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1. Introduction

Due to the high number of active satel-
lites placed on the Geostationary Earth Orbit
(GEO), it is necessary to guarantee their co-
habitation and prevent any possible collision. A
longitude and latitude drift from the desired co-
ordinates is expected to occur because of the
presence of constant perturbations, generated
by the non spherical Earth gravitational field,
and time-variant ones, such as the soli-lunar at-
traction and the solar radiation pressure (SRP)
acting on the body. An active control is then
mandatory to maintain the spacecraft in its as-
signed slot, made of stringent angular bands per-
mitting only contained displacements (typically
less than 0.1°) around the nominal location.
This set of programmed actions is called Station
Keeping (SK) strategy. It is nowadays achieved
by exploiting low-thrust electric engines, opti-
mizing the thrust arcs and the whole sequence of
firings. It is therefore possible to save propellant
mass while consequently increasing the payload
one and the mission lifetime. Real SK prob-
lems are usually faced through linear approxi-
mations of the dynamics as in [5], or thanks to
heavy numerical algorithms, as done by [1], in-
cluding thrusters configuration and constraints

on the duration of the firings. Already explored
by [4], high order control allows to tackle the
high nonlinearities, to reach a more optimized,
accurate solution than linear ones and to re-
duce the computational burden required by the
classical numerical methods. This can be ob-
tained exploiting Differential Algebra (DA) tech-
niques to solve a feedback optimal control prob-
lem (OCP) with mere evaluations of polynomial
maps. This thesis proposes a new, possible ap-
proach to geostationary SK, proving the poten-
tial of DA in this particular field, by consider-
ing a preliminary and simplified simulation, in-
cluding unbounded thrust, no particular engines
layout and the absence of path constraints dur-
ing the powered phases. The workflow foresees
a target determination procedure, followed by
the solution of both an Energy Optimal Prob-
lem (EOP) and a Fuel Optimal one (FOP).

2. Fundamentals

2.1. Free-Drift Dynamics

Affected by the geopotential perturbation, the
Sun and Moon influence and the SRP, when a
GEO satellite is free to naturally drift from its
assigned location ([l5, 0°]), its dynamics can be



described by a perturbed (ap) Two-Body Prob-
lem (TBP) as in Equation 1:

i‘:—%r—i-ap (1)

This motion can be turned and integrated in the
Earth Centered Earth Fixed (ECEF, Figure 1)
spherical coordinates r, A and ¢: distance, lon-
gitude and latitude respectively.
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Figure 1: ECEF Reference Frame. X,Y,Z:
Geocentric Fquatorial Reference System; ©:
Greenwich Hour Angle; a: Right Ascension

As a consequence, a latitude displacement of
0.85° /year occurs, as well as a longitude one,
whose magnitude depends on the nominal coor-
dinate. For a spacecraft located at 60° E, the
longitude drift rate is about 30°/year.

2.2. High Order Feedback SK OCP

In order to counteract these disturbances, a set
of manoeuvres shall be scheduled to ensure that
the satellite won’t violate the slot bounds shown

in Figure 2 ()‘maxa ¢max)-
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Figure 2: Station Keeping Window in ECEF
frame

These low-thrust phases generate a sequence of
controlled trajectories. Each one can be opti-
mized with the aim of minimizing a certain cost
function. Introducing the state (x) and costate
(1) formulation and their dynamical flows f,g,
thanks to the calculus of variations, the consid-
ered, generic OCP can be transformed into a
Two-Point Boundary Value Problem (TPBVP):
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subject to initial and final conditions on the
state x. Thanks to DA, an arbitrary order k
Taylor series expansion of the solution of the
TPBVP with respect to initial and final state
can be performed in a computer environment.
The first step consists in initializing the state
and the costate at initial time as DA variables
about a reference Xo, lo:

Xg = Xg + 0Xg (3a)
lo =1p + 6l (3b)

The dependence of the final conditions on the
initial state and costate values is obtained in
terms of high order polynomial maps (M). Us-
ing the DA expansion techniques, the solution at
final time is expressed as a k order polynomial
with respect to the starting conditions, as in [2].
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Subtracting the constant parts:

0xe\ [ My, 0Xo (5)
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and extracting the map for the final state, the
following new relation can be built concatenat-

ing My, with the identity map Iy, related to the
initial state variation:

(2)-(E)(R)

By virtue of the polynomial inversion tech-

niques:
%o _ (M, ! oxg (1)
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the initial costate displacement with respect to
the reference, representing the optimal control
law, can be finally found imposing a desired dxg:

(510 = Mlo ((5Xf, 5X0)
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3. Methodology

The SK strategy adopted in this thesis is based
on a cyclic sequence made of a free-drift (FD)
stage followed by a controlled section targeting
a specific point inside the allowable region, tai-
lored to maximize the free permanence within
the permitted latitude-longitude bands until the
next powered phase starts. A year evolution is
considered for the test spacecraft in Table 1 and
from January 1%¢, 2023 at 00 : 00. DA is applied
to compute the optimal, arbitrary order solution
for each one-day long fixed thrust arc. Thanks
to this, 14 control cycles in a year are needed.
Due to the time dependence of the disturbances,
each target is different, as well as the duration
of each FD track, as shown in Figure 3.
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Figure 3: SK Cycles Duration in o Year

The control trajectories are optimized through
the minimization of two different cost functions
J over the thrust arc duration [t;,tf]. The EOP
minimizes the performance index

1 [l
J = / uTudt 9)
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being u the control accelerations vector. The
FOP reduce the consumed mass to a minimum

T, ty
J =" / udt (10)
Ispgo t;

being u the throttle ranging from 0 to 1, I, the
specific impulse, T}, the maximum available
thrust and gy the Earth’s gravity acceleration.

3.1. EOP

The state dynamics can be rewritten as:

x = f(x,u,t) = f(x,t) + B(x)u (11)

where f(x,t) expresses the dynamics that does
not depend on the control and B(x) is the input

matrix related to the external commands. The
Pontryagin Maximum Principle and the calcu-
lus of variations give the expression of u with
respect to the costate:

u=-BTl (12)
and the EOP final TPBVP:
% = f(x,t) — BBTI

i— _<W%<M)Tl (13)

Subject to: x(t;) = xci and x(tf) = xp. In
the EOP case, the SK slot is viewed as a neigh-
bourhood of the nominal satellite location xp
(Figure 4). This avoids to compute a reference
path, since the considered baseline is the desired
SK point, and enables to treat time dependent
and time invariant perturbations separately.

Figure 4: General EOP Solution Design in the
Neighbourhood of xp

At a control cycle k, the FD phase starts from
the previous loop target xp*~1; when it ends,
the engines are switched on (xcj), targeting the
new objective x1*. The optimal law dly is ob-
tained with DA as in 8, evaluating the EOP TP-
BVP polynomial map in the initial perturbation
0xo and enforcing the final target imposing dxs
as the inverse of the constant part of the map:
C = [xf] — x.

3.2. FOP

The FOP solution is found taking the EOP re-
sults as initial guess and leads to a different
shape of the control profile. While the EOP is
characterized by a continuous action, the FOP
generates a bang-bang thrust made of a switch-
ing sequence between 'ON’ (u = 1) and 'OFF’
(u = 0) modes. This commutations (¢s) pat-
tern is computed numerically. DA is then used



to build up a robust control trajectory capable
of counteracting potential uncertainties or addi-
tional perturbations with respect to the refer-
ence, as already developed in [3].
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Figure 5: General FOP Solution Design in the
Neighbourhood of the Reference Trajectory

The FOP TPBVP assumes the shape:
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Subject to: x(t;) = xci, m(t;) = mo, x(tf5) =
xt and I (ty) = 0. Here, m is the mass of the
spacecraft, « is the direction of the control, 1
and [,, are the velocity and the mass costates
respectively. The switching sequence is deter-
mined by the sign of the switching function p:
uw =0 when p > 0; u = 1 when p < 0. With

Ispg()
m

p=1- | = lm (15)

Solving the FOP is cumbersome, due to its high
sensitivity on initial conditions. The transfor-
mation from continuous thrust to bang-bang one
is reached through the continuation method ap-
plied in [3] and consisting in approximating u as
a C'* function as:
1
u =
1+ epr
where p is a continuation parameter starting
from 1 and then increased until the ON-OFF
shape appears. Once the numerical baseline is
computed, DA is demonstrated to be more pow-
erful than the iterative algorithm for a robust
correction of initial displaced conditions.

(16)

4. Results

The simulations are conducted on a test satel-
lite, whose main paremeters are collected in Ta-
ble 1, and for a SK window made of 0.1° angular
bands.

molkg] As[m?] B Ispls] TIN] L[]
3000 100 0.5 3800 0.33 60E

Table 1: Test Satellite Properties: Ag reflectivity
area; B reflection coefficient; T maz thrust

The findings are computed using the Python
interface of the Differential Algebra Computa-
tional Toolbox (DACE), on an Intel Core i7-
1065G7 1.50 GHz, running Windows 11 Home
64 bit, 16 GB RAM.

4.1. EOP Results

In the EOP case the SK control can be di-
rectly found by the evaluation of onboard loaded
polynomials, reducing the effort to a minimum
and satisfying the constraints. In light of the
SK strategy adopted, the problem is success-
fully solved when the final optimized targets are
matched with a sufficient precision. The lin-
earized (15¢ order) solution is totally inaccurate
and consequently unable to maintain the space-
craft inside its assigned region, as highlighted by
Figure 6.
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Figure 6: SK Box in a Year. 1%¢ order Solution

A 27 order solution is enough to satisfy the
SK requirements and obtain almost the same
result provided by a numerical single shooting
technique. Despite the lack of path constraints
causes an eastward violation of the slot during
the powered phases, Figure 7 shows high accu-
racy during the whole SK period. However, since
the quadratic DA maps shall be computed every
cycle, this approach involves a computational
burden of 28.86s in a year, which is slightly



higher than the one required by a shooting algo-
rithm (24.09s).
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Figure 7: SK Boz in a Year. 2™ order Solution

Anyway, this is not a complete disadvantage
considering that the numerical solution must be
run every time a displacement occurs, which is
not the case if the control is achieved evaluating
a polynomial that expresses the dependence of
the final conditions on every possible initial per-
turbation at that specific cycle. An important
reduction of the computational effort (12.22s) is
reached separating the autonomous (time invari-
ant) dynamics from the non-autonomous one.
This makes it possible to build up a control law
evaluating, at every cycle, the same 4% order
autonomous polynomial and then correcting it
with the complete linear (15¢ order) solution. As
presented in Figure 8, an interesting output is
given by this approach, merging the computa-
tional speed of linearized methods and the pre-
cision of high order ones. A small violation of
the slot occurs both eastwards and westwards
but it is limited in time and magnitude. It can
be also diminished by decreasing the control du-
ration or by shrinking the target searching box,
abandoning the global optimality of the solution.
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Figure 8: X in a Year. 4™ order Autonomous
expansion and Linear Correction

There is no criticality on the latitude (Figure 9),
well bounded by the assigned constraints, and on
the radius, oscillating 10 km around the GEO
one (42165 km). Despite a quite high value of

the maximum thrust needed (0.3236 N), a com-
petitive annual Av of 72.787m/s is granted.
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4.2. FOP

In the FOP a robust correction can be obtained
around a loaded reference by the onboard expan-
sion of DA quadratic polynomials about it. The
EOP one-year consumption is reducible with
the FOP bang-bang thrust profile. The nu-
merical FOP reference given by a single shoot-
ing approach, initialized by the EOP control
law and sequentially solved with the continu-
ation method previuosly presented, provides a
Awv drop to 60.846m/s, corresponding to only
4.89 kg of burnt gas in a whole year. Due to
the high complexity of the problem, an expan-
sion of such a kind takes 41.178s per cycle. This
is clearly not convenient when dealing with a
displacement in the initial conditions. If the ref-
erence is loaded onboard, it is possible to ex-
pand a DA polynomial about it for a robust and
quick correction counteracting any disturbance.
A 27 order DA map of the FOP is available in
only 15.044s. When a perturbation occurs, it is
able to generate new bang-bang optimal control
profiles avoiding to rely on the heavy numerical
solution.
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Figure 10: End of FD trajectories. Dispersion
due to different 5

For the first cycle only, a set of 100 initial dis-



placements are considered due to the variation
of the reflection coefficient S from 0 (total ab-
sorption) to 1 (total reflection). The dispersion
at x¢j is represented in Figure 10.

The final target is matched by every trajectory
by a new set of optimal control profiles depend-
ing on 3, as in Figure 11.
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Figure 11: u Profile Variation

The final dispersion is reduced a lot and the fol-
lowing FD phase remains inside the SK box, as
desired (Figure 12). The higher the precision
of the control action, the lower the final disper-
sion. If the accuracy is high enough, the next
FD phase trajectories starting from each final
control state will collapse into a single path.
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Figure 12:  Free-Drift tracks after 2™ Order
Control

This clearly does not happen if an imprecise lin-
ear approach is used (Figure 13).
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Figure 13: Free-Drift tracks after 15t Order Con-
trol

5. Conclusions

Although a simplified problem is taken into ac-
count, its relevant findings suggest further inves-
tigations. The power of this method is demon-
strated since it grants: an increased precision
compared to linearized control; a low computa-
tional burden as against numerical techniques;
the opportunity to build up a quick and robust
controlling action from onboard DA maps; a low
overall annual consumption. Future develop-
ments could consider to: add path constraints
along the powered phases; reduce the maximum
value of the thrust needed; consider particular
engines configurations and bounds on firing du-
ration and direction; involve the attitude dy-
namics e.g. adding pointing requirements.
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