
Politecnico di Milano
Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Corso di laurea in

Computer Science and Engineering

Composite Convolution for 3D Point Clouds

Supervisor:

Prof. Giacomo Boracchi

Co-Supervisor:

Dott. Luca Frittoli

Master Graduation Thesis by:

Alberto Floris
Student Id n. 905900

A.A 2020

“Ах, высоко, высоко

Небо так близко и далеко

Не увернуться, не сдать назад

Больше не будет, как прежде, брат”

Ringraziamenti

Vorrei esprimere la mia profonda gratitudine a prof. Giacomo Boracchi, per avermi
guidato nella stesura di questa tesi, ma più di tutto per avermi indirizzato verso lo
studio di questo specifico settore, il 3D Deep Learning, stimolante quanto innovativo.
Allo stesso modo ringrazio il dott. Luca Frittoli, per avermi consigliato più e più volte
come risolvere i numerosi problemi sorti nello sviluppo del progetto, e in particolare lo
ringrazio per l’impegno e la pazienza da lui spese nel discutere con me le varie bozze
prodotte dalla stesura di questo documento.
Ringrazio i miei genitori, senza il cui impegno pluriennale e continuo non avrei potuto
arrivare a stendere questa tesi.
Infine ringrazio Stasya: non solo mi ha sopportato in questo difficile anno fatto di
distanziamento sociale e lockdown, ma ha pure avuto la pazienza di ascoltarmi più e
più volte nell’esporre i contenuti di questa tesi a lei e ad altri. Non paga di questo, ha
anche avuto cura di rivedere la forma dell’inglese in diverse sezioni del documento.

1

Sommario

Nell’ultimo decennio il Deep Learning è divenuto un elemento pervasivo nell’ambito
della tecnica e dell’ingegneria: di ciò è esempio lampante la diffusione delle Reti
Neurali Convoluzionali in Computer Vision e Image Analysis. Un aspetto fin ora
poco studiato, ma che negli ultimi anni ha guadagnato crescente interesse nella co-
munità scientifica, è lo sviluppo di modelli capaci di lavorare su dati 3-dimensionali.
Un mezzo sempre più diffuso per rappresentare questo genere di dati è la così detta
Point Cloud, un insieme di punti distribuiti nello spazio 3D e campionati direttamente
dalla superficie di un oggetto o forma 3-dimensionale. La particolarità della Point
Cloud è il suo essere “non strutturata”: al suo interno, infatti, i punti non possiedono
un ordinamento intrinseco nè giacciono in una struttura matriciale, come invece suc-
cede per i pixel di un’immagine. Al contrario, gli elementi appartenenti a una Point
Cloud possono assumere qualsiasi configurazione nello spazio da cui sono campionati.
Questo lavoro indaga sulla possibilità di estendere il paradigma proprio delle reti con-
voluzionali a questo nuovo tipo di dato, definendo un nuovo operatore convoluzionale,
la Convoluzione Composita. Per dimostrare le potenzialità di tale operatore e della
sua implementazione, vengono inoltre condotti due esperimenti: il primo, riguardante
Multiclass Classification, permette di confrontare questo lavoro con altri presenti nello
stato dell’arte; Il secondo, riguardante One-Class Classification, fa riferimento a un
problema ancora non approfondito in ambito Point Clouds. Tramite questi due esper-
imenti, si vuole dimostrare che la nostra soluzione è in grado di ottenere performance
comparabili allo stato dell’arte. Inoltre, si vuole mostrare come anche problemi quali
OC classification possano essere affrontati tramite l’uso dellaConvoluzione Composita,
in maniera simile a ciò che si fa nell’ambito delle immagini.

2

Abstract

In the last decade, Deep Learning has become a pervasive element in engineering. The
spread of Convolutional Neural Networks in Computer Vision and Image Analysis is
a major example. An aspect that has not been studied so far but which has gained
increasing interest in the scientific community in recent years is the development of
models designed for handling 3-dimensional data. An increasingly popular means of
representing this kind of data is the so-called Point Cloud, a set of points distributed
in 3D space and sampled directly from the surface of a 3-dimensional object or shape.
The Point Cloud’s peculiarity is its being “ unstructured ”: inside it, the points do not
have any intrinsic ordering, nor do they lie in a matrix-like structure, as happens instead
for the pixels of an image. On the contrary, the elements belonging to a Point Cloud
can assume any configuration in the space from which they are sampled. This work
investigates the possibility of extending the paradigm of convolutional networks to this
new type of data, defining a new convolutional operator, the Composite Convolution.
In order to show the potential of this operator and its implementation, two experiments
are also conducted. The first, concerning Multiclass Classification, allows to compare
this work with others present in State-of-the-Art; The second, concerning One-Class
Classification, refers to a problem not yet studied in the Point Clouds area. In such
experiments, we show that our solution can achieve comparable performances with the
State-of-the-Art. Moreover, we prove that OC classification can be addressed through
the use of Composite Convolution, in a similar way to what is done in the field of
images.

3

Contents

Sommario 2

Abstract 3

1 Introduction 7
1.1 Document structure . 11

2 Background 13
2.1 Introduction to Machine Learning 13

2.1.1 Machine Learning as Data Driven AI 14
2.1.2 Supervised and unsupervised Learning 15
2.1.3 Machine Learning and Deep Learning 16

2.2 A brief recall of Image Convolution 17
2.3 Introduction to Point clouds . 19

3 State of the art 22
3.1 Radial Basis Function Networks . 23

3.1.1 Introduction . 23
3.1.2 Neural network Architecture 24
3.1.3 Choice of Radial Basis Function 25
3.1.4 Choice of RBF centers . 26

3.2 Properties of ML algorithms on point clouds 27
3.3 Early approaches to deep learning with 3D data 28
3.4 Supervised models for point clouds 31

3.4.1 Pointnet and Point-wise MLP methods 31
3.4.2 Convolution based methods 32

4

CONTENTS

3.4.3 Graph based methods . 33
3.4.4 Other methods . 33

3.5 Anomaly Detection and Point Clouds 34
3.5.1 Point Cloud Autoencoders 34
3.5.2 Denoising and OC classification for point clouds 35

4 Point Convolution: some examples 37
4.1 Point CNNs by Extension Operators 38

4.1.1 Convolutional layer’s input and output 38
4.1.2 Convolutional layer’s structure 40
4.1.3 Extension . 40
4.1.4 Convolution . 42
4.1.5 Reduction . 43

4.2 Kernel Point Convolution . 44
4.2.1 Key components of KP convolution 44
4.2.2 Defining the Neighbourhood 45
4.2.3 Defining the Kernel . 46
4.2.4 Defining the output . 48
4.2.5 Rigid or deformable kernels 49

4.3 Convpoint . 49
4.3.1 Neighbourhood definition 50
4.3.2 Kernel definition . 51
4.3.3 Separating spatial and semantic structure 52

5 Proposed Approach 54
5.1 Problem formulation . 55

5.1.1 Input and Output definition 55
5.1.2 Convolutional Operator definition 56
5.1.3 Output point set construction 58
5.1.4 Other requirements and constraints 58

5.2 Proposed convolutional Layer . 59
5.2.1 A composite convolutional layer 60
5.2.2 Proposed Spatial layers . 61
5.2.3 Proposed Semantic Sublayers 65
5.2.4 Composite Layer’s properties and advantages 67

5

CONTENTS

5.3 Deep SVDD for OC classification 68
5.3.1 Problem setting . 69
5.3.2 Learning the map function 70
5.3.3 Network requirements . 71
5.3.4 Advantages . 72

5.4 Composite convolution in Deep SVDD 73
5.4.1 Properties of Deep SVDD 73
5.4.2 An alternative semantic layer 75

6 Benchmarking and Experiments 78
6.1 Datasets for 3D Deep Learning . 78

6.1.1 ModelNet40 . 79
6.1.2 ShapeNet . 81
6.1.3 Other relevant datasets . 83

6.2 3D Shape Classification . 84
6.2.1 Neural Network Architecture 84
6.2.2 Baselines and comparable Methods 85
6.2.3 Data preprocessing . 86
6.2.4 Evaluation metrics . 87
6.2.5 Experiments and results . 89

6.3 One-Class Classification . 101
6.3.1 Architecture and hyper-parameters 101
6.3.2 Dataset and Data preprocessing 103
6.3.3 Evaluation metrics . 103
6.3.4 Experiments And results . 106

7 Conclusions 111

List of Figures 117

List of Tables 119

Bibliography 126

6

Chapter 1

Introduction

In the last decade, computer vision has become a key discipline in engineering, mainly
due to the growth of its applications in everyday life. The birth of Deep Learning,
particularly Convolutional Neural Networks [26][28], ignited interest in the discipline.
Nowadays, CNNs can solve several different tasks concerning image or video analysis:
classification, segmentation, object detection. Starting from around 2015 [55] [7],
several research groups focused their attention on solving these same problems also for
3D shapes and objects, initiating the now-thriving field of Geometric Deep Learning.
In this context, the variety of different solutions is impressive. From sparse convolution
to graph-based neural networks, from Multiview CNNs to custom networks designed
to handle 3D data, a significant development came in the form of Point Cloud Deep
Learning.

With Point Cloud, we indicate an unordered set of points lying in a certain space,
e.g. the 3D space. Usually, these points are sampled from surfaces they mean to
represent. For example, sampled from a building’s surface to represent it’s geometrical
shape. In many contexts, points are associated with different input features regarding
Color information, Normal vectors, temperature and similar data obtained by the surface
from which the point is sampled.

Point clouds are a popular way to represent 3-Dimensional data: they are commonly
used in such fields as civil engineering, architecture, and heritage preservation [50] to
capture the shape of specific structures. On the other hand, they are also flexible
enough to be employed in various contexts with satisfying results. Research works,
such as PointNet [37] [38], proved it possible to solve Deep Learning tasks over point

7

CHAPTER 1. INTRODUCTION

Figure 1.1: Image from [13] representing a human face with the use of a Point Cloud.

cloud datasets, clearing the way for the development of several competing methods that
operate in the same scenario.

An important family of Point Cloud-based methods [51] [4] [2] [56] [14] [53] [21]
[29] makes use of Convolution over Point Clouds, in a way similar to the 2D image
convolution widely used in traditional CNNs. While point convolution may sound like
a natural extension of image convolution, this is not the case. The points in Point Clouds
are not placed in matrix-like structures, unlike the pixels of a traditional image. Indeed,
the points are free to assume any position in the space from which they are sampled,
and there are various modes of point sampling. For this reason, it is possible to say that
Point Clouds are “unstructured”. This issue raises the question about defining such a
point convolution operator in a powerful yet efficient way. A possible way to cope with
the issue [56] [53] is to learn a continuous function, acting as a convolutional filter.
Such filer is then employed in a discrete convolution, where features and points are
aggregated by linear combination. Different ways to model the continuous filter have
been proposed.

This thesis is embedded in this particular strand, as we are interested in investigating

8

CHAPTER 1. INTRODUCTION

(?0C80; BD1;0H4A

(4<0=C82 BD1;0H4A

?>8=CB

5 40CDA4B

>DC?DC

B?0C80; 34B2A8?C>AB

Figure 1.2: The high-level structure of our proposed layer. The spatial layers receives the input
points participating in convolution and returns a spatial descriptor vector for each one of them.
The semantic sublayer aggregates such spatial descriptors with each point’s features and then
computes the convolution’s output.

3D Deep Learning with the use of Point Cloud CNNs. We do so by defining a novel
point-convolutional operator and implementing a novel convolutional layer based on it.
Our solution’s peculiarity is that we define the convolution over points as a composition
of two different operations. One is intended to give a spatial structure to the points
involved in convolutions, and another one is intended to perform the actual aggregation
of their semantic features. We call this operation Composite Convolution.

The implementation of these two operations is done by defining two corresponding
modules:

• a spatial sublayer, intended to extract the neighborhood’s spatial structure. In
practice, this is done computing a so-called spatial descriptor vector describing
each point’s relative position.

• a semantic sublayer, intended to compute the actual convolution. This means
to combine the spatial descriptor’s components, obtaining a filter value for each
neighboring point. Such filter is then used to compute convolution in a way
similar to the Image case.

Our solution is structured so that these components are independent from one
another. Ideally, it is possible to design independently both spatial and semantic layers

9

CHAPTER 1. INTRODUCTION

and combine them in different ways. We show this by defining different possible spatial
and semantic sublayers and by trying different combinations of them. In particular, we
investigate the use of Radial Basis Function Networks (RBFNs) in defining the spatial
layer. Concerning the semantic layer, we also propose a possible non-convolutional
alternative, yielding interesting results in our experiments.

After defining our novel Composite Layer, we investigate its performance. In
particular, we focus on two directions:

• Multiclass Classification, an already explored task in the field of Point Cloud
Deep Learning. We focus on this task over two well-known datasets,ModelNet40
[55] and ShapeNetCore [7]. In this setting, we investigate the performance of
different combinations of spatial and semantic layers, together with different
hyperparameter configurations. Finally, we compare our solution to the existing
methods in literature. In these experiments, we show that our solution is capable
of reaching comparable results with the State-of-the-Art. Moreover, we also
show that the use of a non-convolutional semantic layer it is not only possible
but also yield better results than some convolutional alternatives.

• Unsupervised One-Class (OC) Classification [45], in particular trying to rec-
ognize the classes composing the well-known ShapeNetCore [7] dataset. To
perform this task, we employ a Deep Learning generalization of the well-known
Support Vector Data Description technique (SVDD), presented by L. Ruff et al.
in [42]. It is worth noticing that, to the best of our knowledge, this problem
has not been tacked in Point Cloud Deep Learning yet. In this sense, the sec-
ond relevant contribution of our work is to demonstrate that Point Cloud OC
classification can by faced, in particular, by the use of our Composite Layer
and Deep SVDD. The results show that the use of a non-convolutional semantic
Layer allows the network to learn where convolutional solutions can’t, though it
is difficult to quantify the performance goodness due to the lack of competing
methods. This is due to how Point Convolution and Deep SVDD are defined:
for this reason, we also propose some ways to allow a convolutional layer to be
trained in Deep SVDD.

Concerning the possible future extensions of this work, the second task is particu-
larly interesting. Since there are no competing methods, a possible future development
can be the definition of an alternative solution to the one presented here. Moreover, to
the best of our knowledge, there are no datasets designed specifically for OC classifi-

10

CHAPTER 1. INTRODUCTION

cation or Anomaly detection with Point Clouds. A beneficial development would be to
define a dataset constructed purposefully for these tasks, allowing a better comparison
of different models. Finally, a possible development is to apply our solution to the
practical use-cases: while the work presented here is mainly theoretical, it is worth in-
vestigating its possible applications in fields such as Medical Imaging or Autonomous
Navigation.

1.1 Document structure

Apart from this brief introduction, this thesis is structured in the following way:

• Chapter 2 is dedicated to a broad introduction of the themes we will discuss
in the rest of the document. In particular: we informally describe the field of
Machine Learning and Deep Learning; we briefly recall the definition of the
Convolution used in Image-CNNs such as [28] [26]; we introduce point clouds
as a data structure that represents geometric entities.

• In Chapter 3, we present the state of the art in the field of 3D deep learning
in general. After presenting some early approaches to 3D data, we focus our
attention on the field of Point Clouds by introducing a simple taxonomy of
possible methods working on them. We also state the properties an algorithm
should possess when dealing with such data. Finally, we introduce a tool useful
in the definition of our solution: the Radial Basis Function Network.

• In Chapter 4 we delve into the topic of Point Convolution. Differently from 3,
where we broadly present a variety of different paradigms, here we thoroughly
present the point-convolutional Methods [2] [51] [4] that inspired our solution.
We also discuss all the steps involved in the computation of a Point Convolution:
with the aim of presenting “by example” problems and solutions encountered in
defining a point-convolutional Layer. Since these works are closely related to
one another, we present them in chronological order: in this way, the reader can
understand the evolution of these techniques.

• In Chapter 5 we present our solution to the problem of Point Convolution. In
particular, we introduce a novel Convolutional Operator, called Composite Con-
volution, and propose a suitable Composite Layer implementing it. As we shall
see, our Composite Layer is also capable of implementing non-convolutional

11

CHAPTER 1. INTRODUCTION

operators: for this reason, we present a possible alternative to traditional convo-
lution that proved to be quite useful in certain frameworks.

• Chapter 6 is dedicated to testing our methods in two different tasks: supervised
MulticlassClassification and unsupervisedOne-Class (OC)Classification. When
testing on the first task, we are able to compare our models with the existing state
of the art solutions; in OC classification we prove that it is possible, by using our
approach, to perform this task over Point Clouds.

• Finally, in Chapter 7 we draw some conclusions regarding the work done and
we propose some possible future developments.

.

12

Chapter 2

Background

Before delving deeper into describing the state of the art in 3D Deep Learning we
introduce the context in which this thesis is immersed. This introduction is meant
to be quite general and informal: we chose not to spend time on the description
of well-known machine learning tools, but instead, to focus on the history of the
problem we are going to tackle. We discuss machine learning as a tool, useful in
solving difficultly formalizable tasks; we introduce the Point Clouds as a helpful way
to represent 3-Dimensional objects and shapes; we also briefly recall the definition of
discrete Convolution we shall make extensive use of in the rest of the thesis. The aim is
to give the reader a clear sight of the context in which this work is inserted, by leaving
more formal and technical aspects to be treated in the following chapters.

2.1 Introduction to Machine Learning

Nowadays, artificial intelligence (AI) is a field with many practical applications and
active research topics. When this scientific field was born, the original idea behind
artificial intelligence was to develop software able to solve the problems difficult for
humans but straightforward to formalise in a mathematical way. An example for this
kind of problems may be the following: consider having a geographic map. The
task is to assign a colour to each country in such a way that no country borders with
another nation with the same colour, minimising the number of colours involved. This
kind of problems can be challenging for humans, especially when having to deal with
many different possible solutions that have to be explored (I.e., when the map contains

13

CHAPTER 2. BACKGROUND

many states with many common borders) nonetheless is relatively easy to develop an
algorithm capable of solving the problem by relying on its mathematical formulation.

As the knowledge about how to solve the over cited problems grew, the scientific
community focused its attention on the opposite problem: to develop software being
able to automate tasks that are repetitive and intuitively simple for humans, but generally
complex to formalise in traditional ways. An example of this kind of tasks may be to
recognise objects from images, to compute the best route for a robot that needs to
move, or to predict the variation of the house prices in a certain neighbourhood; when
dealing with practical problems, each of these very general tasks can be grounded in
many substantially different settings: recognition of bears in outdoor photos is very
different from recognition of different people from their faces, but we can consider
both problems to be image classification tasks. We expect the intelligent software to
automate routine labor, understand speech or images, make diagnoses in medicine and
support basic scientific research. In the early days of artificial intelligence, the field
rapidly tackled and solved problems that are intellectually difficult for human beings
but relatively straightforward for computers: problems that can be described by a list
of formal, mathematical rules. The true challenge to artificial intelligence proved to be
solving tasks that are easy for people to perform but hard for people to describe formally:
problems that we solve intuitively, that feel automatic, like recognizing spoken words
or faces in images.

2.1.1 Machine Learning as Data Driven AI

We define a Machine Learning (ML) algorithm as an algorithm that is able to learn
from experience, in order to solve a given task. An interesting definition of a Machine
Learning algorithm is the following, given by Tom Mitchel in [33]:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.

This definition contains multiple concepts that are worth explanation:

• As Experience, we generally mean a data collection sampled from the environ-
ment in which the ML algorithm should work. This collection is called dataset,
ad it is used to train our algorithm. For example, if a certain ML algorithm is
needed to recognize human faces from photos, the dataset used for training will

14

CHAPTER 2. BACKGROUND

contain a number of said faces. Vice versa, If the algorithm is needed to estimate
the price of a stock option, a suitable dataset may be the past history, in terms of
pricing, of said stock option.

• as Task, we can intend a number of different problems that can be solved with
the use of Machine Learning. A number of examples were mentioned above,
others include data denoising, data description, anomaly detection, text or image
generation, image segmentation or text-to-speech synthesis.

• as Performance, we mean a certain metric which is used by the algorithm to
evaluate its ability to solve the given task. Usually, this metric comes in the
form of an Objective Function which describe the given problem and should
be minimized or maximized by the algorithm; In particular, if said Objective
function should be minimized, it may also be called "loss function" or "error
function".

2.1.2 Supervised and unsupervised Learning

As stated before, there are many categories of tasks that can be solved by the use
of Machine Learning. In particular, this thesis will aim to solve two different tasks
that fall in two different categories. The first task here discussed is called Multi-class
Classification, and belongs to the supervised learning tasks’ family: we can informally
describe it as the problem of classifying different samples as instances of a given class
of data. The second task here discussed is calledOne-Class Classification (OC), a term
used for which could also be Anomaly Detection. As stated by [42], OC is the task of
discerning unusual samples in data, and typically belongs to theUnsupervised Learning
tasks’ family. It is now important to give an intuitive definition of what supervised and
unsupervised learning is.

• In Supervised Learning, we associate a label to each sample fed to the machine
learning algorithm. This label is known as target, and it represents the result that
the algorithm is expected to produce for that given sample: for example, if we are
dealing with image classification, we would associate to each sample (i.e., each
image) a label telling us that the given sample belongs to the given class; if we
want to predict house prices, we associate to each house a label containing it’s
true price, which the algorithm should be able to predict. Supervised learning
is useful because it allows data scientists to explicitly describe the result that the

15

CHAPTER 2. BACKGROUND

ML algorithm is expected to return. This also allows to define objective functions
that directly depend on the algorithm performances in the given task.

• in Unsupervised Learning instead, data from the training set is fed directly to
the ML algorithm, without having any labels associated to them. As described in
[17], it is possible to say that the aim of unsupervised learning is to learn useful
properties that depend on the training set structure. For example, a typical unsu-
pervised learning task is to learn a compact representation for the data fed through
the ML algorithm; other examples may be to learn the probability distribution
from which the training data is sampled, data denoising, data clustering.

The distinction between supervised and unsupervised algorithms is not formally and
rigidly defined: there is no formal way to distinguish whether a certain value is to be
considered a sample’s feature or the target associated to it, but is nonetheless important
to intuitively understand how these two broad families of algorithms work.

2.1.3 Machine Learning and Deep Learning

Until now, we defined Machine Learning inside the broader field of Artificial Intelli-
gence. We are then interested in describing a sub-field of ML, the area this thesis is
part of: Deep Learning.

In Machine Learning we employ data to solve different tasks. However, the perfor-
mance of many simpleML algorithms depends heavily on the representation of the data
they are given. Such data representation can be decomposed in different atomic units,
usually known as features. As stated above, such features can dramatically influence
the performances of an ML algorithm, which raises the question of how to define them
before they are employed.

In traditional Machine Learning, experts give structure to data using handcrafted
features. They were tasked with finding ways to extract information before presenting
the data to the algorithms. A field later developed, called Representation Learning,
was precisely focused on producing such intermediate data representation directly with
machine learning tools. This is also a form of machine learning, aimed at replacing the
feature extraction effort done by experts.

In this sense, it is possible to use Representation Learning for feature extraction and
machine learning for task solving. AlsoRepresentationLearning, however, is aMachine
Learning task: as with other Machine Learning tasks, it requires data that is more or

16

CHAPTER 2. BACKGROUND

less structured. By iterating the reasoning described before, it is reasonable to stack
different Representation Learning together: in other words, to introduce representations
that are expressed in terms of other, simpler representations. By Following this idea, it
is possible to build “deep” models composed of many different sub-units, shaping out a
representation hierarchy that starts from raw data and ends with the solution of a given
task. This is precisely what Deep Learning is, and its most representative algorithm is
the Neural Network (NN).

Of the many sub-fields of Deep Learning, we are most interested in Deep Computer
Vision. Here, the most widely known model is the Convolutional Neural Network
(CNN), a paradigm originally designed for image-based deep learning. In this thesis
we are interested in extending this specific paradigm, thought to be applied on images,
to the cutting-edge field of 3D Deep Learning.

2.2 A brief recall of Image Convolution

In 1998, Ian LeCun et al. [28] introduced the first Convolutional Neural Network
(CNN) to recognize handwritten digits for the banking and postal industries. This work
is seminal for starting a compelling ML branch, the so-called Deep Learning. While
this technology was difficult to exploit in its early days, it gained significant momentum
in 2012, following the work of A. Krizhevsky et al. [26]: nowadays CNNs are a crucial
tool in the field of Deep Learning, specifically when dealing with ordered data like
in many Computer Vision applications. With “ordered data” we mean data whose
composing elements (e.g. pixels for images) are ordered and inserted into a specific
structure (in the case of pixels, the matrix representing the image). The novelty of
CNNs resided in the fact that they could extract information directly from such ordered
data in a very effective way, without an expert needing to define handcrafted features.
In contrast to the previously existing methods the efficacy of CNNs is much higher.

In particular, such feature extraction is done by means of the discrete convolution
operator:

(q ∗ 6) (H) =
∑
G8 ∈-

q(G8)6(G8 − H), (2.1)

where G8 is a pixel, q(G8) the features associated to it. Here 6(·) is a function called
filter, that depends on the distance between the output pixel H and each pixel G8 ∈ -
participating in convolution.

17

CHAPTER 2. BACKGROUND

Let us consider the case of images: in this setting, This operator is used to aggregate
neighboring pixels together and extract information from their spatial distribution. This
aggregating process is precisely the one extracting our image’s features. The elements
composing it are the following:

• the function q(G) identifies the features associated with a given pixel G: for
example, the color.

• the set - , called neighbourhood, is composed pixels surrounding the output pixel
H. In practice, how many pixels are part of the neighbourhood is decided based
on how the filter’s function 6(·) is defined.

• 6(G − H) is a discrete, compact support function that associates a weight to each
pixel inside a given neighborhood of the output. In this sense, the argument of the
function 6(·) is the relative position between the output pixel H and a neighboring
pixel G8 . In practice, this function is defined as an enumeration: to each possible
argument, a specific output value is defined.

The output (q ∗6) (H) can be interpreted as a pixel of a new image, having a specific
position H and a specific feature (or set of features) (q ∗ 6) (H). Having an image as
output, it is possible to then apply another convolution to it: in other words, we can stack
together different convolutional layers, in order to build a powerful feature extractor
able to catch local as well as global details.

In this thesis, we shall not delve too much in discussing about CNN architectures
and their general properties: we are more interested in discussing the peculiarities of
the Image-convolution operator. In the case of images, the definition of convolution
heavily relies on the fact that pixels’ positions are discrete and distributed in a grid-like
structure: the image itself. In the last years, many different works had the goal of
extending such operator to context in which such grid-like structure is not present: the

Figure 2.1: Convolution over images. In particular, we see how two pixel values of a (2 × 2)
output image are computer.

18

CHAPTER 2. BACKGROUND

case of Convolution over Point Clouds is one of these. In this sense, the problem we
are trying to solve is easy to explain: redefine discrete convolution for unstructured and
unordered data.

2.3 Introduction to Point clouds

The last thirty years saw the rise of automatic computation inmany different disciplines.
An important innovation was the rise of CAD modeling in many engineering fields,
such as mechanical engineering or civil engineering. We can relate the origin of such
that we now call “Point Cloud” to these early days.

As stated in [22], a typical task in CAD modeling is to construct a model starting
from a physical object or part: for example, to produce a CAD model starting from a
physical (e.g., clay, wooden) mock-up. To accomplish this, it is necessary to:

• Produce an abstract, easily readable, sufficiently precise and reliable representa-
tion of the physical object.

• Decode this representation of the given object and transform it to a 3D mesh or
similar kind of data, readable and modifiable using CAD software.

Point clouds (PCs) proved to be an incredibly successful representation for this kind
of problem: they not only can be easily produced starting from a physical object, but it
is also easy to convert them to 3D meshes. They are generally produced by the means
of a 3D scanner, or by the use of photogrammetry techniques. For example, LiDAR
scanners are often employed to produce point clouds representing architectural objects
or landscapes.

We can describe a Point cloud as an unordered set of points, lying in a n-dimensional
space. Usually, though not always, these points are taken from a given surface (as by
using the over cited 3D scanning and photogrammetry techniques) and for this reason
they are easily converted to polygon meshes, NURBS (Non-uniform rational B-spline)
surfaces or similar data. Nowadays, Point Clouds are not only used by mechanical engi-
neers, but they find application also in biomedical imaging, in Geographic Information
Systems (GIS) and many other fields.

While initially meant to represent real-world objects, PCs are nowadays also used
for the opposite goal: to represent ideal objects, like meshes or CAD models, in a
compact and computation-friendly way. In particular, Point Clouds can be helpful in

19

CHAPTER 2. BACKGROUND

Figure 2.2: Image from [50] representing an 3D Point Cloud (PC) of the entire Milan Cathedral
(more than 3 billion points). In this case, the PC is obtained by merging two different types
of points: TLS data, that are shown with their intensity colours (green, yellow, orange) and
photogrammetric data with RGB color information.

tasks where a standard 3D mesh would be difficult to handle. This later use is more
recent than the one described before and gained momentum specifically in the last
decade. In particular, PCs raised particular interest in the field of 3D Deep Learning:
they are an uncommonly flexible data type, capable of representing 3D shapes both
precisely and in a compact fashion. In this field, the pioneering work was PointNet by
C. Qi et al., which proved that Deep Learning could be applied to PCs to solve several
supervised learning tasks.

For this reason, we can trace a first broad categorization for Point Clouds:

• Synthetic PCs, designed starting from synthetic data, are used to perform tasks
over 3D shapes. In this case, using PCs as data structure is owed to the fact that
Point Clouds are easier to handle than other representations.

• Real-world PCs are sampled directly from real-world objects and are oriented
to capture the object’s features, often in a very detailed manner. In this case,

20

CHAPTER 2. BACKGROUND

the use of PCs is due to the fact that most of the scanning techniques produce
Point Cloud representations. Depending on the framework, real-world point
clouds can be prone to issues. Some of these problems are related to the point’s
distribution over the represented shape or to the inability to sample particular
details accurately; some others are related to the features associated with each
point, like its color or the normal vectors to the sampled surface;

Other than this broad classification, it is possible to identify several possible dif-
ferences between Point Clouds used in different contexts. For example, the PCs used
in architecture and heritage preservation (like the one shown in figure 2.2) are cer-
tainly richer in terms of features and amount of points than the Point Clouds used by
autonomous agents for navigation. In this sense, PCs are undoubtedly flexible instru-
ments in representing the 3-Dimensional world in quite diverse settings. This fact is the
main reason behind the thriving of Point Cloud-based methods in different computer
vision fields, Deep Learning being one of these.

21

Chapter 3

State of the art

As discussed in chapter 1, this thesis contributes in two different directions: the first
consists in the definition of a novel point-convolutional layer designed to operate on
point clouds. The second direction concerns testing our novel convolutional layer in
two different tasks: supervised Multiclass Classification and unsupervised One-Class
(OC) Classification. This chapter treats all the fundamental topics needed to understand
both the approach proposed by this thesis and other related works on deep learning with
point clouds.

First, we introduce some useful topics in understanding the goal of this thesis and
the design of our proposed solution. In particular, section 3.1 is dedicated to discussing
a simple alternative to the traditional Multilayer perceptron (MLP) of which we shall
make extensive use: the Radial Basis Function Network (RBFN). Furthermore, in
section 3.2 we shall spend a few more words about what point clouds are and what
properties are expected from machine learning algorithms dealing with them;

In the second part of the chapter, we describe the other related methods involving
deep learning on 3D data and point clouds. In particular, section 3.3 introduces some
early approaches to Geometric Deep Learning; section 3.4 will be dedicated to present
a simple taxonomy for methods involving supervised Deep Learning tasks with point
clouds. Finally, in section 3.5 we discuss unsupervised techniques on point clouds.

22

CHAPTER 3. STATE OF THE ART

3.1 Radial Basis Function Networks

In the field of deep learning, it has been proved that Multi-Layer Perceptrons (MLPs)
possess universal approximation capabilities [17]. For this reason, MLPs are widely
used in system identification, prediction, regression, classification, control, feature
extraction, and associative memory. Here, we present a different family of neural
networks that, like MLPs, can approximate an arbitrary function. This meta-algorithm
is called Radial Basis Function Network (RBF): in defining a convolution over point
clouds, we shall make extensive use of it.

3.1.1 Introduction

Firstly introduced by Broomhead and Lowe in [5], Radial Basis Function Networks
possess the same approximation capabilities of an MLP, with the significant advan-
tage of faster convergence[60]. Historically, RBFs were introduced for exact function
interpolation [3]: having a set of points G1, G2, G3, ... lying in a n-dimensional space,
each one associated to a target vector C1, C2, C3, ..., the purpose was to find a function
5 (G8) able to fit the target exactly. This result was reached using the same principle
of many basic regression models: via a linear combination of fixed Basis Functions,
each having as argument a certain number of input features. In the case of Radial Basis
Function Networks, as suggested by the name, this linear combination is performed
between basis functions of the type:

ℎ(| |G8 − 2; | |).

In other words, each basis function ℎ; depend only by the distance between an input
point and a certain vector center 2; , associated with it; moreover, this means that all
bases are obtained by translating the same function and thus their values depend only
on the center 2; . The RBFN output is then computed as:

5 (G8) =
∑

F;ℎ(G8 − 2;).

, where the coefficients F; can be learnt by Gradient Descent or Ordinary Least Squares
as with other simple regression methods. The only difference between this exact
interpolation method and the use of RBFNs in machine learning is given by the fact
that, whereas in exact interpolation the goal is to fit exactly each input point, this is
undesirable when doing machine learning in order to avoid overfitting and allow the
model to generalize better.

23

CHAPTER 3. STATE OF THE ART

G1

G2

G#

ℎ1

ℎ2

ℎ!

,

H1

H2

H$

∑

∑

∑
Figure 3.1: Architecture of an unbiased Radial basis function network with N inputs, L hidden
neurons and O output neurons respectively

3.1.2 Neural network Architecture

Since RBFNs approximate functions by a linear combination of RBFs, they are often
represented as simple three-layer feed-forward Neural Networks [60]. Let us consider
an RBFN with # inputs, ! RBFs, and $ outputs: in this case, each Radial basis
function can be represented by a hidden neuron, using the corresponding RBF as
activation function. It is possible to see a representation of this simple neural network
in figure 3.1.

We remark that in this network, non-linearities are added directly by the radial basis
function, and that each radial basis function differs from the others only because of its
associated center 2; . For this reason, the network’s output is computed as:

H> =
∑
;

F;>ℎ(| |G − 2; | |).

, where H> is the >-th RBF output, F;> are the network’s learnable parameters, ℎ is the
RBF here used as activation function, and 2; is the ;-th RBF center. Alternatively, we
can write the output vector in matrix form, as:

. = ,)�.

Given its simple architecture, the performance of a radial basis function network
depends on three factors:

24

CHAPTER 3. STATE OF THE ART

• choice of the RBF shape: there are multiple suitable radial basis functions that
can be used in a RBFN. The one perhaps most commonly used is the Gaussian
function:

ℎ(| |G − 2 | |) = 4
| |G−2 | |2

2f2 .

• choice of the centers: since the difference between each hidden neuron is due
only to its center, a suitable center selection strategy must be enforced: in certain
cases, it is possible to learn the center’s positions, while in other it is better to
select them a-priori.

• choice of the hidden layer’s dimension: It is possible to define more centers,
meaning more RBFs, to increase the approximation capabilities of the RBFN.
Vice versa, it is possible to use fewer RBFs to reduce overfitting.

3.1.3 Choice of Radial Basis Function

In theory, a Radial Basis Function is simply a function whose value depends only
on the norm of the difference between input and output. For example, the function
can: H2 (G) = | |G − 2 | | is an RBF. In practical applications, though, we are more
interested in certainRBF classes that have proven to yield better results in approximating
arbitrary functions. An important class is the of localized RBFs: we call a certain RBF
ℎ(| |G − 2 | |) = ℎ(A) localized if these two properties hold true:

lim
A→∞

ℎ(A) = 0.

ℎ(A1) > ℎ(A2) ∀ A1, A2 : A2 > A1.

If a Radial Basis Function network is made of localized RBFs, then the network will
produce similar outputs for sufficiently close input vectors; on the other way, having
sufficiently distant input vectors yields nearly independent results [60]. This property
is a form of local generalization, similar to the one of image-convolutional layers.

Besides the localization property, a radial basis function ℎ(| |G − 2 | |) has to sat-
isfy the following properties [23] to guarantee the network’s universal approximation
capabilities:

0) ℎ(| |G − 2 | |) > 0 ∀ G.

1) ∇Gℎ(| |G − 2 | |) < 0 ∀ G.

2) ∇2
Gℎ(| |G − 2 | |) > 0 ∀ G.

(3.1)

25

CHAPTER 3. STATE OF THE ART

If a radial basis function is both localised and satisfies (3.1), then the actual shape
of the RBF is irrelevant in terms of generalization power [23]: the network will be able
to achieve universal approximation capabilities, and its precision will depend only on
the number of hidden neurons. This does not mean, however, that all of such functions
yield the same performance given a network with a fixed number of hidden neurons:
on the contrary, it is possible that certain RBFs perform better, and certain others
worse. This is analogous to what happens when dealing with Discrete Convolutional
Neural Networks: the intrinsic capabilities of a CNN are not bound by the shape and
dimension of its filters, but the performance obtained by a certain fixed CNN can be
heavily impacted by its filter’s shape and size. For this reason, many different radial
basis functions were proposed to be used in RBF Networks. Some examples are:

0) ℎ(A) = exp
(
A2

2f2

)
.

1) ℎ(A) = 1
(f2 + A2)U

, U > 0.

2) ℎ(A) = V
√
f2 + A2, V > 0.

3) ℎ(A) = A2;=(A).

(3.2)

Note that between the RBFs in 3.2, only a) and b) are localized functions. On the
other hand, both RBFs c) and d) proved to be valid alternatives in specific contexts [60].
The most widely used radial basis function remains the Gaussian function a), because
of its simplicity, the existence of only one tunable parameter f and the fact that it’s
both localized and satisfying properties 3.1;

3.1.4 Choice of RBF centers

In the literature, numerous alternatives have been proposed to select RBF centers’
positions. For example, J. GommandD.Yu in [16] propose to use RecursiveOrthogonal
Least Squares (ROLS). Another well known method is to perform k-means clustering
over some input points and place the centers near each cluster’s centroid [54]. In
general, what method to employ heavily depends on the kind of data and on the task
needing to be solved. In the case of point convolution, a possible solution is proposed

26

CHAPTER 3. STATE OF THE ART

in [51]: to select the centers’ positions by solving an optimization problem. In this
case, the authors wanted the RBF centers to be as far from each other as possible inside
a given sphere. Each center was assigned a repulsive potential towards the other points,
concurrently with an attractive potential towards the sphere’s center. In this setting,
the optimization problem consisted of minimizing the global energy. Another solution
proposed in [51] is to simply learn the RBF centers by Stochastic Gradient Descent.

3.2 Properties of ML algorithms on point clouds

Point Clouds are simple, unordered sets containing points lying in an n-Dimensional
space. Their importance derives from the fact that they can represent virtually any kind
of n-D surface compactly. It is possible, although not necessary, to associate a certain
number of qualitative features to each point in the set. For example, a possible feature is
the vector normal to the surface fromwhich the point was sampled. Inmachine learning,
we are interested in building algorithms that are able to extract information from data:
in other words, we expect our algorithm to generalize. To achieve this generalization
capability on such unstructured and elementary data can be very challenging. There are
specific rules our algorithm should comply with when defining how to interpret each
datum, so some algorithms are more fit to the problem. The case of point clouds is
precisely this one: Being Point Clouds elementary data structures, we need to enforce
specific properties when designing a machine learning algorithm that learns from them.
We report those presented by Charles Qi in Pointnet [37], one of the pioneering works
about Deep Learning on point clouds:

1. Order invariance: a machine learning algorithm should not enforce any or-
dering between points in a point cloud, nor should it be relying on such order.
This property derives the simple observation that point clouds are unordered
sets: feeding the algorithm with a given sequence of points (G1, G2, ..G=) should
yield the same result as when feeding the algorithm with the opposite sequence
(G=, G=−1, ...G1). It is also easy to be convinced of the soundness of this property
by thinking that a point cloud is, in most cases, a set of points sampled from an
n-D surface that is meant to represent the surface itself; in this case, the ordering
is a property about how the sample was performed, and not about the sampled
surface.

2. local structure awareness: machine learning algorithm should capture local

27

CHAPTER 3. STATE OF THE ART

structures contained in neighborhoods of nearby points. Since point clouds are
sampled from metric spaces, it is possible to enforce a distance metric (like
the euclidean distance) between points. In other words, points should not be
considered as isolated entities: the information our model needs to extract resides
in the interactions between them. In a certain sense, this property mimics the
locality property typical of discrete CNNs.

3. Invariance under transformations: a Machine Learning algorithm should
yield the same result when fed with a given point cloud %1, and when fed with
a point cloud %2 obtained by applying certain geometrical transformations on
%1. This principle, though very intuitive, is left intentionally vague: the kind of
geometrical transformations our algorithm should be invariant to depend on the
application. For example, if our point clouds are sampled from rigid physical
objects, it is safe to build an ML model that is invariant concerning rotation,
translation and mirroring. At the same time, it is not safe to assume that the
model should be invariant to scaling. An example of this latter statement could
be distinguishing between dolls and people where the principal factor would be
the dimension of the objects of interest. Thus, scale invariance can better be
avoided in some particular environments while being helpful in others.

It is possible to trace a specific parallelism between image-based and point cloud-
based algorithms: we expect that both image-based CNNs and Point Cloud-based Deep
Learning models are transformation-invariant and capable of learning local and global
structures. On the other hand, though, images are a data type containing an intrinsic
ordering between its elements (the pixels). This is the main difference between a
standard image-based deep learning algorithm and algorithms that deal with Point
Clouds: it is impossible to rely on an inherent structure of the data.

3.3 Early approaches to deep learning with 3D data

Point clouds were first defined as intermediate step between real 3D objects and their
digital representation, whether in the form of a mesh or as CAD model. This is why
deep learning on point cloud is strictly tied with deep learning on 3D objects. The aim
of this section is to present two specific families of deep learning algorithms devoted
to 3D-based tasks.

28

CHAPTER 3. STATE OF THE ART

Figure 3.2: Image from [47] showing a multiview CNN architecture for 3D shape classification.
Multiple images of a 3D model are taken, each one from a different (but fixed) point of view.
Each of those images is sent to a different CNN. Results for all the CNNs are pooled together and
another CNN is fed with them. The output of this last CNN represent the classification score of
the given object for each class.

The first 3D Deep Learning models were Multiview CNNs, which take several 2D
images from a 3D object (either a mesh, a cad model, a point cloud, or a physical 3D
object) to represent it from different points of view. These images are then fed to a
CNN-like deep neural network to extract information from them. These methods can
achieve good performances, but they also require carefully crafted CNN architectures
to work. In other words, this solution heavily depends on the network architecture,
while it would be desirable to have architecture-agnostic approaches. An example of
this kind of model is described in [47], and briefly presented in Figure 3.2. It is worth
noticing that although the network described in [47] is meant for 3D objects, it is can
also handle point clouds.

The second family of models is known as Volumetric CNNs, and it represents a
direct 3D generalization of discrete Convolutional Neural Networks on images. This
family of methods create a grid structure to discretize the 3D space. In this way, we
obtain a 3D structure very similar to the matrix representation we use for images, thus
we should be able to use tools that are analogous to those used in image recognition.
The process of discretizing the space to fit a tensor-like structure is called Voxelization,
and represent the core element of these methods. Unfortunately, there are several
drawbacks in this approach:

• Voxelization implies loss of information: each element (voxel) of our matrix-like
structure is meant to contain a value (or a set of values) that describes the whole

29

CHAPTER 3. STATE OF THE ART

Figure 3.3: Image from [64] that shows a bunny mesh together with three voxelized represen-
tations. It is possible to see how such discrete representations heavily depend on the voxel
resolution to capture certain details.

volume of the voxel itself. Using this technique, the “resolution” of our 3D grid
heavily affects the fidelity of our 3D shape representation as shown in Figure 3.4.
It is possible to solve this problem by performing a very fine-grained voxelization,
but this causes significant problems in terms of performance.

• 4-Dimensional tensors are much more complex to handle than 3-D tensors,
such as images. This is trivially understandable by comparing a (32 × 32 × 3)
RGB image, composed of 1024 pixel with three color channels each, and a
(32 × 32 × 32 × 3) 4-D tensor, containing 32768 elements each one with three
feature channels. Moreover, voxelization needs to be as fine-grained as possible
to limit the loss of information due to discretizing the space, which only worsens
the problem of handling N-dimensional tensors due to the additional tensor
dimensions.

• A considerable share of the voxelized space typically does not contain any in-
formation. Not all voxels are built in over the surface of the represented object:
those lying completely outside or inside the represented object are useless in
describing its 3D shape.

In order to solve the second and the third caveat here cited, a possible solution is to
make use of sparse tensors, which do not keep track of useless (i.e., empty) voxels.
Some Sparse Convolutional Approaches rely precisely on this idea, an example being
[18].

30

CHAPTER 3. STATE OF THE ART

Figure 3.4: Image from [37] representing the architecture of Pointnet, both for classification (in
blue) and segmentation (in yellow), indicating each input and layer dimension. As it is possible
to notice, much of the architecture is shared both for segmentation and classification.

3.4 Supervised models for point clouds

As from 2015, a number of possible 3D deep learning models that make use point
clouds as input data were presented. The aim of this section is to discuss four broad
classes of 3d deep learning models related to point clouds: Point-wise MLPs, Point
Convolutional networks, Graph based Networks, and other custom approaches shall
be presented. It is not always easy to precisely classify a deep learning method into a
certain category: for example, graph-based methods can be considered as an alternative
to point cloud methods, but in [19] they are classified as point cloud based. It is also
not rare to encounter methods that can be classified as part of two different classes: for
example [14] can be both classified as a graph basedmethod and as a point convolutional
method.

3.4.1 Pointnet and Point-wise MLP methods

The most famous Deep Point Cloud model is certainly Pointnet [37], together with its
successor Pointnet++ [38] from the same authors. In these two models, presented for
classification and segmentation, the given task is solved by the use of a very specific
deep architecture. For example, a classification task is solved in Pointnet by performing
the following steps:

1. the input point cloud is fed to a sub-network that produces a second point cloud
thought to be invariant with respect to rotation and translation. Note that, if there
are some features associated to each point of the input point cloud, those are

31

CHAPTER 3. STATE OF THE ART

treated like additional spatial coordinates.

2. each point inside the transformation invariant point cloud is fed to a single, shared
multilayer perceptron that extracts a number of features from it.

3. the feature point cloud extracted from the multi-layer perceptron is then again
fed to a transformation invariant sub-network.

4. feature point clouds are then max pooled to achieve permutation invariance.

5. the output of the MaxPooling layer is fed to a dense layer that will output class
probabilities associated to the point cloud.

Figure 3.4 shows a representation of the architecture over described. In this case, we
chose not to describe in details how such operations are performed, because we are
interested in pointing out the fact that the original contribution is the overall architecture
of such model, more than its components. On the contrary, in the next sections we will
see that many other works already presented in literature try to define new and original
components thought to be used in already existing architectures.

Models such as Pointnet are known in literature as point-wise MLP methods [19],
given the fact that semantic is extracted from point clouds with the help of a shared
multilayer perceptron that analyzes each point separately. These methods were one of
the first deep learningmodels designed towork directly on point clouds. Other examples
of point wise MLP methods are "Deep Sets" [61] and "Point Attention Transformers"
[57].

3.4.2 Convolution based methods

Convolution based methods represent another important family of 3D Deep Learning
algorithms. These methods aim to define a convolution operator that can be used on
point clouds, like the traditional discrete convolution operator is used on images. The
main advantage of these approaches is that said convolutional layer can be used inside
any traditional CNN architecture (such as the well known ResNet [o]r VGG16 [46])
without any substantial modification. Given both the advantages of being architecture
agnostic and theoretically straightforward, this family of methods is the most successful
one, and most of the already presented models can be classified as convolution based
methods[19],.

32

CHAPTER 3. STATE OF THE ART

We shall not discuss now how these models work, as we will present some examples
in the next sections of this chapter. It though worth to cite some important models
presented in literature: for example, PointCNN [29] transforms the input points into
a latent ordered set through a MLP, and then applies typical convolutional operator
on the transformed features. In SpiderCNN [56], the convolution is produced by
approximating a continuous filter function with the help of a polynomial. Another
possible approach is to approximate said filter function with the help of a MLP, like in
the case of "Deep parametric CNN for point clouds" [53]. As it is possible to understand
by the previous examples, there are many alternative and substantially different ways
to define a point convolutional layer, which is perhaps one of the main reasons behind
the success of this category of models.

3.4.3 Graph based methods

The third alternative for point cloud deep learning is represented by the so called graph
based models. These models consider each point in a point cloud as a vertex of a graph,
and generate directed edges for the graph based on the neighbors of each point. Feature
learning is then performed in spatial or spectral domains, therefore it is possible to
distinguish between spatial graph based models and spectral graph based models. In
the case of spatial graph based models, many works available in literature implement
some form of spatial convolution in a way similar to non graph based convolutional
models: an example of this kind of models is SplineCNN [14]. On the other hand,
spectral graph based methods usually make use of graph spectral theory, producing
substantially different methods with respect to those presented in this thesis. A famous
example of spectral graph based method is [10].

3.4.4 Other methods

Besides models that fall in the categories previously defined, there also exist some
custom methods. For example, several methods like OctNet [40] and Kd-net [24] make
use of hierarchical data structures to model and process point clouds. More inherently
to this thesis, RBFNet [8] uses a radial basis function network as a sort of encoder for
the input point cloud, exploiting the fact that radial basis function networks are able to
catch local spatial structures. The encoded point cloud is then classified with the help
of a MLP.

33

CHAPTER 3. STATE OF THE ART

3.5 Anomaly Detection and Point Clouds

The field of deep learning with point clouds is relatively young compared to other
research topics. One of the first works trying to define a deep neural network for
classification and segmentation operating on point clouds is the already discussed
PointNet in 2015; starting from PointNet, several different authors proposed different
models designed to solve similar supervised learning problems. On the other hand,
few works discussing unsupervised techniques with point clouds have already been
presented. In this section we briefly discuss what unsupervised learning techniques
with point clouds are available today, particularly focusing on the broad field of anomaly
detection tasks.

3.5.1 Point Cloud Autoencoders

In the field of anomaly detection for images, many models rely on the concept of deep
autoencoder. As in [17], we can define "deepAutoencoder" as a neural network that tries
to learn the identity function or, in other words, to replicate its input. This is done by
learning a compact input’s representation capable to capture its main features. Several
different kinds of deep autoencoder were proposed and implemented, depending on the
task that needed to be solved and the kind of available data. In particular, autoencoders
proved to be extremely useful when dealing with denoising and, most importantly in
our case, when dealing with unsupervised one-class classification (OC). As pointed
out in [19], there exist some proposed autoencoders for point clouds. Some relevant
examples are:

• FoldingNet [58] presents a graph-based deep autoencoder that heavily relies on
the fact that point clouds are usually sampled from surfaces. The idea is that
any 3D object surface could be transformed to a 2D plane by the use of certain
cutting, squeezing, and stretching operations. This operation is reversible, as it
is possible to reconstruct the 3D shape starting said plane by repeatedly folding
it and concatenating the vertices and the edges.

• in [62] Zamorski et al. Proposed a novel point cloud Adversarial Autoencoder,
namely 3DAAE.

• in 3d Point Capsule Networks [63] the authors try to define a novel point cloud
autoencoder by generalizing the idea of capsule networks already used in 2d im-
ages to 3d point clouds; Capsule networks [43] are an extension of the traditional

34

CHAPTER 3. STATE OF THE ART

image CNN model that is designed to be the solution of problems such as the
so called Picasso Problem: in a traditional image CNNs recognizing faces, the
relative position of various elements - like mouth, eyes and nose - is not taken
into account by the network, which relies only on the mere presence of such
details when deciding whether an image contains a face or not.

Two measures are usually employed to evaluate how much a Point Cloud is well
reproduced by an AutoEncoder. The first one is the so called Chamfer distance,
employed by Foldingnet [58] and by 3DP Capsule Networks [63]. The second one is
called Earth mover’s distance [41] and it is employed, for example, by 3DAAE.

3.5.2 Denoising and OC classification for point clouds

Some of the of point cloud anomaly detection works already available in literature
try to deal with the problem of denoising and outlier point detection. Because of the
noisiness of the point cloud, especially those sampled from real-world environments, it
is interesting to understand which points belonging to a given point cloud are perturbed
by noise and which are not. Even better would be to adjust the position of each point in
a way such that the noise is minimized. An interesting work in the field of point cloud
denoising is Total Denoising: Unsupervised Learning of 3D Point Cloud Cleaning by
Hermosilla et al. [21]. Another paper worth citing on this topic is 3D Point Cloud
Enhancement using Unsupervised Anomaly Detection by Regaya et al. [39].

Another important and well known kind of task in anomaly detection is the one
of One-Class Classification: as from [6], we call One-Class classification the task in
which the model is able to distinguish elements belonging to a given "normal" class
from anomalous elements, i.e., elements that do not fit the training data distribution. In
case of unsupervised OC, all the training set is composed by instances of said normal
class. In this environment, the model is able to discriminate between normal and
anomalous instances by learning a space region containing as many training elements
as possible. As a result, if an instance falls outside the mentioned region, this instance
is likely to be anomalous. Differently from denoising, it is not simple to find in existing
literature works that describe how to solve unsupervised point cloud OC classification
tasks. To the best of our knowledge, no deep learning model solving OC classification
for point clouds has been proposed yet. This raised an issue during the development of
this thesis, as it is not possible to compare the model we will present with other already
existing works. Moreover, it is worth noticing that recent and very general surveys

35

CHAPTER 3. STATE OF THE ART

[19] dealing with the topic of deep learning with point clouds do not mention one-class
classification methods.

36

Chapter 4

Point Convolution: some
examples

After discussing the State of the Art in a more general way, we propose a more thorough
description of some convolutional methods for Deep Learning on Point Clouds, namely
Point Cloud CNN by Extension Operators [2], Kernel point Convolution [51] and
ConvPoint [4]. We choose to present such methods for a number of reason: first, they
are closely related to what we present in our proposed solution. Second, they allow us
to explain how some typical point convolutional layers are defined and implemented.
Finally, presenting these already existing layers should allow us highlighting the novelty
of our proposed solution better when compared to similar models. For these reasons,
we also discuss the three works chronologically: the first one presented, PCNNEO, is
the oldest among the three and at the time it presented an entirely new approach to
the problem of deep learning with point clouds. The second one, KPConv, will try to
enhance the idea behind PCNNEO by using a different definition of the convolutional
operator. Finally, Convpoint presents a design similar to KPConv with an important
novelty about how to define the convolutional filters. Discussing these works also
allows us to introduce several elements needed to define our solution that shall also be
presented in chapter 5.

37

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

4.1 Point CNNs by Extension Operators

In the previous section we discussed Pointnet [37], a non-convolutional model that
handles both the spatial coordinates and the features associated to them. In Convo-
lutional Neural Networks, like those used in image recognition, pixel features (e.g.,
color channels, alpha, ...) are treated separately with respect to pixel positions. To be
more precise, pixel positions are only used in determining the filter’s 6(g) argument
g = G − H, while pixel features are multiplied together with said filter. The core idea
of the continuous convolution for Point Clouds is precisely to handle spatial coordi-
nates and features separately. In this section we shall describe a model, called Point
CNN by Extension Operators (PCNNEO) [2], that tries to generalize the conventional
Convolutional operator to Point Clouds. Differently from PointNet, this approach is
designed to be architecture-agnostic: the convolutional layer here described can be
used in any architecture used in image-based convolutional neural networks. This will
allow us to focus on describing the convolutional layer itself, while considering the
choice of the architecture as an implementation detail. Another important detail in this
model is the extensive use of Radial Basis Functions (RBFs): exploiting their ability
to capture local structures, PCNNEO’s authors use them to implement the core part of
their convolution operator. As we shall see, this approach will be referenced by other
authors in subsequent works.

4.1.1 Convolutional layer’s input and output

PCNNEO’s fundamental component is the convolutional layer, being it agnostic with
respect to the Neural Network architecture used. We now present what we expect to
be the input and the output of each convolutional layer within PCNNEO. Recall that
since we are defining a convolutional layer, our input may either be the original Point
Cloud fed to the model, or an intermediate Point Cloud produced by a layer higher in
the network’s architecture.

We define each layer’s input � as follows:

� := (%� ; q),

where %� ⊂ R3 is a set of points lying in a 3-dimensional space, and q : %� −→ R� is
a function associating to each point G8 ∈ % a feature vector in a �-dimensional space.
On the other hand, we expect each convolutional layer to have an output $ similarly

38

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

defined as:
$:= (%$; k),

where %$ ⊂ R3 as for the input, and k : %$ −→ R" is the function mapping each
output point to a set of output features, lying in a "-dimensional space. Note that,
while both %� and %$ lie in the same 3-dimensional space, in general |%� | ≠ |%$ |.
The behavior of the Convolutional Layer varies, depending on |%� | and |%$ |, in the
following way:

• if |%� | = |%$ |, our point-convolutionallayer is behaving like a non-strided convo-
lutional layer. This is similar towhat happens in a non strided ImageConvolution:
if we apply a non-strided discrete convolution to a (#, ") wide image, we obtain
an output having the same (#, ") spatial dimension.

• if |%� | > |%$ |, our point-convolutional layers behaves similarly to a strided
discrete convolutional layer: as in images, we receive an output with reduced
spatial dimension. In this thesis, we do not consider pooling, even though several
works [51] [2] define Point-Pooling layers: instead, we use striding to reduce the
cardinality of %$ in the various network layers.

• if |%� | < |%$ |, our point-convolutional layer behaves like a deconvolution: this
is useful, for example, in tasks like semantic segmentation.

Another important consideration is whether %$ ⊂ %� (or, if we are applying a
deconvolution, %� ⊂ %$). In general, every algorithm can decide whether this is the
case or not: in the case of PCNNEO, for example, %$ ⊆ %� ; The main advantage of
choosing a subset %$ ⊆ %� as output Point Cloud is relative to the layer’s implemen-
tation: having to sample a subset from a given Point Cloud can be much more efficient
than defining a new output point set %$ * %� . For instance, being all points known
a-priori before training, it would be possible to know the distances from each point to
the others before training, so that it wouldn’t be necessary to compute the said distances
on the run.

Finally, we briefly discuss the input feature space and the output feature space. As
in the case of image CNNs, we expect that the number of each layer’s output features "
will be bigger (smaller) than the number of input features � in the case of convolution
(deconvolution), depending on the architecture, the training data and the task that needs
to be solved.

39

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

4.1.2 Convolutional layer’s structure

In PCNNEO, Point Cloud convolution is defined as subsequent application of three
different operators to the input:

1. Extension E� : starting from an input Point Cloud %� , we define a continuous
function generalizing it.

2. Convolution C: we apply a continuous convolution to the function produced by
the extension operator, obtaining as a result another continuous function.

3. ReductionR$: we sample the Convolution operator’s output function, obtaining
a different Point Cloud that can be fed into the next layer of the network.

In formulae, the output of the convolution operator C� ,$ that maps the Point Cloud
� to the Point Cloud $ is obtained as:

C� ,$ = R$ • C • E�

In the next sections we describe the way these operators are defined. This model is
quite different in its inner mechanism from the other models presented in this chapter;
however, the overall scheme presented here - in particular regarding how to define input
and output Point Clouds - is shared by the other convolutional models, namely, KPConv
and ConvPoint.

4.1.3 Extension

Starting from the input � := (%� , q), the Extension operator should return a continuous
function, defined over the entire R3:

E� : (%� , q) −→ � (R3 ,R�),

where with � (R3 ,R�) we mean the collection of functions 5 : R3 −→ R� . The
idea is that the Extension operator should return an interpolation of the feature function
q(·), which is instead defined only over %� . Let us recall what we discussed in Section
3.2 regarding the properties a Point cloud ML model needs to comply with:

• The algorithm should be invariant with respect to the order of the Point Cloud’s
elements.

• The algorithm should capture local and structures inside the Point Cloud.

40

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

Figure 4.1: Image from [2] explaining how the extension operator works: the image is showing
three Point Clouds (composed of 2048, 1024 and 256 points respectively) where each point is
associated to a single, unitary feature. The colored area represent the continuous, 3-Dimensional
(here 3 = 3) function returned by the extension operator for each of the three Point Clouds. It is
possible to note how the shape of said function is independent with respect to the cardinality of
the Point Cloud that was used to generate it.

• The algorithm should be invariant to a certain reasonable set of geometrical
transformations.

We can enforce the first two properties by the use of the Extension operator: to do
that, the choice of the right model implementing E� is crucial. PCNNEO uses a linear
combination of RBF to implement the Extension, for three reasons: linear combinations
of Radial Basis Functions were frequently used to interpolate a set of points [60] [23];
they are invariant with respect to the point order; they are also good, given a localized
Radial Basis Function, to capture local structures. In formulae, the Extension operator
becomes:

E� [q] (G) =
∑
8

q(G8)l8 ℎ(|G − G8 |),

where q is the input feature function that needs to be interpolated, and G8 ∈ %� represents
the spatial coordinates vector of each element contained in the input Point Cloud. Such
linear combination is composed of a RBF ℎ(|G−G8 |) for each point G8 ∈ %� : this means
that if the input is composed of 256 points, our extension operator is computed as sum
of 256 RBFs, each one centered on a different G8 ∈ %� . Finally, l is a parameter that
depends on a given point G8 ∈ %� , the weights of which contribute to the combination.

41

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

A possible choice for l8 is:

l8 =
1∑

9 ℎ(|G 9 − G8 |)
G 9 ∈ %� .

This means that to weigh each point’s G8 contribution relatively to the distance from
the other points G 9 : in this way, we are sure that the outliers have less weight than the
inlier points.

Finally, to fully describe the Extension operator E� , we need to choose a suitable
Radial Basis Function ℎ(|G − G8 |). PCNNEO uses a Gaussian function as RBF:

ℎ(|G − G8 |) = 4 |G−G8 |
2/2f2

.

As we discussed in Section 3.1, a Gaussian Radial Basis Function is both localized and
suitable to achieve universal approximation capabilities when used in a Radial Basis
Function network. The main reason behind this choice, though, relies on how the
convolutional operator is defined: as we shall see, it would not be possible to efficiently
compute the convolutional operator without having defined E� as sum of Gaussians.

4.1.4 Convolution

The definition of this convolution relies heavily on the specific way in which the
extension operator E� was computed. In this context, we denote the output of the
Extension as:

5 (G) = E� [q] (G).

Our convolution operator � [5] (G) is defined as:

� [5] (G) =
∫
R3

∑
9

5 9 (H) ^ 9 (G − H) 3H.

In this expression, each function 5 9 represents the j-th component of the function
5 (G) = E� [q] (G): in other words, each 5 9 (H) contains the j-th feature of the point H.
On the other hand, the filter is represented by the function:

^ 9 : (R3) −→ (R� ,R").

Recall that in this context, R� is the input features’ space, while R" is the output
feature’s space: as expected, the kernel ^(G − H) associates to each input spatial vector
a set of weights representing how each input feature contributes to each output feature.

The main question that rises from this convolutional operator is how to compute
the said integral efficiently. Having defined 5 (H) as combination of Gaussian RBFs is

42

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

useful to find a solution to this problem: [2] state that the convolution of two Gaussians
ΦU (|G −U |) andΦV (|G − V |) is proportional to a third GaussianΦX (|G −U− V |) where
X =

√
U2 + V2. In formulae:

ΦU (|G − U |) ∗ΦV (|G − V |) ∝ ΦX (|G − U − V |). (4.1)

Since the function 5 (H) that needs to be convolved is already a Gaussian, it is
possible to define a Gaussian kernel to make use of the rule above. For this reason, we
define the kernel ^(G − H) with the help of a proper Radial Basis Function Network:

^(A) =
∑
;

: 9 ,;,< ℎ(|A − 2; |),

where 9 refers to the input feature, < refers to the output feature, A is the filter’s
argument, 2; are RBF centers and finally : 9 ,;,< are the learnable parameters of our
filter.

Having defined the convolution’s kernel, we can rewrite the Convolution operator
as:

� [5] (H) =
∑
8, 9 ,;

q8, 9l8: 9 ,;,<

∫
R3
Φ(|G − G8 |)ΦV (|G − H − 2; |) 3G. (4.2)

Such integral is solvable by the use of (4.1); the only learnable parameters are : 9 ,;,<,
which define the convolutional kernel. We expect the result of expression 4.2 to be a
continuous function:

k' (H) : R3 −→ R" ,

assigning each point H ∈ R3 to a set of output features obtained by convolution. The
next step is to sample a Point Cloud from this function, representing the output of our
Convolutional Layer.

4.1.5 Reduction

The reduction operator is the simplest component of this Point Cloud convolutional
layer. Its role is to return a Point Cloud from the function obtained from convolution
operator. The only caveat is the following: the function k' (G) is defined over all R3 ,
while we expect our output points %$ to be sampled from a surface. For this reason,
a possible method is to resample the same points from the input Point Cloud, that is
assumed to be correctly sampled. In this case, the reduction operator can be written as:

k(H) = '$ [k'] (H) = k' (H)
���
%$

; %$ ≡ %� .

43

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

It is also possible to sample from a subset of the original Point Cloud, obtaining a sort of
strided convolution were %$ ⊂ %� . Having both the elements belonging to the output
$, namely the point set %$ and the output features function k(G), we have completely
defined PCNNEO’s Convolutional Layer.

4.2 Kernel Point Convolution

The convolutional layer described in the previous section - known as PCNNEO - can
achieve good performance when applied to different neural network architectures. On
the other hand, though, PCNNEO is an indirect method: it operates on a continuous
function defined starting from a Point Cloud. Most importantly, PCNNEO is not
scalable: the Extension operator has quadratic complexity with respect to the number
of points in %� [51]. This derives from the fact that the definition of the Extension
operator involves the entirety of the input Point Cloud.

For these two reasons, H. Thomas et al. Introduced a new convolutional layer
called Kernel point Convolution (KpConv) [51], meant to define neighborhoods and
convolutional kernel directly on Point Cloud’s elements. This section aims to introduce
the convolutional layer designed in KpConv, highlighting the differences between the
previously presented models. In this context, we continue to refer to input � and output
$ in the same way as in Section 4.1.1; the considerations regarding the cardinality of
input and output also hold. This convolutional Layer is also meant to be architecture
agnostic, achieving good results using standard neural network architectures such as
the ones used by image CNNs.

4.2.1 Key components of KP convolution

Let us consider a discrete image convolution operator with one input channel and one
output channel:

k = (q ∗ 6) (H) =
∑
G8 ∈-

q(G8) 6(H − G8). (4.3)

In this operator, pixel positions decide the filter’s value, and pixel features are weighted
by the filter and summed together. We expect the same behavior in a point-convolutional
layer: spatial coordinates will decide the filter’s value for each point, while each point’s
input features q(G) ∈ R� get convoluted into output features k(H) ∈ R" . This means
that the key part of a point-convolutional layer is the filter’s design. More precisely:

44

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

• the definition of the neighborhood - in which the convolution is applied. In
image convolution, where the kernel is represented by a (� ×, ×�) tensor, this
is done by defining the kernel spatial dimensions � and, .

• the definition of a learnable model representing the function 6(·). In image
convolution we can easily enumerate all admissible filter values; in Point Convo-
lution, where the possible filter arguments are infinitely many, the solution has
to be different.

While in images each pixel’s position is defined by relying on a matrix-like structure,
such "grid" of possible configurations does not exist in the case of Point Clouds. Here,
each point is free to assume any possible position vector in R3 . This is the reason
behind the complexity of a point-convolutional layer like KpConv. Another aspect
that is trivial in Image Convolution but interesting in the Point Cloud case is how to
choose where to compute convolution. In images, we know a-priori (given a particular
stride) in which pixels apply our discrete convolution In Point Clouds though, being the
input points %� unordered, it is not possible to use the same strategy. In the following
paragraphs, we shall answer these problems. First, we will discuss how to define a
suitable neighborhood for our convolution. Second, we will define a learnable model
representing our filter for each possible value (H − G8). Finally, we briefly discuss how
to choose the output Point Cloud %$:= {H>}

4.2.2 Defining the Neighbourhood

In the previous examples, the filter 6(H− G8) defines by itself which possible arguments
(H − G8) yield non-zero result. This is done explicitly in the case of images: given an
output pixel H, we consider only pixels G8 for which 6(H − G8) is defined. On the other
hand, PCNNEO handles the issue in a similar way: being its convolutional filter 6(A)
a sum of Gaussians, the filter’s value 6(A) tends to zero for sufficiently large values of
A = H − G8 . In the case of direct Point convolution, like in KPConv, it is useful to define
directly which points participate in the computation and which not. This makes the
network’s implementation easier and also simplifies the definition of the filter function,
so that it is not mandatory to have limA→∞ 6(A) = 0. Two approaches are commonly
used to define the neighborhood:

• To consider all points within a certain distance from the convolution’s output.
This approach’s main drawback is that the neighborhoods may have different

45

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

A
G0

G1

G2

G3

G4

Figure 4.2: the image shows a neighborhood centered on point G0 in a 2-dimensional Point Cloud.
We can think of defining the neighborhood as the set of points where | |G8 − G0 | | < A , but this
solution produces neighborhoods with different cardinality. If we are sure that points in the Point
Cloud are uniformly distributed along the sampled surface, we can rely on K-NN algorithms to
define neighborhoods that have all the same cardinality.

cardinality depending on where the convolution is computed. While not a major
issue, this fact makes the convolutional layer’s implementation more difficult [4]
[53].

• To consider the K points closer to the convolution’s output point. This ap-
proach, usually performed using K-Nearest-Neighbors algorithms, is quite com-
mon because it produces neighbors with the same cardinality. However, it is not
employable in non uniformly sampled Point Clouds [51] [4].

In the case of KPConv, the chosen approach is the first one. We will also see that a
similar model (called ConvPoint [4]) makes use of the second approach.

4.2.3 Defining the Kernel

The second key issue in designing a direct point-convolutional filter is the definition of a
learnable model representing 6(H−G8). In this case, several approaches were proposed.
For example, SpiderCNN [56] uses a polynome where the learnable parameters are
the polynome coefficients; DPCNN [53] uses a Multi Layer Perceptron; KPConv [51],
instead, uses Radial Basis Function Network (RBFN) conceptually very similar to the

46

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

0
G̃2

0
G̃2

0
G̃2

0
G̃2

Figure 4.3: the image shows the same neighborhood presented in figure 4.2, with the addition
of four RBF centers, represented in green. Suppose of having to compute 6(G̃2). To do that,
the distances betweeen all centers and have to be computed. After this, we compute each
ℎ(| |G̃2 − 2; | |) and multiply it by the corresponding weight F; .

one used by PCNNEO. In formulae:

6(G̃8) =
| |∑
;=1

F; ℎ(| |G̃8 − 2; | |) Fℎ4A4 G̃8 = H − G8 . (4.4)

Here, the set of learnable parameters is := {(F;; 2;)}.Each element of is a couple
composed by:

• a weight vector F; ∈ R" (i.e., a vector with one component for each output
feature), associated to each RBF.

• the center 2; ∈ R3 associated to each RBF, lying in the 3-dimensional space in
which the Point Cloud’s elements are defined.

We recall that the key components of a Radial Basis Function network are:

• RBF shape.

47

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

• Center’s positions.

• Number of Radial Basis functions used.

While the number of radial basis functions (i.e., the kernel’s cardinality) is an hyper-
parameter, we focus on the other two points. Differently from the Gaussian RBFs used
in PCNNEO, KPConv uses the localized linear correlation as Radial Basis Function
[51]:

ℎ(| |G̃8 − 2; | |) = max
(
0, 1 − ||G̃8 − 2; | |

f

)
Fℎ4A4 G̃8 = H − G8 .

Here, f can be considered a hyperparameter. It is easy to notice that such RBF satisfies
all the properties (3.1), needed to achieve universal approximation.

Concerning the centers’ position, it is relevant to notice that each center 2; has
to be defined in relative coordinates with respect to the output H. In this way, we
make the RBFN capable of describing the filter 6(G̃8) inside the given neighborhood.
The problem then becomes how to choose these relative positions. What we present
now is the solution implemented in KPConv-Rigid, the simplest “flavor" of KpConv,
but other variations are possible. Here the set of centers {2;} is fixed a priori before
training, by solving an optimization problem. The authors associate to each center a
repulsive potential similar to the electric potential: in this way, each center applies a
repulsive force to the others others. It is then assigned an attractive potential between
the neighborhood’s origin and the centers. The objective is to minimize the total energy
of the system. An alternative to this approach may be to learn center positions by using
gradient descent, like in [4].

4.2.4 Defining the output

The problem of choosing the point set %$ is theoretically not trivial, as many different
solutions can be designed and applied. A possible solution is to rely on points that
are already part of the input Point Cloud %� . This solution allows the model to
precompute distances between points without harming the layer’s performance. In
the case of KpConv, output points are sampled without replacement from the original
Point Clouds. Other sampling strategies can be defined, especially when dealing with
peculiar environments, like in the case of non-uniformly sampled PCs.

48

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

4.2.5 Rigid or deformable kernels

In 2017,Deformable Convolutional Networks by J. Dai et al [9] introduced an extension
of the traditional image convolution operator. In a traditional image-convolutional NN,
deformation invariance is achieved by data augmentation and by using large models
with a high number of parameters [9]. On the other hand, Deformable CNNs are
intended to work with simpler architectures and less data by making the convolution
operator invariant to certain geometrical deformations. An important contribution of
KpConv is to apply the idea of deformable convolution to Point Clouds; this is achieved
by modifying the convolutional operator described before.

In order to achieve deformation invariance, KPConv-deformable defines a vector
field:

Δ : R3 −→ R3 ,

associating to each location 2 ∈ R3 3-dimensional vector called shift Δ(2). The shift
vector Δ(2) represent the translation needing to be applied to the center c in order
to "deform" the kernel, making it adaptable to deformed or scaled Point Clouds. In
formulae, the kernel 6(·) becomes:

6Δ (·) =
∑
;≤ | |

F; ℎ(| |G̃8 − Δ(2;) − 2; | |). (4.5)

To define said field vector Δ, KpConv makes use of another Radial basis function
network, exploiting its universal approximation capabilities. In particular, each shift is
computed by applying a KpConv-Rigid layer to the input points and producing a shift
vector for each position 2. This shift is later used to compute the value of KpConv-
Deformable filter 6Δ (·) on the same input points.

KPConv [51] also describes a regularization loss needed to improve the perfor-
mances of its deformable convolutional operator, that will not be presented here: the
aim of this section is to prove that we can straightforwardly extend many different
image-convolutional operators, such as the one shown in [9], to work directly with
Point Clouds.

4.3 Convpoint

Convpoint byA. Boulch [4] is a third example of point-convolutional layer, like KpConv
operating directly on points. The overall approach is very similar to the one described

49

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

in KpConv, with a significant difference: ConvPoint tries to completely separate the
kernel spatial “structure” (the one handling points’ positions) from the semantic one
(the one handling features). To better explain this idea, let us think about an image
convolution. Here, the kernel is represented as a matrix: a set of weights distributed
in a grid-like structure. In this context, the spatial structure is the one given by the
grid, while the weights give the semantic associated to said structure. Let us take into
consideration the convolutional filter defined by KpConv, presented in (4.4), and here
rewritten for multiple output features {k>}:

6k> (G̃8) =
∑
;<= | |

F;> ℎ(| |G̃8 − 2; | |) Fℎ4A4 G̃8 = H − G8 .

In this formula, for each output feature k> we use a radial basis function network
to define the filter. In this the only parameters shared between the different output
features are the network centers. This approach is comparable to what happens with
the images: here, the spatial structure is given by the centers and is shared between
different features, while features themselves are combined using specific weights that
rely on it. Is it possible to expand the said spatial structure by sharing more than the
mere centers’ position between different output features? Convpoint tries to answer
the following question. By answering it, we follow the same structure used when
describing KPConv, firstly by explaining how to define which point participates in
convolution and then defining the kernel itself. We continue to refer to Section 4.1.1
when talking about the layer’s input and output; moreover, the same considerations
about being an architecture agnostic layer presented for KpConv and PCNNEO also
holds when dealing with ConvPoint.

4.3.1 Neighbourhood definition

There are two main ways to choose which points participate in convolution. For
example, KpConv chooses to select all the points closer to the output point than a
certain fixed distance to join in convolution. Many approaches try to obtain something
similar: a hypersphere of fixed radius containing all neighboring points.

Convpoint chooses to use the other approach presented in Section 4.2.2: under the
assumption that points clouds are uniformly sampled from the 3-Dimensional surfaces
they represent, Convpoint select K-nearest neighbors as support for the convolution’s
filter. To obtain a hypersphere like in KpConv, ConvPoint also adopts the following
steps:

50

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

• for each point, take its relative coordinates with respect to the output point.

• Normalize said relative coordinates so that the point farthest from the origin (i.e.,
the output point) is distant one unit.

By applying such normalization, we obtain a neighbor contained inside a hypersphere
with a unitary radius. This is useful when needing to define the filter function, since all
the neighborhoods are similar in scale; Most importantly, this allows us to efficiently
achieve scale invariance without having to lean to deformable filters as in KpConv.

4.3.2 Kernel definition

G11 − 211

G12 − 212

G13 − 213

G11 − 2�1

G12 − 2�2

G13 − 2�3

2| | 2| |

| |
ℎ1

ℎ | |

Figure 4.4: the image shows the 3-layer MLP used to compute the function ℎ; (·) in ConvPoint’s
convolutional layer. The first layer has dimension (3| |, 2| |), the second layer has dimension
(2| |, 2| |), and the third layer has dimension (2| |, | |). Note that in this case, every layer of
this Multi Layer perceptron depends on the cardinality of K, that is the number of center points.
Each ℎ; (·) is shared among all output features.

Convpoint’s kernel is similar to the one presented by KpConv. As in KpConv, the
kernel parameters are those in the set:

 = {F;; 2;}; .

In Convpoint the kernel is made of couples with one weight vector and one center point
associated to it. We use these parameters to compute the filter 6(·), in a way similar to

51

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

the one presented for Kernel Point convolution:

6(G̃8) =
∑
;<= | |

F; ℎ; (�) Fℎ4A4 G̃8 = H − G8 . (4.6)

This equation differs from the one presented in (4.4): in KpConv the function ℎ; (·)
was a radial basis function, while in ConvPoint we define ℎ; (·) : R3×| | −→ R as the
function:

• Receiving as input the set of the distances between the neighboring point G8 and
all the center points � := {G̃8 − 2;}; .

• Returning a value shared between all output features.

In this context, ℎ; (·) is no more a radial basis function nor the centers {2;} are employed
to define an RBFN. This is not only because the set � is made by difference vectors
instead of scalar distances, but also because all the centers are needed to compute the
output of ℎ; (·). In KpConv, on the contrary, every radial basis function is influenced
only by the value of its associated center.

The way to implement said function ℎ; (·) is crucial for Convpoint.In particular, the
authors employ a 3-layer Multilayer Perceptron, as in figure 4.4. Note that we define a
unique Multilayer Perceptron for all functions ℎ; (·).

4.3.3 Separating spatial and semantic structure

As we discussed while introducing Convpoint, this method’s true novelty is to separate
spatial and semantic part of the convolutional layer, having all features sharing some
sort of underlying spatial structure. In the case of KpConv and PCNNEO, the portion
of the network shared by different features was each RBF center’s position. In this case,
other than the centers, there is also a shared learned function (computed by a multilayer
perceptron). In general, we expect the MLP to produce a spatial representation yielding
muchmore information than themereRBF centers used inKpConv. Themain drawback
is that said MultiLayer Perceptron is tied, in terms of input and output dimension, to the
number of weight vectors F; representing the semantic structure of the convolutional
layer. The input of the MLP is in fact defined as a set {G̃8 − 2;}; , that depends on 2; ,
and |{2;}| = |{F;}| = | | because of the definition of the set := {(F; , 2;)}; . In other
words, we cannot increase the MLP input dimension without increasing the number
of weight vectors, which means that the spatial structure is tied in complexity to the
semantic one. We anticipate that the approach proposed in this thesis is to define a

52

CHAPTER 4. POINT CONVOLUTION: SOME EXAMPLES

model that removes the previously mentioned limitation and allows the spatial structure
to be arbitrarily complex without increasing the overall complexity of the convolutional
layer.

53

Chapter 5

Proposed Approach

This thesis proposes a Novel point-convolutional layer, to be applied in both multiclass
and One-Class (OC) classification tasks. In this chapter, we shall present how such
novel layer is defined, what its peculiarities are and how to employ it in both previously
cited tasks. In discussing our approach, we will refer to two already discussed models,
KpConv and Convpoint. This last model in particular is the foundation upon which our
novel convolutional layer is built. The idea is to explore ConvPoint’s key feature, which
is to share a common spatial representation between different features.The drawback
of convpoint is that such spatial representation is learned by a Multi Layer Perceptron
whose dimensions are tied to the number of feature weights. This is the issue our
model aims to solve: to be able to scale independently the sublayer learning the spatial
representation from it combining features together, both in terms of dimensionality and
architecture. Discussing our solution, we investigate different alternatives on how to
implement said layer. In the second part of this chapter, we shall also discuss how to
adapt our layer to be used for OC classification inside a so-called Deep Support Vector
Data Description (Deep SVDD) architecture [42]. As we shall point out, networks used
inDeep SVDDmust complywith very specific constraints thatmust be consideredwhen
defining a convolutional layer. In the next chapter we will prove that our convolutional
layer is functional and that it has performances competitive to the already presented
point-convolutional methods.

54

CHAPTER 5. PROPOSED APPROACH

5.1 Problem formulation

In the following subsections we will describe the problem of defining a convolutional
layer. First of all, we shall define the kind of input and the kind of output that our layer
needs to accept and return. Then, we shall describe the kind of convolutional operator
our layer should apply to the input point cloud. In particular, we talk about the difference
between point convolution and traditional discrete and continuous convolutions, by
making special reference to the elements composing them. Moreover, we describe how
to choose points belonging to the output point cloud of our convolutional layer: while
this is not a problem for the convolutional operator, it is crucial in the layer’s definition
and performance. Finally, we discuss some non-functional requirements that we expect
our layer to comply with.

5.1.1 Input and Output definition

We reprise the definition of input and output of a point-convolutional layer from section
4.1.1, wherewedescribed input and output in the case of PointConvolution byExtension
Operators [2]. In particular, each convolutional layer will receive as input a Point cloud
�, represented as a couple:

� := (%� ; q),

where %� ⊂ R3 is a set of points lying in a d-dimensional space, and q : %� −→ R� is
a function associating to each point G8 ∈ % a feature vector in a c-dimensional space.
On the other hand, we expect each convolutional layer to have an output $ similarly
defined as:

$:= (%$; k),

where %$ ⊂ R3 as for the input, and k : %$ −→ R" is the function mapping each
output point to a set of output features, lying in a "-dimensional space. Note that,
while both %� and %$ lie in the same d-dimensional space, in general |%� | ≠ |%$ |.
The behavior of the Convolutional Layer varies, depending on |%� | and |%$ |, in the
following way:

• if |%� | = |%$ |, our point-convolutional layer is behaving like a non-strided
convolutional layer. This is similar to what happens in a non strided Image
Convolution. In fact, if we apply a non-strided discrete convolution to a (�,)
wide image, we obtain an output having the same (�,) dimension.

55

CHAPTER 5. PROPOSED APPROACH

• if |%� | > |%$ |, our point-convolutional layers behaves similarly to a strided
discrete convolutional layer. As in images, we receive an output with reduced
spatial dimension. In this thesis, we do not consider pooling, even though several
works [51] [2] define Point-Pooling layers. Instead, we use striding to reduce the
cardinality of %$ in the various network layers.

• if |%� | < |%$ |, our point-convolutional layer behaves like a deconvolution. This
is useful, for example, in tasks like semantic segmentation.

Differently from what we discussed in section 4.1.1, where no constraint was defined
regarding %� and %$, we impose that for each layer either %$ ⊆ %� or, in the case
of deconvolution, %$ ⊆ %� . This is fundamental for our convolutional layer, since
it allows us to precompute the distances between each couple of points involved in
the computations, thus saving an important amount of run time without losing any
generality in terms of theoretical properties.

We expect that each output feature vector k(H) with H ∈ %$ is obtained through
application of a point-convolutional operator over the input point cloud (%� , q). In
section 5.1.2 we shall define a suitable convolution operator that can be applied to this
kind of data.

5.1.2 Convolutional Operator definition

the primary goal of our convolutional layer is to define and implement a convolutional
operator applicable on point clouds in the same way as a discrete convolutional operator
is applicable on images. For the sake of simplicity, let us consider the case in which
q(·) is a scalar function; since point clouds are defined in a continuous space R3 , a
possible starting point is the definition of convolution over continuous functions:

(q ∗ 6) (H) =
∫
R3
q(G)6(H − G)3G. (5.1)

This kind of operator is not directly applicable on point clouds, because the function
q is defined only on a discrete set of points %� ⊂ R3 . To implement such continuous
operator, it would be necessary to extend the domain of function q on the entire space
R3 . The problem of defining a continuous feature function starting from a point cloud
is not trivial. For example, in the case of PCNNEO [2] the extension of q over the
entire space R3 takes quadratic time complexty [51]. This suggests us that a better
approach would be to define a discrete point-convolutional operator, like in the case of

56

CHAPTER 5. PROPOSED APPROACH

KpConv and ConvPoint (see section 4.2 and 4.3). Such operator would be defined as:

(q ∗ 6) (H) =
∑

G8 ∈- ⊂%�
q(G8)6(H − G8), (5.2)

where q is discrete as defined in section 5.1.1. Note also that, where in (5.1) the
sum was defined over all the space R3 , in this case we are restricting it on a specific
neighbourhood - ⊆ %� . This is very similar to what happens in traditional discrete
convolutions, where such neighbourhood is implicitly defined as the support of the
filter 6(·).

Differently from image convolution, where the filter is discrete, for point clouds we
need to define a continuous filter 6(·). This due fact that the filter’s argument H − G8
is by definition continuous, being both H, G8 ∈ R3; there are two solutions that are
possible here:

• to define filter 6(·) as a compact support function. In this way, we can implicitly
define - ⊆ %� as a set of points {G8 ∈ %� } such that H − G8 ∈ supp (6) .

• to define set - ⊆ %� explicitly and leave no constraints on the shape of 6(·). In
this case, the filter’s support will be implicitly limited by the fact that the filter
will be only evaluated for a certain specific set of arguments.

In this thesis we consider the second option. We impose no constraints on the shape of
the filter 6(·), but we require to define a third element, a window or a neighbourhood
- inside which the convolution output k(H) is computed.

Summarizing, the main differences between Image Convolution and Point Convo-
lution are the following:

• The domain of the function q(·) is discrete, while the filter 6(·) is continuous in
R3 . In case of image convolution both functions are discrete.

• The point-convolutional operator is defined for a given neighbourhood X, while
in case of image convolution such neighbourhood is implicitly defined by having
6(·) with compact support.

Having defined such convolutional operator, we expect our convolutional layer to
specifically learn the shape of the continuous filter 6(·). The goal is then to represent
such filter by a learnable model, able to represent also complex functions. This is
the aspect in which we shall spend more words, also by making specific references to
already existing state of the art methods.

57

CHAPTER 5. PROPOSED APPROACH

5.1.3 Output point set construction

Having described how to compute output features, we now express some considerations
regarding the construction of the output point set %$. As already stated in section 5.1.1,
we expect that %� ⊆ %$ (or %$ ⊆ %� in the case of deconvolution); on the other hand
we never discussed what elements H ∈ %$ we should include in the output point set.
We require that the distribution from which the output points are sampled matches the
distribution from which the input points are sampled. In other words, the two point sets
should be sampled from the same surface. This allows the output set to carry the same
spatial information encoded in the input set through the entire network.

In order to achieve this result, several strategies can be implemented. We enforce
such property by sampling %$ from %� using an uniform sampling strategy without
replacement. We shall discuss this aspect in section 5.2, where we discuss our proposed
convolutional layer.

5.1.4 Other requirements and constraints

Other than the functional requirements regarding what kind of output we want to obtain,
we also state some important non-functional requirements our solution needs to comply
with:

1. our convolutional layer needs to be architecture agnostic. It should be usable in
the context of any well performing image CNN architecture.

2. our layer should be modular, so that it is possible to extend it by modifying
behaviour of certain components without changing the overall layer architecture.
This requirement is important with respect to the other State of the Art methods,
since most of the layers previously presented are atomic and thus cannot be easily
extended or modified.

3. we expect our layer to be implementable with a well-known deep learning frame-
work such as Tensorflow [31] or Pytorch [36].

4. our layer to be comparable to the existing state of the art methods in terms of
training convergence time.

5. we expect our layer to be comparable to the existing state of the art methods in
terms of memory consumption.

58

CHAPTER 5. PROPOSED APPROACH

Some of these requirements are related to the theoretical properties, while the others
are related to the implementation of the convolutional layer. We shall reference these
requirement both in this chapter and in chapter 6, when discussing experiments and
benchmarking.

5.2 Proposed convolutional Layer

In defining our convolutionl layer,we follow an approach similar to Convpoint [4]:
to define a filter 6(·) that shares information between different features. To better
understand this idea, let us rewrite the convolution operator in (5.2) in its more general
form, with 9 input features, < output features and 8 input points:

k< (H) = (q ∗ 6) (H) =
�∑
9=1

|- |∑
8=1

q 9 (G8)6 9< (G̃8) Fℎ4A4 G̃8 = H − G8 . (5.3)

Here each filter’s component 6 9< (·), defining the relation between the 9-th input feature
and the <-th output feature, is uncorrelated with the other filter’s components 601 (·)
with 0 ≠ 9 and 1 ≠ <. our idea is to explore whether it is possible to share some
information between them. For this reason, we have decided to implement each filter’s
component 6 9< (G̃8) as subsequent application of two different functions over G̃8:

6 9< (G̃8) = 5 9< (B(G̃8)). (5.4)

Here the first function, that is:

B(·) : R3 −→ R ,

is shared among all input and output features. The idea is having B(·) mapping each
difference vector G̃8 = H − G8 to a vector B(G̃8) ∈ R , where the dimension is an
hyper-parameter.

The second function, namely:

5 9< (·) : R −→ R,

is different for each features’ couple (q 9 , k<); it’s goal is to transform the vector
B(·) ∈ R by modifying it with information related to the corresponding input and
output feature.

The next step is to describe how to implement such filter inside a CNN layer. We
shall propose some alternatives on how to implement both the functions B(·) and 5 9< (·),

59

CHAPTER 5. PROPOSED APPROACH

and describe other relevant aspects of our convolutional layer. Finally we shall also
describe our layer’s properties and advantages, by making explicit comparison to the
previously described Convpoint [4] model.

5.2.1 A composite convolutional layer

(?0C80; BD1;0H4A

(4<0=C82 BD1;0H4A

{G̃8}

{q8 9 } = {q(G̃8)}

{k<}

{B8 : } = {B(G̃8)}

Figure 5.1: the simple structure of our proposed layer. Both the spatial and semantic sublayer
may be defined in different ways: the only constraint is that the spatial layer should output a set of
"spatial descriptors" {B: } for each point G̃8 ; on the other way, The semantic layer should receive
as input both the features {q 9 } and the spatial descriptors {B: } for each point G̃8 .

In order to define the functions B(·) and 5 9< (·) described in this section’s intro-
duction, we propose a novel convolutional layer obtained by combining together two
different sublayers:

• a spatial sublayer receiving the output’s neighbourhood {G̃8} in relative coordi-
nates and will return a set of spatial descriptors {B8: } for each point. Note that
from this point we refer to {B8: } to mean both the output of function B(G̃8) and
of the spatial sublayer implementing it.

• a semantic sublayer, receiving in input both the spatial descriptors and the features
associated to each point 8 and combine them together; the result would be said
point’s contribution to the convolution. In other words, the semantic sublayer
both defines the function 5 9< (·) and combines it with the feature q 9 (G8) in order
to obtain the contribution of point G8 to the definition of k< (H)

60

CHAPTER 5. PROPOSED APPROACH

A proper convolutional composite layer should comply with (5.3) and (5.4), but
the two sublayers we propose can also perform operations that are not compliant with
the said definition. For example, if the descriptors {B8: } are a function of the entire
neighbourhood {G̃8} instead of only a given point G̃8 , the overall layer would stop being
convolutional; on the other hand, if the semantic sublayer does not combine q 9 (G8)
and 5 9< (·) by multiplying them together, the resulting composite layer will also not be
convolutional.

Before presenting some alternatives on how to define these two sublayers, we
explain how to define output points H ∈ %$ and the corresponding neighbourhoods.
The process of output and neighbourhood definition is composed by these steps:

• choice of the output points, by sampling them with replacement from the input
point cloud %� . For each sampled point, we lower its resampling probability by
a factor of 10.

• definition of the neighbouring points for each output point by using KNN algo-
rithms. The number for neighbouring points can be considered a hyper-parameter.

• neighbourhoods’ normlization, such that: max(| |G̃8 | |) = 1. In this way, we also
achieve scale invariance without the need of deformable convolutions like in
KpConv [51].

As done previously, we consider G̃8 to be the neighbouring point G8 written in relative
coordinates with respect to the output point H. In this way, the output point is the origin
of the reference frame for the elements in the set {G̃8}.

The final consideration is that we assume the input point clouds to be uniformly
sampled from the given surfaces. This is important for both the fact that we are
using K-NN the neighbouring points selection and the fact that we are normalizing
neighbourhoods. If that assumption is not verified, the neighbourhoods would have
different spatial scales depending on their output point and the points’ density around
it: we need to avoid this situation in order to allow our filter to learn consistently [19].

5.2.2 Proposed Spatial layers

In our model, the spatial sublayer outputs a set of descriptors {B: } for each input point
{G̃8}. hared between all features. We recall that, with a slight abuse of notation,
we indicate as {B:8} the set {B(G̃8)}8 of all spatial descriptors for all points. Several

61

CHAPTER 5. PROPOSED APPROACH

solutions can be adopted to model B(·). In the following paragraphs we shall describe
few alternatives, some of which we implemented and tested.

RBFN-based spatial layer

One possible and simple solution is to build the function B(·) defined in the previous
paragraph with the help of a radial basis function network. In this case, we would have
that:

B: (G8) =
!∑
;

E:; ℎ(| |G̃8 − 2; | |). (5.5)

Note that we share the centers between each descriptor B: : in this way, we are defining
all the descriptors with the help of a single multi-output RBFN in a way similar to what
Convpoint [4] does with its MLP. It is also possible to define each B: with the help of
a separate RBF with separate centers.

This approach is similar to what has been proposed in [51]. For example, let’s
complement our spatial sublayer with a linear semantic sublayer as defined in section
5.8. in this case convolution will become:

k< (H) =
∑
9 ,8,:,;

q 9 (G8) F<9: E:; ℎ; (G̃8) Fℎ4A4 G̃8 = H − G8 . (5.6)

Let ^<9; =
∑
: F<9: E:; .The convolutional operator would become:

k< (H) =
∑
9 ,8,;

q 9 (G8) ^<9; ℎ; (G̃8) Fℎ4A4 G̃8 = H − G8 ,

which is similar to how KpConv [51] defines its convolutional layer. The difference
is subtle: while in KpConv all weights ^<9; defining the kernel are independent from
each other, in our case those weights are correlated along the input features dimension.
In other words, we are sharing spatial information between the input features, which is
exactly one of the goals of this novel convolutional layer we are building.

It is also possible to introduce another element that distinguishes our convolutional
layer with respect to the previous works: we can insert a non-linearity at the end of our
spatial layer, i.e. a module that accept the spatial vector B8 associated with each input
point G̃8 and applies a non-linear function to it. In our experiments we have decided
to use the Rectified Linear Unit (ReLU), since nowadays it is the most frequently used
non-linearity in deep neural networks, and it has been proved to enable faster training
in many deep learning tasks [15]. As we shall discuss in 5.4, the choice of Rectified
linear units as non-linearity between spatial and semantic layer it is also useful when
adapting our model to OC classification.

62

CHAPTER 5. PROPOSED APPROACH

'4!* (G)

G

Figure 5.2: Plot of the Rectified Linear Unity function. As the image shows, '4!* (G) = 0 ⇐⇒
G ≤ 0 ; '4!D(G) = G ⇐⇒ G > 0 .

RBF-based spatial layer with learned RBF

We also propose another alternative spatial sublayer, that makes use of Radial Basis
Function Networks like the previous spatial sublayer. As we discussed in section 3.1,
Radial basis function networks can achieve universal approximation capabilities if an
arbitrary number of centers is employed, independently from which localized RBF is
chosen. Nonetheless, if only a fixed number of centers is available, it is possible that
different Radial Basis functions yield different performances. This is the point that we
aim to investigate: would it be possible and useful to learn the shape of the radial basis
functions?

Inspired by the work presented in SpiderCNN [56] and SplineCNN [14], we tried
to implement such RBFN with learned radial basis function by deciding to represent
the learned RBF by using a Fourier expansion of the type:

ℎ(| |G̃8 − 2 | |) ≈
00
2
+

)∑
=

0= cos(=| |G̃8 − 2 | |) + 1= sin(=| |G̃8 − 2 | |) (5.7)

In this case, the learnable parameters are represented by the bias term 00, plus the
couples {(0=, 1=)}. The first consideration regarding such Radial Basis Function is
that neither it is compliant with the constraints defined in (3.1), nor is it localized.
This is generally not a problem, because the formulation of 5.7 is more general, i.e.

63

CHAPTER 5. PROPOSED APPROACH

can represent both the function that is compliant with contraints 3.1 and the function
that is not. On the other hand, the problem of having a localized radial basis function
is solved implicitly. That’s because we are constraining the support of each RBF, by
preemptively selecting the neighbourhood via K-NN. given that no element outside the
neighbourhood would participate in the convolution, each RBF will return non-zero
values only for points “close” to its center, i.e. inside the neighbourhood. Another
important consideration about (5.7) is that it is periodic. This property is generally not
suited to a Radial Basis Function, and thus it can be a problem. We solve it by imposing
a base Period that doubles the neighbourhood radius. In this way, we are sure that
every point in the neighbourhood will fall inside the same period of the RBF. The way
in which we enforce such constraint is by inserting an hyper-parameter representing
frequency in (5.7). the new equation looks like:

ℎ(| |G̃8 − 2 | |) ≈
00
2
+

)∑
=

0= cos
(
=
5 | |G̃8 − 2 | |

2c

)
+ 1= sin

(
=
5 | |G̃8 − 2 | |

2c

)
.

Considering that we normalize the neighbourhood so that the farthest point from
the output has distance 1 to the origin, we can consider as suitable parameter 5 to be
0.5. It may also make sense to modify said parameter, as long as it guarantees that the
radial basis function is not periodic inside the given neighbourhood.

Allowing the network to optimize the radial basis function’s shape should help
obtaining good performances, specially when the number of RBF centers is low.

Other possible Spatial layers

While until now we only proposed spatial sublayers defined with the help of a Radial
Basis Function network, other tools could also be used. For example, it is possible to
use a multi-layer perceptron similarly to Convpoint [4]; an alternative could be to define
aMulti-layer-perceptron similar to the one of PointNet [37], taking as input each point’s
spatial coordinates and directly returning the point’s spatial descriptor. Other possible
solutions are to model the filter directly, with the use of 3-Dimensional expansions like
the Fourier expansion or the Taylor expansion; again, it is possible to use splines like
in [14].

In choosing which spatial sublayer to implement though, several aspects should be
taken into consideration:

64

CHAPTER 5. PROPOSED APPROACH

• Robustness during training. Certain spatial sublayers can yield less robust per-
formances during training, possibly subject to relevant fluctuations in terms of
loss function and measure of merit. we shall deal with this aspect in chapter 6.

• proneness to overfitting. Not all spatial sublayers are equally prone to overfitting.
In general, the more the spatial sublayer is powerful, the more it is likely to
overfit. we shall also discuss about this aspect in chapter 6.

• Resources usage. We tried alternative spatial layers, describing the neighbour-
hood directly as fourier or taylor 3-dimensional expansion. unfortunately these
spatial sublayers suffered of high memory usage, because of the complex and
custom way in which they were computed. This made them unsuitable to be
compared with other RBFN or MLP based Sobek Spatial sublayers.

• Time usage. Together with a layer’s spatial complexity, it is important to evaluate
the corresponding time complexity.Time complexity and spatial complexity are
often in trade off. This means that some time it is possible to reduce memory
usage by sacrificing a certain amount of time per training iteration.

The last two points in particular are strictly related to the sublayer’s implementation:
even though we are not discussing here about how to algorithmically implement each
layer, it is important to consider that both performances and usefulness of a convolu-
tional layer also depend on the quality of the implementation. Some possibly sound
solutions, like the over cited 3-dimensional expansion to used to define the spatial
sublayer, are not easily implementable and thus cannot be compared to other, simpler
solutions like those based on RBFNs and MLPs.

5.2.3 Proposed Semantic Sublayers

After presenting some possible spatial sublayers, we now investigate how to define the
semantic sublayer.

This component has two main roles: the first one is to differently weight each
couple of input and output features; the second one is to combine spatial descriptors
and features together. In this context, the filter is defined by combining both the
sublayers, while the the convolution itself is computed by the semantic one. In order
to preserve the convolutional structure, each output feature should be computed as
a sum of each input feature weighted by a certain filter value, for each input point.

65

CHAPTER 5. PROPOSED APPROACH

×

×

×

×

{G8}

q1

q2

q3

q4

B?0C80; BD1;0H4A

!8=40A

BD1;0H4A

k1

k2

{B8: }

Figure 5.3: An example of composite convolutional layer with 4 input features and 2 output
features. Here we highlight the structure of a possible semantic layer (in green). In order for
the layer to be convolutional, we assume that each spatial descriptor given in the output by the
spatial sublayer is a function of only one neighbouring point. We multiply element-wise each
descriptor vector for each feature associated with the relative neighbouring point, and then feed
the resulting matrix to a traditional linear layer.

Combining in other ways features and spatial descriptors obtained in input would yield
a non-convolutional layer.

In this context, we present two alternatives for defining a suitable convolutional
semantic sublayer. In Section 5.4 we shall present a non convolutional alternative,
useful to solve some peculiar issues related to ourOne-ClassClassificationArchitecture.

Linear Semantic Layer

The simplest convolutional semantic layer we can think of is a linear semantic layer,
like the one shown in figure 5.3. in this kind of layer, for each point G8 we multiply
together the spatial descriptors {B8: } (i.e. the values B: (G̃8) computed for a given G̃8),
the features q 9 (G8) and a set of weights associated to them F: 9<. After that, we sum
the contribution of all the input points together. the result is the following formula:

66

CHAPTER 5. PROPOSED APPROACH

k< (H) =
∑
8, 9 ,:

q 9 (G8) F 9<: B: (G̃8). (5.8)

In this case, the filter 6 9< (·) is defined as:

6 9< (·) = F 9<: B: (G̃8).

In our experiments, such very simple semantic layer proved to yield very good perfor-
mances in terms of classification accuracy andAUC,while also being easy to implement
and fast to compute.

MLP-Based semantic Layer

An alternative semantic layer can be obtained by approximating the function 5 (·) as
defined in Section 5.2 with the help of a MLP. In this case, the convolution formula
would be the following:

k< (H) =
∑
8, 9 ,:

q 9 (G8) "!%(B: (G̃8)) (5.9)

Note that the Multi layer Perceptron receives in input only one spatial descriptor B: (G̃8)
at a time. if the MLP was fed with the descriptors for all the neighborhood at the same
time, the resulting operator would cease to be convolutional.

Using this kind of semantic layer yields two main drawbacks: the first one is that,
MLP being more powerful than a singular linar layer, it is also more prone to overfitting.
In order to avoid this problem, the Multi layer perceptron should be designed carefully;
the second problem is about the fact that an MLP would increase the depth of the single
composite convolutional layer. In particularly deep CNN architectures, it would be
difficult to train such composite convolutional layers due to the so called "vanishing
gradient" problem.

5.2.4 Composite Layer’s properties and advantages

Our composite convolutional layer possesses some fundamental properties that are im-
portant to discuss. A first observation is about scalability: let us rewrite the convolution
operator in (5.3) in the case of a RBF spatial layer and a linear semantic layer:

k< (H) =
∑
9 ,8,:,;

q 9 (G8) F<9: l:; ℎ; (G̃8) Fℎ4A4 G̃8 = H − G8 , (5.10)

67

CHAPTER 5. PROPOSED APPROACH

where q 9 are input features, k< are output features and G8 are input points. We can
think of each semantic feature weight F 9:< as an element of a 3-dimensional tensor
having shape (�; ;"), where � is the number of input features, is the number of
dimensions of each spatial descriptor B(G̃8) =

∑
; l:; ℎ; (G̃8) , and " is the number of

output features; on the other hand, each spatial weightl:; is an element of a matrix with
dimensions (", !) where ! is the number of RBF centers in the spatial sublayer. The
number of semantic weights F 9:< is typically much higher than the number of spatial
weightsl:; . That’s not only because the set of spatial weights is 2-dimensional and the
set of semantic weights is 3-dimensional, but also because the number of incoming and
outgoing features can be much higher than the number of RBF centers. An advantage
of our model is that we can increment the complexity of our spatial sublayer, in this
case by changing the number of RBF centers, without making the number of semantic
weights explode. This is not possible, for example, in KpConv [51] where the weights
are shared between the RBFN and the features: here incrementing the number of RBF
centers by one unit means to add (� × ") new parameters to the convolutional layer,
while in our case only parameters are added. In other words, the complexity of the
spatial layer has no impact in the semantic layer, given a constant . This is not the
case in Convpoint [4], where the dimensions of the spatial MLP was function of K. To
Increase the MLP complexity, therefore, means also to increase the complexity of the
spatial layer.

A second consideration is about flexibility. Depending on the problem, we can
modify only one subcomponent of the composite convolutional layer, and leave the other
unchanged. We can also think about implementing other, different spatial and semantic
layers. As we discuss in section 5.4, also certain non convolutional combinations can
yield useful results in certain environments.

5.3 Deep SVDD for OC classification

In this section we aim to describe a model called Deep SVDD [42] by Ruff et al.
This model is meant to perform one-class classification by combining the use of Deep
learning with the tecnique called Support Vector Data Description, presented in [49]
by Tax and Duin. The idea is to train a function:

M, (·) : � −→ Rd (5.11)

thatmaps a certain input to a point lying in a d-dimensional space. more specifically,

68

CHAPTER 5. PROPOSED APPROACH

wewantM, (·) to map all inputs in the training set inside a specific region of our space
Rd, minimising the volume of said region. The prediction is performed by checking
if a certain test element is mapped inside the space region containing the training
elements, or outside of it. In the first case, we predict the test element to be an instance
of the normal class, in the second case we predict it to be anomalous. In the first
subsection, we shall discuss more in depth how to structure the problem here hinted; In
the second subsection, we discuss about wich training loss function can be used to train
our network; In the third subsection, we discuss about the architectural constraints that
are needed to be taken into account when defining a Deep SVDD network; in the fourth
and last section we shall discuss about the advantages of Deep SVDD with respect to
other existing OC classification methods.

5.3.1 Problem setting

M, (·)
�

'

� Rd

Figure 5.4: the image exemplifies the idea of deep SVDD. Represented in the left plot are a
number of test elements: inliers are represented as blue squares, whether outliers are represented
as red circles. the learned functionM, (·) maps said test elements insideRd. all inliers should
fall inside the topological disc with center � and radius ', whether anomalies should be mapped
outside of said disc. It is possible to assign an "anomaly score" to each input element, depending
on how much that element is far from the center: elements closer to the boundary are "more
anomalous" than elements closer to the center �.

Deep SVDD is thought to be a method that is agnostic with respect on the kind of
input data. Different inputs can easily be handled by changing the way in which the
functionM, (·) defined in expression 5.11 is learned. In order to be as much general as
possible, said function is learned with the help of a Deep Neural Network. Every deep
neural network that satisfies the constraints defined in section 5.3.3 can be used. The

69

CHAPTER 5. PROPOSED APPROACH

solution described in [42], for example, makes use of Convolutional neural networks
to perform OC classification on images.

As described in this section’s introduction, Deep SVDDworks bymapping inputs to
points lying in a certain region of an high dimensional space Rd. More precisely, said
region is defined as a topological disk, with a given center � and a given radius '. The
aim is tomap all training examples inside the hypersphere, minimising the hypersphere’s
radius as well. In formulae, the objective function describing this problem becomes:

min
',�, b

∑
',�, b

'2 + 1
=a

∑
8

b8

B.C. : | | M, (G8) − � | | ≤ ' + b8 ∀G8
0 ≤ b8 ∀b8

(5.12)

where G8 is the training example, b8 is a slack variable associated to it penalizing
examples falling outside the topological disk, and a is a scaling factor that weights the
importance of the slack variables in minimizing the objective function.

Note that this kind of objective function is very similar to the one of OC - Support
Vector Machines as presented in [45]. This because Support Vector Data Description
and Support Vector Machines are very similar methods, possibly equivalent depending
on the problem setting [42].

5.3.2 Learning the map function

as already anticipated in the previous section, Ruff et al. proposed to use Deep neural
networks to approximate the map M, (·). in this context, the training is performed
via gradient descent on the radius ' and the network’s weights , .For this reason we
define a fist loss function, called soft-boundary Deep SVDD loss, as:

L(',,) = '2 +
1
=a

∑
8

max{ 0, | |M, (G8) − � | |2 − '2 } +

_

2

!∑
;

| |, ; | |2�

(5.13)

here the first term is used to minimize the radius; the second term penalizes every
training example from being mapped outside the hypersphere; the third term is a

70

CHAPTER 5. PROPOSED APPROACH

regularization term for the network’s parameters W, and _ is an hyperparameter. Note
that with | | · | |� we indicate the Frobenius norm. As we see, minimizing the radius is in
direct tradeoff with the penalization assigned to each point falling outside the sphere.
Reducing the radius means to increase the term | |M, (G8) − � | |2 − '2.

Another simpler loss function can be used, assuming that training data are all inliers
with respect to the real normal class data distribution. In this case, we rewrite the loss
function as:

L(,) = 1
=a

∑
8

| |M, (G8) − � | |2 + _

2

!∑
;

| |, ; | |2� (5.14)

By following the notation in [42], we call such function one class Deep SVDD loss. In
this case the Radius term is defined implicitly as the mean of the distances between the
points and the center, and no point is penalized because it falls outside the hypersphere.

Independently from which loss we use, the metric used to discriminate anomalous
samples from normal ones during testing is the distance | |M, (G8) − � | |. The idea is,
in fact, that normal samples are mapped closer to the center than anomalous ones. Note
also that our decision boundary discriminating whether a certain sample is anomalous
or not can be different from the optimal training radius '∗ learned during the training
phase, and needs to be tuned separately.

when trying to optimize the loss described in (5.13) via gradient descent, it is
particularly important to consider the fact that the parameter R and the network’s
weights W are substantially different in terms of scale. Ruff et al [42]. suggest to
alternate the optimization of the weights W and the radius R by gradient descent in
separate phases.

5.3.3 Network requirements

In the previous two sections we explained that the map functionM, (·) is learned by
training a deep neural network. In order to avoid learning trivial and uninformative
map function though, a certain number of conditions has to be met. here we intuitively
discuss such conditions, that are more formally stated in the paper by Ruff et al. [42]:

1. it needs to be assured that � ≠ 0 ∈ Rd. If � = 0, then a perfect mapping
would beM, (G8) = 0 ∀G8 , and this solution is easily obtainable by setting
our network’s weight, = 0. Note that the loss 5.13 for this mapping would be
L(,) = 0, which is optimum since all loss terms are positive; on the other way,

71

CHAPTER 5. PROPOSED APPROACH

this mappingM, (G8) would map also anomalies to zero, thus being completely
uninformative.

2. no bias is present in the network approximatingM, (G8). If such bias term is
present, it would be possible to learn any constant functionM, (G8) = � ∀G8
by setting to zero all non-bias parameters, such that the input is discarded, and
combining the bias term(s) in a way such ", (G8) = �.As in the previous case
where � = 0, the loss 5.13 would be L(,) = 0, which is optimal. Again, this
solution would map also anomalies to the center of our hypersphere, thus being
completely uninformative.

3. no activation function saturating to a value ≠ 0 is present in the network ap-
proximatingM, (G8). A network unit with bounded activation function can be
saturated for all inputs having at least one feature with common sign, thereby
emulating a bias term in the subsequent layer.

As we understand from these properties, not all deep neural networks can be used
in Deep SVDD. As we shall see in the next chapter, these conditions complicate how to
implement a point cloud based OC classificator using deep SVDD, requiring substantial
modification of the existing point cloud algorithms.

5.3.4 Advantages

Even being the constraints discussed in the previous section potentially difficult to met,
the Deep SVDD has a key advantage with respect to other OC classification methods:
as long as the said constraints are fulfilled, it is possible to freely define a Neural
Network working on any kind of data employing Deep SVDD. The use of Deep neural
networks is also useful to perform OC classification with complex or high dimensional
data, in which traditional models such as OC-SVMs often fail. Moreover, Ruff et al.
proved that their method is competitive in the field of OC classification on images, by
comparing its results with other state of the art methods on well known datasets such as
MNIST [27] and CIFAR10 [25]. Being so flexible, Deep SVDD was the natural choice
when trying to perform OC classification on point clouds without having to define a
completely new deep architecture.

72

CHAPTER 5. PROPOSED APPROACH

5.4 Composite convolution in Deep SVDD

When presenting the Deep SVDD model in section 5.3, we pointed out that the main
feature of this method is precisely its flexibility: it can be adapted to many different
input data and different deep architectures. In this section we investigate how to use
Deep SVDD for OC classification with point clouds. As we pointed out in section 3.5,
there are no other examples of convolutional layers used in One Class classification
architectures.

Using Deep SVDDwith point cloudsmeans to define a deep neural network capable
of learning the map function defined in (5.11):

M, (·) : � −→ Rd

Possible violations of the constraints described in 5.3.3 can be present both in the
CNN architecture and in the convolutional layer itself. In this section, we aim to discuss
only about the convolutional layer, as it is the core topic of this thesis. We shall now
assume that a suitable CNN architecture is employed. An example of such architecture
will be provided in chapter 6.

In the next subsection we discuss of each constraint: our goal is to explore whether
a composite convolutional layer as defined in this chapter can fulfill all constraints, and
what semantic and spatial sublayers can be used in this context.

5.4.1 Properties of Deep SVDD

As stated in the previous paragraph, our composite convolutional layer will have to
comply with the following constraints:

1. It needs to be assured that� ≠ 0 ∈ Rd.

2. No bias is present in the network approximatingM, (G8).

3. No activation function saturating to a value ≠ 0 is present in the network approx-
imatingM, (G8).

We can easily tell that constraint 1 is related to the hyperparameter �, which is
unrelated to the convolutional Layer.

Constraint 3, on the other hand, deals with activation functions and non-linearities
present in the network. Depending on the definition of our spatial and semantic
sublayers, we can have different non-linearities inside our Composite convolutional

73

CHAPTER 5. PROPOSED APPROACH

layer. For example, we can use a MLP-based spatial sublayer, or use an RBFN-based
spatial sublayerwith a non-linearity between spatial and semantic layer. Away to ensure
that our layer is compliant with constraint 3 is to use only functions that do not saturate
to any value different from zero. An example of such activation function is rectified
linear unit (ReLu), or its variations such as leaky-ReLu. Other activation functions,
such as C0=ℎ(·) or sigmoid activation functions, are not suitable to be employed in
Deep SVDD.

The most interesting constraint is the second one: here we state that any bias term
should be removed, from both network and convolutional layers. While it is possible
to remove all the explicit biases from the network and the layers, the problem is far to
be solved: it is possible to have biases that are directly introduced by the input. If a
certain element is constant for each point cloud and each neighbourhood, we obtain the
same result as when having an explicit bias defined inside the layer.

We discussed in section 5.2.1 that we are selecting the neighbourhood by taking
the k-nearest neighbours to the output point; We also stated in section 5.1.1 that we
expect each output point to be part of the input point cloud. Those two conditions mean
that the output point H is also the closest input point G0 to H. Being G̃8 = G8 − H the
filter’s argument, we expect to have the filter evaluated for G̃0 = G0 − H = 0 for each
neighbourhood.

This would not be a problem, for example, when dealing with images. In image
convolution, we will always evaluate the filter for a fixed set of arguments. The
difference between the images and the point clouds is that in case of images information
is also carried by the feature values of each pixel (e.g., representing RGB channels,
brightness etc.) other than their spatial distribution; on the contrary, many point cloud
datasets neglect to add features to the point sets: this is typical of datasets sampled from
real world scenes or object, for example [11]. In this case the information is contained
in the spatial distribution of the points, and features are only used by neural networks
to encode the information derived from such spatial distribution.

If the dataset does not contain features, we consider each point to be associated
with a unitary scalar feature when entering the network. Then, the first convolutional
layer would produce several output features associated with the point cloud and pass
it to the deeper layers, thus solving the problem. In such first layer, having an unitary
feature associated with each point reduces the convolution operation to the following:

74

CHAPTER 5. PROPOSED APPROACH

k< (H) =
|- |∑
8=0

6< (G̃8) = 6< (0) +
|- |∑
8>0

6< (G̃8) Fℎ4A4 G̃8 = G8 − H.

In such equation, the term 6(0) is precisely the bias we want to avoid in order to
implement a Deep SVDD architecture.

We have several ways to tackle this issue:

• use only datasets with features associated to each point, or preemptively assign
non-constant features to each point cloud.

• use a composite convolutional layer that does not take into consideration the
central point of the neighbourhood. An example is a composite convolutional
layer with a MLP-based, unbiased spatial sublayer. In such case the contribution
of the central point of the neighbourhood would be zero. The main drawback
of this solution is that we lose the information associated with the central point,
which is considerably more important as we proceed deeper in the network.

• select output points so that they are not part of the input point cloud. Doing this,
we avoid having any G̃8 = 0. This solution, however, would be the less efficient:
having the output points inside the input point cloud allows us to precompute all
distances between output and input points, thus saving a considerable amount of
run time.

• perturbate the central point of the neighbourhood so that its associated difference
vector G̃0 is different from 0. Such solution introduces noise in the neighbourhood
and thus can decrease performance.

• define a composite, non-convolutional layer that aggregates spatial information
from the neighbourhood before combining them with the features. In this way,
to exploit the bias term related to 6(0) becomes much less trivial.

Of these four solutions, we are more interested in exploring the last one: redefining
a different, non convolutional layer will prove the flexibility of our composite approach.

5.4.2 An alternative semantic layer

In order to cope with the bias problem highlighted in section 5.4.1, we decided to define
a different composite layer, that does not employ convolution but instead aggregates

75

CHAPTER 5. PROPOSED APPROACH

neighbourhood information in a different way. For us, this is also a way to prove that
convolutionality is not a mandatory property of our composite layer.

The main component of our non-convolutional composite layer is a new semantic
sublayer, called aggregate semantic sublayer. Thought to be used in combination with
any other RBFN-based spatial sublayer, the idea behind the aggregate semantic sublayer
is to make the bias more difficult to exploit, rather than eliminating it completely.

Receiving from the spatial layer a set of descriptors {B: (G̃8)} for each input G̃8 , the
idea is to aggregate them before combining them with the features. We propose to
aggregate such set of spatial descriptors by computing their first N central moments
with respect to the points in the neighbourhood. Here we indicate such moments with
`1 (BBB), `2 (BBB), ..., `# (BBB), where s is the vector BBB = (B1 (·), B2 (·), ..., B: (·)). Since the
aggregation is performed over points, we expect each `= (BBB) to have : components.
After computing the first N central moments, we concatenate them in a single vector:

fff = (`1 (BBB), `2 (BBB), ..., `# (BBB)),

having dimension :=. The same idea is applied on features, so that we will have the
same N central moments computed point-wise and concatenated in a single vector:

\\\ = (`1 (q), `2 (q), ..., `# (q)),

having dimension =�. The convolution is then performed by multiplying the spatial
information contained in vector f by a matrix of weights , , and then by the feature
moments vector \. In case of having a single output feature, the convolution operator
would look like:

k< (H) =
=�∑
9=0

=:∑
8=0

\ 9F 98f8 . (5.15)

This solution is not intended to solve the bias problem completely: it will be still
theoretically possible, for the network, to reach certain configurations that produce
biases. For example, the spatial layer could learn a function B(G̃8) similar to:

B(0) = 1

B(G̃8) = 0 ∀G̃8 ≠ 0
. (5.16)

On the other hand, such function is really difficult to approximate by using a RBFN-
based spatial layer like the ones we proposed, especially when the number of centers

76

CHAPTER 5. PROPOSED APPROACH

is limited. That’s because the RBFN output is a continuous function, being a linear
combination of continuous RBFs [23] [60], while (5.16) is not. Knowing that the RBFN
alone is not fully able to produce an output like (5.16), we avoid that the semantic layer
can participate in defining a bias-exploiting convolutional filter.

This aggregate layer is clearly different from a convolution, since both features and
filter are condensed together by the use of central moments. Our experiments show
that our semantic layer can be used to address OC classification in point clouds, while
also being able to well perform in multiclass classification tasks.

77

Chapter 6

Benchmarking and Experiments

In chapter 5 we introduced a novel layer, called Composite Layer to be used in semi-
supervised Classification and unsupervised OC classification tasks. This layer was
designed to be architecture agnostic, as many other State of the Art alternatives like
KpConv [51], PCNNEO [2] and ConvPoint [4]. In this chapter, we demonstrate our
solution’s capabilities by performing experiments both in the field of supervised Clas-
sification and unsupervised One-Class Classification. In Section 6.1 we present some
datasets that are considered standard benchmarks in 3-d deep learning. In particular,
we focus onModelNet40 and ShapeNetCore, datasets that are composed of 3d meshes,
from which it is possible to extract point clouds or other types of geometric data. In the
second subsection, we propose a possible CNN architecture that employs our composite
convolutional layer; after describing such architecture, we test our model and compare
its performance with other State of the Art methods. We follow a similar approach
in Section 6.3, where we discuss OC Classification. Since no other OC classification
methods from the literature operate on point clouds, we are more interested in proving
that it is possible to perform OC classification on Point clouds rather than comparing
our model with existing alternatives.

6.1 Datasets for 3D Deep Learning

Unlike in other fields, the datasets used in 3D deep learning can be quite diverse. As
we discussed in chapter 3, The reason behind this is that 3D deep learning is a vast
field including many alternative methods. For instance, graph-based methods need

78

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

datasets containing graphs; many methods employing multiview CNNs are better off
when trained on images acquired from meshes; other methods, like ours, work on point
clouds; several models from this last category, like PointNet, do not require features
associated to the points, while other methods are better off with additional features.
For this reason, it is crucial to choose a meaningful dataset when testing a 3D deep
learning model. Focusing on Point Clouds, we presentModelNet40 [55] and ShapeNet
[7], two widely-used datasets in 3D shape classification. We also cite other relevant
datasets, particularly regarding point clouds, that can be considered when developing
more application-specific solutions.

Class #Instances Class #Instances Class #Instances Class #Instances
airplane 726 cup 99 laptop 169 sofa 780
bathtub 156 curtain 158 mantel 384 stairs 144
bed 615 desk 286 monitor 565 stool 110
bench 193 door 129 night_stand 286 table 492

bookshelf 672 dresser 286 person 108 tent 183
bottle 435 flower_pot 169 piano 331 toilet 444
bowl 84 glass_box 271 plant 340 tv_stand 367
car 297 guitar 255 radio 124 vase 575
chair 989 keyboard 165 range_hood 215 wardrobe 107
cone 187 lamp 144 sink 148 xbox 128

Table 6.1: Modelnet40: classes and instance distribution

6.1.1 ModelNet40

ModelNet40 [55] is probably the most widely used benchmarking dataset in the field
of 3D deep learning. Two factors contributed to its success: first, it is composed of
meshes from many everyday use categories. Since it is possible to extract different
types of data from a mesh, such as point clouds and graphs, Modelnet40 is readily
employable by most 3D deep learning algorithms. Secondly, a significant advantage is
that ModelNet40 does not contain real-world objects: it is synthetic, which means that
it contains only fictitious meshes. Thanks to this, the dataset is free from the intra-shape
noise.

As the name suggests, this dataset is composed of 40 classes containing meshes
of commonly used objects, for a total of 12311 shapes. We can see the list of these

79

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Figure 6.1: Some instances extracted from the class “chair” of Modelnet40. In particular, we are
showing point clouds sampled from the mesh contained in said dataset, as explained in section
6.2.3.

classes, alongside their cardinality, in table 6.1. The first thing we can notice is that
these classes are not perfectly balanced in terms of instances. For example, the class
cup is roughly 90% smaller than the class chair. It is possible to measure the class
imbalanced by the standard deviation of the class cardinality distribution:

f =

√√√√
1
#

∑
8

(
28 −

1
#

∑
9

(2 9)
)2

= 215.5446,

Where # indicates the total number of instances in the dataset and 28 the number of
instances of class 8.It is interesting to notice that Modelnet40, even being the most
widely used benchmarking dataset in the field, is fairly unbalanced in terms of class
instances. On the contrary, the benchmark of image classification datasets such as
CIFAR-10 [25] are perfectly balanced.

Modelnet40 also comes with an official train-test split, which is suggested to cor-
rectly compare performances with other methods. This official split takes 9843 shapes
(the 80% of the entire dataset) for training and leaves the remaining 20% for testing.
Since some classes (like cup, bowl or stool) are relatively small compared to the others,
it is difficult to produce a split that includes a validation set as well: it would mean
either to produce a validation set with too few instances on the small classes, or to
significantly reduce the impact of those classes in the training set.

80

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Class #Instances Class #Instances Class #Instances Class #Instances
airplane 2832 cap 4612 lamp 113 rifle 420
bag 58 car 455 laptop 380 rocket 115

basket 77 cellphone 65 mailbox 296 skateboard 149
bathtub 599 chair 762 microphone 1620 sofa 1656
bed 167 clock 5863 microwave 319 speaker 59
bench 1260 dishwasher 323 monitor 1116 stove 106

birdhouse 340 earphone 5863 motorcycle 65 table 2198
bookshelf 125 faucet 84 mug 46 telephone 152
bottle 628 file 272 piano 107 tin_can 1356
bowl 1076 guitar 45 pillow 235 tower 116
bus 227 helmet 51 pistol 149 train 404

cabinet 79 jar 519 pot 167 vessel 51
can 39 keyboard 208 printer 67 washer 310

camera 2458 knife 557 remote_control 185 – –

Table 6.2: Shapenet Core: classes and instance distribution

6.1.2 ShapeNet

Another well-known synthetic dataset for 3D deep learning is Shapenet [7]. This
dataset is closely related to Wordnet [32], a lexical database based on the English
language that proposes to organize, describe and define concepts expressed by words.
In Wordnet, an important conceptual unit is the one of synset: a set of words that can
be used to describe a single concept, object, or idea. Shapenet’s goal is precisely to
associate to a vast number of commonly used synsets a set of 3D shapes representing
the concepts behind them. Concretely, there are a number of different “flavors” in which
Shapenet is distributed, depending on both the kind of 3D shapes and the quality of
annotation. While certain flavors like ShapenetSem [44] are widely used in the field of
3D shape segmentation, In the field of 3D shape classification, we are more interested
in discussing a subset of ShapeNet called ShapenetCore. This ShapeNet subset comes
with single clean 3Dmodelswithmanually verified category and alignment annotations,
and covers 55 common object categories with about 51,300 unique 3D shapes.

Differently fromModelnet40, this dataset is distributed with an official 3-way split,
defining a training set, a validation set and a separate test set. We can see the classes
distribution inside the training set in table 6.2. Here it is possible to notice how much
this dataset is unbalanced towards some classes. For example, the class “guitar” only
contains 45 instances, while the class “clock” contains 5863 instances; this makes the
guitar’s class cardinality less than 1% of the clock’s class cardinality.

81

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Figure 6.2: Some shapes extracted from the class “airplanes” of ShapenetCore. As can be
observed, this definiton of “airplane” also includes spaceships from videogames or other media
products, helicopters, drones and even a shape representing the collision between two airplanes
in the 1990 Wayne County Airport accident [1].

Wecan quantify the skewness of ShapenetCore by calculating the standard deviation
over the number of instances 28 for each class:

f =

√√√√
1
#

∑
8

(
28 −

1
#

∑
9

(2 9)
)2

= 1096.7402,

Where # indicates the total number of instances in the dataset and 28 the number
of instances of class 8. As we can see, the standard deviation for ShapenetCore is
much higher than for Modelnet40. Another important feature of this dataset is the great
intraclass variability, in particular when dealing with certain classes with high number
of istances. We can see an example of this in figure 6.2.

These two factors contribute in making ShapenetCore a difficult dataset to train
a deep learning model. Some works try to overcome this difficulty by selecting a
specific subset of shapenet, like the case of [59]. Many other methods rely primarily
on Modelnet40 when testing their performances in 3d shape classification, whithout
referring to ShapenetCore.

82

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Figure 6.3: Image from [12] representing the result of a semantic segmentation experiment over a
scene represented by a 3D point cloud extracted via LiDAR. It is possible to see how the elements
closer to the observer, here at the origin of the reference frame, occlude objects behind them.

6.1.3 Other relevant datasets

The common feature of both ModelNet and Shapenet is that they are synthetic mesh
datasets. On the other hand, there are situations inwhich amodel should be evaluated on
a dataset obtained from real-world objects. This is particularly true in the case of point
clouds, where several techniques exist to sample a point cloud from a real-world object.
For example, Terrestrial Laser Scanning (TLS) techniques are used in topography [35]
to produce representations of the landscape or its features. Themain difference between
real-world and synthetic datasets is that Synthetic datasets have complete and noiseless
elements, while in real-world datasets the elements can be noisy or partially occluded
[19]. In Figure 6.3 we report an example of an occluded 3D shape. In the field of 3D
shape classification, two interesting real-world datasets are the Sidney Urban Object
Dataset [11] (SUOD) and Scan Object NN (SONN) [52].SUOD is one of the first 3D
point cloud datasets built from real-world samplings, but having less than 600 instances
it is also much smaller than the alternatives. On the other hand, SONN is a recent
real-world dataset (published in 2019) with size comparable to the already discussed
ModelNet40. Unfortunately, the authors have not released the dataset to the public yet.

83

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

(1024, 256, 64)

(256, 128, 128)

(128, 32, 256)

(32, 16, 256)

(16, 1, 512)

Composite Convolution

Batch Normalization

Dense Layer

|- | = 32

|- | = 32

|- | = 16

|- | = 16

|- | = 16

(512, 40)

Figure 6.4: The chosen neural network architecture, very similar to the one employed in [4] by
Convpoint. Each convolutional layer is labeled with a 3-uple (|%� |, |%$ |, W) where |%� | is the
number of input points, |%$ | is the number of output points, W is the number of output features
produced by the layer. On the other hand, we label |- | the number of neighbouring points
considered in each layer.

6.2 3D Shape Classification

To evaluate our novel point-convolutional layer’s performances, we conducted some
3D shape classification experiments. We chose to employ two synthetic datasets:
Modelnet40 and ShapenetCore, both described in Section 6.1. Firsts, we describe the
Neural Network architecture in which we employ our convolutional layer and present
some comparable State of the Art models that we use as baselines in our experiments.
As already stated in section 6.1, both ModelNet40 and ShapenetCore are composed
of 3D meshes. Since our model operates on point clouds, we dedicate a paragraph to
describe how we construct such point clouds starting from the 3D shapes contained in
the over stated Datasets; moreover, we briefly describe some simple data augmentation
techniques we employed during training and testing. After presenting the appropriate
performance metrics, we discuss the experiments’ nature and present their results.

6.2.1 Neural Network Architecture

Our layer needs to be deployed in a suitable Neural Network Architecture to be ap-
propriately tested. Inspired by Convpoint [4], we decided to define a quite simple
NN Architecture, composed of 5 strided convolutional layers followed by a final dense

84

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

layer. We can see the details of such architecture in figure 6.4. The rationale behind
this architecture is simple: since we need to test the capabilities of the sole composite
layer, any functional architecture can be employed; moreover, the architecture should
be simple enough to be used in both Modelnet40 and ShapenetCore without substantial
modifications. In this sense, the NN proposed by Convpoint is fitting. Indeed, it is both
simple, functional and has already shown to perform well in 3D shape classification.

6.2.2 Baselines and comparable Methods

To evaluate our solution’s performance, we train three different State of the Art methods
and compare their results with the ones obtained using our Composite Layer. These
methods are:

• Pointnet [37]. A non-convolutional method employing a custom neural network
architecture, representing one of the earliest and most known approaches to the
field of deep learning with point clouds. Since the power of Pointnet resides in its
peculiar architecture, this model will be the only one not using the convolutional
architecture described in section 6.2.1.

• ConvPoint [4]. A convolutional method presented in 2020 and sharing some
similarities with our proposed solution. being it an architecture-agnostic con-
volutional layer, we shall test inside the same architecture previously defined in
section 6.2.1.

• KpConv [51]. Until very recently, this convolutional method was the one ob-
taining the best results in the field of 3d shape classification in terms of Overall
Accuracy (OA). In this case, we refer to KpConv-rigid, a variant of KpConv that
does not employ deformable convolutions. Like in the case of ConvPoint [4], we
shall test KPConv inside the NN architecture we defined in section 6.2.1.

Note that the results of our experiments with these methods are different from the
ones presented in the respective papers. This primarily because of the different NN
Architecture. None of these methods was reimplemented, as the experiments were run
on the implementations suggested by the respective authors.

85

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

6.2.3 Data preprocessing

All the algorithms we test operate on the point clouds, but the shapes included inside
the Modelnet40 and ShapeNetCore datasets are shipped in the form of 3D meshes. In
this sense, a fundamental operation in our workflow is to convert these 3D meshes to
point clouds. A common way to address this task is to sample the point cloud from the
mesh by using the so-called farthest point sampling [34] strategy. Broadly speaking,
the process of sampling) points from a given mesh is the following:

1. Construct a point set + comprising all polygon vertices inside the mesh.

2. Sample a point set %A0=3 from the mesh surface, in such a way that each polygon
contains a number of sampled points proportional to its area.

3. Initialize the point cloud % as the set containing one randompoint ?0 ∈ +∪%A0=3 .

4. Add to the point cloud % the farthest point ? 5 ∈ + ∪%A0=3 from all the elements
already in %.

5. Repeat step 4 until |% | =) .

It is possible to perform this process before training, obtaining point-cloud-based
variants of ModelNet40 and ShapeNetCore. Several already sampled versions of these
two datasets are available online, an example being [48].

Instead, an operation that we perform online (i.e. during training) is data aug-
mentation. In our case, we decided to augment our data by performing the following
operations over each point cloud:

• Random translation along all three spatial axes G, H, I.

• Random rotation from 0 to 360 degrees around the vertical axis I.

• Random rotation from −30 to +30 degrees around the G and H axes.

• Mirroring with respect to the vertical axis I.

To be compliant with other works dealing with 3D shape classification, we employ
the standard training/test splits from ModelNet40 and ShapeNetCore. In this way, our
results are comparable with the ones presented in literature.

86

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

6.2.4 Evaluation metrics

The last aspect we discuss before presenting the experiments is the set of performance
metrics we are interested in measuring. In our 3D shape classification task, we decided
to employ three different figures of merit. The first two are commonly employed by
other State of the Art methods. In contrast, the third one is less common though
beneficial in imbalanced datasets such as the ones we are considering. We now present
some definitions that are useful in describing such performancemetrics. Given a certain
test set and a multiclass classifier, we can define four sets of instances for each class:

• set of true positives for class i: the set comprising the correctly classified
instances of class 8 . We indicate its cardinality with)%8 .

• set of true negatives for class i : the set of instances not belonging to class 8 that
are not classified as examples of class 8. We indicate its cardinality with)#8 .

• set of false positives for class i : the set of instances incorrectly classified as
examples of class 8. We indicate its cardinality with �%8 .

• set of false negatives for class i : the set of instances belonging to class 8 correctly
recognized. We indicate its cardinality with �#8 .

Since the entire dataset is composed by the union of all classes, the total number of
instances in the test dataset is # =

∑2
8 ()%8 + �#8), where 2 is the number of classes

in the dataset. It is possible to use the sets introduced before to define several metrics,
like the one we are using.

Overall Accuracy (OA)

OA is the most common figure of merit. It is simply defined as the number of correctly
classified shapes over the total number of classified shapes:

$� =

∑2
8)%8∑2

8 ()%8 + �#8)
.

Intuitively, it represents the probability that the evaluated algorithm will correctly
classify a given test instance. A significant drawback arises of imbalanced datasets. In
this case, OA cannot capture whether the algorithm performs worse in smaller classes.

87

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Average Accuracy (AA)

AA is a useful metric in imbalanced datasets, obtained by averaging the per-class
accuracy. While it is possible to weight each class differently, we use the same weight
for each class. In formulae:

�� =
1
2

2∑
8

)%8 +)#8
)%8 + �%8 +)#8 + �#8

.

This metric captures whether the classifier performs worse in specific classes, as all
of them are equally weighted independently from their cardinality. It is interesting to
confront OA and AA: the first one is able to capture overall performances, while the
second one tells us if the model is able to well perform on every class.

Average 1vs1 AUC (AAUC)

In binary classification, performances also depend on the threshold we use to discrim-
inate between the two classes in terms of algorithm score. In this context, a useful
tool to evaluate the classification performance independently from said threshold is the
so-called Receiver Operating Characteristic Curve. Such curve is created by plotting
the true-positive rate (TPR) against the false-positive rate (FPR) at various threshold
settings. This plot illustrates a binary classifier’s diagnostic ability as its discrimination
threshold is varied. In particular, the Area Under the ROC Curve (AUC) is a metric
that expresses how well the two classes are separated, with an �*� = 1 meaning a
perfect classifier and an �*� = 0.5 meaning a random classifier. In 2001, Hand and
Till[20] proposed a generalization of the AUC for multiclass settings.

Let us suppose that the classes are labeled as 1, 2, ..., 2 − 1, 2. Given a pair of
classes (8, 9), A good classifier should assign a high probability to the correct class,
while assigning low probabilities to the other classes. This can be formalized in
the following way: Let (8 | 9) be the probability that a random instance of class 9 is
recognized as belonging to class 8 with an higher probability of a random instance of
8. Let also (9 |8) be defined accordingly. In this context, we can consider the metric
(8, 9) = 1

2 ((9 |8) + (8 | 9)) as a measure for the separability for classes 8 and 9 . In this
sense, the Average 1vs1 Area under the ROC curve (AAUC) is defined as average of
all possible (8, 9). in formulae:

��*� =
2

2(2 − 1)
∑
8< 9

(8, 9).

88

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

6.2.5 Experiments and results

Since our composite layer can be implemented as a combination of different semantic
and spatial layers, there are multiple ways of defining it. For this reason, we perform
different experiments to investigate the impact of certain sublayers or certain parameters
specific to our novel composite layer in terms of performance. After this ablation study,
we compare the overall performance of our solution with the State of the Art methods
introduced in section 6.2.2. For these experiments we use the already citedModelNet40
and ShapeNetCore datasets, subsampled so that each point cloud is composed by 1024
points. Note also that each point is not associated to any features when it enters the
network, the only information that it carries being its spatial position.

Experiment 1: robustness to spatial descriptor dimension variation

First, we are interested in investigating the way performances vary with different di-
mensions for each spatial descriptor = |{B: (G8)}|. In this experiment, we consider
a composition of a RBFN spatial layer and a Linear semantic Layer. We test such
composition with different values of , as shown in table 6.3

Name Spatial L. ReLu Semantic L. K notes
L1.1 RBFN yes Linear 8 48 RBFN centers
L1.2 RBFN yes Linear 16 48 RBFN centers
L1.3 RBFN yes Linear 24 48 RBFN centers

Table 6.3: Layers tested in Experiment 1, about the robustness to variation of the spatial
descriptors dimensionality.

In this context, each Radial Basis Function is Gaussian and fixed a-priori:

ℎ(A) = exp
(
A2

f

)
Fℎ4A4 f = 0.08. (6.1)

Such choice of the hyperparameter f was performed by Hyperparameter Tuning. Sim-
ilarly, we chose the starting learning rate _ = 5 · 10−4.

To measure the metrics described in section 6.2.4, we perform three different
trainings on each model configuration described in table 6.3. Our measure is obtained

89

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

as average of the result obtained by testing these trained models. For the sake of brevity,
we perform these measures only on ModelNet40.

Model OA AA AAUC N. of Param.s notes
L1.1 0.8993 0.8668 0.9898 1.92M –
L1.2 0.8951 0.8515 0.9886 3.83M –
L1.3 0.8936 0.8553 0.9884 5.73M –

Table 6.4: Results of Experiment 1 over ModelNet40, about the robustness to variation of the
spatial descriptors dimensionality.

As can be seen from table 6.4, there is little difference between the three pro-
posed layers. The experiment strongly indicates that having more semantic parameters
(i.e. parameters used in the semantic layers, which compose the vast majority of the
network’s parameters) does not correspond to better performances. said number of
semantic parameters depends both on the number of output features (which is fixed in
this experiment) and the number of spatial descriptors for each point. In this case, the
best model is the simplest one, with smallest and thus with fewer seantic parameters.
this experiment also shows that to change may be potentially useful: this is surely an
advantage with respect to models, such as ConvPoint, in which is fixed.

Experiment 2: use of ReLu between spatial and semantic layers

In this experiment, we evaluate how ReLu activation between spatial and semantic
layers impact classification performance. Again, we choose to perform the test over a
combination of RBFN spatial layer and Linear Semantic layer.Table 6.5 summarizes
the characteristics of the tested layers.

As in the previous experiment, we consider the use of fixed gaussian RBFs, with
f = 0.08 and starting learning rate _ = 5 · 10−4. limA→∞ 6(A) = 0

As can be seen in table 6.6, layer L2.1 clearly outperforms layer L2.2. This
experiment shows that, while it is possible to add non-linearities between spatial and
semantic layer, this is not always useful and might worsen the performance.

90

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Name Spatial L. ReLu Semantic L. K notes
L2.1 RBFN no Linear 16 48 RBFN centers
L2.2 RBFN yes Linear 16 48 RBFN centers

Table 6.5: Layers tested in Experiment 2.

Model OA AA AAUC N. of Param.s notes
L2.1 0.9032 0.87724 0.9914 3.83M –
L2.2 0.8951 0.8515 0.9886 3.83M –

Table 6.6: Results of Experiment 2 over ModelNet40, about the non-linearity between spatial
and semantic layers.

Experiment 3: Training the Radial Basis Function

In section 5.2.2 we described a possible way to learn the shape of the Radial Basis
Functions composing a RBFN. We are now interested in verifying the impact of such
choice in terms of performances. To do this, we compare the results obtained by the
layers summarized in table 6.7.

Name Spatial L. ReLu Semantic L. K notes
L2.1 RBFN no Linear 16 48 RBFN centers
L3.1 RBFN w/ Fourier RBF no Linear 16 16 RBFN centers
L3.2 RBFN w/ Fourier RBF yes Linear 16 32 RBFN centers

Table 6.7: Layers tested in Experiment 3.

Note that layer L2.1 is the same used in Experiment 2, since we consider it a baseline
to evaluate the performances of layers L3.1 and L3.2 .

As described in section 5.2.2, learning the shape of the RBFwith Fourier expansions
requires the choice of some additional parameters. In particular, we are referring to the
base frequency 5 and the expansion length) . In both layers L3.1 and L3.2, we employ

91

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

5 = 0.5 and) = 10. Again, for the sake of clarity we expose only the results obtained
over ModelNet40.

Model OA AA AAUC N. of Param.s notes
L2.1 0.9032 0.87724 0.9914 3.83M –
L3.1 0.9014 0.8702 0.9902 3.83M –
L3.2 0.9031 0.8702 0.9904 3.83M –

Table 6.8: Results of Experiment 3 over ModelNet40, about the impact of learning the radial
basis function in a RBFN.

The results of this experiment, reported in Table 6.8 tell us that layers L3.1 and L3.2
perform similarly to Layer L2.1, by using a RBFNwith fewer centers as Spatial sublayer.
This is probably due to the flexibility obtained by learning the RBF shape. Moreover,
we saw in Experiment 2 that the ReLu between spatial and semantic sublayers damaged
the performances of layer L2.2; In this case though, Layer L3.2 is able to obtain the
same performances as the other two regardless the presence of the non-linearity.

Experiment 4: testing the aggregate semantic layer

Finally, we are interested in testing the aggregate semantic layer we proposed in section
5.4.2. We recall that this semantic layer aggregates spatial descriptors and features be-
fore combining them. For this reason, when using this semantic sublayer our composite
layer is not convolutional. We reprise the layer’s operator definition reported in (5.15):

k< (H) =
=�∑
9

=:∑
8

\ 9F 98f8 .

In this context, \ 9 and f8 are obtained by concatenating the = central moments, com-
puted respectively over the spatial descriptors and input features. In this experiment,
we compute only the first 2 central moments, namely mean and variance. In this way,
we do not dramatically increase number of parameters F 98 , while employing the same
hyper-parameters used in previous experiments. We compare the performances of the
aggregate semantic layer, with those of Layer L2.1 from experiment 2 and Layer L3.1
from experiment 3.

92

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Name Spatial L. ReLu Semantic L. K notes
L2.1 RBFN no Linear 16 48 RBFN centers
L3.1 RBFN w/ fourier RBF no Linear 16 16 RBFN centers
L4.1 RBFN w/ fourier RBF no Aggregate 16 16 RBFN centers

Table 6.9: Layers tested in Experiment 4, about the performances of the aggregate semantic
layer.

Figure 6.5: Overall Accuracy over the Test Set of ModelNet40, plotted per epoch of training.

In Table 6.10 we can see the results obtained by our layers over ModelNet40. An
important aspect to note is that layer L4.1 has a larger number of parameters than the
other methods. This is due to the fact that both the semantic features and the spatial
descriptors are duplicated inside each layers: considering the first two central moments
implies having a vector \ that has two times more components than B(·), and the same
goes for f and q(·). Interestingly, layer L4.1 outperforms both L3.1 and L2.1 in terms
of Overall Accuracy and Average 1vs1 AUC; on the other hand, layer L2.1 carries
a noticeable advantage compared to L4.1 in terms of Average Accurracy. Another
important result of this experiment is that layer L4.1, even having four times more
parameters, is able to converge to these results faster than L3.1 and L2.1. This later
aspect can be seen in Figure 6.5.

93

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Model OA AA AAUC N. of Param.s notes
L2.1 0.9032 0.8772 0.9914 3.83M –
L3.1 0.9014 0.8702 0.9902 3.83M –
L4.1 0.9063 0.8706 0.9920 15.2M –

Table 6.10: Results of Experiment 4 over ModelNet40, about the performances of the aggregate
semantic layer.

Overall Performances over ModelNet40

After having discussed the alternative spatial and semantic layers we presented in
chapter 5, we briefly discuss the overall performances we obtained over ModelNet40
and compare them with the other State of the Art methods, as stated in section 6.2.2.

Model OA AA AAUC N. of Param.s notes
PointNet 0.8892 0.8496 0.9899 3.64M –
KpConv 0.8991 0.8734 0.9892 3.8M –
ConvPoint 0.9124 0.87623 0.9906 3.81M –

L2.1 0.9032 0.8772 0.9914 3.83M –
L3.1 0.9014 0.8702 0.9902 3.83M –
L4.1 0.9063 0.8706 0.9920 15.2M –

Table 6.11: Performances overModelNet40 of some of the previously defined Composite Layers,
compared with the other state of the art models.

We report the results obtained by some of our layers in table 6.11, toghether with
the results obtained by other state of the art models. In particular, we are comparing:

• the best performing composite layer with linear semantic (L2.1).

• the best performing layer with respect to OA (L4.1, with aggregate semantic
layer).

94

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Figure 6.6: Confusion matrix for layer L4.1 in modelNet40, represented as heat-map. Given the
high number of classes, class labels are omitted. Each row is normalized such that it sums up to
1.

• a layer with the same configuration as L4.1, but with linear semantic layer (L3.1).

It is possible to see that our layers achieve comparable performances with the existing
methods. In particular, we are able to outperform PointNet [37] in all metrics; similarly,
we are able to outperform KpConv, though its results in our architectureare worse than
those obrained in [51]. On the other hand, Convpoint [4] remains superior in terms
of Overall Accuracy, while falling behind in terms of Average Accuracy and Average
1vs1 AUC.

An aspect we are want to investigate is the discrepancy between Overall Accuracy
and Average Accuracy, which we registered in all experiments with both our models
and state of the art models. To explain this phenomenon, it is useful to observe the
confusion matrix of a model. In this case, since all models yield very similar results,
we report just the confusion matrix obtained by layer L4.1 in Figure 6.6.

As it is possible to see from the image, one specific class (the class “flower_pot”)

95

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Figure 6.7: Comparison between some instances of the class “flower_pot” (top) and of the class
“plant” (bottom) of ModelNet40.

Figure 6.8: Overall Accuracy over the Test Set of ModelNet40, plotted per epoch of training. In
this plot only the first 25 epochs are reported. KpConv has a convergence time way higher than
30 epochs and for this reason is omitted.

is almost completely misclassified. In this case, just 2 out of 21 test set instances
are correctly classified, yielding a per class accuracy of 9.5%. We can explain this
behaviour by noting that 10 out of 21 “flower_pot” instances are classified as part of
the “plant” class. This is understandable: the “plant” class contains almost the double

96

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Model OA AA AAUC N. of Param.s notes
PointNet 0.8297 0.6856 0.9761 3.64M –
KpConv 0.8288 0.6712 0.9758 1.9M –
ConvPoint 0.8366 0.6690 0.9752 1.9M –

L3.1 0.8286 0.6533 0.9713 1.9M –
L4.1 0.8392 0.6985 0.9762 7.6M –

Table 6.12: Performances over ShapeNetCore of some of the previously defined Composite
Layers, compared with the other state of the art models.

of the instances than the class “flower_pot”, and the two are very similar when scaled
to the same size; it is possible that our models are not able to well distinguish between
flower pots and plants, thus assigning “dubious” test instances to the biggest class. To
be almost completely inaccurate over a single class can cost more than 2% in terms of
Average Accuracy, thus explaining a significant part of the gap between OA and AA.
The Overall Accuracy is less influenced by the problem as the samples belonging to
“flower_pot” are only a small fraction of the entire dataset.

A second aspect we discuss is the convergence time, in terms of Epochs, of the
presented models. This aspect is significant: having a more rapid convergence usually
means that the model is easier to optimize. We already briefly discussed of the fact
that Layer L4.1 converges faster than layer L3.1 and L2.1 in experiment 4; we repeat
this observation by comparing L4.1, ConvPoint and PointNet. As in the previous
experiment, L4.1 outperforms the other two layers by converging much faster to its peak
performances. It is possible to observe this in figure 6.8. In particular, ConvPoint’s
behaviour is worth commenting: while being able to achieve better performances in
OA than the other two models, in the first 25 epochs ConvPoint performs worse than
L4.1 and very similarly to PointNet.

Overall Performances over ShapeNetCore

Until now, we evaluated our model only on ModelNet40 which is quite a simple dataset
compared to others. For this reason, we also want to investigate how the different
models perform on a larger, more complex and more unbalanced dataset. In our case,

97

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Figure 6.9: Convpoint’s Confusion matrix over ShapeNetCore, represented as heat-map. Given
the high number of classes, class labels are omitted. Each row is normalized such that it sums
up to 1.

the best option in this sense is ShapeNetCore. We already hinted in section 6.1 that
ShapeNet is a highly unbalanced dataset, which is an important issue in multiclass
classification. For this reason, performances are significantly lower not only for models
based on our Composite Layer, but also for other State of the Art models.

To avoid overfitting, we halved the number of incoming and outgoing features from
each layer of our networks. For this reason, the first layer of our NN architecture will
produce 32 outgoing features instead of 64, the second layer will produce 64 features
instead of 128 and so on. This simple measure significantly improved performances in
this specific experiment.

As can be seen from table 6.12, all the tested models present a very significant gap
between the performances in Average Accuracy and the ones in Overall Accuracy. This
is due to the fact that several classes are really small compared to the others, so that the
network struggles to correctly classify their instances. This phenomenon is also clear
by observing the confusion matrices of the tested models. For example, in figure 6.9 it
is possible to spot several vertical bands, corresponding to some of the bigger classes
in ShapeNet. The same bands are also present in the confusion matrix produced by our

98

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

layer L3.1, as in figure 6.10 .On the other hand, they are less visible in the confusion
matrix corresponding to L4.1, reported in figure 6.11. This suggests that the use of
our aggregate semantic layer makes the model more robust to dataset inbalance, and
this hypothesis is also supported by the fact that our aggregate layer achieves an higher
performance in terms of per-class Accuracy (AA).

Finally, we want to highlight the fact that all the tested models are rather consistent
in terms of Overall Accuracy (OA), since they all reach very similar values. Moreover,
the performances in Average 1vs1 AUC tell us that every model is capable of clearly
separate the different classes, almost like in the experiments involving ModelNet40.

99

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Figure 6.10: Layer L3.1 Confusion matrix over ShapeNetCore, represented as heat-map. Given
the high number of classes, class labels are omitted. Each row is normalized such that it sums
up to 1.

Figure 6.11: Layer L4.1 Confusion matrix over ShapeNetCore, represented as heat-map. Given
the high number of classes, class labels are omitted. Each row is normalized such that it sums
up to 1.

100

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Figure 6.12: Our neural network architecture for OC classification, very similar to the one
employed in supervised multiclass classification. Each convolutional layer is labeled with a
3-uple (|%� |, |%$ |, W) where |%� | is the number of input points, |%$ | is the number of output
points, W is the number of output features produced by the layer. On the other hand, we label |- |
the number of neighbouring points considered in each layer.

6.3 One-Class Classification

The second problem we aim to solve is the one of Anomaly Detection. To the best of
our knowledge, there are no models trying to solve this task in the case of point cloud
data. For this reason, there is no available baseline to confront our results with. Our
proposed approach makes use of the Deep SVDD tecnique described by L. Ruff et al.
in [42]. First, we present how to adapt the neural network presented in section 6.2.1 to
this different technique: as we shall see, this is not an easy task and requires particular
attention. We then present our reference performance metric, and briefly discuss about
how to evaluate this kind of unsupervised models. Finally, we present the experiment
and its results.

6.3.1 Architecture and hyper-parameters

To define ourNeural Network architecture for Deep SVDD,we reprise the same network
we used for supervised multiclass classification and modified it to suit our needs better.
In particular, the first consideration is that in OC classification we will train our network
with only one class. This means that the overall number of samples the network will
see would be considerably smaller than in supervised classification. For this reason, we
need to reduce the number of learnable parameters to avoid overfitting. A first way to

101

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

accomplish this is to reduce the number of input and output features between each layer;
a second solution may be to reduce each layer’s complexity. We decided to employ both
solutions: as can be seen from image 6.12, we at least halved the number of ingoing
features for each composite layer. Moreover, we noticed that batch normalization (BN)
layers could damage the network’s performances. For this reason, we removed three
BN layers.

Choice of K

The second solution to cope with the smaller training dataset is to reduce each layer’s
complexity. In our case, this means to decrease the number of spatial descriptors
 = |{B: (G̃8)}|. For this reason, we decided to use = 6, which is substantially less
than the usual = 16 we employed in classification. This parameter turned out to be
fundamental, since performances are severely harmed when is too high or too low.

Caveats of Deep SVDD

When describing Deep SVDD in section 5.3, we pointed out some constraints that we
need to comply with when defining our Neural Network. We briefly recall them here,
and point out some other caveats that we addressed when designing our solution:

• the Deep SVDD center � needs to be non-zero. while this requirement seems
trivial to satisfy, the choice of the Deep SVDD center � is crucial in terms of
performances. Having a center that is too distant from the initial forward pass
of the network prevents the model from learning, especially in high-dimensional
output spaces. on the other hand, we need the center to be far enough from the
origin of the output space, in order to avoid zero-weight solutions. In our case,
we chose to perform an initial forward passM � (·) on some training data sample
3 := (%3 , q3). By indicating �8 the i-th component of � and M �

8
(3) the i-th

component ofM � (3), we define the Deep SVDD center � as:

�8 = sign(M �
8 (3)) max(|M �

8 (3) |, 0.1)

• there should be no biases inside the network. For this reason, we need to
remove bias terms from each layer of the network, including the batch normal-
ization ones.

• the output dimensionality d greatly influences performances. Having the
network output lying in a 64-dimensional space can lead to very different results

102

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

compared to having the output lying in a 512-dimensional space. When the
number of parameters is large the model has difficulty in learning the task, while
when the number of the parameters is small the network tends to learn the
most trivial solutions. This parameter needs to be optimized depending on the
architecture and the data employed. In our case, we choose d = 128.

• the choice of the activation functions matter. As already pointed out in section
5.3, the use of saturating activation functions can lead the network to learn
uninformative solutions. At the same tame, Rectified Linear Units can be subject
to the so called “Dying ReLU” problem [30]. For this reason, the best solution
is to employ Leaky ReLUs or ELUs as activation functions inside our network.

6.3.2 Dataset and Data preprocessing

In our One-Class Classification experiments, we only employ data from the ShapeNet-
Core dataset. This because since we shall train the network to recognize only one
class at a time, it is important that the employed classes have a sufficient number of
instances: differently from ModelNet, ShapeNetCore possesses several classes with
more than 1,000 instances, thus allowing proper training.

To prove our model’s performances in OC classification, we shall train the network
multiple times, each time to recognize a specific class. In other words, we use multiple
training sets, each one comprising instances from a single “normal” class. ShapeNet-
Core contains 55 different classes, but since most of them are too small in terms of
instances, we select (some of) the most numerous ones to train our model over them.
In particular, these classes are reported in table 6.13.

Finally, we spend a few words on data preprocessing. We use the same method
described in section 6.2.3 to extract point clouds from ShapeNetCore’s meshes. We
also employ the same data augmentation techniques we used in supervised Multiclass
Classification. Likewise, each point cloud is composed by 1024 points and each point
carries no features other than its spatial position.

6.3.3 Evaluation metrics

Deep SVDD classifies a given point cloud as normal or anomaly depending if it is
mapped inside the SVDD hypersphere or not. For this reason, the radius of the

103

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Class #Instances
Airplane 2832
Bench 1260
Bowl 1076

Camera 2458
Cap 4612
Clock 5863

Microphone 1620
Monitor 1116
Sofa 1656
Table 2198

Tin_Can 1356

Table 6.13: Classes used as training sets for One-Class classification experiments.

hypersphere is a very important threshold: it distinguishes anomalies from normal
instances.

Let us consider the following notation:

• we call False Negatives (FN) the number of Normal instances that are classified
as Anomalous.

• we call True Negatives (TN) the number of Anomalous instances that are clas-
sified correctly.

• we callFalse Positives (FP) the number of Anomalous instance that are classified
as Normal.

• we call True Positives (TP) the number of Normal instance that are classified
correctly.

Starting from these definition, we can define two metrics. The first one is called False
Positive Rate (FPR), and it is defined as:

�%' =
�%

�% +)# . (6.2)

The second metric is called False Negative Rate (FNR), and it is defined as:

�#' =
�#

�# +)% . (6.3)

104

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Figure 6.13: An example of ROC curve, produced by our model LOC.2 over the class “Sofa”. In
the image is also indicated the Area under the ROC curve.

the False Positive and False Negative Rates depend heavily on the hypershphere radius:
a “small” hypersphere would probably have an higher False Negative Rate (FPR), while
a “big” hypersphere would probably have an higher False Positive Rate (FPR). In fact,
everymetric that relies on those two definitions would be function of a certain threshold.
This is not useful for us in understanding if the model is learning correctly.

For these reasons, to measure our model’s performances we follow the same ap-
proach used by Ruff in [42]: we use the Area Under the ROC Curve, a threshold-
independent metric.

As we already briefly discussed in section 6.2.4, the ROC curve is the curve
obtained by plotting the True Positive Rate ()%' = 1 − �#') against the False
Positive Rate (�%') at various threshold settings. The AOC is simply the area behind
such ROC curve. Differently from the case of supervised Multiclass Classification, OC
classification is a binary classification problem: we are distinguishing one class against
all others. For this reason, we can produce a ROC curve for each training on each class,
and then calculate its AUC directly. Having an AUC of 1.0 would mean to have optimal
performance, while having an AUC of 0.5 would mean having the same performances
as a random guesser.

105

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Figure 6.14: Some shapes extracted from the class “clocks” of ShapenetCore.

Name Spatial L. ReLu Semantic L. K notes
LOC.1 RBFN no Linear 6 16 RBFN centers
LOC.2 RBFN no Aggregate 6 16 RBFN centers

Table 6.14: Layers tested in One-Class classification experiments.

6.3.4 Experiments And results

Our experimental framework is quite simple. For each class reported in table 6.13
we perform 10 different trainings. Each trained model should be able to distinguish
between the class used in training and the other classes of the Dataset. In other words,
we perform a “One vs rest” experiment for each class present in table 6.13. In this
case, the training class will contain the “normal” instances, while the rest of the dataset
will contain the “anomalous” instances. to evaluate the performances of our model,
we employ ROC curve and AUC. Since we perform 10 experiments for each class, our
measure will be the average AUC and its standard deviation.

In the case of ShapeNetCore, an official three-way (Train/ Test/ Validation) split is
defined [7]. We rely on the official validation set to perform hyperparameter-tuning,
while using the official test set to evaluate the models.We perform this experiment for
two different Models, with the same architecture but different Composite Layers. Such
Layers are summarized in table 6.14.

106

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Figure 6.15: Some shapes extracted from the class “microphones” of ShapenetCore.

The last consideration is about the Loss Function. In section 5.3, we presented
two alternatives: the so-called soft-boundary Deep SVDD loss presented in (5.13) and
the One Class Deep SVDD loss presented in (5.14). Since ShapeNetCore is a dataset
with high intraclass variability, we employ in these experiment the soft-boundary Deep
SVDD loss 5.13. This because such loss is specifically designed for problems where it
is possible to encounter outliers inside the training data.

The results obtained by our two models are presented in table ??. As we can see,
the performances in terms of AUC are -for many classes- quite far from the optimal
AUC of 1. This can be due to many different factors:

• many classes have high intra-class variability. An extreme example is the
class “microphone”: as shown in figure 6.15, such class contains both table
microphones, hand microphones and microphones mounted on floor stands.
Considering that our network is designed to be scale-invariant, this fact poses
quite a challenge for our OC classification network.

• certain objects are not recognizable by their geometrical shape. An example
of this facy is shown in figure 6.14. In this case, the feature that distinguishes
clocks from other instances in the dataset is not the geometrical shape, but the fact
that each clock has a dial, either analog or digital. This detail is not represented
in the point clouds we are using, as each point is not associated with any feature
other than its geometrical position. On the other hand this kind of 3D shapes is
easily recognizable by using Multiview CNNs, which analyse shape images.

107

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

• Some classes are really similar to others in terms of shape. For example,
“bowls” and “caps” are really similar in terms of shape but different in terms of
function. Another example may be to confront cylindrical or rectangular “Tin
Cans” with cylindrical or rectangular “clocks”. Without context and features
associated to the point cloud’s points, it can be quite difficult to distinguish
between the two.

Class LOC.1 LOC.2

AAUC f AAUC f

Airplane 60.02% ±4.17% 70.10% ±3.05%
Bench 58.84% ±4.61% 61.70% ±1.35%
Bowl 47.48% ±1.89% 62.78% ±2.38%

Camera 55.56% ±9.59% 66.85% ±7.49%
Cap 46.33% ±5.54% 56.70% ±1.60%
Clock 51.25% ±1.79% 55.36% ±2.42%

Microphone 54.43% ±4.33% 52.35% ±1.79%
Monitor 51.03% ±6.10% 58.61% ±1.59%
Sofa 76.59% ±7.81% 79.69% ±2.93%
Table 48.03% ±4.35% 60.68% ±1.72%

Tin_Can 64.33% ±4.97% 61.47% ±7.33%

Table 6.15: Comparison in terms of Average AUC and standard deviation (over 10 experiments)
of layers LOC.1 (having a linear semantic layer) and LOC.2 (having an aggregate semantic layer).
We show AUC in percentages to enhance the readability of the standard deviations.

Note that these problems are common also in different datasets, other thanShapeNet-
Core. For example, Ruff et al. in [42] tested their model over the CIFAR10 [25] dataset
and obtained quite similar results to ours in terms of Average AUC. In this sense,
our results should be interpreted as a proof of concept: it is possible to perform OC
classification over point cloud with the help of Deep SVDD. In particular, we see that
LOC.2 perform way better in almost all tested classes than LOC.1, both in terms of
mean AUC and in terms of standard deviation. The only difference between the two
composite layers is the use of the aggregate semantic layer instead of the standard linear
later. This fact suggest us that the aggregate semantic layer can help, at least in this

108

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Figure 6.16: ROC curve of LOC.1 (left) and LOC.2 (right) over class “Bowl”. The red line
indicates random guesser performances. Ticks on the axes are omitted to improve readability.

kind of framework, in obtaining better OC classification performances.
In figure 6.16 it is possible to see more clearly the difference in terms of per-

formances between the two layers. In this case, we are comparing two ROC curves
obtained over the class “bowl”. As we can see, performances of LOC.1 are worse
than random guessing, while LOC.2 achieves considerably better performances. It
is also interesting to note that the ROC curve for LOC.2 starts with a non-zero true
positive rate since the start of the ROC curve corresponds to the minimum threshold,
this means that for hypersphere radius d ≈ 0 the deep SVDD still recognizes something
as not-anomalous. In other words, certain test inputs are correctly mapped very close
to the hypershpere’s center. Another example is shown in figure ??, this time regarding
the class “airplane”. In this case, both the layers are achieving better performances
than random guessing, but LOC.2 is able to learn better than LOC.1. The fact that our
network is able to better learn how to recognize this latter class than the previous one
is possibly related to how the class itself is defined there are less elements similar to
airplanes in ShapeNet, and airplanes have in most cases a very specific shape. This is
probably also the case for class “sofa”, which is the best recognized one. Also in this
case all instances share very similar shape, while being sufficiently different from the
rest of the dataset.

For these reasons, it is clear that the dataset choice is crucial when evaluating an
OC classification model such as ours. Unfortunately, we did not have the possibility
of choosing a dataset specifically designed for anomaly detection or unsupervised
classification with point clouds, since no similar projects are nowadays available. A
possible future development in the field can surely be the definition of a suitable
benchmarking dataset, in which most of the information carried by each datum is

109

CHAPTER 6. BENCHMARKING AND EXPERIMENTS

Figure 6.17: ROC curve of LOC.1 (left) and LOC.2 (right) over class “Airplane”. The red line
indicates random guesser performances. Ticks on the axes are omitted to improve readability.

encoded in its shape.

110

Chapter 7

Conclusions

In this thesis, we defined a novel convolutional layer, called Composite Layer, thought
to be employed over Point Clouds. Chapter 6 shows that our solution can achieve
comparable performances with respect to other State of the Art Methods. In particular
when dealing with multiclass classification, the aggregate layer has shown to be quite
promising: it leads to better convergence time and obtained the best performances
among the various possible Composite Layers. A possible future development may be
to investigate other non-convolutional ways to aggregate neighbourhood and features.
On the other hand, the most interesting results are obtained in One-Class Classification:
we showed that it is possible to apply Deep-SVDD over Point Clouds, a development
not yet shown in literature. OC Classification over Point Clouds may have several
application in engineering and industry, and for this reason it is surely a topic that
worth further investigation. To allow such developments, the development of a dataset
dedicated to Anomaly Detection is crucial: the resources now available (ModelNet40
and ShapeNetCore) have several problems that make difficult to apply OCClassification
directly. Having such novel dataset, it would be possible to easily compare different
models and to understand which one yield better performances. Moreover, it would
be possible to compare Deep SVDD with completely methods, like ones based on
AutoEncoders. A final remark is about the “bias problem” we presented in section
5.4.1: a surely helpful development would be to show its effect during Leaning, and
explore new ways to avoid it.

As technology develops in all fields regarding Computer Vision, so the possible
application for Point Cloud Deep Learning grows: for this reason, it is sure that

111

CHAPTER 7. CONCLUSIONS

works dealing with this peculiar data structure will become increasingly relevant in the
scientific community.

112

List of Figures

1.1 Image from [13] representing a human face with the use of a Point Cloud. 8
1.2 The high-level structure of our proposed layer. The spatial layers

receives the input points participating in convolution and returns a
spatial descriptor vector for each one of them. The semantic sublayer
aggregates such spatial descriptors with each point’s features and then
computes the convolution’s output. 9

2.1 Convolution over images. In particular, we see how two pixel values of
a (2 × 2) output image are computer. 18

2.2 Image from [50] representing an 3D Point Cloud (PC) of the entire
Milan Cathedral (more than 3 billion points). In this case, the PC
is obtained by merging two different types of points: TLS data, that
are shown with their intensity colours (green, yellow, orange) and
photogrammetric data with RGB color information. 20

3.1 Architecture of an unbiased Radial basis function network with N
inputs, L hidden neurons and O output neurons respectively 24

3.2 Image from [47] showing a multiview CNN architecture for 3D shape
classification. Multiple images of a 3D model are taken, each one
from a different (but fixed) point of view. Each of those images is sent
to a different CNN. Results for all the CNNs are pooled together and
another CNN is fed with them. The output of this last CNN represent
the classification score of the given object for each class. 29

3.3 Image from [64] that shows a bunny mesh together with three voxelized
representations. It is possible to see how such discrete representations
heavily depend on the voxel resolution to capture certain details. . . . 30

113

LIST OF FIGURES

3.4 Image from [37] representing the architecture of Pointnet, both for
classification (in blue) and segmentation (in yellow), indicating each
input and layer dimension. As it is possible to notice, much of the
architecture is shared both for segmentation and classification. 31

4.1 Image from [2] explaining how the extension operator works: the
image is showing three Point Clouds (composed of 2048, 1024 and 256
points respectively) where each point is associated to a single, unitary
feature. The colored area represent the continuous, 3-Dimensional
(here 3 = 3) function returned by the extension operator for each of the
three Point Clouds. It is possible to note how the shape of said function
is independent with respect to the cardinality of the Point Cloud that
was used to generate it. 41

4.2 the image shows a neighborhood centered on point G0 in a 2-dimensional
Point Cloud. We can think of defining the neighborhood as the set of
points where | |G8 − G0 | | < A , but this solution produces neighborhoods
with different cardinality. If we are sure that points in the Point Cloud
are uniformly distributed along the sampled surface, we can rely on K-
NN algorithms to define neighborhoods that have all the same cardinality. 46

4.3 the image shows the same neighborhood presented in figure 4.2, with
the addition of four RBF centers, represented in green. Suppose of
having to compute 6(G̃2). To do that, the distances betweeen all centers
and have to be computed. After this, we compute each ℎ(| |G̃2 − 2; | |)
and multiply it by the corresponding weight F; 47

4.4 the image shows the 3-layer MLP used to compute the function ℎ; (·)
in ConvPoint’s convolutional layer. The first layer has dimension
(3| |, 2| |), the second layer has dimension (2| |, 2| |), and the third
layer has dimension (2| |, | |). Note that in this case, every layer of
this Multi Layer perceptron depends on the cardinality of K, that is the
number of center points. Each ℎ; (·) is shared among all output features. 51

114

LIST OF FIGURES

5.1 the simple structure of our proposed layer. Both the spatial and semantic
sublayer may be defined in different ways: the only constraint is that
the spatial layer should output a set of "spatial descriptors" {B: } for
each point G̃8; on the other way, The semantic layer should receive as
input both the features {q 9 } and the spatial descriptors {B: } for each
point G̃8 . 60

5.2 Plot of the Rectified Linear Unity function. As the image shows,
'4!* (G) = 0 ⇐⇒ G ≤ 0 ; '4!D(G) = G ⇐⇒ G > 0 63

5.3 An example of composite convolutional layer with 4 input features and
2 output features. Here we highlight the structure of a possible semantic
layer (in green). In order for the layer to be convolutional, we assume
that each spatial descriptor given in the output by the spatial sublayer
is a function of only one neighbouring point. We multiply element-
wise each descriptor vector for each feature associated with the relative
neighbouring point, and then feed the resulting matrix to a traditional
linear layer. 66

5.4 the image exemplifies the idea of deep SVDD. Represented in the left
plot are a number of test elements: inliers are represented as blue
squares, whether outliers are represented as red circles. the learned
functionM, (·) maps said test elements inside Rd. all inliers should
fall inside the topological disc with center � and radius ', whether
anomalies should bemapped outside of said disc. It is possible to assign
an "anomaly score" to each input element, depending on how much
that element is far from the center: elements closer to the boundary are
"more anomalous" than elements closer to the center �. 69

6.1 Some instances extracted from the class “chair” of Modelnet40. In par-
ticular, we are showing point clouds sampled from the mesh contained
in said dataset, as explained in section 6.2.3. 80

6.2 Some shapes extracted from the class “airplanes” of ShapenetCore. As
can be observed, this definiton of “airplane” also includes spaceships
from videogames or other media products, helicopters, drones and even
a shape representing the collision between two airplanes in the 1990
Wayne County Airport accident [1]. 82

115

LIST OF FIGURES

6.3 Image from [12] representing the result of a semantic segmentation
experiment over a scene represented by a 3D point cloud extracted via
LiDAR. It is possible to see how the elements closer to the observer,
here at the origin of the reference frame, occlude objects behind them. 83

6.4 The chosen neural network architecture, very similar to the one em-
ployed in [4] by Convpoint. Each convolutional layer is labeled with
a 3-uple (|%� |, |%$ |, W) where |%� | is the number of input points, |%$ |
is the number of output points, W is the number of output features pro-
duced by the layer. On the other hand, we label |- | the number of
neighbouring points considered in each layer. 84

6.5 Overall Accuracy over the Test Set of ModelNet40, plotted per epoch
of training. 93

6.6 Confusion matrix for layer L4.1 in modelNet40, represented as heat-
map. Given the high number of classes, class labels are omitted. Each
row is normalized such that it sums up to 1. 95

6.7 Comparison between some instances of the class “flower_pot” (top)
and of the class “plant” (bottom) of ModelNet40. 96

6.8 Overall Accuracy over the Test Set of ModelNet40, plotted per epoch
of training. In this plot only the first 25 epochs are reported. KpConv
has a convergence time way higher than 30 epochs and for this reason
is omitted. 96

6.9 Convpoint’s Confusionmatrix over ShapeNetCore, represented as heat-
map. Given the high number of classes, class labels are omitted. Each
row is normalized such that it sums up to 1. 98

6.10 Layer L3.1 Confusion matrix over ShapeNetCore, represented as heat-
map. Given the high number of classes, class labels are omitted. Each
row is normalized such that it sums up to 1. 100

6.11 Layer L4.1 Confusion matrix over ShapeNetCore, represented as heat-
map. Given the high number of classes, class labels are omitted. Each
row is normalized such that it sums up to 1. 100

116

LIST OF FIGURES

6.12 Our neural network architecture for OC classification, very similar to
the one employed in supervised multiclass classification. Each convo-
lutional layer is labeled with a 3-uple (|%� |, |%$ |, W) where |%� | is the
number of input points, |%$ | is the number of output points, W is the
number of output features produced by the layer. On the other hand,
we label |- | the number of neighbouring points considered in each layer.101

6.13 An example of ROC curve, produced by our model LOC.2 over the
class “Sofa”. In the image is also indicated the Area under the ROC
curve. 105

6.14 Some shapes extracted from the class “clocks” of ShapenetCore. . . . 106
6.15 Some shapes extracted from the class “microphones” of ShapenetCore. 107
6.16 ROC curve of LOC.1 (left) and LOC.2 (right) over class “Bowl”. The

red line indicates random guesser performances. Ticks on the axes are
omitted to improve readability. 109

6.17 ROC curve of LOC.1 (left) and LOC.2 (right) over class “Airplane”.
The red line indicates random guesser performances. Ticks on the axes
are omitted to improve readability. 110

117

List of Tables

6.1 Modelnet40: classes and instance distribution 79
6.2 Shapenet Core: classes and instance distribution 81
6.3 Layers tested in Experiment 1, about the robustness to variation of the

spatial descriptors dimensionality. 89
6.4 Results of Experiment 1 over ModelNet40, about the robustness to

variation of the spatial descriptors dimensionality. 90
6.5 Layers tested in Experiment 2. 91
6.6 Results of Experiment 2 over ModelNet40, about the non-linearity

between spatial and semantic layers. 91
6.7 Layers tested in Experiment 3. 91
6.8 Results of Experiment 3 overModelNet40, about the impact of learning

the radial basis function in a RBFN. 92
6.9 Layers tested in Experiment 4, about the performances of the aggregate

semantic layer. 93
6.10 Results of Experiment 4 over ModelNet40, about the performances of

the aggregate semantic layer. 94
6.11 Performances overModelNet40 of some of the previously definedCom-

posite Layers, compared with the other state of the art models. 94
6.12 Performances over ShapeNetCore of some of the previously defined

Composite Layers, compared with the other state of the art models. . . 97
6.13 Classes used as training sets for One-Class classification experiments. 104
6.14 Layers tested in One-Class classification experiments. 106

118

LIST OF TABLES

6.15 Comparison in terms of Average AUC and standard deviation (over
10 experiments) of layers LOC.1 (having a linear semantic layer) and
LOC.2 (having an aggregate semantic layer). We show AUC in per-
centages to enhance the readability of the standard deviations. 108

119

Bibliography

[1] 3D model from here: https : / / 3dwarehouse . sketchup . com / model /
541ad6a69f87b134f4c1adce71073351/Northwest-DC9B727-collision.
Accessed: 2020-03-05.

[2] Matan Atzmon, Haggai Maron, and Yaron Lipman. “Point Convolutional Neural
Networks by Extension Operators”. In: ACM Trans. Graph. 37.4 (July 2018).
issn: 0730-0301. url: https://doi.org/10.1145/3197517.3201301.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[4] Alexandre Boulch. “ConvPoint: Continuous convolutions for point cloud pro-
cessing”. In: Computers and Graphics 88 (2020), pp. 24–34. issn: 0097-8493.
doi: https://doi.org/10.1016/j.cag.2020.02.005. url: http://www.
sciencedirect.com/science/article/pii/S0097849320300224.

[5] D.S. Broomhead and D. Lowe. “Multivariable Functional Interpolation and
Adaptive Networks”. In: Complex Systems 2 (1988), pp. 321–355.

[6] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection:
A Survey”. In: ACM Comput. Surv. 41.3 (July 2009). issn: 0360-0300. doi:
10.1145/1541880.1541882. url: https://doi.org/10.1145/1541880.
1541882.

[7] Angel X. Chang et al. ShapeNet: An Information-Rich 3D Model Repository.
cite arxiv:1512.03012. 2015. url: http://arxiv.org/abs/1512.03012.

[8] Weikai Chen et al. Deep RBFNet: Point Cloud Feature Learning using Radial
Basis Functions. 2019. arXiv: 1812.04302 [cs.CV].

120

https://3dwarehouse.sketchup.com/model/541ad6a69f87b134f4c1adce71073351/Northwest-DC9B727-collision
https://3dwarehouse.sketchup.com/model/541ad6a69f87b134f4c1adce71073351/Northwest-DC9B727-collision
https://doi.org/10.1145/3197517.3201301
https://doi.org/https://doi.org/10.1016/j.cag.2020.02.005
http://www.sciencedirect.com/science/article/pii/S0097849320300224
http://www.sciencedirect.com/science/article/pii/S0097849320300224
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
http://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1812.04302

BIBLIOGRAPHY

[9] J. Dai et al. “Deformable Convolutional Networks”. In: 2017 IEEE International
Conference on Computer Vision (ICCV). 2017, pp. 764–773. doi: 10.1109/
ICCV.2017.89.

[10] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering”. In: Pro-
ceedings of the 30th International Conference on Neural Information Processing
Systems. NIPS’16. Barcelona, Spain: Curran Associates Inc., 2016, pp. 3844–
3852. isbn: 9781510838819.

[11] M. Deuge et al. “Unsupervised feature learning for classification of outdoor 3D
Scans”. In: Australasian Conference on Robotics and Automation, ACRA (Jan.
2013).

[12] A. Dewan, G. L. Oliveira, and W. Burgard. “Deep semantic classification for
3D LiDAR data”. In: 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2017, pp. 3544–3549. doi: 10.1109/IROS.2017.
8206198.

[13] Thomas Fabry, Dirk Smeets, and Dirk Vandermeulen. “Surface representations
for 3D face recognition”. In: Apr. 2010. isbn: 978-953-307-060-5. doi: 10.
5772/8951.

[14] Matthias Fey et al. SplineCNN: Fast Geometric Deep Learning with Continuous
B-Spline Kernels. 2018. arXiv: 1711.08920 [cs.CV].

[15] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier
Neural Networks.” In: AISTATS. Ed. by Geoffrey J. Gordon, David B. Dunson,
and Miroslav Dudík. Vol. 15. JMLR Proceedings. JMLR.org, 2011, pp. 315–
323. url: http://dblp.uni-trier.de/db/journals/jmlr/jmlrp15.
html#GlorotBB11.

[16] J. B. Gomm and D. L. Yu. “Selecting radial basis function network centers with
recursive orthogonal least squares training”. In: IEEE Transactions on Neural
Networks 11.2 (2000), pp. 306–314. doi: 10.1109/72.839002.

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[18] Ben Graham. “Sparse 3D convolutional neural networks”. In: (2015). arXiv:
1505.02890 [cs.CV].

121

https://doi.org/10.1109/ICCV.2017.89
https://doi.org/10.1109/ICCV.2017.89
https://doi.org/10.1109/IROS.2017.8206198
https://doi.org/10.1109/IROS.2017.8206198
https://doi.org/10.5772/8951
https://doi.org/10.5772/8951
https://arxiv.org/abs/1711.08920
http://dblp.uni-trier.de/db/journals/jmlr/jmlrp15.html#GlorotBB11
http://dblp.uni-trier.de/db/journals/jmlr/jmlrp15.html#GlorotBB11
https://doi.org/10.1109/72.839002
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1505.02890

BIBLIOGRAPHY

[19] Yulan Guo et al. “Deep Learning for 3D Point Clouds: A Survey”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence (2019).

[20] David J. Hand and Robert J. Till. “A Simple Generalisation of the Area Under the
ROC Curve for Multiple Class Classification Problems”. In: Mach. Learn. 45.2
(Oct. 2001), pp. 171–186. issn: 0885-6125. doi: 10.1023/A:1010920819831.
url: https://doi.org/10.1023/A:1010920819831.

[21] Pedro Hermosilla, Tobias Ritschel, and Timo Ropinski. “Total Denoising: Un-
supervised Learning of 3D Point Cloud Cleaning”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). Oct. 2019.

[22] A.Kerstens J.-P.Kruth. “Reverse engineering modelling of free-form surfaces
from point clouds subject to boundary conditions”. In: Journal of Materials
Processing Technology 76.1-3 (1998), pp. 120–127. doi: https://doi.org/
10.1016/S0924-0136(97)00341-5.

[23] N. B. Karayiannis. “Reformulated radial basis neural networks trained by gradi-
ent descent”. In: IEEE Transactions on Neural Networks 10.3 (1999), pp. 657–
671. doi: 10.1109/72.761725.

[24] R. Klokov and V. Lempitsky. “Escape from Cells: Deep Kd-Networks for the
Recognition of 3D Point Cloud Models”. In: 2017 IEEE International Confer-
ence on Computer Vision (ICCV). 2017, pp. 863–872. doi: 10.1109/ICCV.
2017.99.

[25] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. “CIFAR-10 (Canadian In-
stitute for Advanced Research)”. In: (). url: http://www.cs.toronto.edu/
~kriz/cifar.html.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Asso-
ciates, Inc., 2012. url: https://proceedings.neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[27] Yann LeCun and Corinna Cortes. “MNIST handwritten digit database”. In:
(2010). url: http://yann.lecun.com/exdb/mnist/.

[28] Yann Lecun et al. “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE. 1998, pp. 2278–2324.

122

https://doi.org/10.1023/A:1010920819831
https://doi.org/10.1023/A:1010920819831
https://doi.org/https://doi.org/10.1016/S0924-0136(97)00341-5
https://doi.org/https://doi.org/10.1016/S0924-0136(97)00341-5
https://doi.org/10.1109/72.761725
https://doi.org/10.1109/ICCV.2017.99
https://doi.org/10.1109/ICCV.2017.99
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://yann.lecun.com/exdb/mnist/

BIBLIOGRAPHY

[29] Yangyan Li et al. “PointCNN: Convolution On X-Transformed Points”. In: Ad-
vances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31.
Curran Associates, Inc., 2018, pp. 820–830.

[30] Lu Lu. “Dying ReLU and Initialization: Theory and Numerical Examples”.
In: Communications in Computational Physics 28.5 (June 2020), pp. 1671–
1706. issn: 1991-7120. doi: 10.4208/cicp.oa-2020-0165. url: http:
//dx.doi.org/10.4208/cicp.OA-2020-0165.

[31] Martın Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: https:
//www.tensorflow.org/.

[32] George A. Miller. “WordNet: A Lexical Database for English”. In: Commun.
ACM 38.11 (Nov. 1995), pp. 39–41. issn: 0001-0782. doi: 10.1145/219717.
219748. url: https://doi.org/10.1145/219717.219748.

[33] Tom Mitchell. Machine Learning. http://www.cs.cmu.edu/afs/cs.cmu.
edu/user/mitchell/ftp/mlbook.html. McGraw Hill, 1997.

[34] Carsten Moenning and Neil A. Dodgson. “Fast Marching farthest point sam-
pling”. In: Eurographics 2003 - Posters. Eurographics Association, 2003. doi:
10.2312/egp.20031024.

[35] Tien Nguyen, Gu Xi, and Liu X.G. “Analysis Of Error Sources In Terrestrial
Laser Scanning”. In: Joint ISPRS Workshop on 3D City Modelling and Applica-
tions and the 6th 3D GeoInfo, 3DCMA 2011 (Jan. 2011).

[36] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035. url:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-

style-high-performance-deep-learning-library.pdf.

[37] Charles R Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation”. In: arXiv preprint arXiv:1612.00593 (2016).

[38] Charles R Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point
Sets in a Metric Space”. In: arXiv preprint arXiv:1706.02413 (2017).

[39] Y. Regaya, F. Fadli, and A. Amira. “3D Point Cloud Enhancement using Un-
supervised Anomaly Detection”. In: 2019 International Symposium on Systems
Engineering (ISSE). 2019, pp. 1–6. doi: 10.1109/ISSE46696.2019.8984428.

123

https://doi.org/10.4208/cicp.oa-2020-0165
http://dx.doi.org/10.4208/cicp.OA-2020-0165
http://dx.doi.org/10.4208/cicp.OA-2020-0165
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html
https://doi.org/10.2312/egp.20031024
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/ISSE46696.2019.8984428

BIBLIOGRAPHY

[40] G. Riegler, A. O. Ulusoy, and A. Geiger. “OctNet: Learning Deep 3D Repre-
sentations at High Resolutions”. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2017, pp. 6620–6629. doi: 10.1109/CVPR.
2017.701.

[41] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. “The Earth Mover’s Dis-
tance as a Metric for Image Retrieval”. In: International Journal of Computer
Vision 40.2 (Nov. 2000), pp. 99–121. issn: 1573-1405. doi: 10.1023/ A:
1026543900054. url: https://doi.org/10.1023/A:1026543900054.

[42] Lukas Ruff et al. “Deep One-Class Classification”. In: Proceedings of the 35th
International Conference on Machine Learning 80 (2018), pp. 4393–4402.

[43] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. “Dynamic Routing be-
tween Capsules”. In:Proceedings of the 31st International Conference on Neural
Information Processing Systems. NIPS’17. Red Hook, NY, USA: Curran Asso-
ciates Inc., 2017, pp. 3859–3869. isbn: 9781510860964.

[44] Manolis Savva, Angel X. Chang, and Pat Hanrahan. “Semantically-Enriched 3D
Models for Common-sense Knowledge”. In: CVPR 2015 Workshop on Func-
tionality, Physics, Intentionality and Causality (2015).

[45] B. Schölkopf et al. Estimating the support of a high-dimensional distribution.
Tech. rep. MSR-TR-99-87. Microsoft Research, 1999.

[46] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition”. In: CoRR abs/1409.1556 (2014). url:
http://arxiv.org/abs/1409.1556.

[47] H. Su et al. “Multi-view Convolutional Neural Networks for 3D Shape Recog-
nition”. In: 2015 IEEE International Conference on Computer Vision (ICCV).
2015, pp. 945–953. doi: 10.1109/ICCV.2015.114.

[48] An Tao. Point Cloud Datasets. url: https : / / github . com / AnTao97 /
PointCloudDatasets.

[49] David M.J. Tax and Robert P.W. Duin. “Support Vector Data Description”. In:
Machine Learning 54.1 (Jan. 2004), pp. 45–66. issn: 1573-0565. doi: 10.1023/
B:MACH.0000008084.60811.49. url: https://doi.org/10.1023/B:
MACH.0000008084.60811.49.

124

https://doi.org/10.1109/CVPR.2017.701
https://doi.org/10.1109/CVPR.2017.701
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1023/A:1026543900054
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/ICCV.2015.114
https://github.com/AnTao97/PointCloudDatasets
https://github.com/AnTao97/PointCloudDatasets
https://doi.org/10.1023/B:MACH.0000008084.60811.49
https://doi.org/10.1023/B:MACH.0000008084.60811.49
https://doi.org/10.1023/B:MACH.0000008084.60811.49
https://doi.org/10.1023/B:MACH.0000008084.60811.49

BIBLIOGRAPHY

[50] Simone Teruggi et al. “A Hierarchical Machine Learning Approach for Multi-
Level and Multi-Resolution 3D Point Cloud Classification”. In: Remote Sensing
12 (Aug. 2020), p. 2598. doi: 10.3390/rs12162598.

[51] Hugues Thomas et al. “KPConv: Flexible and Deformable Convolution for Point
Clouds”. In: Proceedings of the IEEE International Conference on Computer
Vision (2019).

[52] MikaelaAngelinaUy et al. “Revisiting PointCloudClassification:ANewBench-
mark Dataset and Classification Model on Real-World Data”. In: International
Conference on Computer Vision (ICCV). 2019.

[53] S. Wang et al. “Deep Parametric Continuous Convolutional Neural Networks”.
In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2018, pp. 2589–2597. doi: 10.1109/CVPR.2018.00274.

[54] K. Warwick, J. D. Mason, and E. L. Sutanto. “Neural network basis function
center selection using cluster analysis”. In: Proceedings of 1995 American Con-
trol Conference - ACC’95. Vol. 5. 1995, 3780–3781 vol.5. doi: 10.1109/ACC.
1995.533845.

[55] Zhirong Wu et al. “3d shapenets: A deep representation for volumetric shapes”.
In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2015, pp. 1912–1920.

[56] Yifan Xu et al. “SpiderCNN: Deep Learning on Point Sets with Parameterized
Convolutional Filters”. In: Computer Vision – ECCV 2018. Ed. by Vittorio
Ferrari et al. Cham: Springer International Publishing, 2018, pp. 90–105. isbn:
978-3-030-01237-3.

[57] J. Yang et al. “Modeling Point Clouds With Self-Attention and Gumbel Subset
Sampling”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer Society, June
2019, pp. 3318–3327. doi: 10.1109/CVPR.2019.00344. url: https://doi.
ieeecomputersociety.org/10.1109/CVPR.2019.00344.

[58] Y. Yang et al. “FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deforma-
tion”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2018, pp. 206–215. doi: 10.1109/CVPR.2018.00029.

[59] Li Yi et al. “A Scalable Active Framework for Region Annotation in 3D Shape
Collections”. In: SIGGRAPH Asia (2016).

125

https://doi.org/10.3390/rs12162598
https://doi.org/10.1109/CVPR.2018.00274
https://doi.org/10.1109/ACC.1995.533845
https://doi.org/10.1109/ACC.1995.533845
https://doi.org/10.1109/CVPR.2019.00344
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00344
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00344
https://doi.org/10.1109/CVPR.2018.00029

BIBLIOGRAPHY

[60] Biaobiao Zhang Yue Wu Hui Wang and K.-L. Du. “Using Radial Basis Func-
tion Networks for Function Approximation and Classification”. In: International
Scholarly Research Notices 2012 (2012), p. 34. doi: https://doi.org/10.
5402/2012/324194.

[61] Manzil Zaheer et al. “Deep Sets”. In:Advances in Neural Information Processing
Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017, pp. 3391–
3401. url: https://proceedings.neurips.cc/paper/2017/file/
f22e4747da1aa27e363d86d40ff442fe-Paper.pdf.

[62] Maciej Zamorski et al. “Adversarial autoencoders for compact representations
of 3D point clouds”. In: Computer Vision and Image Understanding 193 (2020),
p. 102921. issn: 1077-3142. doi: https://doi.org/10.1016/j.cviu.
2020.102921.url:https://www.sciencedirect.com/science/article/
pii/S107731422030014X.

[63] Y. Zhao et al. “3D Point Capsule Networks”. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2019, pp. 1009–1018. doi:
10.1109/CVPR.2019.00110.

[64] Yong Zhou et al. “Voxelization modelling based finite element simulation and
process parameter optimization for Fused Filament Fabrication”. In: Materials
and Design 187 (2020), p. 108409. issn: 0264-1275. doi: https://doi.org/
10.1016/j.matdes.2019.108409. url: https://www.sciencedirect.
com/science/article/pii/S0264127519308470.

126

https://doi.org/https://doi.org/10.5402/2012/324194
https://doi.org/https://doi.org/10.5402/2012/324194
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.cviu.2020.102921
https://doi.org/https://doi.org/10.1016/j.cviu.2020.102921
https://www.sciencedirect.com/science/article/pii/S107731422030014X
https://www.sciencedirect.com/science/article/pii/S107731422030014X
https://doi.org/10.1109/CVPR.2019.00110
https://doi.org/https://doi.org/10.1016/j.matdes.2019.108409
https://doi.org/https://doi.org/10.1016/j.matdes.2019.108409
https://www.sciencedirect.com/science/article/pii/S0264127519308470
https://www.sciencedirect.com/science/article/pii/S0264127519308470

	Sommario
	Abstract
	Introduction
	Document structure

	Background
	Introduction to Machine Learning
	Machine Learning as Data Driven AI
	Supervised and unsupervised Learning
	Machine Learning and Deep Learning

	A brief recall of Image Convolution
	Introduction to Point clouds

	State of the art
	Radial Basis Function Networks
	Introduction
	Neural network Architecture
	Choice of Radial Basis Function
	Choice of RBF centers

	Properties of ML algorithms on point clouds
	Early approaches to deep learning with 3D data
	Supervised models for point clouds
	Pointnet and Point-wise MLP methods
	Convolution based methods
	Graph based methods
	Other methods

	Anomaly Detection and Point Clouds
	Point Cloud Autoencoders
	Denoising and OC classification for point clouds

	Point Convolution: some examples
	Point CNNs by Extension Operators
	Convolutional layer's input and output
	Convolutional layer's structure
	Extension
	Convolution
	Reduction

	Kernel Point Convolution
	Key components of KP convolution
	Defining the Neighbourhood
	Defining the Kernel
	Defining the output
	Rigid or deformable kernels

	Convpoint
	Neighbourhood definition
	Kernel definition
	Separating spatial and semantic structure

	Proposed Approach
	Problem formulation
	Input and Output definition
	Convolutional Operator definition
	Output point set construction
	Other requirements and constraints

	Proposed convolutional Layer
	A composite convolutional layer
	Proposed Spatial layers
	Proposed Semantic Sublayers
	Composite Layer's properties and advantages

	Deep SVDD for OC classification
	Problem setting
	Learning the map function
	Network requirements
	Advantages

	Composite convolution in Deep SVDD
	Properties of Deep SVDD
	An alternative semantic layer

	Benchmarking and Experiments
	Datasets for 3D Deep Learning
	ModelNet40
	ShapeNet
	Other relevant datasets

	3D Shape Classification
	Neural Network Architecture
	Baselines and comparable Methods
	Data preprocessing
	Evaluation metrics
	Experiments and results

	One-Class Classification
	Architecture and hyper-parameters
	Dataset and Data preprocessing
	Evaluation metrics
	Experiments And results

	Conclusions
	List of Figures
	List of Tables
	Bibliography

