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Abstract

Advanced materials are complex systems, and the comprehension of the physical mechanisms

underlying their macroscopic properties requires the insight of theoretical methods. Among

these, density functional theory (dft) is the most popular in materials science. In this Thesis,

a density functional investigation of vibrational properties of three advanced materials of

current interest in the field of materials engineering is performed.

The first material is an electron-transporting π−conjugated polymer known in the literature

as p(ndiod-t). Starting from recent spectroscopic experiments unveiling the localization

of structural relaxation following its n-doping [1], dft is applied to simulate the electronic

charge distribution in the polymer both in the absence and in the presence of an atomic

dopant. Then, different atomic dopants are considered to draw further conclusions about

the effect of charge-screening on electron delocalization.

The focus is then shifted onto functionalized graphene nanoribbons, and their vibrational

and electronic spectra are simulated for selected choices of the functional groups and different

lengths of the π−conjugated backbone. In doing this, the most prominent features of ir,

Raman and uv-Vis spectra are assigned.

Finally, the β phase of pvdf and p(vdf−trfe), both ferroelectric polymers, are studied.

The existence of vibrational markers for the chemical unit trfe in p(vdf−trfe) is predicted,
corroborating recent results obtained by vibrational spectroscopy [2]. Then, conformational

disorder is modeled in a simple way to account for the temperature dependence of ir and

Raman spectra of p(vdf−trfe). Finally, a series of periodic three-dimensional models with

different cell parameters is used to highlight solid-state effects on the ir and Raman spectra

of pvdf.

The results presented in this Thesis show the usefulness of dft in the prediction and corro-

boration of experimental results concerning the vibrational properties of advanced materials

which are at the center of current research interest.

Keywords: Density functional theory, Vibrational spectroscopy, p(ndiod-t), Graphene

nanoribbons, pvdf, p(vdf−trfe)





Sommario

I materiali avanzati sono sistemi complessi, e la comprensione dei meccanismi fisici alla base

delle loro proprietà macroscopiche richiede l’utilizzo di metodi teorici. Tra questi, la teoria

del funzionale della densità (Density Functional Theory, dft) è il più popolare in scienza

dei materiali. In questa Tesi, si esegue una indagine dft delle proprietà vibrazionali di tre

materiali avanzati di interesse attuale nel campo dell’ingegneria dei materiali.

Il primo materiale è un polimero trasportatore di elettroni π−coniugato conosciuto in lette-

ratura come p(ndiod-t). A partire da recenti esperimenti che svelano la localizzazione del

rilassamento strutturale a seguito del suo drogaggio n [1], la dft è applicata per simulare la

distribuzione di carica elettronica nel polimero sia in assenza che in presenza di un drogante

atomico. Successivamente, diversi droganti atomici vengono considerati per trarre ulteriori

conclusioni sull’effetto dello schermaggio di carica sulla delocalizzazione elettronica.

Si sposta poi l’attenzione sui nanoribbon di grafene funzionalizzati, e i loro spettri vibrazio-

nali ed elettronici sono simulati per una selezione di gruppi funzionali e a diverse lunghezze

della catena dorsale π−coniugata. Così facendo, si assegnano i picchi più importanti degli

spettri ir, Raman e uv-Vis.

Infine, la fase β di pvdf e p(vdf−trfe), entrambi polimeri ferroelettrici, sono studiati. Si

predice l’esistenza di marker vibrazionali per l’unità chimica trfe in p(vdf−trfe), corro-
borando recenti risultati ottenuti tramite spettroscopia vibrazionale [2]. Successivamente, il

disordine conformazionale è modellato in modo semplice per rendere conto della dipendenza

dalla temperatura degli spettri ir e Raman di p(vdf−trfe). Infine, una serie di modelli

periodici tridimensionali con diversi parametri di cella è usata per mettere in luce gli effetti

di stato solido sugli spettri ir e Raman di pvdf.

I risultati presentati in questa Tesi mostrano l’utilità della dft per la predizione e corrobo-

razione di risultati sperimentali riguardanti le proprietà vibrazionali di materiali avanzati al

centro dell’interesse di ricerca attuale.

Parole chiave: Teoria del funzionale della densità, Spettroscopia vibrazionale, p(ndiod-t),

Nanoribbon di grafene, pvdf, p(vdf−trfe)
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Chapter 1

Introduction

I am not accustomed to saying anything with certainty

after only one or two observations.

— Andreas Vesalius

Experimental observations are crucial for the comprehension of natural phenomena. The

total amount of scientific knowledge increases as more experiments are done, each of them

being capable of falsifying previous beliefs. Incidentally, the existence of this latter possibility

is a characteristic of any physical theory, in the view of the philosopher of science Karl

Popper [13]. Then a general understanding of a given phenomenon requires it to be attacked

on several fronts. One may recall Galilei’s view of scientific investigation, according to

which [14]:

[...] in the discussions of physical problems we ought to begin [...] from sense-

experiences and necessary demonstrations.

Coupled with the quantum nature of matter at the atomic scale [15], these necessary demon-

strations acquire a quantum many-body character. As long as more than few particles are

considered, this is known to be a practically unsolvable problem [16]. Nevertheless, several

brilliant interpretations of the behavior of matter have been given in the past without expli-

citly referring to the inherent many-body problem. Of these, the kinetic theory of gases is an

example, where temperature is connected with the average square velocity of molecules [17].

In 1927-1928, a model by Llewellyn Thomas and Enrico Fermi proved that the total energy of

a Fermi gas interacting with a positive nucleus is captured approximately by a functional of

the only electronic density [18, 19, 20]. One of the important limitations of this model is that

it does not account for chemical bonding [21]. Nevertheless, the Thomas-Fermi model has

been considered as a precursor [22] when in 1964-1965 density functional theory (dft) was
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formulated in the seminal papers of Pierre Hohenberg, Walter Kohn and Lu Jeu Sham [4, 5].

As will be reviewed in Chapter 2, dft is a reformulation of quantum mechanics that allo-

ws to exactly express the ground-state energy of a quantum system as a functional of the

three-dimensional electronic density, removing the need to refer to the more complex wave

function [22]. This simplification has made dft the most popular method for computing the

electronic structure of systems [6], starting with the physics community in 1965 and landing

among chemical-physicists in the mid-1980s. [23].

Figure 1.1 reports the number of citations per year to one or both the seminal papers of

dft (Refs. [4] and [5]). It shows that the interest in dft exploded in time. Today, those

papers are among the most cited ones in Physical Review. [6]. For his development of dft,

Walter Kohn shared the Nobel prize in Chemistry in 1998. The other half was awarded to

John Pople, who developed important computational methods, also applied in this Thesis,

as will be mentioned in Chapter 2.

Figure 1.1: Number of citations per year to one or both the seminal papers of dft (Refs.
[4] and [5]). Data from the Web of Science. Reproduced from Ref. [6].

It is therefore expected that dft finds space in several applications. Indeed, there exists

a large portion of literature where density functional methods are applied to very different

problems. Starting from its historical first application in materials science of 1980, where

the phase and lattice stability of silicon were studied [24], dft was also applied to explain
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the puzzling properties of the lowermost portion of the mantle of Earth [25], to predict the

formation energy of transition-metal alloys [26], and to determine the exchange integrals of

Heisenberg models, allowing an ab initio description of magnetism [27]. One particular case

puts in evidence the predictive power of dft: in 2010-2013, a new Fe-B superconducting

compound was first computationally predicted [28] and then experimentally discovered [29].

In this Thesis, we will be concerned with the application of dft to the study of vibrational

properties of advanced materials. These are complex systems, for which the comprehension

of the physical mechanisms underlying their macroscopic properties requires the insight of

theoretical calculations. Two classes of advanced materials will be considered in the following

Chapters, namely π−conjugated and ferroelectric polymers. We will refer in particular to

three materials, which are introduced in the following.

The π−conjugated polymer n. Since the discovery of conductive polyacetylene

in 1977 [30], which led Hideki Shirakawa, Alan MacDiarmid and Alan Heeger to share the

Nobel Prize in Chemistry in 2000, conductive polymers constitute a research topic of increa-

sing interest. Such materials allow indeed for the realization of organic-based opto-electronic

devices, which in turn are characterized, when compared to silicon-based technologies, by far

lower costs and novel functionalities. From these applications of polymers, new device pro-

perties arise, such as mechanical flexibility, impact resistance, optical transparency, and light

weight [31]. Although both hole- (p-type) and electron-transporting (n-type) polymers are

known, the instability of the latter hinders the development of all-polymer devices [32, 33].

There is therefore a need for the enhancement of the transport properties of n-type polymers,

of which p(ndiod-t), briefly referred to as n, is a promising instance [34, 35].

Two general classes of n-type polymers can be identified, namely π−conjugated polymers and

redox polymers. In π−conjugated polymers, the superposition of p atomic orbitals results

in electron delocalization along the backbone of the molecule. This favors electron transport

in the presence of an external applied voltage. However, π−conjugated polymers often need

several repeat units to stabilize the injected electronic charge, this resulting in poor electro-

nic conductivity. On the other hand, redox polymers are characterized by the presence of

redox sites capable of accepting one or more electrons per repeat unit. However, they lack in

general π−conjugation, in the absence of which electrical conductivity is compromised [7, 36].

Both the problems exposed above are solved incorporating π−conjugation and redox si-

tes in the same polymer. This is the case of n, which is thus termed as an n-dopable

π−conjugated redox polymer [7]. Figure 1.2 offers a visual representation of the combination

of properties just described, together with the molecular structure of n. Given the es-

sential role of polaron as charge carrier in n [37, 38], we investigated by dft calculations
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the polaron structure and the associated molecular structure relaxation.

Figure 1.2: Incorporation of π−conjugation and redox sites in the same polymer as a way
of enhancing electronic conductivity. (a) Illustration of electron transport in
a π−conjugated polymer (top left) and in a redox polymer (bottom left), to-
gether with the incorporation of both these properties in the same polymer
(right). (b) Molecular structures of p(ndiod-tet), a redox polymer lac-
king π−conjugation, and p(ndiod-t), the n-dopable π−conjugated redox
polymer studied in Chapter 3. Reproduced from Ref. [7].

Functionalized graphene nanoribbons. In 2010, the Nobel Prize in Physics was awarded

to Konstantin Novoselov and Andrej Geim for their breakthrough experiments on graphene,

a single atomic layer of carbon, where electrons behave as two-dimensional [39]. In addition

to other remarkable properties, graphene has a particular electronic behavior in being a zero-

gap semiconductor [40]. However, from the point of view of the realization of carbon-based

nanoelectronics, not always this latter property is wanted, because it hinders the existence

of on and off states. This problem is solved if one considers to cut an infinite graphene

sheet along vertical lines, so as to obtain a narrow ribbon. Such structure has the general

name of graphene nanoribbon (gnr), and was studied from a theoretical point of view by

Mitsutaka Fujita and coworkers in 1996 [41, 42]. They showed that, as opposed to the case

of graphene, the bandgap of gnrs depends on their width and edge morphology. Based on

the orientation of the cut by which gnrs are ideally derived from graphene, three classes
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of edge morphologies can be obtained, as represented in Figure 1.3. In particular, zigzag-

edged gnrs are found to be metallic, whereas armchair- and cove-edged gnrs can be either

semiconductive or metallic depending on their width and edge functionalization [8, 43].

Figure 1.3: Three edge morphologies of gnrs. Zigzag-edged gnrs are metallic, whe-
reas armchair- and cove-edged gnrs can be either semiconductive or metallic
depending on their width and edge functionalization. Reproduced from Ref. [8].

Due to this tunability of their electronic properties, a valid alternative to conjugated poly-

mers for organic nanoelectronics is given by gnrs, which are applied, for example, in the

design of organic field-effect transistors [44]. As expected from the chemical structure of

Figure 1.3, however, π−π interactions hinder the processability of gnrs in solution, so that

bulky substituents are usually applied in order to prevent stacking. Chemical synthesis is the

preferred way to achieve gnrs production, since top-down techniques such as lithography

usually fail in giving gnrs with nanometric and narrowly-distributed widths. There thus

exists a need for the assessment of a correct edge functionalization of gnrs. dft calcula-

tions and experimental characterization by spectroscopy can provide the identification of the

spectral markers associated to the functional groups introduced by chemical synthesis.

The piezoelectric polymer p(vdf-trfe). As discovered in 1969 by Heiji Kawai, the

ferroelectric polymer polyvinylidene fluoride (pvdf) possesses piezoelectric properties, whe-

re mechanical stress causes a variation of electric polarization and vice versa [45, 10]. The
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(a) (b) (c)

Figure 1.4: (a) Conformations of different phases of pvdf: α and δ phases (top), β phase
(middle) and γ phase (bottom). (b) Origin of the non-zero electric dipole in the
β phase of pvdf. (c) Arrangement of pvdf macromolecules in their β phase
in a three-dimensional crystal. Panels (a) and (c) are reproduced from Ref. [9],
while panel (b) comes from Ref. [10].

interest in piezoelectric polymers derives from the fact that other piezoelectric materials

such as zinc oxide are brittle, and must be processed at high temperature. This constitutes

an important limitation to their applications, of which energy harvesting and sensoring are

some instances. Polymers, on the contrary, are generally known to lack both brittleness and

high processing temperatures. This is a substantial advantage when polymers are applied as

piezoelectric materials, in addition to the fact that new design possibilities may also arise,

such as the realization of flexible components [2, 46].

A portion of a macromolecule of pvdf in its β phase is illustrated in the middle of Figu-

re 1.4a. It is characterized by an all-trans planar zig-zag chain conformation, where carbon

atoms lay on the same plane. As highlighted by Figure 1.4b, this conformation leads to

the presence of a non-zero electric dipole moment oriented orthogonal to the chain axis.

The β phase of pvdf is therefore polar, and packs in an orthorhombic crystal system as in

Figure 1.4c.

The non-polar α phase of pvdf is represented in the top of Figure 1.4a for the conformation of

a single molecule. This is the most thermodynamically stable phase of pvdf [2]. Therefore,

in the crystallization from the polymer melt, this non-polar conformation of the polymer

is obtained. Taking into account the interest in piezoelectric polymers, the spontaneous

obtainment of the piezoelectric β phase during crystallization is wanted. This is the case of

the random copolymer poly (vinylidene fluoride-co-trifluoroethylene) (p(vdf−trfe)), which
is characterized by the random alternation of vdf and trfe units [47]. Apart from its

piezoelectric β phase, no other phases of p(vdf−trfe) have been observed [48], so that the
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inclusion of trfe units in pvdf to give p(vdf−trfe) results in the spontaneous obtainment

of a piezoelectric phase from the polymer melt.

1.1 Outline of the Thesis

Vibrational properties of materials have been previously studied by means of dft by several

authors, both for ir and Raman [49, 50, 51, 52]. However, gaps in the literature still exist for

what concerns the three advanced materials exposed above. In this Thesis, we will be thus

interested in the application of dft to the study of their vibrational properties, considering

both molecular and periodic models in different dimensions. We want to show that dft is a

powerful analytical tool for the prediction and corroboration of experimental results obtained

by means of vibrational spectroscopy. In doing so, we will also assess the validity of dft

in the necessary approximations that allow it to be implemented in computer codes with

accessible computation times. In particular, after the brief theoretical review of Chapter 2:

• In Chapter 3 we use dft to show that the lithiation of n results in the confinement

of structural relaxation. This phenomenon, called polaron localization, has been re-

cently unveiled by vibrational spectroscopy [1]. However, dft models used in [1] were

not taking into consideration the dopant explicitly. The discussion is then extended to

different atomic n-dopants, of which the electrostatic effect on charge delocalization is

studied.

• In Chapter 4 the successful synthesis of functionalized graphene nanoribbons [53] is

supported by simulating their ir, Raman and uv-Vis spectra.

• In Chapter 5 we compute the vibrational spectra of the two piezoelectric polymers

β−pvdf and p(vdf−trfe) and find vibrational markers for both the trfe chemical

unit and conformational disorder. This supports the results of Arrigoni et al. [2], who

made a spectroscopic study of electrospun p(vdf−trfe) nanoifbers, and allows us to

study solid-state effects on the ir and Raman spectra of pvdf.
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Chapter 2

Methods

[...] the question occurred to [me] whether a knowledge of n(r) alone

determined - at least in principle - the total energy.

— Walter Kohn

In this Thesis, materials are modeled either as molecules or crystals. We here introduce

some general results of the quantum theories of these two systems. With that in mind, the

principles of density functional theory are then exposed.

2.1 Quantum mechanics of a molecule

We begin with recalling the quantum description of a molecule, following Atkins [54]. This

will also serve to introduce important approximations, which are retained in the whole

Chapter.

Molecular Schrödinger equation

Let us consider a system of N electrons and M nuclei, and indicate with r and R the

collection of electronic and nuclear coordinates, respectively. The stationary states of such

system are described by the wavefunctions ψ that solve the time-independent Schrödinger

equation,

Hψ = Eψ,

with eigenvalue E, where H is the molecular Hamiltonian. The latter is a sum of kinetic

and potential energy operators:

H = Te + Tn + Vee + Ven + Vnn,
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where the subscripts indicate electrons and nuclei. Jordan quantization rules allow to write

these operators starting from their classical counterparts. The kinetic energy operators are

then

Te =
N∑
i=1

− ~2

2m
∇2
i , Tn =

M∑
I=1

− ~2

2MI

∇2
I ,

whereas electrostatic potential energy operators write

Vee =
e2

4πε0

∑
i<j

1

|ri − rj|
, Ven = − e2

4πε0

∑
i,I

ZI
|ri −RI |

, Vnn =
e2

4πε0

∑
I<J

ZIZJ
|ri − rj|

.

Vee cannot be factorized as a sum of one-particle contributions. This already points out the

difficulty set by electron correlation.

Born-Oppenheimer approximation

The quantum description of a molecule can be simplified observing that mp/me ≈ 2000.

This means ve � vp, and it is therefore reasonable to consider the nuclear configuration as

a fixed parameter of the instantaneous electronic motion. In other words, electronic and

nuclear degrees of freedom can be decoupled, and the molecular wavefunction can be written

as a product of an electronic wavefunction ψe and a nuclear wavefunction φn:

ψ(r,R) = ψe(r|R)φn(R).

By definition, ψe is eigenfunction of the electronic Hamiltonian He = Te + Ven + Vee with

eigenvalue εe. Then, it is found that φn is eigenfunction of an effective nuclear Hamiltonian

Hn = Tn + Vnn + εe. This is called the Born-Oppenheimer or adiabatic approximation, and

constitutes the usual context in which the structure and dynamics of molecules and crystals

are discussed.

Hellmann-Feynman theorem

If we now call U = 〈ψ|H|ψ〉 the energy of the system and consider the generic parameter λ,

we can prove [55] that in stationary conditions

∂U

∂λ
=

〈
ψ

∣∣∣∣∂H∂λ
∣∣∣∣ψ〉 .

This result defines the force −fλ equivalently as the derivative of the energy and the expec-

tation value of the derivative of the Hamiltonian. A particular case is obtained for λ = Xα
µ ,

the component along the µ axis of the α−th nucleus:
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fI = qI

[
F(RI) +

∑
J

EJ(RI)

]
,

where fI is the force acting on the I−th nucleus, q its charge, F the electric field of the

electrons and EJ the electric field of the J−th nucleus. This is called the Hellmann-Feynman

theorem, and states that the forces in a quantum system with a given electronic distribution

can be evaluated with classical electrostatics.

Harmonic approximation

Every potential V is a quadratic function when considered sufficiently near its minimum.

When the minimum of V is at R0 and there its second derivative is equal to k, the force

constant, then

V ≈ 1

2
k(R−R0)

2

near R0. That is, each small-amplitude oscillation is harmonic. The harmonic approximation

allows for useful simplifications of more general potentials.

Classical vibrations of a polyatomic molecule

The harmonic approximation can be exploited to reduce the classical vibrations of a po-

lyatomic molecule to the solutions of an eigenvalue problem. To do so, the first step is to

introduce normal coordinates qi that diagonalize the Hamiltonian H. Then the nuclear mas-

ses and force constants are collected respectively in M and K, that can be combined to give

W = M−1/2KM−1/2, a real and symmetric matrix, which can thus be diagonalized. Final-

ly, it is shown that the eigenvectors and eigenvalues of W give respectively the vibrational

displacements and frequencies of the normal coordinates.

Quantum vibrations of a polyatomic molecule

When described in quantum-mechanical terms, the vibrations of a polyatomic molecule re-

tain some aspects of their classical description because the normal coordinates diagonalize

the Hamiltonian operator as well. For each normal coordinate, a vibrational Hamiltonian

operator can be introduced as

hi = − ∂2

∂t2i
+ t2i

such that H =
∑

i hi, where the dimensionless coordinates ti = qi
√
ωi/~. The quantum

vibrational state of the system is then a product of eigenstates of the hi.
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2.2 Quantum mechanics of a crystal

We now move to an infinite crystal, and recall some important concepts of the theory of

solids, following the approach of Ziman [56].

Translational symmetry

Several materials solidify forming a crystal. Bulk properties of crystals can be described

referring to an infinite lattice characterized by translational symmetry. This means that it

is possible to introduce lattice vectors a1, a2 and a3 such that the structure is invariant with

respect to the translations

l = l1a1 + l2a2 + l3a3, with l1, l2, l3 ∈ Z.

These three lattice vectors define a cell of the crystal. The lattice is obtained translating the

cell by all the values of l. The same invariance must hold for every bulk property f(r):

f(r) = f(r + l),

so that every property of a crystal is a multiple periodic function. Since any such function

can be expressed as a Fourier series, it is easy to show that a generic bulk property can be

written as

f(r) =
∑
g

Ageig·r.

Here g is the reciprocal lattice vector: it has the property that eig·l = 1, and can be written

as

g = 2π (n1b1 + n2b2 + n3b3) ,

where

b1 =
a2 × a3

a1 · a2 × a3
, b2 =

a3 × a1
a1 · a2 × a3

, b3 =
a1 × a2

a1 · a2 × a3

are the reciprocal lattice vectors. We also have:

Ag =
1

vcell

∫
cell
f(r)e−ig·rdr.

Bloch theorem

By making use of translational invariance, we can prove that
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|l〉 = eik·l |0〉 ∀ l.

This means that a vector k of the reciprocal lattice exists for every wave function such that

its translation by l amounts to the multiplication by exp(ik·l). This most important theorem

is solid-state physics is called the Bloch theorem. In the particular case of electrons, Bloch

theorem reads

ψk(r + l) = eik·lψk(r).

This means that we can label a wavefunction with the wave vector that satisfies Bloch

theorem. It can also be seen that the above relation does not hold for unique values of

k, but for infinite discrete sets of wave vectors differing one from another by a reciprocal

lattice vector g. This poses the problem on to uniquely define the wave vector of a given

state, which can be solved in one dimension by requiring the modulus of k be inside the first

Brillouin zone,

−π
a
< k ≤ π

a
,

and similarly in three dimensions. We thus see that a translational invariant infinite system

can be described referring only to its repeat unit.

Born-von Kármán boundary conditions

Also called cyclic or periodic boundary conditions, Born-von Kármán conditions allow to

model periodic infinite systems. For a one-dimensional system they write

ψ(x+ La) = ψ(x),

so that, recalling Bloch theorem, we have

eikLa = 1,

meaning

k =
2πm

La
, with m ∈ Z.

Therefore,

−1

2
L < m <

1

2
L,

from which we see that, for macroscopic systems, the set of k constitutes a quasi-continuum.
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2.3 Density functional theory

We now turn to atomic units putting

a0 = me = e = ~ = Eh =
1

4πε0
= 1

and expose the principles of density functional theory (dft), following Parr and Yang [22]

for the time-independent case and Marques and Gross [57] for its time-dependent extension.

Stationary theory

We start recalling the simple rule of calculation coming from elementary quantum mechanics

for the expectation value of the generic observable O,

〈O[Ψ]〉 =
〈Ψ|O|Ψ〉
〈Ψ|Ψ〉

,

where we have put in evidence that the wave function Ψ completely determines the expec-

tation value of every observable. We also add that solving HΨ = EΨ numerically requires

prohibitively long computation times, so that the simulation of materials properties by means

of this formula is an impracticable way. However, it was shown by Hohenberg and Kohn [4, 5]

that the role of Ψ can be taken by the electron density

ρ(r) = N

∫
|Ψ|2dr′,

where the primed differential prescribes to integrate over the coordinates of all electrons in

the system expect for one, which is assigned the position r. In particular, they shown (i)

that there exists a biunivocal correspondence between the external potential v(r) and the

electron density ρ(r), and (ii) that the electron density of the ground state minimizes its

energy. These are called the Hohenberg-Kohn theorems, and their formulation in 1964-1965

is taken as the birth of dft [23]. Now we introduce a non-interacting reference system in

which the electrons are regarded as independent and interacting with an effective field such

that the Schrödinger equation now writes[
−1

2
∇2 + veff

]
φi = εiϕi,

where the φi are the Kohn-Sham orbitals, populated in the non-interacting reference systems,

with eigenvalues εi, and such that

ρ(r) =
N∑
i=0

|φ(r)|2,

and
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veff = v(r) +

∫
ρ(r′)
|r− r′|

dr′ + vxc(r),

where

vxc(r) =
δExc

δρ

is the exchange-correlation potential, with Exc[ρ] the exchange-correlation functional. These

are called the Kohn-Sham equations. Two observations are worth at this point. First, veff
is a self-consistent potential, so that these equations are solved by iteration. Second, the

knowledge of Exc[ρ] solves exactly the electronic problem. However, Exc[ρ] is not known

exactly for the moment, so that approximations to the exchange-correlation functional must

be used. In particular, in this Thesis we make use of the B3LYP functional [58, 59, 60, 61].

Time-dependent theory

In the time-dependent case, the analogous of Hohenberg-Kohn theorems is the Runge-Gross

theorem. In particular, introducing the quantum mechanical action operator

A[φ] =

∫ t1

t0

〈
φ(t)

∣∣∣∣− ∂

∂t
−H(t)

∣∣∣∣φ(t)

〉
dt,

it is possible to see that imposing its functional derivative null the Schrödinger equation

is obtained. Thus the stationary points of A[φ] are solutions of the Schrödinger equation.

Considering now a perturbation v(1)(r) to the stationary external potential v(0)(r) such that

v(r, t) =

v(0)(r) for t < t0,

v(0)(r) + v(1)(r) for t ≥ t0,

the electron density can be written as a perturbative expansion:

ρ(r, t) =

ρ(0)(r) for t < t0,

ρ(0)(r) + ρ(1)(r) + . . . for t ≥ t0,

where ρ(n) has an n−order dependence on the perturbation v(1)(r). In a linear-response

framework the above series is truncated at first order. Then, ρ(1) can be expanded in terms

of the imperturbed orbitals {φi} to obtain

ρ(1)(r) =
∑
ij

δPijφ
∗
i (r)φj(r),

where δPij depends both on v(1)(r) and Exc[ρ].
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2.4 Computational tools

All molecular and periodic models described in this Thesis have been realized by means of

the molecular editor Avogadro [62]. Vibrational normal modes have been inspected using

Molden [63, 64]. dft simulations have been run on molecular models by using the gaussian

G09 software [65], published in an early version by John Pople, who shared the Nobel Prize

in Chemistry with Walter Kohn in 1998 for his development of computational methods in

quantum chemistry. dft has been applied to periodic models using the crystal17 soft-

ware [66, 67]. The functional B3LYP has been chosen based on its extensive use, together

with the basis set 6-31G(d,p). Finally, scaling factors have been applied to computed fre-

quencies in order to fit experimental data: 0.96 for n and the low-wavenumber region

of the ir spectra of graphene nanoribbons [68], 0.98 for the high wavenumber Raman region

of graphene nanoribbons [69], 0.978 when investigating pvdf and p(vdf−trfe).
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Chapter 3

N2200

I can’t keep you there

you’re everywhere

— Beach House, Woo

The comprehension of the nature of charge carriers in π−conjugated polymers is of funda-

mental interest [70]. In Chapter 1, it was mentioned that p(ndiod-t), briefly referred

to as n, is a particular instance in this class of advanced materials, which incorporates

both π−conjugation and redox sites [7]. Recent spectroscopy experiments [1] have unvei-

led polaron confinement in n, as illustrated in Figures 3.1 and 3.2. dft calculations

were also used, but the dopant was not taken into account explicitly. In this Chapter, we

investigate the polaron localization in n, also considering its interaction with a dopant.

Figure 3.1: From bottom to top: ir spectra of pristine n, doped n at increasing
dopant/polymer ratio mr and pristine dopant DPhBI. The latter is a molecu-
lar dopant with a relatively complex structure, not taken into account in this
Chapter. Asterisks label the features induced by doping, and indicate therefore
polaron markers. Reproduced from Ref. [1].
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Figure 3.2: From bottom to top: Raman spectra of pristine n, doped n at in-
creasing dopant/polymer ratio mr and pristine dopant DPhBI. The latter is a
molecular dopant with a relatively complex structure, not taken into account
in this Chapter. Asterisks label the features induced by doping, and indicate
therefore polaron markers. Reproduced from Ref. [1].

3.1 The computational model

Before we go into the details of the computational investigation carried out in this Chapter,

it is necessary to introduce the model and show the motivation lying behind its structure.

The repeat unit of n is represented in Figure 3.3a. Figures 3.3b, 3.4, and 3.5 show five

ball-and-stick models:

1. In Figure 3.3b, the molecular model of undoped n is shown. It has the structure

of the monomer of n with the addition of two thiophene rings at its boundaries.

This allows us to take into account the inter-ring torsion of the bithiophene (t) unit.

Moreover, the relatively small dimension of this model allows including the alkyl chains.

We assume their conformation to be trans-planar and take their insertion angle similar

to that of other π−conjugated polymers [71]. When considered as electrically neutral,

we call this model 1.

2. To the same model a negative elementary charge can be assigned, in which case we

refer to it as 1−. This represents n-doped n in the absence of the interacting

doping species, and is shown in Figure 3.4a.

3. A more realistic description of n-doped n is obtained by attaching a lithium atom

to oxygen, as represented in Figure 3.4b. In choosing lithium as doping agent and

oxygen as attachment site, we are guided by previous studies [72, 73]. We call this

model 1−Li+. Lithium is here considered as the doping agent also based on the small

value of its ionic radius, which in turn prevents phase segregation of the doped polymer

in the experiments. Moreover, the simple electronic structure of lithium allows us to

carefully consider its changes upon doping. On the other hand, we immediately realize
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(a) n (b) 1

Figure 3.3: (a) Structural formula of n. (b) Molecular model of undoped n.
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(a) 1− (b) 1−Li+

Figure 3.4: Molecular models of doped n.

that two non-equivalent oxygen sites are present in n, which differ with respect

to their distances from t. In the following, we will study the lithiation of the oxygen

near the thiophene ring, since this allows to study a particular interaction involving

lithium (see Figure 3.8).

4. The monomer approach assumed by models 1, 1−, and 1−Li+ can be extended to pe-

riodic models considering one-dimensional crystals. Figure 3.5 represents two portions

with three repeat units of 1–pbc and 1−Li+–pbc.
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(a) 1–pbc

(b) 1−Li+–pbc

Figure 3.5: One-dimensional periodic models of n.

45



CHAPTER 3. N2200 3.2. RESULTS AND DISCUSSION

3.2 Results and discussion

Energies of the fmos. We can consider the effect of lithium doping on the stability of

n by examining the energies of the frontier molecular orbitals (fmos) of 1− and 1−Li+.

As shown in Table 3.1 and Figure 3.6, the singly-occupied molecular orbital (somo) of 1−Li+

is lower in energy than the somo of 1−. This means that 1−Li+ is more stable than 1−,

so that the attachment of lithium has a stabilizing effect on the doped species [74]. We also

verify that n-doping reduces the energy gap Eg.

Model mo Energy (eV) Eg (eV)

1 lumo -3.33 2.18
1 homo -5.51

1− somo -1.41 1.64
1− β−homo -3.05

1−Li+ somo -4.10 0.91
1−Li+ β−homo -5.01

Table 3.1: Energies of fmos and energy gaps Eg of different molecular models of n.

Figure 3.6: Representation of the energies of the fmos of 1, 1− and 1−Li+.

Topology of the fmos. The effect of doping on the electronic structure of n modifies

the topology of the fmos occupied by the excess electron. These orbitals correspond to the

lumo of 1 and to the somos of 1− and 1−Li+. As shown in Figure 3.7, the fmos of 1
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(a) lumo of 1 (b) somo of 1− (c) somo of 1−Li+

Figure 3.7: Isosurfaces of the fmos of different molecular models of n. The fmos are
positive in yellow regions, negative in blue regions. Isosurfaces have been taken
at 0.006 a−3/20 . Black arrows indicate the main differences observed in the three
isosurfaces.

and 1− are almost identical, whereas that of 1−Li+ changes because of the presence of Li.

In particular, the inclusion of lithium causes the somo of 1−Li+ to partially spread over

the C C bond in the center of the naphthalenediimide (ndi) unit, while that region is a

node in the other models. Therefore, we expect 1− and 1−Li+ to have different equilibrium

geometries.

Effect of lithium motion and its position. The previous results motivate a further

investigation about the role of lithium. In the minimum-energy configuration of 1−Li+,

Li disposes itself near the sulfur atom of a thiophene ring, in such a way that a molecular

visualizer displays the two as covalently bonded (Figure 3.8). Although artificial, this fact

suggests the existence of a potential well in the projection of the potential energy surface on

the coordinate describing lithium displacement. For simplicity, we guess such a coordinate

considering the dihedral angle Li O C C, which we call τ . In Figure 3.9 we plot the total

energy of 1−Li+ at different values of τ , keeping constant all the other internal coordinates:

as expected, the projection of the potential energy surface onto τ has a local minimum, which

corresponds to the equilibrium geometry of 1−Li+. More interestingly, we observe that even

large variations of τ (∼ 20 °) cause total energy variations ∼ kbT at room temperature.

Our model predicts therefore large fluctuations of τ at room temperature. Of course, in

real doped samples of n this feature may be influenced by the presence of solvent and

neighboring molecules, which are not taken into account in this model. Nevertheless, we
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can still argue about the existence of a preferential interaction between lithium and the

thiophene ring nearest to it. Such interaction resembles the CH π interactions found in

aromatic compounds [75].

Figure 3.8: Artificial covalent bond bet-
ween lithium and a sulfur
atom in the 1−Li+ model.
The labeled atoms define the
dihedral angle Li O C C, τ .

Figure 3.9: Total energy of the 1−Li+

model as a function of the
Li O C C dihedral angle τ .
For the estimation of the ther-
mal energy, T = 298K has
been considered.

nbo analysis. The involvement of lithium as a dopant species is further investigated

through a natural bond orbital (nbo) analysis, taking into account the labeling scheme

defined in Figure 3.10. Such analysis shows that lithium donates almost completely its

valence electron because its natural electron configuration is

Li: [He] 2s0.05 2p0.17.

We observe that the 2p natural atomic orbital of lithium is partially populated; this is

consistent with the fact that the somo of 1−Li+ has a bilobed shape near lithium, as shown

in Figure 3.11. In Table 3.2 we also notice that the valence orbitals 2px, 2py, and 2pz
have different occupancies. This supports the existence of a directional interaction between

lithium and the thiophene ring nearest to it.

Table 3.3 compares selected natural atomic charges of 1 and 1−Li+. It is found that the

atoms and rings near the lithium atom have their natural charges most affected by lithiation.

We notice in particular that the nearest thiophene ring has a large variation of its natural

charge (∆ = -0.13), one order of magnitude larger than the other rings. Therefore, lithium
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(a) 1

(b) 1−Li+

Figure 3.10: Labeling scheme of the atoms taken into account in the nbo analysis of Tables
3.2 and 3.3. The atoms omitted in such analysis are not represented as spheres.
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Atom Orbital Type Occupancy

Li1 1s c 2.00

Li1 2s v 0.05
Li1 2px v 0.04
Li1 2py v 0.06
Li1 2pz v 0.07

Li1 3s r 0.00
Li1 3px r 0.00
Li1 3py r 0.00
Li1 3pz r 0.00

Table 3.2: nbo analysis of the 1−Li+ model: occupancies of the first nine natural orbitals
of lithium. The atomic label is defined in Figure 3.10b. c, v, and r stand
respectively for core, valence, and Rydberg natural atomic orbitals.

donates part of its charge to the nearest thiophene. This further supports the existence of

an OLi− π interaction.

1 1−Li+

Atom or ring q Atom or ring q ∆

Li1 − Li1 +0.78 −
N1 -0.48 N1 -0.47 +0.01
N2 -0.48 N2 -0.45 +0.03

O1 -0.59 O1 -0.79 -0.20
O2 -0.58 O2 -0.62 -0.04
O3 -0.59 O4 -0.60 -0.01
O4 -0.57 O3 -0.63 -0.06

T1 +0.06 T2 +0.05 -0.01
T2 +0.06 T3 -0.07 -0.13
T3 +0.02 T4 +0.04 +0.02
T4 +0.02 T1 +0.00 -0.02

Table 3.3: nbo analyses of 1 and 1−Li+: natural charges of some atoms and rings. Atomic
labels are defined in Figure 3.10. Tn, with n = 1, 2, 3, 4, labels the thiophene
ring containing the atom Sn. Natural charges are called q in this Table. Natural
charges for the thiophene rings have been obtained summing the natural atomic
charges of all the hydrogen, carbon and sulphur atoms of each ring. The last
column reports the variations ∆ = q(1−Li+) − q(1) of natural charges from 1
to 1−Li+. Data of corresponding atoms or rings are on the same row.

Spin density. The spin density of 1−Li+ confirms the nbo analysis. Figure 3.12 illustrates

the spin density, which represents the distribution of the excess charge donated by lithium.

As expected, the spin density is important in the ndi unit, with non-negligible contributions

also in the t units. Therefore, lithiation mainly affects the ndi unit of the molecule,

while the t units play a minor role in charge delocalization. On the other side, alkyl
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Figure 3.11: Particular of the isosurface of the somo of 1−Li+, showing its bilobed shape
near the lithium atom. The somo is positive in yellow regions, negative in
blue regions. The isosurface has been taken at 0.006 a−3/20 .

chains are characterized by a null spin density, meaning that they are not involved in charge

delocalization. Finally, the absence of spin density near the lithium atom confirms the nearly

full donation of its valence electron.

Structural relaxation. Because of Feynman theorem [55], a variation of electron density

in the region between two nuclei changes the strength of their chemical bond, hence their

average equilibrium distance. Therefore, charge delocalization is expected to cause a per-

turbation of the nuclear positions of the ndi unit. This can be assessed by observing the

differences between the bond lengths of 1−Li+ and 1, which are represented in the plot of

Figure 3.13. We refer to this plot as a bondplot, where red and blue lines indicate bonds which

respectively increase and decrease their length upon lithiation. By observing the bondplot,

we immediately infer that charge delocalization produces a structural relaxation which is

confined in the ndi and t units.

The reasons for structural relaxation are evident if we compare the bondplot of Figure 3.13

with the spin density of Figure 3.12. From this comparison, we notice that:

• In general, carbon-carbon bonds in the ndi unit increase their bond length when their

internuclear spin density is overall positive, and decrease their bond length when the

latter is negative.

• The thiophene ring near lithium is mostly affected. Indeed, all of its bonds are nodal

regions for the spin density.
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Figure 3.12: Isosurface of the spin density of 1−Li+. The spin density is positive in yellow
regions, negative in blue regions. The isosurface has been taken at 0.001 a−30 .

• Alkyl chains do not change their conformation. Coherently, they correspond to zero-

spin density regions.

• The largest bond-length variation is found in the lithiation site. This is because

lithiation weakens the double bond of the carbonyl group C O.

This analysis shows that the spin density is a good descriptor for explaining the variation of

electron density caused by lithiation, and the associated geometry relaxation.

The effect of lithium attachment on structural relaxation. When discussing the

topology of the fmos of 1− and 1−Li+, we have noted some differences, illustrated in

Figure 3.7. Such differences make the bondplot of 1−, represented in Figure 3.14, different

from that of 1−Li+. In particular:

• The deformation pattern of the ndi unit is more homogeneous in 1−. This is an effect

of the absence of an attached doping agent, as a result of which the symmetry of charge

delocalization increases.

• Roughly, all the thiophene rings have their structure modified to the same extent. This

is because of the lack of a localized OLi− π interaction.

• All the oxygen-carbon bond lengths change in the same way. Again, this is because no

lithiation site is present in 1−.
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Figure 3.13: Bondplot of 1−Li+: bond-length differences between 1−Li+ and 1. This plot
has the same orientation as in Figure 3.12, so that the asterisk indicates the
lithiation site. Differences are reported in pm. Only differences whose absolute
value is equal to or larger than 0.1 pm are shown. Bond-length variations are
positive in red regions, negative in blue regions.

These observations show that lithium doping affects the structural relaxation confining the

excess charge in the ndi unit. We may wonder if the origin of this confinement is due to

the variation of conjugation between 1− and 1−Li+. This can be roughly measured by

comparing in the two models the dihedral angles between ndi and t and within t. Taking

into account the labeling scheme defined in Figure 3.15, Table 3.4 shows that lithiation does

not modify appreciably the conjugation of the molecule. Therefore, we can infer that lithium

attachment confines the excess charge on the ndi unit through electrostatic interaction,

leaving the overall conjugation of the molecule unmodified. This is because the attached

lithium acts as a positive-charge center, as it results from the nbo analysis.

Electron density difference. We finally consider the variation of electron density caused

by doping. Following the conceptual scheme introduced by Brédas [11], we represent the

electron density variation associated with the transformation represented in the cycle of the

inset of Figure 3.16. This corresponds to subtracting the electron density of 1 from the

electron density of a new model obtained constraining 1− to have the geometry of 1. We

will refer to this model as 1− in the geometry of 1. In doing this, we neglect two important

points, namely the structural relaxation following the ionization process and the attachment
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Figure 3.14: Bondplot of 1−: bond-length differences between 1− and 1. Differences are
reported in pm. Only differences whose absolute value is equal to or larger
than 0.1 pm are shown. Bond-length variations are positive in red regions,
negative in blue regions.

of lithium. Nevertheless, this comparison is still meaningful, because the electron-density

difference of Figure 3.16 nicely correlates with the previous results.

Extension to one-dimensional crystals. The theoretical approach discussed above can

be extended to the periodic models of Figure 3.5, which are treated within periodic boundary

conditions (pbcs). In particular, here we focus our attention on the structural relaxation

induced by lithiation. Figure 3.17 reports the bondplot of a portion of 1−Li+–pbc. A

comparison with the bondplot of 1−Li+ reported in the inset shows that in the periodic

model:

• Structural relaxation is more delocalized and completely involves the t units.

• The bond-length increase in the lithiation site is smaller than in the molecular model.

• The most deformed thiophene ring is still the one near lithium.

Starting from these observations, we infer that this periodic model is characterized by a

larger excess charge delocalization than the corresponding molecular model. A contribution

to this is given by the absence of peripheral ndi units in molecular 1−Li+, which would

provide further excess charge, causing all the thiophene rings to change their conformation.

However, the minor bond-length increase in the lithiation site of the periodic model suggests
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(a) 1−

(b) 1−Li+

Figure 3.15: Labeling of the dihedral angles taken as a rough measure for the conjugation
in the molecular models of doped n in Table 3.4. Only atoms defining
the dihedral angles and lithium are represented as spheres.
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1− 1−Li+

Label α (°) min |nπ − α| (°) α (°) min |nπ − α| (°) ∆ (°)

S1-C55-C4-C9 58.7 58.7 139.2 40.8 -17.9
S2-C59-C33-C2 60.3 60.3 119.4 60.6 +0.3

S3-C63-C62-S2 159.4 20.6 164.9 15.1 -5.5
S4-C67-C58-S1 159.5 20.5 159.4 20.6 +0.1

Table 3.4: Values of some dihedral angles α in 1− and 1−Li+. Atomic labels are defined
in Figure 3.15. Here we use min |nπ − α|, with n ∈ Z, as a measure of the
non-planarity of the dihedral angle α. We have min |nπ−α| ≈ ϕ, where ϕ is the
angle formed by the normals to the planes onto which ndi and thiophene units
can be thought to lay, approximately. The last column reports the variation ∆
of this measure from 1− to 1−Li+.

that a higher charge delocalization is also a property of models longer than a monomer. This

is probably due to the presence of multiple positive-charge centers that spread the excess

charge over the crystal. Finally, we find that the periodic model conserves the OLi − π

interaction found in the molecular model.

Extension to other doping agents. The effect on structural relaxation of alkali metals

different from lithium can also be taken into account. In Figure 3.18 we compare the ndi and

t regions of the bondplots of 1−Li+, 1−Na+, and 1−K+. As in the case of lithium, the

attachment of sodium and potassium does not affect the conformation of the alkyl chains.

On the other hand, both the extent and delocalization of structural relaxation depend on

the doping agent. In particular, as the ionic radius of the n-dopant is increased:

• The structural relaxation is less localized on the ndi unit and involves the t units as

well.

• The bond-length variations become smaller in the regions near the attachment site.

These observations can be rationalized by recalling that the doping agent limits charge

delocalization acting as a positive-charge center. Then larger atomic radii increase the

charge delocalization of the excess charge donated to the polymer due to the larger screening

effect on the positive nuclear charge of the cationic dopant. As a consequence, the density of

excess charge decreases in the regions near the doping agent, resulting in smaller bond-length

variations.
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Figure 3.16: Isosurface of the electron-density difference between 1− and 1− in the geome-
try of 1. The electron-density difference is positive in yellow regions, negative
in blue regions. The isosurface has been taken at 0.001 a−30 . Inset: represen-
tation of the transformation associated with this electron-density difference.
In particular, we are concerned with the transformation with energy variation
Eip−v, from the ground state to the ionized state. Reproduced from Ref. [11].
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Figure 3.17: Bondplot of a portion of 1−Li+–pbc: bond-length differences between
1−Li+–pbc and 1–pbc. In this plot, the asterisk indicates the lithiation
site. Differences are reported in pm. Only differences whose absolute value is
equal to or larger than 0.1 pm are shown. Inset: portion of Figure 3.13, where
the bondplot of 1−Li+ is shown.
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(a) 1−Li+ (b) 1−Na+ (c) 1−K+

(d) 1−Na+

Figure 3.18: (a, b, c) Bondplots of molecular models of n with different alkali metals as
n-doping agents: bond-length differences between n-doped models and 1. In
these plots, asterisks indicate the attachment sites of alkali metals. Differences
are reported in pm. Only differences whose absolute value is equal to or larger
than 0.1 pm are shown. (d) Bond-length difference ∆ of the C O bond in the
lithiation site at different ionic radii.
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3.3 Chapter conclusions

In this Chapter, we have investigated the relaxation of the structure of n arising from

its n-doping through lithiation. We conclude the following:

1. When attached to a carbonyl group of n, lithium acts as an n-doping agent

donating almost completely its valence electron.

2. The attachment of lithium stabilizes the n-doped species reducing the energy of its

somo below the energy of the somo of the anionic species in the absence of the

attached doping agent.

3. The n-doping of n results in the partial localization of the excess charge, which

mainly localizes on the central ndi unit and on the nearby t unit. The n-doping does

not affect the alkyl chains. Such an effect implies a partial localization of the structural

relaxation as well, which arises from the perturbation of the electron density. This is

the evidence of the polaron localization in the ndi unit.

4. When lithium is attached to the carbonyl group near the t unit, it interacts with a

thiophene ring through an OLi − π interaction. This causes a partial charge transfer

to that thiophene ring.

5. The presence of lithium induces a structural relaxation pattern which differs from that

of the anionic species. In particular, lithium attachment makes bond-length variations

less homogeneous and more localized in the ndi unit. The structural relaxation is also

influenced by the OLi− π interaction.

6. The computed structural relaxation is well rationalized based on the spin density of

the lithiated molecular model and on the difference between the electron densities of

the anionic species and the anionic species in the geometry of the neutral species.

7. The models with periodic boundary conditions give a slightly different picture of charge

delocalization. In particular, it is found that structural relaxation is less localized in a

periodic one-dimensional lithiated crystal than in a molecular model.

8. By substituting lithium with other alkali metals, it is found that atomic dopants with

larger ionic radii lead to a more homogeneous and extended charge delocalization.
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Chapter 4

Functionalized graphene nanoribbons

And lo, what was that? One of the snakes grabbed its own tail

and the image whirled mockingly before my eyes.

— August Kekulé, on his discovery of the benzene ring

In Chapter 1, graphene nanoribbons (gnrs) have been introduced as portions of graphene

characterized by a nanometric width, for which π stacking in solution can be avoided by

edge functionalization. The correct functionalization of gnrs can be studied by spectrosco-

pic techniques. In this Chapter we assign the most prominent features of ir, Raman and

uv-Vis spectra of gnrs for a selection of functional groups. We refer to a recent study [53],

where functionalized ribbons are referred to as gnr–aom, being a and om two substituents

introduced in the following. It is useful to recall that both ir and Raman spectroscopy have

been identified as useful tools for the study of edge functionalization of graphene nanorib-

bons [76, 77]. We will be also concerned with the radial breathing-like mode (rblm) of

gnrs. This is a Raman feature of gnrs observed in the low-frequency region. The corre-

spondent vibrational normal mode is schematically represented in Figure 4.1. The fact that

the frequency of the rblm depends on the reciprocal of the square root of the width of the

gnr makes it a useful characterization tool [78].

Figure 4.1: Schematic representation of the rblm of a gnr. Reproduced from Ref. [12].
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4.1 The computational model

To assign the ir, Raman, and uv-Vis spectra of gnr–aom, we consider the following models.

Some of them are molecular models (within the so-called oligomer approach [79]), other are

models with periodic boundary conditions (pbcs).

1. Figure 4.2 shows the equilibrium geometries of fully hydrogenated oligomers of increa-

sing length. We call these molecules [n]gnr–H, where n is the number of repeat units.

These molecular models are used to study the vibrational and electronic properties

of gnr–aom which are independent of the substituents. As a matter of convenience,

fully hydrogenated models are here represented for only selected values of n. In this

Chapter, models with n = 3, 4, 5, 6, 8, 9, 11, 13 are considered. Concerning vibrational

spectroscopy, the aim of these hydrogenated models is to draw general conclusions on

the out-of-plane vibrational bending modes, and they are not to be compared with ir

experimental data.

2. Figure 4.3 represents a tetramer functionalized with four anthracenyl (a) groups and

four N-n-octadecyl maleimide (om) groups, which we call [4]gnr–[4]a[4]om. The choi-

ce of both the concentration and the random disposition of a and om in this model

are based on the fact that the chemical synthesis of gnr–aom does not control the

position of the substituents along the gnr. Thus, gnr–aom can be referred to as

atactic. Moreover, this particular disposition of the substituents allows us to take into

account possible couplings between different neighboring groups.

3. Figure 4.4 shows oligomers of different lengths and one repeat unit of a model to which

pbcs are applied. We refer to these models respectively as [n]gnr–a and gnr–a–pbc.

These models with only one type of substituent are used to evidence the vibrational

markers related to only a. The periodic model is also used as a benchmark for the

applicability of the oligomer approach.
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(a) [4]gnr–H (b) [6]gnr–H

(c) [9]gnr–H

Figure 4.2: Molecular models of fully hydrogenated gnrs.
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(a) [4]gnr–[4]a[4]om

(b) a (c) om

Figure 4.3: Molecular model of a gnr functionalized with a and om, and their structural
formulae. In panel (a) the substituents are indicated. In panels (b) and (c)
asterisks indicate the attaching sites.
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(a) [1]gnr–a (b) [2]gnr–a

(c) [3]gnr–a (d) gnr–a–pbc

(e) [5]gnr–a

Figure 4.4: Molecular and periodic models of gnrs functionalized with a groups. In panel
(d), a repeat unit of gnr–a–pbc is represented.
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4.2 Results and discussion - ir

We begin with the assignment of the experimental ir spectrum of Figure 4.5, where four

features are put in evidence in the region of the CH out-of-plane bending which was shown

to be useful in the characterization of other gnrs [76]. Considering both hydrogenated

and functionalized molecular models, we can study the effect of the substituents on the

vibrational properties of gnrs.

Figure 4.5: Experimental ir spectrum of gnr–aom (courtesy of Dr. Junzhi Liu, The
University of Hong Kong). The most intense bands are labelled with their
corresponding wavenumbers in cm−1.

Hydrogenated models. The left panel of Figure 4.6 shows the simulated ir spectra of

[n]gnr–H models. The computed spectra are characterized by two relatively intense bands

at 755 cm−1 and 792 cm−1, with a weak feature at 714 cm−1. We immediately notice that

the spectra undergo frequency dispersion with the length of the model up to n = 6, as

shown in the top right panel. We can thus focus our attention on [6]gnr–H and consider

the vibrational normal modes associated with these three features. In Table 4.1, atomic

displacements are represented following two conventions, either by means of black arrows

or using red arrows together with blue and green segments, which symbolize stretching and

shortening bonds. We observe that:

• The feature at 714 cm−1 is associated with the displacement of terminal hydrogens and

in-plane deformations in the backbone of the gnr. Given this partial terminal nature
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and the relative low ir intensity of the in-plane normal mode, we expect this feature

to almost disappear in longer molecules.

• The feature at 755 cm−1 has a complete terminal nature, and should not be found for

large values of n. As expected, the intensity of this feature decreases with respect to

the band at 792 cm−1, as shown in the bottom right panel of Figure 4.6.

• The feature at ∼ 792 cm−1 is due to CH out-of-plane bending modes in the regions

nearest to the axis of the backbone. These are referred to as the bay regions of the

gnr.

This analysis confirms the diagnostic role of this ir region for the structure of gnrs. Moreo-

ver, we notice that hydrogen-terminated edges lead to a simple ir spectrum in this region.

In particular, in the CH out-of-plane region the ir spectrum possesses one edge vibrational

marker and one terminal vibrational marker.

Figure 4.6: Left: simulated ir spectra of hydrogenated oligomers of gnrs. Three most
intense simulated bands are labelled with their corresponding wavenumbers in
cm−1. Spectra are normalized on their maximum intensity in the represented
interval. Top right: wavenumber dispersion of the most intense computed ir
bands with respect to the length of the molecular models. Bottom right: ratio
between the intensities of the two bands at ∼ 792 cm−1 and ∼ 755 cm−1 at
different lengths of the molecular models.
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Wavenumber (cm−1) ir intensity (km/mol) Nuclear displacements

713 6

714 7

714 8

Table 4.1 - Continued on next page
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Table 4.1 - Continued from previous page

Wavenumber (cm−1) ir intensity (km/mol) Nuclear displacements

755 101

755 111

793 266

Table 4.1: Vibrational normal modes associated with the most intense features of the ir
spectrum of [6]gnr–H. The last column represents the atomic displacements at
a given instant of time of the vibration. Blue and green segments symbolize
stretching and shortening bonds.
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Functionalized model. The functionalized molecular model [4]gnr–[4]a[4]om approaches

the observed ir spectrum in in the CH out-of-plane bending region. This is shown in Figure

4.7, where we can see that the inclusion of the substituents introduces several vibrational

features, compared to [n]gnr–H. We inspect the vibrational normal modes associated with

the most intense features of the simulated spectrum, which are represented in Table 4.3. We

recognize that:

• The peak at 724 cm−1 involves collective CH out-of-plane bending in the a groups.

• The band at 745 cm−1 is produced by CH out-of-plane bending on both the a and om

substituents.

• The feature at 759 cm−1 is due to CH out-of-plane bending and CH2 twisting, both on

the om groups.

• The broad feature at 816 cm−1 arises from both collective in-plane deformation in the

om groups and out-of-plane CH bending in the a groups.

• Finally, the structured band at 834 cm−1 is due to collective out-of-plane bending of

the a units, collective in-plane deformations in the om groups, and CH out-of-plane

bending in the bay regions of the gnr. Although at lower wavenumber, this latter is

the only vibrational feature accounted for also by a fully hydrogenated model. This

significant difference is caused by vibrational coupling of the CH of the bay region with

the a and om groups.

These observations allow us to assign the main features of the experimental ir spectrum of

gnr–aom as in Table 4.2.

Wavenumber (cm−1)
Experimental Theoretical Assignment

722 724 Collective CH out-of-plane bending in a groups

751 745 Collective CH out-of-plane bending in a and om groups

765 759 Collective CH out-of-plane bending in om groups, CH2 twi-
sting in om, minor contribution from in-plane collective
bending on a

815 816 Collective CH out-of-plane bending in a groups, collective
in-plane deformations of the om groups

815 834 Collective CH out-of-plane bending in a groups, collective
in-plane deformations of the om groups, CH out-of-plane
bending at the gnr bay regions

Table 4.2: Assignment of the experimental ir spectrum of gnr–aom.
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Figure 4.7: Simulated ir spectrum of [4]gnr–[4]a[4]om compared with the experimental
ir spectrum of gnr–aom (courtesy of Dr. Junzhi Liu, The University of Hong
Kong). Dotted lines highlight the assignment of the most prominent ir features.
In both spectra, the most intense features are labelled with their wavenumber
in cm−1. Spectra are normalized on their maximum intensity in the represented
interval.

Wavenumber (cm−1) ir intensity (km/mol) Nuclear displacements

724 66

Table 4.3 - Continued on next page
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Table 4.3 - Continued from previous page

Wavenumber (cm−1) ir intensity (km/mol) Nuclear displacements

746 94

755 40

814 11

Table 4.3 - Continued on next page
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Table 4.3 - Continued from previous page

Wavenumber (cm−1) ir intensity (km/mol) Nuclear displacements

814 12

835 33

Table 4.3: Vibrational normal modes associated with the most intense features of the
ir spectrum of [4]gnr–[4]a[4]om. The last column represents the atomic
displacements at a given instant of time of the vibration.

Extension to periodic models. We can extend the approach followed above considering

the models of Figure 4.4, and in particular of Figure 4.4d, where pbcs are applied. In Figure

4.8 the simulated ir spectra of these models are represented compared to the experimental

one. Only some experimental features are reproduced by the simulated spectra, as expected

because of the absence of the om groups. From the inspection of the vibrational normal

modes, we observe that:

• The feature at 722 cm−1 in gnr–a–pbc is related to collective CH out-of-plane bending

in the a groups. In moving from shorter to longer oligomers, and finally considering

pbcs, this peak undergoes frequency dispersion and shifts closer to the experimental
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spectrum. The same is true for the feature at 827 cm−1, which is expected to contribute

to the broad band at 815 cm−1 of the experiment.

• The feature at 780 cm−1 in gnr–a–pbc involves collective CH out-of-plane bending in

the a groups, and is characterized by a relatively large dispersion of its frequency with

respect to the length of the model. Due to its small ir intensity, this feature is hardly

observed in the experiment.

• The peak at 815 cm−1 in [1]gnr–a increases in frequency with increasing n, becoming

a contribution of the structured feature at 840 cm−1 in gnr–a–pbc.

From this analysis, we infer that:

1. Not always molecular models give a correct prediction of the ir vibrational frequencies

of functionalized gnrs. Longer models are more reliable, because terminal effects are

weaker. In some cases, the molecular approach is made suitable by a small frequency

dispersion. This is the case of the CH out-of-plane bending at 722 cm−1, which is

correctly predicted by [1]gnr–a.

2. Some vibrational features of gnr–aom are due to the interaction between a and om

groups. Indeed, a model containing only a substituents does not account for the

experimental feature at 751 cm−1, which we assign to the CH out-of-plane bending on

both the a and om substituents.
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Figure 4.8: Simulated ir spectra of models of gnrs functionalized with a groups compared
with the experimental ir spectrum of gnr–aom (courtesy of Dr. Junzhi Liu,
The University of Hong Kong). In the spectra of gnr–aom and gnr–a–pbc,
the most intense features are labelled with their wavenumber in cm−1. Dashed
grey lines help to visualize the dispersion of some features with respect to the
length of the model. Spectra are normalized on their maximum intensity in the
represented interval.

4.3 Results and discussion - uv-Vis

The uv-Vis spectrum of gnr–aom is represented in Figure 4.9a. As expected for a highly

π−conjugated polymer, this experimental spectrum displays several features in the visible

range [80]. Two of such features can be assigned by simulating the uv-Vis spectra of fully

hydrogenated and functionalized molecular models, which are represented in Figure 4.9b.

There we see that the most prominent peak red-shifts with increasing length of the model.

Figure 4.9c shows that this dispersion is almost arrested at n = 13, so that [13]gnr–H can

be adopted to assign the experimental uv-Vis features. The uv-Vis spectrum of [13]gnr–

H has a prominent peak at 549 nm and a weak shoulder at ∼ 472 nm. These two can be

immediately put in correspondence with the experimental uv-Vis features respectively found

at 541 nm and 472 nm.

In Figure 4.9a we also notice that functionalization causes a redshift of the simulated uv-

Vis spectrum at constant number of repeat units. The reason for this can be investigated

considering the details of the molecular orbitals involved in the electronic excitation pro-

cess. In Table 4.4 we see that the most intense uv-Vis peak is associated with the coupled
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(a) gnr–aom (b) [n]gnr–H, [4]gnr–[4]a[4]om

(c) [n]gnr–H

(d) homo−, -4.88 eV (e) homo, -4.77 eV (f) lumo, 2.16 eV (g) lumo+, -2.06 eV

Figure 4.9: (a) Experimental uv-Vis spectrum of gnr–aom (courtesy of Dr. Junzhi Liu,
The University of Hong Kong). (b) Simulated uv-Vis spectra of [n]gnr–H and
[4]gnr–[4]a[4]om models. (c) Dispersion of the peak at 549 nm in [13]gnr–H.
(d-g) Isosurfaces of the fmos of [4]gnr–[4]a[4]om involved in the electronic
transitions associated with the most prominent peaks of its uv-Vis spectrum.
The fmos are positive in yellow regions, negative in blue regions. Isosurfaces
have been taken at 0.005 a−3/20 . In the uv-Vis spectra, the most intense features
are labelled with their wavelength in nm. In particular, a dashed line helps to
visualize the shoulder of the uv-Vis spectrum of [13]gnr–H.
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homo− → lumo+ and homo → lumo single excitations. Similarly, we find that the

most important contributions to the feature at 472 nm involve electronic transitions from

homo− and homo to lumo+ and lumo. We can then understand the reason for the

redshift of the uv-Vis spectrum of [4]gnr–[4]a[4]om observing the topology of its frontier

molecular orbitals (fmos). In Figures 4.9d-4.9g we see that functionalization causes the

fmos to spread outside the graphenic backbone, increasing the conjugation of the whole

molecule. In particular, we see that the a groups cause the largest increase in conjugation,

leaving the om groups with almost no effect. We can thus rationalize the trend observed in

Figures 4.9b and 4.9c as follows:

1. Increasing the length of a fully hydrogenated molecular model, the fmos involved in

the electronic transitions at 474 nm and 543 nm spread onto larger regions. This leads

to an increase of the conjugation of the molecule, which is known to cause a redshift

of the uv-Vis spectrum [36].

2. Functionalizing a molecular model at constant length leads to an increase of conjuga-

tion as well, with the same effect discussed above.

Therefore, the effect of functional groups on the overall conjugation of the molecule is small.

This is due to both the limited size of the a groups and their insertion on the backbone,

which is almost orthogonal because of the steric hindrance of neighboring groups. As a

result, fully hydrogenated molecular models are representative of two of the three uv-Vis

experimental features of gnr–aom.

λ nm Oscillator strength i→ j excitation δPi→j

543 0.12 homo−→ lumo+ 0.37
homo→ lumo 0.58

474 0.72 homo−→ lumo+ 0.10
homo−→ lumo+ 0.57
homo→ lumo -0.37

Table 4.4: Analysis of the electronic excitations associated with the uv-Vis features at
472 nm and 549 nm in the simulated spectrum of [13]gnr–H of Figure 4.9b.

The experimental peak at 498 nm is not reproduced by our models. This is likely to be

a vibronic feature since it has not a counterpart in our calculations of vertical transition

energies.

4.4 Results and discussion - Raman

We conclude this Chapter studying the Raman spectrum of gnr–aom.
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Hydrogenated models. On the left panel of Figure 4.10, the experimental Raman spec-

trum of gnr–aom is compared with the computational ones of [n]gnr–H models. All of the-

se spectra display the d and g peaks which are characteristic of graphenic materials [81, 82].

In the right panel, the frequency of the d peak of the theoretical spectra is reported as a

function of the number of repeat units n. We see that the dispersion is small in passing from

[5]gnr–H to [6]gnr–H, so that the latter can be chosen for further analysis. As expected,

we find that the d and g peaks of [6]gnr–H are related to ring-breathing and ring-stretching

vibrational normal modes, respectively, as illustrated in Table 4.5.

Figure 4.10: Left: simulated Raman spectra of hydrogenated oligomers of gnrs and ex-
perimental Raman spectrum of gnr–aom (courtesy of Dr. Junzhi Liu, The
University of Hong Kong). The d and g peaks of the experimental spectrum
are labelled with their corresponding wavenumbers in cm−1. Spectra are nor-
malized on the intensity of the d peak. Right: wavenumber dispersion of the
computed d peak with respect to the length of the molecular models.

Wavenumber (cm−1) Raman activity (Å2
/amu1/2) Nuclear displacements

1310 138375

1566 12534

Table 4.5 - Continued on next page
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Table 4.5 - Continued from previous page

Wavenumber (cm−1) Raman activity (Å2
/amu1/2) Nuclear displacements

1606 29869

Table 4.5: Vibrational normal modes associated with the d and g peaks of [6]gnr–H. The
last column represents the atomic displacements at a given instant of time of the
vibration. Blue and green segments symbolize stretching and shortening bonds.

Functionalized model. The effect of the substituents on the Raman spectrum of gnr–

aom is accounted for by the [4]gnr–[4]a[4]om model. Figure 4.11 shows a comparison

between its simulated Raman spectrum and the experimental one. It is possible to see

that the d and g peaks are still well reproduced, both in their overall shape and frequency.

However, a comparison with Figure 4.10 shows that the substituents perturb the Raman

spectrum, causing the two peaks to become more structured. As shown in Table 4.6, the

reason for this is that in [4]gnr–[4]a[4]om the ring-breathing and ring-stretching vibrational

modes couple with the substituents in several different ways. This coupling effect induced

by the presence of the substituents fully agrees with that discussed for the assignment of

the uv-Vis spectrum of gnr–aom. Consistently, we find that the effect of the substituents

on the Raman spectrum of gnr–aom is small, similar to the small conjugation modulation

induced by the substituents on the gnr.

Wavenumber (cm−1) Raman activity (Å2
/amu1/2) Nuclear displacements

1314 39203

1323 68156

Table 4.6 - Continued on next page
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Table 4.6 - Continued from previous page

Wavenumber (cm−1) Raman activity (Å2
/amu1/2) Nuclear displacements

1586 13842

1607 11577

1610 18366

1611 2382

Table 4.6: Vibrational normal modes associated with the d and g peaks of [4]gnr–
[4]a[4]om. The last column represents the atomic displacements at a given
instant of time of the vibration. Blue and green segments symbolize stretching
and shortening bonds.

Radial breathing-like mode. The experimental spectrum of gnr–aom displays a radial

breathing-like mode (rblm) at 252 cm−1, as shown in Figure 4.12. The same feature is shown

by [n]gnr–H models, but at a significantly higher wavenumber (∼ 308 cm−1). This effect is

not related to the finite length of the molecular models, since the wavenumber dispersion of

the rblm feature is already negligible for [6]gnr–H. On the contrary, this is likely to be a

mass effect related to the presence of the substituents in gnr–aom. The same single rblm
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Figure 4.11: Simulated Raman spectrum of [4]gnr–[4]a[4]om compared with the expe-
rimental Raman spectrum of gnr–aom (courtesy of Dr. Junzhi Liu, The
University of Hong Kong). The d and g peaks of the experimental spec-
trum are labelled with their corresponding wavenumbers in cm−1. Spectra are
normalized on the intensity of the d peak.

feature is hardly found in [4]gnr–[4]a[4]om. Similar to the case of the d and g peaks, the

[4]gnr–[4]a[4]om model possesses several rblm features at low wavenumbers, coupled with

collective vibrations of the a and om groups. Therefore, a precise assignment of the rblm

feature of gnr–aom cannot be done with a single model of [4]gnr–[4]a[4]om.
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Figure 4.12: From top to bottom: experimental Raman spectrum of gnr–aom (courtesy
of Dr. Junzhi Liu, The University of Hong Kong), simulated Raman spectra
of [6]gnr–H, [n]gnr–H models with n = 5, 4, 3, and [4]gnr–[4]a[4]om. The
rblm features of gnr–aom and [6]gnr–H are labelled with their correspon-
ding wavenumbers in cm−1. All spectra except those of [n]gnr–H models are
normalized with respect to the most intense feature of the represented interval.
The spectra of [n]gnr–H models are normalized with respect to the intensity
of the rblm feature of [6]gnr–H.

4.5 Chapter conclusions

In this Chapter, we have assigned the experimental ir, uv-Vis, and Raman spectra of gnrs

functionalized with a and om groups. The following can be concluded:

1. The ir spectrum of gnr–aom in the CH out-of-plane bending region between 700 cm−1

and 850 cm−1 is highly influenced by functionalization. In particular, we find that the

feature at 722 cm−1 is a chemical marker of a; the feature at 751 cm−1 is a marker of

the coupling between a and om; the feature at 765 cm−1 is a chemical marker of om;

the broad feature at 815 cm−1 is related to several ir transitions, namely collective CH

out-of-plane bending in a groups, in om groups and at the gnr bay regions.

2. Although the oligomer approach correctly predicts the vibrational ir features of gnr–

aom, the reliability of the simulated ir spectrum increases by taking into account a

periodic model.

3. The uv-Vis spectrum of gnr–aom is partially reproduced by a fully hydrogenated

molecular model, and two of its most prominent peaks are associated with electronic
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transitions between fmos. Substituents have a small redshift effect on the uv-Vis

spectrum. This is a consequence of the small electronic coupling between the graphenic

backbone and the functional groups, as results from the topology of the fmos.

4. One feature of the experimental uv-Vis spectrum is not accounted for by our models.

We infer that such a feature is vibronic, and not predictable by the selected first-order

theoretical approach which considers vertical transitions only. Further calculations

of Franck-Condon factors would be necessary to shed light on this point, but are

cumbersome due to the complexity of the system.

5. The Raman spectrum of gnr–aom shows the d and g peaks typical of graphenic

molecules. Functionalization results in the broadening of those features since, because

of vibrational coupling between the gnr and the side groups, it introduces several

Raman active vibrational modes at slightly different frequencies. This also agrees with

the small π−electron coupling between the backbone and substituents found with the

analysis of uv-Vis data.

6. The rblm of gnr–aom is poorly explained by our models. This is because fully

hydrogenated models lack the mass effect of the substituents, while [4]gnr–[4]a[4]om

does not display a single rblm feature.
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Chapter 5

PVDF

“Goodbye,” he said.

“Goodbye,” said the fox. “And now here is my secret, a very simple secret:

it is only with the heart that one can see rightly; what is essential is

invisible to the eye.”

— Antoine de Saint-Exupéry, The Little Prince

The piezoelectricity of the ferroelectric polymer polyvinylidene fluoride (pvdf) opens the

possibility for the design of innovative electronic devices [46], but faces the fact that its pie-

zoelectric phase β is not the most stable from the point of view of thermodynamics, so that

crystallization from the melt does not lead spontaneously to piezoelectricity [9]. Given this

fact, the copolymer poly (vinylidene fluoride-co-trifluoroethylene) (p(vdf−trfe)), which is

characterized by the random alternation of vdf and trfe units and spontaneously crystalli-

zes into its piezoelectric all-trans phase, is of large interest [47, 83]. However, the reasons for

this behavior need further investigation in order to be unveiled. In this Chapter, we apply

density functional theory (dft) to show that markers of the trfe unit and conformational

disorder are found in the vibrational spectra, corroborating recent experimental results [2].

Then, we study the solid-state effects on the vibrational properties of pvdf.

5.1 The computational model

We will study the ir and Raman response of pvdf and p(vdf−trfe) considering the models

described below.

1. A pvdf macromolecule can be described in the first approximation as an isolated chain

with chemical formula CF3 [CHCF]n CH3 of finite length n. This model is referred

to as n−vdf, and is represented in the particular case of n = 10 in Figure 5.1a.
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(a) 10−vdf (b) 9−vdf−1−trfe (c) 10−vdf−1−gtg’

Figure 5.1: Equilibrium geometries of molecular models of pvdf and p(vdf−trfe).

Substituting 1/10 of the CH2CF2 units of n−vdf with CHCF3 (trfe) units, one obtains

n−vdf−m−trfe, where n + m is an integer multiple of 10. This is an in vacuo

molecular model for the copolymer p(vdf−trfe). Given this ideal construction of the

model, we will refer to the unit trfe as the chemical defect. The particular case with

n = 9 is represented in Figure 5.1b.

Conformational disorder can also be incorporated imposing the presence of one gauche-

trans-gauche’ (gtg’) dihedral angle in an n−vdf molecule every 10 repeat units.

This is also the most simple way to take into account that the distribution of these

conformational defects is random above the Curie temperature of pvdf. We refer to

this model as n−vdf−l−gtg’, with n = 10l, and illustrate the particular case for

n = 10 in Figure 5.1c.

In all of these molecular models, we impose an all-trans conformation of the polymer

backbone to better describe the β phase of pvdf, which is also the only crystalline

phase of p(vdf−trfe) [48, 84]. Terminal groups CH3 and CF3 are chosen coherently

with the chemical structure of pvdf, in order to preserve the periodic alternation of

CH2 and CF2 groups as much as possible. When multiple chemical and conformational

defects are taken into account, they are disposed in a regular arrangement along the

molecule, so as to make them equidistant from each other. On one side, this is done

in view of the randomness with which the statistical distribution of these defects is

described in the literature [85]. On the other hand, this approach allows us to consider

independent defects, which simplifies the subsequent investigation of their effect on the

vibrational properties of pvdf and p(vdf−trfe).

2. A further step towards the modeling of macromolecular chains of pvdf and p(vdf−trfe)
is done passing from finite molecular to one-dimensional periodic models. In particu-

lar, Figure 5.2 represents vdf−1d and vdf−trfe−1d, to which periodic boundary

conditions (pbcs) are applied. These models ideally represent the limit behavior of

n−vdf and n−vdf−m−trfe for n→∞.
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(a) vdf−1d (b) vdf−trfe−1d

Figure 5.2: Equilibrium geometries of one-dimensional periodic models of pvdf and
p(vdf−trfe). In panel (a) a portion with five repeat units of vdf−1d is
represented, while panel (b) shows the repeat unit of p(vdf−trfe).

We notice that, to preserve a constant concentration of chemical defect, the structural

unit of the chemically-defected one-dimensional periodic model must be relatively large.

This requires to impose again the all-trans conformation to the polymer backbone,

which instead directly results from periodicity in the other model.

3. To account for solid-state effects in pvdf, inter-chain interactions must be taken in-

to account. This is first done considering clusters, ideally obtained stacking a finite

number of vdf−1d models along the direction of their electric dipole moment. This

results in 2−vdf−1d and 3−vdf−1d−m models, which are represented in Figure

5.3. In particular, 2−vdf−1d is used as the most simple approximation of the inter-

chain interactions, while 3−vdf−1d−m approximates the interaction of a pvdf chain

embedded in a large crystal with two first neighbors in the direction of their electric

dipole moments. To increase the accuracy of 3−vdf−1d−m, arbitrary large masses

are assigned to the external chains, for the reasons discussed at point 5. Then, the

limit behavior of these models for n→∞ can be also taken into account, considering

a two-dimensional periodic model with the same basis of Figure 5.2a, which is referred

to as vdf−2d.

4. A second step towards the modeling of the solid crystalline phase of pvdf requires a

three-dimensional periodic model. In this case we consider the model vdf−3d, which
is obtained with the basis of Figure 5.2a for an orthorhombic crystal structure. This

gives the model illustrated in Figure 5.4a. The chemical defect can be taken into ac-

count as done for one-dimensional models. Imposing the usual requirements for an

all-trans conformation of the chains, the vdf−trfe−3d model of Figure 5.4b is obtai-
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(a) 2−vdf−1d (b) 3−vdf−1d−m

Figure 5.3: Equilibrium geometries of cluster models of pvdf. In both panels, portions
with five repeat units are shown. In panel (b), crossed atoms are assigned a
mass m = 1000 amu.

ned. In particular, we point out that this is a simple three-dimensional periodic model,

with all the chemical defects at equivalent positions. This choice makes our approach

simple, but also limited, because the statistical distribution of chemical defects is in

this way completely neglected. In both cases, the structural optimization begins with

experimental equilibrium values for pvdf available in the literature [86].

5. In some cases, it is convenient to assign an arbitrary large mass to particular atoms of

a model in order to localize normal vibrational modes in regions of interest. In doing

this, we follow an approach applied for the first time elsewhere [87]. When all the atoms

of 9−vdf−1−trfe except the CHF unit of the chemical defect are assigned a large

mass, we refer to it as 9−vdf−1−trfe−m. Also 3−vdf−1d−m, discussed above, has

by definition large masses on the two external pvdf one-dimensional periodic chains.

These models are represented in Figures 5.5 and 5.3b.
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(a) vdf−3d (b) vdf−trfe−3d

Figure 5.4: Equilibrium geometries of three-dimensional periodic models of pvdf and
p(vdf−trfe). In both panels, portions with seven repeat units are shown.

Figure 5.5: Equilibrium geometry of 9−vdf−1−trfe−m. Crossed atoms are assigned a
mass m = 1000 amu.

5.2 Model performance

pvdf. In order to study the vibrational properties of pvdf and p(vdf−trfe), we first need
to consider that molecular models of different lengths are characterized in general by different

performances. Longer oligomeric models are usually more descriptive of experiments, but

they also require more computational effort in simulating their properties [88]. Therefore,

the choice of a good molecular model is a compromise between reliability and simplicity. In

Figure 5.6a, the ir spectra of several n−vdfmodels are represented. It is possible to see that,

in passing from n = 2 to n = 10 repeat units in the model, spurious features at ∼ 1400 cm−1

and ∼ 950 cm−1 progressively disappear. This points out that those features are associated

to vibrations localized on molecular terminal groups, which are not observed experimentally.

This is confirmed by inspecting the vibrational normal modes of these molecular models.

Figure 5.6b shows that extending the length to n > 10, only a little effect on the terminal
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bands is obtained.

(a) (b)

Figure 5.6: Study of the performance of oligomeric models of pvdf. ir spectra of n−vdf
with n = 2, 4, 6, 8, 10, 20, 30. In both panels, ir intensities are normalized to n.
In panel (b) terminal bands are indicated with t.

The simulated Raman spectra of Figure 5.7a show a similar situation for what concerns the

terminal bands, which are present at ∼ 1500 cm−1 and cancel out when longer models are

considered. Moreover, we notice that the region between 1000 cm−1 and 1200 cm−1 is more

affected by the length of short models with respect to the same region of the ir spectra

observed above. This fact suggest this region of the Raman spectrum to be sensitive of

the disorder in the material. We expect this portion to become structured and with broad

features when disorder is introduced in the material, for example by means of heating.

The spectra of Figure 5.7b confirm that 10−vdf is a good choice to model the vibrational

properties of pvdf in the oligomer approach, because longer models show no significant

enhancements.

Chemical and conformational defects. The same procedure as above can be applied also

to oligomeric models incorporating chemical and conformational defects. Figure 5.8 shows

that the predictions of 9−vdf−1−trfe and longer models are almost identical, both for

ir and Raman spectroscopy. Although terminal modes at ∼ 1250 cm−1 and 1450 cm−1 are

still present, we choose 9−vdf−1−trfe by consistency: in this way, the effect of chemical

defects can be studied at constant length of the chains. Moreover, Figure 5.8b confirms

that in the region between 1000 cm−1 and 1200 cm−1 the Raman response is affected by the

number of repeat units in the oligomer, for which the same observations as above are valid.

The goodness of 10−vdf and 9−vdf−1−trfe as molecular models is corroborated by their
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(a) (b)

Figure 5.7: Study of the performance of oligomeric models of pvdf. Raman spectra of
n−vdf with n = 2, 4, 6, 8, 10, 20, 30. In both panels, Raman activities are
normalized to n. In panel (b) a terminal band is indicated with t.

comparison with one-dimensional models to which pbcs are applied. Taking into account

that symmetry necessarily simplifies the spectra of vdf−1d and vdf−trfe−1d [56], as

expected Figure 5.9 shows that some differences in ir intensities and Raman activities exist

between oligomeric and periodic models. Apart from this, however, the simulated spectra

of molecular and periodic models are similar, especially for what concerns the wavenumber

of the most intense features. Therefore, 10−vdf and 9−vdf−1−trfe can be safely chosen

as in vacuo models for pvdf and p(vdf−trfe). It must be pointed out that this kind of

choice makes us completely neglect the effect of inter-chain interactions on the ir and Raman

responses. These solid-state effects will be taken into account by one-dimensional periodic

clusters and two- and three-dimensional periodic models in section 5.5.

We postpone the discussion on the choice of the oligomeric model with conformational defects

to section 5.4. There, it will be shown that 10−vdf−1−gtg’ can be chosen for describing

the effect of gtg’ defects in a pvdf chain.
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(a) (b)

Figure 5.8: Study of the performance of oligomeric models of p(vdf−trfe). ir (a) and
Raman (b) spectra of n−vdf−m−trfe, with n = 9, 18, 27. ir intensities and
Raman activities are normalized to (10/9)n.
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Figure 5.9: Comparison between ir and Raman spectra of molecular and one-dimensional
periodic models of pvdf (a, b) and p(vdf−trfe) (c, d). In all panels, ir in-
tensities and Raman activities have been normalized on the number of CH2CF2
or CHCF3 units either in the molecule or in the repeat unit.
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5.3 Chemical defect

We now regard trfe units as chemical defects of pvdf, and study their effect on the ir

and Raman spectra of p(vdf−trfe) models. In this way, ir and Raman chemical defect

markers will be identified.

ir spectroscopy. The explanatory power of 10−vdf and 9−vdf−1−trfe is readily tested

by a comparison with experiments. In Figure 5.10a, simulated ir spectra are compared with

the experimental spectrum of p(vdf−trfe) films reproduced from Ref. [2]. As it can be

observed, our model does not account correctly for the intensities in the wavenumber region

between 1200 cm−1 and 1400 cm−1. On the contrary, theory and experiment are in good

accordance for what concerns the wavenumber of the bands. This is especially true for the

weak features at 1113 cm−1 and 1341 cm−1, which are displayed by both p(vdf−trfe) and

9−vdf−1−trfe, but not by 10−vdf. Inspecting the vibrational normal modes associated

to those features, we conclude that they are associated respectively to the CF stretching and

to the CH bending of the only chemical-defective unit of 9−vdf−1−trfe, as represented in

Figures 5.10b and 5.10c. This suggests to identify such bands as ir vibrational markers of

trfe units in pvdf.

A stronger assignment of the vibrational features at 1113 cm−1 and 1341 cm−1 as markers

of the chemical defect is obtained considering 9−vdf−1−trfe−m, in which the only ir

intense vibrational normal modes are localized on the defective CHF unit (see Figure 5.5).

As a consequence, all the ir features of 9−vdf−1−trfe−m are markers of the chemical

defect. As shown in Figure 5.11, the previous suggestion on the chemical defect markers is

confirmed. The ir spectrum of 9−vdf−1−trfe−m also shows two features at ∼ 875 cm−1

and∼ 800 cm−1, which are visible in the spectrum of 9−vdf−1−trfe of Figure 5.10a as well,

but, due to their low ir intensity, are hardly observed during experiments. On the opposite,

9−vdf−1−trfe shows two weak ir features at ∼ 700 cm−1 and 600 cm−1 that do not have

a counterpart in 9−vdf−1−trfe−m, and are assigned to vibrational collective modes of

all the molecule. This means that the ideal insertion of trfe units in pvdf modifies its ir

response introducing new vibrational modes which not only are localized on the chemical

defect, but can also involve the whole molecular chain.

The above observations keep their validity also when the discussion is extended to periodic

one-dimensional models. For vdf−trfe−1d, we also observe the presence of markers of the

chemical defect corresponding to collective modes of the one-dimensional crystal, which are

absent in vdf−1d. Such features may be traced back to phonons at k 6= 0 in vdf−1d,
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(a)

(b) 1113 cm−1

(c) 1341 cm−1

Figure 5.10: ir vibrational markers of the chemical defect in molecular models. (a) ir
spectra of p(vdf−trfe), 10−vdf and 9−vdf−1−trfe, where asterisks in-
dicate experimental and computed vibrational markers of the trfe unit. The
maximum ir intensities are normalized to 1 in the represented interval. The
experimental ir spectrum is reproduced from Ref. [2]. (b, c) Vibrational nor-
mal modes of 9−vdf−1−trfe corresponding to the computed vibrational
markers of the trfe unit.

and thus not obtained in our simulated spectra. In this case the cause for this would be the

different size of the bases of the two one-dimensional crystals.

Three-dimensional periodic models corroborate the above findings, as shown in Figure 5.12b.

Indeed, vdf−trfe−3d shows vibrational markers for the trfe unit at 1102 cm−1 and

1337 cm−1, with the same correspondence to localized vibrational normal modes described

above. This same plot also shows that the presence of a chemical defect causes the disper-

sion of the ir spectrum of vdf−3d to wavenumbers which are more in accordance with the

experiment. The results of the above investigation are resumed in Table 5.1.

Raman spectroscopy. The same procedure as above can be applied to investigate for the

presence of Raman vibrational markers of the trfe unit. We first consider the simulated

Raman spectra of 10−vdf and 9−vdf−1−trfe, and compare them with the experimental

Raman spectrum in Figure 5.13. It is immediately noticed that a peak is present at 1341 cm−1

only in the spectrum of 9−vdf−1−trfe, corresponding to a feature in p(vdf−trfe) at

∼ 1345 cm−1. Inspecting the computed vibrational normal modes, this marker is traced back

to a CH bending localized in the trfe unit. Therefore, we regard this feature as a Raman

vibrational marker of the presence of a trfe chemical defect in p(vdf−trfe). Another, less
active, vibrational feature associated to vibrational modes localized in the chemical defect
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Figure 5.11: ir vibrational markers of the chemical defect in molecular models. ir spectra
of 9−vdf−1−trfe and 9−vdf−1−trfe−m. The maximum ir intensities
are normalized to 1.

can be found at ∼ 450 cm−1. It is associated in our computation to a CF2 scissoring mode

localized in trfe. However, we do not consider this feature as a vibrational marker, due to

its low Raman activity.

The implications of the discussion above are corroborated by comparing the simulated Raman

spectra of 9−vdf−1−trfe and 9−vdf−1−trfe−m as in Figure 5.14a. In the spectrum

of 9−vdf−1−trfe−m, the previously found Raman vibrational marker appears as the

most intense feature at 1354 cm−1. Other relatively intense peaks are present as well, but

they do not behave as vibrational markers in the Raman spectra, due to their low Raman

activity. However, the occurrence of these Raman transitions is still meaningful considering

the discussion of section 5.2, where the particular dependence of the Raman spectrum on

the disorder in the material was mentioned. This is evident if we compare the normalized ir

and Raman intensities of 9−vdf−1−trfe−m in the same wavenumber interval as in Figure

5.14b. It is immediately recognized that the presence of the trfe unit has different effects in

the ir and Raman responses of models where vibrations are localized by assigning arbitrary

large masses to selected atoms: while the ir spectrum is characterized by one intense localized

vibration in the chemical unit at 1324 cm−1, together with a less intense one at 1101 cm−1,

the Raman spectrum shows several peaks of comparable activity. We observe therefore that

chemical defects have a general perturbative effect on the Raman response of p(vdf−trfe),
introducing bands relative to collective motions which involve the chemical defect as well. It
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(a) (b)

Figure 5.12: ir vibrational markers of the chemical defect in periodic models. (a) ir spec-
tra of 10−vdf, 9−vdf−1−trfe and vdf−trfe−1d. Asterisks indicate the
computed vibrational markers of the chemical defect. ir intensities are norma-
lized on the number of CH2CF2 or CHCF3 units either in the molecule or in the
repeat unit. (b) ir spectra of p(vdf−trfe), vdf−3d and vdf−trfe−3d.
The maximum ir intensities are normalized to 1.

is also to be noted, however, that in considering Raman spectra without the effect of large

atomic masses, clearly localized Raman markers for the chemical defect are absent, due to

the coupling of the vibrational normal modes of the defect with the chain. In section 5.4,

we will see that a similar effect is produced by the introduction of conformational defects by

means of heating (Figure 5.17b).

The simulated Raman spectra of one- and three-dimensional periodic models containing the

chemical defect are reported in Figure 5.15, in comparison with the analogous for periodic

models of pvdf. Figure 5.15a shows the substantial accordance between the predictions of

9−vdf−1−trfe and vdf−trfe−1d for what concerns the wavenumber of the vibrational

marker of trfe, which is found at 1338 cm−1 for vdf−trfe−1d. A slight shift towards

higher wavenumbers is instead observed for the weak feature at ∼ 450 cm−1. The same

accordance exists for vdf−trfe−3d, that correctly predicts the presence of a vibrational

marker of the trfe unit at 1338 cm−1.

We thus infer that the presence of a trfe unit in p(vdf−trfe) determines a Raman feature

at 1341 cm−1, which we characterize as a vibrational marker of the chemical defect. In Table

5.2 we report the results of the discussion above.
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Model Wavenumber (cm−1) ir intensity (km/mol) Assignment

9−vdf−1−trfe 1113 44 CF stretching
9−vdf−1−trfe 1341 8 CH bending
9−vdf−1−trfe 1366 6 CH bending

9−vdf−1−trfe−m 1101 57 CF stretching
9−vdf−1−trfe−m 1324 7 CH bending

vdf−trfe−1d 1111 51 CF stretching
vdf−trfe−1d 1338 14 CH bending

vdf−trfe−3d 1102 187 CF stretching
vdf−trfe−3d 1337 27 CH bending

Table 5.1: ir vibrational markers of the unit trfe in different molecular and periodic mo-
dels. In the last column, the localization of the vibrational normal mode in the
chemical defect is understood.

Model Wavenumber (cm−1) Raman activity (Å2
/amu1/2) Assignment

9−vdf−1−trfe 1341 9 CH bending

9−vdf−1−trfe−m 1354 6 CH bending

vdf−trfe−1d 1338 13 CH bending

vdf−trfe−3d 1338 20 CH bending

Table 5.2: Raman vibrational markers of the chemical-defective unit trfe in different mole-
cular and periodic models. In the last column, the localization of the vibrational
normal mode in the chemical defect is understood.
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Figure 5.13: Raman vibrational markers of the chemical defect in molecular models. Ra-
man spectra of p(vdf−trfe), 10−vdf and 9−vdf−1−trfe. The maxi-
mum Raman activities are normalized to 1 in the represented interval. The
experimental Raman spectrum is reproduced from Ref. [2].

(a) (b)

Figure 5.14: Raman vibrational markers of the chemical defect in molecular models. (a)
Raman spectra of 9−vdf−1−trfe and 9−vdf−1−trfe−m, with their ma-
xima normalized to 1 in the represented interval. (b) ir and Raman spectra
of 9−vdf−1−trfe−m with their maxima normalized to 1 in the represented
interval.
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Figure 5.15: Raman vibrational markers of the chemical defect in periodic models. (a)
Raman spectra of vdf−1d, 9−vdf−1−trfe and vdf−trfe−1d. (b) Raman
spectra of vdf−3d and vdf−trfe−3d. In both panels, asterisks indicate the
computed vibrational markers of the chemical defect, and Raman activities
are normalized on the number of CH2CF2 or CHCF3 either in the molecule or
in the repeat unit.
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5.4 Conformational defect

In the previous section, we have discussed the role of the trfe unit on the ir and Raman

spectra of p(vdf−trfe). Another type of defect which can be considered is the conformatio-

nal disorder of a single chain, which is produced for example providing heat to the material:

as the energy of the polymeric chains increases, new conformations become energetically

available, with an increase in the disorder. As pointed out in section 5.1, a most simple way

of incorporating such defect in our model is considering gtg’ torsions, also called kinks.

ir spectroscopy. Figure 5.16a compares the ir spectra of 10−vdf and 10−vdf−gtg’.
Considering the effect of temperature increase in a real sample of p(vdf−trfe) represented
in Figure 5.16b, the following interesting points are noted. First, the presence of conforma-

tional disorder largely influences the region near 1250 cm−1. In particular, we notice that the

ir intensity between the two peaks around 1300 cm−1 and 1225 cm−1 increases when the kink

defect is present, which has a splitting action on those peaks. This suggests that the presen-

ce of the gtg’ torsion activates vibrational modes which are localized in that region. The

experimental counterpart for this fact is found in the growth of a shoulder at ∼ 1250 cm−1 in

the ir spectrum of p(vdf−trfe) as temperature is increased. Second, the relatively intense

simulated feature at 900 cm−1 increases its ir intensity in the presence of the conformational

defect. This, again, is in accordance with the effect of heat on p(vdf−trfe).
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Figure 5.16: (a) ir vibrational marker of the conformational defect in molecular models.
ir spectra of 10−vdf, 20−vdf, 10−vdf−1−gtg’ and 20−vdf−2−gtg’.
ir intensities are normalized on the number of CH2CF2 repeat units. (b) ir
spectrum of p(vdf−trfe) films, reproduced from Ref. [2]. ir intensities are
normalized to 1 in the represented interval.
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Another interesting feature of 10−vdf−gtg’ is the low-wavenumber component of the band

at 850 cm−1. Inspecting the vibrational normal modes associated to such feature, two modes

of comparable intensities are found, each of which is the collective vibration of only one of

two portions of the chain identified by the kink defect, as in Table 5.3. Thus a single confor-

mational defect introduces two vibrational modes at similar frequency and ir intensity, each

localized in a different portion of the chain. Extending this line of reasoning, the observed

broadening of the experimental band at ∼ 850 cm−1 with heating can be rationalized: at

high temperature, several vibrational modes are introduced which span a small interval of

wavenumbers, and thus produce a broad feature as observed experimentally.

Model Wavenumber (cm−1) ir intensity (km/mol) Assignment

10−vdf−gtg’ 841 58 Collective CF stretching
10−vdf−gtg’ 848 44 Collective CF stretching

Table 5.3: Vibrational normal modes corresponding to the low-wavenumber component of
the band at 850 cm−1 of the ir spectrum of 10−vdf−1−gtg’, represented in
Figure 5.16a.

Raman spectroscopy. The effect of conformational disorder on the Raman response

of pvdf is illustrated in Figure 5.17, where we report the simulated Raman spectra of

20−vdf−2−gtg’ and 10−vdf on panel (a) and the experimental Raman spectrum of

p(vdf−trfe) at different temperatures in panel (b). As for the ir response discussed abo-

ve, also the Raman spectrum is affected by conformational disorder with the appearance of

several new features near 1250 cm−1. In Figure 5.17a, the presence of a weak feature for

20−vdf−2−gtg’ at 781 cm−1 is also interesting: it is associated to CCC bending modes

partially localized on the gtg’ defect, as described in Table 5.4. Therefore, this may be

regarded as a spectroscopic marker for conformational disorder. This is consistent with the

experiment, as seen in Figure 5.17b, where the increase in temperature causes the inten-

sification of the band near 780 cm−1. In the experimental Raman spectra, also the band

at 600 cm−1 is affected by temperature. Coherently, 20−vdf−2−gtg’ possesses, corre-

sponding to that frequency, vibrational normal modes which are partially localized on the

conformational defect, as listed in Table 5.4.
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Figure 5.17: Raman vibrational marker of the conformational defect in molecular mo-
dels. (a) Raman spectra of 10−vdf, 20−vdf, 10−vdf−1−gtg’ and
20−vdf−2−gtg’. Raman activities are normalized on the number CH2CF2
repeat units. (b) Raman of p(vdf−trfe) fibers, reproduced from Ref. [2].
Raman intensities are normalized to 1.

Model Wavenumber (cm−1) Raman activity (Å2
/amu1/2) Assignment

20−vdf−2−gtg’ 781 3 CCC bending
20−vdf−2−gtg’ 782 5 CCC bending

20−vdf−2−gtg’ 606 2 CCC bending
20−vdf−2−gtg’ 628 1 CCC bending

Table 5.4: Raman vibrational markers of the chemical-defective unit trfe in different mole-
cular and periodic models. In the last column, the localization of the vibrational
normal mode in the chemical defect is understood.

5.5 Solid-state effects in pvdf

In sections 5.2 and 5.3 we have seen that molecular and one-dimensional periodic models are

completely coherent. In this section, we investigate the effect of the solid state on the ir and

Raman response of pvdf by means of a comparison between one- and higher-dimensional

periodic models.

Comparison between one- and three-dimensional crystals. In Figure 5.18, the ir

and Raman spectra of vdf−1d and vdf−3d are compared. In both cases, three effects

on the vibrational features are obtained when passing from an in vacuo single-chain to a

three-dimensional crystal model, namely the wavenumber shift, and the change in absolute

and relative intensities or activities. By inspecting the vibrational normal modes associa-

ted to each feature, we are able to obtain a correspondence scheme between the features of
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Figure 5.18: Solid-state effects on the ir and Raman responses of pvdf. (a) ir spectra of
vdf−1d and vdf−3d. (b) Raman spectra of vdf−1d and vdf−3d.

vdf−1d and vdf−3d, as reported in Table 5.5. We thus observe that inter-chain electrosta-

tic interactions have a non-negligible effect on the positions of both ir and Raman features

of pvdf: in both spectra, there exists at least one band which undergoes a wavenumber

shift > 100 cm−1 from the in vacuo to the solid state. Electrostatic interactions affect the

intensities of the features as well. Table 5.5 shows that the general trend is an increase in

both ir intensities and Raman activities in passing to the solid state. However, no simple

rule is found to account for the extent of either the wavenumber shift or peak intensification

of different features. Nevertheless, these observations already show that different vibratio-

nal features are affected in different ways by inter-chain electrostatic interactions. Finally,

we note that both the ir and Raman bands of vdf−3d vary in their intensity more than

vdf−1d in the region we are interested in. A comparison with Figures 5.10a and 5.13 shows

that this is characteristic of the experimental spectra. All of this suggests that a complete

understanding of the ir and Raman vibrational properties of pvdf cannot neglect the inte-

ractions between chains. However, it is also to be reminded that some features, such as the

vibrational markers studied in section 5.3, can still be grasped with an in vacuo approach.

Two-dimensional periodic models. The comparison above misses the possibility to di-

scern between the range at which inter-chain interactions affect both the wavenumber and

intensity of ir and Raman peaks. This aspect can be investigated more in detail conside-

ring two-dimensional models. In particular, Figure 5.19 adds to the previous comparison

2−vdf−1d, 3−vdf−1d−m and vdf−2d. It is useful to recall that these ideally repre-

sent the stacking of respectively two, three and an infinite number of vdf−1d models, and

that in every case the electric dipole moments are aligned. In general, a trend compatible
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Wavenumber (cm−1) ir Raman Assignment

vdf−3d
410 16 1 CH2 rocking
434 35 1 CF2 wagging
492 17 4 CF2 scissoring
825 72 18 CF sym. stretching
878 76 3 CF asym. stretching + CH2 rocking
1060 31 8 CH2 wagging
1128 266 5 CH2 rocking + CF asym. stretching
1188 0 20 CH2 twisting
1257 201 7 CC bending
1400 125 0 CH2 wagging
1428 17 35 CH2 scissoring

vdf−1d
433 24 0 CF2 wagging
850 11 5 CF sym. stretching
904 21 1 CF asym. stretching + CH2 rocking
1034 61 4 CH2 wagging
1161 0 9 CH2 twisting
1242 102 1 CH2 rocking + CF asym. stretching
1301 89 7 CC bending
1366 122 0 CH2 wagging
1449 2 8 CH2 wagging

Table 5.5: Assignment of the ir and Raman spectra of vdf−1d and vdf−3d shown
in Figure 5.18. ir intensities are reported in km/mol, Raman activities in
Å2
/amu1/2.

with long-range interactions is obtained for every vibrational feature of both spectra: in-

deed, non-negligible wavenumber shifts and intensity variations are observed in moving from

3−vdf−1d−m to vdf−2d. The same holds for the transition from vdf−2d to vdf−3d.
From these observations, we infer that long-range electrostatic interactions between aligned

electric dipoles give important contributions to the vibrational behavior of pvdf, but the

whole crystal must be considered to account for it completely. In Figure 5.19, three features

in particular are characterized by a large variation of intensity, positioned in vdf−1d at

∼ 1250 cm−1, 925 cm−1 and 870 cm−1. The behavior of the former will be taken into account

in the following discussion. These last two are studied in Table 5.6, both from the point of

view of their wavenumber and peak intensity. We notice that the general trend found when

considering only vdf−1d and vdf−3d is here only partially reproduced: indeed, while the

wavenumber shift is monotonous and both the considered features decrease in wavenumber

in moving towards vdf−3d, the same is not true for the ir intensities and Raman activities

in general. This motivates us to consider a more detailed situation with different expansions

of the three-dimensional model.
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Figure 5.19: Solid-state effects on the ir and Raman responses of pvdf. (a) ir spectra of
vdf−1d, 2−vdf−1d, 3−vdf−1d−m, vdf−2d and vdf−3d. (b) Raman
spectra of vdf−1d, 2−vdf−1d, 3−vdf−1d−m, vdf−2d and vdf−3d.

Isotropic expansion of vdf−3d. Progressively increasing two cell parameters of vdf−3d
in a uniform way, the transition from a three- to an effective one-dimensional model can be

reproduced. Figures 5.20a and 5.20b show the dispersion of the ir and Raman spectra of

vdf−3d during this expansion. The range at which vibrational features are influenced is

evident. In general, all the features are characterized by an important wavenumber shift

as soon as the equilibrium cell parameters of pvdf are increased. However, we see that

the feature at ∼ 1250 cm−1 in the ir spectrum of vdf−1d, which corresponds to the peak

at ∼ 1100 cm−1 in vdf−3d, is characterized by the largest wavenumber shift in the first

steps of the expansion. A similar behavior is shared by other ir and Raman features. On

the opposite, other features are characterized by a minimum wavenumber dispersion, for

example the weak band at ∼ 500 cm−1 in vdf−3d. Based on this, we infer that the whole

three-dimensional neighborhood of chains has different effects on the vibrational properties

of pvdf based on the involved vibrational normal mode. A second important observation is

that the degree of the expansion at which a plateau in the wavenumber is reached depends

on the particular feature. We can infer for instance that the CH2 wagging corresponding

to the ir band at 1060 cm−1 in vdf−3d is highly influenced at short-range, while the CH2

rocking with CF asymmetric stretching of the ir peak at 1128 cm−1 is affected by long-range

interactions.

Anisotropic expansion of vdf−3d. Similarly to what discussed above, we can also

take into account the expansion of vdf−3d at constant distance between the pvdf chains

with aligned electric dipoles, so that the transition from vdf−3d to vdf−2d of Figure 5.21

is obtained. This comparison can be used in combination with the one above to separate
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Model Wavenumber (cm−1) ir intensity (km/mol) Raman activity (Å2
/amu1/2)

vdf−1d 870 12 5
vdf−1d 925 22 1

2−vdf−1d 867, 871 19 6
2−vdf−1d 924 17 1

3−vdf−1d−m 867 29 7
3−vdf−1d−m 912 15 1

vdf−2d 850 69 14
vdf−2d 913 11 1

vdf−3d 844 72 19
vdf−3d 897 76 3

Table 5.6: Solid-state effects on two vibrational features in the region between 850 cm−1
and 1000 cm−1 in periodic models of pvdf.

between the influence of neighboring chains with parallel electric dipoles and the effect of

chains with aligned dipoles. In particular, we see that the ir peak at 1128 cm−1 of vdf−3d
is highly dependent on short-range interactions between chains with parallel electric dipole.
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Figure 5.20: ir and Raman spectra of vdf−3d at different extents of isotropic expansion.
In both spectra, the key reports the values of a/a0 = b/b0, where the cell
parameters a and b correspond to directions orthogonal to the pvdf chain
axis and 0 indicates their equilibrium values.
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Figure 5.21: ir and Raman spectra of vdf−3d at different extents of anisotropic expan-
sion. In both spectra, the key reports the values of a/a0, where the cell
parameter a corresponds to a direction orthogonal to the pvdf chain axis and
0 indicates its equilibrium value.
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5.6 Chapter conclusions

In this Chapter, density functional methods have been applied to investigate the vibrational

properties of pvdf and p(vdf−trfe). In conclusion, we have found that:

1. Molecular models do not account completely for ir and Raman intensities of pvdf and

p(vdf−trfe), but correctly predict the wavenumbers of the most prominent features

in the region between 200 cm−1 and 1600 cm−1. This is because 10−vdf has all the

useful features of a one-dimensional crystal.

2. It is possible to support theoretically the existence of spectroscopic markers of the trfe

unit in p(vdf−trfe) by means of a molecular model. In particular, two ir and one

Raman vibrational markers near 1113 cm−1 and 1340 cm−1 have been obtained com-

putationally and proved to be associated to localized CF stretching and CH bending

vibrational modes.

3. It is possible to rationalize the trend of the ir and Raman spectra of p(vdf−trfe)
with heat based on molecular models with a gtg’ torsional angles.

4. Solid-state effects in pvdf are accounted for by three-dimensional models. In particu-

lar, it is found that long-range electrostatic interactions between pvdf chains result in

non-negligible wavenumber shifts and peak intensification. Moreover, the extent and

the effectiveness of the intermolecular interactions is heavily dependent on individual

normal modes.
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Conclusion

Again! again! again!

— Thomas Campbell

The introduction of density functional theory (dft) in the field of quantum chemistry has

been termed a revolution [89]. Focusing on the particular field of vibrational spectroscopy,

the above Chapters have shown the practical outcomes of dft, highlighting the wide range

of applicability of this theory for what concerns the characterization of advanced materials

and the understanding of their behavior.

In this Thesis, dft has been used as an analytical tool for the prediction and corrobo-

ration of experimental results obtained by vibrational spectroscopy. In particular, three

problems have been posed relative to different advanced materials, and the predictive power

of dft supported experimental evidence.

In particular, in Chapter 3 we investigated the polaron localization resulting from the n-

doping of the conductive polymer n [90] and supported previous experimental eviden-

ce [1]; in Chapter 4 we supported the successful synthesis of functionalized graphene na-

noribbons [53] by assigning their ir and Raman spectra; in Chapter 5 we showed that the

trfe chemical unit of p(vdf−trfe) perturbs the ir and Raman spectra of pvdf; we iden-

tified the vibrational markers of trfe, and deepened the reasons for the observed thermal

behavior of the vibrational spectra of p(vdf−trfe) [2]. The results reported in these three

Chapters show how different concepts in materials science could be corroborated applying

dft to simple molecular or periodic models.

On an equal footing, our simulations allowed us to go deeper inside the reasons for the

observed phenomena. We could relate the extent of polaron localization in n with the
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electrostatic attractive effect of the positively charged n-dopant. We assigned the ir and

Raman peaks of functionalized graphene nanoribbons, unveiling the details of the underly-

ing molecular vibrations. We specified the reasons for the different importance of chemical

and conformational defects in the ir and Raman spectra of p(vdf−trfe).

Furthermore, we used dft to obtain information which could not be straightforwardly ob-

tained by experiments. When studying n, we investigated on the role of the ionic radius

of the atomic dopant, finding that the electrostatic screening effect of larger alkali metals

leads to a more homogeneous and extended charge delocalization. When dealing with pvdf,

we highlighted peculiar solid-state effects on its vibrational spectra, noticing that different

features depend in different ways on the electrostatic inter-chain interactions.

Future perspectives

Considering the applications of dft, which is the main theme of this Thesis, in each of our

explorations, solvent effects were never taken into account explicitly, mostly in the view of

a simple approach which could quickly grasp the leading effects of interest. An immediate

extension of this work would be then obtained considering in more detail the environmental

effects in the computational model. One may for instance begin with a continuum approach

to solvation, evaluating on a case-by-case basis possible extensions to more complete approa-

ches, taking into account their computational demands [91]. The effect of functionalization

on gnrs could be also approached more extensively by considering selected series of differen-

tly substituted gnrs. Solid-state effects could be explored for p(vdf−trfe) as well, and its

vibrational properties further studied considering more carefully the statistics of both trfe

units and conformational disorder.

Not all the possibilities can be listed here, and new challenges will probably arise in the

future, also taking into account the advent of quantum computing [92]. These perspecti-

ves are therefore a limited view of a much wider scenario, which is expected to imply the

development of new computational and data analysis tools.
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