
An autotuning controller for CPU
power/performance/thermal man-
agement

Tesi di Laurea Magistrale in
Automation and Control Engineering - Ingegneria
dell’Automazione

Author: Riccardo De Rosi

Student ID: 976820
Advisor: Prof. Alberto Leva
Co-advisors: Federico Terraneo
Academic Year: 2022-23

i

Abstract

This thesis is part of a long-term research work that aims to define new control strategies
for the combined management of temperature, power, and performance in multicore mi-
croprocessors. In this context, the thesis goal is to develop a controller capable of adapting
itself automatically to a specific processor in its installation conditions, regardless of the
particular architecture of the said processor.

In this work, the focus is in some sense implicitly set on future generations of processors,
thinking in particular to three-dimensional architectures as these exhibit higher power
density together with the disadvantage, as opposed to their “planar” counterparts, of not
having all layers in contact with the heatsink, increasing the risk of thermal runaway.
In such a scenario – but worth noticing, also for modern planar architectures – devel-
oping a processor-integrated controller that can manage power and performance, while
ensuring adequate temperature control to improve processor reliability and reduce power
consumption, is critical.

At present, the control strategies adopted by the industry on commercial processors tend
to separate power/performance management from temperature control, leaving the former
to the operating system – by means of components such as the Linux governors – while
the latter is left to the processor hardware. This division of roles is, however, becoming
questionable owing to the increasing power density and as a consequence of the faster and
faster thermal dynamics, and the compound of the above leads to non-optimal control
solutions.

The purpose of this thesis is to pursue the attempt to address these problems in a coor-
dinated manner – so that a single controller handles them – and most relevant, to give
that controller the ability of adapting to the processor to which it is connected, making
its large-scale deployment feasible as no human tuning intervention is required. Thus,
the purpose of the proposed control is to manage the temperature of individual cores
in a multi-core processor, simultaneously solving the problems of temperature, power,
and performance, through the use of control theory and rules suitable for self-calibration
based on experiments conducted in an initial control phase (for example, when a system

ii | Abstract

is booted up).

A validation of the control strategy through simulations is also an integral part of this
thesis. Several experiments are proposed, as proof of the choices made, comparing the
techniques considered for the autotuning phase in order to (preliminarily) show their
advantages and disadvantages. To this end, the proposed autotuning controller was also
implemented as C++ code – a nontrivial software design and engineering task – so as
to have it ready for deployment on a real processor. Correspondingly, simulation tests
were conducted both with simplified models for system-level studies (using the Modelica
language) and with an accurate 3D chip thermal simulation (3D-ICE, to which the C++
autotuning controller was coupled).

Keywords: autotuner; thermal control; dark silicon; power/performance management;
microprocessors.

iii

Sommario

Questa tesi fa parte di un lavoro di ricerca a lungo termine che mira a definire nuove
strategie di controllo per la gestione combinata di temperatura, potenza e prestazioni
nei microprocessori multi-core. In questo contesto, l’obiettivo della tesi è sviluppare un
controllore in grado di adattarsi automaticamente a uno specifico processore nelle sue
condizioni di installazione, indipendentemente dalla sua architettura.

In questo lavoro l’attenzione è in un certo senso implicitamente posta sulle future gen-
erazioni di processori, pensando in particolare alle architetture tridimensionali in quanto
esse presentano una maggiore densità di potenza unita allo svantaggio, rispetto alle loro
controparti “planari”, di non avere tutti gli strati a contatto con il dissipatore di calore, il
che aumenta il rischio di fuga termica. In tale scenario – ma, va osservato, anche per le
moderne architetture planari – lo sviluppo di un controllore integrato nel processore che
sia in grado di gestire potenza e prestazioni, garantendo anche un adeguato controllo della
temperatura per migliorare l’affidabilità del processore e contenere il consumo energetico,
è critico.

Attualmente, le strategie di controllo adottate dall’industria nei processori commerciali
tendono a separare la gestione di potenza e prestazioni dal controllo della temperatura,
lasciando la prima al sistema operativo – tramite componenti come i governor di Linux
– mentre la seconda è lasciata all’hardware del processore. Questa divisione dei ruoli
sta tuttavia diventando discutibile a causa della crescente densità di potenza e di con-
seguenza della dinamica termica sempre più rapida; la combinazione di tutti i fattori sin
qui evidenziati porta a soluzioni di controllo non ottimali.

Scopo di questa tesi è perseguire il tentativo di affrontare questi problemi in modo coor-
dinato – cosicché siano gestiti da un solo controllore – e, cosa più rilevante, dare a quel
controllore la capacità di adattarsi al processore a cui è collegato, rendendo fattibile la
sua implementazione su larga scala in quanto non è richiesto alcun intervento di messa a
punto da parte di operatori umani. Pertanto, lo scopo del controllo proposto è quello di
gestire la temperatura dei singoli core in un processore multi-core, risolvendo contempo-
raneamente i problemi di temperatura, potenza e prestazioni, attraverso l’uso della teoria

del controllo e regole adatte all’autocalibrazione basate su esperimenti condotti in una
prima fase di controllo (ad esempio, all’avvio di un sistema).

Anche una validazione della strategia di controllo attraverso simulazioni è parte integrante
di questa tesi. Vengono proposti diversi esperimenti, a supporto delle scelte effettuate,
confrontando le tecniche considerate per la fase di autotuning al fine di mostrarne (pre-
liminarmente) vantaggi e svantaggi. A tal fine, il controllore con autotuning proposto è
stato anche implementato come codice C++ – un’attività di progettazione e ingegneria del
software non banale – in modo da averlo pronto per l’implementazione su un vero proces-
sore. Di conseguenza, sono stati condotti test di simulazione sia con modelli semplificati
per studi a livello di sistema (utilizzando il linguaggio Modelica) sia con un’accurata sim-
ulazione termica tridimensionale del chip (usando lo strumento3D-ICE, cui l’autotuner
realizzato in C++ è stato accoppiato).

Parole chiave: autotuning; controllo termico; dark silicon; gestione potenza/prestazioni;
microprocessori;

v

Contents

Abstract i

Sommario iii

Contents v

Introduction, Motivation and Contribution 1

1 Related Work 9

2 Theoretical background 13
2.1 Foreword . 13
2.2 Permanent Oscillations . 14
2.3 The Describing Function method . 15
2.4 Robust Relay Feedback Structure . 20

2.4.1 Structure . 20
2.4.2 Analysis of the Robust Relay Feedback Structure 21

2.5 Internal model control . 28
2.6 Contextual autotuning . 30

3 Physics, models and tools 35
3.1 Overview . 35
3.2 The physics to consider . 37
3.3 Purposed modelling . 38

3.3.1 Detailed modelling . 40
3.3.2 Control design-oriented modelling 41

3.4 Tools . 44
3.4.1 Modelica . 45
3.4.2 3D-ICE . 46

vi | Contents

4 The proposed autotuner 49
4.1 Foreword . 49
4.2 The addressed control structure . 50
4.3 Implemented features . 51
4.4 The resulting application . 53

4.4.1 The low-level controller . 54
4.4.2 The experiment . 56
4.4.3 The analyser . 57
4.4.4 The high-level controller . 62

4.5 Inter-communication among sub-modules 64

5 Software Implementation 69
5.1 Modelica implementation . 70

5.1.1 The package structure . 70
5.1.2 The Components Blocks . 71
5.1.3 The Plant Blocks . 72
5.1.4 The Control Blocks . 73
5.1.5 Tests and Examples . 74

5.2 C library . 75
5.2.1 Low-level controller . 76
5.2.2 The exciter . 77
5.2.3 Analyser . 80
5.2.4 High-level controller . 82
5.2.5 Additional structure and exceptions 84
5.2.6 C interface . 84

5.3 3D-ICE Implementation . 84
5.3.1 3D-ICE Integration . 85
5.3.2 YAML parser . 86

6 Testing 89
6.1 Modelica experiments . 89

6.1.1 Experiments with constant disturbances 91
6.1.2 Experiments with variable disturbances 94

6.2 A 3D-ICE co-simulation experiment . 95

7 Conclusions and future work 99

Bibliography 101

List of Figures 105

List of Tables 107

8 Ringraziamenti 109

1

Introduction, Motivation and
Contribution

This thesis is about the automatic tuning of power/performance/thermal controllers for
modern microprocessors — a matter that emerged in quite recent years but is gaining so
much importance to rank among the enablers for high-performance computing solutions,
and often to be vital for the safe operation of the processors themselves.

Since their invention, microprocessors – hereafter µPs for short – have always shown an
increase in performance from one generation to the following one, and the rate of that
performance is nowadays impressive. To give just a few numbers, the first processor ever
invented – the Intel 4004, introduced in 1971 – had a 4-bit technology, a single core,
2300 transistors, a clock frequency of 740kHz and thus a capability of 60000 operations
per second, while dissipating “only” 0.5W [8]. Today, a consumer µP such as the AMD
Ryzen 7 5800H [2] has eight 64-bit cores, over 10 billion transistors, and a clock frequency
of 3.2GHz, which makes it capable of 60 million operations per second and results in a
Thermal Design Power (TDP) of 45W (not a stunning figure, incidentally, as other devices
break the 100W barrier). Figure 1, taken from [8], illustrates the current trends in the
evolution of µPs.

Such exponential growth was made possible by the continuous progress of manufacturing,
and the first to notice this trend was Gordon Moore, co-founder of Intel, who in 1965 as-

Figure 1: trends in the evolution of µPs.

2 | Introduction, Motivation and Contribution

sumed that the number of processors would double every year. This observation was later
revised to become the famous “Moore’s law”, which states that the number of transistors
in µPs doubles every 18 months and was taken as a yardstick and a target for the various
manufacturers in the industry.

For some time, manufacturers could comply with this law by just shrinking the size of
transistors (in the technical jargon, the “lithography”) in each subsequent generation. This
was made possible by another great intuition, known as the “Dennard’s scalability”, ac-
cording to which it is possible to keep the base size and the power of a µP unchanged, from
one generation to another, by adopting a shrinkage factor of 1/

√
2, under the assumption

that the number of transistors is doubled and the clock frequency is increased by 40%.

However, the said shrinkage was subject to physical limits, beyond which parasitic effects
due to quantum physics would become relevant in the electronic circuits and deteriorate
the performance. Consequently, as it was no longer possible to go deep, the only possi-
ble movement remaining horizontal, manufacturers moved from structures with only one
computing unit, or “single core”, to solutions with multiple computing elements called
“multicore”. This revolution reverberated throughout the computer world, opening the
door to the possibility of executing code in parallel within a single machine, which previ-
ously was only possible via a network of computers.

The multicore era began with the first non-embedded multicore processor introduced in
2001 by IBM, under the name POWER4, and containing two cores. Since then, the
number of cores continued to grow and, for example, today it is possible to find common
commercial solutions with 6 or 8 cores, or industrial server solutions with 128 cores.
Thanks to the advent of multicore, Moore’s law could be extended up to the present day,
and thanks to technological advances, clock frequencies could also increase year after year,
guaranteeing ever higher computing speeds.

Nevertheless, the demise of Dennard’s scalability, coupled with the increase in frequency
but also the relevance of transistor parasitic effects, brought about the new problem of
heat generation. This matter crept in slowly and was initially underestimated, but grew
in relevance year by year to such an extent that it now threatens the future of multicore
technology, and thus of the Moore’s law in general. In fact, since power dissipation is tied
to the efficiency of transistors and their switching frequency, things can only get worse if
the number of transistors continues to increase.

As such, over the years, µP heat dissipation devices connected – once non-existent – began
to grow in volume and power, also evolving to cope with the ever-increasing heat gener-
ated. Indeed, the power density of µPs has already reached such levels that, considering

| Introduction, Motivation and Contribution 3

the technological limits of dissipation, it is impossible to operate all the elements of a µP
at maximum power at the same time.

The world of processors has therefore entered the so-called “dark silicon era”, in which
the thermal power generated is such that certain areas of the active silicon, i.e. the
portion of the silicon capable of performing operations, must remain unused to prevent
the processor from overheating. In fact, the power is such that the processor would be
destroyed if it were operated at full load without limitations. And to make the picture
even more complicated, the heat generated is subject to enormous, sudden, and hardly
predictable changes. The resulting challenge is so tough that some researchers even cast
doubt on a prosperous future – if not on mere survival – for the multicore era [9].

When dissipation systems cannot handle the needed powers, the µP voltage, and fre-
quency must be reduced in order to decrease the generated heat. Voltage has a quadratic
relationship with the said heat, hence in modern electronics, it is often already minimised.
On the other hand, frequency has a linear relationship with heat but allows more effective
action by having larger operating ranges.

Obviously, however, limiting the clock frequency leads to a reduction in the µP perfor-
mance. Thus, the problem of dark silicon introduced the question of the relationship
between µP performance and temperature: said briefly, while thermal management is
crucial, it should not be extremely limiting.

Historically, processor temperature management, or more generally thermal management,
has always been split between the software and hardware side. While the former only
lowered the frequency when the temperature exceeded particularly high thresholds, the
latter merely cut the processor when safety limits were reached. This partitioning of roles
was – and still is – inefficient, leading to sub-optimal solutions.

The relevance of this problem is reflected in the literature, where many solutions have been
proposed addressing different aspects of the problem, from more “static” solutions such as
“thermal-aware” processor design [11], to better management of the source of the problem
such as “computational sprinting”, which concentrates the most onerous operations in
the initial instants of the execution of a task, to mitigate the effect on temperature by
exploiting the transient [20].

However, design can only partially solve the problem, and optimised code scheduling may
bring more harm than good. Hence, although such solutions may be valid and contribute
positively to the thermal management of µPs, they certainly cannot completely solve the
problem and real-time temperature management systems should be introduced, alongside

4 | Introduction, Motivation and Contribution

them, in order to cover those scenarios where their effectiveness vanishes.

This is why in modern µPs power, performance and temperature need managing by
suitably designed feedback controls, to ensure effective and safe operation in the face of
(i) uncertainties in the device installation conditions and (ii) completely unpredictable
disturbances as the necessities of software threads spawned at virtually any time in a
multitasking environment. This is therefore why the research to which this thesis belongs
is necessary.

Problem Statement

As nowadays the thermal power generated by active silicon is such that not all computing
elements can operate at the same time, one of the greatest goals to be achieved is to
minimise the area of dark silicon. Also, in a context where dissipation systems are not
able to respect the TDP constraints, meaning that they overheat when the power exceeds
the limit of the heat sink, it is necessary to integrate a solution that can effectively manage
these transients, to make the system more reliable in the long term.

The TDP is a de facto standard design concept in the industry and represents a total power
budget for the chip, such that cooling must respect it to ensure full system operability
within safety limits. If the budget is not respected, the µP heats up more than the system
is able to cool, leading to temperatures rising toward their safety limits.

Looking at a µP in more detail, it can be seen that only a small part of the silicon, called
“active silicon”, contributes to the generation of heat, while the bulk – i.e. the remaining
part – only contributes to the thermal transmission of heat to the heat sink. The result is
that heat passes through three distinct regions with different heat capacities and thermal
resistances. In particular, the capacity of the active silicon is much smaller than that
of the bulk, and it too is smaller than that of the heat sink. Consequently, the thermal
dynamics relative to the processor has three main dynamics, starting with that of the
active silicon, which is the fastest, to that of the heatsink, which is the slowest. However,
the continuous downsising of the transistors due to the evolution of technology has greatly
changed the relationship of the various dynamics, rendering once effective temperature
management techniques nowadays inapplicable, so much so that today it is no longer
possible to manage temperature transients by increasing the speed of the fan connected
to the processor.

Looking into the past, it is possible to identify three different eras in the area of temper-
ature management. Initially, processors dissipated so little power, and their area was so
large, that not even the use of a fan for cooling was necessary. As a result, there was

| Introduction, Motivation and Contribution 5

no need to control the temperature, and performance-power management was reduced to
just freezing the processor if there were no operations to be performed.

Subsequently, as computing power increased, processors began to require dissipation sys-
tems, thus defining the dawn of the new era. Although the size and power were such that
all cores were fully operable, the problem of temperature management appeared, assuming
a dignity of its own alongside performance management. Overheating was managed with
the help of fans, due to the fact that thermal dynamics were very slow, while performance
management was attributed to the operating system, where components (“governors”)
were introduced that acted on the DVFS depending on the perceived load. This period
in history was the beginning of research in this area and the first papers on the subject
appeared, although coming from computer engineering than from the control community.

With the advent of the dark silicon era, a gap appeared between the power output and
the power input: the heat is so high that the active silicon part immediately overheats
and the cooling system cannot keep up with the changes. For this reason, temperature
control can no longer take place independently of performance/power management but
must act on heat generation, reducing it temporarily, so that the heatsink can operate
correctly and adapt.

As mentioned above, modern µPs allow the voltage and/or frequency to be adjusted
by means of dynamics voltage and frequency scaling (or DVFS) technology. The DVFS
modulation technique is possible thanks to a controller allocated in the physical layer of
the system and capable of managing the voltage supply and clock frequency. Although
the voltage has a quadratic relationship with the power dissipation, it is constrained
by the minimum threshold voltage for transistor switching. In fact, the transistor base
voltage must be high enough to ensure proper switching, and the minimum threshold
value increases with the switching speed of the transistors. Furthermore, intrinsic current
losses only scale linearly with voltage, so that even though the heat emitted for switching
decreases, the relative contribution of losses increases, making it even more complex to
manage. Consequently, the only viable route is frequency modulation, assuming that the
voltage is always kept at the lower limits to ensure minimum energy consumption at all
times and that it follows the frequency demand when this changes.

At present, however, a divergence can be observed between the literature and the indus-
try: although the former has analysed the problem by proposing increasingly complex
techniques such as linear-quadratic controllers, model predictive control [13], convex op-
timisation, and so on, these solutions are tested on specific simulators and can hardly
be ported to real hardware given the limitations of sensors and actuators. For example,

6 | Introduction, Motivation and Contribution

commercially available (and affordable) temperature sensors have a typical resolution of
one degree and even higher noise. In addition, this kind of control is generally compu-
tationally heavy, making it ineffective in the context where the control needs to act in a
very short time.

As a result, the industry is handling the problem differently, having left performance
management to software and having assigned temperature control to simple controllers
embedded in hardware. These controllers are designed to have fixed and fast timings, can
take control over the DVFS, and act, for example, on the frequency by clock gating. The
reasons for this are due to the need to ensure thermal safety rather than “control” in the
strict sense of the term.

To give a more complete view, it must be said that there are proposals for handling
the problem that do not rely on DVFS. Among the most important of these is certainly
task migration, according to which the operating system should allocate new tasks to the
colder cores, giving the hotter ones a chance to cool down. However, this proposal has a
very variable impact and depends on many factors such as memory or cache management
availability. Mostly, task migration involves very important elements of the operating
system such as the task scheduler, which are already subject to several constraints that
must be met. Consequently, such a solution may be difficult to integrate due to the
increased maintenance costs – and difficulties at large – that the resulting, increasingly
complex system would incur.

Finally, it is important to note that performance management, temperature control, and
task scheduling are generally different disciplines, managed by different developers. For
this reason, a solution that maintains this division while remaining as transparent as
possible, and affecting other aspects of the system as little as possible, is certainly the
way to go. This is the attitude taken in the research to which this thesis belongs.

Motivations and contributions of the proposed solution

The thermal dynamics of active silicon is already incredibly fast, and today requires a
control capable of reacting at a millisecond scale. Moreover, the situation will most likely
worsen with the advent of three-dimensional architectures. For this reason, the use of
fixed rate controls is no longer a viable option. Such fast, periodically computed controls
require a non-negligible amount of computational power to be allocated, and it is not
clear where to best integrate them: if they were allocated in software, they would burden
the operating system by stealing computational power. If they were implemented in
hardware, they would require silicon area and power. In contrast, event-based controls

| Introduction, Motivation and Contribution 7

have the characteristic of acting only when needed, mitigating the overall computation
and power demand.

Also, the thermal dynamics of a single core is so rapid that, on the time horizon of interest
for thermal control, the interaction with the other cores is negligible. This allows for the
use of decentralised control techniques, which offer the great advantage that each element
is controlled independently of the others, representing the interactions as disturbances;
thus, the computational load is greatly lightened compared to centralised solutions. This
choice is also the one adopted today by manufacturers in processors that allow DVFS
modulation on individual cores.

Finally, nowadays, the same operating system may be found on a myriad of different
products, which may differ in processor and cooling systems, and individual components
may also differ in the same product family due to manufacturing variability. Therefore,
the control should be able to adapt to ensure correct operation on the different systems,
also removing the burden from manufacturers of having to design ad hoc solutions for
their products. Ideally, next-generation controls should be able to perform self-calibrate,
and which is more challenging, to do in a context where the inactivity of the other cores
cannot be guaranteed.

As proven in the previous work [16], event-based control is able to effectively manage
temperature transients in a multicore system, also demonstrating the viability of using
decentralised control systems. The objective of this thesis is the development of a con-
troller with a methodological approach to temperature management of individual cores
in a multicore context, and more specifically, to endow such a controller with autotun-
ing capabilities. A controller is proposed that is able to calibrate itself autonomously by
performing an experiment on the controlled core, in such a way as to be resilient to dis-
turbances from other cores and the environment, and rapidly enough to allow for periodic
re-calibration, for example at boot time.

Thesis organisation

The thesis is organised as follows:

• Chapter 1 offers an overview of the most recent (and worthy of mention) approaches
to account for the problem faced in this thesis.

• Chapter 2 is dedicated to the theory in support of our proposal. It begins with
an introduction to the concept of the describing function, how it is a powerful
and effective tool for studying permanent oscillations of a nonlinear system, and

8 | Introduction, Motivation and Contribution

how it can be used to identify the properties of a dynamic system. Then, the
theory supporting the technique of permanent excitation used for the self-calibration
experiment is also discussed, introducing the describing function of the nonlinear
system and the conditions for the existence of limit cycles. The chapter concludes
by discussing the theory in support of the chosen self-tuning rules.

• Chapter 3 overviews the physics behind the process we aim to control, describing
the thermal propagation phenomenon and how it can be modelled to obtain rep-
resentations adequate for control purposes and simulations and the tools used to
simulate the system according to the introduced models.

• Chapter 4 discusses the rationale behind the proposed autotuner, how it is com-
posed, what techniques are used and why they were chosen. In particular, the auto-
tuning regulator, the high and low levels of control, the management of operations,
and the component of fundamental analysis for self-calibration are described.

• Chapter 5 is dedicated to the implementation process of the autotuner, as how it
was integrated into Modelica, and the development of the corresponding library in
the C language. The organisation of the Modelica components and their usage,
the development of the library, how it was integrated into Modelica and 3D-ICE,
and the development of the 3D-ICE client to test the controller on a more accurate
simulator will be primarily described.

• Chapter ?? offers a series of experiments in both the Modelica and 3d-ice environ-
ments to demonstrate the effectiveness of this approach, with a greater emphasis
on the resilience of the method to external disturbances and the self-regulating
capabilities of the controller.

9

1| Related Work

The gradual increase in microprocessor power density has led to the problem of dark
silicon, such that it is no longer possible to operate all the computing elements of a
processor without making it overheat to the point of damage. The result is a depletion of
processor performance that can no longer support its own thermal heat production. As a
result of its impact on performance, the problem has gained prominence in the literature,
which has begun to grow owing to numerous works that aim to alleviate the negative
effects as much as possible. Essentially, dark silicon has introduced two critical issues:
i) microprocessors can exceed safe thermal limits so rapidly that the dissipation system
cannot keep the pace and ii), in high-stress situations, to avoid overheating, it can be
necessary to shut down certain areas of the processor. The literature, consequently, tries
to propose solutions that can mitigate one or the other aspect, seeking optimalities that
will maximise performance in this intricate context.

Putting the focus on the heat generation aspect of the processor, it is sensible to say that it
is mainly related proportionally to the square of the voltage applied to the microprocessor
and to the clock frequency. As introduced in the previous chapter, although the effects
of a change to the voltage impact heat generation the most, the voltage is subject to
minimum constraints that serve to ensure the proper operability of the processor. In fact,
given a switching frequency, the voltage must be above a minimum value (proportional
to the frequency) to ensure that transistors switch from a state of complete isolation to
a fully conductive state, avoiding the resistive zone inherent in them. Since the voltage
only acts on the generated power, with no further negative effects, there is no reason not
to keep it at its minimum at all times, rather following the variations on the frequency
command. In contrast, the switching frequency depends on both the utilisation factor
of the individual core and the maximum achievable frequency. The former is related
to the computational load required to the processor, while the latter is managed at the
hardware level through the DVFS. The remaining contributions to the generated power,
on the other hand, depend on the structure and design of the processor, which, of course,
can only be credited at the design stage and, for that reason, can mitigate but not solve
the problem in the transients of interest in the dark silicon case.

10 1| Related Work

As a result, along with proposals for different processor designs that also consider the
heat transfer occurring within the processor, almost all of the proposals resort to acting
on the switching frequency through software, hardware, or both.

Among the various solutions that do not involve the use of DVFS, the most important is
certainly the use of task migration [17] [18] [6] [10]. It consists of moving a task from a hot
core to a cold core in such a way as to allow the hot core to cool down. This is possible
by making the scheduler aware of the temperature of individual cores. However, this kind
of operation is incredibly delicate because it requires changing the behaviour of the task
scheduler, which is a very critical component of the operating system, since it must ensure
the real-time execution of various operations. In addition, task migration takes a time that
varies greatly depending on many factors among which cache and memory availability,
and, in the absence of a proper architectural environment, could have detrimental effects.

A noteworthy citation is the recent work of Mohammed et al. [17]. Their proposal com-
bines an advanced task migration method and the use of clock gating through DVFS.
Specifically, cores are organised into clusters, whose components share the LLC (last-level
cache). Migration occurs only from a hot core to an idle core, so overhead can be min-
imised because a unidirectional transfer is performed: the task passes from the hot core
to the idle core, there is no task swapping between active cores. In addition, migration
occurs between cores in a power-saving state that still maintains information in L1 or
L2 caches. In this way, the previously-idle core can draw on the information inherent in
the task just received directly from the hot core, reducing requests to the common LLC
cache. In addition, migration occurs only between elements in the same cluster, allowing
requests to memory due to cache misses to be minimised. These choices allow for min-
imising the “slowest” operations concerning memory access. In fact, accessing the first-
or second-level cache of a processor is faster than accessing the LLC, and it is faster to
access the LLC than RAM.

If there are no cold cores to use, DVFS is called as a last resort to decrease the temperature.
However, the DVFS is called to iteratively decrease the frequency at each step until it
returns to the “regime” values.

In any case, such a solution assumes that the active computational power is always less
than 50%, resulting in a big waste of resources. Moreover, the frequency management is
crude (to say the least).

On the other hand, it is possible to limit the maximum frequency of operations through
the use of DVFS. In this case, the core is under full (computing)load but the maximum
frequency at which it performs operations is reduced, and thus the power generated is

1| Related Work 11

also reduced. However, the effect of such a control is time dilation: the same number of
operations is performed at a lower rate, resulting in a longer execution time. In any case,
control via DVFS is very effective and simple to implement, which is why to date it is the
(only) solution used in the industry.

Over time, several proposals more tightly related to the explicit use of control were intro-
duced. The advantage of true control lies in its ability to deal promptly with disturbances
(a problem that also in this thesis has dictated several choices, as will be shown). Thus
increasingly complex controls began to appear, such as linear-quadratic controls and pre-
dictive controls [25] [4].

In particular, the recent proposal by Wang et al. [25] consists of a hierarchical predictive
control that contains both task migration and thermal management via DVFS. The model
considered for predictive control is a linear system with n states, that are the temperatures
of the several regions of the core obtained through space discretisation, and such that the
number of cores l < n. The boundary temperatures of individual cores are then defined,
and the predictive control operates to maintain the temperatures below said limits. At
each iteration, the predictive control calculates the power that allows the individual core
to follow its temperature reference. This power reference is then compared with the powers
currently generated by the individual cores. If there are powers that exceed the calculated
value, task migration is performed. Since task migration among all the cores would be too
onerous because it requires time O(n3)) for its complete resolution, the cores are divided
into clusters and migration is performed at two levels: migration between clusters and
migration within the cluster. If cores with higher power than suggested remain, DVFS
intervenes by reducing the frequency.

However, as they state, the control takes an average of 0.01s per iteration to resolve for
a 100-core processor, casting doubt on its actual effectiveness. In addition, it is unclear
how the information needed for modelling the thermal system can be derived and how
this solution can be portable.

However, these kinds of proposals lack tests on the actual physical system or at least on
some accurate simulation platform, rightly so given their complexity, but they also lack
solutions for portability, which is very important if this particular proposal is to be used
on a large scale. In fact, these solutions require a thermal model of the system, and the
experiments required for modelling are not trivial and require the input of an experienced
user.

Consequently, in this thesis, we decided to use a different approach, relying on event-based
control for thermal management and a simple self-tuning technique (in this case, not event-

12 1| Related Work

based) that make the controller capable of withstanding the disturbances present in the
particular system at hand.

Event-based control is a particular control methodology that seeks to minimise commu-
nication between controller, actuators, and sensors. The sampling time (or even better,
inter-action) is no longer constant and synchronised but is governed by an event gener-
ator. When properly calibrated, event-based control can perform almost identically to
traditional control in the case of disturbance rejection, with the advantage of interposing
control only when strictly necessary.

In particular, in this thesis, we rely on the results obtained by Leva et al. [16]. In the
quoted work the event generator is a state machine implemented at the hardware level.
Specifically, it fires an interrupt request if the temperature is close to the threshold limit,
its variation is above a certain threshold, or a certain amount of time has passed since
the last control computation. In contrast, the control was implemented software-side,
and a PI was chosen. The motivation was to provide as much flexibility as possible to
their solution, so that if they wanted to change the control technique, it would be easily
replaceable. In addition, moving the control to the software side allows them to minimise
the silicon area required for control.

In the paper just cited, a stability analysis was done that provided conditions for the PI
controller parameters for the event-based control to be stable. The result is a control with
an overhead of only 16 ns, bringing it among the fastest proposals.

Regarding control calibration or tuning, a peculiarity of this research is that tuning must
be done in the presence of ubiquitous thermal disturbances from adjacent cores. In the
literature, it is possible to find several proposals capable of rejection of slowly varying
disturbances, the following article [14] provides an overview. However, the robust relay
structure proposed by da Silva et al. was chosen as the exciter. [7]. The method achieves
the same results with filters requiring less computational effort and is described in more
detail in the associated section 2.4.

As calibration rules, several approaches have been proposed, including the method of
contextual control calibration with internal model [15]. This consists of a repurposing of
the classic technique useful in contexts where it is used to calibrate a controller after per-
forming an exploratory experiment. In fact, it proposes to combine controller calibration
and model identification, thus better results can be obtained by reducing the “waste” of
information. This method is seen in more detail in the dedicated theory chapter.

13

2| Theoretical background

2.1. Foreword

In many control applications, there is the need to control a system whose model is (par-
tially) unknown due to several reasons such as an excessive modelling complexity for the
purpose to attain, or even just the limited time available to set up the required control.

In such cases, a technique able to identify the control-relevant features of the plant effort-
lessly and rapidly, and consequently of synthesising a suitable controller, is the preferred
way to go. A controller that is able to tune itself after a tuning request, according to a
technique of the kind just envisaged, is called an autotuning controller.

In the literature, many solutions to the autotuning problem were proposed: some of these
– the most relevant for us, and the only ones to which we refer in this work – are based
on the execution of an experiment on the controlled process, to obtain information about
its dynamics. In turn, and quite expectedly, a number of experiment types can be found
in the vast autotuning literature [19]. For the purpose of this work, we limit the focus to
two of these kinds, namely open-loop step tests and closed-loop relay feedback tests.

In principle, an open-loop step response record could lead to a complete knowledge of the
system to control. In practice, however, this would require that the system be initially in
an unperturbed condition, as otherwise the residual free motion would be interpreted – no
matter how data is analysed – as an effect of the applied step, leading to erratic results.
Relay feedback offers somehow symmetric possibilities: the yielded process information is
“local in frequency”, consisting in general of points of its frequency response, but as these
are collected only when the induced oscillation is “permanent”, a non-equilibrium initial
condition has hardly any influence on the correctness of the results.

These simple considerations motivate the success of “relay autotuning”, as witnessed e.g.
by the comprehensive work [26]. The driving theory of the so-called “permanent oscilla-
tion” approach is the describing function method, introduced by Nikolay Mitrofanovich
Krylov and Nikolay Bogoliubov in the 1930s, which will is described shortly. The ap-

14 2| Theoretical background

proach just mentioned is selected in this thesis, because when tuning the controller for
one core it is practically impossible to “freeze” all the previous software activity so as to
have it consume a constant power and thus reach a thermal equilibrium.

Among the numerous relay-based techniques available, in addition, the selection is centred
on those that are able to gather reliable frequency response information while at the same
time rejecting static or slowly variable disturbances. Such a feature is fundamental in
our scenario because any tuning experiment on one core must be handled while the other
cores are working, hence producing thermal disturbances, however at a time scale that
is “slow” with respect to the intra-core dynamics that the autotuning controller has to
address.

In this chapter we set forth and motivate the methodological ideas and entities behind the
proposed autotuner, thereby paving the way to the description of its design (Chapter 4)
and realisation (Chapter 5).

2.2. Permanent Oscillations

We start from the stimulus applied to the dynamics under control, that as anticipated
comes from a relay aimed to induce a permanent oscillation condition, as this is the
preferred way to go when it is virtually impossible to ensure that prior to the stimulus
the said dynamics was at rest.

Given a hard nonlinearity, which is a static nonlinear function such as relay, saturation, or
dead zone, it is possible to form a loop with it and a linear system, so that the so-obtained
compound system is driven into a permanent oscillation.

In a purely linear loop this would not be possible without leading the system to the
stability limit, a condition that is actually not robust to parametric variations: changing
the parameters of the linear part of the system could move its eigenvalues away from the
imaginary axis and, subsequently, the oscillations would either diverge or be lost.

The analysis of permanent oscillations allows the properties identification of the related
linear system, which is the aim of the relay feedback experiment. However, the compu-
tations for the existence and shape of permanent oscillations compatible with the linear
system are a complex task, due to the nonlinear nature of the overall problem. Such
complexity has given rise to heuristic solutions to estimate the required characteristics, a
prominent approach being the describing function.

It is important to notice that as the describing function is based on heuristics, the yielded

2| Theoretical background 15

results are not fully theoretically supported. In fact, there could be scenarii in which
the describing function leads to erratic results. However, such results are rare and the
describing function proves its validity most of the time. This is the reason why the great
majority of relay-based autotuning is based on the describing function method.

2.3. The Describing Function method

Let us consider a nonlinear element, defined by a static hard nonlinearity with odd sym-
metry, fed with a sinusoidal input

ε(t) = E cos (ωt) (2.1)

defined by the couple of real numbers (E,ω), and let us consider the periodic output with
a corresponding period equal to T = 2π/ω. if the nonlinear element can be represented in
the form ξ(t) = φ(ε(t)), where ε is the input and ξ is the output of the hard nonlinearity,
then the periodic output exists, unique and it is equal to ξ(t) = φ(E cos (ωt)). Otherwise,
if multiple solutions could exist, still let us consider only one periodic solution exists, at
least for some value of E. Under the assumption that the output of the hard nonlinearity
admits a Fourier series, defining {Ξn}, being twice the spectrum of ξ(t), it is possible to
write:

ξ(t) =
+∞∑
n=1
n odd

|Ξn(E)| cos (nωt+ arg Ξn(E))

since ξ(t + T/2) = −ξ(t) because the hard nonlinearity is odd and the input is in the
form of (2.1). Furthermore, this relation shows that the Fourier coefficients depend only
on the input’s amplitude and not on the natural frequency ω.

Given the previous results, the describing function is defined as

D(E) =
Ξ1(E)

E
=
|Ξ1(E)|

E
ej arg Ξ1(E) (2.2)

The aforementioned equation allows us to compute the describing function of any hard
nonlinearity, however, it is not necessary to compute it every time since there exist tables
that define the describing functions of the most common hard nonlinearities.

The concept of describing function can be extended by introducing a parallelism between
the transfer function of a linear system and the describing function of a nonlinear one: as
the transfer function represents the relationship between the input and output of a linear
system, the describing function represents the relationship between the oscillating input

16 2| Theoretical background

and the oscillating output of a nonlinear system. Such characteristics can be exploited,
under certain assumptions, to infer some information regarding the attached system as
described by the following method.

Let us consider a feedback system composed of a hard nonlinearity (named N) cascaded
with a SISO system defined using its transfer function Γ(s). Furthermore, let us consider
the system input ξ to be a periodic motion with angular frequency ω > 0, or equivalently
with period T = 2π/ω, whose Fourier series is:

ξ(t) =
+∞∑
n=1
n odd

|Ξn| cos (nωt+ arg Ξn)

Assuming Γ(s) doesn’t have any null real part pole, the Fourier series of the periodic
motion of the output χ is:

χ(t) =
+∞∑
n=1
n odd

|Γ(jnω) Ξn| cos (nωt+ arg Γ(jnω) + arg Ξn)

If the following equation holds

|Γ(jnω) Ξn| ≪ |Γ(jnω) Ξ1| , n = 3, 5, ... (2.3)

one can say that the output χ is almost composed only of its first harmonic.

The equation (2.3) is also known as the “low-pass assumption” and it constitutes the
foundation of the describing function method for the existence assessment and parameters
computation of permanent oscillations in the feedback system.

Now, let us consider the ideal case where equation (2.3) holds and

Γ(jnω) Ξn = 0 , n = 3, 5, ...

the following equation is obtained

χ(t) = |Γ(jω) Ξ1| cos (ωt+ arg Γ(jω) + arg Ξ1)

followed by

2| Theoretical background 17

ξ(t) = −χ(t) = |Γ(jω)Ξ1| cos (ωt+ arg Γ(jω) + arg Ξ1 + π)

Since it is possible to move the time origin without loose of generality, it could be set such
that arg Ξ1 satisfy the equation

arg Γ(jω) + arg Ξ1 + π = 0 (2.4)

obtaining that
ε(t) = E cos (ωt) , E > 0

Therefore, the low-pass assumption implies that the input of the hard nonlinearity is a
pure sinusoid, allowing to represent N with its describing function, at least to compute the
first harmonic of ξ(t). Proceeding with the analysis, for the oscillation to be compatible
with the feedback system, it must match the conditions of all the elements involved and,
subsequently, going backwards, the following equation is obtained

ξ(t) = |Γ(jω) Ξ1| cos (ωt+ arg Γ(jω) + arg Ξ1 + π) =

|Γ(jω)D(E)| cos (ωt+ arg Γ(jω) + argD(E) + π)

Knowing that (2.4) can be rewritten as

arg Γ(jω) + argD(E) + π = 0

The following relation is obtained

|Γ(jω)D(E)| = 1

or, equivalently
1 + Γ(jω)D(E) = 0

In conclusion, the obtained results can be reformulated as a proposition.

Proposition 2.1. If the transfer function Γ(s) doesn’t have imaginary poles, assuming
the low-pass assumption (2.3) holds, the feedback system admits an oscillation in the form

ε(t) = Ē cos (ω̄t) (2.5)

18 2| Theoretical background

Figure 2.1: Graphical interpretation of the describing function method with two possible
solutions. The figure is taken from [5].

if the pair (Ē, ω̄) is a solution of the equation

1 + Γ(jω)D(E) = 0 (2.6)

Proposition 2.1 can be seen as a kind of necessary condition for the existence of perma-
nent oscillations in the feedback system, based – we stress – on a heuristic assumption.
Additionally, the “much less than” operator allows a fairly free interpretation of the low
pass assumption, offering a trade-off between accuracy and applicability. As a final con-
sideration about equation (2.6), we observe that it is a vector equation that represents a
system of two equations in two real variables. Since the equations are nonlinear, it could
be difficult to set up closed-form conditions for the existence of the solution and, for this
reason, numerical techniques are often applied.

The potential of the describing function method can be better appreciated by rearranging
equation (2.6): defining

Λ(E) = − 1

D(E)

and rearranging (2.6) the following equation is obtained:

Γ(jω) = Λ(E) (2.7)

This equation allows for a graphical representation of the describing function method: a
permanent oscillation of the feedback system exists only if the polar plot of the transfer
function of the linear system, parametrised in ω, and the complex plot of the describing
function of the nonlinear element, parametrised in E, intersect one another. Additionally,
the oscillation will be in the form ε(t) = Ē cos (ω̄t) where (Ē , ω̄) is an intersection point.

Lastly, not all the solutions of equation (2.6) result in a stable permanent oscillation. In

2| Theoretical background 19

fact, some solutions could be unstable and a small perturbation could diverge the system
into another state. Therefore, a definition for the asymptotic stability of permanent
oscillations and a tool to address the problem are introduced.

To briefly explain, let us consider a permanent solution of the feedback system: it will
be asymptotically stable if the motion obtained by a “small perturbation” slightly differs
from the nominal one, tending to it asymptotically, eventually except for a phase shift.
It is important to notice that the concept of asymptotic stability is slightly different from
the asymptotic stability of equilibrium. Here, a phase shift between the nominal motion
and the perturbed one is admitted, allowing the two motions to have the same shape
even though they assume the same value at different time instants. In other words, the
definition requires that all the trajectories of the system tend to a closed orbit, which is a
limit cycle. Now let us define two vectors applied at the intersection point (Ē , ω̄): vector
t⃗ is the tangent vector of the plot of Λ pointing towards increasing values of E and n⃗ is
the vector orthogonal to the plot of Γ pointing to its right following increasing value of
ω. Then the following result holds.

Proposition 2.2. The permanent oscillation in the form of equation (2.5) and represented
by the pair (Ē , ω̄) is asymptotically stable if and only if the scalar product between the
vectors t⃗ and n⃗ is negative:

t⃗ × n⃗ < 0

Therefore, the asymptotic stability of the permanent oscillation depends on the angle of
the two vectors, if the angle is bigger than 90° the oscillation is asymptotically stable,
otherwise it isn’t.

Equation (2.7) is the core of the describing function method and it is used during the
relay experiment by the controller to extract the information about the system required
to tune itself. As the equation shows, the obtained information is the complex point of the
system frequency representation evaluated at the frequency of the permanent oscillation
and computed solving Λ(E) with the obtained oscillation amplitude E. As a final con-
sideration, the method is justified heuristically and it is based on the assumption called
the “low pass assumption” which means that only the fundamental frequency of the oscil-
lation is accounted for. However, it is important to say that the results of the describing
function method are consistent in practice and the computed results match the real ones
with a good approximation. In conclusion, the describing function method represents an
extremely powerful tool to both design the relay feedback system and to infer the system
with good accuracy and low effort and it is the reason why it is widely used and one of
the few widely applicable methods in the analysis and design of permanent oscillations of

20 2| Theoretical background

F1 R2 F2 R1 P
0 y

−

block to remove disturbances

Figure 2.2: Robust relay feedback structure

nonlinear systems.

2.4. Robust Relay Feedback Structure

In general, disturbances greatly deteriorate the performance of relay-based identification
procedures. While high-frequency noise makes it harder to correctly measure the ampli-
tude of the oscillation, and can even provoke spurious relay toggles if not chattering, static
and slowly variable disturbances deteriorate the experiment in that they make it hard to
recognise a permanent oscillation; if large enough, such disturbances can even prevent
relay control from operating correctly, getting the system to remain stuck in either of the
two relay conditions.

Therefore, given the physical setting we address, a relay feedback structure (RFS in short)
capable to reject slowly varying disturbances is mandatory in our control problem. To
fulfil this need, we resort to the robust structure proposed by da Silva et al. [7] and shown
in figure 2.2. The said structure is composed of a relay with a high- and a low-pass filter.
The high-pass filter is an approximate derivative obtained by performing the difference
between the current error value and the value of the previous time instant. The low pass
filter, used to compensate for the dynamics of the high pass filter is instead an integrator.

2.4.1. Structure

Starting from the high-pass filter F1(S), da Silva et al. suggested the following one

F1(s) = 1 − e−sτf (2.8)

where τf is a time delay constant.

Using the first-order Taylor expansion of the chosen filter, it is possible to show that it is

2| Theoretical background 21

an approximate derivative:

F1(s) ≈ 1− (1− sτf) ≈ sτf

Finally, the frequency response of F1(s) is

|F1(s)| =
[
(1− cos(ωτf))

2 + (sin(ωτf))
2] 1

2

∠F1(s) = tan−1

(
sin(ωτf)

1− cos(ωτf)

) (2.9)

(2.10)

This filter has the advantage to be easily implementable in a digital controller and requires
low computational effort. Additionally, the choice of this particular filter is justified by
its frequency response: with a small time delay τf and at low frequencies, F1(s) has a
phase angle close to +π/2, meaning that it behaves as a derivative at low frequencies.

Consequently, the proposed low-pass filter is an integrator, i.e.,

F2(s) =
1

s
(2.11)

Its purpose is to compensate for the high filter dynamics and the effect of the R1 relay
because it doesn’t contribute to a null error at steady state. Finally, as already said,
the R2 relay is used to separate the bandwidth of F1 and F2 while the R1 relay is used
as the standard relay to generate a stable oscillation in the system. It is noticeable to
say that the proposed solution requires tuning a low number of parameters, actually the
time delay of the approximate derivative and the amplitude and hysteresis of the two
relays. As is shown shortly, tuning rules can be introduced to further reduce the number
of parameters: the user needs to define just the amplitude of the two relays (which will
be the same), tune the hysteresis of R2 only in case of noisy measurements and choose an
appropriate time delay.

2.4.2. Analysis of the Robust Relay Feedback Structure

In this section we analyse the proposed robust relay structure using the describing function
method and the Poincaré map analysis, to introduce the theoretical tools that can be used
as a guide during the tuning phase of the experiment parameters. In particular, a lemma
for the definition of the describing function and two theorems for the conditions of the
existence of unimodal and symmetrical limit cycles are stated.

22 2| Theoretical background

Describing Function

Under the usual assumptions of the describing function method, we have that

• the input reference signal of the relay feedback is r = 0;

• a sine wave is present at the input of the nonlinear element, and its output contains
no zero frequency and no subharmonic terms;

• the linear component has low-pass filter characteristics.

The describing function can be obtained by computing the ratio of the Fourier coefficient
of the first harmonic at the output signal to the input signal amplitude. Starting from
the high-pass filter, and assuming that the input signal has the form

ε(t) = E sin (ωt) (2.12)

the output is in the form

y1(t) = E|F1(jω)| sin (ωt+ argF1(jω))

where F1(jω) = |F1(jω)|∠θ1(ω) = |F1(jω)| ejθ1(ω)is the transfer function of the high pass
filter and its frequency response is described by equation (2.9).

Under the assumption of symmetric and odd nonlinearities, which we assume fulfilled in
this dissertation, the computation of the first harmonic of the output of the relay R2

(where Ξ2 is the amplitude and Ê2 is its hysteresis) is simplified and the output is

v(t) =
4Ξ2

π
sin (ωt+ θ1(ω) + θR2(E))

where

θR2(t) = − arcsin
Ê2

E

from which it is possible to compute the describing function of the relay R2

N1(E,ω) =
4Ξ2

πE|F1(jω)|
ejθR2(E)

Subsequently, the output of the low pass filter F2, where F2(jω) = |F2(jω)|∠F2(jω) =

|F2(jω)|e−j π
2 is

w(t) =
4Ξ2

π
|F2(jω)| sin

(
ωt+ θ1(ω)−

π

2
+ θR2(E)

)

2| Theoretical background 23

Finally, under the same assumptions of relay R2, the first harmonic of the output of R1 is

z(t) =
4Ξ1

π
sin

(
ωt+ θ1(ω)−

π

2
+ θR1(Ẽ) + θR2(E)

)
from which it is possible to compute the describing function of R1

N2(E,ω) =
Ξ1

Ξ2|F2(jω)|
ejθR1(Ẽ)

Given all these information, it is possible to compute the describing function of the overall
system

N(E,ω) = F1 ×N2 × F2 ×N1 =
4Ξ1

πE
ej(θ1(ω)−

π
2
+θR1(Ẽ)+θR2(E)) (2.13)

The obtained result can be reformulated as a lemma:

lemma Consider the robust relay feedback structure. Assume that the transfer function
of F1(s) is in the form described by (2.8), and F2(s) is an integrator (2.11) and
assume the phase angle of the filter F1(s) is θ1 at the frequency ω. Therefore, the
describing function of the RRFS method is given by

N(E,ω) =
4Ξ1

πE
ej(θ1(ω)−

π
2
+θR1(Ẽ)+θR2(E)) (2.14)

where

θRi(Ei) = − arcsin
Êi

Ei

for i = 1,2

Ei is the relay input oscillation amplitude

Ξi is the relay amplitude

Êi is the relay hysteresis

Ẽ =
4Ξ2

π
|F2(jω)|

As already said in section 2.3, the describing function is a very powerful tool to analyse the
permanent oscillations of nonlinear systems. In the context of this thesis, the describing
function is used to both provide easy-to-use rules to define the experiment required by
the autotuner and by the controller to infer data about the system.

However, the main drawback of the describing function is that it is based on heuristics,
meaning that the results obtained using it should be validated with another type of
analysis. In this respect, one can discuss the existence and uniqueness of limit cycles with
the aid of the Poincaré map analysis, developing two theorems to address the existence

24 2| Theoretical background

and their stability.

Poincaré Map analysis

Consider a single-input-single-output (SISO) LTI system satisfying the following linear
dynamic equations {

ẋ1 = Ax1(t) + Bup(t)

yp(t) = Cx1(t)
(2.15)

where x1 ∈ Rn, A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n and A is Hurwitz. The transfer function
of the related system results to be

G(s) = C(sI − A)−1B

Consider now the feedback structure depicted in figure 2.2 and define R1 the relay whose
output is the input of the linear system and R2 the relay used to separate the bandwidth
of the two filters. The relay R1 can be presented by the following control law

up(t) =

{
{1}, if w(t)>ε1,or w(t)<ε1

and up(t_)=1

{−1}, if w(t)<ε1,or w(t)>ε1
and up(t_)=−1

(2.16)

where ε1 > 0 is the hysteresis parameter and w(t_) is the value of w before time t.

Accordingly, the R2 relay can be represented as

v(t) =

{
{1}, if y1(t)>ε2,or y1(t)<ε2

and y(t_)=1

{−1}, if y1(t)<ε2,or ω(t)>ε2
and y(t_)=−1

(2.17)

where ε2 > 0 is the hysteresis parameter and y1(t_) is the value of y1 before time t.

Figure 2.3: Trajectory on the switching surfaces for RRFS, taken from [12]

2| Theoretical background 25

Additionally, the low pass filter has state space representation in the form{
ẋ2 = v(t)

ω(t) = x2(t)
(2.18)

where x2 ∈ R.

Considering the high pass filter, the combined LTI system (G(s)F1(s))is described as{
ẋ1(t) = Ax1(t) +Bup(t)

y1(t) = C[x1(t)− x1(t− τf)]
(2.19)

The switching surface, composed of a hyperplane of dimension n− 1, for the relay R1 is
defined as

S1 = {x1 ∈ Rn : x2 = ε1}

It is noticeable that the switching surface is a hyperplane that divides the state space
into two distinct regions. Based on this consideration, it is possible to define R−

1 =

{x1 ∈ Rn : x2 < ε1} the region in which the system behaves as ẋ1 = Ax1 − B and R+
1 =

{x1 ∈ Rn : x2 > ε1} the region in which the system behaves as ẋ1 = Ax1+B. Accordingly,
the same considerations can be applied to relay R2, defining its switching surface

S1 = {x2 ∈ Rn : C [x1(t)− x1(t− τf)] = ε2}

And obtaining the following regions:

R−
2 = {x1 ∈ Rn : C [x1(t)− x1(t− τf)] < ε2}

and
R+

2 = {x1 ∈ Rn : C [x1(t)− x1(t− τf)] > ε2}

Given these regions, it is possible to analyse the evolution of the switching system to
identify the limit cycle with the properties introduced at the beginning of the section.
In particular, consider a unimodal and symmetric limit cycle γ with period 2t∗ which is
obtained from the initial condition x∗ ∈ S where S is defined as a switching surface.

Therefore, the closed orbit γ crosses the switching surface S at −x∗ = x(t∗) ∈ S. In
other words, the limit cycle would cross the switching surface S at the state opposite to
the initial one after the half period. Figure 2.3 (taken from[7]) shows the behaviour of a
possible orbit along with the switching surfaces, in the plane of w, y1. It is possible to see

26 2| Theoretical background

that the switching surfaces divide the plane into four parts and in each one, one variable
is growing while the other is reducing forcing the system into a permanent oscillation.

Finally, the theorems for existence and stability are introduced. They will not be proven
here, as this would stray from the scope of this thesis.

Theorem 1 Consider the linear system given by eq (2.18) and eq (2.19) connected in
feedback with the relays. There exists a symmetrical and unimodal limit cycle with
period T = 2t∗ if and only if the following conditions are satisfied:

1. g1(t) ≜ C
[
−
(
I + eAt∗

)−1 (
eAt∗ − I

)
−
(
eAτf + eAt∗

)−1 (
eAt∗ − eAτf

)]
A−1B = ε2,

2. g2(t
∗) ≜ ε1 = 0,

3. y1(t) = C [x1(t)− x1(t− τf)] > ε2,∀t ∈ (0, t∗),

4. ω(t) = x2(t) > ε1,∀t ∈ (0, t∗),

where
x∗
1 =

(
I + eA∗t∗)−1 (

eAt∗ − I
)
A−1B,

x∗
2 = 0,

are the initial conditions x1(0) = x∗
1 and x2(0) = x∗

2 which leads to the periodic
solution.

Theorem 2 Consider the linear system given by equation (2.18) and eq (2.19) connected
in feedback with the relays. Assume that there is a symmetric periodic solution with
t∗ > θ, where θ represents the process time delay. The Jacobian of the Poincaré
map is given by

Wi =

(
I − ωiC

Cωi

)
eAt∗with i = 1, 2, 3 (2.20)

where

ω1 = eAt∗ (Ax∗
1 −B)

ω2 = eA(t
∗−τf) (Ax∗

τ −B)

ω3 = 0

(2.21)

(2.22)

(2.23)

The limit cycle is locally stable if and only if each Wi has all its eigenvalues inside
the unit disk. It will be unstable if Wi has at least one eigenvalue outside the unit
disk.

2| Theoretical background 27

FOPDT Model Identification

First Order Plus Dead Time (FOPDT in short) models are mathematical models used to
describe the behaviour of dynamic systems in transfer function form. The FOPDT model
describes the system defining a first-order dynamic equation with a time delay (also called
dead time) and a time constant. Such models are often used to describe the behaviour of
dynamical systems whose response to input variations is slow or damped. Alternatively,
such a model can be used to “hide” higher order dynamics that few affect the response of
the system, but still, such effects are not negligible.

The FOPDT model can be expressed as

G(jω) =
K

1 + jωT
e−jωτ (2.24)

where T is the time constant, τ is the dead time and K is the gain.

Given the disturbance rejection properties of the RRFS method, da Silva et al. pro-
posed a model identification solution that obtains more information by exploiting the
low-frequency rejection of the relay structure. Initially, the system is excited with the
RRFS control, and after a few oscillations, the frequency is obtained. After that, a step
and a low-frequency square wave are added to the process input. The suggested frequency
of the low-level signal is half the one obtained with the RRFS control. In this way, it
is possible to obtain the static gain of the system plus two frequency points and, usu-
ally, the low-frequency point is the one of interest in the control application. With such
information, a correction approach to increase the quality of a FOPDT identification is
suggested by da Silva.

Proposition 1 Consider the transfer function G(s), given by Eq. (2.25). At frequency ωi,
which is the oscillation frequency of the process, G(jωi) and ϕ(ωi) are the gain and
the phase of the system, respectively.

G(s) =
K

1 + sT
e−sL (2.25)

Define the relative gain κ(ωi) =
|G(jωi)|
G(0)

. According to Åström and Hägglund [12],
G(jωi) is estimated by a relay feedback test and the parameters for the FOPDT
model can be computed using the following equations

28 2| Theoretical background

T (ωi) =
1

ωi

√
κ−2(ωi)− 1

L(ωi) =
1

ωi

(
ϕ(ωi)− tan−1

(√
κ−2(ωi)− 1

))
Since two frequency points have been identified, they can be used to calculate two different
FOPDT models. Using the method just introduced with the point obtained at high
frequency ωH , it is possible to define the system

GH(s) = ḠH(s)e
−jLHs

where LH is the time delay of the high frequency model and ḠH is the corresponding first
order system part. The same operations can be done using the low frequency ωL data
point, obtaining the system

GL(s) = ḠL(s)e
−jLLs

Now, let us consider the initial model as

Gi(s) = Ḡi(s)e
−jLis

and suppose that it is equal to GL. Therefore, at frequency ωH the phase of Gi is

ϕ(ωH) = ∠Ḡi(ωH) + ∠e−jLiωH

Now, let us assume that |Ḡi| = |ḠH |. At frequency ωH , the phase difference between GH

and Gi is
∠e−j∆LωH = ϕH(ωH)− ϕi(ωH)

Therefore
∆L =

ωH − ωi

ωH

In conclusion, the corrected final model obtained by merging both models is

Gf (s) = ḠL(s) e
−(Li+∆L)s

2.5. Internal model control

The Internal Model Control (IMC) is a principle and a control design technique that
states (informally) that “a good controller incorporates a model of the dynamics that
generate the signals which the control system is intended to track”. Briefly explained,

2| Theoretical background 29

the controller has a model of the “outside world” inside it and the control is intended to
correct the divergences between the real process and the internal model.

F(s) H(s) P(s)

M(s)

w(t) +u(t)

dload(t)

y(t)

+
-

+
-

Figure 2.4: Typical scheme of the internal model control

Figure 2.4 shows the typical block scheme representation of the IMC layout. As one could
notice, if the model is exact and there are no load disturbances, the closed-loop system
is opened because the feedback is null. In other words, in nominal conditions (M = P

and dload = 0), the loop is open, hence

Y (s)

W (s)
= P (s)H(s)F (s)

Furthermore, if one could set H(s) = P (s)−1

Y (s)

W (s)
= F (s)

In accordance, in absence of model errors or disturbances, the feedback opens sponta-
neously. Moreover, one can enforce the dynamics w(t) → y(t) with a relative degree at
least equal to that of P (for realisability reasons).

The system can be rearranged as shown in figure 2.5 and the control equation is obtained

C(s) =
H(s)F (s)

1−H(s)F (s)M(s)

The previous equation is useful to tune PI/PID controllers according to FOPDT models.

Let us assume

M(s) = µ
e−sD

1 + sT
, H(s) =

1 + sT

µ
, F (s) =

1

1 + sλ

30 2| Theoretical background

F(s) H(s) P(s)

M(s)

w(t) +u(t)

dload(t)

y(t)

+
-

+

C(s)

Figure 2.5: Rearrangment of the internal model control to highlight the controller

This corresponds to zero steady-state error for constant inputs, since F (0) = 1. Further-
more, the parameter λ is easily interpreted as the desired closed-loop (dominant) time
constant. Accordingly

C(s) =
1

µ

1 + sT

1 + sλ− e−sD

Using the (1,0) Padè approximation to substitute the time delay, the following controller
is obtained

C(s) =
1 + sT

sµ(λ+D)

From which the tuning rule for a PI controller can be identified{
K = T

µ(λ+D)

TI = T

2.6. Contextual autotuning

The last – but very important – ingredient that we need to introduce in this chapter is
the so called “contextual autotuning” technique, introduced in [15], that we shall now
summarise and motivate in the context of the intended application

In its most general form, the contextual autotuning technique refers to a controller struc-
ture, expressed in transfer function form as

R(s, θR) θR ∈ ℜnR (2.26)

2| Theoretical background 31

as well as to a process model structure

M(s, θM) θM ∈ ℜnM (2.27)

where θR and θM are parameter vectors.

The technique further requires to specify a tuning rule to determine θR based on θM and
on a further vector θD ∈ ℜnD of design variables by means of nT tuning equations. In
a case like the one we address, where fast tuning is mandatory, it is natural to limit
the scope to explicit tuning equation or “rules”, i.e., formulæ that compute the controller
parameters without iterative methods, optimisations and the like. As such, obviously,
nT = nR.

Finally, to use the technique, nP points of the process Nyquist curve P (jωi), i = 1 . . . nP

are required, which are very naturally determined with relay experiment(s) as just dis-
cussed.

The above said, the problem of jointly parametrising the model M and tuning the con-
troller R has nR + nM + nD variables, and here the main difference between contextual
and non-contextual autotuning emerges. In the non-contextual case, the above equations
are solved in two separate sets:

• first the nM ones relative to θM are considered, carrying out the model parametri-
sation with any method of choice — and in doing so following a criterion that is
not related to the subsequent tuning, or said otherwise, evaluating the quality of
a model parametrisation based just on its “adherence to the data” whatever this
means;

• then the nR ones relative to θR are addressed, which corresponds in fact to applying
the selected tuning rule and viewing the nD design variables as quantities to select
(simplifying a bit for brevity) based on the tuning requirements, and possibly also on
the parameters of the model (think for example of the various suggested formulæ to
select the IMC-PID required time constant based on the observed normalise delay
of the model [19]).

In the contextual case, on the contrary, the same equations are solved all together as a
unique system, with the motivations and advantages that will now emerge while explaining
how the said union is realised.

The first step is to write that “the model is exact at the known points of the process

32 2| Theoretical background

frequency response”, which means

M(jωi, θM) = P (jωi) ∀ i = 1 . . . nP , (2.28)

and provides 2nP (real) equations. Most important, doing so implies that any conclusion
drawn using the model in the frequency band comprising those points will carry over
“reasonably well” to the control system with the real process. Note that in the non-
contextual case this in general is not guaranteed.

Then second step is to take the chosen tuning rule and express the (nominal) closed-loop
cutoff frequency ωcn – the way this is done depends on the rule, we omit inessential details
– and so obtain one further equation saying that ωcn equals one of the frequencies ωi of the
known process frequency response points; the way the point is chosen gives rise to several
variants, here too we do not enter a discussion that is not relevant for our purposes.

At this point, the overall problem contains nT + 2nP + 1 equations, hence it suffices to
add nf real equations, where

nR + nM + nD = nT + 2nP + 1 + nf . (2.29)

These nf equations can prescribe the value of design variables in the tuning rule, but also
of regulator parameters, model parameters or any combination of choice thereof, or they
might even just prescribe relationships between the quantities just mentioned.

In synthesis, under the sole constraint that the obtained system of equations be math-
ematically tractable, there is neither distinction nor any kind of hierarchy among the
different sets (model, controller, design) of variables in the overall tuning problem: model
parametrisation and controller tuning are treated jointly, whence the name “contextual”
chosen for the technique.

The main advantage achieved is that the model used for the tuning is by construction
“exact at the cutoff frequency”, and this has an important consequence: one can use
the closed-loop model formed with the parametrised M and the tuned R to predict the
behaviour of the controlled variable reliably enough in the face of any input that enters
the control system in a position such that its influence on the said variable depends only
on the loop transfer function, provided that the tuning is made in such a way that at
low frequency (with respect to the cutoff) the loop frequency response magnitude is “very
large” — as incidentally any controller with integral action inherently guarantees. This
is because a contextually parametrised model is (almost) exact at the cutoff frequency,

2| Theoretical background 33

and as a consequence most likely incorrect at low frequency – for example, based on a set
of frequency response points there is evidently no guarantee to match the process gain –
where however a “very large” loop frequency response magnitude greatly quenches, and
in practice eliminates, such a discrepancy.

Unfortunately, coming to the case at hand, this does not apply to matched (input)
disturbances, as the nominal transfer function from these to the controlled variable is
P/(1 + RP). At present we are thus exploited contextual tuning as an effective policy,
but not (yet) as a means to pre-evaluate a tuning beyond the possibilities of literature
rules. If the problem just mentioned were solved, one could for example take records of
load/power taken from previous system operation, feed them to the nominal model ob-
tained after a tuning, and see how this would react, hence rapidly qualifying and assessing
the achieved tuning quality in a manner strictly tied to the particular system to control. A
frontier for this research is therefore to find some way to improve a contextually obtained
model (for example by coupling it to a “low frequency” one) in such a way as to allow for
a reliable estimation of the matched (input) disturbance response. This thesis does not
address the matter, but no doubt provides a foundation for doing so in future works.

35

3| Physics, models and tools

In this chapter, before entering the description of the proposed autotuner, we introduce
the physics involved in the addressed control problem — i.e., we provide a control-targeted
overview of heat generation and propagation in a microprocessor, also indicating how we
addressed the relative thermal modelling.

In particular, we introduce two modelling approaches, conceived to address the two main
phases of our control implementation: the control design and the performance analysis
(through simulation). Additionally, we spend some words on how the thermal behaviour
of a single-core device is usually modelled in the literature for control design, as well as
on how such a modelling approach was modified to consider the thermal interaction in
multicore systems. Moreover, we shall here talk about the fine-grain models that can
be obtained through the finite volume method, and why these are useful to simulate the
behaviour of distributed-parameters systems.

Finally, the chapter says some words about the tools used to model the addressed system:
Modelica, which is a modelling language suitable for multi-domain systems, as well as
3D-ICE, a thermal simulator written in C for the fine-grain representation of thermal
phenomena in CPUs.

3.1. Overview

Microprocessors are part of the family of monolithic integrated circuits, more commonly
known as integrated circuits. An integrated circuit is a set of electronic devices on one
small flat piece (a.k.a "chip") of semiconductor material, usually silicon. Many minia-
turised transistors and other electronic components are integrated into a chip, resulting
in circuits that are orders of magnitude smaller, faster, and cheaper than other solutions
constructed with discrete components.

The production of integrated circuits is a highly complex manufacturing task, where a
single block of silicon undergoes an articulated lithographic process to create the myriad
of transistors composing the computational units, in a way that the electronic circuit is

36 3| Physics, models and tools

indivisible from the rest of the material. The obtained result is a block of silicon with
regions intertwined by very complex thermal interactions. In fact, on the active silicon
layer, it is possible to find confined areas representing (in the case of microprocessors) the
so-called “cores”, along with cache, system on a chip (SoC), peripheral interfaces, and so
on, which have different dimensions and thermal generations. Additionally, another layer
of thermally conductive material is added on top of the silicon to protect it and enhance
thermal exchange with the cooling system.

The final result of so articulated a manufacturing, viewed from the control stand point,
is a thermal system comprising several dynamics. Looking closely at the silicon one more
time, it is in fact possible to distinguish two regions, namely the active silicon and the bulk.
The active silicon is the part involved in the computations, therefore the part generating
the heat to dissipate, and the temperature profile of this layer greatly depends on its
floorplan, which is the layout of the electronic circuit, nowadays – owing to the already
mentioned dark silicon problem – designed according to the thermal interactions between
cores. The rest of the silicon (the “bulk”) is not involved in the computations, meaning that
it does not contribute to heat generation, and its role is to behave as a thermal medium
between the active silicon (which it mechanically comprehends and sustains) and the heat
dissipation system. In a scenario where the need exists for thermal-aware management, it
is important to analyse the thermal interaction between the individual cores in a view to
devising policies and routines that best fit with the thermal management, or, equivalently,
the minimisation of the dark silicon area, i.e. of the units that cannot be fully utilised at
any given time.

Assuming the possibility to control the generated heat of a single core, which (as will be
shown) is reasonable in modern microprocessors, the thermal interaction between cores
needs considering for the control choices to be made: if the thermal interaction is small
(i.e. the cores are weakly coupled), at least at the time scale of the transients to manage,
then a decentralised control can be chosen, leading to lightweight, less computationally
expensive and more easily implementable solutions. Otherwise, centralised controls must
be employed, with all the downsides of such solutions. For this reason, a proper modelling
of the thermal system considered, as well as a proper identification of its parameters, was
a crucial step in the design of the control and all the results depend on it.

3| Physics, models and tools 37

3.2. The physics to consider

The problem we are facing is related to the heat propagation within a solid object. The
behaviour of this phenomenon can be modelled through the heat equation

∂u

∂t
= α

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
(3.1)

where u is the temperature of any point of the medium in any time instant, i.e. a function
of space and time u(x, y, z, t), α is the thermal diffusivity, t is the time, and x, y, z are the
spatial coordinates in the chosen reference frame.

Equation (3.1) refers to a homogeneous and isotropic medium, i.e., a medium with con-
stant properties throughout its entirety and that expands uniformly in the 3D space
(mathematically speaking, the heat equation can be expanded to any arbitrary dimen-
sion). It is important to notice that, if the medium is not homogeneous and isotropic as
it is in our case, α depends on the space coordinates and the equation is slightly more
complicated. However, a full description of the diffusion phenomenon is beyond the scope
of this dissertation.

The right-hand side of the heat equation is equivalent to the expansion of the so-called
Laplacian operator, therefore the equation can be rewritten in the form

u̇ = ∆u (3.2)

where u̇ is the time derivative of u, and ∆u its Laplacian. Equation (3.2) shows no
explicit dependence on spatial coordinates because the Laplacian operator is traslationally
and rotationally invariant, which represents an important property of homogeneous and
isotropic media.

Loosely speaking, the Laplacian operator returns the difference between the average value
of a neighborhood of a point and its value. Thus, since u is here the temperature, the
Laplacian returns the difference between how much warmer or cooler the material around
the point is on average with respect to the point and the temperature of the point itself.

According to the second law of thermodynamics, heat flows from hotter regions to colder
ones and the rate of exchange is proportional to temperature difference and thermal
conductivity. Moreover, the temperature increase (or decrease) of an object is proportional
to the entering (or exiting) heat and to the inverse of the mass, multiplied by the thermal
specific heat capacity of the object.

38 3| Physics, models and tools

Combining both considerations, the temperature variation rate of a point, denoted by u̇,
is proportional to how much warmer (or cooler) the surrounding material is. The diffusion
coefficient α considers the thermal conductivity, the heat capacity, and the density of the
material.

The heat equation implies mitigation over time of the maxima and minima of the solution,
meaning that over time the maxima will be eroded and the minima will be filled in.
This is because a point in the solution is stable only if it is equal to the average of its
surrounding. Accordingly, if there is no thermal generation, the temperature at each point
of the medium will eventually reach the same average value.

The mathematical representation of the heat propagation in a medium is an important
means to understand the physical principles of the problem. The mathematical model
may (and should) be expanded to account for the thermal generation and anisotropic and
inhomogeneous media. However, this representation of the problem is already too complex
for the control design and the control properties analysis, and for accurate simulations
in general. In accordance, some simplifications must be introduced, as we are going to
describe in the following section, to account for the control design and validation of the
control strategy, prior to hardware implementation.

3.3. Purposed modelling

In control applications, the model of a physical process is fundamental for the design and
analysis of control laws. Whenever there is the need to control a physical process, a set
of inputs and outputs must be defined, where inputs are the variables to be controlled to
enforce the output to behave as desired. Accordingly, during the control design, a control
engineer has to manipulate the physical representation of the system to obtain another
mathematical representation, the so-called dynamic model, which shows the input-output
relationship of said system and how the system evolves in time. In mathematics, a dynamic
system is a system in which a function represents the time dependence of a point in space,
usually, using differential equations. In particular, the variables composing a dynamic
model are:

• The state variables: those physical variables that encode the current state of the
system.

• the outputs: those physical variables of interest that are measured and should be
controlled.

• the inputs: the physical variables that are external to the system and can influence

3| Physics, models and tools 39

its behaviour over time. The inputs can be further divided into controllable inputs:
inputs that can be controlled using actuators, i.e. devices that actuate the control
action, and exogenous inputs (or disturbances): inputs that cannot be controlled.

Then, the dynamic model can be represented as{
ẋ = f (x, u, d)

y = g (x, u, d)
(3.3)

where x ∈ Rn is the state, u ∈ Rp is the input, d ∈ Rr is the disturbance and y ∈ Rm

is the output. The former equation represents how the system evolves in time, while the
latter equation shows how the output is related to the state.

Another important aspect in control applications is the level of detail of a model, which
changes greatly according to the modelling purposes. During the control design, the model
should be “lightweight”, in some sense, in order to keep the control problem addressable.
Consequently, one should follow control design-oriented approaches that are able to pro-
vide simplified models that capture the key behaviour of the system. For example, during
the development of a control design-oriented model, non-linear functions are commonly
linearised around the equilibrium of interest, i.e. the state around which we want the
process to remain, so as to resort to linear systems. The classical control theory is plenty
of techniques to handle such systems, and usually, the effectiveness of such techniques
justifies the approximations made.

On the other hand, the model should be as accurate as possible during the analysis
of the system to capture all the characteristics ignored during the control design, and
consequently, validate the approximations. Typically, the control performances (such as
the phase margin and the control bandwidth) are addressed during the design, then, a
simulation of the overall system can be used to validate the control strategy in a scenario
much more complex than the one in which it was developed. Instabilities or more general
undesired effects may happen that cannot be seen from the simplified model, but only
through the analysis of the system according to accurate models.

In our control scenario, the controller tunes itself after an experiment; consequently, the
“simplified” model is used to address the characteristics of the autotuned control, e.g.
the phase margin and control bandwidth, rather than to design the control itself. In
contrast, a detailed model can be used to validate the control performances in complex
systems. Anticipating, the above motivates the choice made in this work, to carry out
experimentations both with system-level models (in Modelica) and with fine-grain ones
(with the 3D-ICE chip simulator).

40 3| Physics, models and tools

3.3.1. Detailed modelling

During the performance analysis of the controller (usually performed through simulation),
the model should be as accurate as possible to reproduce the behaviour of the system up
to a precision level that is generally not required during the control design. However,
the behaviour of the problem addressed in this thesis belongs to the class of distributed-
parameter systems, i.e. physical systems whose state space is infinite-dimensional. Usu-
ally, such kind of systems is described by partial differential equations or delay differential
equations. The nature of these systems is such that it is impossible to derive a dynamic
model capable to simulate and predict the system without discretisation. In particular,
in our control problem, the infinite dimensionality arises from the heat propagation which
depends on time and spatial coordinates (as shown previously in equation (3.1)). Accord-
ingly, the discretisation breaks down the partial differential equations arising from the
spatial dependence.

Several methods exist to account for distributed systems, one of which is the Finite
Volume (FV) method. The FV method divides the volume of the system into several small
interconnected elements, then, the mathematical representation of the interconnection is
defined as well as the dynamic equations arising from the discretisation. Accordingly,
the number of states of the overall system is proportional to the number of elements and
their properties, and subsequently, the discretisation choices greatly impact the degree of
detail of the obtained model and its performance. Moreover, the discretisation permits
accounting for the evolution of the state variables according to the space coordinates too,
resulting in a “map” of the variable which evolves in time. Due to the high level of detail
that this technique can reach, the FVM permits the so-called “fine-grained” simulations.

In this particular scenario, one can use the FVM to divide the system into a set of
thermal nodes, which represent discrete regions where heat is generated or transferred.
These nodes are connected by thermal resistances and capacitances, which represent the
heat transfer and thermal storage capacities of the system. Such discretisation permits
better representation capability of the system, at the cost of a huge increase in the number
of dynamic equations. The nodes are usually boxes, and therefore, they have 6 thermal
resistances (one for each face), and a thermal capacitance as shown in figure 3.1.

Once the nodes and thermal connections have been defined, a set of differential equations
is developed to describe the thermal behaviour of each node over time. These equations
are then solved numerically using software tools, allowing the temperature response of
the system to be predicted under different operating conditions.

The simplified model of the system (obtained through FVM), which captures the key ther-

3| Physics, models and tools 41

Figure 3.1: Figure representing a typical thermal node.

mal properties, allows accurate simulations of the thermal behaviour in a much shorter
time than using detailed numerical simulations. Additionally, FVM permits better ther-
mal insight into the system than control design-oriented modelling, which is able to cap-
ture only the main dynamics of the system. Some of the advantages of FVM are:

• speed: FVM allows faster simulations compared to detailed numerical simulations.
This is particularly useful when testing multiple control solutions to address their
trade-offs or when simulating large electronic systems.

• Accuracy: Even though the FVM is based on a simplified model, FVM can provide
accurate simulations or predictions of the temperature transients of the regions
inside the system. This is because the model captures the main features of the
thermal behaviour of the system, such as thermal conductivity, heat capacity, and
thermal resistance.

As a final consideration, FVM represents a valuable simulation environment for the accu-
rate simulation of the distributed parameter system we aim to control, providing insights
into the microprocessor thermal behaviour that cannot be addressed using just control-
oriented modelling.

3.3.2. Control design-oriented modelling

Control design-oriented modelling is an approach to devising models of complex systems
that are focused specifically on designing and implementing control strategies. As already
stated, design-oriented models are usually simplified representations of the underlying
physical system and these models are designed to capture the key dynamic behaviour
relevant to the control problem. Accordingly, the models devised for control design are
usually much simpler than those used in the analysis (and simulation) of the control

42 3| Physics, models and tools

performances.

Design-oriented modelling aims to develop models that can be used to design and develop
control strategies for the control problem. These control strategies usually consist of
tracking a desired reference trajectory or rejecting the disturbances that can perturb the
system.

Usually, the model contains differential equations that encode the response of the system
to certain inputs or disturbances. These equations are obtained through knowledge of
the physical principle of the system, from data, or a combination of both (in engineering
jargon, the approaches are called “white-box”, “black-box” or “gray-box” modelling re-
spectively). Design-oriented modelling may also contain simplifying assumptions, such as
neglecting nonlinearities, to maintain the system linear and, therefore, more suitable for
the control design. Once the model is complete, it can be used to devise control strategies
such as classical control, linear-quadratic control, or model predictive control. Typically,
design-oriented modelling aims to derive linear models from which the transfer function is
extrapolated. The transfer function is meaningful only for linear systems and encodes the
relationship between the input and output spectra. It represents a powerful tool for the
analysis and design of control for linear systems and most of the classical control theory
is based on this mathematical tool. The transfer function contains the poles and zeros of
the system, which are the time constants that the process takes to react to certain stimuli.

As said previously, the accounted physical process belongs to the class of distributed-
parameter systems and discretisation must be performed to model it. Accordingly, a
model feasible for the control design can be obtained by lowering the degree of detail of
the finite volume method, up to a small number of volumes, (for example, three volumes
as described in section 3.3.2).

Furthermore, in our control scenario the controller tunes itself according to the data
obtained from an experiment, therefore there is no design phase asking for a design-
oriented model. However, the simulation with a model with well-known dynamics (which
is the case of design-oriented modelling) permits to address of the quality of the autotune
operation: the analysis returns the information of the system in the form of frequency
data point (see sections 2.3 2.4.2 for more details), if the transfer function of the system is
known, the exact data point of the system is also known, therefore the estimation can be
validated. On the same basis, one could set up other types of experiments to validate other
control properties, such as the settling time, addressed by looking at the step response of
the controller.

3| Physics, models and tools 43

The 3-capacities single-core model

The three-capacity thermal model is a commonly used model for analysing the thermal
behaviour of a single-core microprocessor. It assumes that the thermal behaviour of a
microprocessor can be represented with a series of thermal capacitances and resistors,
where the capacitances represent the thermal energy stored in several elements of the
microprocessor.

In particular, the three-capacity model considers the energy stored in the core, the bulk,
and the spreader, represented by the corresponding thermal capacitances. On the other
hand, the resistances represent the rate of exchange of thermal power between the ele-
ments. The resistance between the core and the bulk represents the rate at which the
thermal energy is transferred from the core to the bulk and, accordingly, the resistance be-
tween the bulk and the spreader represents the rate at which thermal energy is transferred
from the package to the surrounding environment.

Thanks to the duality between thermal and electrical systems, the obtained model can
be translated into its equivalent electrical one and, therefore, the obtained model can
be analysed according to the usual electrical analysis tools. In particular, assuming the
interaction between the spreader and the environment constant -not a stunning limitation
because the dynamics of the heat-sink is much slower than the thermal dynamics of
the microprocessor, at the considered bandwidth- the resulting dynamic behaviour of
the core consists of three dynamics with different time scales dictated by the thermal
elements. Figure 3.2 shows the electrical equivalent of the three-capacity thermal model.
Accordingly, one can use the electrical equivalent and the theoretical tools of circuit
analysis to extrapolate the frequency response of the system, by setting as input the
thermal generation (represented by the ideal current generator), and the temperature of
the core (represented by Ta, the voltage stored by the first capacitor).

P

Figure 3.2: Electrical equivalent of the 3-capacities model of a single-core

44 3| Physics, models and tools

However, the model is capable to represent just the thermal interaction of a single core
interacting with the environment (which is the missing part to attach to the pin). Ac-
cordingly, the model should be expanded to account for the thermal interaction between
cores, as shown in the following subsection.

A system-level model for a multicore device

The three-capacity model is a valuable tool for capturing the key dynamics of a single core.
However, it is not directly applicable to multicore simulations without some adjustments
to account for the interaction between cores. To address this, a modified version of
the model has been developed, which shares the slower dynamics associated with the
spreader among the different cores (as shown in figure 3.3). This leaves the stressed core
still undergoing the third-order dynamics but, now, the modified model can also capture
the fifth-order dynamics of the cores’ interaction. By introducing these changes, the
modified model maintains the transient behaviour of the stressed core but also enables
the modelling of core interactions.

3.4. Tools

In this section, we introduce the tools used during the development of the thesis to simulate
the process for the control analysis. In particular, Modelica was used for the development
of the three-capacity model and the initial testing of the autotuner prototype. Even
though Modelica permits the modelling setup required by the fine-grained simulation,
the work and time expenditure to do so would have been too high. Therefore, we chose
3D-ICE, a C library specifically designed to perform fine-grained thermal simulations of
microprocessors.

Figure 3.3: adaptation of the 3-capacities model for a four cores multicore

3| Physics, models and tools 45

3.4.1. Modelica

Modelica is an object-oriented, declarative modelling language suitable for modelling
multi-domain systems, i.e., systems in which different physical domains such as mechani-
cal, electrical, and fluid systems interact with each other. The free language is developed
by the non-profit Modelica Association [1] which also develops the Modelica Standard
Library that contains 1400 generic components and 1200 functions in several domains.

Even though the Modelica syntax somehow resembles object-oriented programming lan-
guages such as C++, the concept of classes and inheritance greatly differs. Since Mod-
elica is a modelling language, the classes are not compiled in the usual sense, but they
are translated into objects which are then exercised by a simulation engine. Further-
more, the primary content of an object is a set of equations rather than instructions,
as normally happens in programming languages. Equations represent equalities between
different physical variables, meaning that equations don’t have a predefined causality as
assignment instructions do. The said equalities must be fulfilled at every time instant,
otherwise the simulation is incorrect. Thus the simulation engine may, and usually it
does, manipulate the equations symbolically to determine their order of execution and
which components are inputs and which others are outputs. Once the model is defined,
the simulation engine generates a set of internal binaries which are compiled and then
used to simulate the overall system.

One key feature of Modelica is the possibility to model the systems both through block-
modelling and acausal-modelling. The former is the typical representation of control
theory, where the modelled elements are represented by blocks that accept some inputs
and have some outputs. The block-modelling technique enforces an input-output relation,
and one should spend some time and effort to obtain the model from the physical rep-
resentation of the process, where, usually, the input-output relation is hard to see. This
type of representation allows seeing the flow of information in the system, thanks to the
input-output identification of the modelled elements. On the other hand, the representa-
tion is fixed and a modification of the underlying physics (for example by considering the
nonlinear interaction rather than its linearisation) usually leads to a complete rewrite of
the model.

Alternatively, one could use the a-causal modelling approach in which the behaviour of the
element is defined, rather than the input-output relation. The result is a set of symbolic
equations that the solver has to deal with to extrapolate the evolving behaviour of the
physical system. The advantage of this representation is that the model maintains a
physical interpretation, at the cost of a less clear flow of information.

46 3| Physics, models and tools

3.4.2. 3D-ICE

The 3D Interlayer Cooling Emulator, 3D-ICE in short, represents the compact transient
thermal model (CTTM in short) tool chosen for the simulation and testing of the proposed
control [21].

The compact transient thermal modelling is an industrial application for the finite volume
analysis of the transient temperatures in electrical circuits, such as microprocessors. It is
a Thermal Emulator Library written in C and designed for Linux, and is capable of con-
ducting transient thermal analyses on vertically stacked 3D integrated circuits featuring
inter-tier Microchannel Liquid Cooling, using CTTM to model both solids and liquids.
3D-ICE aims to provide an environment for fine-grained simulation of integrated circuits
with 3D architectures, i.e. integrated circuits which have multiple active silicon layers
and, eventually, microchannels for internal liquid cooling.

Figure 3.4: Representation of the discretisation performed by 3D ICE and how the heat
traverses the stack. The stack is composed of two dies, each one containing a source layer
(green) and liquid cavities for cooling (blue). The figure is taken from the 3D-ICE user
manual

3D-ICE provides two simulation modes:

• batch simulation, in which the power profile generated by the active elements is
known a priori and therefore, all the power-related data are passed to 3D-ICE in
the form of a configuration file at the beginning of the simulation. Then 3D-ICE
simulates the system and returns a file containing the evolution of the thermal map.

• interactive simulation, in which the power profile is not known at the beginning of
the simulation because, as in our case, it may depend on a thermal control policy.
In our scenario, the controller manages the frequency through the DVFS module,
consequently, the power profile depends on the evolution of the core temperature,

3| Physics, models and tools 47

Figure 3.5: uml representation of the simulator modules and the co-simulation FMI in-
terface

which cannot be known at the beginning of the simulation. Consequently, the power
profile is provided to the simulator in real time, thanks to the co-simulation offered
by 3D-ICE. In particular, 3D-ICE offers a TCP/IP socket interface for client-server
communication to implement the interactive simulation. The policy, or the thermal
profile generator, is encoded in the client, which sends the profile to the server
through the socket and asks the server to take a step forward in the simulation.
On the other hand, the server encapsulates the 3D-ICE simulator and waits for the
insertion of the power profile and the request to simulate a step. Once the simulation
step is done, the server returns the cores temperature profile to the client, which
can repeat the steps.

Additionally, the library provides support for FMI integration for the co-simulation of
externally-modelled heat sinks. In fact, heat sinks can be plugged through the use of
dynamic libraries, and FMI-compatible loaders are provided for this purpose. The user
could define custom heat sinks in languages such as Python or C++, or model them in
Modelica and export the model through the FMI exporter provided by Modelica itself.

For the fine-grained simulation, the user is required to provide the emulator with two files:

• the stack description file: in this file, the user describes the 3D IC thermal problem
to be solved. This contains information about the structure, the physical properties
of the materials the layers are made of, the discretisation parameters, the analysis
parameters, and the instruction for outputting the desired information. The infor-
mation about the structure regards the width and length of the layers, their number

48 3| Physics, models and tools

and height, and the location of the active layers, i.e. those generating power, and
the heat sinks. Additionally, each layer can be made of a different material, as long
as the material is defined and its heat capacity and thermal resistance are provided.
Possibly, a layer could contain the cavity for liquid cooling. The user could require
steady-state or transient simulations. In contrast to steady-state simulation, tran-
sient simulation enables the study of the evolution of the system over time, allowing
the analysis of the dynamics of the system. in accordance with what has been said,
the latter is the one of interest for our simulation purposes.

• the floorplan file: the floorplan is the layout of the active silicon layer, which defines
the regions occupied by the cores, the caches and other elements of the micropro-
cessor. 3D-ICE requires only the definition of the dimensions and location of the
regions generating power. In the case of batch simulation, the floorplan contains
also the power profiles of the active elements.

Figure 3.4 shows a possible 3D architecture use-case, corresponding to a scenario in
which the processor is composed of two active silicon layers (green layers), red blocks
represent the discretisation of the bulk, while the blue blocks represent the cavities for
in-chip cooling (a feature that 3D-ICE offers and we mention for completeness, although
not relevant for this thesis) and the dark red blocks represent the spreader layers. It is
possible to notice also the heat flow direction considering that 3D-ICE assumes that all
the walls are adiabatic except for the spreader layer.

49

4| The proposed autotuner

In this chapter we discuss the functionalities implemented into the controller, and how
these were turned into the autotuner software application. We start with some generalities
and the addressed control structure, then move to the features to realise, and finally to
the organisation of the autotuner into modules and to the communication among these.

4.1. Foreword

In the case where a controller is connected to a system with several inputs and several
outputs, and the objective of the control is to modulate all outputs (i.e., each output has
its own reference), then the number of inputs must be at least equal to the number of
outputs. Also, the control should take this connection into account, and there are two
ways to consider it depending on the degree of interaction between inputs and outputs:

• Decentralised control method: the controller consists of a series of controllers that
modulate a single process output by acting on a single input. This is possible because
the physical system has a preponderant one-to-one correspondence for each input-
output pair, such that, each input largely influences only one output and weakly
the others. In this case, it is possible to treat the MIMO (Multiple-Input, Multiple-
Output) system as a collection of SISO (Single-Input, Single-Output) systems, and
each controller is associated with one SISO system. A decentralised structure allows
for a much simpler control law, because the various interconnections are not consid-
ered, and easier implementation. However, in the general case it does not guarantee
any property – staility included – if not properly applied, or in other words, there
must be solid motivations to support its applicability.

• Centralised control method: the controller simultaneously manages all control vari-
ables to modulate all outputs simultaneously. Usually, the centralised method is
chosen whenever the MIMO system has too strong interconnections, making decen-
tralised control inappropriate.

Given a MIMO system with strong interconnections, the complexity of the autoregulator’s

50 4| The proposed autotuner

experiment is also complicated because the autoregulator must test all possible input-
output combinations for the experiment to be successful. In contrast, if decentralised
control is possible, an autotuner only needs to investigate the interaction between the
designated input-output pairs, greatly reducing the number of experiments.

For this reason, we performed an analysis on the strength of interconnection between
the input and output elements of the process, in order to validate the hypothesis that
the system is weakly coupled, allowing the use of decentralised control, with the resulting
benefits. The next section introduces the physical system and the experiments conducted,
showing the data obtained and how they demonstrate that a decentralised solution is
viable. Based on these results, we decided to use decentralised control, and the next
sections explain what design choices resulted from this initial one.

4.2. The addressed control structure

We start our treatise by discussing the control structure to which the presented autotuner
needs to be applied. This is based on a model devised in light of physics and of data
collected by a previous study [16].

In the said study, experiments were carried out on an Intel i5-6600K processor running
Linux. The considered microprocessor has four cores, labeled 0-3, and during the exper-
iment all the thermal controls were disabled, leaving in place only the hardware thermal
protection (which, however, never intervened). Four tests were performed, in any of which
just one core was stressed with different types of excitations, while the others were left
without any load but the inevitable operating system tasks. In the first experiment, core
0 was excited with a maximum load step at time instant 0.1s using the cpuburn thermal

Figure 4.1: Raw data obtained from the study [16] showing the cores temperatures after
a step change in the computational power request

4| The proposed autotuner 51

stresser, which is a routine used in benchmarks to study the microprocessors’ behaviour,
stressing the cores by flooding them with a sequence of mathematical computations to
reach the maximum utilisation of the core. In this way, it is possible to analyse the effect
of the maximum computational power from the thermal point of view. In the second ex-
periment, core 0 was kept excited with the cpuburn command, but the clock frequency of
the cores was kept at the minimum value and then, at time 0.1s, the clock frequency was
set to the maximum admissible value. The third and fourth experiments were performed
in the same way with a different software load, a routine called cache-miss where the core
was forced to allocate and deallocate some memory. The purpose of the cachemiss is to
keep the core at 100% loaded(i.e. always active), but only to manage memory, that is,
with small power consumption compared to math operations.

The raw data are depicted in picture 4.1. The difference between the thermal transients
undergone by the stimulated core and the others is noticeable. In particular, data related
to the stressed core dynamics show a qualitative behaviour similar to a first-order response
while the thermal transients that arise from the cores’ interaction exhibit a second-order
(at least) response. Based on these considerations, an analysis was carried out in Matlab
using the tfest function of the system identification toolbox assuming a fast pole plus a
quasi-canceled slow pole for the single core dynamics, and two poles and a quasi-canceled
slow pole for the core interaction.

The results showed a clear decoupling in the control bandwidth, validating the weak-
coupling hypothesis and leading to the decentralised approach.

4.3. Implemented features

Given the result of the previous section, we chose to develop the controller according to
the decentralised approach. Consequently, all considerations made from here on out relate
to application to a SISO system, knowing that multiple controllers can be aggregated to
address cases with multiple inputs.

As anticipated, the autoregulator performs an experiment to identify information about
the system to which it is connected. For the experiment to be successful, the autotuner
needs methods for system excitation, system response analysis, and controller self-tuning.

This section introduces the methods used for the success of the experiment, and specifi-
cally, the focus is on the rationale behind their choice. The elements are then taken up
in the next section in which they are discussed in more detail.

Starting from the excitation methods, the autotuner provides three different exciters: the

52 4| The proposed autotuner

relay, the relay with integrator, and the robust relay. Moreover, the proposed analysis
methods are the describing function method and Fourier analysis. Finally, the calibration
methods are closed-loop adjustment, IMC, and contextual IMC. All the elements intro-
duced are then taken up later and elaborated upon during the description of the proposed
autotuner.

• Process stimuli : relay, relay plus integrator and robust relay

In our control scenario, the analysis experiment takes place under a condition such
that the process cannot be guaranteed to be unperturbed by free motions of previous
inputs (i.e., residual motions of actions that are no longer present). Consequently,
the experiment performed must be meaningful even in the case of residual free
motions. As described in 2.2, a common practice is to bring the physical process
into a condition of forced permanent oscillation. Since free motion decays over
time, after a few oscillations, it can be considered that the only perceptible motion
is forced motion.

To bring a linear system into permanent oscillation, it is sufficient to excite it with
a static nonlinear system (i.e. a dynamic system without an equation of state). For
this reason, we decided to use the relay and its integrated version. However, the
experiment on a single core occurs while the other cores are busy doing the inevitable
operating system operations, resulting in disturbances. Consequently, the exciter
must be able to perform its action by rejecting the slow disturbances arising from
the interaction with the other cores. For this reason, the robust method covered in
the 2.4 section was implemented: a relay structure with filters to be able to filter
away the low-frequency effects of the interaction between cores.

• Response processing: describing function and Fourier analysis

Once a permanent oscillation has been obtained, information about the system can
be extrapolated through the use of the describing function method or of Fourier anal-
ysis. The describing function method (as extensively described in the 2.3 section)
represents a quick and easy approach for analysing the system, which can identify
the frequency response of the system to the pulsation of the obtained permanent
oscillation. On the other hand, Fourier analysis represents a more powerful tool, ca-
pable of simultaneously identifying multiple points in the frequency response of the
system (as described later) but requires additional time and a greater computational
load than the describing function.

Both methods show merits and demerits and were implemented in order to verify

4| The proposed autotuner 53

their performance in simulation.

• Control parameters computation: IMC and contextual IMC In order to
explain the rationale behind the choice of these tuning methods, it is necessary to
introduce the concepts of closed-loop system, bandwidth, and phase margin of the
same. The closed-loop system is the system that is obtained by connecting the
controller to the process, and its bandwidth represents the maximum frequency of
the reference signal or disturbances that the controller is capable of tracking or
rejecting, respectively. The phase margin represents the degree of robustness of the
closed-loop system with respect to modelling errors: the higher it is in value, the
greater the degree of modelling error the controller is able to tolerate before its
action becomes ineffective and deleterious.

The closed-loop adjustment allows the controller to be tuned so that it guarantees
a certain phase margin by also forcing the closed-loop system to have the band ob-
tained during the experiment. Having the same bandwidth allows the system to be
treated at the point where the information obtained is most accurate, resulting in
more effective control. On the other hand, the IMC method requires the develop-
ment of a process model and allows the controller to be tuned so that the closed-loop
system has a user-defined frequency. This method allows greater freedom than the
previous method, however moving away from the point identified by the experiment
results in the model being less representative. Finally, the contextual IMC method
represents a repurposed version of the IMC in which the identification and self-
tuning steps occur simultaneously. Specifically, the closed-loop bandwidth is placed
equal to the permanent oscillation obtained during the experiment. This allows the
system to be controlled at the point of maximum representativeness. In addition,
the contextual IMC method also returns a sufficiently accurate model of the process
(which, however, is not used in this discussion) to be able to predict the behaviour
of the process itself.

Having come to the end of this review and exposed the reasons for the choices made, we
can introduce the structure of the proposed autotuner, highlighting how these decisions
were implemented on the practical side.

4.4. The resulting application

The overall autotuner application as stemming from the above features plays a particularly
complex role, as it has to manage the different phases of stimulation, data processing, and
controller calibration. Consequently, we decided to organise the application architecture

54 4| The proposed autotuner

into the following modules:

• High-level controller: the high-level module that handles the various low-level ele-
ments, listens to the request for self-tuning, and performs the verification operations
of the data obtained.

• Low-level controller: it is the element that modulates the process according to the
control law.

• Exciter: The element that deals with the excitation of the process during the ex-
periment.

• Analyser: The element that deals with the analysis of the response of the system
during the experiment.

of which only the first mentioned element belongs to the higher hierarchical level, while
the remaining ones belong to the lower one.

According to this separation of roles, the elements of the structure of the autotuner are
presented in detail below.

4.4.1. The low-level controller

The results obtained from the model analysis showed that the single core dynamics have
a prevalent first-order response. For this reason, a PI controller is more than enough to
fulfill the control requirements.

The PI controller is very popular in industrial applications due to its simplicity and wide
applicability. A PI controller continuously computes the error value e(t) as the difference
between a setpoint and the measurement of a process variable to be controlled. The
output, used to correct the error, is proportional to the error, and its integral, both
multiplied by convenient gains. Therefore, the effect of the PI controller can be tuned
by changing the value of the three gains. The mathematical representation of the PI
controller is

u(t) = KP e(t) +KI

∫ t

0

e(τ) dτ

However, the standard form, where KI is substituted with KP/TI , is more common, and
reads

u(t) = KP

(
e(t) +

1

TI

∫ t

0

e(τ) dτ

)
The role of the proportional action is straightforward: the modulating action is propor-
tional to the detected error, allowing the control action to follow it. However, the sole

4| The proposed autotuner 55

use of a proportional gain is not enough in normal applications, and this is the reason
why t the integral action is introduced. The integral action has a “delayed” contribution
but guarantees zero error at the steady-state. A typical application of a PI controller to
regulate a first-order system is to tune the integral time such that the associated zero
cancels out the pole of the system. The obtained loop transfer function is a pure integra-
tor, and the resulting control bandwidth can be tuned by setting the gain of the feedback
system equal to the desired bandwidth. The result is a closed loop system with first-order
dynamics and a phase margin equal to 90°, which is why the PI controller is “enough” to
control first-order dynamics.

A common issue of PI controllers is the integrator’s so-called “windup” problem when
the control action is saturated. Real actuators have a range of possible values beyond
which their action stops. What happens, however, is that, even when the such range
is exceeded, the integrator keeps integrating the error requiring increasing action, which
cannot be applied because the actuator is saturated. This result is a “block” of the control
signal (hence of the controlled variable) even when the error eventually changes sign, as
the integrator must be “discharged” and this takes time.

Several anti-windup solutions can be found in the literature to solve the issue. Since
the controller is implemented in a digital environment, the chosen anti-windup is the
“clamping” method which stops the integration whenever the required action would be
outside the feasible range of the actuator.

Additionally, the low-level controller should not interfere with the action of the governor
of the operating system. The governor is the part of the operating system in charge of
managing the frequency (request to the DVFS) of the cores depending on the type of
computational load. In practice, the governor manages the power/performances tradeoff
and tunes the frequency request according to the power consumption profile chosen by
the user or the operating system, e.g. the governor reduces the clock frequency if the user
requires low-effort application, such as browsing or video streaming, to limit the power
consumption.

Subsequently, the control action of the PI controller should always be lower than the
governor requests. Therefore, the control action of the controller, before the saturation
block, must be compared with the governor request, and the controller must choose the
minimum between its control action and the governor request.

Figure 4.2 shows the block diagram of the final low-level controller.

Finally, the PI controller must have a routine that guarantees a smooth insertion of the

56 4| The proposed autotuner

control after the autotuning experiment (that, we anticipate, requires to open the loop):
when the experiment is over and the controller takes back the control, the transition
should be without jumps. To match this requirement, the controller has an initialisation
routine called “bumpless”, in this routine, the controller sets the integration error in such
a way that it covers the mismatch between the action of the exciter and the effect of
the proportional gain of the PI. In this way, a transitional period is obtained between the
exciter control and the modulating action of the PI controller, during which the integrated
error is discharged.

min()
u

+
e

Figure 4.2: PI controller with clamping anti-windup solution and the min block to compare
the action with the governor request

4.4.2. The experiment

The experiment is carried out by the joint action of the exciter and analyser whenever the
autotuner receives the autotuning request. Accordingly, the high-level controller requires
the exciter to perform the control action and pauses the low-level control. During the
experiment, the analyser component has the role of analysing the system and tuning the
controller accordingly.

y

u

A

Figure 4.3: Graphical representation of the behaviour of a relay with hysteresis

4| The proposed autotuner 57

As mentioned earlier, the autotuner offers three different exciters:

• relay: it is the simplest exciter structure possible. The relay could be ideal, and,
therefore, the output depends only on the sign of the error, or it could have a
hysteresis. Figure 4.3 shows the behaviour of a relay with hysteresis and it can be
represented mathematically as

y(t) =

{
{A}, if u(t)>ε,or u(t)<ε

and y(t_)=A

{−A}, if u(t)<ε,or u(t)>ε
and y(t_)=−A

• relay plus integrator: a relay in which the output is integrated. The reason behind
this choice is that the relay excites the process with step changes. However, a step
change could overstress the system and strain the actuators too much. Integrating
the output of the relay, the process is excited with ramps, instead of steps, resulting
in a smoother action that does not overstress the actuators.

• robust relay: the robust relay is a particular structure composed of a relay plus filters
to cancel out slow dynamics (it is deeply described in section 2.4). This feature can
be used to reject the slow disturbances coming from the cores’ interaction.

During the experiment realisation, the exciters are centered on the last output of the low-
level controller. In such a way, the transition from the modulating action of the low-level
controller to the experiment is smoother.

4.4.3. The analyser

The analyser is the low-level element in charge of examining the process and tuning the
controller. This is implemented with two different methods to infer the frequency point,
that is the describing function method and the Fourier analysis of the signals.

Describing function method

The describing function method (as discussed in section 2.3) allows associating to any
nonlinear dynamical system a function in complex numbers, known as describing function,
which represents the input-output relationship of permanent oscillations passing through
said system. In particular, the describing function is defined as the ratio between the
permanent oscillation at the output of the process and the one at the input. Given as input
the input oscillation of the nonlinear system (sometimes it requires also the frequency of
the oscillation), the describing function returns the output oscillation amplitude and the
phase shift.

58 4| The proposed autotuner

It is possible (and was shown in section 2.3) to use the describing function to compute
the frequency data point of the linear process attached to the nonlinear system at the
frequency of the oscillation. In fact, it is possible to show that the reciprocal opposite of
the describing function is precisely the Laplace representation evaluated at the oscillation
frequency. According to these considerations, the describing function method represents a
simple yet effective method for the identification of a single point of the Laplace transform
of the process.

The describing function method requires the knowledge of the amplitude of the oscilla-
tion, which value can be obtained by computing the distance between the maximum and
minimum recorded value. To obtain such values, at each time step, the analyser evaluates
the current value of the process variable with respect to the recorded highest and smallest
terms. If the current value is bigger or smaller respectively, the corresponding variable
is updated. Furthermore, the maximum and minimum values are reset at each period
because the system could have a “slow” drift with respect to the oscillation period due
to external disturbances, and the recorded minimum could be smaller than the new one,
resulting in bigger measured oscillations than the real ones. Additionally, the describing
function method requires the frequency of the oscillation. Assuming that the exciter is
not subjected to chattering, the value of the period can be obtained by looking at two
distinctive time instants in which the relay toggles up. Whenever the assumption doesn’t
hold, the time interval should be computed by looking at two consecutive maxima or min-
ima. However, this solution is less robust because the detection of maxima and minima
is subjected to noise and this could deteriorate the tuning quality.

Fourier analysis

Alternatively, the information can be obtained through Fourier analysis. Since it is possi-
ble to assume that the input and output of the plant are periodic signals, the computation
of a single data point G(jω), which normally would require the integration along the infi-
nite time horizon, can be computed integrating along a time interval equal to the period
of the oscillation, provided that ω is a multiple of ωr = 2π/Pr where Pr is the period of
the permanent oscillation, as demonstrated by [22]:

G(jω) ≡
∫∞
0

y(t) e−jωt dt∫∞
0

u(t) e−jωt dt
=

∫ t+Pr

t
y(t) e−jωt dt∫ t+Pr

t
u(t) e−jωt dt

(4.1)

4| The proposed autotuner 59

The same is valid to compute the static gain:

G(0) ≡
∫∞
0

y(t) dt∫∞
0

u(t) dt
=

∫ t+Pr

t
y(t) dt∫ t+Pr

t
u(t) dt

It is important to notice that the microprocessor behaves as a heat generator, therefore,
the effect of the generated power is an increment in temperature with respect to the
ambient one. Accordingly, the process output (which is the temperature of the core)
must be corrected by subtracting the ambient temperature in order to obtain a correct
estimation of the system behaviour. Said so, the ambient temperature is not a stunning
request since many modern motherboards detect the case temperature and it can be
supposed constant during the experiment, removing the need for real-time measurement
of the said variable.

Therefore, if the Fourier analysis is chosen and the minimum number of oscillations is
reached, the analyser first infers the period of the oscillation, and then computes the
integrals during the next period, at the end of which the experiment is considered over.
It should be noted that the integrals introduced in equation (4.1) are complex and their
results are complex numbers. Since the autotuner is implemented digitally, the integrals
were discretised and their values are computed as the previous values plus the new ones
times the integration step. Clearly, the cartesian representation is more suitable for the
computations, knowing that

Re

(∫
x(t) e−jωt dt

)
=

∫
Re

(
x(t) e−jωt

)
dt =

∫
(Re (x(t)) cos (−ωt)) dt

The same results hold for the imaginary part

Im

(∫
x(t) e−jωt dt

)
=

∫
Im

(
x(t) e−jωt

)
dt =

∫
(Im (x(t)) sin (−ωt)) dt

discretising the results, the following relationships are obtained:

Re

(∫
x(t) e−jωt dt

)
≈

∞∑
0

TsRe (x(t)) cos (−ωt)

Im

(∫
x(t) e−jωt dt

)
≈

∞∑
0

TsIm (x(t)) sin (−ωt)

Finally, with a slight notation, defining int_u(t) =
∫
u(t)dt as the integral of the input,

and int_y =
∫
y(t)dt as the integral of the (corrected) output, the data point can be

60 4| The proposed autotuner

computed as

|G(jω)| =
√

Reint_y2 + Imint_y2√
Reint_u2 + Imint_u2

∠G(jω) = tan−1

(
Imint_y

Reint_y

)
− tan−1

(
Imint_u

Reint_u

)
The Fourier analysis allows the estimation of multiple data points, as long as they are
evaluated at frequencies multiple of the natural frequency of the permanent oscillation
and the system is excited with said oscillations.

Finally, the analyser is in charge of tuning the controller according to the computed data
point(s). The controller can be tuned according to three different tuning rules: closed
loop adjustment, internal model control (IMC) and its contextual version.

Closed-loop adjustment

In the closed-loop adjustment method, just one frequency point is used. The idea is to
tune the controller in such a way that the closed-loop system has a bandwidth equal to
the frequency of the induced oscillation and the phase margin required by the user.

Assuming that the identified point is in the form G(jω̄) = Aejϕp , where ω̄ is the perma-
nent oscillation frequency, and assuming that a PI controller is tuned, in order to have
the closed-loop system with the desired phase margin ϕm, the following equation must
hold

R(jω̄)G(jω̄) = eϕm−π

Knowing that R(jω) = K 1+ωTI

jωTI
, the equation can be rewrite as

K
1 + jωTI

jωTI

Aeϕp = eϕm−π

Re

Im

Re

Im

Figure 4.4: Graphical representation of the rationale besides the closed-loop adjustment

4| The proposed autotuner 61

Computing the magnitude and the angle of both hand sides, the following relationship
are obtained K

√
1+ω̄2TI

2

ω̄2TI
2 A = 1

−π
2
+ tan−1 ω̄TI + ϕp = ϕm − π

from which it is possible to define the parameters tuning rules TI = 1
ω̄
tan

(
ϕm − ϕp − π

2

)
K = ω̄TI

A
√

1+ω̄2T 2
I

Internal Model Control

The internal model control (IMC in short) is a tuning method that enforces the process
(through the control action) to behave as a virtual process defined by the user.

The IMC method requires two data points, namely the static gain and a frequency data
point. A first order plus time delay (FOPDT) model is obtained, which has form as shown
in equation (4.2) after that the controller is tuned subsequently.

G(s) =
µ

1 + sT
e−sL (4.2)

The rule to obtain the FOPDT model are those defined by Åström and Hägglund [12]

T (ωi) =
1

ωi

√
κ−2(ωi)− 1

L(ωi) =
1

ωi

(
ϕ(ωi)− tan−1

(√
κ−2(ωi)− 1

))
µ = G(0)

where κ(ωi) = |G(jωi)|
G(0)

is the relative gain, ϕ(ωi) = ∠G(jωi) and ωi is frequency of the
permanent oscillation. Defining λ to be the desired closed-loop time constant, (accord-
ing to the considerations introduced in section 2.5) the PI parameters are tuned in the
following way

K =
T

µ (λ+ L)

TI = T

However, which this approach there is no way to guarantee a desired phase margin since
this is related to the desired closed-loop time constant. Furthermore, in case the user has
set the analyser to perform IMC tuning and has chosen the rrfs approach plus auxiliary

62 4| The proposed autotuner

excitation, the analyser uses the FOPDT approach with phase adjustment proposed by
da Silva et al. and discussed in section 2.4.2.

Contextual IMC

The last implemented method to tune the controller is a variant of the internal model
control introduced by Leva et al. [15] The main concept of this method is that when
the recorded process information is used to obtain a model and the controller is tuned
accordingly, a waste of information happens. However, if the information is used to obtain
the model along with tuning the controller, whence the word “contextual”, less information
is wasted. Assuming that the identified data point of the system is G(jω̄) = AP e

jφP with
frequency ω̄, the proposed tuning rule, which allows obtaining both the model and the
controller parameters, is obtained solving the following system of equations

TI = T

K = T
µ(λ+L)

AP = µ√
1+(ω̄T)2

φP = − tan−1 (ω̄T)− ω̄L

ω̄ = 1
L+λ

(4.3)

where, by fixing λ with the same interpretation as above, the following result is obtained

L = 1
ω̄
− λ

T = − 1
ω̄
tan (ω̄L, + φP)

µ = AP

√
1 + (ω̄T)2

TI = T

K = T
µ(L+λ)

(4.4)

It is important to note that the contextual internal model control, as the closed-loop
phase adjustment, requires one data point only because it forces the closed-loop control
bandwidth to equal the identified natural frequency, which is where the identified model
is most accurate.

4.4.4. The high-level controller

The high-level control is responsible for managing the various operations described above.
It is responsible for correctly calling low-level components only when necessary, handling
the various events that may occur such as timeout or negative check of the analysis.

4| The proposed autotuner 63

start

Init

auto

autotuning
request

experiment
initialization

controller
initialization

failed
check

check
passed

timeout

succesful
experiment

experiment

update

check

Figure 4.5: High-level automata

As a form of precaution, the controller requires a range of values within which the user
expects that the identified point of the process can be found. Accordingly, the high-level
controller verifies that the point obtained through the experiment is within this range,
and proceeds with calibration only if the verification is fulfilled.

A state machine was developed to handle the different scenarios and the autotuning re-
quest event. Seven states were defined, namely start, auto, con_initialisation, exp_initialisation,
experimenting, check, and update as shown in figure 4.5 which represents the so-realised
finite state machine (or automaton).

• start state. This state is visited one time only during the operation of the controller
(at the beginning) and the main purpose is to initialise the autotuner. After one
iteration, the controller enters the following state.

• auto state. It is the main state and the automaton stays in this state most of the
time. The auto state is associated with the modulating action of the low-level PI
controller.

• exp_initialisation state. Whenever the autotuning request is received in the auto
mode, the exp_initialisation is reached, where the experiment is set up and the
exciter and analyser are initialised. After one time step, the automaton exits this
state and reaches the following one.

64 4| The proposed autotuner

• experimenting state. While the high-level controller is in this state, the experiment
is performed. The automaton would move from this state only if the analysis is
completed or the timeout occurs. In the former case, the automaton moves into the
check state, otherwise, it enters the con_initialisation state.

• check state. the controller reaches this state only if the experiment is successful.
In the check state, the high-level controller checks that the identified data point(s)
is(are) in the user-defined admissible range. If the outcome is positive, the update
state is reached, otherwise, the automaton moves into the con_initialisation.

• update state. The update state calls the tuning function of the analyser to tune the
parameters of the controller. Another check is done to see that the parameters are
allowable and do not make the controller unstable. After the update, the automaton
reaches the con_initialisation state.

• con_initialisation state. In this state, the controller bumpless method is called.
This is a “one step” state, meaning that the automaton would stay inside it for just
one time step.

4.5. Inter-communication among sub-modules

During the execution of the tasks, the modules exchange information. Depending on the
current state of the finite state machine defined previously, the information exchanged is
different, as shown afterwards.

High Level
Controller

value

Low Level
controllerUser

compute
compute

value

Figure 4.6: the autotuner calls the low-level controller compute method

When the automaton is in the auto state, the autotuner performs its computations.

4| The proposed autotuner 65

High Level
ControllerUser

AT request

return

Figure 4.7: the autotuner records the autotuning request

If the autotune operation is requested, the high-level controller records the request.

High Level
Controller

initialize

return

Low Level
controller

return

Experiment

initialize

initialize

compute

analyze

Exciter AnalyzerUser

compute

return

return

initialize

value

return
value

Figure 4.8: the autotuner initialises the experiment

The automaton enters the experiment initialisation state, therefore it calls the initialisa-
tion function of the experiment, which calls the initialisation functions of the experiment
and the analyser. Once the initialisation is done, the autotuner requests the computation
of the experiment. The computation is divided into two parts:

• the exciter computes its control action

• the analyser receives the current control action and the current value of the process
variable.

The analysis requires the knowledge of the toggle of the exciter, therefore the analyser
asks the exciter if the toggle happened. After the analysis step, the experiment returns
the control action to the autotuner.

66 4| The proposed autotuner

High Level
Controller

Low Level
controller Experiment

value

Exciter AnalyzerUser

is_timeout

return

is_timeout

compute

analyze

compute

compute

value

return

bool

Exciter

get_flag

flag

return

status

status_experiment
status_experiment

status

Figure 4.9: experiment step execution

Each time the autotuner is in the experimenting state, ti asks the experiment if the
timeout is reached, in such case, the autotuner aborts the experiment and returns to the
auto state, considering the experiment failed. Otherwise, the computations are the same
as described earlier. Finally, the autotuner asks the experiment module if the experiment
is complete, in such case the state machine advances to the sanity check state.

High Level
Controller

Low Level
controller Experiment Exciter AnalyzerUser

get_frequency_point

frequency_point

get_frequency_point

return

compute

frequency-point

Figure 4.10: the autotuner requests the frequency point to perform the check

In the sanity check state, the autotuner asks the experiment the computed data point
and checks that it is inside the acceptable range defined by the user. In case the check is
affirmative, the autotuner enters the update state.

4| The proposed autotuner 67

High Level
Controller

Low Level
controller Experiment

return

Exciter AnalyzerUser

compute

return

Low Level
Controller

tune_params

return

parameters

Exciter

set_params

tune_params

Figure 4.11: the autotuner tunes the low-level controller according to the obtained data
point

Finally, the autotuner requires the experiment to tune the parameters of the controller.

69

5| Software Implementation

In this chapter we discuss the implementation of the proposed autotuner, starting from
the Modelica environment, talking about the related C language library, and concluding
with the 3D-ICE implementation. The first section discusses the development of the
Modelica library used for control-oriented modelling. The atomic elements identified,
their operation, and their interaction are described as well. The models used for the
DVFS core and controller and why these model choices were made are discussed. Next,
the implementation of the CPU control-oriented model, introduced in section 3.3.2, is
discussed. Finally, regarding Modelica, the controller implementation is discussed, both
the monolithic code written in Modelica and the interface created for the use of the control
written in C language.

The autoregulator, both in Modelica language and the C language, allows the use of 3
different exciters: the relay, its version with integrated output, and the robust method
introduced in section 2.4(the secondary excitation is introduced in the C library). In
addition, the system can be identified by the describing function method or by Fourier
analysis. The calibration methods implemented in Modelica are closed-loop adjustment
and IMC. It is important to note that the autoregulator written in Modelica was a pro-
totype, and not all the features that can be found in the C library are also found in the
autoregulator written in Modelica.

Next, the C (or wrapped C++) library is introduced, which was written both to be able to
use the co-simulation offered by 3D-ICE, which offers simulations with greater detail, as
described in section 3.4.2, and to be able to test the control in a real system. The library
brings back all the features of Modelica’s autotuner and adds the possibility of contex-
tual IMC self-tuning, the identification method proposed by Da silva et al. described in
section 2.4.2 and the robust variant with secondary excitation.

Next, the client-server communication offered by 3D-ICE is described, and how the client
has been modified to be able to use the C library in “fine-grained” simulations.

70 5| Software Implementation

5.1. Modelica implementation

Modelica supports the hierarchical representation of code through the use of the package
class. This allows the code to be organised hierarchically, thus enabling easier organisation
and navigation. In this section, we describe the package structure of the Modellica library
created within this thesis

5.1.1. The package structure

Figure 5.1: Modelica library

The package structure is depicted in picture 5.1 and following the order of the picture, a
brief explanation of all the packages is provided.

• Functions package: this package contains all the functions used by the autotuner
during the tuning phase. In particular, this contains the functions for the describing
function method for the relay and relay plus integrator, the FOPDT estimation and
the IMC tuning.

• Components package: this package contains the models of the smallest elements
involved in the thermal interaction. In particular, this contains the model of the
core and the DVFS module.

• ControlBlocks package: this package contains all the controllers created during the
development of this work. The degree of complexity increased at each iteration
because we started from the simple PI controller with governor override, then the
autotuner written in Modelica, and, finally, the wrapper of the autotuner written
in C. Each controller type has also a quadrupled version (i.e. the decentralised
controller composed of four of them).

• Plants package: this package contains all the compound elements. In particular, this
contains the model of a series layout multicore with or without the DVFS model.

5| Software Implementation 71

• Test package: this package used to be a workbench for all the elements introduced
during the development of the Modelica library.

• Example package: this package contains some examples of the autotuner perfor-
mances according to several combinations of the exciters and analyser.

• Utilities package: this package contains the wrappers of the autotuner written in C.

In the following sections, we review in detail the main packages and the elements they
contain.

5.1.2. The Components Blocks

The Component blocks are the atomic physical elements required to represent the thermal
interaction of the processor. In particular, in our control scenario, the atomic elements
that participate in the thermal generation are the core and its “actuator”: the DVFS.
Therefore, the package contains the thermal models of the core described in sections 3.3.2
and 3.3.2 and an extended model of the DVFS.

The model of the DVFS accounts for the actuator dynamics and the power generated by
the core, which is then inputted in the thermal model of the core, as depicted in figure 5.2,
where the block diagram of the DVFS is shown.

Considering the power generated by a single core, it is possible to compute it according
to the equation

Q = α× l × f × v2 × C (5.1)

where v is the voltage of the core, f is its clock frequency, l is the load of the core, α is
its utilisation and C is the total collective capacitance of the transistors. The load, which
is a dimensionless coefficient between 0 and 1, represents the level of core utilisation on
a time basis. So, given a time interval, the load coefficient represents the fraction of
the interval in which the core is not idle. On the other hand, the utilisation α, another
adimensional coefficient comprised in the range [0, 1], represents the software load of the
core. Depending on the code instructions, the produced heat could be very different (as
shown in [16]).

Furthermore, the voltage and frequency signals pass through two different dynamics which
mimic the behaviour of the DVFS controller. In particular, the request of the frequency is
evaluated to compute the minimum voltage necessary for the core, then the voltage signal
passes through first-order dynamics to represent the response of the voltage controller.

72 5| Software Implementation

Similarly, the frequency signal passes through second-order dynamics to simulate the
frequency controller. Finally, the power is computed according to equation (5.1) and it is
returned to the core thermal model.

Figure 5.2: block diagram of the implemented DVFS module

Figure 5.3: Modelica diagram of the two-capacity model

5.1.3. The Plant Blocks

The plant package groups the compound elements, consisting of the previously described
components. Specifically, the internal thermal interaction of the microprocessor, and the
microprocessor as a whole, interacting with the controller’s frequency commands, external
load and utilisation disturbances, and having the temperature sensors necessary for the
controller to perpetrate its control action.

In addition, the microprocessor has been modelled with 4 cores; as a result, the thermal
interactions within the processor, which properly represent the thermal aspect starting
from power, are represented by 4 thermal models of cores, connected to each other. On
the other hand, the microprocessor models comprise the thermal interaction and the
power generation, along with some wiring to make it more appealing, to present it as a
standalone object, and to interact with the controller, as depicted in figure 5.4.

5| Software Implementation 73

Figure 5.4: CPU model

Figure 5.5: Modelica diagram of the multicore adaptation of three capacity model

5.1.4. The Control Blocks

The control blocks package contains all the different types of controllers implemented
during the development of the thesis. Initially, a simplified controller, and its quadrupled
version, were implemented to test the ideas set forth in 4. Figure 5.6 represent the block
diagrams of the chosen controllers. The chosen controller is a continuous-time PI controller
with an anti-windup. Additionally, the controller has a minimum override (see section
4.4.1) because it should always take the minimum between the modulating action and the
frequency required by the governor. Thereafter, the autotuner was implemented inside
Modelica. The Modelica language allows one to write algorithmic code, which resembles
other high-level programming languages, to represent digital systems thanks to the when
sample statement. The when statement evaluates the code only at the time instant when
the associated condition becomes true, and the sample statement evaluates true when the
specified time interval has elapsed since the last activation. Since the code was expected

74 5| Software Implementation

to be tested on a physical device, as soon as the code proved successful, it was rewritten in
C++, and because of the Modelica language’s ability to be able to call external functions
written in C or Fortran, the last control block represents the interface to the code written
in C++.

Figure 5.6: block schemes of the initial controller implemented in Modelica and its quadru-
pled version

The Modelica autotuner

The autotuner was initially implemented using the Modelica algorithm language because
the high-level paradigm allows faster implementation and testing of the code. However,
the written code was monolithic, handling the different scenarios with several if statements
during the execution of the code rather than addressing the variability at the beginning
(as done, we anticipate, in the C library) because the Modelica algorithm language is less
powerful than a pure programming language and offers fewer abstractions.

5.1.5. Tests and Examples

Finally, the main package is provided with a suite of testing and examples. The test
package provides the user with a set of predefined tests to examine the behaviour of
individual components and also their interaction. In particular, one can find tests of the
thermal model of the core, the microprocessor, tests of the modulation of the simplified
controller, the autoregulator, with or without disturbances, and finally, the same tests of
the autoregulator written in C++. On the other hand, the package of examples is intended
to show the behaviour of various controls under appropriately calibrated conditions. These
represent the behaviour of the controller under ad-hoc conditions and the behaviour that
should be expected under optimal conditions.

5| Software Implementation 75

5.2. C library

The development of the code was done by looking at the possibility of being able to test it
on a real system. For this reason, as soon as the code proved itself on Modelica, we decided
to transpose it into the C++ language so that, one day, its executable could be used in
processor thermal management. Even though the choice of C++ could seem inconvenient,
because Modelica is not able to handle such code, the C++ language provides the ability
to disguise its functions to look like C ones via the extern "C" keyword. Accordingly,
we developed a C interface for using the code on Modelica and other software such as
3D-ICE.

Furthermore, the code, as described in section 4.4, well fit with the class paradigm offered
by the C++ language, allowing the partitioning of the system which enhances the main-
tainability of the code. The aforementioned representation naturally identifies the atomic
elements to be transposed into classes.

Furthermore, the autotuner provides different functionalities that are coded into different
classes, but the possibility to choose which function to use should be available at runtime
in order to work properly in Modelica. To match this requirement, we used the run time
polymorphism paradigm during the development of the library: given a class inheritance
tree, thanks to the run time polymorphism, it is possible to call the method of a child
class even if it is referred to as its parent, as long as the involved function exists in both
classes and it is labeled with the virtual keyword. In other words, virtual methods allow
us to interact with groups of related objects uniformly: it is possible to create a child
class and point to it using the parent pointer. If the called method has the virtual tag, at
runtime the pointed object is checked and the method of the child class is called, rather
than the method of the parent class.

Thus, one generic class per type was created, providing all the virtual functions required
by the problem, and later on the generic classes were specialised to represent the particular
types. At the end of the chapter is reported the UML of the entire library, which shows the
complexity behind the proposed autotuner. Then, the composition of the autotuner with
the desired functionalities is addressed at the construction of the object, since the builder
function accepts as input several enumeration variables to build the correct “modules”. In
addition, this provides the ability to expand the library whenever one wanted to try new
types of elements without having to worry about general code modification, as long as
the newly introduced classes inherit from the generalised classes.

In accordance with the above, the implementation of the sub-modules of the autotuner is

76 5| Software Implementation

discussed, following the structure described in section 4.4.

5.2.1. Low-level controller

The superclass of the low-level controller has three main virtual functions that must be
implemented while extending it:

• the compute function for the controllers: it accepts as input the setpoint, the process
variable, the frequency of the governor, the autotuning request, and the time.

• the compute function for the exciters: it accepts as input the error and the time.

• the bumpless method: the method used during the transition from the experiment
to the controller modulation.

The low-level controller implemented was a PI controller with clamping anti-windup so-
lution. Based on the assumption that the governor requires a frequency equal to or lower
than the maximum frequency achievable by the DVFS controller, and the governor action
always overrides the action of the controller, there is no need to compare the modulating
action to both the frequency of the governor and the maximum frequency. Instead, the
controller compares its modulating action with respect to the lower limit, and the gover-
nor action is seen as the upper limit of the saturation. Algorithm 5.1 shows the behaviour
of the action of the controller.

Algorithm 5.1 Digital implementation of a PI with anti-windup clamping method
1: output← 0

2: e← KP × (SP − PV)

3: upar ← ui + Ts

TI
e + e

4: if upar > governor frequency then
5: output← governor frequency

6: else if upar < lowerlimit then
7: output← lowerlimit

8: else
9: ui ← upar − e

10: output← upar

11: end if

The clamping method is one of the most suitable anti-windup solutions in digital sys-
tems due to the elseif statement. In fact, many other solutions exist to account for the
anti-windup problem and they sometimes act better than the clamping method. How-

5| Software Implementation 77

ever, such solutions require additional computations and some also require additional
parameters that should also be correctly tuned to avoid undesired effects. For example,
back-propagation is a famous anti-windup solution alternative to clamping: the difference
between the input and the output of the saturation is “back-propagated” multiplied by a
gain. The back-propagated value is then subtracted from the integral action discharging
the integral. One could demonstrate that the back-propagation method performs better
with respect to the clamping method if correctly tuned. However, along with a higher
number of computations (the multiplication and the subtraction of the backpropagation),
no widely-accepted solutions exist to correctly tune the back-propagation gain, and a
wrongly tuned gain would deteriorate completely the performance of the controller.

On the other hand, the clamping method does not require any additional parameters and
requires fewer computations: in the anti-windup clamping method, the control action is
computed at each time instant and, if the value does not exceed the user-defined limits,
the action is accepted and the integral is updated, otherwise, the crossed limit is returned.
Therefore, the clamping method was the most suitable in our control scenario.

5.2.2. The exciter

During the experiment, the analyser must know when the exciter relay toggles to perform
its computations. In particular, it has to know the switching time to compute the period
of the oscillation. For this reason, the exciter must record the switching event, and it
must have methods to let the analyser know that the switch has happened.

Therefore, the exciter superclass extends the controller general one, adding the virtual
methods needed to handle the switching events. In particular, the analyser calls the
“get_flag” method to know if the switch event has happened and it calls the “reset_flag”
method to flush the record.

Additionally, since the describing function depends on the nature of the nonlinear block,
each exciter has a method that solves the describing function problem, accepting as inputs
the amplitude and natural frequency of the permanent oscillation obtained during the
experiment, and returning the estimated data point.

Moreover, a method is introduced to handle the initialisation of the exciter. For example,
the center value of the relay must be set on the previous action of the low-level controller
and the correct output should be chosen according to the position along the hysteresis.

Finally, four different types of exciter were implemented, namely:

• the relay, which can be ideal or with hysteresis

78 5| Software Implementation

• the relay plus integrator, which is an ideal or with hysteresis relay whose output is
integrated

• the rrfs introduced in section 2.4

• and the rrfs with the additional excitation (which was discussed in section 2.4)

The relay

The mechanism of the relay is simple: the input of the relay is evaluated with respect
to the hysteresis (if the value is zero, then the relay is ideal), if it is bigger, then set the
output equals to the maximum, if the error is smaller than the opposite of the hysteresis,
then set the output equal to the minimum, otherwise returns the previous value.

Additionally, the relay must record the switching event, and, without loss of generality,
the rising event was chosen.

Algorithm 5.2 Digital implementation of a relay
1: if e > hysteresis then
2: output← ucen + amplitude

3: flag ← true

4: else if e < −hysteresis then
5: output← ucen − amplitude

6: else
7: output← outputold

8: end if

The relay plus integrator

As the name suggests, the relay plus integrator is composed of a relay whose output is
integrated. The implementation extends the functionality of the relay with an additional
variable to store the integration and all the methods are the same except for the “initial-
isation” and “compute” methods. In particular, during the initialisation, the center value
of the inner relay is set to zero, while the integration value is initialised as the center
value.

Additionally, the compute method is overridden and it calls the compute method of the
inner relay, then, the returned value is integrated as shown in the algorithm 5.3

5| Software Implementation 79

Algorithm 5.3 Digital implementation of a relay plus integrator
1: ui← ui+ Ts × relay :: compute(e)

2: output← ui

The robust relay

The robust relay contains one relay object, named r1, one relay plus integrator object,
called r2 (with the same roles as depicted in picture 2.2), and a vector used to store the
records of the previous error values. During the initialisation, the “initialisation” methods
of both relays are called. In particular, r1 is centered on the previous value of the control
while r2 is set to zero. Additionally, each entry of the vector of records is set to the current
error value.

Instead, the “compute” method implements the block diagram in picture 2.2: the method
computes the difference between the current error value and its record, and inputs it in
the r2 compute method. Then, the vector is updated, and the output of r2 is fed to the
compute method of r1. Finally, the output of r1 is returned.

Algorithm 5.4 Digital implementation of the robust relay
1: r2.compute(e− erecord[ne])

2: for index ∈ [2, ne], going backwards do
3: erecord[index]← erecord[index− 1]

4: end for
5: erecord[1]← e

6: output← r1.compute(r2.get_integral())

The robust relay has a variant to implement the da Silva et al. FODPT identification
(section 2.4.2). This variant extends the rrfs class overriding the compute function to add
the square wave.

80 5| Software Implementation

Algorithm 5.5 Digital implementation of the robust relay with additional square wave
1: output← 0

2: if half_period is NaN then
3: output← RRFS :: compute(e)

4: else if the time elapsed until the last switch is less than half the period then
5: output← amplitudesquarewave +RRFS :: compute(e)

6: else
7: if amplitudesquarewave > 0 then
8: amplitudesquarewave ← 0

9: else
10: amplitudesquarewave ← A

11: end if
12: output← r1.compute(r2.get_integral())

13: end if

where A is a user-defined parameter, namely the amplitude of the square wave.

Lines 7 to 10 are used to toggle the low-frequency action whenever the elapsed time is
bigger than half a period.

5.2.3. Analyser

The analyser is the module that performs the analysis of the system, identifies the fre-
quency data point and tunes the controller. The analysis is carried out by the analyse
method, which takes as input the current control action, the current process variable and
the current time. The class has also other routines to handle the initialisation, the check
and the update phases.

Three different analysers were implemented, namely the describing function method and
two versions of Fourier analysis, with one or two frequencies (the latter is necessary to use
the improved model identification proposed by Da Silva and discussed in section 2.4.2).

The analyse method

The method is responsible for the analysis of the system. It waits for the user-defined num-
ber of oscillations before performing the estimation. While the analyser waits, it records
the period and the amplitude -if the describing function analyser is chosen, otherwise just
the period is tracked- each time the switching event occurs.

5| Software Implementation 81

When the minimum number of oscillations has occurred, the analysis is performed. De-
pending on the type of analyser, the analysis is carried out differently: the describing
function method does not require any additional time, since the last records of the period
and the oscillation amplitude are sufficient. On the other hand, the natural frequency is
required to perform the Fourier analysis, and the integration is done over a time period.
Therefore another period is necessary to carry out the analysis.

Two pseudo algorithms are introduced to show the behaviour of both the analyser. The
describing function method corresponds to the describing function method implemented
in the exciter. In particular, the describing function method of the robust relay structure
was introduced in section 2.4.2.

It is important to notice that the variant of the robust relay structure -with the additional
low-frequency excitation- is only suitable for the Fourier analysis since the describing
function analyser is not able to handle the low-frequency excitation.

Algorithm 5.6 Digital implementation of the describing function method
1: if exciter → get_flag() then
2: exciter → reset_flag()

3: period← my_time− previous_switch

4: previous_switch← my_time

5: osc_count++

6: if the number of oscillations is less than the maximum value then
7: (max,min)← reset()

8: end if
9: end if

10: (max,min)← update(PV)

11: if osc_count = max_oscillation then
12: ωosc ← 2π/period

13: amplitude← max−min
2

14: G(jωosc)← exciter describing functionmethod(amplitude, ωosc)

15: end experiment
16: end if

We could say that, at the beginning of the experiment, while the analyser is counting
the number of oscillations passed, the recorded period and the maximum and minimum
values are not trustworthy, because they could be subjected to the transient. For this
reason, at each iteration, their value is reset.

82 5| Software Implementation

In the Fourier analysis analyser, the integrate and compute data points functions imple-
ment the considerations introduces in section 4.4.3

Algorithm 5.7 Digital implementation of the Fourier analysis method
1: if exciter → get_flag() then
2: exciter → reset_flag()

3: period← my_time− previous_switch

4: previous_switch← my_time

5: osc_count++

6: if the number of oscillations is more than the maximum value then
7: osc_count← 0

8: ok_oscillation← true

9: ωosc ← 2π/period

10: end if
11: end if
12: if ok_oscillation and the experiment is not over then
13: integrate(PV − PV _offset, CS)

14: if osc_count > 0 then
15: (G0, G(jωosc))← compute data points()

16: end experiment
17: end if
18: end if

Tuning method

As already discussed in section 4.4.3, the analyser is able to tune the PI controller accord-
ing to three different methods, namely: the closed-loop approach, the IMC and the IMC
contextual methods. Said methods are coded into functions of the superclass which accept
as input the pointers of the variables containing the control parameters. The analyser
has also a function called tune_params accepting as inputs the pointers of the variables
containing the control parameters, depending on the desired tuning method (which is
stored in the form of an enumerated variable), the analyser calls the correct method.

5.2.4. High-level controller

During the execution of the code, whenever the autotuner is invoked, just the constructor
of the high-level controller is called. In fact, the high-level controller takes care of the
construction and deconstruction of the low-level “modules”.

5| Software Implementation 83

In order to exploit the runtime polymorphism, the modules are not stored inside the high-
level controller class, but they are different elements that are allocated by the high-level
controller constructor during its initialisation. Therefore, the controller object holds only
the pointers to the module. This feature could be exploited in the future to invoke the
autotuner only when the autotune is requested, attaching it to the preexisting low-level
controller, and freeing memory when the autotune is not required.

The method responsible to encode the behaviour of the high-level control is called “com-
pute”. The compute method is responsible for the interaction between the high-level
controller and the low-level elements and for the execution of the finite state machine
of section 4.4.4, which was implemented using a series of if statements. An enumerated
variable is used to represent the state of the automata, and depending on its value, the
respective methods are called.

Additionally, the controller has a “get status” method, which returns the value of the inner
variables. This method aims to provide insight into the controller, which is useful during
debugging or simulations.

Finally, the autotuning request is handled in two different ways, depending on the envi-
ronment: in Modelica, there are signals, which are inputs or outputs of functions, and
therefore the autotuner should look at the value of the signal and, if it is toggled, it should
record the request. On the other hand, in a pure C (or wrapped C++) environment, it is
possible to call a function whenever the autotune request is formulated, removing unnec-
essary computations. Additionally, both operations are successful only if the finite state
machine is in the “auto” state when receiving the request. To do so, the state variable is
checked and it is set to “experiment initialisation” if it was “auto”.

Controller variants

While porting the C++ code in Modelica, we noticed an unwanted behaviour of the
controller: the external function was called several times each time step, breaking its
behaviour. It turned out that Modelica expects stateless code because the solver may not
accept the step and redo it.

To match the requirement, a subclass of the original controller was implemented, called
the “cached” version, which overrides the “compute” function. The new function checks
that the received time is bigger than the recorded previous one, in such case it performs
the computation, otherwise, it returns the previously computed value.

84 5| Software Implementation

5.2.5. Additional structure and exceptions

The C++ code is enhanced with a set of customised exceptions that are used to detect
possible failure on the memory allocation (e.g. return a null pointer after an allocation
command), or unacceptable parameters of the system.

Additionally, a structure was introduced that contains all the parameters needed by the
autotuner.

5.2.6. C interface

Once the C++ library was completed, a C interface was necessary to be called by the
Modelica environment. Modelica has the capability to handle objects written in C or
Fortran using the relative class called “external object”, which requires a constructor and
a destructor. The constructor is a function that returns a void pointer to the “external”
structure, while the destructor is the function that encodes the routine to destroy the
object.

Therefore, four different external C functions were implemented to port the constructor
of the controller, the “compute” function, the “get status” function and the destructor of
the cached variant of the controller.

The C function of the constructor returns the void casted pointer of the object while
the destructor receives a void pointer which is cast into the cached variant and calls the
respective destructor.

On the other hand, the compute and get status functions accept the same inputs as the
method of the class plus the class pointer. Then the pointer is cast and the method of
the pointed object is called.

5.3. 3D-ICE Implementation

Once the library was completed, and the autotuner was tested in Modelica, the controller
was ported into 3D-ICE. As already stated in section 3.4.2, 3D-ICE is a C library for
the fine-grained simulation of microprocessors. Said library offers the possibility of co-
simulation based on TCP/IP socket connection between a server, which is the thermal
emulator, and a client, which is the power profile generator, and offers templates for
servers and clients. Accordingly, we modified the client template provided by 3D-ICE
to host the autotuner written in C. As a final ingredient of the 3D-ICE implementation,
we developed a YAML parser for a better user experience: condensing all the autotuner

5| Software Implementation 85

parameters in a file outside the binaries, the user does not have to rebuild the client every
time it has to change said parameters.

5.3.1. 3D-ICE Integration

In order to interact with 3D-ICE, we modified the client to accept our control action. As
depicted in figure 5.7, which shows the flow chart of the client behaviour, the modified
client has an initialisation stage, where the client creates the socket connection with the
server, and then retrieves the number of active elements in the source layer. After that,
the client spawns as many controllers as the number of active elements. Subsequently,
the client enters the “operating” stage, where it computes the power to insert according to
the controllers, sends the computed powers to the server, requires the server to simulate
a time slot, and, finally, requests the current temperature of the cores. Additionally, the
client visits the operating stage as many times as the number of slots required by the
user.

Init

Connect to server

Yes

NoIs connected?

Request the number
of active elements

Abort

Create the controllers

number of slot
smaller than zero

No

Obtain temperatures

Compute powers

Send powers to
server

reduce by one unit
the number of slots

Yes

Close connection with
server

destroy controllers

exit

Figure 5.7: Flow chart diagram of the client

Since the controller returns a value comprised between 0 and 1, (which could be seen as
the percentage of the maximum power), the power is computed as the product of this
value and the maximum power that the core could produce.

Additionally, the autotuner needs the current temperature of the core. Therefore, the
stack description file must contain the instructions to let the server track the temperature
of the cores. In particular, 3D-ICE allows outputting the temperature of “blocks” at

86 5| Software Implementation

specific coordinates of the stack. Subsequently, we designed the stack description file to
require the server to track the temperature of the “block” in the centre location of each
core, resembling the behaviour of the thermal sensors of the processor.

5.3.2. YAML parser

To enhance the quality of service of the library, a free-source library to parse yaml files in
C++ was added. Therefore, a simple parser was developed to read a yaml file with the
autotuner parameters, allowing the user to not recompile the client any time a parameter
of the autotuner is changed.

The parsing library is called “yaml-cpp” [3], and provides routines to read and parse
yaml documents. In particular, the parser introduced requires the path to the YAML
file and searches a dictionary called “Controller” which contains all the parameters of the
controller. The output of the parser is the structure introduced in section 5.2.5

ATController

#d abs_P_min
#d abs_P_max
#d arg_P_min
#d arg_P_max
#phase_enum phase
#controller* controller
#experiment* experiment
#b ATRequest

+b ATRequest()
+d compute(d SP, d PV, d my_time)
+d compute(d SP, d PV, b ATRequest, d
my_time)

ATController-experiment

+v initialize(d CS, d e, d my_time)
+b is_timeout()
+d compute(d SP, d PV, d my_time)
+v get_freq_point(d *abs_P, d *arg_P)
+v set_params(controller* controller)

experiment

#exciter* exciter
#analyzer* analyzer
#controllerType controller_type

+d compute(d SP, s PV, d my_time)
+b get_status_experiment()
+v associate_exciter(exciter* exciter)
+v associate_analyzer(analyzer* analyzer)
+exciter* return_exciter()
+analyzer* return_analyzer()
+v set_params(controller* controller)
+v get_freq_point(d *abs_P, d *arg_P)
+v initialize(d u_cen, d e, d my_time)
+b is_timeout(d my_time)

analyzer-experiment

+b analyze(in d PV, in d CS, in d my_time)
+v tune_params(in d &K, in d &Ti)
+v get_freq_point(in d &abs_P, in d &arg_P)

analyzer

#b ok_experiment
#d abs_P
#d arg_P
#d Ts
#i osc_count
#i max_oscillation
#exciterTypeAnalyzer exciter_type
#d period
#d pos_switch
#d pos_switch_1
#exciter* exciter
#d phase_margin
#d start_time
#d timeout
#d pv_offset
#tunerType tuner_type

+analyzer(in i max_counter, in d phase_margin, in d timeout)
+b analyze(in d PV, in d CS, in d my_time)
+v associate_exciter(in exciterTypeAnalyzer exctiter_type, in exciter* exciter, in d Ts)
+v initialize()
+v initialize(in d my_time)
+v change_parameters(in i max_count, in d phase_margin)
+v tune_params(in d *K, in d *Ti)
+v get_freq_point(in d *abs_P, in d *arg_P)
+b get_experiment_status()
+b is_timeout(in d my_time)
+b closed_loop(in d*K, in d*Ti)
+ b IMC(in d* K, in d* Ti)
+b IMC_con(in d*K, in d* Ti)

Controller

+d compute(in d SP, in d PV, in d
f_g in d my_time)
+d compute(in d SP, in d PV,in d
f_g, in d ATreq, in d my_time)
+v bumpless(in d CS, in d SP, in
d PV)

controller-experiment

+ v set_params(in d *K, in d *Ti)

exciter-experiment

+ d compute(in d e)

exciter-analyzer

+b get_flag()
+v reset_flag()

PI controller

#CSmin
#Ts
#K
#Ti
#e
#ui

+PI_controller(in d Ts, in d CSmin, in d K, in d Ti)
+d compute(in d SP, in d PV, in d f_g in d my_time)
+d compute(in d SP, in d PV,in d f_g, in d ATreq, in
d my_time)
+v get_status(in d *e, in d *ui)
+v bumpless(in d CS, in d SP, in d PV)

ATController-controller

+d compute(in d SP, in d PV, in d f_g in d
my_time)
+d compute(in d SP, in d PV,in d f_g, in d
ATreq, in d my_time)
+v bumpless(in d CS, in d SP, in d PV)

RRFS_L

#d half_period
#d A
#d CS_L
#old_time

+RRFS_L(in d amp_1, in d hys_1, in d amp_2, in d hys_2, in i n_e, in d Ts,
in d A, in d ome_L)
+d compute(in d e, in d my_time)
+v set_half_period(in d half_period)

relay

#d amplitude
#d hysteresis
#d CS
#d u_cen
#b flag

+relay()
+relay(in d amplitude, in d hysteresis)
+d compute(in d e, in d my_time)
+v initialize(in d u_cen, in d e)
+b get_flag()
+v reset_flag()
+d get_amplitude()
+d get_hysteresis()
+v get_status(in d *cs)
+v get_status(in d *cs, in d *u_relay_cen)
+v desc_func_method(in d* abs_P, in d*
arg_P, in d osc_amp, in d omega)

+1

relay_plus_integrator

#d Ts
#ui

+relay_plus_integrator(in d amp, in d hys
, in d Ts)
+d compute(in d e, in d my_time)
+v initialize(in d u_cen, in d e)
+v initialize(in d u_cen, in d e)
+v desc_func_method(in d* abs_P, in d*
arg_P, in d osc_amp, in d omega)

describing function

#d PV_cen
#d Max
#d Min
#d osc_amp
#d PV_1

+describing_function(in i max_counter, in d
phase_margin, in d timeout)
+b analyze(in d PV, in d CS, in d my_time)
+v tune_params(in d &K, in &Ti)
+v get_status(in d *PV_cen, in d *Min, in d *Max, in d
*osc_amp, in d *period, in d *osc_count)

exact_method

#d mi
#d T
#d L
#d lambda
#d omega
#b ok_oscillation
#d int_u
#d int_y
#d int_uw[2]
#d int_yw[2]
#d P_0
#tunerType tuner_type

+exact_method(in i max_counter, in d phase_margin, in d timeout,
in d lambda, in tunerType tuner_type)
+b analyze(in d PV, in d CS, in d my_time)
+v initialize()
+v intialize(in d my_time)
+tune_params(in d *K, in d *Ti)
+v get_status(in d *int_u, in *int_y, in d *int_uw, in d *int_yw, in b
*ok_oscillation, in i *osc_count, in d *period, in d *P_0)

exact_method_ome_l

#d ome_L
#d int_uw_L[2]
#d int_yw_L[2]
#d abs_P_L
#d arg_P_L
#i extra_osc
#b extra_time

+exact_method_L(in i max_counter, in d phase_margin, in d
timeout, in d lambda, in d ome_L)
+b analyze(in d PV, in d CS, in d my_time)
+v tune_params(in d *K, in d *Ti)
+void get_status(in d *int_u, in d *int_y, in d *int_uw, in d
*int_yw, in d *int_uw_L, in d *int_yw_L, in d *abs_P_L, in d
*arg_P_L, in b *ok_oscillation, in i *osc_count, in d *period, in d
*P_0)

RRFS

#relay r1
#relay_plus_integrator r2
#i n_e
#d e_record[n_e]
#d tau_f

+RRFS(in d amp_1, in d hys_1, in d amp_2, in d hys_2, in i n_e, in d Ts)
+d compute(in d e, in d my_time)
+v initialize(in d u_cen, in d e)
+v get_status(in d* cs_r1, in d* cs_r2, in d* u, in d* u_rel_cen, in d* e_rec)
+v desc_func_method(in d* abs_P, in d* arg_P, in d osc_amp, in d omega)

+1

Exciter

+d compute(in d e, in d
my_time)
+v initialize(in d u_cen, in d
e)
+v reset_flag()
+b get_flag()
+v desc_func_method(in d*
abs_P, in d* arg_P, in d
osc_amp, in d omega)

89

6| Testing

In this section, we describe some of the simulation experiments we performed to validate
the control approach proposed in the previous chapters, and sketch out the conclusions
that we could draw based on them. Experiments were performed both in the Modelica
environment (introduced in section 3.4.1) and in co-simulation with 3D-ICE (introduced
in section 3.4.2).

6.1. Modelica experiments

The purpose of these experiments is to verify the correct operation of the proposed auto-
tuner with a model of the processor conceived for system-level studies.

As such, we used a multicore model built according to the 3-capacity approach (Section
3.3.2, the Modelica implementation of which was described in section 5.1.3). To briefly
recap, the cores are represented by two thermal capacitances and two thermal resistances,
which are then connected to the spreader, described by another thermal capacitance.
Finally, the spreader is connected to the external environment by a thermal resistor, which
represents the heat sink. For simplicity, this thermal resistance is constant. Assuming that
all the cores can be represented by the same capacitances and resistances, the following
parameters were chosen:

• active silicon capacity Ca = 0.00012123 J/K

• bulk capacity Cb = 0.01818 J/K

• spreader capacity Cp = 130.93 J/K

• active silicon to bulk conductance Gab = 3.636W/K

• bulk to spreader conductance Gbp = 1.334W/K

• spreader to external environment Gext = 0.9522W/K

The values above represent a general 80W microprocessor (hence, each core has 20W
maximum power) and were selected so as to recreate the temperature profile obtained in

90 6| Testing

Figure 6.1: Open-loop experiments of the model

full-power excitation of the microprocessor

full-power excitation of a single core

highlighting of the fast dynamics of the single core excitation

the previous work [16] and depicted in figure 4.1.

Figure 6.1 top shows the effect of a full-power excitation of all cores. The orange line is
the temperature of the active silicon, the purple line is the temperature of the bulk and
the magenta line is the spreader temperature.

Figure 6.1 middle shows conversely the effect of a one-core full-power excitation, while
Figure 6.1 bottom depicts a zoom of the above so as to highlight the fast dynamics. The
green line is the active silicon temperature, the purple line is the bulk temperature and
the orange line is the spreader temperature. The one-core excitation sets one core to the
maximum power while the others are turned off and, therefore, their temperature profiles

6| Testing 91

are equivalent to the one of the spreader. The time constants of the power to active silicon
temperature transfer function are

• µ = 2.0749

• τ1 = 0.0036581

• τ2 = 32.726

• T1 = 3.312 10−5

• T2 = 0.013717

• T3 = 137.52

6.1.1. Experiments with constant disturbances

The first set of Modelica experiments was performed to investigate the performances of
the different tuning and analysis rules, using the robust relay method (Section 2.4) in the
presence of constant disturbances. As such only one core is controlled, while the others
are subjected to 5W constant power.

The autotuning is requested at 10s, when the controlled core has reached the target
temperature of 45 °C. The autotuner high-pass filter was selected according to (2.8), the
relay amplitude to 4W, and the sampling time to 5ms. Two different experiments were
carried out using the describing function (DF) coupled as tuning policy to the (one-point)
closed loop adjustment (CLA) and its contextual version (IMC con). Table 6.1 reports
the results.

K Ti |P | µ T L

DF CLA 1.2566 0.004 0.230

DF IMC con 2.350 0.004 0.230 0.273 0.003 0

Table 6.1: Parameters, data point and model of the system

The obtained oscillation had a period P = 0.03. Computing the magnitude of the transfer
function evaluated at that oscillation, we obtained that |G(j0.03)| = 0.2045. It is impor-
tant to notice that the describing function identifies the frequency data point around the
negative real semiaxis, resulting in not very accurate an identification, as the obtained
response is not well represented as a single sinusoid (which the approximation requires).

92 6| Testing

Nevertheless, the autotuner was still able to operate satisfactorily, enforcing a 45° phase
margin.

The autotuning experiment was repeated using the Fourier analysis, but for a correct
operation we had to reduce the sampling time to 1 ms and set the hysteresis of the R1
relay equal to 16Ts. In this way, the relay was forced to wait at least four sampling times
before switching, because the integrator had to build up. Indeed, the experiment campaign
convinced us that a shorter sampling time (with respect to the describing function case)
is a compulsory choice to analyse the transient sufficiently well. The new results – with
Fourier analysis – are reported in the following table.

K Ti P (0) |P | µ T L

FA IMC 0.2437 0.0130 1.47051 0.5068 1.47051 0.0130 0.0262

FA IMC con 3.2984 0.0331 1.5502 0.295579 1.3282 0.0036 0

Table 6.2: Parameters, data point and model of the system

This time the oscillation period was T = 0.052, resulting in the true data point |G(j0.052)| =
0.2790. The results clearly show that the Fourier analysis returns better estimation of
the data point with respect to the describing function method — however, as noticed, at
the cost of a shorter sampling time. It is worth however recalling that this problem is
confined to the tuning phase, when for simplicity the event-based approach of the con-
troller to tune – see [16] – is abandoned. After te tuning phase the controller turns back
to be event.based, which mitigates the computationally detrimental effects of a “small”
sampling time (that becomes the periodic event quantum)

To appreciate the operation of the autotuner also visually, we end this section by reporting
some time-domain transients taken from an experiment that was carried out using the
Fourier analysis and the IMC contextual tuning rule, with a sampling time of 1 ms. In
detail, Figure 6.2 shows the behaviour of the controlled temperature and the control signal
during and after a tuning operation (at 10s); after the tuning, a step set point modification
(at 12s) and a step disturbance (at 20s) were applied, so as to show the behaviour of the
obtained controller.

The figure shows in red the temperature of the controlled core, in blue the temperature
of the second and third cores (in fact identical owing to the symmetry of the square 2×2
chip floorplan) and in green the temperature of the fourth core. Regarding the reference
step, we chose such a low value (55 °C) to highlight the timeliness of the control (a higher

6| Testing 93

Figure 6.2: Top figure: temperature (°C) of the controlled core in red, the temperature
of the second and third core in blue and the fourth core in green. Bottom figure: power
profile of the controlled core in magenta.

value would have required waiting for the slow transient of the spreader dynamics) even
though in a real control application higher temperature thresholds (70°C or higher) should
be set to not throttle the processor. The disturbances consisted of a step change (up to
the maximum power) of all the non-controlled cores at the beginning of the experiment,
and then of a power drop of the same, except for the fourth one, down to 5 W per core.
The former enlightens the disturbance rejection capabilities of the robust relay structure,
while the latter shows the readiness of the self-tuned control to disturbances. The effects
of the disturbance (at 20s) on the control can be appreciated by looking at the slope of
the control variable, which slows down as the total generated power decreases.

As a final consideration of the proposed result, the underlying (much) slower dynamics of
the spreader is clearly visible for the entirety of the experiment: since the initial settle-
ment, the controller had to continuously reduce the control action in order to accommo-
date the set point because the spreader had not yet reached the steady-state temperature.

Based on the obtained results (and others not reported for brevity) we conclude that the
describing function and the Fourier analysis are both viable analysis approaches, that the
former is less accurate as expected, but also that the latter provides its better accuracy
at the cost of an increased number of required points — i.e., of a smaller sampling time
(which is computationally detrimental, but only in the tuning phase). We also conclude
that none of the proposed tuning policies significantly outperforms the others, hence CLA

94 6| Testing

can be used if maximum simplicity is a must, while the contextual IMC is preferable in a
view of the future extensions envisaged, thanks in particular to its capabilities of providing
reliable forecasts of the controlled variable.

6.1.2. Experiments with variable disturbances

The second set of Modelica experiments aims to assess the proposed autotuner in a more
realistic setting, i.e., when a tuning operation is carried out on a core while the neigh-
bouring ones are dissipating a time-varying power, which is the normal case when they
are executing their software tasks.

For a good degree of realism, the power dissipated by the “disturbing” cores is taken from
a recorded power track, in turn coming from the execution of a real application. In detail,
he chosen power profile was the measured electrical power consumed by a microprocessor
running the Cloverleaf mini-application, from the UK Mini-App Consortium, which em-
ploys an explicit second-order method for the resolution of compressible Euler equations,
a representative application from the HPC domain.

The said power profile was transformed into a load power profile to address both the
disturbances rejection capability of the exciter and of the autotuned control. Accordingly,
the power signals fed to the microprocessor represent the maximum virtual power of each
core, i.e. the power of the core if it were fully utilised, resembling the effects of the
modulation by the DVFS, while the effective power generated by the core is the virtual
one corrected by the load coefficient (which is always between 0 and 1). Hence, one core
only was controlled, using the Fourier analysis and the IMC contextual methods, and a
1ms sampling time, while the others were fed by the maximum virtual power of 20 W.
Once again, we subjected the autotuned control to a step change in the reference (time
13.5 s) and a disturbance generated by the other cores (time 20 s).

Figure 6.3 shows the obtained results. During the initial settlement and during the ex-
periment, the load trace of the controlled core was overridden such that it was equal to 1
(it was obtained artificially by enforcing the trace to 1 until the second 11.5 was reached).
The maximum (or at least constant) load is a fundamental requirement for the success-
ful execution of the experiment because the said disturbances could nullify the exciter
action and the analyser needs to identify the data point in the absence of multiplicative
disturbances. Moreover, the constant load is not a compelling requirement and it can be
enforced by the use of appropriate routines, such as the cpuburn program (a “thermal
stresser” designed to just have a CPU consume as much power as possible).

Once the tuning was completed, the setpoint was set to 50W at the second 13.5 to reflect

6| Testing 95

Figure 6.3: Top figure: the temperature profile of the controlled core in blue and the one
of the others core in red. Bottom figure: the effective power delivered to the core with
the same colour code as just said.

the results obtained in the previous experiment. On the other hand, the disturbance on
the control action was obtained by overriding the load profile such that the non-controlled
cores had a 0.5 W effective power generation.

In the light of the results obtained, of which only a few were shown, we can say that the
autotuning controller is able to handle multiplicative-like load disturbances in a timely
fashion and fulfilling the control requirements, also when confronted with power profiles
coming from a real application.

6.2. A 3D-ICE co-simulation experiment

The aim of these experiments is twofold. On the one hand, we want to verify that the
behaviour of the C++ autotuner implementation reasonably matches that of the Modelica
one – of course from a qualitative standpoint, as the processor model used in 3D-ICE is
different from the 3-capacities Modelica one, and far more accurate as it also includes a
detailed representation of the heat sink. The second purpose is to check the co-simulation
capabilities of the proposed C++ realisation, so as to assess its viability for the intended
integrated studies aimed at a joint verification of heat dissipation equipment and on-chip
thermal policies, as envisaged e.g. in [24].

The 3D-ICE library provides examples of the so-called “pluggable heat sink” capabil-

96 6| Testing

Figure 6.4: Top figure: temperature profile of the core; blu for the controlled (first) core,
orange for the second core, green (hidden by the orange line) for the third core and light
blue for the fourth core. Bottom figure: power profile of the cores; the non-controlled
cores were subjected to the same power profile

ity [23], one of which is the Cuplex water cooling system. We report for compactness only
one test, in which an autotuning operation was performed with the Fourier analysis and
the IMC contextual method. During this experiment, we had to reduce the sampling time
to 100 µs because the fast dynamics in 3D-ICE proved to be faster than that obtained in
Modelica experiments, owing to the fact that 3D-ICE represents small-scale phenomena
that the inherently coarse spatial discretisation of the system-level Modelica chip model
smooths out. However, it is important to note that the reduced sampling time is only
needed during the experiment in order to correctly estimate the data point; then it can
be set to higher values such as 1ms or so — and still, after the tuning, the controller turns
back to be event-based. For example, in our test, the autotuner chose an integral time
equal to 0.00264s allowing a sampling time smaller than 1.3 ms.

Figure 6.4 shows the obtained results, depicting the controlled variable and the control
signal throughout an autotuning operation. A set point step change was applied at 1s
and a disturbance was applied at 2s.

The obtained results clearly highlight the disturbance rejection capability of the exciter,
showing that the experiment could be performed even during the slower transients of the

6| Testing 97

Figure 6.5: Top figure: thermal map of the active silicon before the step change in the
setpoint. Bottom figure: thermal map of the core at 3s time instant.

thermal dynamics of the microprocessor.

After the experiment, the setpoint was set to 60 °C (at 1 s) to resemble real applications;
in doing so, the slower dynamics can be clearly seen in the temperature response. It is
important to notice that the non-controlled cores’ power was initially set to 2W each,
then it was set to 6W each when the step variation was applied, to facilitate the control
action (in this way the slow dynamics effects were partially reduced) and finally, at second
2, the power was set to 3W each to represent the disturbance already discussed in the
other experiments.

In addition, to show the added value of co-simulating with 3D-ICE, we show some thermal
maps of the chip at various instants during and after the tuning operation

Based on the obtained results, we can conclude that the autotuner is capable to face the
control problem it was designed for and, in particular, we can say the following.

• The experiment could be performed in non-steady-state situations, as highlighted

98 6| Testing

in the last test where the experiment was performed while the controlled core tem-
perature was still arising due to the effects of the other cores.

• The analyser is capable to identify the process data point; it requires a small sam-
pling time, but this requirement is dictated by the nature of the problem (the very
small time constant of the fast dynamics), rather than a deficiency of the analysis.

• The autotuner is able to tune itself in a proficient way, devising proper control
parameters to correctly face the disturbances to which the controller is subject, as
shown in all experiments that were conducted.

Finally, the correspondence of the Modelica and the C++ implementation – in the qual-
itative sense anticipated, given the inevitably different boundary conditions provided by
the two simulation settings – was verified.

99

7| Conclusions and future work

We presented an autotuning controller conceived for joint power/performance/thermal
control in modern microprocessors. The necessity of such controls is nowadays testified
by the increasing importance of the “dark silicon” problem, and as quenching thermal
stress inherently comes at the cost of reducing performance, the said controls must be
capable of limiting that detriment to the minimum required. In turn, given the various
installation settings and ambient conditions that a microprocessor can experience, the
need for so effective control performances calls for adaptation capabilities. As a result,
for the purpose just sketched, autotuning controllers are highly desired.

However, designing such controllers is not an easy task, for several reasons:

• the usage has to be very simple, easy to understand and possibly parameter-free, so
that computer (not control) personnel can operate the controller;

• the action on the controlled processor must not be too invasive, so as to not upset
the operation of the overall system where the autotuning controller resides;

• the operation must be robust in the face of disturbances from neighboring parts of
that system such as adjacent cores, as this is inevitable in any real-world application;

• the resulting algorithm has to be computationally light, so as to make it possible to
invoke it e.g. at every system startup.

In this thesis we analysed the problem, also in the light of relevant literature and previous
works by the research group where the work was carried out. As a result we came to
propose a solution combining several ingredients, namely

• relay-based process stimulation of various types, also including a technique (based
on results from the literature) to effectively reject disturbances even during the
experiment phase;

• relay data analysis based on the describing function approximation and via Fourier
analysis;

• tuning policies based on assigning one point of the open-loop Nyquist curve as

100 7| Conclusions and future work

well as on the Internal Model Control principle, including its “contextual” version to
allow for reliably forecasting at tuning time the resulting behaviour of the controlled
variable.

The proposed solution, thanks to the combination of purpose-specific stimulation, analysis
and tuning policies, fulfills all the needs just set forth. After the theoretical motivation
and the discussion sketched above in retrospect, it was realised in two forms:

• a Modelica library, targeted to system-level testing,

• and a C++ application, for experimentation with fine-grain chip simulators like
3D-ICE and to run in conjunction with other on-chip policies such as load-based
frequency/voltage governors, so as to be assessed as ready for porting on a real
device.

Simulation experiments were carried out and analysed using both realisations, to assess
their correctness and mutual consistency – reasoning on a qualitative basis, given the dif-
ferent nature of the used processor models, but nonetheless obtaining good correspondence
– as well as the capability of the C++ code to integrate with domain-specific accurate
Simulation tools such as 3D-ICE.

The autotuner realisation on a physical processor is the first activity planned for the
future, together with refinements of the tuning procedure and further assessment in sim-
ulation, for example within studies aimed at a joint design, based on virtual prototyping,
of heat dissipation equipment and on-chip power/performance/thermal policies.

101

Bibliography

[1] URL https://modelica.org.

[2] URL https://www.techpowerup.com/cpu-specs/ryzen-7-5800h.c2368.

[3] URL https://github.com/jbeder/yaml-cpp.

[4] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini. Thermal and energy management
of high-performance multicores: Distributed and self-calibrating model-predictive
controller. IEEE Transactions on Parallel and Distributed Systems, 24(1):170–183,
2013. doi: 10.1109/TPDS.2012.117.

[5] P. Bolzern, R. Scattolini, and N. Schiavoni. Fondamenti di controlli automatici. Mc
Graw Hill Education, iv edition, 2015.

[6] A. L. da Silva, A. L. del Mestre Martins, and F. G. Moraes. Mapping and migration
strategies for thermal management in many-core systems. In 2020 33rd Symposium
on Integrated Circuits and Systems Design (SBCCI), pages 1–6, 2020. doi: 10.1109/
SBCCI50935.2020.9189933.

[7] T. da Silva, Moisés and P. R. Barros. A robust relay feedback structure for processes
under disturbances: Analysis and applications. Journal of Control, Automation and
Electrical Systems, 30:850–863, August 2019.

[8] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz. Cpu db: Record-
ing microprocessor history. Commun. ACM, 55(4):55–63, apr 2012. ISSN 0001-
0782. doi: 10.1145/2133806.2133822. URL https://doi.org/10.1145/2133806.

2133822.

[9] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Power
challenges may end the multicore era. Communication of the ACM, 56(2):93–102,
February 2013.

[10] N. Gomathi and K. Nagalakshmi. Criticality-cognizant energy-efficient task schedul-
ing on heterogeneous multicore processor. International Journal of Engineering
Trends and Technology, 70(4):203–214, April 2022.

https://modelica.org
https://www.techpowerup.com/cpu-specs/ryzen-7-5800h.c2368
https://github.com/jbeder/yaml-cpp
https://doi.org/10.1145/2133806.2133822
https://doi.org/10.1145/2133806.2133822

102 | Bibliography

[11] W.-L. Hung, G. Link, Y. Xie, N. Vijaykrishnan, and M. Irwin. Interconnect and
thermal-aware floorplanning for 3d microprocessors. In 7th International Symposium
on Quality Electronic Design (ISQED’06), pages 6 pp.–104, 2006. doi: 10.1109/
ISQED.2006.77.

[12] Å. K. J. and H. T. Advanced pid control. ISA-The Instrumentation: Systems and
Automation Society., 2006.

[13] J. Kong, S. W. Chung, and K. Skadron. Recent thermal management techniques
for microprocessors. ACM Comput. Surv., 44(3), jun 2012. ISSN 0360-0300. doi:
10.1145/2187671.2187675. URL https://doi.org/10.1145/2187671.2187675.

[14] J. Lee, J.-S. Kim, J. Byeon, and W. Sung. Relay feedback identification for processes
under drift and noisy environments. AIChE Journal, 57(7):1809–1816, July 2011.

[15] A. Leva, S. Negro, and A. Vittorio Papadopoulos. Pi/pid autotuning with con-
textual model parametrisation. Journal of Process Control, 20(4):452–463, 2010.
ISSN 0959-1524. doi: https://doi.org/10.1016/j.jprocont.2010.01.005. URL https:

//www.sciencedirect.com/science/article/pii/S0959152410000260.

[16] A. Leva, F. Terraneo, I. Giacomello, and W. Fornaciari. Event-based
power/performance-aware thermal management for high-density microprocessors.
IEEE Transactions on control systems technology, 26(2):535–550, March 2018.

[17] M. S. Mohammed, A. A. M. Al-Kubati, N. Paraman, A. A.-H. Ab Rahman, and
M. N. Marsono. Dtapo: Dynamic thermal-aware performance optimization for dark
silicon many-core systems. Electronics, 9(11), 2020. ISSN 2079-9292. doi: 10.3390/
electronics9111980. URL https://www.mdpi.com/2079-9292/9/11/1980.

[18] S. Moulik. Reset: A real-time scheduler for energy and temperature aware het-
erogeneous multi-core systems. Integration, 77:59–69, 2021. ISSN 0167-9260. doi:
https://doi.org/10.1016/j.vlsi.2020.11.012. URL https://www.sciencedirect.

com/science/article/pii/S016792602030300X.

[19] A. O’dwyer. Handbook of PI and PID controller tuning rules. World Scientific, 2009.

[20] A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou, K. P. Pipe, T. F. Wenisch,
and M. M. Martin. Computational sprinting on a hardware/software testbed.
SIGARCH Comput. Archit. News, 41(1):155–166, mar 2013. ISSN 0163-5964. doi:
10.1145/2490301.2451135. URL https://doi.org/10.1145/2490301.2451135.

[21] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza. 3d-ice: Fast
compact transient thermal modeling for 3d ics with inter-tier liquid cooling. In 2010

https://doi.org/10.1145/2187671.2187675
https://www.sciencedirect.com/science/article/pii/S0959152410000260
https://www.sciencedirect.com/science/article/pii/S0959152410000260
https://www.mdpi.com/2079-9292/9/11/1980
https://www.sciencedirect.com/science/article/pii/S016792602030300X
https://www.sciencedirect.com/science/article/pii/S016792602030300X
https://doi.org/10.1145/2490301.2451135

7| BIBLIOGRAPHY 103

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
463–470, 2010. doi: 10.1109/ICCAD.2010.5653749.

[22] S. W. Sung and I.-B. Lee. Enhanced relay feedback method. Industrial & Engineering
Chemistry Research, 36(12):5526–5530, Dicember 1997.

[23] F. Terraneo, A. Leva, W. Fornaciari, M. Zapater, and D. Atienza. 3d-ice 3.0: effi-
cient nonlinear mpsoc thermal simulation with pluggable heat sink models. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(4):
1062–1075, 2021.

[24] F. Terraneo, A. Leva, W. Fornaciari, and D. Atienza. Modeling and simulation
challenges and solutions in cooling systems for nanoscale integrated circuits[feature].
IEEE Circuits and Systems Magazine, 23(1):36–56, 2023. doi: 10.1109/MCAS.2023.
3234727.

[25] H. Wang, J. Ma, S. X.-D. Tan, C. Zhang, H. Tang, K. Huang, and Z. Zhang. Hi-
erarchical dynamic thermal management method for high-performance many-core
microprocessors. ACM Trans. Des. Autom. Electron. Syst., 22(1), aug 2016. ISSN
1084-4309. doi: 10.1145/2891409. URL https://doi.org/10.1145/2891409.

[26] C.-C. Yu. Autotuning of PID Controllers: Relay Feedback Approach. Springer Science
& Business Media, 2013.

https://doi.org/10.1145/2891409

105

List of Figures

1 trends in the evolution of µPs. 1

2.1 Graphical interpretation of the describing function method with two pos-
sible solutions. The figure is taken from [5]. 18

2.2 Robust relay feedback structure . 20
2.3 Trajectory on the switching surfaces for RRFS, taken from [12] 24
2.4 Typical scheme of the internal model control 29
2.5 Rearrangment of the internal model control to highlight the controller . . . 30

3.1 Figure representing a typical thermal node. 41
3.2 Electrical equivalent of the 3-capacities model of a single-core 43
3.3 adaptation of the 3-capacities model for a four cores multicore 44
3.4 Representation of the discretisation performed by 3D ICE and how the heat

traverses the stack. The stack is composed of two dies, each one containing
a source layer (green) and liquid cavities for cooling (blue). The figure is
taken from the 3D-ICE user manual . 46

3.5 uml representation of the simulator modules and the co-simulation FMI
interface . 47

4.1 Raw data obtained from the study [16] showing the cores temperatures
after a step change in the computational power request 50

4.2 PI controller with clamping anti-windup solution and the min block to
compare the action with the governor request 56

4.3 Graphical representation of the behaviour of a relay with hysteresis 56
4.4 Graphical representation of the rationale besides the closed-loop adjustment 60
4.5 High-level automata . 63
4.6 the autotuner calls the low-level controller compute method 64
4.7 the autotuner records the autotuning request 65
4.8 the autotuner initialises the experiment . 65
4.9 experiment step execution . 66
4.10 the autotuner requests the frequency point to perform the check 66

106 | List of Figures

4.11 the autotuner tunes the low-level controller according to the obtained data
point . 67

5.1 Modelica library . 70
5.2 block diagram of the implemented DVFS module 72
5.3 Modelica diagram of the two-capacity model 72
5.4 CPU model . 73
5.5 Modelica diagram of the multicore adaptation of three capacity model . . . 73
5.6 block schemes of the initial controller implemented in Modelica and its

quadrupled version . 74
5.7 Flow chart diagram of the client . 85

6.1 Open-loop experiments of the model . 90
6.2 Top figure: temperature (°C) of the controlled core in red, the temperature

of the second and third core in blue and the fourth core in green. Bottom
figure: power profile of the controlled core in magenta. 93

6.3 Top figure: the temperature profile of the controlled core in blue and the
one of the others core in red. Bottom figure: the effective power delivered
to the core with the same colour code as just said. 95

6.4 Top figure: temperature profile of the core; blu for the controlled (first)
core, orange for the second core, green (hidden by the orange line) for the
third core and light blue for the fourth core. Bottom figure: power profile
of the cores; the non-controlled cores were subjected to the same power
profile . 96

6.5 Top figure: thermal map of the active silicon before the step change in the
setpoint. Bottom figure: thermal map of the core at 3s time instant. 97

107

List of Tables

6.1 Parameters, data point and model of the system 91
6.2 Parameters, data point and model of the system 92

109

8| Ringraziamenti

Al termine di questa tesi desidero fortemente ringraziare il professor Alberto Leva, il
quale mi ha permesso di intraprendere questo percorso di tesi, onorandomi di suggellare
il percorso dell’università con un’esperienza unica e appagante.

Ringrazio il dottore Federico Terraneo, per avermi supportato durante lo sviluppo di
questo elaborato.

Desidero dedicare questa tesi ai miei genitori Alessandra ed Antonio, i quali mi hanno
sempre supportato in ogni avversità, permettendomi di diventare la persona che sono
oggi, e la dedico a mia sorella, Francesca, che pure tra gli screzi comuni tra fratelli, mi è
sempre stata accanto, fedele e gentile.

Dedico questa tesi alla mia fidanzata Cristiana, che da 7 anni mi affianca, immancabile,
di fronte ad ogni difficoltà, le quali, senza di lei, sarebbero state molto più amare.

Dedico questa tesi ai miei nonni Anna, Rosangela, Gianni e Franco, i quali hanno reso la
mia infanzia quel ricordo stupendo che ho la fortuna di avere.

La dedico ai miei amici di vecchia data Angelo, Gabriele, Elenalessandra, Marta e Sarah,
che mi hanno sempre regalato esperienze uniche e addolcito quei momenti di sconforto o
fatica grazie alla loro amicizia e vicinanza.

La dedico ai miei cari amici Marta e Alessandro, i quali ho la fortuna di avere vicino
da ormai i tempi del liceo, di cui il ricordo non sarebbe lo stesso senza di loro, e che
continuano a regalarmi momenti stupendi.

La dedico ai miei colleghi universitari Alessandro, Andrea, Gianluca, Roi e Tommaso,
perché è solo grazie a loro se il ricordo che ho dell’università è così solare; colleghi e amici
con cui ho potuto condividere i dolori e le gioie che l’università è solita dare, sia tra le mura
del Politecnico sia al di fuori di esse, instaurando un legame straordinario ed indissolubile
su cui, sono sicuro, potrò sempre contare. Grazie a loro il Poli non è stato un semplice
luogo di studio, ma un punto di ritrovo e cardine della mia esperienza universitaria, gaio
e raggiante. Grazie a loro anche una semplice pausa caffè poteva diventare qualcosa di

110 8| Ringraziamenti

inaspettato, alleviando il tedio che ogni tanto veniva provocato da certe lezioni. Grazie
a loro posso affermare di aver vissuto pienamente e a tutto tondo l’Università e per ciò
sono grato a loro.

	Abstract
	Sommario
	Contents
	Introduction, Motivation and Contribution
	Related Work
	Theoretical background
	Foreword
	Permanent Oscillations
	The Describing Function method
	Robust Relay Feedback Structure
	Structure
	Analysis of the Robust Relay Feedback Structure

	Internal model control
	Contextual autotuning

	Physics, models and tools
	Overview
	The physics to consider
	Purposed modelling
	Detailed modelling
	Control design-oriented modelling

	Tools
	Modelica
	3D-ICE

	The proposed autotuner
	Foreword
	The addressed control structure
	Implemented features
	The resulting application
	The low-level controller
	The experiment
	The analyser
	The high-level controller

	Inter-communication among sub-modules

	Software Implementation
	Modelica implementation
	The package structure
	The Components Blocks
	The Plant Blocks
	The Control Blocks
	Tests and Examples

	C library
	Low-level controller
	The exciter
	Analyser
	High-level controller
	Additional structure and exceptions
	C interface

	3D-ICE Implementation
	3D-ICE Integration
	YAML parser

	Testing
	Modelica experiments
	Experiments with constant disturbances
	Experiments with variable disturbances

	A 3D-ICE co-simulation experiment

	Conclusions and future work
	Bibliography
	List of Figures
	List of Tables
	Ringraziamenti

