence, letting B the matrix with
columns vy, ..., (evaluated on a grid), the variance of the OLS estimate of the co-
efficients a is proportional to (BT B)~!. When increasing the number of B-splines, the
entries in B” B become closer to zero, since the support of each of the spline basis be-
comes smaller. This leads to smaller precision (and higher variance) in the estimator for
a.

Another interesting thing to notice is that the simplicial PCA exhibits a much larger
variance in the reconstruction error. This is possibly due to the different degree of
smoothness of the quantile functions and of the pdfs. As the quantile functions are
smoother than the pdfs, their B-spline basis expansion should have lower variance and
be more similar to the true quantiles.

6.13.2 Empirical Verification of Consistency Results and Choosing .J

In this section, we provide additional simulations to verify the consistency results es-
tablished in Section 6.6.

For the PCA, we consider the two data generating processes in equations (6.19)
(Gaussian) and (6.21) (DPM). First, first we fix J = 20 spline basis (as we do throughout
Section 6.7) and let n increase. Then, we also let .J increase linearly with n. We estimate
the “true” principal directions by simulating 10° observations and using 2500 elements
in the B-spline basis. Then, for any choice of n and J we generate another data set
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PC1 PC2

3x 1073

107 4

2x 1073

102 10% 102 10%

(a) Gaussian data
PC1 PC 2

1072

102 10% 102 103

(b) DPM data

Figure 6.13: L distance between estimated and true principal directions when J = 20 as a
function of n. Solid line represents the median and the shaded area to a 90% confidence
interval estimated from 100 independent repetition.

and compute the corresponding first two principal directions via the projected PCA and
compute the L, norm between the “true” directions and the estimated ones.

Figure 6.13 shows the case of fixed J for both data generation strategies. It is clear
that in both cases the error quickly decreases to zero (observe that both the x and y axes
are in log scale), but the convergence speed is surely sub-exponential when looking, for
instance, at the second principal direction.

When increasing the number of basis elements with n, we consider three strategies
letting J = n/10, n/2 and 9/10n respectively (rounded to the closest integer). Fig-
ure 6.14 shows the errors between the true and estimated principal directions in this
case. Note that the convergence rate looks exponential for both data generating pro-
cesses for every choice of J = J(n) (increasing with n). In the case of Gaussian data,
we observe smaller errors (as low as 107 for the first direction and 10~* for the sec-
ond direction) than in the case of the more challenging DPM data set, see Figure 6.14.
For the former data set, using a large number of basis functions such as 9/10n or n/2
provides a much better fit than using /10 basis functions on the second principal direc-
tion. For DPM data, the errors are in general two orders of magnitude higher than with
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(a) Gaussian data
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— J=n/10 J=n/2 — J=9/10n

(b) DPM data

Figure 6.14: Lo distance between estimated and true principal directions as a function of n
for different choices of J. Solid line represents the median and the shaded area to a 90%
confidence interval estimated from 100 independent repetition.

Gaussian data. This is likely due to the different data generating process, which results
in a more challenging problem. Interestingly, the errors are almost equal for all values
of J (when fixing n).

Let us now analyze the projected regression. The independent variable are gener-
ated similarly to Section 6.8, by discretizing the interval [0, 1] in 1,000 equispaced
intervals, the value of the quantile function F in the j-th interval equals > ik
and (01, . .., 0i1000) ~ Dirichlet(0.01,...,0.01) + U([0, 5]). We fix the kernel 5*(¢, s)
(details are given below) and let quantile functions FY' = Uz, oy © L (F) +
N(0,(0.1)?).

We consider two different choices of 3*: a smooth function 3 (¢, s) = (t — 1/2)3 +
(s—1/2)3, for which we expect that a small number of spline basis will give a low error,
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and a rougher function 3} (¢, s) defined as

Bi(t,s) = 120 B(0.1k, 0.1R)I[(t, s) € [0.1(k — 1),0.1k) x [0.1(h — 1),0.1A)]
kh=1

that is, (3 corresponds to an approximation of 57 on a 10 x 10 grid. As in the case of
PCA, we present two simulations for each choice of 3}, i=1,2, where we first fix the
number of spline basis J = 20 while increasing the sample size n and second compare
the performance for various values of J. We do not adopt the same strategy of setting
J as a fraction of the number of n since the number of parameters to estimates grows
quadratically with J which makes the Eomputational cost substantial when J > 100.
We measure both the seminorm error || — 5*| ¢, and the mean square prediction error
on an unseen “test” set of 1, 000 samples.

||18* — 3||53 Prediction Error

10°4

1071 4

100

10724

1074

10! 10% 10° 10 10! 10% 10° 10!

(a) 87

||18* — §||c~ Prediction Error

1004

10714

1072

10! 10% 10* 101 10! 10% 10* 101
2

Figure 6.15: Seminorm error (left) and mean square prediction error (right) for different choices
of the kernel used to generate data, when J = 20 as a function of n. Solid line represents the
median and the shaded area to a 90% confidence interval estimated from 100 independent
repetition.
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18* — EHCZ Prediction Error
6x 10~
101
4x10™
102
3x 10~
107 10 10° 10
— J=10 — J=20 — J =50 — J =100
(a) A7
18* — EHCZ Prediction Error

(b) 53

Figure 6.16: Seminorm error (left) and mean square prediction error (right) for different choices
of the kernel used to generate data, as a function of n for different values of J. Solid line
represents the median and the shaded area to a 90% confidence interval estimated from 100
independent repetition.

Figure 6.15 shows the seminorm error and the prediction error when J = 20 as
n increases, while in Figure 6.16 various values of .J are also considered. When data
are generated from 3}, J = 20 spline basis is more than enough (and actually J =
10 would suffice) and the seminorm error in Figure 6.15(a) and Figure 6.16(a) decays
exponentially while the prediction error reaches the irreducible error with n = 103
samples. When data are generated from (35 the seminorm error does not show the same
exponential decay when J = 20 (see Figure 6.15(b)), but it does for larger values of
J, in particular it seems that the error obtained with ./ = 50 is the same obtained when
J = 100, see Figure 6.16(b). Hence, it is clear that the choice of J is crucial to obtain a
fast decay of the error: when the kernel to be approximated is not very smooth, a larger
values of spline basis elements are needed, as one would expect.
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Figure 6.17: Five quantile functions from the data generating process considered in Ap-
pendix 6.14.1

We conclude this discussion by giving a practical advice on how to select J for a
given data set. Our suggestion is to let J to be the smallest value that allows for a
reconstruction error smaller than a given threshold, which may depend on the specific
inferential task. For instance, if the problem is PCA and the goal is to provide a descrip-
tive analysis of the variability, a (relative) approximation error below 0.05 will typically
give satisfactory results. If instead the goal is only to perform dimensionality reduction
and working on the scores of a PCA as Euclidean data, one should aim for a lower ap-
proximation error, possibly of the order of 10~%. A similar reaioning can be applied to
the regression: if the goal is mainly to interpret the estimate (5 a larger reconstruction
error can be allowed. If instead one is interested in obtaining very accurate predictions,
a lower error is preferred. For instance, when 37 is used to generate the data, the recon-
struction error for both dependent and independent variables is below 10~ for .J > 20,
while to get to the same error when (35 is used one must use JJ = 100 basis.

6.14 Limitations of the projected framework

6.14.1 When the projected PCA performs poorly

Here, we show an example to highlight the limitations of the proposed framework,
specifically of the projected PCA. The main idea behind this example is that the pro-
jected principal directions will be different from the nested geodesic ones when data are
concentrated around the “borders” of X, as in the trivial example shown in Figure 6.1.
In the Wasserstein case, X is the space of quantile functions so that the border composed
of functions that are constant on a subset of [0, 1].

Hence, we consider the following data generating process, modeling directly the
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quantile functions

Vi1, ift <0.5
Vi1 + Vo, ift > 0.5

where v;; ~ max{0, (0, 1)} independently. See Figure 6.17 for a random sample from
this data generating process.

In this case, computing the projected PCA results in an interpretability score ISy
equal to one for £ = 1,2 and equal to zero for £ = 3,4,.... Hence, from the third
principal direction onward, the projected PCA does not give any reliable information
and, if those directions are needed, in this case a nested PCA could be preferred. Despite
the poor interpretability scores from the third direction onward, the reconstruction errors
are always good as NRE; = 0.26 and NRE), ~ 107° for k > 2. Moreover, the ghost
variances GV, are smaller than 107! for all values of k, so that this particular data set
would be a good candidate for the hybrid methods mentioned in Section 6.7.2.

In summary, in our experience, the performance of the projected PCA can suffer
when considering the interpretability of the directions associated to lower variability,
but usually (at least always in our examples) gives a reasonable reconstruction error and
ghost variance.

6.14.2 Inconsistent scores when increasing dimensions

Here, we highlight a feature which is shared by both projected and nested PCA, that is,
the scores of the projection onto a projected principal component are dependent on the
dimension of the principal component, as already noted in Section 6.3.1.

This can be considered a limitation to those frameworks, because it contributes to the
complexity of the analysis: one has always to fix the dimension of the chosen principal
component and use the scores accordingly obtained. For instance, the scores, both for
nested and projected PCAs, coincide with the L, scores when the dimension of the
principal components is equal to the cardinality of the spline basis J. This happens
because the principal components are not linear subspaces. As a consequence also the
interpretability score of a direction is dimension-dependent.

Hence, the choice of the dimension k£ must be carried out balancing (i) a parsi-
monious representation, (ii) a low reconstruction error, so that the projections on the
principal components yield good approximations of the data, and (iii) the intepretability
score of the directions.

Thus, opposed to standard Euclidean PCA, where the k£ + 1-th direction does not
change the behavior of the data along the previous £ directions (i.e., the scores), when
doing (any) PCA in Wasserstein space the whole picture must always be taken into
account, both for nested and projected PCA to assess the interpretability of the results.

Finally, note that such interpretability might be low for both intrinsic and extrinsic
methods, but this means that the Wasserstein metric may not be the most adequate to
capture and explain the variability of the data set.
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CHAPTER

Conclusion

Throughout the chapters of this dissertation we explore two different areas in which
contaminations between geometry and data analysis are, if not mandatory, at least very
beneficial for the analysis: functional data analysis (up to parametrization) and distri-
butional data analysis. To contribute to such fields we differentiate our works between
two directions: summarizing informations by means of topological representations well
defined across equivalence classes and extending vector calculus and related tools for
spaces with possibly weird structures.

Following the manuscript, the reader immediately realizes that, even if those direc-
tions speak very different languages, they complement each other in a very fruitful way:
any time a new representation of some data is given, there is a need for mathematical
tools in the space of those representations. In the same fashion, we develop a class
of computable statistical tools for the Wasserstein space, based on the geometry of a
particular representation of its elements. This same representation greatly improves the
computational costs of already existing methods. Thus, the results obtained in the thesis
display that both the theoretic and the computational aspects of the problems considered
can benefit from the geometric perspective pursued in the dissertation. All the novelties
introduced present some kinds of drawbacks: for instance the projected methods intro-
duced in Chapter 6 may suffer interpretability issues when the variability of the data
is too high; the usage of dendrograms (Chapter 2, Chapter 3 and Chapter 4) instead is
limited by the metric’s computational cost and by the complexity of the metric space
they live in. At the end of each chapter we go more in depth of all such issues as well as

197



Chapter 7. Conclusion

proposing further developments and new research directions that can enrich the topics
contained in the chapters. Moreover, Chapter 5 collects a detailed description of a set of
possible developments which relate jointly to Chapter 2, Chapter 3 and Chapter 4. Here,
instead, we want to conclude the manuscript with a brief, more general consideration,
which links the fields of topological data analysis and Wasserstein metrics.

A general drawback of TDA’s approach, is the difficulty in transferring information
from the space of representations back to the original data set: interpreting results not
just in terms of topological features but in terms of more specific features of the initial
data is a challenging problem. The main reasons for this complexity are the invariance
properties of TDA's tools: the operator which maps a datum into its topological repre-
sentation is highly non-injective and thus is not clear how one can try to “invert” this
map. There are however works which suggest possible paths that can be followed to do
so (see for instance Gameiro et al. (2016)): induce modifications on base objects, based
on modifications of the associated topological summaries. In this way, for instance, a
geodesic between merge trees, induces a geodesic between functions, and so we can
read the variability explained by the topological information, directly in the functions
space. This point of view creates potential bridges with the Wasserstein metrics for
distributions in R", which have often been used to match point clouds and shapes (Liu
et al., 2019; Shi et al., 2016; Solomon, 2018). Thus, one could use topological sum-
maries to induce local deformations in objects by means of Optimal Transport and work
with such deformations.

This potential research direction is an appropriate conclusion of this dissertation,
since it connects the two main areas we discussed, and proposes a further contribution
to the framework described in the thesis.
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Code

All the examples and case studies involved in this thesis have been developed using
original libraries coded in Python. Code has been collected into two separated packages:
a package for dealing with dendrograms and one for dealing with univariate distributions
with the Wasserstein metric. While the second package is already finished and readily
avaiable on github, the first one is currently under development.

8.1 Dendrograms

In this Section we present the main files and functions contained in the package devel-
oped for dendrograms, along with the notebooks which containt the code to replicate
the analises presented in previous chapters.

The core of the package is contained in the the following files:

e Trees_OPT.py: contain the definition of class Tree, which enables the creation of
a dendrogram object starting from an height function and a list of vertices encod-
ing the merging structure of a fixed basis filtration; several useful methods are
implemented as well,;
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e Utils_OPT.py: contains many utilities which are needed to work with graphs and
preprocess functions;

e Utils_dendrograms_OPT.py: contains utilities to create dendrograms starting from
different kinds of data: namely functions on grids, functions on triangulations and
hierarchical dendrograms obtained via other Python libraries implementing herar-
chical clustering;

o top_TED_lineare_multiplicity.py: implements the tree edit distance for dendro-
grams with multiplicity with values in R", which can be numbers, “proper” mul-
tivariate vectors and discretized functions.

8.1.1 Trees_OPT.py

The class Tree needs three objects to be defined:
e f unigq: is the vector of critical values ¢;.

e plt_tree which is a ordered list of the vertices which appear in the tree structure.
We consider the connected component as indexed by their order of appearance.
For each vertex we record a triplet containing the following three numbers: the
index of the associated critical value, then we have the couple of connected com-
ponents merging, expressed in decreasing order. With (i,m, —1) we record that
the ¢-th point in the tree structure is a leaf, associated to the birth of the m-th
component.

e name_vertices: it’s list containing the names of the vertices. This is fundamental
to work with specific subtrees of a tree.

The weighted tree structure is then encoded via a weight matrix (called weights),
with positive weights at the coordinates of connected vertices with the weight being the
weight value of the edge in the associated merge tree. The edge [¢, 7] is then represented
by weights[i, j| = wr([i, j])-

We report here also the most important methods implemented for this class:

e there are a number of methods which are employed to work with the tree struc-
tures, such as: make_edges, find_father, find_children, . ..

e the paths to the root are fundamental for the calculation of dg and thus are calcu-
lated and written in the variable paths:

e sub_tree is a method devoted to extracting a subtree of a certain vertex
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o for visualization purposes, the merge tree can be written into newick format (Huerta-
Cepas et al., 2010) with the function make_newick and then drawn with the func-
tion plot_newick which uses the library biopython (Chapman and Chang, 2000) to
visualize the merge tree;

e the function make_mult takes care of the multiplicity function, which is encoded
with a dictionary and can be created in different ways. The values d(¢(e),0) are
calculated with make_norms_mult.

8.1.2 Utils_OPT.py

The only function which is relevant for the purposes of this thesis is preprocess_f which
is used when extracting the merge tree of a function which is not injective or is very close
to not being injective.

8.1.3 Utils_dendrograms_OPT.py

There are several utilities in this file, which are used to extract dendrograms from data
and to prune them. These are the two main pipelines:

e when we want to extract a merge tree representing the clustering structure of a
point cloud we use the library scipy (Bressert, 2012) inside the function dendrolink
to extract the hierarchical clustering according to some selected linkage. Then we
translate the output of the library scipy in terms of plot_tree and f_uniq, with the
function Z_to_plt _Tree. The function dendrolink then return a Tree object.

e when we have a triangulated domain or a point cloud and we want to extract a den-
drogram from a scalar function, we must call the function from_cloud_to_dendro_sublvl.
The most important operations inside this function are taken care of by another
function, sublvl_set_filtration_multiplicity. 1f the domain is not triangulated, this
second function first builds a naive graph structure connecting all the points whose
distance is below some threshold, and assumes that the intrinsic dimension of the
domain is 1. Then it proceeds by calculating the evolution of the connected com-
ponents of such graph, or of the given triangulated domain along with a multi-
plicity function. The multiplicity function employed is the one calculating the
measure of the sublevel sets as explained in Chapter 2. Of course multiplicity
function can be redefined in a second stage.

Lastly there are the functions which are employed to prune dendrograms. Namely:

e prune_vertices 1s the function which, given a dendrogram, prunes all the leaves
whose values d(p(e), 0) is below a threshold.

e prune_dendro: recursively calls prune_vertices until there are no more leaves to
be pruned. It implements the pruning operator P-.
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e prune_dendro_N: given a certain number of leaves, this function keeps on recur-
sively pruning the dendrogram, with increasing thresholds, until the number of
leaves does not exceed the given value.

8.1.4 top_TED_lineare_multiplicity.py

This file containt the code to calculate metric dp between two Tree objects with mul-
tiplicities. The function fop_TED_lineare implements the algorithm described in Sec-
tion 2.7, and is quite complicated, but we try to describe it without going too much into
details.

The main functions called by top_TED_lineare are the following:

e make_sub_trees: prepares all the subtrees of the given dendrograms along with
the names of their vertices and the cost of their deletion

e make_W is the function where most of the calculations are carried out; it is the
function which implements the “for” loop in the algorithm to calculate the matrix
W. Going through the levels in the dendrograms, for every pair of points (x, y) in
the for loop, the function calculate_Wxy (or the equivalent parallelizable function)
is a wrapper for the function make_model, which implements the optimization
problem in Equation (2.4). The outputs of make_model and calculate_Wxy are the
number dg (7, T,) and a minimizing mapping.

At the end, top_TED_lineare returns either just the value dg(7,7") or this value
along with a minimizing mapping.

Now we take a closer look to the function make_model to see how the implementa-
tion of Equation (2.4) is carried out. The package employed to write the ILP part is Hart
et al. (2017), which turns out to be handy because, one the model is prepared, it can be
fed into any installed and compatible solver. In the function make_model the following
happens:

e we create the model variable, cost, and instantiate the optimization variables 62’;”
as in Equation (2.4), contained in an array called L;

e we prepare a function, objective_poly, which is the function to be optimized. This
function is a wrapper for make_poly which in turns wraps around sym_objective_fun,
where the functions F¢, FP F~ and F* are calculated using pyomo variables.
The function eval_mapping is equivalent to sym_objective_fun, but instead works
with vectors and can be used to evaluate the cost function for a specific ¢.

e after the cost function is added to the model, the function make_constraints adds
also the constaints.

e the optimization problem is then solved (via a chosen solver) and, if required, the
minimizing mapping, along with the cost of each edit, is then extracted from the
solution.
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8.1.5 Jupyter Notebooks
We briefly list the notebooks specifying the examples they implement:
e Dendrogram_vs_PD.ipynb: implements the example in Section 2.8.3
e Dendro_multiplicity_functions.ipynb: implements the example in Section 2.8.3
o Simulation_study_1.ipynb: contains the simulation study in Section 3.8.1
o Simulation_study_2.ipynb: contains the simulation study in Section 3.8.2

o Aneurisk_notebook.ipynb: contains the analyses used in the case study in Sec-
tion 3.9.

8.2 Projected Methods in 1-D Wasserstein Spaces

The repository https://github.com/mberaha/ProjectedWasserstein con-
cerning the Projected Wasserstein methods is readily avaiable and much easier to nav-
igate in. The code has been cleaned and the methods employed have a more straight-
forward implementation based on the formulas provided in the thesis. Thus we only
give a very high level description of the files containing the main classes and methods
necessary to run our examples.

e distributions.py contains the Distribution class, which is a representation of prob-
ability distributions on the real line with easily accessible quantile function, pdf
and cdf. Can be initialized both with pdf and cdf. Along with that, we defined
also functions to work within the simplicial framework.

e spline.py implements a versatile class of splines, with readily avaiable metric
structure of the vector space they induce. Along with that we have the class
MonotoneQuadraticSplineBasis which gives a monotonic spline expansion ob-
tained with a metric projection on the cone of monotone splines.

In the folder dimsensionality_reduction there are our implementations of the differ-
ent PCAs used in Chapter 6, namely:

e geodesic_pca.py implements the global geodesic PCA as in Section 6.5.3, using
pyomo and the solver ipopt

e nested_pca.py implements the nested geodesic PCA as in Section 6.5.3, using
pyomo and the solver ipopt

e projected_pca_distrib.py contains the class to obtain a projected PCA
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simplicial_pca.py contains the class to make PCA in the Bayes Space

In the regression folder, instead, there are different scripts implementing different
kind of regression techniques. Some of them have been used in Chapter 6 and some
others have not:

distrib_on_distrib.py gives the distribution on distribution projected linear regres-
sion, which is described in Section 6.3.2

logistic.py contains an implementation of a logistic regression for distributional
data, with data living in the Wasserstein space. The model is not described in the
thesis, but is well commented in the script and its definition is quite natural.

multi_distrib_on_distrib.py implements a multivariate distribution on distribution
regression, which has been used in Section 6.8.2.

scalar_on_function.py implements scalar on distribution regression, for distribu-
tion living in the Wasserstein space

simplicial.py implements distribution on distribution regression between Bayes
Spaces, as described in Section 6.12.

Data and Jupyter notebooks to replicate the examples and the analyses can be easily
recognised in the online repository:

Compare Projections.ipynb compare the PAVA algorithm and the metric projec-
tion with splines (Section 6.4.3)

Comparison Regression.ipynb can be used to replicate results in the compari-
son between simplicial and projected distribution on distribution regression (Sec-
tion 6.8)

Comparison vs Simplicial PCA.ipynb contains the code to run the comparison
between the simplicial and the Wasserstein PCAS (Section 6.7)

Covid Deaths.ipynb runs the analysis made with PCA on Covid data (Section 6.7)

Wind Forecast.ipynb runs the multivariate distribution on distribution regression
example found in Section 6.8.
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