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1. Introduction
The role of quality of dynamically updated 3D
meshes is quite important in the design and anal-
ysis of many engineering applications where the
boundary between the fluid and the solid can
have motion like aerodynamic shape optimiza-
tion, fluid-structure interaction, moving bound-
ary problem etc ( [1], [2]). The design process
of these dynamic CFD applications require new
meshes in every design iteration. There exist
mainly two kinds of methods to generate the
new meshes for each design iteration. The first
method is to regenerate the mesh after each it-
eration. Since the generation of mesh is a te-
dious task, it is very time expensive to recreate
a good quality mesh after every design iteration,
and therefore it is not the best method to carry
on design iterations. Another shortcoming of
re-meshing is in applications like aerodynamic
optimization, where after each design step, the
targeted field suffers from discretization errors.
The second method to create the new mesh for
the new design iteration is to morph the existing
mesh. This method is hardly as time consuming
but the quality depends on the technique used
to morph the existing mesh. Another benefit of
mesh morphing is the ease to achieve high-order
accuracy in time because of the unchanged mesh

topology with respect to the time steps.
In literature, numerous research has been carried
out to morph the volumetric meshes ( [3], [4]).
There exist mainly two kinds of techniques to
morph a target mesh namely; 1. Physical anal-
ogy based techniques and, 2. Interpolation
based techniques. Among the physical anal-
ogy based techniques, there are spring based,
elasticity based and Laplacian based techniques,
whereas among the interpolation based tech-
niques, there exist the Transfinite interpolation
(TFI), Inverse distance weighting (IDW), Radial
basis functions (RBF), Delaunay graph, Quater-
nions based etc. techniques.
Among the physical analogy based techniques,
the linear elasticity based analogy is the most
promising but the main challenges are the com-
putational cost and optimization of the physical
properties E and ν. As far as the interpolation
based techniques are concerned, the RBF with
greedy algorithm seems to be the well developed
and best performing technique.
The linear elasticity analogy based mesh mor-
phing technique has been widely studied in lit-
erature. From the existing literature of linear
elasticity technique, it is evident that finding
an optimum relation for the elasticity coefficient
E and Poisson’s ratio ν is still a challenge and
hence required to be worked upon. In the field

1



Executive summary Vishal Garg

of aerodynamic shape optimization, the contri-
bution of the linear elasticity technique is not
explored yet. Moreover, for the FSI applica-
tions, complex deformations for complex geome-
tries are not studied well in detail. In literature,
the results of the linear elasticity technique have
not been compared with the results obtained us-
ing any other promising technique at any level
of detail. Therefore, there exist the scope of not
only finding the new relations for the elasticity
coefficient and Poisson’s ratio in the linear elas-
ticity technique but also exploration of it’s use
in different CFD applications and comparisons
of the results with the other different techniques.
Driven by the promising nature of the linear
elasticity technique, the related applications and
possible improvements, the present thesis fo-
cuses on the development of the linear elasticity
analogy based mesh morphing technique. The
objective of the present study is to develop a ro-
bust and accurate mathematical model and find
a global relation for the physical properties E
and ν. A special emphasis is given to the accu-
racy of mathematical model at the boundaries.
A second order accuracy is ensured throughout
the mesh. A parametric study is conducted to
see the effect of different parameters in the re-
lations of E and ν on the quality of the mesh.
The effect of different kinds of surface deforma-
tion on the optimum parameters is analysed too.
Another objective of the present study is to ap-
ply the elasticity morpher to different kinds of
industrial applications and check the quality of
the deformed mesh under different kinds of ex-
treme deformations that the industrial applica-
tion might undergo. The results obtained by the
linear elasticity morpher are also compared with
the results obtained by the existing Laplacian
and the Laplacian quaternions techniques which
were available to the author. Throughout the
study, efforts are made to increase the accuracy
of the various computation terms.

2. Governing equations and
mathematical model

An elastic solid subjected to body forces and
surface traction undergoes deformation. In case
of small deformations, it is possible to govern
the behaviour of the solid using the law of lin-
ear elasticity. For a small displacement U =
(u, v, w) the equation of linear elasticity can be

written as follows:

∇.σ = f on Ω, (1)

Here, f is the body force, σ is the stress ten-
sor, and Ω is the computational domain. The
stress tensor σ can be described in terms of the
strain tensor ϵ using the constitutive relation as
follows:

σ = λTr(ϵ)I + 2µϵ (2)

where λ and µ are the Lamé constants and Tr is
the trace. The Lamé constants are functions of
the material properties Young’s modulus E and
Poisson’s ratio ν as follows:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(3)

The Young’s modulus E shows the stiffness of
the solid. A large E indicates that the solid is
rigid, whereas a low E indicates more elastic na-
ture. Poisson’s ratio ν indicates the measure of
deformation in lateral direction when the solid
is undergone a deformation in the axial direc-
tion. The value of ν for physical materials can
lie between (−1, 0.5).
As per the linear kinematic law

ϵ =
1

2
(∇U +∇UT ), (4)

describes the change in length and orientation of
an element in the solid. For rigid body rotations,
an alternative relation for the Lamé constants is
suggested in a study by Dwight [5] by making
the stress on the elements equal to 0 instead of
the ones derived from the elasticity equations.
It is reported that a better mesh quality is ob-
tained for not only the rigid body rotation cases
but all the other applications in general. These
alternative Lamé constants are shown hereby:

λ = −E, µ = E, (5)

In present work, these alternative Lamé con-
stants are inspected along the ones obtained
from the elasticity equations. As far as bound-
ary conditions are concerned, one of the possibil-
ity over the boundary surface can be the Dirich-
let boundary condition given by U = Ub in ∂Ω.
In literature there have been various ways of
computing the elasticity Coefficient E and the
Poisson’s ratio ν. Among the relations pro-
posed, the relation of E inversely proportional
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to the volume of the cell is widely accepted and
used [4], with ν kept as a constant value between
(−1.0, 0.5). Given the agreement in literature,
in present work, a variant of this relation is pro-
posed and studied. This new relation is shown
as follows:

ECell =
1

(VCell)p
, (6)

Where, ECell and VCell are the elasticity coeffi-
cient and volume of the concerned cell, and p is
an exponent to the inverse of volume of the cell.
Exponent p helps in providing the cells close to
the boundary, which have smaller volume with
respect to the cells far from the boundary, with
considerably high stiffness which in turn helps
these cells in preserving their shape. Another
widely used relation for E keeping the ν con-
stant is inverse of distance from the boundary.
In present work, a variant of this relation is pro-
posed and studied. This new relation is as fol-
lows:

ECell =
1

(dCell)q
, (7)

Where, dCell is the distance of the concerned
cell centroid from the nearest boundary point ,
and q is an exponent to the inverse of this dis-
tance. Just like p, exponent q helps in provid-
ing the cells close to the boundary, which have
smaller dCell with respect to the cells far from
the boundary, with considerably high stiffness
which in turn helps these cells in preserving their
shape.
In present work, equation of linear elasticity is
discretized using a finite volume method (FVM)
and solved using a PETSc library. The FVM
discretization is done based on field variables at
the cell centers. Using Eqs. 2 and 4, Eq. 1 can
be rewritten in the following Einstein form:

∂

∂xi

[
λ
∂uk
∂xk

Iij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
= fi (8)

This system of equation needs boundary condi-
tions to be solved. This boundary condition in
case of the equation of linear elasticity can be
Dirichlet kind or the Neumann kind based on
the boundary information provided. It is to be
noticed that the equation of linear elasticity is
valid only for small deformations, and therefore,
a multi-step approach is used to allow the linear
elasticity equations to be applicable to the large
deformations. The algorithm used in the present
work is shown in Algorithm 1.

Algorithm 1 Solution algorithm for the elasticity
solver with multi-step.
1: Setup the solver: Initial geometry, boundary

displacements on nodes, relaxation factor
2: Interpolate displacements from boundary

nodes to boundary face centers
3: Computation of the cell and face gradient

stencils
4: Computation of the Lamé constants
5: Computation of the Laplacian stencils
6: Initial guess for the displacements in the

bulk mesh
7: Divide the boundary displacements by

nsteps
8: Initialize the solver by passing the LHS
9: for (istep = 0; istep < nsteps; istep + +)

do
10: while max(residuals) < Tolerance do
11: Compute the cell and face gradients
12: Compute the source terms due to

Terma and Termb1
13: Compute the source term due to the

contribution from Laplacian term
14: Compute the overall source term
15: Solve the linear system of equations us-

ing PETSc component by component
16: Compute the residuals using the new

and old solutions
17: end while
18: Interpolate the obtained displacements

from cell centers to nodes
19: Calculate the error between the boundary

displacement provided and obtained from
this step and propagate into the bulk mesh

20: Update the displacements in the bulk
mesh

21: Apply the displacements on the bulk mesh
and update the geometry

22: if istep < nsteps-1 then
23: Update the cell and face gradient sten-

cils
24: Update the Lamé constants
25: Update the Laplacian gradient stencils
26: Update the LHS in the solver
27: end if
28: Compute the total displacement upto this

step
29: Set the solution as the initial guess for the

next step
30: end for
31: Restore the initial geometry
32: Restore the initial boundary condition
33: Final displacements3
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3. Results: A non-uniform cube
In present work, the results of the developed
elasticity solver are demonstrated on a non-
uniform cube with 64k cells by applying mainly
two different and opposite kinds of boundary
conditions; namely, outward and inward. In the
outward kind of boundary condition, all the 6
faces of the cube are expanded by pivoting the
center of the faces and pulling by a length 60%
of the edge length of the cube. In the inward
kind of boundary condition, the same faces are
compressed by pivoting the centers of the faces
and pushing by a length 25% of the edge length
of the cube. To obtain the results in the present
section, the elasticity coefficients are computed
using an inverse of volume method as explained
in Sec. 2 with exponent p = 1. In present work,
because of the use of a FVM for discretization,
the displacement field is computed at the cell
centers and then interpolated to the nodes. The
magnitude of the displacements obtained from
the linear elasticity solver for an outward defor-
mation at the cell centers are shown in the left of
Fig 1. The displacement field at the cell centers
increases from blue to red color. After interpo-
lating the displacement field from the cell centers
to the nodes and applying this displacement field
on initial geometry, the final deformed geometry
is obtained as shown in right of Fig 1. Similarly,

Figure 1: Mesh morphing for a cube with 64k
cells: outward deformation.

for the inward deformation, the displacements
on the cell centers and the final deformed mesh
are shown in Fig. 2. For the cases of outward
and inward deformations, it is observed that the
boundary cells of the cube show the least shape
change and hence preserve their shapes. This
happens because of more stiffness at the cells
close to the boundaries due to the low cell vol-
umes near the boundaries. It is to be noticed

Figure 2: Mesh morphing for a cube with 64k
cells: Negative deformation.

from the results that the orthogonality of the
mesh near the boundary is very close to 90 deg,
which shows a good quality of the mesh near
the boundary. It can be also observed that the
deformed mesh in both the outward and inward
deformations is not in straight line but curved
lines which means that the displacements in dif-
ferent dimensions are dependent. The reason for
this behaviour of the deformed mesh is the cou-
pled behaviour of the linear elasticity equation
defined by a trace as shown in Eq. 8.

Def-
orma-
tion

Max.
non-
ortho-
gonality
(deg.)

Max.
boundary
non-ortho-
gonality
(deg.)

Avg.
non-
ortho-
gonality
(deg.)

Max.
skew-
ness

Out-
ward

66.13 17.11 21.76 0.83

In-
ward

22.71 3.65 6.64 0.44

Table 1: Mesh quality in outward, inward and
no deformation cases.

A table containing various mesh quality param-
eters for the outward and inward deformations is
shown in Table 1. For a good quality mesh, the
non-orthogonality at any interface should not
be more than 70◦ which is satisfied by the re-
sults in Table 1. Additionally, positive minimum
cell volumes and passed cell face validity are ob-
tained which show that both the cases generate
valid meshes for the applied displacements. For
the mesh morphing applications as discussed in
Sec. 1, the quality of the mesh at the bound-
aries should be good. It is evident from Table 1
for the present case of a non-uniform cube, that
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the maximum non-orthogonality at the bound-
ary comes out to be almost 17◦ and 3.5◦ for the
outward and inward deformations respectively
which show a good mesh quality.

3.1. Single vs multi-step approach
The present section describes the results for
the case of a non-uniform cube using a multi-
step approach. For the current study, 4 differ-
ent number of steps are chosen and compared
for both the outward and inward deformation
boundary conditions. As per the discussion in
Sec. 2, the Lamé constants are computed using
an approach mentioned in Eq. 5 to consider the
rigid body motion as well.
For both the outward and inward deformations,
the non-uniform meshed cube is simulated with
1, 2, 5 and 10 steps. The results for these 4
different cases are shown in Fig. 3 and 4. In
the case of an outward deformation, the effect
of multi-step is not so clear in the cross section
images, and therefore, a mesh quality Table 2
is shown for details on the quality of the mesh
with the number of steps.

(a) One step. (b) 2 steps.

(c) 5 steps. (d) 10 steps.

Figure 3: Outward deformation using the multi-
step approach as shown in Sec. 2.

It can be observed in Table 2 that the maximum
non-orthogonality does not change much but
the average non-orthogonality decreases consid-
erably by increasing the number of steps. It
can be also observed that the maximum non-
orthogonality at the boundary decreases as well
which is much needed improvement for mesh
morphing applications. For all the cases with
different number of steps, it is found that the

Steps Max.
non-
ortho-
gonality
(deg.)

Max.
boundary
non-ortho-
gonality
(deg.)

Avg.
non-
ortho-
gonality
(deg.)

Max.
skew-
ness

1 61.99 24.37 20.69 0.80

2 61.63 22.79 19.17 0.83

5 62.01 22.02 18.03 0.85

10 61.95 21.65 17.58 0.86

Table 2: Mesh quality in outward deformation
with different number of steps.

minimum cell volume is positive and all the
cell face validity are passed which indicate that
all the deformed meshes remain valid. It is
to be noticed that the skewness increases with
the increase in number of steps but the extent
of increase is not considerable with respect to
the betterment in the non-orthogonality and a
trade-off benefits the high number of steps.
For an inward deformation, all the 6 faces of
the cube are pushed by a length equal to 25%
of the edge length of the cube with respect to
15% in the previous section to better show the
impact of the multi-step approach. Unlike the
outward deformations in Fig. 3, the effect of us-
ing a multi-step approach is clearly visible in
Fig. 4. For such a high inward deformation, a
single step approach as shown in Fig. 4a fails to
provide a valid mesh. It can be seen that the

(a) One step. (b) 2 steps.

(c) 5 steps. (d) 10 steps.

Figure 4: Inward deformation using the multi-
step approach as shown in Sec. 2.
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nodes at and near the boundary intersect with
the nodes in the bulk mesh. For steps 2-10 in
Fig. 4, it can be observed that the congestion
of the mesh near the boundary decreases with
increase in number of steps, which indicates that
the mesh near the boundary is preserving it’s
shape more for more number of steps. To look
into further details, the mesh quality parameters
are listed in Table 3 for a comparison between
all the 4 cases.

Steps Max.
non-
ortho-
gonality
(deg.)

Max.
boundary
non-ortho-
gonality
(deg.)

Avg.
non-
ortho-
gonality
(deg.)

Max.
skew-
ness

1 180.0 3.99 13.25 6.7

2 37.98 4.83 12.57 0.73

5 39.61 5.61 13.49 0.73

10 40.3 5.99 13.82 0.73

Table 3: Mesh quality in inward deformation
with different number of steps.

For a single step approach, it is clear from Ta-
ble 3 that the maximum mesh non-orthogonality
of 180◦, negative mesh volumes and a 0 cell
face validity exist, which make the overall mesh
invalid. For number of steps 2 − 10 it is ob-
served that the maximum and average non-
orthogonality and maximum skewness increase
slightly with the increase in number of steps.
The reason behind this behaviour can be ex-
plained using Fig. 4 where it can be seen that the
increase in number of steps decreases the con-
gestion near the boundaries. Due to decrease in
congestion near the boundaries, the mesh over-
all moves towards the center of the cube and be-
cause of the finite volume inside the cube, the av-
erage angle between the normal of a face and the
vector connecting the two neighbour cell centers
increases. The similar happens at the boundary,
where the cells are more orthogonal when they
are smaller and hence closer to each other but
they become less orthogonal when the conges-
tion reduces and cells try to preserve their orig-
inal shape and hence farther from each other.
Overall, it can be said based on observations
that a multi-step approach gives better results
than a single-step approach in terms of mesh

quality. Although the optimum number of steps
can vary application to application. For appli-
cations with outward like deformations, clearly
more number of steps help in providing better
quality morphed mesh, but for inward like defor-
mations, more number of steps helps in preserv-
ing the shape of the mesh close to the boundary
but it hardly helps in enhancing the mesh qual-
ity parameters studied in the present work.

3.2. Parametric study
In present section, 2 different kinds of paramet-
ric studies are conducted; One on the Elasticity
coefficient E, and the other on the Poisson’s ra-
tio ν. In the first kind of parametric study on
elasticity coefficient E, 2 different relations to
compute the elasticity coefficient are considered
with two different parameters p and q respec-
tively. In the second kind of parametric study,
an optimum Poisson’s ratio ν is found out by
simulating the linear elasticity solver for differ-
ent ν values. An outward and an inward kinds
of deformations are considered for the simula-
tions with a single step approach. A summary
of the outcomes based on the parametric study
conducted in the present chapter is listed as fol-
lows:
Elasticity coefficient E
• For any kind of deformation considered in

this section, increasing the parameter p in
the inverse volume relation or q in the in-
verse distance relation helps in preserving
the mesh near the boundary but compresses
the internal mesh far from the boundary re-
sulting in clustering of cells.

• For an outward deformation, parameter p =
0, 1, 2 provides valid meshes in increasing
order of mesh quality and parameter q =
0, 1 provides valid meshes with increasing
order of mesh quality. When comparing the
mesh quality tables, it is found that the in-
verse volume method with p = 1, 2 provides
better results than inverse distance relation
with q = 1. The parametric results for the
case with inverse of volume method with
the outward kind of deformation are shown
in Fig. 5.

• For an inward deformation, a valid mesh
is generated using p = 3, 4 with decreas-
ing mesh quality and q = 1. The deformed
mesh fails for p = 0, 1, 2 and q = 0 because
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(a) p = 0. (b) p = 1.

(c) p = 2. (d) p = 3.

(e) p = 4. (f) p = 5.

Figure 5: Effect of inverse of volume exponent p
on the Inward deformation.

of clustering and inversion of cells near the
boundary and fails at p = 5 and q >= 2 due
to clustering and inversion of cells far from
the boundary. When comparing the mesh
quality tables, p = 3 and q = 1 provide
comparable mesh quality.

It is to be noted that the present paramet-
ric study is conducted over high deformations.
There might exist small deformations where all
the relations are able to provide with a valid
mesh. The optimum choice of the parameters p
and q depends on the kind of deformation pro-
vided as well.
Poisson’s ratio ν
• Despite the possible upper limit of the Pois-

son’s ratio ν being 0.5, a converged solution
is obtained only until a maximum of 0.3 for
both the outward and the inward kinds of
deformations.

• For both kinds of deformations, a Poisson’s
ratio ν > 0 generates the mesh with opti-
mum mesh quality.

3.3. Comparisons with Laplacian and
quaternions methods

In this section, the developed linear elasticity
solver is compared with some of the promis-
ing existing mesh morphing techniques; namely,
Laplacian and Laplacian quaternion techniques
each with and without the narrow band width.
The results of all the techniques are compared
for a single as well as multi-step approaches. For
an outward deformation with a single step ap-
proach, the results are compared in Fig. 6.

(a) Linear elasticity
analogy.

(b) Laplacian technique.

(c) Laplacian quater-
nions technique.

(d) Laplacian technique
with Narrow band
width.

(e) Laplacian quater-
nions technique with
Narrow band width.

Figure 6: Outward deformation in the cube with
a single step approach.

For a single step approach, irrespective of the
kind of deformation, the linear elasticity solver
clearly provides results with much better mesh
quality. The boundary mesh is preserved in a
much better way in the solution of linear elas-
ticity solver. The linear elasticity technique out-
performs all the other techniques in all the mesh
quality parameters. In a similar comparison for
a multi-step approach, the linear elasticity tech-
nique clearly outperforms the Laplacian tech-
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nique for any kind of deformation with or with-
out the narrow band width. For a multi-step
approach, for an outward deformation, the lin-
ear elasticity technique provides better results
in the bulk mesh than the Laplacian quater-
nion technique with or without the narrow band
width, but the Laplacian quaternion techniques
with and without the narrow band width pro-
vides with better results at the boundary. For
a multi-step approach with an inward deforma-
tion, the mesh quality comes out to be compa-
rable for the linear elasticity technique and the
Laplacian quaternion technique with or without
the narrow band width. The narrow band width
improves the mesh quality for both the outward
and inward deformations at the boundary but
worsen the mesh quality in the bulk mesh.

4. Industrial cases
Mesh morphing has various applications in the
field of aerodynamic shape optimization, FSI,
moving boundary problem etc. as discussed in
Sec. 1. These wide field of applications pro-
vide the opportunity to apply the presently de-
veloped linear elasticity mesh morpher on the
meshes undergoing such applications and test
the quality of the output mesh. So far, the de-
veloped linear elasticity mesh morpher is tested
only on a non-uniform cube with 64k cells. To
test the robustness of the presently developed
linear elasticity technique, two industrial cases
from two different application fields are consid-
ered as follows:

• Wing of an airplane: FSI application
• Aerodynamic shape optimization in a car

4.1. Wing of an airplane
In present subsection, the industrial case of the
wing of an airplane is considered. Unlike the
non-uniform cube, where only the structured
mesh with hexahedron kinds of cells was used,
the wing contains a totally unstructured mesh
with tetrahedron and hexahedron both kinds
of cells. The mesh of the wing contains over
1.25 million cells including a symmetry plane.
For the possible deformations under a turbu-
lence like situation, it is found that the wing can
withstand a linear bending upto 34◦, non-linear
bending upto 47◦, twisting upto 47◦, cambering
upto 55◦, and bending + twisting of upto 51◦.
By increasing the angle of bend or twist more

than the limits just mentioned, the mesh fails
due to a high maximum cell non-orthogonality
(>85◦) for the bending and bending + twist-
ing cases and due to a high maximum bound-
ary non-orthogonality for the twisting case. The
cambering deformation fails because of the max.
non-orthogonality and cell face validity crossing
the respective limits and a negative cell volume
altogether. The case with bending + twisting
kind of deformation is shown in Fig. 7. The var-
ious mesh quality parameters for the comparison
of different angles of deformation are plotted in
Fig. 8.

(a) Undeformed mesh.

(b) Non-linear bend + twist of 50◦.

Figure 7: Non-linear bending + twisting in a
wing.
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Figure 8: Mesh quality plot for a bend + twist
in the wing of an airplane.

These case studies are performed with using the
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Laplacian and Laplacian quaternion techniques
and a comparison is made with the presently
developed linear elasticity model. The results
show that the maximum possible bend, twist or
camber with a valid mesh with the use of the lin-
ear elasticity technique are of the order to that
when using the Laplacian quaternions technique,
whereas the linear elasticity solver outperforms
the Laplacian quaternions technique for a rel-
atively complex non-linear bending + twisting
kind of deformation.

4.2. Aerodynamic shape optimization
in a Car

In present section, the industrial case of a car is
considered as shown in Fig. 9a. The mesh for the
car consists of almost 2 million cells with polyhe-
dral shape. To obtain the boundary deformation
as the boundary condition, a RBF parameteri-
zation technique is used. The deformation in
the surface of the car considered in the present
section is shown in Fig. 9b. For the surface de-
formation, 6 different kinds of deformations are
provided at different parts of the car. These de-
formations are: front window angle change, rear
window angle change, roof drop or change in roof
angle, greenhouse angle change,

(a) Undeformed surface mesh.

(b) Deformed surface mesh.

Figure 9: Surface deformation in the industrial
case of a car.

front bumper nose extrusion, and front bumper
nose drop. All these deformations can be ob-
served in Fig. 9. It is to be noticed that the

Dirichlet boundary condition is available only at
the car surface and the walls of the CFD domain,
and therefore, a slip condition is applied at the
symmetry plane.
In present section, a multi-step approach with 5
steps is used to propagate the deformation in the
volumetric mesh of the car. The elasticity coeffi-
cient E for the present section is computed using
the relation with the inverse of volume with an
exponent p = 1. The volumetric mesh displace-
ment is demonstrated by showing a plane par-
allel to the symmetry plane for the initial and
final geometries as shown in Fig. 10.

(a) Undeformed mesh.

(b) Deformed mesh.

Figure 10: Volumetric mesh at a plane parallel
to the symmetry plane.

It is evident from the results that the present
linear elasticity based technique can morph the
high deformation provided in the design of the
car. The results for the present industrial case
are compared also with the results obtained us-
ing a multi-step approach Laplacian quaternions
technique. It is found in the comparisons that
the presently developed linear elasticity tech-
nique provides with much better mesh compared
to the Laplacian quaternions technique.
It is to be noticed for both the wing and the car
industrial cases that the mesh near the boundary
preserved their respective shapes despite high
deformations and make the presently developed
linear elasticity technique a robust tool to de-
form the meshes with high deformations thanks
to the multi-step approach.
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5. Conclusions and discussion
In present thesis, a mesh morpher based on the
linear elasticity analogy is developed to propa-
gate the surface deformation in the volumetric
mesh. A FVM is used to descritize the PDEs
and a PETSc library is used to solve the linear
system of equations. While computing the cell
and face gradients using a 2nd order least square
method, the missing boundary contributions in
the original method are also considered in or-
der to keep the 2nd order of accuracy through-
out the domain including the boundary and it
is found that the added boundary contributions
improve the accuracy of the cell and face gradi-
ents. Since the linear elasticity law is defined for
small displacements, a multi-step step approach
is developed where the solution geometry of the
previous step is used as the initial geometry of
the next step. For various geometries in general,
it is found that the quality of the resulted mesh
improves with an increase in the number of the
steps in the multi-step approach.
A variation of two of the pre-existing relations
for the computation of the elasticity coefficient
E is proposed and analyzed in the present work.
It is observed that the optimum values of the pa-
rameters used in these relations depend on the
kind of deformation and the complexity of the
mesh, which opens up a future opportunity to
develop a method with the use of the introduced
parameters depending on the type, size and lo-
cation of the mesh control volume element.
The developed linear elasticity technique is
tested for two different CFD applications, FSI
and aerodynamic shape optimization, by means
of two different industrial cases with much more
complex and different kinds of meshes than the
non-uniform cube. The first industrial case of
the wing of an airplane contained tetrahedral
and hexagonal mesh cells and tested over dif-
ferent kinds of deformations inspired by the tur-
bulence event and aerodynamic shape optimiza-
tion. It is observed that the presently developed
linear elasticity solver is able to solve the high
deformation provided to the wing and the car
without any negative cell volume or cell inver-
sion. The cells near the boundary of the car
preserve their shape due to high stiffness caused
by newly introduced relations for the elasticity
coefficient E.
In a comparison of the results obtained using

the presently developed linear elasticity tech-
nique with the promising techniques such as the
Laplacian technique and the Laplacian quater-
nions technique with and without a narrow band
width for single and multi-step approaches, it is
found for the initial geometry of a non-uniform
cube, that the linear elasticity technique clearly
outperforms the Laplacian technique with and
without the narrow band width, whereas the
Laplacian quaternions technique produces com-
parable results with the linear elasticity tech-
nique. For the complex initial geometries of a
wing and a car, for simple kinds of deformations,
the linear elasticity technique can generate a
valid mesh up to same order of respective defor-
mation as with Laplacian quaternions technique,
whereas the linear elasticity technique outper-
forms the Laplacian quaternions technique for a
relatively complex deformation.
Therefore, based on the results of the non-
uniform cube, the wing of an airplane and
the car, it can be said that the presently de-
veloped multi-step approached linear elasticity
solver provides with the best results compared to
the Laplacian and Laplacian quaternions tech-
niques with and without the narrow band width.
This shows and affirms that the presently devel-
oped linear elasticity based mesh morpher can
be used for the FSI, aerodynamic shape opti-
mization and all the other kinds of CFD appli-
cations where mesh morphing is required.
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