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Abstract

The popularity of wood in stringed musical instruments is undeniable. Its workability,
aesthetic, and its mechano-acoustic properties make it an ideal choice for their construc-
tion. Like many natural resources, wood is subject to variations even within samples
taken from the same tree, making it a challenging task for instrument makers to maintain
the exact same sound between one instrument and the next. Additionally, due to their
unique properties certain species of wood have become endangered from excessive use.

This thesis aims to address these issues through the use of wooden mechanical metama-
terials. Indeed, previous studies have demonstrated that the mechanical parameters of a
wooden plate typically used for the construction of soundboards can be tuned via its per-
foration with periodic patterns of holes. Until now, only metamaterials with homogeneous
hole dimensions have been studied for this purpose using the Caldersmith formulas to es-
timate their effective elastic constants. Our objective is to investigate how heterogeneous
hole dimensions can affect the vibrational and mechanical behaviour of wooden plates.
To this end, multiple configurations with heterogeneous hole sizes were investigated, and
their impact on the elastic properties of the board measured via specifically designed
solid equivalent plates. Said plates are used to find the material parameters which can
make the vibrational behaviour of the equivalent plate and of the metamaterial match.
In particular, a finite element model updating method was implemented to identify them
by means of an optimization.

Our results show that the investigated wooden metamaterials have striking differences be-
tween homogeneous and heterogeneous hole size distributions. In fact, the stiffness of the
plate is observed to be correlated to its hole size distribution, and a different behaviour
can be found as well when studying them under dynamic or static conditions. This proves
that a lot still has to be discovered about metamaterials but also that they are a powerful
tool to be used in musical acoustics and beyond.

Keywords: Musical acoustics, mechanical metamaterials, finite element modeling, me-
chanical parameter identification, optimization





Abstract in lingua italiana

L’impiego del legno nella costruzione di strumenti musicali a corda è imperante. La sua
lavorabilità, l’estetica e le sue proprietà meccano-acustiche ne fanno una scelta ideale.
Come molte risorse naturali, il legno è soggetto a variazioni anche tra campioni prelevati
dallo stesso albero, il che rende difficile mantenere costante la qualità del suono tra stru-
menti diversi dello stesso costruttore. Inoltre, per via delle loro proprietà uniche, l’impiego
eccessivo di alcune specie arboree ha messo in pericolo la sopravvivenza delle stesse.

Questa tesi affronta questi problemi proponendo l’uso di metamateriali meccanici in legno.
Infatti, studi precedenti hanno dimostrato che i parametri meccanici di una tavola lignea
tipicamente utilizzata per la costruzione di tavole armoniche possono essere regolati at-
traverso la sua perforazione con pattern periodici di fori. Finora sono stati studiati a
questo scopo solo metamateriali con fori di dimensioni omogenee, utilizzando le formule
di Caldersmith per stimare le loro effettive costanti elastiche. Il nostro obiettivo è studiare
come dimensioni eterogenee dei fori possano influenzare il comportamento vibrazionale e
meccanico delle tavole lignee. A tal fine, sono state studiate diverse configurazioni con
fori di dimensioni eterogenee e il loro impatto sulle proprietà elastiche della tavola è stato
misurato studiando delle tavole equivalenti senza fori. Queste ultime sono state utilizzate
per individuare i parametri del materiale che possano far coincidere il comportamento
vibrazionale delle due tavole. In particolare, è stato implementato il metodo di ottimiz-
zazione chiamato Finite Element Model Updating per l’identificazione di detti parametri.

I risultati mostrano che i metamateriali lignei studiati presentano notevoli differenze tra
la distribuzione omogenee e quella eterogenea delle dimensioni dei fori. Infatti, si osserva
che la rigidità della tavola è correlata a come i fori di diverse dimensioni sono distribuiti,
e si riscontra un comportamento diverso anche nel loro studio in condizioni dinamiche o
statiche. Questo prova che c’è ancora molto da scoprire sui metamateriali, ma anche che
si tratta di un potente strumento da utilizzare nell’acustica musicale e non solo.

Parole chiave: Acustica musicale, metamateriali meccanici, modellazione a elementi
finiti, identificazione dei parmetri meccanici, ottimizzazione
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1

Introduction

Wood is the most used material in stringed musical instrument making. Its mechanical
and acoustic properties, as well as its workability and appealing aesthetic, make it an ideal
choice for the construction of musical instruments. Moreover, it is a natural resource that
is available in abundance. Over the centuries, instrument makers have experimented with
different types of wood and found the best species for each application. For example,
softwoods such as Spruce are mostly used for soundboards, tropical woods like Pernam-
buco have become a standard for violin bows, and bamboo is extremely common in the
bores of woodwinds [1]. However, some of these species are endangered making them
unsustainable for the mass production of musical instruments [2]. In fact, they are often
cut down illegally even though they are protected by CITES (Convention on International
Trade in Endangered Species) [3]. Not to mention that global warming itself is changing
the conditions of growth of wood causing variations in its properties [4].

In order to make more sustainable musical instruments, multiple studies have examined
the material properties of these woods and explained why they excel at their role [5, 6];
Creating thus a correlation between classifications of woods made by the manufacturers
of musical instruments, which are traditionally based on visual inspection of the samples
of wood, and the physical material properties of these samples [7–9]. Knowing what
material properties are desirable in order to achieve good acoustical quality is the key to
finding alternative and more sustainable materials that can eventually replace the most
used species of woods.

In particular, fiber-reinforced composite materials have received special attention as a
suitable substitute for wood in musical instruments [10]. Composite materials are cre-
ated by combining two or more materials with different physical and chemical properties,
to obtain a new material with the desired characteristics. Generally, this is done by
embedding strong fibers within a light polymer matrix. Recent studies have measured
the acoustic qualities of composite materials and compared them to those of traditional
woods [11]. Patents of bowed string instruments made of composite material have also
already been published [12]. In [11], the authors demonstrated that composite materials
can have exceptional acoustic properties. Especially in the case of carbon fiber reinforced
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composites, which, although characterized by a much higher density, can also achieve a
very large specific longitudinal Young’s modulus and lower damping ratio than those of
traditional woods. Both of which are good indicators of acoustic quality. Furthermore,
a water absorption test revealed that composite materials are also more resistant than
wood to environmental conditions such as humidity, making them more stable and reli-
able. Despite these advantages, wood is still the preferred material by most luthiers and
musicians. Perhaps because the longer history makes it difficult for it to be replaced by
a completely different material.

Even though composite materials are a promising alternative to wood, another common
approach is that of using other, more sustainable wood species by enhancing their prop-
erties to match those of the ideal woods through physical or chemical alteration. Some
examples are thermally modified woods [3], and chemically altered woods [13, 14] that
have been demonstrated to be adequate substitutes for specific acoustic situations. This
approach makes it possible to keep using wood as the primary material, but in a more
sustainable manner.

Finally, we have metamaterials which have been the focus of more and more research,
especially in the last decades, because of their unusual and malleable properties. This
thesis focuses on their use with the objective of manipulating the mechanical properties
of any piece of wood in order to make it usable in instrument making. Metamaterials are
born from the advancement of technologies making it possible to build materials at smaller
scales. In fact, by altering the micro-structure of these materials, sometimes even at
nanometric scales, it is possible to obtain mechanical and acoustic properties that cannot
be found in conventional materials [15, 16]. Some examples of exotic material parameters
are negative poisson ratios in auxetic metamaterials such as the one represented in Figure
1 and negative refraction coefficients. The latter is particularly appreciated in acoustic
applications where metamaterials are used for acoustic imaging and acoustic lenses among
other applications [17, 18].

One of the most recent and innovative ways of taking advantage of the properties of meta-
materials is to use them in the instrument making process. Not only to manipulate the
spectrum of sounds of the instrument [19, 20], but also to tune the elastic properties of
wood. In fact, it has been demonstrated by the authors in [21] that the use of periodic
hole patterns on rectangular wooden boards allows the mechanical and acoustic proper-
ties of the board to be controlled. This result could potentially give the possibility to
instrument makers to start from any piece of wood and fine tune its material properties
to reach or even surpass those of the traditionally used wood species. Creating a sus-
tainable alternative to endangered woods, and opening up entirely new possibilities both
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In figure 1 we observe different properties of the sound produced
by a plucked string tuned to 554 Hz (note 𝐶#

5 ). Panel (a) shows the
audio signal 𝑥 (𝑡). The amplitude gives us information about the
sound pressure and how it changes over time. In terms of sound
quality, the signal provides information about the loudness, at-
tack, decay, sustain and release of the sound. Information on the
frequency domain is not provided. Figure 1 (b) shows the power
spectral density of 𝑥 (𝑡) between 20 Hz and 10 kHz. It is related
with the distribution of power into the frequency components of
the signal. The strongest peak corresponds to the fundamental fre-
quency, associated with the pitch of the perceived sound. Finally,
panel (c) shows the spectrogram of 𝑥 (𝑡), and gives us information
about the evolution of the frequency components over time. These
components, like the fundamental and subsequent harmonics that
are present in the first instant in the sound, disappear at different
times. The amplitude of each component defines its degree of pres-
ence, and the decay over time defines its persistence. The presence
and persistence of frequency components determine the timbre of
the musical instruments [2].

Our main goal is to alter specific spectral properties of the sound
of musical instruments. In this work we focus on changing the
presence of certain spectral content of the plucked string sound,
through a simple and reversible mechanical manipulation of the
sound box. This manipulation involves coupling a tunable mechan-
ical metamaterial to the soundboard of the guitar in order to absorb
a specific range of frequencies of the mechanical waves traveling
through it.

2 TUNABLE MECHANICAL
METAMATERIALS

Mechanical metamaterials are rationally designed composites aim-
ing at effective material parameters that go beyond those of their
ingredients [7]. Some of them allow the manipulation of the dis-
persive properties of the mechanical waves that travel along them.
[1, 3]. The idea to use mechanical metamateriales to manipulate
sounds has been recently applied in composing spatial soundscapes
[5], but its implementation manipulating the sound source has
hardly been studied, and that is the problem that we want to tackle.

4.5 cm

3.7 cm

4.5 cm

4.1 cm

0.8 cm

auxetic behavior(a) (b)

Figure 2: (a) Used mechanical metamaterials: squared ar-
rays of circular holes in an elastomer matrix. (b) Metamate-
rial with a deformation of 11%: during the compression, the
square array of circular holes is transformed upon reaching
a critical deformation, into a periodic pattern of alternating,
mutually orthogonal, ellipses [1].

We use mechanical metamaterials with the structure presented
in figure 2 (a), i.e. arrays of circular holes in an elastomer matrix.
These metamaterials exhibit auxetic behavior with a negative Pois-
son’s ratio. It means that when the structure is compressed in the
axial direction, it shrinks in the transverse direction, in contrast
with typical materials (see figure 2 (b)) [1, 6]. This kind of me-
chanical metamaterial presents frequency band gaps (ranges of
frequencies with no vibrational transmission), which can be tuned
by mechanical deformation.

The elastomeric matrix exhibits strong material nonlinearities,
and therefore applied deformation induces a significant stiffening
effect, providing a tool to tune the position and width of the band
gaps [1, 11]. Adjusting the stiffness by different levels of mechanical
deformation, gives us a simple way to make tunable mechanical
pass-band filters that, by eliminating the stress that causes the
deformation, recover their initial periodic structure. It means that
we have a reversible and repeatable tuning process.

3 METAMATERIAL MECHANO-ACOUSTIC
CHARACTERIZATION

The mechanical metamaterial used is based on existing models
[8, 10]. We make a sample, labeled as M1, with the geometry shown
in figure 2: an array of 5𝑥4 circular holes of 8 mm of diameter in
a elastomer matrix made of silicone Elite Double 22 Fast (Young’s
modulus 𝐸 = 0.8 MPa and density 𝜌 = 1160 kg/m3), with a thickness
of 5 mm.
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Figure 3: Experimental setup used to obtain power spectrum
of mechanical metamaterials under deformation.

278

Figure 1: (a) Mechanical metamaterial in a relaxed state: squared arrays of circular
holes in an elastomer matrix. (b) Metamaterial with a deformation of 11 % : during the
compression, the square array of circular holes is transformed upon reaching a critical
deformation, into a periodic pattern of alternating, mutually orthogonal, ellipses [19].

acoustically, and aesthetically in the making of the instrument. This result has also been
confirmed experimentally showing that there is a bijective relation between the density
of the board and it’s longitudinal stiffness [22], and applied numerically to the model of
a classical guitar proving that metamaterials can be integrated in an instrument to tune
its response without compromising its structural integrity [23].

Since an accurate non destructive experimental measure of the elastic properties of the
perforated wooden boards is difficult to implement, most of the mentioned studies rely on
Caldermith’s formulas to calculate the stiffness of the wooden samples [24]. These formu-
las allow the user to approximate the value of the elastic properties of rectangular wooden
plates based on their dimension, density, and vibrational properties. The aim of this the-
sis is to verify the accuracy of this approximation in the case of metamaterials, find a way
of improving it through the use of numerical simulations and optimization algorithms,
and use the results to investigate the effect of the metamaterials on the mechanical and
vibrational properties of wood. This is done by creating 3D models of a set of rectangular
metamaterial wooden plates characterized by various patterns of holes that will be used
as reference, and then attempt to find the material properties of an equivalent plate with
the same vibrational properties, i.e. the same eigenfrequencies and modeshapes. These
equivalent plates are defined by being solid plates, meaning no holes are drilled in them,
and by having the same length, width and height as their corresponding reference plates.

The process of finding the material parameters of the equivalent plate that better fit the
eigenfrequencies and modeshapes of the reference plate is done through an optimization
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algorithm utilizing the finite element model updating method that will be explained in
detail in Chapter 2. The obtained equivalent plates can give us insight about the influence
of different metamaterial configurations on the material parameters of wood. These plates
are then tested as well in static conditions, conducting numerical experiments with a
static load and varying boundary conditions in order to verify their mechanical behavior.
Finally, the influence of metamaterials on the Poisson ratio of the plates is investigated
considering also the possibility of having a negative coefficient.

The relevance of identifying accurate equivalent plates with simple geometries goes beyond
the fact of being able to verify the Caldersmith formulas. In fact, one could use these
results with the objective of training an artificial intelligence capable determining the
right pattern of holes to apply to a certain wooden board with known material properties
in order to tune in and obtain other, more desirable properties. The advantage of using
the equivalent plates for such an application is that the meshing process of a regular
rectangular plate without any holes is much easier and less computationally expensive
than that of a plate with multiple circular or even more complex geometries.
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Thesis outline

The thesis is organized in the following manner:

First, after an introduction contextualizing and explaining the aim of this work, Chapter
1 goes through the relevant background concepts utilized in this thesis. Starting with a
description of wood’s linear elastic and orthotropic material properties, we then dive into
modal analysis techniques used in characterization of the vibrational properties of any
object, explaining as well how the previously mentioned Caldersmith formulas can be
used as a non destructive technique of material parameter approximation for wooden
rectangular thin boards. Finally, This chapter ends with a description of the basics of the
finite elements methods which is extensively used throughout the whole thesis.

Then, in Chapter 2, the methods utilized for studying the equivalent plates and the
identification of their material parameters are analyzed. More specifically, a detailed
description of the built 3D geometries for the reference plates is given considering both
homogeneous and heterogeneous distributions of hole dimensions in the metamaterial. Af-
ter that, the various equivalent models studied are described with all their particularities,
and in the end, the process of material parameter identification using the finite element
model updating optimization method is exhaustively explained.

Chapter 3 contains all the results of the thesis. First, the homogeneous metamaterial
configuration is studied, using the Caldersmith formulas to find the material parameters of
the equivalent plate and comparing the accuracy of those results to the ones obtained using
the optimization method. Subsequently, heterogeneous configurations of hole dimensions
are investigated. In particular, different equivalent plate models are tested and confronted
to each other and to the Caldersmith method with and without optimization of the
material parameters. Once a good enough equivalent plate model is found, its behaviour
in response to a static force is studied, and the possibility of having a negative Poisson ratio
is verified through a tensile test. Finally, the material parameters of the equivalent plates
of heterogeneous metamaterial configurations are analyzed and their possible applications
discussed.

At last, in Chapter 4, conclusions are drawn looking back at what was achieved during
this thesis, and possible ideas for future developments are explored.
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The aim of chapter is to give a description of all the fundamental concepts required
in the context of this thesis. Starting with an explanation of the mechanics of linear
elastic materials and their properties, we will then see how the orthotropic nature of
wood influences these properties and how modal analysis makes it possible to study the
vibrational properties of a system. From here, we will describe the Caldersmith formulas
and how they can be used to retrieve the main elastic properties of a rectangular wooden
plate in a non destructive way and see that with the help of the finite elements method,
all these concepts can be applied in the context of numerical simulations.

1.1. Mechanics of solids

1.1.1. Linear elastic materials

In mechanics, problems are treated differently depending on the material behaviour [25].
The material determines the model, equations and material properties that need to be
used to solve the problem under hand. Wood in particular is considered a linear elastic
orthotropic material [26]. These keywords are very important as they define the mechan-
ical behaviour of wood. A linear elastic material is characterized by a deformation that
depends linearly on the load that is applied onto it, in addition to the elasticity property
which implies that after the load is removed, the object will recover its original shape with
no residual deformation. This property is valid for low stress and deformations while at
higher stress levels plastic deformation or failure will occur.

In the linear elastic region, the relationship between stress and deformation is governed
by the general formulation of Hooke’s Law. For a generic anisotropic material, which is
a material whose properties vary depending on the considered direction, the stress–strain
relationship is a tensorial equation:

σij = Cijklεkl
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Where σij is the stress tensor, εkl is the infinitesimal strain tensor and Cijkl is the elastic
modulus (or stiffness) tensor.

This relation can be inverted using the elastic compliance tensor Sijkl instead of Cijkl.

εij = Sijklσkl

Cijkl and Sijkl are fourth-order tensors meaning they each should have 81 components.
Fortunately, since the stress and strain tensors are symmetric, the following symmetries
apply to linear elastic materials and the number of components is thus reduced to 21:

Cijkl = Cklij = Cjikl = Cijlk

Additionally, if a material has a symmetry plane, then applying stress normal or parallel
to this plane introduces deformation only in directions normal and parallel to the plane.
Orthotropic materials such as wood have three mutually perpendicular symmetry planes.
This reduces the number of independent material parameters to 9 and the general stress-
strain relation of an orthotropic material is expressed as:



ε11

ε22

ε33

ε23

ε13

ε12


=



1/E1 −ν21/E2 −ν31/E3 0 0 0

−ν12/E1 1/E2 −ν32/E3 0 0 0

−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/2G23 0 0

0 0 0 0 1/2G13 0

0 0 0 0 0 1/2G12





σ11

σ22

σ33

σ23

σ13

σ12


The compliance tensor contains all nine of the independent material parameters needed
to express the relation between stress and strain. Even though the compliance tensor
contains six different Poisson’s ratios, they are connected by the following symmetry
property:

νij
Ei

=
νji
Ej

for i ̸= j

Meaning only three of them are necessary to properly identify the orthotropic material.
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Below is a definition and explanations of each parameter:

The Young modulus Ei, as expressed by Hooke’s law:

σii = Eiεii

is the slope of the stress-strain curve in uni-axial tension. An orthotropic material can
have three different values of Ei. One for each principal direction. The Young’s modulus
gives an idea of the stiffness of the material in a specific direction.

The shear modulus Gij on the other hand is the ratio of the shear stress τ to the shear
strain γ and is defined as :

Gij =
τij
γij

Known also as the modulus of rigidity, it indicates the response of the material to shear
stress. Just like Young’s modulus, it also needs three different values to properly define a
material.

Poisson’s ratio νij is a measure of the compressibility of a solid. The Poisson effect
happens when a load applied in a specific direction causes a deformation in perpendicular
directions. This phenomenon is commonly observable when pressing down on a piece of
rubber and noticing that the sides expand as a result. It is defined as the negative ratio
of the transverse strain to the axial strain:

νij = −εj
εi

Typical values range from 0.2 to 0.49 with some notable cases being ν = 0.5 meaning that
the material is incompressible and ν = 0 where stretching the solid doesn’t cause any
lateral deformation. Some metamaterials can even have negative Poisson ratio meaning
that stretching the specimen in a specific direction causes a lateral expansion. Also in
this case, three different Poisson’s ratios define an orthotropic material.

1.1.2. Wood as an orthotropic material

As mentioned earlier wood is considered an orthotropic material. Its orthotropic nature
is due to the grain growing in a specific direction and to the formation of growth rings.
Because of this, one can define a set of three mutually perpendicular directions, each with
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different mechanical properties.

Figure 1.1: Main orthotropic directions and planes in wood [27].

The axis parallel to the direction of the grain is called the longitudinal direction L.
Generally, this is the direction with highest stiffness due to the fibers being all parallel to
this axis. The axis perpendicular to the longitudinal one and normal to the growth rings
is the radial direction R. The last axis is still perpendicular to the longitudinal one but
tangent to the growth rings. It is called the tangential axis T. Figure 1.1 is taken from
[27] and does an excellent job illustrating the main axis of a wooden piece.

From this point onward we will use the subscripts L, R, and T to refer to the Longitudinal,
Radial and Tangential directions respectively.

1.2. Modal analysis

When it comes to studying the dynamical characteristics of a structure, modal analysis is
a very powerful tool. With it, it is possible to determine the natural frequencies, damping
factors and mode shapes of a system, and use them to formulate a mathematical model for
its dynamic behaviour [28]. This is particularly interesting when designing soundboards
for musical instruments as they are the main protagonist in terms of sound radiation. For
that reason, particular attention is given to tuning the soundboard in order to emphasize
specific frequencies and make the resulting sound more pleasing.

Musical instrument makers are known to consistently use modal analysis not only for
tuning the soundboard but also in the process of selecting a good wood sample. They



1| Background 11

do it by using the tap tones method [29], which consists in holding the plate of wood
between forefinger and thumb at a node location for the inspected mode, and tap with
a knuckle or other finger at the location of an anti-node. This method require a lot of
expertise and knowledge about the mode shapes to be able to estimate the position of
nodes and anti-nodes of a particular mode shape, as well as a tuner or a well trained ear
to identify the frequency of that particular mode.

Another more popular and precise way to perform modal analysis is by using Chladni
patterns [30]. This method involves scattering small particles such as sand or salt on
a thin plate, and by exciting said plate at specific frequencies called eigenfrequencies,
the plate will start to vibrate in a determined way forming what we call a mode shape.
The excitation of the plate can happen in various ways, one of the most used ones is by
placing a sound source under it and play a pure tone sweeping the inspected frequency
range, and stopping when the particles start reacting strongly to the vibration as this is
an indicator that a resonance point has been reached. The particles will then accumulate
on the nodal lines of vibration which are regions of the plate that don’t vibrate at that
particular frequency. An example of this process can be observed in Figure 1.2 where
Chaldni patterns are used to verify the frequency mode shapes of an assembled guitar top
plate [31].

Figure 1.2: Modal analysis of a guitar top plate using Chladni patterns [31].
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The most accurate way of performing modal analysis is by calculating or measuring the
Frequency Response Function (FRF) of the system. This function, also called transfer
function, is defined as the ratio of the output to the input of a linear time invariant system
where the input is a known excitation force, and the output can be either the displacement,
velocity or acceleration in another point. The FRF can be obtained in multiple ways:

• Analytically, with knowledge of the equation of motion of the system as well as
its mass, stiffness and damping parameters.

• Experimentally, by measuring the response of the system in one point after excit-
ing it with a known input applied on another point. From this information we can
extract the transfer function of the system although it can be a very time consuming
process to acquire this data for a large quantity of points on the measured object.

• Numerically, by applying the Finite Element Method (FEM) that will be discussed
in Section 1.4.

This last method will be the preferred one as it allows fast and precise computation
the eigenfrequencies and mode shapes of a system which will be crucial in analyzing the
behavior of a set of reference metamaterial plates and finding the material parameters of
the equivalent solid plates that match the same eigenfrequencies and mode shapes as we
will see in Chapter 2.

1.3. Material parameter identification and Calder-

smith formulas

The identification of material parameters often requires tensile tests of a sample of the
material to be investigated. By applying a slowly varying known stress in a specific direc-
tion, and measuring the strain in the others, one can easily measure the elastic properties
of a material using the relations described in Section 1.1.1. The main problem with this
method is that it needs to be repeated for each principal direction for an orthotropic
material and more importantly, it involves the destruction of the used samples. For a
natural material such as wood, the properties can vary easily between samples because
of imperfections of the grain and growth rings. Because of this, although slightly less
accurate, non-destructive methods are often used to determine the material properties of
samples.

In the particular case of thin rectangular wooden plates, various studies in the literature
have shown that it is possible to get a good approximation of the main elastic properties
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from their vibrational qualities [24, 32]. More precisely, for a thin rectangular wooden
plate with sides of length a and b, thickness h and density ρ, we can estimate the value
of the longitudinal and radial Young’s moduli EL and ER, as well as the longitudinal to
radial Shear modulus GLR as:



EL = 12×
0.08006 ρ a4 f 2

(0,2)

h2

ER = 12×
0.08006 ρ b4 f 2

(2,0)

h2

GLR = 3×
0.4053 ρ a2 b2 f 2

(1,1)

h2

(1.1)

Where f(0,2) is the frequency of the fundamental long grain bar mode, f(2,0) is the frequency
of the fundamental cross grain mode and f(1,1) i the frequency of the twisting mode. The
mode shapes of these modes can be observed and easily recognized from the Chladni
patterns in Figure 1.3.

Figure 1.3: Chaldni patterns of the vibrating modes needed to use Caldersmith’s formulas
[24].

It is worth pointing out that the coefficients in equations 1.1 are not always the same in the
literature. In fact, the ones reported in the equations are the ones derived by Caldersmith
but a different coefficient for GLR can be found in the paper by McIntyre and Woodhouse
[32] where they use a coefficient of 0.274 instead of 0.4053. The difference is probably due
to an approximation made for the twisting deformation employed to estimate GLR.

During our study, we will use the Caldersmith formulas with both coefficients to get an
approximation of the material parameters of our equivalent plates using as data the infor-
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mation we have about the reference metamaterial plates. By using numerical simulation
tools such as the FEM described in the next section, we will be able to compare the mode
shapes and eigenfrequencies of the reference plates and the equivalent plates obtained
with the Caldersmith formulas.

1.4. Finite Element Method

Many problems in physics are governed by partial differential equations that cannot be
solved analytically. Because of this, over time, various methods have been proposed to
simplify complex problems and approximate the solution through discretization. Some
examples include finite difference methods and variational methods [33]. To the best of
our knowledge, the most used numerical method to solve complex engineering problems
is currently the Finite Element Method (FEM) as it has been successfully applied to
multiples fields such as heat conduction, fluid dynamics, electric and magnetic fields [34],
and noticeably also in acoustics [35–37].

The basic idea of FEM is to discretize a continuous object into a sum of sub-spaces called
elements. These elements are often characterized by a simple geometry to reduce the
complexity of the problem and are always interconnected at specified joints called nodes.
At the end of this discretization process we obtain a mesh of the studied object which is
the sum of the elements and nodes defined before. We then use this mesh to compute
the solution of the problem at the nodes and use shape functions to get an approximated
solution inside each element.

As an example, let us examine the case of a 1D problem illustrated by [38]. We consider
a function u that could represent the wave equation in a string which is represented by
a partial differential equation. u can approximated with a function uh ≈ u using linear
combinations of basis functions according to the following expression:

uh =
∑
i

uiφi

Where φi are the basis functions and ui are the coefficients of the functions that approxi-
mate u with uh. Figure 1.4 illustrates this principle. Here, the linear basis functions have
a value of 1 at their respective nodes and 0 at other nodes. In this case, there are seven
elements along the portion of the x-axis, where the function u is defined (i.e., the length
of the string).
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Figure 1.4: The function u (solid blue line) is approximated with uh (dashed red line),
which is a linear combination of linear basis functions (φi is represented by the solid black
lines). The coefficients are denoted by u0 through u7 [38].

To summarize, the FEM process can be described in the following steps [39]:

• Establishing the governing equations of the problem and the boundary conditions

• Discretizing the domain

• Determining the algebraic element equations

• Assembling system global equations

• Imposing the boundary conditions of the problem

• Solving of the global equations

This is obviously an abridged explanation of how FEM works as explaining it in detail
would require a whole book [33]. More often than not, FEM is used through commercial
simulation softwares such as COMSOL that allow their user to use FEM models to solve
various physics related problems. In our study, we use that exact software to solve the
equations of motion of the studied wooden plates and extract from them information
about the mode shapes and eigenfrequencies.
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This chapter focuses on the methodological aspects involved in the work of this thesis.
The aim is to analyze multiple configurations of metamaterial patterns studying their
influence on the material parameters of a wooden plate. To achieve this, 3D geometries
of thin rectangular wooden boards with specific hole patterns are created to be used as
reference. In order to find out how various hole patterns affect the material parameters of
the board, an equivalent plate with the same length, width and height as the reference,
but no holes drilled in it, is considered. Finding the material parameters that make
the equivalent plate’s vibrational behavior comparable to that of the reference makes it
possible to get a good approximation of its effective material parameters.

The chapter is divided into different sections; Firstly, a detailed description of the differ-
ent reference and equivalent model geometries is given. Then, the two methods used for
the identification of their material parameters are discussed. The Caldersmith’s formulas
method is explained first, before analyzing the second one which relies on an optimization
of the material parameters through the minimization of an error function. More specif-
ically, the defined objective function and the metrics used to evaluate it are discussed,
paying attention also to the chosen optimization algorithm as well as the initial conditions
and boundaries of each parameter.

2.1. Reference plates

The definition of metamaterials as explained in the introduction is broad. In fact, creating
one from a wooden plate can be done in an infinite amount of ways. This thesis in
particular is based on the study done in [21], where the authors used patterns of elliptical
holes with various sizes, aspect ratios and orientations to observe their effect on the
material properties of a wooden plate. Our first objective is to take as reference a plate
with the same hole patterns as in the above mentioned article, recreating a model with
the same geometry, material parameters, physics and boundary conditions on COMSOL.
The plates in [21] are characterized by having holes all of the same dimensions. The
aim here is to go beyond these results and study configurations with heterogeneous hole
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dimensions in order to see how they behave compared to the homogeneous case.

2.1.1. Homogeneous configurations

The models used in this thesis are created using COMSOL’s built-in model builder which
allows the user to design 3D geometries of simulated objects, assign them the desired
material properties, and define the physics of the problem. Furthermore, the possibility
to run the FEM modal analysis simulations on COMSOL with no need to switch platforms
makes it the ideal choice of software for this study.

The wooden plates studied in [21] are thin rectangular boards cut along the tangential
direction. The main surface of the board is in the RL plane shown in Figure 1.1, with the
grain direction L being parallel to the longest side of the rectangle. The dimensions of
the board are those of a common cut used for guitar soundboard top plates: 0.6× 0.24×
0.0035 [m]. The method used in the article to make a metamaterial from that wooden
board is to perforate it at regular intervals with elliptical holes all of the same dimension.
This is achieved by dividing the plate in a set of identical square cells as can be seen in
Figure 2.1.

L 

R 

a 

b 

(b) (a) 

(a) Top view of the rectangular plate.L 

R 

a 

b 

(b) (a) 

(b) The unitary cell repeated in
the plate.

Figure 2.1: Geometry of the studied plate.

The cell’s sides length is L = 0.02 [m] and the elliptical hole drilled in it has its major axis
orientated in the longitudinal direction of the plate L. The aspect ratio of the ellipse is
x/y = 2.2, and the volume fraction of the hole with respect to the cell is Vh = 0.15. These
details have been carefully defined in the numerical model in order to recreate the same
plate studied in the aforementioned paper. This makes it possible to verify the validity of
the vibrational results obtained from the reference plate as well as using them as ground
truth for comparison with the equivalent plates.
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2.1.2. Heterogeneous configurations

While the effects of homogeneous hole size distributions on a wooden board have already
been studied in [21], the behaviour caused by the presence of various distributions of
holes sizes on the board has not yet been investigated. This could be an interesting
tool for example for guitar makers who wish to make some parts of their soundboards
lighter than others, or in the violin making process where the graduation of the plates
is of high relevance. In order to study how heterogeneous hole size distributions in the
metamaterial can affect the properties of the plate, let us consider a set of 22 plates, each
with a different configuration of hole dimensions but all having the same constant density.
Figure 2.2 shows 10 of these configurations.

(a) (b) 
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k = 10 
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Figure 2.2: Heterogeneous reference plate configurations for radial symmetry (a) and
longitudinal symmetry (b).



20 2| Methods

The set is divided into 2 groups with the objective to cover various distributions of hole
sizes along the plate. One group is made of plates whose hole dimensions are symmetric
with respect to the longitudinal direction, and the other contains plates whose hole di-
mensions have radial symmetry. In the group with longitudinal symmetry, the holes start
with a smaller radius near the edges of the plate parallel to the longitudinal directions
and grow bigger as they get close to the horizontal axis of symmetry. The same is true
considering the radial direction and the vertical axis of symmetry for the plates with ra-
dial symmetry. Considering an index k going from 0 to 10, the different configurations in
the same group consist in gradually inverting the hole dimensions while keeping the total
density of the plate constant until the holes with largest radius in configuration k = 0

become the smallest ones in configuration k = 10, and the opposite process happens to
the smallest holes. For configuration k = 5, all the holes are of same dimension making
it a special case of homogeneous configuration within the set. Considering the higher
number of configurations examined in this section, studying the effect of various shapes
for the holes would drastically increase the number of cases of study. Due to this, only
holes of circular shape will be considered for all configurations.

2.2. Equivalent plates

The role of the equivalent plates is to measure the elastic constants of the studied metama-
terials. While in the study of homogeneous metamaterials conducted in [21] their elastic
constants were approximated using the Caldersmith formulas, the objective here is to try
to understand the behaviour of the metamaterials through the study of equivalent solid
plates since they are what is commonly used and well understood by instrument makers.
The effective material parameters of the equivalent plates are found by searching for the
parameters that make the equivalent plate’s eigenfrequencies and mode shapes as similar
as possible to that of its corresponding reference plate. These parameters can then be
analyzed to understand the effect various hole patterns can have on a wooden board.
This section goes through multiple models of equivalent plates created with the aim of
improving the accuracy with which the vibrational behaviour of the reference plates is
reproduced.

2.2.1. Homogeneous model

The first equivalent model considered is also the simplest one. It consists in a solid rep-
resentation of the reference plate. In fact, as can be seen in Figure 2.3, it is a solid
rectangular thin plate with the same dimensions as the reference. Although its material
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L R 

T 

Figure 2.3: 3D representation of the homogeneous equivalent plate model. Its dimensions
are the same as the reference plate i.e. 0.6× 0.24× 0.0035 [m].

parameters will be different to take into account the effect of the metamaterial, its struc-
ture is still defined as orthotropic with the longitudinal direction being parallel to the
longest side of the plate. As will be demonstrated in the Results chapter, this equivalent
plate may work well in the case of homogeneous configurations of hole sizes, but its con-
stant density makes it difficult to capture the uneven mass distribution caused but the
heterogeneous hole sizes configurations.

2.2.2. Variable thickness model

In order to take into account the different mass distribution on the reference plates with
heterogeneous configurations, let us consider as well a model of the equivalent plate where
the thickness of the plate is calculated to reflect the equivalent mass of the reference plate
at that point. As previously seen in Figure 2.1, the metamaterial is divided in cells. And
in the case of our heterogeneous configurations, it can be seen in Figure 2.2 that the cells
are all identical in the direction of the considered axis of symmetry. Because of this, it is
possible to define a constant thickness profile for each given configuration to match the
effective mass of each cell as in Figure 2.4.

The equivalent thickness is calculated on the red dots which correspond to the center of
the unitary cells delimited in Figure 2.4 by thin dotted lines. The only exception being
the first dot which is needed to define the thickness at the boundary. The thickness
is calculated so that the mass of the equivalent plate’s solid cell matches that of the
reference plate’s considered cell. Mathematically, the mass of the equivalent plate’s cell is
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R 

T 

Figure 2.4: Profile section in the TR plane of the variable thickness equivalent plate of
longitudinal configuration k = 0. The red dots correspond to the calculated points used
to interpolate the thickness of the equivalent plate. At 0.12 m is the axis of symmetry of
the plate.

approximated as the density of the plate multiplied by the volume of the equivalent cell.
The curvature of the profile can be neglected in this calculation by taking the value of
the thickness at the center of the cell. This translates into the following relation:

ρ× heq × l2 = ρ× href × (l2 − πR2)

heq = href

(
1− πR2

l2

) (2.1)

(2.2)

Where ρ is the density of the plate, heq and href are the thickness of the equivalent and
reference cells respectively, l is the length of the side of the cells, and R is the radius of
the hole in the considered cell of the reference plate. The thickness profile is then drawn
using an interpolation curve connecting all the calculated points.

2.2.3. Variable density model

Another way to tackle the problem of varying mass in the reference plate is that of using a
variable density in the equivalent plate rather than a variable thickness. This method has
the advantage of preserving the original dimensions of the reference plate varying only the
material parameters of the equivalent plate. Two different density models are considered
in this section. In the first one, the equivalent density of each file (i) of cells is calculated
according to the volume fraction of its hole size. That density is the attributed to the
whole file using a similar formula to the one used for the variable thickness equivalent
plates:

ρeq(i) = ρref

(
1− πR(i)2

l2

)
(2.3)

The result is a piece-wise constant variation of the density along the profile of the plate
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as can be observed in Figure 2.5.

In the second one, the density is made to vary linearly inside the plate with a slope and
intercept that can be modified and optimized to better match the mass distribution of
the reference plate. The equivalent density is approximated by a simple linear function:

ρeq(x) = dx+ ρ0 (2.4)

Where d is the slope, ρ0 the intercept, and x is the position along the radial direction if we
consider a longitudinal symmetry reference plate, or the position along the longitudinal
direction in the opposite case.

Figure 2.5: (a) Reference plate in longitudinal configuration k = 0. (b) Piece-wise con-
stant density equivalent model. Each file is given the exact equivalent density of the
corresponding section of the reference model. (b) Linearly varying density equivalent
model. The slope and intercept can be freely modified through optimization.
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2.3. Finding the equivalent material parameters

As mentioned in Chapter 1, Wood is an orthogonal material and is characterized by
nine different elastic parameters as well as its density. Making for ten different and
independent parameters that need to be defined. For the reference plates, the considered
material parameters are those of Engelman Spruce which was used also in [21]. It is a
species of wood often used for soundboards because of its high stiffness and low density.
Its material parameters can be taken from the wood handbook [26] which defines the
stiffness and shear moduli of various species of wood as well as their Poisson ratios. In
particular, the Poisson ratios, density and longitudinal stiffness are listed with a constant
value while the other parameters are all given as a ratio to the longitudinal stiffness which
can be useful to calculate other material parameters starting from the value of EL. The
ratios from the Wood Handbook as well as the final material properties of the reference
plate are listed in Table 2.1.

Material Wood Handbook Reference
properties data plate
ρ [Kg/m3] 385 385
EL [GPa] 8.90 8.90
ER [GPa] 0.128 EL 1.14
ET [GPa] 0.059 EL 0.525
GLR [GPa] 0.124 EL 1.10
GLT [GPa] 0.120 EL 1.07
GRT [GPa] 0.010 EL 0.089

νLR 0.422 0.422
νLT 0.462 0.462
νRT 0.530 0.530

Table 2.1: Material properties of Engelman Spruce.

For the equivalent plates, two different methods are used to calculate the equivalent mate-
rial parameters and compare their effectiveness in approximating the vibrational behavior
of the considered reference plate. The first method consists in applying Caldersmith’s for-
mulas using equations 1.1 to calculate EL, ER, and GLR, and then use the proportionality
coefficients from the wood handbook to calculate the remaining parameters as a function
of EL. This method however doesn’t offer a way to calculate the variation of the Poisson
ratios of the equivalent plate since they don’t depend directly on EL. The second method
relies on optimization of the material parameters to minimize the differences in vibrational
properties of the plates and will be explained in detail in the next section.
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2.3.1. FEMU optimization and objective function

The optimization of the material parameters of the equivalent plates is implemented on
Python using the mph library [40] which allows one to control COMSOL models through
it. This brings a lot of flexibility to the optimization process, making it possible to use any
optimization algorithm from well known Python libraries, designing a specific objective
function, as well as automatizing the whole optimization process.

In particular, the optimization relies on the Finite Element Model Updating method
(FEMU). This method, employed in many engineering applications that use a finite el-
ement model, aims to calibrate a numerical model based on the actual behavior of a
reference structure determined as a part of static and/or dynamic testing of the struc-
ture [41]. In this context, it can be applied to calibrate the material parameters of the
equivalent plate based on the vibrational behavior of the reference plate. This is done
by altering the material parameters of the equivalent plate’s numerical model in order
to minimize the differences in eigenfrequencies and mode shapes between the two plates.
These differences are measured by an objective function L that evaluates these differences
using a least squares method. A scheme of this process is summarized in the diagram of
Figure 2.6.

First, the target eigenfrequencies and mode shapes of the reference plate are computed
numerically on COMSOL using a physics controlled fine mesh and free boundary con-
ditions. Then, initial material parameters are defined for the equivalent plate, and the
resulting eigenfrequencies and mode shapes are computed with the same conditions. The
results of the reference and equivalent plates are then imported on Python, compared
through the objective function, and new material parameters are generated according to
the chosen optimization algorithm. These parameters are then sent to the equivalent
plate’s model on COMSOL and the process is repeated until convergence of the following
objective function is reached.

L =

√√√√∑
i

(
fR
i − fEq

i

fR
i

)2

+ α

√∑
i

(1−MACii)
2 (2.5)

Since it is important to minimize both the differences in eigenfrequencies and in mode
shapes to replicate the behavior of the reference plates, the objective function L has
two components that are summed and weighted by a coefficient α. The first component
measures the error in eigenfrequencies where fR

i and fEq
i are the ith eigenfrequency of

the reference and equivalent plate respectively. The second component evaluates the
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Figure 2.6: FEMU diagram of the optimization of the equivalent plate’s material param-
eters.

error in the modeshapes using the Modal Assurance Criterion commonly called MAC.
This criterion is a statistical indicator of the degree of consistency between modeshapes
[42, 43] and it takes the form of an (r × q) matrix.

MACr,q =
|{φA}Tr {φX}q|2

({φA}Tr {φA}r)
(
{φX}Tq {φX}q

)
Where {φA}r is the rth mode of the reference modal vector, and {φX}q is the qth mode of
the equivalent modal vector. This least squares based form of linear regression analysis
yields an indicator that is most sensitive to the larger difference between comparative
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values, and results in a modal assurance criterion that is relatively insensitive to small
changes or small magnitudes. The MAC value can range between 0 to 1, with 1 indicating
maximum coherence and 0 indicating completely uncorrelated modeshapes. Figure 2.7a
provides an example of an ideal MAC, with values close to 1 along the diagonal, and 0
elsewhere, meaning the reference and equivalent modeshapes would match perfectly.

(a) No mode switch (b) Mode switch

Figure 2.7: Two examples of MACs with good correspondence between the first ten mode
shapes. The first one presents no mode switches while the second has a mode switch
between modes 3 and 4.

When changing the material parameters of an object, the frequency at which each mode of
vibration happens is modified unpredictably. Sometimes two modes can have frequencies
that are very close together and a modification of the material parameters can cause the
order of these modes to be switched in frequency. This phenomenon is called a mode
switch. Since the eigenfrequencies and mode shapes exported from COMSOL are always
ordered from lowest to highest in frequency, and not by mode, an important part of the
optimization script consists in keeping track of eventual mode switches in the equivalent
plates in order to compare the correct frequencies in the computation of the objective
function. Mode switch tracking is made easy by utilizing the MAC. In fact, as can be
observed in Figure 2.7b, a mode switch is easily recognizable in the MAC by the presence
of two consecutive values close to 0 in the diagonal, accompanied by two values close to 1
on adjacent off-diagonal cells. This check is done before every evaluation of the objective
function and the order of the eigenfrequencies is rearranged accordingly if a mode switch
is detected.
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2.3.2. Optimization algorithm

The next part of the optimization process regards the choice of optimization algorithm
to utilize for the minimization of the designed objective function. Python offers many
options from its libraries but for the minimization of a gradient less function such as L,
the best choices of algorithms are Nedler-Mead [44] which uses the Simplex algorithm,
and Powell’s algorithm [45], both from the Scipy library. These two algorithms are not
as fast as others which require a gradient of the objective function but they are robust in
many applications and can work for the optimization of more than one parameter. Both
algorithms have been tested and in the end Nedler-Mead proved to be more efficient for
this objective function.

As with many optimization problems, the algorithm can get stuck on a local minima of
the objective function and not find the absolute minimum. This is especially true for
compound objective functions that have more the one component which is the case with
L since it aims to minimize both the difference in eigenfrequencies and in mode shapes.
This problem is even more accentuated by increasing the number of parameters that need
to be optimized which increases the dimensionality of the problem. To improve this aspect
of the optimizations, multiple measures can be taken.

First of all, starting with a good initial guess of the material parameters can help drive
the minimization algorithm in the right direction. A first idea could be to start with
the material parameters of the reference plate but there are better options. In fact, the
Caldersmith formulas can be very helpful for this as they provide already an approximation
of the material parameters of the equivalent plate. Another idea could be to use the
proportionality coefficients of the Wood Handbook, run a preliminary grid search focused
only on finding the optimal value of EL, and calculating the remaining parameters using
said coefficients. This is however a time consuming process which does not particularly
improve the results of efficiency of the optimization. Furthermore, the proportionality
coefficients do not affect the Poisson ratios meaning their initial guess would not be
improved. Because of this, the best initial guess of the material parameters is the one
obtained from the Caldersmith formulas.

Another aspect to consider is the definition of boundaries for each parameter that needs to
be optimized. Table 2.2 shows the boundaries that have been chosen for the optimization.
These boundaries have been selected following an empirical approach, trying different
options and choosing the one giving the best results. As can be seen from the table, the
restrictions on the parameters are weak for most parameters. Even though it may seem
better to restrict the area of research of the parameters to a reasonable range, various
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optimization attempts suggest that the algorithm performs better leaving most parameters
unrestricted, unless they physically must be within a small range which is the case of the
density which cannot be negative, or the Poisson ratios that need to be between 0 and 1.
A discussion can be raised about the possibility of having a negative Poisson ratio but it
will be addressed in the next chapter. The stiffness and shear moduli parameters on the
other hand start with such a high value, which is in the order of Giga-Pascals, that no
restrictions are needed for them.

Material Minumum Maximum
properties boundary boundary
ρ [Kg/m3] 0 None
EL [GPa] None None
ER [GPa] None None
ET [GPa] None None
GLR [GPa] None None
GLT [GPa] None None
GRT [GPa] None None

νLR 0 1
νLT 0 1
νRT 0 1

Table 2.2: Imposed boundaries for the optimization of material parameters.

Finally, some considerations can be made as well about the number of parameters to be
optimized. In fact, reducing the number of parameters in the optimization would not only
reduce the dimensionality of the problem but also decrease the optimization times. There
are methods such as the sensitivity method [46] that aim to find a correlation between
the optimization parameters in order reduce their number and simplify the initial prob-
lem. This is particularly useful for FEMU problems that tackle complex structures with
either a high number of parameters or detailed geometries that require a finer mesh and
high computational power for the FEM simulations. In these cases where the numerical
simulation alone can take hours, reducing the number of parameters is crucial. Since
the geometries of the equivalent plates are simple and can be approximated with good
accuracy with coarser meshes, each step of the optimization loop takes only a few second,
and thus an order reduction with the sensitivity method was not necessary.

2.3.3. Definition of i and α in the objective function

The last two parameters to calibrate in the objective function of Equation 2.5 are α which
controls the weight of the MAC error in the optimization, and i which is the maximum
number of eigenfrequencies to consider during the optimization. To find the best value
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for these parameters, a trial and error approach is used considering the optimization of
the material parameters of the equivalent plate with longitudinal configuration k = 10.
This is one of the most heterogeneous configurations in Figure 2.2 and as will seen in the
Results chapter, it is also one of the hardest configurations to optimize. This particular
configuration is used to try the optimization with different values of i and α in order to
find their optimal value.

Figure 2.8: Eigenfrequency error between the reference and equivalent models of longitu-
dinal configuration k = 10 for different values of α.

Starting with the study of α, Figures 2.8 and 2.9 show the error in the eigenfrequencies
and the MAC of the considered equivalent plate for different values of α. In particular,
four cases are considered for α being equal to 0.01, 0.05, 0.1, and 1. It is clear that
increasing the value of α improves the mode shapes accuracy but increases also the error
in the eigenfrequencies of the equivalent plate. A sweet spot can be found nonetheless
since only a low value of α is required to improve the MAC as can be seen from Figure 2.9.
It can also be observed that lowering the value of α below 0.1 doesn’t bring a particularly
worthwhile improvement in the accuracy of the eigenfrequencies. Because of that, during
all of the subsequent optimizations α will be set at 0.1.

Let us now focus on the identification of the best value for i. The same reference plate
configuration is considered, studying this time the first 37 eigenfrequencies and mode
shapes which cover the frequency range from 1 Hz up to 1000 Hz to see the effect of i on
the higher eigenfrequencies of the plate. Four optimizations of the equivalent plates are ran
with i being equal to 10, 15, 20 and 37. Figure 2.10 shows the error in the eigenfrequencies



2| Methods 31

1 2 3 4 5 6 7 8 9 10
Equivalent plate modes

1

2

3

4

5

6

7

8

9

10

Re
fe

re
nc

e 
pl

at
e 

m
od

es

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) α = 0.01.
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(b) α = 0.05.
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(c) α = 0.1.
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(d) α = 1.

Figure 2.9: MAC for the equivalent plate of longitudinal configuration k = 10 for different
values of α.

for each value of i. It is clear that if not enough modes are considered in the objective
function, the accuracy of the eigenfrequencies can be good at lower frequencies, but the
error increases very fast at higher frequencies. It can be seen as well that the accuracy
doesn’t improve as much for values of i higher than 20. Suggesting that i = 20 might be
a good compromise between accuracy and computational resources.
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Figure 2.10: Eigenfrequency error between the reference and equivalent models of longi-
tudinal configuration k = 10 for different values of i. The vertical lines indicate the last
mode considered for each value of i.

Taking a look at the MAC in the cases of i = 20 and i = 37 in Figure 2.11, it can also be
noticed that the mode shapes accuracy at higher frequency does not improve particularly
when increasing the value of i from 20 to 37. On the contrary, having a lower value of
i brings improvements in the MAC at lower frequencies as can be seen from modes 10,
11 and 12 which are more precise for i = 20 than i = 37. The value of i used during all
optimizations will thus be 20.
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(a) Considering the first 20 modes for the optimization.
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(b) Considering the first 37 modes for the optimization.

Figure 2.11: MAC for the equivalent plate of longitudinal configuration k = 10 for different
values of i.
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The aim of this chapter is to analyze the effects that homogeneous and heterogeneous
metamaterial configurations can have on a wooden board. First, the previously described
equivalent plate models are used to find out which one can better recreate the vibrational
behaviour of the reference for both homogeneous and heterogeneous hole dimension con-
figurations. A comparison is then made to assess the effectiveness of the Caldersmith
formulas in the approximation of the elastic constants of the reference plates for hetero-
geneous metamaterials. Subsequently, the mechanical behaviour of the equivalent plates
is analyzed though the application of a static load and compared to that of the reference.
A tensile test is carried out as well to investigate the possibility of having a negative
Poisson ratio with the most heterogeneous configurations. Finally, the effective material
parameters of the equivalent plates are obtained and discussed.

3.1. Equivalent plate of homogeneous hole patterns

Let us consider first the case of the homogeneous hole configuration of the reference plate
drawn in Figure 2.1. As mentioned in Section 2.3, its material parameters are those of
Engelman Spruce taken from the Wood Handbook [26] which are reported in Table 3.1 for
convenience. By performing an eigenfrequency study on COMSOL, the mode shapes and
eigenfrequencies of this reference plate can be obtained. An extra fine mesh is used when
running simulations on the reference plates in order to get results that are as accurate
as possible. The first ten mode shapes and eigenfrequencies of the plates which can be
observed in Table 3.2 and Figure 3.1. Our aim is to find an adequate equivalent plate
that fits these results as well as possible.
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Material Reference
properties plate
ρ [Kg/m3] 385
EL [GPa] 8.90
ER [GPa] 1.14
ET [GPa] 0.525
GLR [GPa] 1.10
GLT [GPa] 1.07
GRT [GPa] 0.089

νLR 0.422
νLT 0.462
νRT 0.530

Table 3.1: Material properties of Engel-
man Spruce

Mode Frequency
number [Hz]

1 40.0
2 45.7
3 91.6
4 92.6
5 119.5
6 128.5
7 173.6
8 190.8
9 248.4
10 250.8

Table 3.2: First 10 eigenfrequencies of
the reference plate

(1) (2) (3) (4) (5) 

(6) (7) (8) (9) (10) 

(1) (2) (3) (4) (5) 

(6) (7) (8) (9) (10) 

Figure 3.1: First 10 modeshapes of the reference plate. The plots show the displacement
for each mode with the nodal lines represented in blue and the points of maximum dis-
placement showcased in red.

In the case of homogeneous hole size distributions, since the density is constant, only
the homogeneous model of equivalent plate described in section 2.2.1 is considered. Its
material parameters are modified in order to approximate as well as possible the behaviour
of the reference plate in terms of modeshapes, eigenfrequencies, and mechanical properties.

We will study first the equivalent plates obtained using the Caldersmith formula approx-
imation, considering the different values of the coefficient used to calculate GLR which
are found in literature, and then compare these results with those obtained from the
optimization of material parameters.

A first approximation of the material properties of the equivalent plate is obtained through
the use of the Caldersmith formulas showcased in section 1.3. In fact, they can be used
to approximate the value of the longitudinal and radial Young’s moduli EL and ER, and
the shear Young modulus GLR thanks to equations 1.1 which are reported below. The
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remaining material parameters can be approximated using the empirical proportionality
coefficients between EL and the other parameters listed in Table 2.1.



EL = 12×
0.08006 ρeq a

4 f 2
(0,2)

h2

ER = 12×
0.08006 ρeq b

4 f 2
(2,0)

h2

GLR = 3×
0.4053 ρeq a

2 b2 f 2
(1,1)

h2

In these equations, a and b are the length of the plate along the longitudinal and radial
directions respectively, and h is the thickness of the plate. f11, f02 and f20 are the
frequencies of the respective modes of the reference plate which can be identified to be
respectively modes (1), (2), and (3) from Figure 3.1. Finally, the equivalent density is
calculated as:

ρeq = ρref (1− Vh)

Where Vh is the ratio of the volume of the holes with respect to the unit cell and ρref is
the density of the reference plate.

As previously mentioned in the Background chapter, the expression of GLR can be found
with different constants in different research papers. In fact, a coefficient of 0.274 is used
by McIntyre in [32] while a coefficient of 0.4053 is used by Caldersmith in [24]. A third
possibility is also that of using the proportionality coefficient from the Wood Handbook
where GLR is equal to 0.124×EL. To find out which coefficient is the better approximation
for the equivalent plate, an eigenfrequency study on COMSOL is performed calculating
the material parameters as in equations 3.1, substituting the value of GLR with each of the
three possible options. In particular, the eigenfrequency study is set in the frequency range
from 1Hz to 1000Hz which is the typical range of interest when studying soundboards.
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EL = 12× 0.08006 ρeq a
4 f 2

02

h2

ER = 12× 0.08006 ρeq b
4 f 2

20

h2

ET = 0.059 EL

GLR = X

GLT = 0.120 EL

GRT = 0.010 EL

νLR = 0.422

νLT = 0.462

νRT = 0.530

(3.1)

Figure 3.2 shows the error in the frequencies of the first ten modes of the equivalent
plate for all three values of Glr as well as an optimized plate which will be commented
further below. It can be seen from the plot that the error is lowest when using McIntyre’s
coefficient. But looking at the MAC plots in Figure 3.3 a few mode switches can be
noticed in McIntyre’s MAC while the one using the proportionality coefficient is much
more accurate. Since the error in the frequencies for the latter coefficient is not much
higher than McIntyre’s, using the proportionality coefficient from the Wood Handbook
will be the preferred way to calculate the value of Glr for the equivalent plates. The
material parameters obtained for the equivalent plate through this method are listed in
Table 3.3 to be compared with those of the reference plate.

Material Reference Caldersmith’s Optimized
properties plate equivalent plate equivalent plate
ρ [Kg/m3] 385 327.25 356.08
EL [Pa] 8.90 E9 6.95 E9 7.50 E9
ER [Pa] 1.14 E9 7.30 E8 7.49 E8
ET [Pa] 5.25 E8 4.10 E8 6.39 E8
GLR [Pa] 1.10 E9 8.61 E8 9.04 E8
GLT [Pa] 1.07 E9 8.34 E8 2.93 E8
GRT [Pa] 8.90 E7 6.95 E7 4.48 E7

νLR 0.422 0.422 0.358
νLT 0.462 0.462 0.436
νRT 0.530 0.530 0.715

Table 3.3: Material properties of the reference and equivalent plates

As expected, the stiffness and shear moduli of the equivalent plate are lower than those
of the reference plate to compensate for the removal of mass caused by the holes. Figures
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3.2 and 3.3 demonstrate that even without optimization, The equivalent plate obtained
through the use of Caldersmith’s formulas gives a good approximation of the reference
plate. In fact, even considering the whole range up to 1000 Hz which covers the first
37 eigenfrequencies, the mean error in the estimation of the eigenfrequencies is of 2.9%
and the correspondence of the modeshapes observed in Figure 3.3c is near perfect up to
the 30th mode. This is a confirmation that the Caldersmith formulas are effective also on
wooden metamaterials with homogeneous hole dimensions.

Figure 3.2: Comparison of the error in the first ten eigenfrequencies of the equivalent
plates with respect to the reference plate. The first three equivalent plates have the same
material parameters except for GLR which is different depending on the used coefficient.
For the last one, all of the material parameters are obtained through optimization.

The accuracy of the frequencies and modeshapes of the equivalent plate can however be
further improved by optimizing the material parameters using the method described in
2.3. By optimizing the material parameters for the first 20 frequencies and modeshapes of
the equivalent plate the mean error in the frequencies is reduced to 0.3%. Additionally, the
MAC in Figure 3.3d is near perfect with only two mode switches at the higher frequencies.
The material parameters of the equivalent plate obtained through the optimization are
also listed in Table 3.3. With respect to the material parameters obtained through the
Caldersmith formulas, the variations in the optimized material parameters compared to
those of the reference can go from 3% up to 50% but the stiffness and shear moduli still



40 3| Results

tend to be lower than those of the reference plate.

(a) Caldersmith’s Glr coefficient. (b) McIntyre’s Glr coefficient.

(c) Wood Handbook’s Glr proportionality co-
efficient.

(d) Optimized material parameters.

Figure 3.3: MAC for the different equivalent plates.

These results indicate that while the Caldersmith formulas can work relatively well in the
case of homogeneous configuration the optimization can accurately approximate the ma-
terial parameters of an equivalent plate with the same eigenfrequencies and modeshapes
as the reference up to 1000 [Hz]. However, because of the multi-dimensionality of the
problem, the obtained parameters are only one of the possible combinations of material
parameters that allow the equivalent plate to behave like the reference. Other combi-
nations could be found using different initial material parameters for the optimization.
Nonetheless, the obtained parameters can still be considered a good approximation of the
effective material parameters of the reference plate.
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3.2. Equivalent plates of heterogeneous hole patterns

This section focuses on the study of the 22 heterogeneous configurations described in Fig-
ure 2.2. The objective is to first verify the accuracy of the Caldersmith formulas when
the density is no longer uniformly distributed on the plate. After that, the optimization
algorithm is used on the different equivalent plate models described in section 2.2 in order
to find the most accurate approximation of the effective material parameters of the refer-
ence plate. Initially, only the error in the eigenfrequencies and modeshapes is considered
for each equivalent plate paying no heed to the obtained material parameters since they
might not be precise. Once an accurate equivalent plate model has been found, the ob-
tained material parameters will be analyzed trying to effectively find a correlation between
different configurations of metamaterials and their effect on the mechanical propertied of
the wooden board.

3.2.1. Caldersmith’s equivalent plates

First, as with the homogeneous configuration’s case, the eigenfrequencies and modeshapes
of each reference plate are computed and stored in order to be used as ground truth
value for the calculation of the error in the eigenfrequencies and MAC of each considered
equivalent plate model. Then, using the homogeneous density equivalent plate model,
the eigenfrequencies and modeshapes of each heterogeneous configuration are computed
using the material parameters obtained from the application of the Caldersmith formulas
following the same approach as in the previous section. Figure 3.4 shows the mean and
standard deviation of the relative error of the computed eigenfrequencies with respect
to the reference for each mode over all 11 configurations k. The longitudinal symmetry
configurations are separated from the radial symmetry ones for comparison clarity.

It is evident that the standard deviation is pretty large for most modes when using the
Caldersmith method, especially for the configurations with radial symmetry. The only
exceptions are the second and fourth mode which correspond to modes (0, 2) and (2, 0).
These are the modes used in the Caldersmith formulas in Equation 3.1 to tune the plate to
these frequencies and indeed the standard deviation as well the mean error are particularly
low for these two modes. This shows that Caldersmith’s formulas are very precise in tuning
the wooden boards at these specific frequencies but are not as effective for the remaining
frequencies in the case of heterogeneous hole dimensions in the metamaterial. Another
observation that can be made from this figure is that configurations with radial symmetry
have a higher error with respect to the ones with longitudinal symmetry. Perhaps because
having a varying distribution of hole dimensions along the longest side of the plate has a
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greater effect on its material parameters.

Figure 3.4: Mean and standard deviation of the eigenfrequencies error. A comparison
between the longitudinal and radial symmetry configuration equivalent plates obtained
via the Caldersmith method.
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Figure 3.5: Mean error of the first 10 eigenfrequencies calculated for each configuration
for both radial and longitudinal symmetry cases.



3| Results 43

In Figure 3.5, the mean error computed over the first 10 eigenfrequencies is plotted for
each configuration k. Here, remembering that configurations 0 and 10 are the most
heterogeneous in terms of hole dimensions while configuration 5 corresponds to the ho-
mogeneous case, it is clear that the approximation of the material parameters given by
the Caldersmith formulas works best for more homogeneous configurations, but cannot
be considered accurate for heterogeneous distributions of the mass on the plate. Again,
it is evident that radial symmetry configurations have a higher error than the ones with
longitudinal symmetry.

Taking a closer look at the error in the eigenfrequencies for each different configuration in
radial symmetry, Figure 3.6 reveals that the minimum error is reached for configuration 5.
On the other hand, the error gets gradually higher while getting closer to configurations
0 and 10 with an error going as high as 16% for the ninth mode of configuration k = 10.
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Mode
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k=0
0<k<5
k=5
5<k<10
k=10

Figure 3.6: Frequencies error of all radial configurations for the first 10 modes. The error
is at its minimum for the homogeneous configuration k = 5.

This discrepancy in the accuracy of the equivalent plates can be observed also examining
the MAC of these configurations. Figure 3.7 shows the mean MAC of the first 10 modes
computed over all radial and longitudinal configurations separately. In general, there is
a good correspondence of the modeshapes in both cases. The least accurate matching
happening for modes 5, 6 and 10 in radial configurations.
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(a) Longitudinal configurations.
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(b) Radial configurations.

Figure 3.7: Mean MAC of all configurations for longitudinal and radial symmetry.

1 2 3 4 5 6 7 8 9 10
Equivalent plate modes

1

2

3

4

5

6

7

8

9

10

Re
fe

re
nc

e 
pl

at
e 

m
od

es

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) k = 0.
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(b) k = 5.
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(c) k = 10.

Figure 3.8: Mac of configurations 0, 5 and 10 with radial symmetry.
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More specifically, by analyzing the MAC of each single configuration it can be noticed that
the error is more pronounced in the most heterogeneous configurations. In fact, Figure
3.8 shows that while the MAC is very accurate for configuration k = 5, configuration 0
reveals an inconsistency with mode 10 while configuration 10 shows some confusion with
modes 5 and 6.

Figure 3.9 shows these last two modes for both the reference and equivalent plate for
radial configuration k = 10. It can be seen that while the represented modes are still
recognizable in both plates as mode (0,3) for mode 5 and mode (2,1) for mode 6, the
nodal lines further from the radial axis of symmetry of the plate are slightly bent. A
similar effect is observed for mode 10 as well.

Figure 3.9: Displacement plots for modes 5 on the left hand side, and 6 on the right hand
side. On the top side is reference plate in configuration k = 10 with radial symmetry, and
on the bottom side is its equivalent plate.

3.2.2. Influence of Poisson’s ratio on the modeshapes

Before moving on to the study of the optimized equivalent plate, let us investigate the
cause behind the bending of nodal lines in some modes. Considering the equivalent plate
obtained in the previous section for radial configuration k = 10, multiple simulations are
ran on COMSOL keeping all material parameters fixed except for one. This free parameter
is made to vary between a selected range in order to verify its effect on mode shapes 5
and 6. Repeating this process for all the material parameters of the equivalent plate, it
can be found that the bending of nodal lines is caused mainly by the Poisson ratio vLR.
In fact, making this coefficient vary from -1 to 1 can produce a range of variation in the
mode shapes, especially in the range between - 0.5 and 0.5 as can be seen from Figure
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3.10.

Mode 5 

νLR = -0.5 

Mode 6 

νLR = -0.2 

νLR = 0 

νLR = 0.2 

νLR = 0.5 

Figure 3.10: Variation of modeshapes 5 and 6 for radial configuration k = 10 for different
values of vLR while keeping the remaining material parameters constant.

As mentioned previously, only the nodal lines outside from the central radial axis of
symmetry of the plate are affected by the bending. Another observation to be made is
that the conventional shape of modes (0,3) and (2,1) are obtained for vLR = 0. Variations
of the coefficient in positive or negative directions cause the bending of the nodal line in
opposite directions. This effect is much less pronounced in other modes but still noticeable.
If studied more, this could prove to be an interesting way to manipulate the mode shapes
of a wooden board.
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3.2.3. Optimized equivalent plates

Since the equivalent plates simulated using the Caldersmith formulas do not give a good
enough approximation of the material parameters for heterogeneous configurations, the
optimization method is used to try to find a better equivalent model of the reference
plates. To this aim, this section analyzes the results obtained from the optimization of the
material parameters of each of the equivalent plate models described in section 2.2. That
is to say the homogeneous density model which was used for the Caldersmith formulas
method in the previous section, the variable thickness model, and the two variable density
models. For each of these cases, the simulations are performed on the most heterogeneous
configurations in order to see if their error can be improved.

Homogeneous equivalent plate model

Taking as reference the four most heterogeneous configurations, namely configurations
0 and 10 for both longitudinal and radial symmetry patterns, an optimization of the
material parameters is performed on the homogeneous density equivalent model for each
of them. The relative errors between the obtained eigenfrequencies and their respective
reference plate’s eigenfrequencies are calculated and compared to the error calculated for
the previous Caldersmith formulas equivalent plates. Figure 3.11 shows the mean error
over the four considered configurations for the optimized equivalent plates and the ones
obtained through the Caldersmith method.

Considering the first ten modes of vibration, the error is effectively reduced when applying
an optimization of the material parameters. In fact, the mean error over the first ten
eigenfrequencies is reduced from 4.98 % with the Caldersmith formulas equivalent plates
to 2.67 % with the optimization.
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Figure 3.11: Mean error of the first ten eigenfrequencies computed over configuration 0
and 10 for both longitudinal and radial symmetry. The mean is calculated for the eigen-
frequencies obtained from the optimization and compared with the mean error obtained
from the previously calculated Caldersmith formulas equivalent plates.
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(a) Longitudinal configurations.
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(b) Radial configurations.

Figure 3.12: Mean MAC of configurations 0 and 10 for longitudinal and radial symmetry.

The MACs shown in Figure 3.12 show a little improvement in the precision of the first ten
mode shapes using the optimization although a slightly lower value can still be noticed
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for modes 5 and 6.

The optimization improved the accuracy of the eigenfrequencies and mode shapes of the
equivalent plate for the most heterogeneous configurations but has reached a limit. In fact,
using an equivalent model with constant density fails to capture the different distribution
of mass on the plate caused by holes of varying dimensions and thus, an accurate recreation
of the vibrational behaviour of the reference is difficult.

Variable thickness and density models

The equivalent plate models studied in this section are designed to take into account the
mass variation in heterogeneous configurations by changing either the thickness or density
distribution in the equivalent plate. In order to verify the effectiveness of each model, the
approach considered in the previous section is applied. In particular, since the behaviour
of the four most heterogeneous configurations is similar, the results will be shown only
for configuration 0 with longitudinal symmetry for clarity.

First, considering the variable thickness model described in section 2.2, equation 2.2 is
used to calculate the height at the center of each cell and the thickness profile of the plate
is drawn using COMSOL’s interpolation function. The resulting profile of longitudinal
configuration 0 is drawn in Figure 3.13. The material parameters of this equivalent plate
are optimized and the resulting eigenfrequencies will be compared with the ones from the
other models in Figure 3.16.

Figure 3.13: View in the RT plane of the variable thickness height profile for longitudinal
configuration 0.

The second model studied is the one with piece-wise constant density described in section
2.2 and shown in Figure 2.5. In this case, the geometry of the equivalent plate has the
same length, width and thickness as the reference plate. Its density however is modified by
calculating the equivalent density of each file (i) of holes from longitudinal configuration
0 using equation 2.3.
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ρeq(i) = ρref

(
1− πR(i)2

l2

)
The resulting density distribution on the plate is shown in Figure 3.14.

Figure 3.14: Piece wise constant density for longitudinal configuration 0.

Until now, The optimization algorithm has been applied using 10 parameters as argu-
ments. Namely, the 9 mechanical elastic parameters and the density. Because this model
has 6 different values for the density, considering that the last 6 values are identical to
the first 6 due to the symmetry of the plate, the optimization of material parameters is
done considering only the 3 Young moduli, 3 Shear moduli, and 3 Poisson ratios in order
to avoid unnecessarily increasing the dimensionality of the problem.

The last equivalent model considered is the one with linear variation of the density de-
scribed in section 2.2. Its geometry is the same as the previous equivalent plate model
but its density is instead approximated by the linear function of equation 2.4 which is
reported below.

ρeq(x) = dx+ ρ0

In this case, the density distribution is described by two variables; The slope d and the
intercept ρ0. That being so, including the density in the optimization only increases the
number of parameters to be optimized by one making it possible to optimize for the
density as well with this equivalent model. The initial values of a and ρ0 are calculated
by applying equation 2.3 as:
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ρ0 = ρeq(1) = ρref

(
1− πR(1)2

l2

)
d =

ρeq(6)− ρ0
b/2

Where ρ0 is equal to the equivalent density of the first row of holes ρeq(1) and d is
calculated as the slope between the density of file 1 and that of file 6. b being equal to the
length of the plate in the radial direction. The obtained density distribution is plotted in
Figure 3.15.

Figure 3.15: Linear density for longitudinal configuration 0.

Using the data obtained from the optimization of each of the previously equivalent models,
the errors in the first ten eigenfrequencies are computed and compared to each other in
Figure 3.16.
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Figure 3.16: Comparison of the eigenfrequency errors for the optimized models with
constant density, varying thickness, piece-wise constant density, and linear density, for
the longitudinal symmetry configuration 0.

Upon initial observation, it is evident that not all the equivalent models improve the re-
sults of the first constant density model. In fact, the error is generally higher when using
a varying thickness model. Suggesting that modifications to the geometry of the plate
significantly alter its vibrational behaviour and makes it difficult to match the eigenfre-
quencies even after optimization of the material parameters. The varying density models
on the other hand offer a substantial improvement in the accuracy of the eigenfrequencies.
Especially the one using a linear variation of the density which reduces the mean error
on the first ten eigenfrequencies from 2.67 % to 0.83 %, a value that is even lower than
experimental error.

This model is thus used concurrently with the optimization of material parameters in
order to obtain the equivalent plates of all heterogeneous configurations.
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Figure 3.17: Mean error of the first 37 eigenfrequencies calculated for each optimized
configuration for both radial and longitudinal symmetry cases.

Figure 3.17 shows the mean error computed over the first 37 eigenfrequencies for each con-
figuration k, separating longitudinally symmetric configurations from the radially sym-
metric ones. Compared to Figure 3.5 which showed the error of the equivalent plates
obtained from the Caldersmith method, and where the error was computed over the first
10 eigenfrequencies instead of 37, the mean error is drastically reduced. Especially for
the radial symmetry configurations. In fact, while a much higher error was noticed for
the most heterogeneous radial configurations using the Caldersmith method, the error of
the eigenfrequencies with the linear density variation equivalent model is kept low and
is similar for both radially and longitudinally symmetric configurations.The total mean
error of all configurations being equal to 1.43 %.

It is interesting to notice that even with an equivalent plate specially designed to take
into account the mass variation caused by heterogeneous configurations of holes, the
error is still slightly higher for the most heterogeneous distributions compared to the
homogeneous case. This goes to show that the more heterogeneous as configuration is,
the more its behaviour differs from that a of a solid plate. Furthermore, the ability to tune
the eigenfrequencies of a plate through the application of a specific pattern of holes is a
promising result which when further developed, could be used in instrument making where
certain modes are believed to correlate with the acoustic performance of the instrument.
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(a) Longitudinal configurations.
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(b) Radial configurations.

Figure 3.18: Mean MAC of all configurations separated for longitudinal and radial sym-
metry considering the first 37 modes.

The MAC matrices displayed in Figure 3.18 show that on top of being able to match the
eigenfrequencies of the reference plates with a low error, the proposed equivalent plate
model recreates with good precision most mode shapes up to the 37th mode. As a result,
the equivalent plates obtained through the optimization of the material parameters of the
linear density model will be the ones considered in the studies of the following sections.

3.3. Static analysis of the obtained equivalent plates

Studying the eigenfrequencies and mode shapes of the reference and equivalent plates
allowed for an accurate reproduction of the vibrational behavior of the reference plates
through a dynamic analysis. This section aims to verify the mechanical behavior of the
obtained equivalent plates by submitting them to a static analysis. More particularly,
this is done in COMSOL by applying a stationary distributed load of 10 N on the surface
of the plate lying in the LR plane while a fixed boundary condition is applied on two
parallel sides at a time. Either the ones parallel to the LT plane or the ones parallel to the
RT plane. Subsequently, the Von Mises stress caused by this load is computed for both
reference and equivalent plate, and the displacement of the plate in the same direction of
the applied force is measured and compared in the two cases as well.
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3.3.1. Von Mises stress and plate’s displacement

Let us consider first the case of homogeneous configuration k = 5. Figure 3.19 shows the
Von Mises stress caused by a distributed 10 [N] force applied in the tangential direction
while the longitudinal sides of the plate are fixed. Right below it, Figure 3.20 illustrates
the displacement of the radial edges of the plates still in the tangential direction.

(a) Reference plate. (b) Equivalent plate.

Figure 3.19: Von Mises stress [N/m2] measured on the homogeneous configuration with
k = 5 for a 10 [N] distributed force applied on the top surface of the plate. Fixed boundary
conditions are applied on the longitudinal sides of the plate.
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Figure 3.20: Displacement of the radial edges in the tangential direction on configuration
k = 5.

The distribution of the Von Mises stress on the reference and equivalent plates shows a
good similarity between the two. Small disturbances can be noticed in the equivalent
plate near the radial edges although they are likely just an artifact of the meshing pro-
cess. Looking at the displacement of the radial edges in both plates, the two are very
similar with the maximum displacement observed in the equivalent plate being higher by
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approximately 0.002 mm which is a negligible quantity. A good correspondence is thus
found between the mechanical behaviour of the reference and equivalent plates in the case
of the homogeneous metamaterial configuration.

Considering instead one of the most heterogeneous configuration, namely configuration
10 in the case of longitudinal symmetry, the same experiment is repeated twice applying
the fixed boundary conditions first to the longitudinal sides as was done in the previous
case, and then to the radial sides of the plate. Figures 3.21 to 3.24 show the results for
both tests.

(a) Reference plate. (b) Equivalent plate.

Figure 3.21: Von Mises stress [N/m2] measured for configuration k = 10 with longitudinal
symmetry for a 10 [N] distributed force applied on the top surface of the plate. Fixed
boundary conditions are applied on the longitudinal sides of the plate.
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Figure 3.22: Displacement of the radial edge in the tangential direction for longitudinal
configuration k = 10.
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(a) Reference plate. (b) Equivalent plate.

Figure 3.23: Von Mises stress [N/m2] measured for configuration k = 10 with longitudinal
symmetry for a 10 [N] distributed force applied on the top surface of the plate. Fixed
boundary conditions are applied on the radial sides of the plate.
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Figure 3.24: Displacement of the longitudinal edge in the tangential direction for longi-
tudinal configuration k = 10.

Just as with the homogeneous configuration, there seems to be a good matching between
the Von Mises stress on the reference and equivalent plates in both cases of boundary
conditions. The displacement plots however reveal that for the same force applied on the
plates, different magnitudes of the displacements are obtained. In fact, the maximum
magnitude of the displacement of the equivalent plates is approximately 3 times higher
than that of their respective reference. The effective difference is of 0.4 mm in the first
case and 2 mm in the other which is a noticeable change considering that the thickness
of the plate is of 3.5 mm. This behaviour has been observed with other configurations as
well although with less difference between the maximum displacements of the reference
and equivalent plates. The largest difference having been obtained for longitudinally
symmetric configuration 10 shown in the figures.

These results indicate that the calculated stiffness of the equivalent plates is slightly lower
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than the effective stiffness of their respective reference which causes a larger displacement
for the same applied force. Revealing thus a discrepancy between the results of the
dynamic analysis conducted in the earlier sections and the static study conducted here,
especially for the most heterogeneous metamaterial configurations. This difference in the
behaviour of the equivalent plates when subjected to a dynamic analysis versus a static one
is an interesting effect which could be used in the future to design bespoke instruments.

3.3.2. Measuring the Poisson ratio with a tensile test

In the definition of the material parameter boundaries for the optimization in Table 2.2,
the Poisson ratios have all been set with a minimum value of 0 and a maximum value of
1. This range is reasonable for common materials but some particular metamaterials are
known to exhibit auxetic behaviors such as the one represented in Figure 1. In fact, some
optimizations of the material parameters without the specified boundaries for the Poisson
ratios have resulted in a negative value of vLR. This section examines the possibility of
having a negative value of vLR on the reference plate where this negative coefficient has
been observed which corresponds to longitudinal symmetry configuration 0.

Remembering that the Poisson ratio vLR is defined as the negative ratio of the radial
strain to the longitudinal strain as:

vLR = −εR
εL

The sign of the Poisson ratio can be verified through a tensile test of the reference plate.
In particular, A fixed boundary condition is imposed on one of the radial sides of the
plate while a distributed force parallel to the longitudinal axis is applied on the opposite
side as showed in Figure 3.25.
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Figure 3.25: Tensile test of the reference plate of configuration 0 with longitudinal sym-
metry. The side highlighted in red is fixed while a force is applied on the opposite side.

The measured displacements on both the top and bottom longitudinal sides of the plate
are displayed on Figure 3.26 below:

Figure 3.26: Displacement of the top and bottom longitudinal edges as a result of the
tensile test.

The figure shows that the bottom side of the plate has a positive displacement while
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the top side has a negative one. This means that an elongation of the plate in the
longitudinal direction caused a shortening in the radial direction which indicates that the
Poisson ratio vLR is indeed positive for this plate. Because this is the only case where a
negative Poisson ratio was observed after optimization, the experiment was not repeated
for all other configurations and the Poisson ratios were bounded between 0 and 1 for all
optimizations.

3.4. Discussing the material parameters of the plates

Having obtained an accurate equivalent plate for all metamaterial configurations consid-
ered in this thesis, the aim of this section is to observe the effect of the various studied
hole patterns on the material parameters of the wooden plates. Particular attention is
given to the values of EL and ER as they are the most relevant parameters in terms of
impact on the acoustic quality for guitar soundboards [21]. In fact, they can be used to
calculate the anisotropy ratio:

ER

EL

as well as the acoustic radiation index defined in [47] and simplified in [21] as:

cL
ρ

=

√
EL

ρ3

where cL is the longitudinal sound velocity. In particular, studies have found a correlation
between the acoustic quality of woods for soundboards and their anisotropy ratio and
acoustic radiation [48]. In addition, the variations of the shear modulus GLR are measured
as well due to its impact in the Caldersmith formulas for tuning the frequency of the
twisting mode (1,1).

Figures 3.27 and 3.28 illustrate the variations of these three parameters for all configu-
rations k with both longitudinal and radial symmetry. More specifically, they show their
normalized value with respect to that of Engelman spruce, the wood species used for the
reference plates. In the first figure, the parameters obtained from the application of the
Caldersmith formulas are used while the second utilizes the optimized material parameters
from the linear density equivalent model.
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(a) Longitudinal configurations.
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(b) Radial configurations.

Figure 3.27: Normalized value of EL, ER, and GLR to the respective stiffness of Engelman
spruce for each heterogeneous configuration k obtained using Caldersmith formulas. The
values EL and GLR are superimposed because GLR is calculated using the Wood Handbook
formula from Table 2.1 which is proportional to EL.
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Figure 3.28: Normalized value of EL, ER, and GLR to the respective stiffness of Engelman
spruce for each heterogeneous configuration k obtained from the linear density optimized
equivalent plate model.
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Upon comparison of the two figures, it is evident that the approximation provided by
the Caldersmith method cannot be extended to wooden plates with heterogeneous meta-
material patterns. In fact, while similar values of the material parameters are obtained
around homogeneous configuration 5 for both the Caldersmtih, and the optimized ma-
terial parameters, their behaviour for more heterogeneous configurations are completely
different.

The most interesting observation to be made from Figure 3.28 is that the general stiffness
of the plates seems to be lower for configurations with a lower index k while it is higher
as k gets closer to 10 for both longitudinal and radial symmetry configurations. Meaning
that plates are made stiffer by patterns with larger hole sizes near the edges and smaller
holes at the center of the plate. Probably because having a higher density at the center
of the plate increases its stiffness. In some cases, the predicted stiffness is even higher
than that of Engelman spruce. Another particular observation on this figure is that the
variation between a configuration and the next is similar for the three considered material
parameters.

These results highlight the possibility of using the equivalent plates method illustrated
in this thesis to control the stiffness and density of a wooden plate. In fact, one of the
possible applications could be the design of specifically tuned soundboards by luthiers,
giving them the possibility control the general stiffness and density of the board, all while
tuning the most important mode shapes to the desired frequencies. This is particularly
useful considering that one of the main requisites for achieving a good acoustic radiation
with wooden a soundboard consists in having a high stiffness with a lower mass. Not only
that, but being able to modulate the stiffness of a wooden board could be used as well in
structural applications.
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4| Conclusions and future

developments

The objective of this thesis work was to investigate the effects of metamaterials with het-
erogeneous hole size patterns on the dynamic and static behaviour of rectangular wooden
plates. Towards this end, an innovative approach has been used focusing on the study
of equivalent solid plates rather than on the actual metamaterial drilled plates. This
idea, motivated by the better understanding both engineers and instrument makers have
of regular wooden boards which are employed in many musical and structural applica-
tions, makes it possible to study the metamaterial’s properties under a more familiar
perspective. In fact, while other studies in the literature rely on the Caldersmith formu-
las to approximate the main elastic constants of the metamaterial [21, 22], the method
developed here allows for a more precise identification its effective material parameters.

Throughout the thesis, multiple models of equivalent plates have been designed in order
to accurately recreate the vibrational behavior of the various heterogeneous metamaterial
configurations. More specifically, a finite element model updating optimization method
has been implemented in Python to find the material parameters of the equivalent plate
which would minimize the difference between the eigenfrequencies and mode shapes of
the considered reference and equivalent plates.

The obtained results reveal a striking difference between homogeneous and heterogeneous
configurations of the metamaterial. In fact, in the case of a plate with homogeneous
hole sizes, and considering the first 37 modes which cover the range up to 1000 Hz, a
decent approximation of the elastic constants of the equivalent plate can be obtained by
simply applying the Caldersmith formulas with a mean error in the eigenfrequencies of
2.9 %. Using the optimization of the equivalent model with constant density, this error
was reduced to 0.3 % with great consistency in the mode shapes as well.

In the case of heterogeneous configurations however, the conducted simulations show that
simply varying the elastic constants of the equivalent plate is not sufficient to recreate
the metamaterial’s behaviour. In fact, the Caldersmith formulas and the constant density
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equivalent model deliver poor results regarding the accuracy of the eigenfrequencies and
mode shapes. Particularly so for the most heterogeneous configurations. With a varying
distribution of the hole sizes on the plate, a corresponding variation in the mass of the
equivalent plate must be considered.

Following these results, additional simulations made with a varying thickness equivalent
model suggest that modifying the geometry of the plate has too much of an impact on
the mode shapes and eigenfrequencies of the plate making it unusable for the purpose of
this study. Considering instead a varying density to reflect the mass distribution of the
metamaterial seems to yield better results. Of the two considered varying density models,
the one with piece wise constant density was shown to increase the complexity of the
problem without improving its results while the linearly varying density model proved to
be the most efficient one in terms of recreation of the mode shapes and eigenfrequencies
of the reference. With a mean error for the first 37 eigenfrequencies of 1.43 % computed
over all 22 heterogeneous configurations.

Additionally, a static analysis conducted on both the reference and equivalent plates has
shed light on an interesting effect in the studied metamaterial wooden boards. In fact,
while the equivalent plates accurately recreate the vibrational behaviour of the corre-
sponding reference configuration, their static behaviour can be different as observed from
the carried out stationary tests on the plates. A larger maximum displacement of the
board has been observed for the equivalent plates of the most heterogeneous configura-
tions with respect to their reference plate. This different behaviour of the metamaterials’
equivalent plates in dynamic and static conditions is an interesting fact which could be
used to create custom built instruments in the future.

Finally, this work is concluded with an analysis of the elastic constants of the equivalent
plates for all the studied metamaterial configurations. An interesting correlation was
found between the stiffness of the wooden board and the hole size distributions on the
metamaterial. In fact, having larger holes on the sides of the plate and smaller ones at
the center of it resulted in stiffer plates for both longitudinally and radially symmetric
configurations. In the most heterogeneous cases, the obtained stiffness was found to be
higher than that of Engelman spruce. These result could be of great relevance among
other things in the construction of wooden soundboards where a high stiffness is desired
to sustain the tension of the strings all while having a low density to maximize sound
radiation. In addition, the possibility to tune the eigenfrequencies of the plate using
metamaterials which has been demonstrated also in [21, 22] make them a very powerful
tool to expand the possibilities of instrument makers. Furthermore, the ability to control
the mechanical parameters of any wooden board broadens the range of usable species of
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wood in instrument making, offering a sustainable alternative to the most exploited ones
in the industry.

The studies exposed in this thesis lend themselves to multiple possible future develop-
ments. First of all, an experimental physical study could verify the numerical results and
possibly expand on them. As a matter of fact, only elliptical and circular hole shapes have
been investigated here. While various orientations and aspect ratios have been studied for
the elliptical hole shapes in [21], many other possibilities remain unexplored. It would be
interesting as well to see an application of heterogeneous metamaterials in a complete in-
strument as was done in [36] where homogeneous metamaterials were numerically studied
in the model of a classical guitar or in [49] where they were used in a cajòn peruano.

With the recent exponential rise in popularity of artificial intelligence, it is impossible not
to think of a possible application in this field of study as well. A potential idea could be
the development of an artificial intelligence capable of generating a specific metamaterial
configuration of holes in order to tune the mechanical parameters or eigenfrequencies of an
initial wooden board. To this aim, the method used in this thesis to obtain accurate solid
equivalent plates can be useful for the generation of a large enough numerical data set.
Using solid equivalent plates rather than multiple 3D models of different metamaterial
configurations could simplify and accelerate the meshing process of the FEM simulations.
Such a tool could be easily integrated in the workshop of an instrument maker in the
future.
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