
Relative motion control of cluster
formation in a geostationary orbit
with the J22 perturbation

Tesi di Laurea Magistrale in
Space Engineering - Ingegneria Spaziale

Author: Luca Rizzieri

Student ID: 945691
Advisor: Prof. Camilla Colombo
Co-advisors: Francesca Scala
Academic Year: 2020-21



A chi avrebbe voluto essere qui
ed è comunque presente



Copyright© April 2022 by Luca Rizzieri.
All rights reserved.

This content is original, written by the Author, Luca Rizzieri. All the non-originals
information, taken from previous works, are specified and recorded in the Bibliography.

When referring to this work, full bibliographic details must be given:

Rizzieri Luca, “Relative motion control of cluster formation in a geosynchronous orbit with
the J22 perturbation”. 2022, Politecnico di Milano, Faculty of Industrial Engineering,
Master in Space Engineering, Supervisor: Camilla Colombo, Co-supervisor: Francesca
Scala.

Printed in Italy.





i

Abstract

Formation flying reaches out to the latest demands of the up-to-date space industry. It
allows meeting the urge for sustainability, both economically, reducing the costs, and
environmentally, providing tools for monitoring and removing space debris. The constant
cut of volumes and masses, due to the technology miniaturisation process, opens up to
new applications in different fields: from communication to Earth observation. That is
why, in the present day, satellite constellations are a crucial topic in the space debate.

In particular, remote sensing missions can particularly benefit from formation of satel-
lites bringing a distributed payload. By forming a specific geometry and by keeping it
tight, a higher aperture can be obtained. In this way, it is possible to enhance the spatial
resolution needed for scientific imaging without using a massive spacecraft. One of the lat-
est development consists of multi-satellite passive microwave interferometric radiometry.
Synthetic Aperture Radiometry allows obtaining excellent results in Earth Observation.
Further development is to increase the time resolution and the only way is by increasing
orbit altitude. For example, exploiting geostationary orbit.

The ensemble of all these characteristics outlines the limits of the case studied in this
Thesis: a remote sensing mission of satellites flying in formation in a geosynchronous
equatorial orbit. A multi-satellite configuration will grant the requirements needed for
scientific instrumentation in terms of resolution. The presented work provides precise
modelling of the relative motion control. A new State Transition Matrix is introduced to
include the effect due to the non-spherically symmetry of Earth’s mass distribution up
to J22 in an analytical model. The accounted perturbation acts on the satellites making
their orbit and consequently the formation change. On one hand, the relative position has
to be kept as rigid as possible for granting the spatial resolution of the imaging system,
at the same time the satellites must remain in their longitudinal slot.
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Employing the mean Relative Orbital Elements, the system dynamics can be linearised.
This allows the design and verification of autonomous relative guidance navigation based
on Linear Quadratic Regulators. The implemented control algorithm, using continuous
feedback, effectively achieves the performance required by satellite constellation mainte-
nance. Cold gas and electric thrusters are eligible to perform the control action needed.

The objective of this research is to analyse a remote sensing mission in a geostationary
orbit exploiting a distributed payload. The dynamic model aims at matching the accuracy
of the high-fidelity simulation and due to State Transition Matrix, well known for its
computational efficiency, the hardware effort is reduced. The closed-loop control provides
the centimetres to meters accuracy expected for this mission. The simulation carried out
shows how optimal low-thrust control minimises the formation-keeping ∆v. Finally, the
present work opens up to future studies aiming at implementing this technology on a real
mission. For instance, the perturbations due to third bodies can be taken into account
superposing the effects. Moreover, an investigation on satellites’ attitude for power budget
purposes can be implemented.

This thesis is part of the COMPASS project: “Control for orbit manoeuvring by surfing
through orbit perturbations” (Grant agreement No 679086).
This project is European Research Council (ERC) funded project under the European
Union’s Horizon 2020 research (www.compass.polimi.it).

Keywords: Formation flying, Earth Observation, low thrust control, GEO, Relative
dynamics
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Sommario

Il volo in formazione va incontro alle ultime necessità dell’industria dello spazio del giorno
d’oggi. Permette di soddisfare la corsa alla sostenibilità, tanto economica come ambien-
tale. Il continuo taglio ai volumi e alle masse, dovuto al continuo processo di miniaturiz-
zazione, apre a nuove applicazioni in diversi campi: dalla comunicazione all’osservazione
terrestre. Questo è il motivo per cui attualmente le costellazioni di satelliti sono al centro
del dibattito della comunità dello spazio.

In particolare, missioni di telerilevamento possono particolarmente trarre vantaggio da
formazioni di satelliti che trasportano un carico pagante distribuito. Formando geometrie
specifiche e mantenendole rigide, si possono ottenere aperture maggiori. In questo modo,
è possibile migliorare la risoluzione spaziale di cui la strumentazione ha bisogno, senza uti-
lizzare satelliti di grandi dimensioni. Uno degli ultimi sviluppi consiste nella radiometria
con microonde sfruttando l’interferometria tra più satelliti. La cosiddetta Radiometria ad
Apertura Sintetica permette di ottenere risultati eccellenti per l’osservazione della Terra.
Lo sviluppo futuro è legato all’aumento della risoluzione temporale e questo può solo essere
ottenuto aumentando l’altitudine dell’orbita. Per esempio in orbita Geostazionaria.

L’insieme di tutte queste caratteristiche, delinea i confini del caso studiato in questa
Tesi: una missione di telerilevamento di satelliti che volano in formazione in un orbita
equatoriale Geosincrona. Una configurazione con più satelliti assicurerà il rispetto dei
requisiti necessari alla strumentazione scientifica in termini di risoluzione. Il lavoro qui
presentato fornisce una modellizzazione precisa del controllo del movimento relativo. Una
nuova Matrice di Transizione dello Stato viene introdotta per includere l’effetto dovuto alla
non simmetria sferica della distribuzione della massa terrestre, fino a J22, in un modello
analitico. La perturbazione presa in esame agisce sui satelliti facendo cambiare la loro
orbita e la formazione stessa. Da una parte, la posizione relativa deve essere mantenuta
più fissa possibile per garantire la risoluzione delle immagini, dall’altra i satelliti devono
rimanere nel loro slot longitudinale.



Per mezzo degli elementi relativi medi, la dinamica del sistema può essere linearizzata.
Questo permette di progettare e verificare un controllo relativo autonomo della nav-
igazione basato su Regolatori Lineari Quadratici. L’algoritmo di controllo implementato,
utilizzando una retroazione continua, raggiunge efficacemente le prestazioni richieste dal
mantenimento della costellazione di satelliti. Attuatori elettrici e a gas freddi sono se-
lezionabili per sviluppare l’azione di controllo necessaria.

L’obiettivo di questa ricerca è quello di analizzare una missione di telerilevamento in orbita
Geostazionaria sfruttando un carico pagante distribuito. Il modello dinamico punta ad
eguagliare l’accuratezza dei simulatori ad alta fedeltà e grazie alla Matrice di Transizione
dello Stato, nota per la sua efficienza computazionale, ridurre lo sforzo di hardware.
Il controllo ad anello assicura l’accuratezza dell’ordine dai centimetri ai metri prevista
per questo tipo di missione. La simulazione ottenuta mostra come il controllo ottimo a
spinta bassa minimizza il ∆v dovuto al mantenimento della formazione. Infine, il lavoro
presentato apre la strada a futuri studi concentrati a rendere questa tecnologia valida per
una vera missione. Per esempio, altre perturbazioni dovute a terzi corpi possono essere
prese in considerazione ed aggiunte al modello super-ponendo gli effetti. Inoltre, un’analisi
sull’orientamento dei satelliti può essere aggiunto ai fini della gestione del bilancio di
potenza.

Questa tesi è parte del progetto COMPASS: "Control for orbit manoeuvring by surfing
through orbit perturbation" (Sovvenzione No 679086).
Questo progetto è finanziato dal Consiglio Europeo della Ricerca (ERC) nell’ambito della
ricerca dell’Unione Europea Horizon 2020 (www.compass.polimi.it).

Parole chiave: Volo in Formazione, Osservazione della Terra, Controllo con bassa spinta,
GEO, Dinamica Relativa
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1| Introduction

At the time being, systems such as Global Positioning System (GPS) or Galileo, are
part of everyday life. These services have brought numerous benefits to any day to day
activity and now are taken for granted. Their implementation has been the first example
of satellites flying in a designed formation working together for a shared goal [1]. This
has marked the beginning of Satellites Constellations and Formation Flight (FF).

Over the years, different fields have exploited multiple satellites operating in formation, to
benefit from the promising outcomes arising [2]. Unavoidably, each application requires
specific solutions that, in their turn, lead to new implementations. For example, naviga-
tion and communication purposes use constellation formations of satellites, while trailing
or cluster formations are more often adopted for remote sensing. In the first configuration,
satellites are deployed to reach the optimal ground coverage. On the other hand, a com-
pletely different logic is behind trailing formation. In this case, the satellites are released
on the same orbit chasing each other. Used mainly for meteorological and environmental
purposes, the interval between two passages on the same path gives back an evolution in
time [3]. Finally, cluster formations are tight configurations of many satellites that allow
performing high-resolution interferometry even in space.

With the advent of CubeSats, made possible by the progressive miniaturisation of most
components needed, the development timescales are reduced, the launch logistics became
easier and the costs associated less expensive. These factors allow the implementation of
distributed payload missions. Missions based on larger satellites are now more and more
replaced by multiple satellites configurations providing the same services. Moreover, the
unstoppable evolution of technology opens up new opportunities for exploiting formation
flying and for some upcoming problems it can be seen as part of the solution.

This does not mean that single large spacecraft will be abandoned. Currently, the James
Webb Space Telescope (JWST) has reached the Lagrange equilibrium point L2 and it is
performing calibration of its instrumentation. With its 6.6 m diameter mirror, JWST is
the biggest ever launched and aims to observe far beyond the possibility of its predecessor:
Hubble Space Telescope (HST) [4]. But clusters of micro- or nano-spacecraft have another
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target: enabling capabilities in terms of time and spatial resolution that would not be
achievable by single large spacecraft. The potentially huge impact of the latter cited
technology on Earth and Space observation is the reason for the extensive effort in research
on this field, in which this work would like to give a small contribution.

The aim of the Thesis, presented from here on, is to enhance the precise relative motion in
a Geosynchronous Earth Orbit (GEO). First, the dynamics of the satellite is developed,
taking into account Geodetic effects. Earth gravitational field, model as a potential,
up to J22 perturbation. Then, implementing an effective control to comply with the
requirements imposed by the scientific payload.

1.1. Economic considerations

The GEO is a special case of the Geosynchronous Orbits (GSO). The main feature is
that the orbit period of the satellite matches exactly the sidereal day. In other words, the
spacecraft completes a revolution around the Earth at the same time as Earth’s rotation
on its axis. By definition, a GSO lays on the equatorial axis and the peculiarity of the
GEO is to be a circular GSO. If not perturbed, the ground track of that satellite is a point,
which means that for an observer on Earth’s surface the position in the sky remains the
same. This characteristic is extremely crucial, most of all for communication purposes.

Nowadays, due to GEO advantages, more than 570 satellites are listed in that orbit. As
of January 2022, according to UCS Satellite Database [5]. All those spacecraft are spread
along the equator line at different longitudes from East to West. The traffic in this zone is
regulated. Longitudinal slots constrain each spacecraft and station-keeping is performed
to allow the satellite to stay in the slot without being driven out by perturbations. Never-
theless, the space is not "infinite", at least in that region. Consequently, to maximise the
effective use of a certain longitudinal position, some concepts include multiple satellites
accommodation in the same slot. The resulting benefits are exploited in different fields:
from telecommunications to weather and from navigation to remote sensing.

Performing Earth or deep space observation from GEO orbit is extremely demanding.
Autonomous inter-satellite control and collision avoidance functions will be needed. On
the other hand, a fleet of smaller spacecraft can provide a communication network that
can be tailored for different demands. Spacecraft formation flying has been proposed
for various applications such as optical interferometry for imaging. Moreover, massive
communications satellites can be used as a Chief in a cluster formation. Potentially, the
overall cost of a GEO mission can also be reduced. Sharing the same longitudinal slot
(and therefore the same frequency for communication) can decrease the leasing fee.
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1.2. State of the art

Both the fields of precision satellite formation flight and interferometric microwave ra-
diometry are undergoing rapid growth. This section presents some of the key missions
and future concepts representing the current state of the art.

Magnetospheric Multi-scale (MMS) is a NASA mission, launched in 2015, to study
how the Sun’s and Earth’s magnetic fields connect and disconnect. On the heels of ESA
Cluster II mission investigating the Earth’s magnetic field in the early 2000s, this mission
falls in the space weather research area. This phenomenon affects modern technological
systems such as telecommunications networks, GPS navigation, and electrical power grids.
An adjustable pyramid-like formation of 4 identically instrumented spacecraft enables the
three-dimensional observation of plasma, fields and particles in a near-equatorial orbit.
This mission has proven that high resolution, both spatial and temporal, is achievable by
maintaining a regular tetrahedral formation [6].

Figure 1.1: MMS formation as a science instrument concept [7].

Project for On-Board Autonomy (PROBA-3) is the latest spacecraft in the pro-
gram. With this mission, the ESA aims at demonstrating the technologies required for the
formation flying of multiple spacecraft in the fields of space science, Earth Observation
and surveillance. The concept includes 2 spacecraft, released in Highly-elliptical Earth
Orbit (HEO), close to one another flying in formation with accurate control of the rela-
tive position. Moreover, with the launch planned for 2023, this mission will validate new
techniques and technologies developed for relative motion throughout a series of precise
manoeuvres. At the same time, after proving that the Technology Readiness level is at its
latest step (TRL-9), this constellation will contribute to the improvement of the required
tools, such as simulators. The tight formation, spaced about 100 m, will incorporate a
6-DOF control with an accuracy on the relative position of less than 1 mm [8].
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Figure 1.2: PROBA-3’s pair of satellites [9].

Moreover, a scientific payload will be flown. Studies about Sun composition will be carried
out. Exploiting the spacecraft’s position, one of them will exactly cover the solar disc from
the coronagraph spacecraft’s instrument vision. In this way, Sun’s corona can be observed
with unprecedented clarity.

HelioSwarm is a NASA MidEx mission comprised of 9 spacecraft selected for launch
in 2028. Designed to study the plasma and magnetic fields that compose solar wind
and its effect on the solar system and the universe. It represents a new step for multi-
satellite missions, a cluster formation made up of one Chief and eight Deputies satellites, to
measure at multiple scales simultaneously [10]. The flight dynamics of the nine spacecraft
requires onboard propulsion that grants the ideal inter-spacecraft separation. The optimal
geometry to enable the application is established by analysing different models accounting
for turbulence due to the lunar resonant Earth orbit.

Figure 1.3: HelioSwarm cluster formation [11].
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All these missions require a precise formulation for the relative dynamics of multi-satellite
formations. The main field of research is the implementation of a model which could better
represent the environment, especially for Low Earth Orbit (LEO). The main perturbations
to be modelled at low altitudes are the Earth’s oblateness and the drag. To accomplish
the task several configurations have been proposed, starting from the set of coordinates.
In [12], the authors utilise Cartesian coordinates for developing a second-order model for
the relative dynamics perturbed by J2. Using the same frame, a linear model has also been
implemented in [13]. Another approach is the one followed in [14], this time the selected
set is composed by the Relative orbital Elements (ROE) and the model accounts for drag
and Earth’s non-spherical symmetry mass distribution. Also, this latter is a linear model.
The effects of non-conservative forces are embedded in a formulation composed of linear
equations to allow autonomous relative motion determination and control.

After the aforementioned overview of existing formation flying missions, it is also worth
taking a look at the technology required for remote sensing in GEO. Geostationary altitude
needs a larger aperture to achieve the same resolution reached in LEO. At the same time,
costs and volume management drives the design in the opposite direction. A Synthetic
Aperture Radiometers (SAR), exploiting interferometry, utilises a set of smaller antenna
to synthesise a larger one. This technique has already been validated in space. The
LEO NASA mission Soil Moisture and Ocean Salinity (SMOS) was a success [15].
Further development, following on from what learned, was the application in GEO.

Geostationary Atmospheric Sounder (GAS) is the ESA sounder concept for mete-
orology purposes [16]. Laying in a Geostationary orbit, it aims at predicting the evolution
of atmospheric temperature and water vapour for phenomena forecast. Composed of a
single satellite with a Y-shaped array, this spacecraft will host a microwave instrument for
radiometry. The spatial resolution required is about 30 km and the time interval between
two different images is about 15 minutes. Given the distance of geostationary orbit, to
obtain that precision, the large aperture is achieved with SAR. The array configuration
is designed to rotate to reduce the number of antennas. The technical feasibility of this
technology is already been proven and the launch is foreseen for the near future.

Geostationary Interferometric Microwave Sounder (GIMS) is China’s next gen-
eration meteorological sounder. Developed by National Space Science Center, this in-
strument will be launched with the FengYun-4 mission, to predict short-term weather
conditions, in particular tropical cyclones [17]. Its activities of sounding temperature and
humidity will be carried out by the onboard radiometer. The required resolution is satis-
fied both in space with rotating interferometry, as said before, and in time exploiting the
geostationary orbit which should allow 15 minutes resolution as well.
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(a) GAS scientific payload
prototype [18].

(b) GIMS scientific payload mock-up [19].

Figure 1.4: Examples of instruments for geostationary sounder.

1.3. Onboard Instrumentation

Both GAS and GIMS GEO missions are based on the exploitation of radiometry. This
technology measures the natural radiations emitted by a target object. The measurement
collected in brightness temperature, in relation to a black body, is then used to retrieve
other information on the studied object or even on the medium that separates it from the
observer: the atmosphere. The SMOS mission, for instance, throughout this instrumen-
tation recovered data on soil moisture and ocean salinity. It is also possible to observe
the sea and land temperature or ocean wind speed. Moreover, microwave frequencies are
mostly unaffected by weather conditions, the transparency of the cloud across these bands
makes radiometry a very powerful tool for Earth Observation (EO).

A real Aperture Radiometer is a system composed of an antenna and a receiver. The
first one converts the observed radiations into an electrical signal and the latter estimates
the power of the voltage signal. While the receiver determines the radiometric resolution
of a radiometer system, the antenna determines its spatial resolution. Interferometric
radiometry (or SAR), instead, forms images of cross-correlating signals coming from mul-
tiple antennas [20]. Comparing the different voltage signals, the source direction can be
computed and considering the large distances involved, the wave-front is taken as planar.
In this way, the only difference between the two signals is the delay introduced by the
different positions of the antennas in an array, which is designed to achieve a certain
sensibility.
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This length is called baseline and it is proportional to the achievable spatial resolution,
as in Equation (1.1). It is similar to the one obtained by a real aperture with a diameter
of the size of the baseline. Consequently, a physical aperture is synthesised [21].

δx ∝ λ
R

D
. (1.1)

The spatial resolution δx is limited by the diffraction limit λ. Increasing the resolution
means reducing δx. This can be done, as shown in Equation (1.1), either by reducing R, the
distance between source and observer, or increasing D, the aperture diameter. Once the
selected orbit is raised to geostationary altitude, the radiometer is further from the target
and consequently, a larger antenna is required. The physical size of the satellite is a main
constraint in the design, therefore such an aperture may only be synthesised. Another form
of interferometric radiometry is using a fleet of satellites. Different geometries of spacecraft
formations could reproduce a single circular aperture. Close proximity operations, if
opportunely maintained, can synthesise a larger diameter.

Multi-satellite geometries, flying in formation and maintaining their relative position error
below the radiometers wavelength can ensure the coherence needed in the signals in order
to recover information.

This set-up has been investigated by Ahmed Kiyoshi Sugihara El Maghraby in his PhD
dissertation on Microwave Interferometric Radiometry with Satellite Formation Flight for
Earth Observation [21]. In his work, the author carries out a feasibility study of this
technology. His work has been considered a baseline for this Thesis.

1.4. Control techniques for formation flying

Since formation flying dynamics will be described by exploiting ROEs, it will be shown
that the system can be linearised by using mean elements. This opens up to several
methods to design a controller for satellites formations. A Linear Quadratic Regulator
(LQR) is developed to maintain the selected geometry.

In literature, the formation-keeping of satellite constellations has already been studied
[22]. The work by Ulybyshev presents a linear-quadratic controller implementation for
the formation flying of two satellites configuration [23]. It focuses on the maintenance of
the spacecraft’s relative position inside the constellation, while the absolute position is let
to its natural evolution. This approach is effectively realised by exploiting a close-loop
formulation.
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Exploiting continuous formulation, the feedback control law provides the optimal control
action required for minimising the in orbit relative displacements. The same approach
has been followed in [24] to control a leader-follower configuration.

Moreover, optimal control is a suitable solution also for cluster formations with a cen-
tralised Chief satellite. For instance, the subject of [25] is the onboard control for a
distributed system with a main central spacecraft for optical interferometry. The latest
researches, on formation flight control, are now focused on continuous low-thrust control.
The aim is to keep the configuration as rigid as possible and to perform minimum delta-v
manoeuvres. To achieve that goal and to allow onboard guidance, relative orbital elements
are exploited, as in [26].

This dissertation will include an improved perturbation model, specific for GEO, and
onboard inter-satellite control will be investigated to develop a tracking control law for a
larger configuration.

1.5. Scope of the Thesis

This Thesis has the objective of designing a relative motion control of a cluster formation
in GEO with second-order geodetic perturbations.

Starting from those considerations on the scientific payload seen in Section 1.3, the present
study developed from hereafter wishes to provide additional validation in terms of orbital
mechanics and control. The aim is to merge the remote sensing advantages of interfero-
metric radiometer using Formation Flight, with the most recent developments in terms
of relative motion exploiting ROEs. An enhanced analytic dynamic model, perturbed
by geopotential, up to the second-order, representing Earth’s non-spherically symmetric
mass distribution is developed. Then an LQR is introduced to reach the resolution re-
quirements of the instrument embedded onboard to effectively fulfil the sounding mission
in GEO.

The numerical simulation of a test case will provide a realistic scenario, to understand
the behaviour of the spacecraft.
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1.6. Structure of the Thesis

This dissertation goes through five chapters. The Thesis structure aims at retracing the
order of the steps that have led to the presented results.

Chapter 2 presents the path followed to derive the dynamic model for the formation flight
of a Chief and a Deputy satellite. Section 2.1 introduces the chosen set of relative orbital
elements and how their analytic evolution is retrieved. Section 2.2 shows the numeri-
cal equation implemented for propagating the Chief’s Keplerian orbital elements, taking
into account geodetic perturbation up to second order. Section 2.3 merges the previous
parts: obtaining a precise simulation of the orbital free evolution of the trajectories of the
satellites in Subsection 2.1.3 and setting up the control matrix in Subsection 2.3.2.

Chapter 3 describes the control logic implemented for the mission. Section 3.1 defines
the control problem and its requirements. In Section 3.2 the control algorithm is imple-
mented, while in Section 3.3 a qualitative analysis of the algorithm’s weighting matrices
is performed. Section 3.4 performs the selection of the thrusters which best fit with the
needed control effort. Finally, Section 3.5 describes how the relative position check is
performed.

Chapter 4 presents the obtained results of a test case simulation. In Section 4.1, the
mission is described and the initial conditions are set up. Section 4.2 shows the validation
of the implemented model with already tested simulators. Finally, Section 4.3 reports all
the plots resulting from the simulations.

Chapter 5, after a summary of the workflow of the study, highlights the objective achieved
with this dissertation. Moreover, some insights and developments are analysed as possible
future works.

This thesis is part of the COMPASS project: “Control for orbit manoeuvring by surfing
through orbit perturbations” (Grant agreement No 679086).
This project is European Research Council (ERC) funded project under the European
Union’s Horizon 2020 research (www.compass.polimi.it).
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2| Relative system dynamics

This chapter provides a precise model of the orbital mechanics for Geostationary satellites.
Starting from a review of the latest works in the relative motion prediction between two
satellites (a Chief and a Deputy), the following sections try to fill the lack of a specific
formulation for GEO. The majority of the studies about Formation Flying focus on LEO,
where most applications are deployed [27, 28]. Thus, the researchers have focused mainly
on finding a valid model for the drag and the first-order geodetic perturbations, the
ones that affect most low orbits. However, when larger altitudes or particular values of
eccentricity or inclination come into play, those models are not always applicable.

Hereafter relative orbital elements are introduced as selected parameters for the relative
motion description, along with their derivation. Then, their relative dynamics are re-
trieved after having introduced the perturbations due to J22. The numerical method used
to obtain keplerian orbital parameters required for the ROE evolution is described. At
the end of this chapter, the control matrix needed for the inclusion of the thrusters in the
dynamics is derived.

2.1. Relative motion

2.1.1. Relative orbital elements

First of all, a relative state is defined. The set selection aims at fulfilling two drivers: the
singularities present in GEO and the need to maintain a physical meaning in the state
formulation. The quasi-nonsingular ROEs are defined in Equation (2.1)s [29]:

δα =



δa

δλ

δex

δey

δix

δiy


=



∆a/ac

∆u+∆Ωcos (ic)

∆ex

∆ey

∆i

∆Ωsin (ic)


, (2.1)
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where the symbol ∆ represents the subtraction between the Deputy’s and the Chief’s
orbital elements: a, u, ex, ey, i, Ω, which corresponds to the semi-major axis, eccen-
tricity, inclination, right ascension of the ascending node, and argument of perigee. The
value u represents the mean argument of latitude equal to u = ω + M , being M the
time-dependent mean anomaly. Moreover, for the definition of δα, the modified set of
orbital elements is considered: a, u, ex, ey, i, Ω. The components of the eccentricity
vector are ex = e cos (ω) and ey = e sin (ω). While, considering the orbits of Chief and
Deputy almost co-planar, the components of the relative inclination simplify as shown.
This assumption is valid for ∆i ≪ 1 and ∆Ω ≪ 1, thus trigonometry can be applied.
Finally, δλ denotes the relative mean longitude between the spacecraft.

The formulation provided for the relative state is referred to a two-satellite configuration.
A reference Chief spacecraft, described by the subscript ◦c and the Deputy one, described
by the subscript ◦d. The evolution of the ROEs shows the relative motion of this latter
with respect to the first one. The Deputy’s position is described by a vector with origin
in Chief’s one and orientation given by a vector triad in the Hill coordinate frame. That
recalls the typical geometric representation of two satellites’ relative motion.

On the other hand, as shown in Equation (2.1), the elements are related to the well-known
Keplerian elements. Those provide the satellite’s position in space and the description of
the orbit geometry [30].

• Semi-major axis, a, accounts for the orbit extension. It is the distance between the
centre of the ellipse and one between the apoapsis or the periapsis;

• Eccentricity, e, describes how much the shape of the orbit differs from a circle. For
close orbits, it is bounded: e = 0, circular orbit, and e = 1 as upper limit;

• Inclination, i, is the angle between the orbital plane and the equatorial plane;

• Right Ascension of the Ascending Node (RAAN ), Ω, is the angle between the orbit
ascending node and the Vernal equinox;

• Argument of periapsis, ω, is the angle between the periapsis and the ascending node;

• True anomaly, θ, express the angular position within the orbit of the satellite, θ = 0

corresponds to the periapsis.
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The last element is not the only formulation for expressing the position of a spacecraft
in its orbit. Eccentric and mean anomalies are expressed relatively in Equation (2.2) and
Equation (2.3).

E = 2arctan

(
tan

(
θ

2

)√
1− e

1 + e

)
(2.2)

M = E − e sin (E) (2.3)

In particular, the mean anomaly enters in Equation (2.1) in the relative mean argument
of longitude δλ. The so-called argument of latitude u = ω+M is the sum of the argument
of the periapsis and mean anomaly.

2.1.2. Hill’s Cartesian to ROEs mapping

The Hill coordinate frame coincides with the more known Local-Vertical Local-Horizon
(LVLH) or Radial-Tangent-Normal (RTN) frame [31]. This happens because the analysis
is focused on the GEO orbits, consequently, the orbit is circular and the transversal axis
coincides with the velocity vector. The frame is non-inertial, a constant rotational rate is
present, which is (again due to circular orbit) the mean motion:

n =

√
µ

a3C
,

where µ is the Earth’s Gravitational coefficient.

In this frame, it is possible to retrieve the relative position in dimensionless coordinates.
The evolution of these coordinates is described by the Hill-Clohessy-Wiltshire equations
(HCW). The equations in Equation (2.4) are the result of a classical derivation obtained
introducing some assumptions:

1. The magnitude of the vector representing relative position is very small in compar-
ison with the Chief’s position vector, ∆r ≪ r.

2. Pure Keplerian motion of the Chief and Deputy spacecraft.

3. Circular orbit for the Chief, ec = 0 [32].
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ẍ− 2nẏ − 3n2x = 0

ÿ + 2nẋ = 0

z̈ + n2z = 0

(2.4)

where x, y and z are the components of the relative position of the previously described
Hill or RTN frame. Their derivation is done with respect to a time interval ∆t. Moreover,
it is worth noticing the decoupling between the x y motion from the z plane. To obtain
the relative position at a generic time instant t from the HCW equations, it is necessary to
numerically integrate them starting from an initial condition X(t = t0) = {x, y, z, ẋ, ẏ, ż}′.
The general closed-form solution is represented in matrix form in equation Equation (2.5).



x(t)

y(t)

z(t)

ẋ(t)

ẏ(t)

ż(t)


=



1 0 − cos (t) − sin (t) 0 0

−3

2
(t− t0) 1 2 sin (t) −2 cos (t) 0 0

0 0 0 0 sin (t) − cos (t)

0 0 sin (t) − cos (t) 0 0

−3

2
0 2 cos (t) 2 sin (t) 0 0

0 0 0 0 cos (t) sin (t)


·



k1

k2

k3

k4

k5

k6


(2.5)

Depending on the chosen initial condition, different integration constants ki are retrieved;
the relation between them is expressed in Equation (2.6).



k1 = 4x0 + 2ẏ0

k2 = x0 − 2ẋ0

k3 = 3x0 + 2ẏ0

k4 = −ẋ0

k5 = ż0

k6 = −z0

(2.6)

The complete set of Cartesian elements is characterised by the fast variation of its ele-
ments. This feature results in significant computational effort when integrating it during
a simulation. Another drawback is the lack of a simple physical interpretation of the rela-
tive motion. To overcome these problems, different approaches have been tested, starting
for example from the set of coordinates. For example, the implementation of ROEs brings
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numerous advantages. In the first place, there is a set of quasi-nonsingular and nonsin-
gular ROEs that are suitable for GEO orbits and close-proximity operations. Moreover,
through mathematical manipulations, it is possible to transform a differential problem
into an algebraic one, exploiting the fact that only one of its elements varies quickly.
Solving an equation is more computationally efficient than numerical integration. All
these features make ROEs a more flexible choice.

The path for the HCW equations transformation in the ROE formulation goes through
Gauss’ variational equations. They represent the motion in terms of orbital elements (the
Keplerian previously described) variation. For unperturbed motion, only one element
has a non-null rate of variation: the true anomaly and consequently the same happens
for the mean anomaly. All the others are considered constant. In an environment in
which both eccentricity and inclination are close to zero, such as GEO with circular and
near-equatorial orbit, for avoiding singularities, the equations are expressed using a set
of modified orbital elements: {a, u, ex, ey, i,Ω}′. When perturbing forces are taken into
account, the orbital elements are subjected to acceleration and their behaviour is no longer
constant. The matricial form in Equation (2.7) reports the Gauss’ equations with respect
to a dimensionless perturbing acceleration d = {dR, dT , dN}′ expressed in the RTN frame
[32].



ȧ

u̇

ėx

ėy

i̇

Ω̇


=



0 0 2a 0

1 −2 0 −sin (t)

tan(i)

0 sin (t) 2 cos (t) 0

0 − cos (t) 2 sin (t) 0

0 0 0 cos (t)

0 0 0
sin (t)

sin (i)


·


1

dR

dT

dN

 (2.7)

To obtain the change of the orbital elements due to an instantaneous velocity variation, the
integration of the previously described equations is performed in the neighbourhood of t =
t0, for example. As aforementioned, implementing a quasi-nonsingular ROE formulation,
the relative motion is introduced. As an integration result, d becomes a dimensionless
∆v. Consequently, the formulation in Equation (2.8) highlights how an instantaneous
variation of velocity in different directions of the RTN frame affects the variation of the
orbital elements. In particular, fluctuations in tangential velocity are responsible for
orbit changes in shape (∆a,∆ex & ∆ey). On the other hand, normal velocity variations
only affect the argument of latitude and the relative inclination vector (∆u,∆ix & ∆iy).
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Finally, ∆u can be expressed as in Equation (2.9).



∆a/a

∆u

∆ex

∆ey

∆ix

∆iy


=



0 2 0

−2 0 −sin (t)

tan(i)

sin (t) 2 cos (t) 0

− cos (t) 2 sin (t) 0

0 0 cos (t)

0 0
sin (t)

sin (i)


·

∆vR

∆vT

∆vN

 (2.8)

∆u = −2∆vR − sin (t0)

tan(i)
∆vN = −2∆vR − ∆iy

tan(i)
=

= −2∆vR − ∆Ωsin (i)

tan(i)
= −2∆vR −∆Ωcos (i)

(2.9)

Starting from a single spacecraft evolution, this approach can be used for two satellite
configurations. If the same initial condition is assumed for both satellites, let’s call them
Chief and Deputy, no relative motion is introduced. If the Deputy’s state is perturbed,
a description of the formation flying is provided. In other words, Equation (2.8) maps
different initial states into a change of the orbital elements.

Once retrieved the Gauss’ equations including relative motion, is possible to write the new
HCW equations aiming at replacing the integration constants with ROEs, to benefit from
their previously described advantages. For expressing k explicitly as in Equation (2.10),
it is necessary to invert the matrix in Equation (2.5). After that, the complexity and
the size of the problem are reduced in Equation (2.11) by assuming t = t0 and the origin
as the initial position of the state [33]. Those assumptions are specifically designed to
introduce a relative motion in the formulation.



k1

k2

k3

k4

k5

k6


=



4 0 0 0 2 0

6(t− t0) 1 0 −2 3(t− t0) 0

3 cos (t) 0 0 sin (t) 2 cos (t) 0

3 sin (t) 0 0 − cos (t) 2 sin (t) 0

0 0 sin (t) 0 0 cos(t)

0 0 − cos (t) 0 0 sin (t)


·



x(t)

y(t)

z(t)

ẋ(t)

ẏ(t)

ż(t)


(2.10)
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k1

k2

k3

k4

k5

k6


=



0 2 0

−2 0 0

sin (t0) 2 cos (t0) 0

− cos (t0) 2 sin (t0) 0

0 0 cos (t0)

0 0 sin (t0)


·

ẋ(t0)

ẏ(t0)

ż(t0)

 (2.11)

Therefore, by replacing the integration constants with the ROEs, relative motion can be
introduced. The substitutions, performed in Equation (2.12), make clear that only k2 has
a time dependency, ∆u(t). To keep it constant, as expected for an integration constant,
it particularised for t = t0.



k1 = (ad − ac)/ac = ∆a/a

k2 = [ud(t)− uc(t)] + (Ωd − Ωc) cos (ic) = ∆u0 +∆Ωcos (i)

k3 = exd
− exc = ∆ex

k4 = eyd − eyc = ∆ey

k5 = id − ic = ∆ix

k6 = exd
− exc = ∆iy

(2.12)

By replacing Equation (2.12) into Equation (2.5), it is possible to obtain a system of linear
equations, shown in Equation (2.13) which link ROEs to relative Cartesian elements:



x/a = δa− δex cos (u)− δey sin (u)

y/a = −δλ0 −
3

2
δa(u− u0)− 2δey cos (u) + 2δex sin (u)

z/a = −δiy cos (u) + δix sin (u)

vx/v = −δey cos (u) + δex sin (u)

vy/v = −3

2
δa+ 2δex cos (u) + 2δey sin (u)

vz/v = δix cos (u) + δiy sin (u)

(2.13)

where v = n · a is the Chief’s characteristic velocity. Finally the mapping tool between
Hill’s Cartesian coordinates and ROEs is set by merging Equation (2.10) and Equa-
tion (2.12) and reported in Equation (2.14).
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∆a/a

∆u

∆ex

∆ey

∆ix

∆iy


=



4 0 0 0 2 0

0 1 0 −2 0 0

3 cos (u) 0 0 sin (u) 2 cos (u) 0

3 sin (u) 0 0 − cos (u) 2 sin (u) 0

0 0 sin (u) 0 0 cos (u)

0 0 − cos (u) 0 0 sin (u)


·



x/a

y/a

z/a

vx/v

vy/v

vz/v


(2.14)

2.1.3. Analytical model

Following the framework definition, the analytical model for the relative motion descrip-
tion in ROEs is presented. The only effect considered in the propagation of the satellites
is due to the geodetic potential. Many works, focusing on LEO, have taken into account
drag or oblateness perturbations; without going further in the analysis of the higher or-
ders. Since at geostationary altitude second-order term plays a significant role, this work
goes in that direction exploiting a study carried out by Gais et al. and developing a model
for orbital perturbation due to Earth’s non-spherically symmetric mass distribution [34].

That work presents an analytical model based on a State Transition Matrix (STM) to
carry out precise relative motion, for low altitudes. Exploiting a convenient transfor-
mation between osculating and mean ROE, the matrix shown in Equation (2.15) allows
compute the evolution of two spacecraft with high computing efficiency. The adopted
transformation is the one retrieved from the Brouwer’s generating functions by Gim and
Alfriend. Working with mean relative orbital elements only accounts for the secular evo-
lution, avoiding short- and long-term variations which lead to a more complex control.
The assembling of the state transition matrix takes into account the Earth’s geopotential
up to the p order: J = {J0, J2, J22, J4, . . . , Jp}.

Φ(αc,∆t) = (2.15)

1 0 0 0 0 0

a∆t
∑

p g
(p)
a 1

∑
p g

(p)
ex ∆t

∑
p g

(p)
ey ∆t

∑
p g

(p)
i 0

a∆tA1

∑
p ω̇

(p)
a 0 C +∆tA1

∑
p ω̇

(p)
ex −S +∆tA1

∑
p ω̇

(p)
ey ∆tA1

∑
p ω̇

(p)
i 0

a∆tA2

∑
p ω̇

(p)
a 0 S +∆tA2

∑
p ω̇

(p)
ex C +∆tA2

∑
p ω̇

(p)
ey ∆tA2

∑
p ω̇

(p)
i 0

0 0 0 0 1 0

a sin (i)∆t
∑

p Ω̇
(p)
a 0 sin (i)∆t

∑
p Ω̇

(p)
ex sin (i)∆t

∑
p Ω̇

(p)
ey sin (i)∆t

∑
p Ω̇

(p)
i 1
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Where ◦(p)x stands for the respective partial derivative of the Jp contribution with respect
to x. While the other functions are listed below:

• A1 = −(Sex0 + Cey0);
• A2 = (Cex0 + Sey0);

• S = sin (
∑

p ω̇
p)∆t);

• C = cos (
∑

p ω̇
p)∆t).

• g = ω̇ + Ṁ + Ω̇ cos (i).

With this formulation, the level of accuracy of the model follows the mission requirements.
Once assembled, the STM is used to analytically compute the ROE evolution at a certain
time by knowing the initial condition and the Chief’s Keplerian orbital elements αc at
that time. The generic formulation, expressed in Equation (2.16), sets the basis for the
control problem. As the dynamic model is controlled continuously the evolution must as
well match that. In the following sections, both this and the Chief propagation are carried
out.

δα(t0 +∆t) = Φ(αc,∆t) · δα0 (2.16)

2.2. Chief propagation

As aforementioned, a constant update must be performed for the computation of the
Chief’s orbital elements. The two-body problem with conservative perturbations can be
solved by numerical integration in Cartesian coordinates or using the Keplerian elements
by using the Gauss’ Planetary Equations. The integration is performed with MATLAB
solver ode113 with a relative tolerance of 1013 and absolute tolerance of 1014. ode113

is a variable-step, variable-order (VSVO) Adams-Bashforth-Moulton solver of orders 1 to
13 [35]. It is adopted because it is more efficient than other solvers at stringent tolerances
or when the differential function is particularly expensive to evaluate.

2.2.1. Gravitational perturbations

There are different sources of orbital perturbations. At lower altitudes, the Earth’s oblate-
ness, the drag and the magnetic field perturbations prevail. In GEO, the third bodies and
the Solar Radiation Pressure start to play a major role as well. This work focuses only
on the geodetic effect. The Earth’s oblate spheroid shape produces a slightly different
gravitational field than the one of a perfect sphere. A perturbing acceleration accounting
for that conservative force has to be included in the propagation. This latter is retrieved,
in Cartesian form, from the derivation of the true gravitational field that is expressed as
a series of spherical harmonics.
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The selected model, taken from the literature, is based on a potential function R account-
ing for the non-Keplerian motion and expressed in Equation (2.17) [36].

R =
µ

r

∞∑
l=2

l∑
m=0

(
R⊕

r

)l

Pl,m sin (ϕc)[Cl,m cos (mλc) + Sl,m sin (mλc)] (2.17)

Where r is the distance of the satellite, R⊕ is the equatorial Earth’s radius, Pl,m are the
Legendre polynomials, ϕc and λc are the geocentric latitude and longitude of the Chief and
Cl,m and Sl,m are the harmonic coefficients that could be derived or found tabulated. The
selected model takes into account all zonal tesseral and sectorial harmonics. Regarding
the former, it includes J2, the first secular effect with m = 0. For the latter, with a lower
relevance but still present, also the terms referred to m, l up to order 2 are introduced.

The Cartesian components of the acceleration are retrieved by deriving the spherical
potential (up to the second harmonics) and then transposing them in another frame
following the formulations shown in Equation (2.18) and Equation (2.19) [37].


dx =

∂R

∂r
· ∂r
∂x

+
∂R

∂ϕ
· ∂ϕ
∂x

+
∂R

∂λ
· ∂λ
∂x

dy =
∂R

∂r
· ∂r
∂y

+
∂R

∂ϕ
· ∂ϕ
∂y

+
∂R

∂λ
· ∂λ

∂∂y

dz =
∂R

∂r
· ∂r
∂z

+
∂R

∂ϕ
· ∂ϕ
∂z

+
∂R

∂λ
· ∂λ
∂z

(2.18)


∂r

∂x
=

x

r
∂r

∂y
=

y

r
∂r

∂z
=

z

r



∂ϕ

∂x
= − x · z

r3

√
1− z2

r2
∂ϕ

∂y
= − y · z

r3

√
1− z2

r2

∂ϕ

∂z
= −

z2

r3
− 1

r√
1− z2

r2



λ

x
=

−y

x2

(
1 +

y2

x2

)
λ

y
=

1

x

(
1 +

y2

x2

)
λ

z
= 0

(2.19)

Where (r, ϕ, λ) are spherical coordinates, representing respectively the radius, the lati-
tude and the longitude. While (x, y, z) are the Cartesian ones.
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2.2.2. Integration methods

Cartesian Coordinates
The components of the perturbing accelerations are evaluated for each direction and the
Cartesian state vector derivative is computed accordingly to Equation (2.20) [38].

d

dt

{
r

v

}
=

{
v

− µ

r3
r+ d

}
(2.20)

Gauss’ Planetary Equations
The Cartesian components of the perturbing accelerations are evaluated and then con-
verted to RTN components and the Keplerian elements evolution is computed accordingly
to Equation (2.21) [38].



ȧ = 2a2
v

µ
dT

ė = 2
dT
v
(e+ cos f)

i̇ = r cos (f)
dR
h

Ω̇ = r sin (f)
dR

h sin (i)

ω̇ =
2dT sin(θ)

e · v
+ dN

(
2e+

r

a
cos (θ)

)
− r sin (f)

dR
h sin (i)

cos (i)

θ̇ =
h

r2
− 2dT sin(θ)

e · v
+ dN

(
2e+

r

a
cos (θ)

)
(2.21)
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2.3. System evolution

Finally, the set-up of the dynamical equations of the problem is presented. In this direc-
tion, it is necessary to include the natural evolution of the relative motion, as well as the
control action. The final formulation is in matricial form, merging all the previous models
retrieved in Subsection 2.1.3.

2.3.1. State Transition Matrix

As shown before, it is possible to retrieve the relative motion for every time instant
only knowing the initial condition, the Chief’s updated state and the time instant. The
implementation of a linear system allows, as said before, high computational efficiency
and accuracy [39]. The derivation of STMs can be carried out from the time derivative
of the relative state, as in Equation (2.23). Writing the Deputy’s state as a function of
Chief’s one, it is evident that the requirement is fulfilled: δα̇ = f(αd(αc(t)), αc(t), γ);
with γ representing all the others parameters required to include perturbations. The
derivation of the STM in Equation (2.15), is valid as a perturbed ROE dynamics as long
as it is linearised at the first order of Taylor’s expansion expressed in [40].

A(αc, γ) =
∂δα̇

∂δαd

∣∣∣∣
∂δα=0

· ∂αd

∂δαd

∣∣∣∣
αd=αc

(2.22)

Equation (2.23) describes the temporal derivative of Equation (2.16). It highlights that
it is approximated as a linear function and the resulting STM A is then assembled as in
Equation (2.24).

δα̇ = A(αc(t), γ) · δα(t) +O(δα2) (2.23)
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The plant matrix of system A includes the property of Subsection 2.1.3 and accounts for
geodetic perturbation up to the J22 effect. The partial derivatives of the orbital elements
are computed from the literature classical formulation in Equation (2.25).
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The full expression of Equation (2.24), including the partial derivatives of Keplerian ele-
ments, is provided in appendix A.

2.3.2. Control matrix

Finally, the control action is introduced in the system dynamics. A set of thrusters pro-
vides the required acceleration to perform the cluster formation maintenance. Usually,
the actuators are oriented along the satellite body axes. In this thesis, it is considered
that only the Deputies perform control for formation maintenance. To guarantee that the
actuators are providing the thrust in the correct direction, the attitude of the Deputies is
considered rigid and its formulation is not included in the control model. Consequently,
the controlling accelerations are described in the RTN frame. Thus, it becomes crucial to
define a transformation to link those components in the RTN frame with the ROE state.
This operation is carried out by the control matrix B, reported in Equation (2.26) [41]. In
Subsection 2.1.2 the relation between these different frames has been described, exploit-
ing Gauss’ Planetary Equations and a hint of what is needed is given in Equation (2.8).
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While previously a dimensionless formulation could have been useful, now accelerations
with their unit lead to a slight modification for the control matrix derivation. The mean
argument of the latitude u has replaced the time information as shown with the mapping
in Equation (2.14). The tightness of the formation implicitly imposes that ad/ac ≈ 1,
allowing a simplification, the same happens for ∆i ≪ 1, assuring the assumptions asso-
ciated with Equations (2.8) and (2.11). The accelerations act only on the Deputy, the
Chief’s orbital elements are considered constant to obtain the matrix B.

B(αc) =
1

n · a



0 2 0

−2 0 0

sin (u) 2 cos (u) 0

− cos (u) 2 sin (u) 0

0 0 cos (u)

0 0 sin (u)


(2.26)

The presented matrix evaluates how three independent and orthogonal control accelera-
tions influence the ROEs, to achieve the goal imposed by the control logic.

2.3.3. Problem set-up

Merging the matrices obtained in Subsections 2.3.1 and 2.3.2, the complete system dy-
namic model is computed in Equation (2.27) [42]:

δα̇ = A(δα) +Bu (2.27)

where matrix A accounts for the natural propagation of the relative motion due to Earth’s
geopotential perturbation, while B allows performing an active control on the orbit. The
vectors, on one hand, represent the evolution of the ROEs, described by the δα. On
the other hand, u represents the control accelerations and it is computed by the control
algorithm at each time step.
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The aim of this chapter is the implementation of a control logic to maintain the cluster
formation rigid. Consequently, a steady-state linear quadratic regulator is tuned to the
linear system described in Chapter 2. Moreover, a brief analysis of the eligible thrusters
and physical constraints which should be considered when talking about formation flight
is presented.

The use of the dynamic model, retrieved in Chapter 2 with the analytic framework,
together with the miniaturisation of the required computational tools allows the develop-
ment of an on-board control. The magnitude of the estimated ∆v provides a hint of the
control effort needed and so the selection of the actuators comes as a consequence.

3.1. Control logic

This dissertation is focused on the relative motion of a cluster formation and, for this rea-
son, the focus is on formation-keeping. The uncontrolled propagation leads to significant
deviation, due to the external perturbation, including the geodetic one. This behaviour
affects the maintenance of the geometry of the fleet and the possibility to satisfy the
required accuracy from the combined interferometry point of view. The cluster should
maintain a tight and rigid geometry to reach a certain spatial resolution.

The continuous evolution of the orbital parameters together with the strict requirements
in the relative position is not suitable for impulsive manoeuvres. A more practical and
effective solution is the implementation of continuous feedback control. A closed-loop
algorithm takes as input the reference orbit and compares it with the actual state. For
the simulator used in this thesis, the analytical formulation based on ROEs is adopted,
but in a real environment, the sensors can provide the estimated relative position. The
described model can be introduced in a Kalman filter for the inter-satellite positions.
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At each time step, based on this information, the controller computes the optimal ac-
tuation forces for each Deputy. Throughout a continuous control action, the formation
geometry is maintained. The state vectors are assumed to be known exactly, the uncer-
tainties of the sensors are not considered and thrusters do not introduce noise. In this
way, the delivered control action can be arbitrary and the feedback control is considered
ideal.

The control logic, presented from here on, computes the forces required from the Deputies
to keep a rigid formation. The Chief is allowed to drift, but the control of the position
of the whole constellation in GEO is also required. The spacecraft shall remain in the
specified GEO slot. The importance of managing that requirement is vital. Many different
satellites populate the GEO belt, therefore interference and collision must be avoided.
The station-keeping for geostationary orbit is usually performed once per month. An
already validated and employed technique is the East-West Station Keeping (EWSK) [43].
This method exploits the natural evolution due to the Earth’s gravity perturbation. By
formulating the equation of motion in Earth’s fixed polar coordinates radium, longitude
and latitude (r, λ, ϕ), it is possible to visualise in phase-space that the satellite longitude
varies around the equilibria points. An impulsive manoeuvre is performed when λ reaches
the slot limit, then the main perturbation due to J22 counteracts that actuation until the
spacecraft again "hits" the longitude dead-band boundary. This operation does not fit
in the time scales involved in the studied mission profile, that is why station-keeping is
necessary but not taken into account in this work [43].

3.2. LQR algorithm

The Linear Quadratic Regulator is a control algorithm belonging to the Optimal Control
theory. It solves problems described by a linear set of differential equations by minimising
a quadratic cost function (LQ problems).

3.2.1. Method definition

The Equation (3.1) is an example of a linear time-varying (LTI) system.

ẋ = A(t)x+B(t)u (3.1)
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The variation of the state vector ẋ is expressed with respect to the state itself x, multiplied
by the linear plant matrix A(t) describing the system evolution, and the control vector u
properly transformed by control matrix B(t).

To find the optimal control, the quadratic cost function to be minimised is shown in
Equation (3.2), for LQR theory [44].

J(t0) =
1

2
xT (tf )M(tf )x(T ) +

1

2

∫ tf

t0

(xTQ(t)x+ uTR(t)u)dt (3.2)

To optimise the control action, needed by the linear system in the interval [t0, tf ], the
information on both the initial and final state should be available. Moreover, it is necessary
to introduce three weighting matrices. These are all positive semi-definite and symmetric
in their interval of interest. The matrix M is the result of a differential equation, while
Q and R have to be tuned aiming at accomplishing the requirements.

• M, comes out solving Riccati’s equation. It plays a key role in the computation of
the control vector composing the gain matrix.

• Q, modulates the effect of each component of the state vector in the cost function.
Therefore to reduce the error on a specific element, it is necessary to increase the
corresponding elements in Q.

• R, modulates the effect of each component of the control vector in the cost function.
Therefore to reduce the effect of a specific control element, it is necessary to increase
the corresponding elements in R.

To make the expression for optimal control explicit, let’s exploit the Hamiltonian, in
Equation (3.3), associated with the plant matrix [44]:

H(t) =
1

2
(xTQx+ utRu) + λT (A(t)x+B(t)u) , (3.3)

where H is the Legendre transformation of the Lagrangian and it is defined through a
set of costate variables λ. The partial derivatives of this function with respect to their
coordinates give a set of differential equations, which returns the temporal evolution of
the system.
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The set reported in Equation (3.4) is composed of the Hamiltonian equations.

ẋ(t) =
∂H(t)

∂λ
= A(t)x+Bu (3.4a)

−λ̇ =
∂H

∂x
= Qx+ATλ (3.4b)

0 =
∂H

∂u
= Ru+BTλ (3.4c)

Rewriting Equation (3.4c), the expression of the optimal control is retrieved and reported
in Equation (3.5) in terms of the costate variables.

u(t) = −R−1BTλ (3.5)

Replacing Equation (3.5) in Equation (3.4b), the matricial formulation of the Hamiltonian
system can be expressed as in Equation (3.6).

(
ẋ

λ̇

)
=

[
A BR−1BT

−Q −AT

](
x
λ

)
(3.6)

Because of the remarkable evolution of the ROEs, the rate of change of the matrix Ṁ ̸≈ 0

shall not be considered small. Therefore the only suitable approach to solve the problem
is through Differential Riccati’s Equation. The differential form is the one corresponding
to the Finite Horizon, whereby the final time tf has a finite value. At this last time step,
the actual state has to match the desired one x(tf ) = xd. Now the problem is boundary-
valued. To retrieve the intermediate matrix M, essential for computing the vector u, let’s
assume the relation expressed in Equation (3.7) to be linear[22].

λ(t) = M(t)x(t) (3.7)

Then, Equation (3.8) is computed by differentiating Equation (3.7) [45].

λ̇ = Ṁ (t)x(t) +M(t)ẋ(t) = Ṁ(t)x(t) +M(Ax−BR−1BTMx) (3.8)
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For obtaining the Differential Riccati’s Equation, let’s replace λ̇ with Equation (3.4b) and
the costate variable with the relation in Equation (3.7). Equation (3.9) reports the final
formulation after the simplification for x.

−Ṁ = ATM+MA−MBR−1BTM+Q (3.9)

Finally, once numerically integrated the solution M, the optimal control is evaluated as in
Equation (3.10), by substituting the linear relation in Equation (3.7) into Equation (3.4c).

u = −R−1BTMx (3.10)

The gain matrix K is then reported in Equation (3.11).

K = R−1BTM (3.11)

Last but not least, the system must be fully controllable: all the components of the state
vector are controllable, therefore theorem 3.1 is accomplished.

Theorem 3.1. An LTI system is fully controllable if and only if the rank of the control-
lability matrix C is equal to the system order n.

The criteria is accomplished if C in Equation (3.12) is full-rank. This property implies
that for any initial condition x0 exists a control vector u which changes the state to
another arbitrary one x1 in a finite time t1.

C(A,B) = [B, AB, A2B, . . . An−1B] (3.12)
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3.2.2. Implementation for ROE

The plant matrix obtained in Subsection 2.1.3 is linear and time-varying. Thus, the
dynamic system in Equation (2.27) is linear as well. In Figure 3.1 the architecture of the
control logic is sketched.

Plant Matrices

Desired reference orbit 

Riccati EquationChief Propagation LQR Control

Linear SystemWeight Matrices 

Figure 3.1: Flowchart of the simulation framework.

At each time step, the numerical propagator provides the Chief’s Keplerian orbital ele-
ments αC , perturbed by acceleration dp due to J22. Then the plant and control matrices
(A, B) are updated with the result of the previous integration. Introducing the tuned
weight matrixes (Q, R), now the differential Riccati’s equation can be solved and the
intermediate matrix is retrieved throughout numerical integration. Once computed M,
the gain matrix K can be assembled and the optimal control u calculated. This is possible
by merging the desired reference relative position δαd and the actual one δα, obtained
by closing the loop and evaluating the linear plant with the knowledge of the control
actuation.

Before actually introducing the control algorithm, a check on the controllability should be
performed. Recalling matrix B, and keeping in mind the definition of Equation (3.12), it
is possible to assure the full rank of C and therefore the controllability of the system. The
matrix in Equation (3.13) is full column rank, each of the columns of the matrix is linearly
independent. The controllability matrix then results as a square matrix assembled by a
series of column rank matrixes multiplied by different matrixes. Therefore the nonzero
determinant of C grants controllability.
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B(αc) =
1

n · a



0 2 0

−2 0 0

sin (u) 2 cos (u) 0

− cos (u) 2 sin (u) 0

0 0 cos (u)

0 0 sin (u)


(3.13)

Where n is the orbit mean motion, a is its semi-major axis and u = ω+M is the argument
of latitude.

3.2.3. Algorithm implementation

The main objective of the LQR is to keep Deputies’ ROEs as close as possible to the desired
state vector xd. The control action is the result of the difference between the linear system
output and the reference condition, properly scaled by the same gain matrix: Kd = K.
Equation (3.14) shows the corresponding equation. The system output δy exactly matches
the state vector δα made of the relative orbital elements.

u(t) = Kdδxd −Kδy (3.14)

As previously stated, information about initial and final conditions must be provided for
the boundary value problem. In this case, it is convenient to reach the desired state at
the last time step of the interval. Equation (3.15) shows the condition needed to obtain
such a goal and its consequences.

M(t = tf ) = 0 ⇒ K(t = tf ) = 0 ⇒ u(t = tf ) = 0 (3.15)

Not having clues on the intermediate matrix initial condition to start the numerical in-
tegration of the differential Riccati’s equation, the selected ode-solver is performed
backwards. M is retrieved as the only unknown, after tuning the weighing matrixes, the
propagation of the Chief perturbed orbit and selecting the initial and final relative state.

In this way, the quadratic cost function to be minimised reduces to the one in Equa-
tion (3.16).

J(t0) =
1

2

∫ tf

t0

(xTQ(t)x+ uTR(t)u)dt (3.16)
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To visualise how the algorithm goes through the different steps algorithm 3.1 shows the
path followed highlighting the most significant operations.

Algorithm 3.1 Control Algorithm
1: Load: input % Problem set-up
2: Propagate: odeCart % Chief perturbed evolution
3: for t ∈ [t0, tf ] do
4: Compute A(αc(t)) & B(αc(t)) % System plant definition
5: end for
6: for t ∈ [tf , t0] do
7: Integrate: odeRiccati % Backward
8: Compute M(t)

9: end for
10: for t ∈ [t0, tf ] do
11: Flip: M(t) % For time coherence
12: Compute K(t) % Gain matrix
13: Compute u(t) % Optimal control
14: if u(t) < umin then
15: u(t)=0
16: else if u(t) > umin then
17: u(t)=u
18: end if
19: Compute α(t) % State update
20: end for
21: Store: (α, u) % Result report

The control algorithm determines the control action needed to solve the optimal closed-
loop problem. The desired relative position is achieved at the end of the selected interval,
while the fuel consumption is minimised. The given description, in which x(tf )− xd = 0,
is called trajectory tracking problem. The goal is reached thanks to an asymptotic LQR
design for a linear continuous system.

Setting the problem means initialising both the Chief’s state and the relative initial po-
sition. Moreover, the time span has to be chosen. The initial/final time instant and the
∆t, the interval of a time step. Then, having carried out a model of the gravitational
perturbation, the Chief numerical propagation is performed. Once computed the natural
evolution of the main spacecraft, the system is defined evaluating the plant and control
matrices for each time instant.
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The selection of the weighting matrices is analysed in the following section. At first,
tuning is performed, then they are considered known and constant during all the controlled
intervals.

Finally, the differential Riccati’s equation can be integrated, starting from the end [45].
Backward integration is performed, and the null steady-state error leads to a final given
value of the intermediate matrix which is defined as the "initial" condition. Before re-
placing M in the formulation of the gain matrix, it is necessary to re-establish the correct
order of the computed matrices. In this way, the real temporal evolution is restored to
the optimal control action is retrieved coherently. Finally, a check on the feasibility of
the force actuation is performed. The actual technology provides very precise thrusters,
however, there is a minimum amount of force that they deliver. In the end, the RTN ac-
celerations are substituted in the plant matrix and the controlled evolution of the relative
state is then carried out. The deviation error from the reference directly feed-back the
control algorithm for the required next time step actuation force.

3.3. Sensitivity analysis

This analysis consists in evaluating the effects on the results induced by combinations of
certain values modifications. It highlights which parameter affects the system the most
and how to vary its value to better control the consequences.

By applying this strategy to the described LQ problem, it is clear that all the state vari-
ables enter in the estimation and so in the control. The evaluation of the optimal control
action is goes through Equation (3.9), which minimises the cost function in Equation (3.2).
This last makes explicit that the state and the control vectors actuate on the minimisation
modulated by the weighting matrixes. Here is where the qualitative sensitivity analysis
is performed.

By selecting different components for each of the two weighting matrices, it is possible
to give more o less control effort to a specific element of the state vector. The simplest
initial choice is imposing Q and R equal to the identity matrix, thus all the variables
are controlled in the same manner. Then a coefficient is multiplied by Q and R, the
matrix related to the control vector. Broadly speaking, since the weighting matrices are
constant and the same for all the Deputies, differentiating the control effort for the RTN
accelerations is not effective. On the other hand, a better response is achieved by selecting
different Q matrix components. Each diagonal component is not linked to all the state
vectors, therefore it can be chosen the amount of effort given to each component based
on the effect.
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Qualitative speaking the relative mean argument of longitude δλ, corresponding to the
2nd element, is by nature the one with the fastest variation. Then, accordingly to Subsec-
tion 3.2.1, an increment in the relative weight assures an adequate control.

3.4. Thrusters selection

The main characteristic of the control presented in this Thesis is the continuous control
during orbit. Consequently, on one hand, a high onboard computational power is required
and nowadays this is possible thanks to extreme miniaturisation. On the other hand, also
a set of adequate thrusters is needed.

The constraints imposed by the mission are mainly related to the amount of thrust that
has to be provided, the size and finally the precision and noise introduced during the
operations. To maintain a tight formation, the control actuation is typically a fraction of
Newtons. The physical thrusters have a lower limit for the achievable thrust and this is the
first limitation to account for. Secondly, the volume of the Deputies satellite of a cluster
geometry requires space management. The scientific payload, the dynamic and attitude
controllers, sensors and actuators must fit, together with electric power generation and
storage.

With the advent of CubeSats, the research has shifted the focus on actuators miniatur-
isation. Moreover, the constant progress in both electric energy generation and storage
has made the implementation of electric thrusters possible. These last, lately, are one of
the main fields of research, especially for relative motion. They are characterised by a
higher specific impulse, therefore continuous manoeuvring is allowed [46]. A low-thrust
control is more advantageous when dealing with close-proximity operations and maintains
a more stable and effective control [47]. That is exactly what remote sensing missions
require. Thrusters with a reduced lower limit of minimum generated force, such as cold
gas o electric thrusters, are a suitable selection for this study [48, 49].

As said before, there is a physical thrust lower limit. Equation (3.17) takes into account
that property and in this work the limit is considered to be Fmin = 10−7 N [49]. This
value represents the lower limit of the most recent electric thruster in terms of generated
thrust: F = 0.1 µN . As shown in algorithm 3.1, if the computed optimal control in one
of the RTN directions is lower, it is set to zero.

u(t) =

0 7−→ if m · u(t) < 10−7N

u(t) 7−→ if m · u(t) > 10−7N
(3.17)
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Where m is the mass of the satellite, usually for Deputies CubeSats the order of magnitude
is around 101 kg. This consideration is included to have a more realistic simulation, based
on micro-Newton thrusters.

A convenient way of expressing the consumption of the propulsion thrusters is in terms
of ∆v. That information gives a hint on the amount of control accelerations profile on
the satellite and on the total fuel budget required for keeping a mission operative during
the whole lifetime. This value can be estimated numerically by integrating the total
acceleration reported in Equation (3.18).

utot(t) =
√
u2
N(t) + u2

R(t) + u2
T (t) (3.18)

3.5. Relative position control

To avoid collisions, the relative inter-satellite distances are monitored. Once evaluated
the ROEs for each satellite ◦k, a transformation in relative Cartesian coordinates (x, y, z)
is performed according to Equation (2.14). Consequently, is immediately computed the
relative position with respect to the Chief ∆Rk−c, as shown in Equation (3.19).

∆Rk−c =
√

x2
k + y2k + z2k (3.19)

A minimum inter-satellite distance constraint of ∆Rmin = 7 m should be imposed for all
the controlled intervals to ensure safety.

On the other hand, the inter-Deputies distance constraint should be considered as well
and in particular for adjacent satellites. In Equation (3.20) is reported the expression
to compute the relative Deputies position ∆Rk−c, where j and k represent two different
satellites.

∆Rj−k =
√
(xj − xk)2 + (yj − yk)2 + (zj − zk)2 (3.20)

The same ∆Rmin = 7 m is set in this case.





37

4| Mission simulation results

The numerical simulation presented brings together all the formulations developed in
this Thesis. The studied dynamic system embeds both the theoretical model and the
control algorithm. The precise relative motion described in Chapter 2 is now part of the
overall dynamics. It has been merged with the implemented LQR method for optimal
formation-keeping.

The ROEs allow expressing the whole model in an analytical framework, only requiring the
updating of the Chief’s Keplerian orbital elements. The control matrix computed plays a
key role in linking the RTN acceleration with the relative motion. In this way, the closed-
loop control logic presented in Chapter 3 is included. Through the control actions, the
state is retrieved and it can feedback to the system that with this information actualises
the optimal control.

4.1. Overview of the mission scenario

In this Thesis, a test case of a remote sensing mission is studied. A cluster formation
of seven satellites, one Chief and six Deputies, is propagated during a time span of T =

10 days. The interval has been selected to appreciate the natural evolution and the
corresponding control without accounting for station-keeping.

The central spacecraft orbits in GEO and its initial conditions are reported in Tables 4.1
and 4.2. The Cartesian coordinates are reported in the Earth MJ2000Eq reference sys-
tem and they represent geostationary orbit at the Greenwich meridian. The Keplerian
elements are computed with GMAT, which does not suffer from singularities with these
magnitudes for e and i. The chosen set of initial conditions does not present singularities
neither for the implemented formulation while describing a suitable desired position above
central Europe.
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Parameter Value Unit

X -36372.671 km

Y 21328.079 km
Z 60.986 km

VX -1.555 km/s

VY -2.652 km/s
VZ 2.453 · 10−3 km/s

Table 4.1: Cartesian Initial condition.

Parameter Value Unit

a 42166.279 km

e 3.746 · 10−5 -
i 9.464 · 10−2 deg

Ω 88.494 deg

ω 61.120 deg
θ 0 deg

Table 4.2: Keplerian Initial condition.

Around the main satellite, the six Deputies are placed in the geometry shown in Figure 4.1,
which represents the initial condition of the formation. The configuration for the seven
micro-satellites is based on a regular hexagon inscribed in a circumference of ten metres
radius. Working on a small scale is not a limit, with the tuning of the implemented
control, it can be applied to larger variants. The figure is a plot in the RTN frame and
the origin coincides with the Chief.

Figure 4.1: Initial cluster formation.
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The presented tight formation should be kept as rigid as possible. The retrieved initial
Relative Orbital elements, reported in Table 4.3, are chosen to be the desired state as
well. In this way, the computed values are included in the formulation both as initial
conditions for the ROEs evolution and as the reference target configuration.

Deputy δa [m] δλ [m] δex [m] δey [m] δix [m] δiy [m]

1 0.0158 0.0149 -0.2418 0.1349 4.7835 -12.0342

2 8.7632 7.4893 -4.6274 7.5477 0.4045 -9.6198

3 8.7343 7.4980 -4.5452 7.4864 -8.3526 -4.7904

4 -0.0421 0.0303 -0.0779 0.0115 -12.7307 -2.3754

5 -8.7895 -7.4442 4.3075 -7.4018 -8.3520 -4.7908

6 -8.7606 -7.4522 4.2261 -7.3398 0.4051 -9.6201

Table 4.3: Initial Relative Orbital Elements.

All the following figures and tables presenting ROEs evolution are scaled for the Chief’s
semi-major axis for better readability. The state vector is multiplied by the semi-major
axis of the Chief satellite, as in Equation (4.1), to restore dimension and then is expressed
in metres to have a better visual representation.

δαplot = 103 · ac · δα (4.1)

4.2. Validation

To validate the model presented in Chapter 3, all the presented formulations are compared
with a high fidelity simulator. The General Mission Analysis Tool (GMAT) is an open-
source software developed by NASA to propagate any spacecraft given the environmental
and initial conditions [50]. For Thesis purposes, the natural dynamics have been perturbed
only by the gravitational potential described by JGM2. The model is truncated a the
second degree and order, to introduce the J22 effect.
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4.2.1. Chief propagation

First of all, the validation of the Chief propagator is performed. The chosen Cartesian
equations must provide a feasible estimation of the real evolution of the satellite. Fig-
ure 4.2 shows the comparison between the Cartesian propagation implemented in this
work and the GMAT tool. The results show a good match between the two models.
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Figure 4.2: Propagation comparison between Cartesian equations and GMAT.

To better understand the absolute error between the propagators, the norm of both Carte-
sian position and velocity are computed. The result in Figure 4.3 indicates that the
difference is just above respectively 100 m and 4 m/s, during the selected period.
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Figure 4.3: Absolute error.
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4.2.2. Control tuning

Exploiting a shorter period, it is possible to run multiple simulations to tune the weighting
matrices and to assure the convergence of the control. Figures 4.4, 4.6 and 4.7 show Rel-
ative Orbital Elements’ controlled evolution of one Deputy for about 0.1 orbital periods.
The differences in the plots are due to the change in the weighting matrices: each figure
corresponds to one of the three steps described in Section 3.3.
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Figure 4.4: Control with identity weighting matrices.

At first, the gain matrix Q and R are identity matrices of dimensions 6 and 3, respectively.
The control converges but, as visible in Figure 4.5, the steady-state error is limited, but
it is above the scientific requirements (≈ 1 cm) for most of the states. Figure 4.4 shows
significant oscillations, especially for the first element.
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Figure 4.5: Steady State Error with identity weighting matrices.

Fluctuations of 50 cm correspond to the difference in terms of the semi-major axis which
is not acceptable for implementing interferometry. The discrepancy is visible also for
eccentricity components. Performing continuous control, all the state components are
affected, even the ones with slow or constant variations. This is an inevitable side effect,
however, it can be mitigated and it is acceptable as long as the variations are inside the
prescribed range.

In the second step, a scaling parameter ρ = 10−3 is multiplied by both matrices separately.
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(b) Scaled R.

Figure 4.6: Control with scaled weighting matrices.
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On one hand, the scaled matrix R does not seem to give any variation to the state vector
evaluated without scaling and the result is close to the one obtained in Figure 4.4. The
behaviour of the elements of the state vector appears to worsen by tuning the matrix
corresponding to the accelerations. Moreover, the relation between the control action and
its effect on the state vector is not straightforward. On the other hand, modifying the
matrix Q provides an improvement in the results of the control strategy. In Figure 4.6a, δa,
δex and δey have experienced a positive effect, different from the behaviour in Figure 4.6b.
In the following, the analysis of the gain matrices focuses only on the shifted values of
the matrix Q. The benefit for δa is visible but still not compliant with the scientific
instrumentation. By modifying the diagonal elements of Q, the consequences are reflected
directly in the state. That is the logic according to which the values have been selected.
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Figure 4.7: Control with tuned weighting matrix.

Analysing the effect of each diagonal component of the weighting matrix Q, important
relations have been identified. The fast variation related to δλ must be dealt with. In-
creasing the value of the second diagonal element Q(2, 2), the control is adapted to the
problem and the system response is improved. The more weight is put there, the better
the result gets. Finally, after some trial and error, the values of matrices Q and R have
been selected and reported in Equations (4.2) and (4.3).
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By reducing the third and the fourth element, the ones related to the eccentricity, the
control of that specific Keplerian element is decreased. This operation seems to improve
the control of the other state components. No further modifications are implemented on
the almost constant ROEs δa and δix. This selection is the one used to retrieve the plots
in Figure 4.7 and for the following sections. It seems to provide better results in terms of
the control of the ROEs components.

Q = 10−3



1 0 0 0 0 0

0 1000 0 0 0 0

0 0 0.1 0 0 0

0 0 0 0.1 0 0

0 0 0 0 1 0

0 0 0 0 0 1000


(4.2)

R =

1 0 0

0 1 0

0 0 1

 (4.3)

4.3. Simulation results for formation maintenance

In this section, the control logic developed in this thesis, based on the gain matrices Q
and R shown in Subsection 4.2.2, is applied to the formation maintenance of the test case
scenario described in Section 4.1. The dynamics of the six Deputies are propagated for ten
days with the tuned control algorithm. The same pattern is adopted for the presentation
of the results of all the spacecraft.

4.3.1. Controlled dynamics

First of all, the ROEs evolutions are portrayed. In the same figure, the controlled ROE
(in blue), their natural evolution (in dashed black) and the desired state (in dotted red)
are plotted. All the images are visualised in metres according to Equation (4.1).
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Figure 4.8: ROE controlled evolution of Deputy 1.
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Figure 4.9: ROE controlled evolution of Deputy 2.
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Figure 4.10: ROE controlled evolution of Deputy 3.
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Figure 4.11: ROE controlled evolution of Deputy 4.
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Figure 4.12: ROE controlled evolution of Deputy 5.
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Figure 4.13: ROE controlled evolution of Deputy 6.
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As expected, all the relative orbital elements oscillate around the prescribed reference
value. Even when the variations seem to be significant, it is important to consider the
scale of the axis. The parameters δex and δey which appear to be the ones with the
less accurate control, present a maximum oscillation of about 20 cm. Transforming this
difference in dimensionless ROEs terms, it corresponds to a variation of 10−10 around the
desired value which is of the order of 10−7. The element linked with the semi-major axis
δa, the one with the most direct physical meaning, is affected by an error smaller than
two millimetres from the desired condition. This situation is valid also for the satellites
for which the control is less precise. The fast variation of the mean argument δλ of
longitude is completely counteracted by the optimal control. The geodetic effect seems to
not affect δix and δiy their natural evolution is almost constant, which is consistent with
the equatorial nature of the orbit.

The ROEs in Figures 4.8 and 4.11 are characterised by similar behaviour one to another.
The perturbing geodetic effect depends on the longitude, therefore Deputies 1 and 4 are
affected by similar accelerations, effectively counteracted by the control. This pattern is
also present for the couple 2-3 in Figures 4.9 and 4.10 and 5-6 in Figures 4.12 and 4.13.
The accuracy is slightly less performing for these last two couple due to the tuning held
on Deputy 1.



50 4| Mission simulation results

4.3.2. Deviation from the desired position

Moreover, it is reported the difference between the actual position in the RTN frame and
the nominal one. The mapping from ROEs to the magnitude of the Cartesian vector is
done following Equation (2.14).
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Figure 4.14: Relative Cartesian deviations from relative positions.
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What seen in Subsection 4.3.1 is then reflected here. Figures 4.14a and 4.14d highlight the
better accuracy retrieved for the first and fourth Deputy. In any case, noticing the scale,
even for the other satellites, the deviation from the mean null value is bounded around
one centimetre. The control succeeds in keeping the deputies close to their desired relative
position.

Then, the analysis of the graphics is resumed in a table that reports the initial/desired
condition, the final achieved magnitude of the relative position and the deviation from
the reference position. The dispersion statistical index σ is evaluated as in Equation (4.4)
and it represents the dispersion coefficient.

σ =

√√√√ 1

N

N∑
i=1

(xi − xd) (4.4)

Deputy Initial/Desired Final Dispersion [mm]

Position [m] Position [m]

1 10 10.017 3.904
2 10 10.064 57.869

3 10 10.151 63.263

4 10 10.002 4.067

5 10 10.049 61.153
6 10 10.019 61.950

Table 4.4: Resume of the deviations from desired state.

Having a look at the values in Table 4.4, it can be noticed that the dispersion between
Deputies laying in an opposite position of the formation (1-4; 2-5; 3-6) are related one
to another. That is explained by remembering that the tuning of the control algorithm
has been performed only on the first Deputy and the perturbation due to J22 has the
same effect on spacecraft considered at the same longitude. Nevertheless, the control is
effective and below the required precision needed from the instrumentation. The relative
inter-satellite distance is maintained close to the desired one, after the reverse mapping
from ROEs to Hill frame and retrieving the relative Cartesian coordinates. The mean
value of each deviation reflects the dispersion coefficient. Deputy 3 differs for less than
15 cm and it is the worst case. Furthermore, those satellites over whom the control has
been tuned do not exceed a few millimetres variations.
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4.3.3. Control effort

The control action profile is also reported. The vector u representing the control accelera-
tions is stored and then plotted in m/s2. Their reference frame is the Hill frame, therefore
each of the three components is aligned with the radial, tangential and normal direction
concerning the Chief position. The total magnitude of the acceleration, retrieved from
Equation (3.18) is then computed and tabled together with the corresponding ∆v.

0 5 10
-2

-1

0

1

2
10-4

(a) Deputy 1.

0 5 10
-2

-1

0

1

2
10-4

(b) Deputy 2.

0 5 10
-2

-1

0

1

2
10-4

(c) Deputy 3.

0 5 10
-2

-1

0

1

2
10-4

(d) Deputy 4.

0 5 10
-2

-1

0

1

2
10-4

(e) Deputy 5.

0 5 10
-2

-1

0

1

2
10-4

(f) Deputy 6.

Figure 4.15: Control action in Hill frame.
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The components of the accelerations plotted in Figure 4.15 graphically show in which
direction the Deputies must be corrected the most. To overcome the displacements es-
pecially in δa and δλ, the control effort is concentrated in the tangential direction. The
optimal control evaluates that, controlling mainly that direction, the corresponding ∆v

and consequently the thrust are minimised.

Some spikes are visible analysing the figures. This behaviour can be caused by the limi-
tation in thrusters lower limit in thrust generation. When the calculated control action is
below that threshold, the algorithm does not perform any actuation in the seek of realism.
An overshoot might be observed when the control is resumed.

In this section the total ∆vtot required from each satellite to perform the optimal control
evaluated previously is computed. The built-in Matlab function trapz computes the ap-
proximate integral of the total acceleration utot, as in Equation (3.18), via the trapezoidal
method for the whole ten days interval. The results are reported in Table 4.5 for each
Deputies.

Deputy ∆vtot [m/s]

1 6.866

2 7.776
3 7.772
4 6.858
5 7.703
6 7.710

Table 4.5: Total ∆v during ten days.

The required delta velocity is almost the same for all the spacecraft. Again, the se-
lected tuning favours Deputies 1 and 4. The corresponding thrust linked to these ∆vs
is computed according to the second Newton’s law: T = m · u, where the mass is set
to m = 10 kg. As shown in Figure 4.16, thrusters must be able to provide fractions of
Newtons, micro-thrusters (µN) are required.
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Figure 4.16: Thrust level.

4.3.4. Inter-satellite distances

In the end, following the steps described in Section 3.5, the final check is graphically
reported. The distance evolution of each satellite, with reference to the Chief and its
adjacent Deputies is plotted. The minimum range of 7 m is shown (in dashed black)
together with the inter-satellite distance (in blue) and the desired one (in dotted red).

The analysed parameter is ∆R, as in Equation (4.5). The expression is referred to Hill’s
relative coordinates (x, y, z), it is the same for any pair of spacecraft m−n. Consistently
with the definition of the reference frame, the chief position corresponds to the origin.

∆Rm−n =
√
(xm − xn)2 + (ym − yn)2 + (zm − zn)2 (4.5)

At first, the distances relative to the Chief are plotted during the interval. The gain
matrices are tuned on the first Deputy and this is mirrored in Figure 4.17. The other
satellites experience wider oscillation, always granting the precision required by the tech-
nical instrumentation.
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Figure 4.17: Satellites distances from Chief.

In the same way, Figure 4.18 reports the relative position between adjacent satellites.
The risk of spacecraft getting too close to one another is fully prevented during the whole
mission lifetime. The amplitude oscillations around the nominal distances depends on the
Deputies couple. Two satellites sharing the same longitude, as happens for the couples
2-3 and 5-6, are affected by almost identical perturbations. Therefore, the unique control
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logic acts in the same measure for both the spacecraft.
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Figure 4.18: Inter-satellites distances.

This subsection highlights, through figures, the compliance of the safety distance con-
straint. The relative position of each Deputy does not violate the mission requirement for
avoiding collisions at any moment.
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5| Conclusions and future

developments

The implementation of interferometry for space remote sensing missions is arousing in-
terest in the scientific community. The achievable spatial resolution leads the way to a
growing number of studies and researches aiming at proceeding in the technology readiness
levels. The objective of this research is in that direction, with a particular focus on the
Geostationary orbit applications. At these altitudes, if proper control is implemented, the
observed region remains the same and the temporal resolution can be improved. There-
fore, enhanced natural and relative dynamics are required.

5.1. Conclusions and lessons learnt

A remote sensing mission in Geosynchronous equatorial orbit exploiting a distributed pay-
load has been analysed. The simulation of rigid and tight formation has been propagated
for ten days. In Chapter 2 is developed an analytical framework that includes the effect
of Geodetic perturbations up to the second order. The implementation of Mean Relative
Orbital Elements has resulted effectively for Formation-Flying applications. Exploiting
that formulation, the dynamic system is linearized and efficiently numerically propagated.
The disturbing acceleration due to J22 has been introduced in the State Transition Matrix
by computing the partial derivatives of the Chief’s orbital elements with respect to the
Relative Orbital Elements. The innovative natural model obtained has been successfully
validated with the NASA solver GMAT. For Formation-keeping purposes, in Chapter 3
an optimal control logic is analysed. A continuous formulation with low-thrust feed-
back control has been selected. The problem is formulated as Linear Quadratic and the
minimization of the control effort is obtained by solving the Differential Riccati Equa-
tion. The Linear Quadratic Regulator is tuned after performing a sensitivity analysis,
the result assures a control accuracy in the centimetres order. Finally, in Chapter 4 the
simulation results are presented where the main mission constraints have been considered,
inter-satellite distance for instance.
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The main feature of the proposed model is linearity, consequently, a robust and accurate
family of controllers has been implemented. Moreover, the selected set of parameters
allows keeping a link between the relative motion and its visual representation. In terms
of practical findings, despite the ideal nature of the implemented actuators, it has been
proved that low thrust continuous control is a feasible choice for this kind of mission,
laying the foundations for future space tests.

5.2. Limitation of the work

This study is subject to limitations that can affect the work. The presented analysis is
developed considering the controlled state as exactly known at each time step for each
deputy. During the in-space operations, the relative positions are retrieved by sensors,
which consequently introduce noise. Even if the promising results, obtained thanks to the
described model, might mitigate the disturbance with the implementation of a Kalman
filter, there is no evidence of how the system would react. The same consideration applies
to thrusters, the calculated control action will not coincide exactly with the one provided
by the actuators. Significant biases might be introduced, considering the level of precision
required by the scientific mission. The lack of a thruster model does not allow to grant
that the centimetre accuracy is maintained regardless of the noise introduced.

5.3. Further studies and applications

The future developments of this work should go in the direction of designing a real mission
for interferometry in higher orbits. Starting from the dynamic model, other perturbations
due to third bodies, Solar Radiation Pressure and higher Geodetic orders might be taken
into account. The matricial formulations allow superposing the effects, maintaining all
the resulting benefits. An analysis of satellites’ attitude dynamics and control should also
be implemented. The orientation of the satellites is a crucial feature not only for the
scientific payload but also for the orbital dynamics (perturbations due to Sun depends on
the cross area) and for the power budget as well.

Once this technology will comply with the "flight qualified" requirements, then a wide
range of new applications will be available. Mention one of them, Single-pass Synthetic
Aperture Radiometry tomography. Nowadays, multiple passages or multiple satellites are
needed to elaborate tomography imaging. The development of these kinds of missions in
geostationary orbit will improve the actual surveillance and data monitoring capabilities
for a precise area on the globe.
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Finally, before concluding this chapter, a small discussion about the deputies’ attitude
must be included. Along with this document, the spacecraft’s body axes are assumed
to be always coincident with the Radial-Tangential-Normal frame, and the thrusters are
aligned with these directions. This, however, might not be true in general, as the control
accelerations can also influence the spacecraft’s attitude, creating a misalignment between
the directions of the thrusters and the selected frame. Because the required control
actions are all computed there, two different options could be considered to account for
this possible misalignment. The first case is to rotate the required accelerations from
the Radial-Tangential-Normal frame to the spacecraft’s body-fixed frame, to compute the
actual inputs that should be sent to the actuators. To implement this rotation, the actual
attitude of the spacecraft must be known. The second option is implementing an attitude
control algorithm, which can ensure that the body-fixed axis and the reference frame
are aligned at each time instant. With either of these two options, the model predictive
control algorithms could be used in more realistic scenarios, including the spacecraft’s
attitude.
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A| Orbital elements partial

derivatives

In this appendix, the equations describing the secular and periodical variation of the
Keplerian orbital elements are reported. The initial total derivatives are described by
Vallado and McClain in [30].

Secular variation of the Keplerian elements

Semi major axis, a

ȧ = 0 (A.1)

Eccentricity, e

e =
√
e2x + e2y

ė = 0

(A.2)

(A.3)

Inclination

i̇ = 0 (A.4)

Right Ascension of the Ascending Node

Ω̇ = −3

2
J2

(
R⊕

a

)2
1

(1− e2)2
cos (i) (A.5)

Argument of the perigee
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Mean Anomaly
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Periodic variation of the Keplerian elements

ȧ22 = 0 (A.8)

ė22 = 0 (A.9)

i̇22 = 0 (A.10)
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Auxiliary function

g = ω̇ + Ω̇ cos (i) + Ṁ =
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