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1. Introduction
Machine Learning applications are nowadays
getting more and more popular on a growing
range of domains. Furthermore, the inner math-
ematical complexity and size of the problems are
expanding, requesting more resources and exe-
cution time to be solved. Feature Selection is
the process of selecting a subset of relevant fea-
tures of a dataset, thus reducing the amount of
data to use. However, it is computationally ex-
pensive, so finding more efficient strategies and
approaches would lead to a significant impact.
This thesis focuses on the filter category of Fea-
ture Selection methods for supervised learning
classification problems, and explores the perfor-
mances of some algorithms executed on a Quan-
tum Annealer, which is a quantum computing
machine that leverages specific quantum me-
chanics properties. This is a promising technol-
ogy that offers scalability and speed-up potential
for heavy and large computational tasks.
The goal of this work is to evaluate,
through a series of experiments, a graph
based approach, called Graph Mutual Informa-
tion QUBO, Quantum-Boosting and Quantum-
Correlation algorithms, which can all be exe-
cuted on Quantum Annealing devices. These

methods are compared between themselves and
with classical non-quantum ones.

2. State of the art
This section briefly describes some classical and
non-quantum feature selection methods used in
the experiments. Then, a brief description of the
Quantum device used is presented, along with
Quantum Annealing, focusing on which kind of
problems it can efficiently tackle.

2.1. Filter Feature Selection methods
This thesis focuses on filter Feature Selection
methods and on classification problems, in which
every sample is associated to different features.
The goal of Feature Selection is to find the sub-
set of features that can best describe the target
variable to learn and improve the classification
accuracy.
In this thesis, four different classic feature se-
lection methods have been implemented and
tested: Variance Threshold, which uses the
Pearson correlation (Equation (1)), Mutual In-
formation, based on entropy (Equation (2)) and
mutual information (Equation (3)), Chi2 Test
and ANOVA F-Test [2, 10]. In the referenced
formulas, reported below, X and Z are both ran-
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dom variables, respectively with n and m possi-
ble outcomes (X1, . . . , Xn and Z1, . . . , Zm).

Corr(X,Z) =
Cov(X,Z)

σX σZ
(1)

where Cov(X,Z) is the covariance between the
random variables, and σX and σZ are the stan-
dard deviations of the random variables.

H(X) = −
n∑
i

p(Xi) log2(p(Xi)) (2)

MI(X;Z) = −
n∑
i

m∑
j

p(Xi, Zj) log2
p(Xi|Zj)

p(Xi)

(3)

where p(Xi) is the probability of the i-th out-
come of the random variable X, and p(Xi|Zj) is
the conditional probability of outcome Xi given
the outcome Zj .
Generally, with this type of feature selection
methods, a ”score” is associated to every feature
of the dataset and a ranking is generated. For
instance, Variance Threshold and Mutual Infor-
mation compute a score to each feature in dif-
ferent ways. Variance Threshold computes the
Pearson correlation, defined with Equation (1),
between the features fi and the target variable
y of the dataset (so, Corr(fi, y)). Mutual In-
formation assigns to each feature a score with
Equation (4), named Rel(·, ·), which indicates
the relevance between two variables.

Rel(fi, y) =
MI(fi, y)

H(fi) +H(y)
(4)

where:
• fi is the i-th feature of the dataset
• y is the target variable of the dataset

The decision on which features to select follows
two possible criteria: one way is to pick a desired
number of features, k, with the highest score.
The second one is to select all features which
score is higher than a fixed threshold.

2.2. Classifiers
In this thesis, the Random Forest (RF) classi-
fier [4] has been used for the experiments and
results. The Support Vector Machine (SVM)
classifier [3] has been used as well in one of the
quantum-based feature selection algorithms de-
scribed in the third chapter.

2.3. Graph theory overview
A graph G(V,E) is a mathematical structure
composed by a set of vertices V (nodes) and set
of edges E. It can be directed or undirected,
and weighted depending on the values associ-
ated to each edge. In our case, we will focus on
undirected and weighted complete graphs, which
means that each node is linked with every other
node inside the graph. Different search prob-
lems involve graph theory, the one we are more
interested in is weighted MaxCut. The weighted
MaxCut problem consists in finding the subset
of vertices S that maximizes the weight of the
edges in the cut; that is, the sum of the weights
of the edges with one endpoint in S and the other
in its complement.

2.4. Quadratic Unconstrained Binary
Optimization problems

Quadratic Unconstrained Binary Optimization
(QUBO) consists in a class of NP-Hard prob-
lems that covers a wide range of applications in
the combinatorial optimization domain. QUBO
problems have the goal to minimize a quadratic
objective function, with no constraints. QUBO
problems are defined with binary variables, and
they are mathematically defined as:

min q(x) = xT Q x (5)

x ∈ {0; 1}n

where:
• x is the vector with n binary variables
• n is the dimensionality of the problem
• Q is a n×n symmetric (or upper-triangular)

matrix describing the quadratic function
q(x)

There are different meta-heuristics to solve this
combinatorial problem. The one that we are
more interested in is Quantum Annealing.

2.5. Quantum Computing
Quantum Computing refers to a specific branch
of Computer science and Engineering where the
core functionalities of the computers are based
on quantum mechanics. The objective of this
branch is to leverage and exploit the properties
of quantum mechanics in order to overcome the
current limits of classical computing, by embed-
ding and using the quantum mechanics phenom-
ena in a computational model.
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There are several types of quantum comput-
ers. In this work we will focus on the quantum
annealer, which is used to solve the presented
quantum-based methods.

2.5.1. Quantum Computing fundamen-
tals

With quantum computing there is a shift from
the well known bit to its quantum counterpart,
called qubit. While classic bits are discrete and
deterministic variables whose values can be ei-
ther 0 or 1, qubits are continuous and proba-
bilistic, since a qubit can have a value in the
range between 0 and 1. Furthermore, a qubit is
a quantum object, thus it is capable of exploiting
specific quantum characteristics and properties
such as superposition and entanglement.
Superposition is the physical property of a
quantum object to be in two different states "si-
multaneously". Despite this, at the end of the
annealing procedure all the qubits collapse in
one of the two classical states.
The entanglement property involves two or
more qubits: it consists in a quantum phe-
nomenon that creates a "bond" between the
qubits. It has no correspondence in classical
computing, it can be simulated, but inefficiently.
When two qubits are entangled, their states
can only make sense if observed and measured
together, they cannot be described singularly.
Thus, measuring one of them leads to the col-
lapse into a classical state also of the entangled
one.
The final collapsed classical state measured of
the qubits depends on both superposition and
entanglement.

2.5.2. Quantum Annealing

Quantum Annealing (QA) is a meta-heuristic
used to determine the minimum energy state of
a system. In our case, a state corresponds to the
classical binary values (0 or 1) of the collapsed
qubits of the Quantum Processing Unit (QPU),
which is the hardware core of quantum an-
nealers. QA simulates a quantum phenomenon
called Quantum Tunneling. Quantum tunnel-
ing happens when a particle/wave-function can
propagate through an high and "thin" energy
barrier. This effect is one of the quantum ca-
pabilities that cannot be efficiently simulated
through classical computing. In our case, the

problem is represented as the energy of a system,
and the objective is to find the solution that cor-
responds to the lowest energy, the global mini-
mum of an energy function. Quantum tunneling
is exploited in the quantum annealing process,
thus speeding up the search for the global min-
imum. A classical and non-quantum approach,
instead, would "climb" the energy hill, wasting
more time to search for another potential so-
lution. The quantum tunneling phenomenon is
exploited to solve NP-Hard problems and obtain
acceptable solutions, but with the possibility of
leveraging the quantum properties of qubits in
the attempt to reduce the needed computational
time.
The energy of the each state is represented with
its Hamiltonian, which is a mathematical de-
scription of the energy of a system (Equation
(6)) obtained through the sum of the energies
of its subparts, which in our case are the qubits
and the interaction between themselves.

H = HI︸︷︷︸
Initial Hamiltonian

+ HP︸︷︷︸
Final Hamiltonian

(6)

HI = −A(s)

2

(∑
i

σ̂(i)
x

)

HP =
B(s)

2

∑
i

hiσ̂
(i)
z +

∑
i>j

Jij σ̂
(i)
z σ̂(j)

z


where:
• HI is the Initial Hamiltonian
• HP is the Final (or Problem) Hamiltonian.

This term is determined by the biases hi
and the coupling strengths Jij , which are
set by the machine user.

• A(s) and B(s) functions can be considered
as "weights" of HI and HP , they control
the annealing process.

• s, the argument of A(·) and B(·), indicates
the fraction of the annealing process, so it
is a value between 0 and 1.

• σ̂x,z are the Pauli matrices and represents
the state of the qubits.

• hi is the bias of the i-th qubit.
• Jij is the coupling strength between the i-th

and j-th qubit.
The bond with the QUBO formulation is ev-
ident: the problem Hamiltonian HP coincides
with a quadratic function that can be described
with a N ×N symmetric matrix, containing the

3



Executive summary Fabio Moroni

biases hi on the diagonal, while the coupling
strengths Jij correspond to the off-diagonal ele-
ments. This means that if we are able to create
an optimization problem that can be mapped to
HP , a solution can be obtained through Quan-
tum Annealing. Once the QUBO formulation
of the starting problem is obtained, ideally we
would like to associate each logical variable of
the problem to a qubit, but that is not always
possible, due to the architecture of the QPU.
The QPU consists in an arrangement of qubits
that are connected between each other (with
couplers, edges whose weight indicates the en-
tanglement), thus creating a graph. This graph
is not complete, most couplers are missing, and
this raises an issue. In fact, going back to the
mathematical model, the ideal scenario is to
map each logical variable of the model to a single
qubit, but as the dimensionality of the problem
increases, this is no more possible. The square
matrix that defines the QUBO objective func-
tion implies that there is a coupler (edge) for
each pair of nodes, thus building a fully con-
nected graph. As already seen, this is not the
case. This issue is handled with a procedure
called minor embedding [5]: the problem vari-
ables are duplicated and represented with multi-
ple physical qubits, in order to make a 1:1 associ-
ation between the variables of the QUBO model
and the qubits themselves. This step will gen-
erate a chain of qubits that represent the same
problem variable. In order to maintain consis-
tency in the final results, all the qubits belong-
ing to a chain must be equal. A chain breaks if
the qubits belonging to it have different values,
this implies that the solution obtained is incon-
sistent, and probably suboptimal.
Solving large problems with many variables is
an issue with quantum annealers, since they
are limited on the number of logical qubits em-
beddable onto the QPU. That’s where Hybrid
Quantum-Classical systems can help. This type
of system decomposes the starting problem into
subproblems that are solved using both classical
and quantum computing.

3. Quantum-based algorithms
The general schema of the algorithms described
in this chapter is the same:

1. define the formulas with statistical mea-
sures (e.g. mutual information, correlation

and entropy) to build the matrix Q
2. create the matrix Q that describes the

QUBO problem
3. embed the problem onto the QPU
4. solve the problem with the Quantum An-

nealer
Since we are dealing with the problem of fea-
ture selection, the final solution of the quantum
annealing phase is an array of binary values, in-
dicating which features are kept as relevant (1)
or discarded (0).

3.1. Graph based method: Graph
Mutual Information QUBO

Graph Mutual Information QUBO (Graph-
MIQUBO) is a graph-based mutual information
method, where the square matrix defining the
objective function coincides with the adjacency
(or weight) matrix of the corresponding mutual-
information based complete and weighted graph
[11]. Solving the QUBO problem coincides with
computing a weighted MaxCut solution, using a
quadratic objective function, as explained in [9]
by Xuan Vinh Nguyen et al. The square ma-
trix for the QUBO problem is computed with
Equation (7).

Q =

{
Qij =

MI(fi,fj)
H(fi)+H(fj)

if i ̸= j

Qij = 0 if i = j
(7)

where:
• MI(·, ·) is the mutual information, Equa-

tion (3).
• H(·) is the entropy, Equation (2).
• fi coincides with the i-th feature of the

dataset.

3.2. Quantum-Boosting
Quantum-Boosting (Q-Boosting) algorithm was
proposed in 2008 by Neven et al. and lately re-
visited in 2012 [8]. This algorithm exploits the
boosting technique, which consists in the compo-
sition of very basic and weak learners trained on
few features in order to obtain a strong learner
that uses only relevant features. The formula-
tion of the square matrix to describe the QUBO
problem is given in Equation (8).

Q =

{
Qij = Corr(hi, hj) if i ̸= j

Qij =
S
N2 + λ− 2 ∗ Corr(hi, y) if i = j

(8)
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where:
• Corr(·, ·) is the Pearson Correlation, de-

fined with Equation (1).
• hi coincides with the estimate of a Support

Vector Machine (SVM) classifier trained
only with the i-th feature of the analysed
dataset.

• y is the target variable.
• S is the number of samples inside the

dataset.
• N is the number of features.
• λ is an hyper-parameter of the algorithm.

3.3. Quantum-Correlation
Quantum-Correlation (Q-Correlation), intro-
duced by R. K. Nath et al. in 2008 [7], is
a QUBO feature selection algorithm that com-
putes the Pearson correlation (1) between the
features and the target variable and between the
features themselves. The formula to compute
the square matrix is showed in Equation (9).

Q =

{
Qij = Corr(fi, fj) if i ̸= j

Qij = Corr(fi, y) if i = j
(9)

where:
• Corr(·, ·) is the Pearson Correlation, de-

fined in Equation (1).
• fi coincides with the i-th feature of the

dataset.

4. Results
This section shows the results obtained with
experiments performed on various classification
datasets. Each dataset is first split into training
and test subsets, which are respectively used to
train a classifier and to test its generalization
capability. All the datasets have been split with
a 70% - 30% distribution of samples for train-
ing and testing. For all three quantum-based
methods implemented, the steps of the experi-
ments are the same. In fact, given the train-
ing set of a dataset: first, the QUBO objec-
tive function is computed. Then, several solu-
tions are computed with the quantum annealer.
For each one of the solutions found, which con-
sists in a vector of binary variables indicating
the features selected and discarded, a Random
Forest classifier is instantiated. After collect-
ing all these classifiers, the validation phase is
performed for each one of them by computing a

5-fold Cross-Validation, thus obtaining a classifi-
cation accuracy "score" (named cross-validation
score) that is used to determine the best clas-
sifier. The classifier with the highest accuracy
score is defined as the best one. Then, the fi-
nal testing phase takes place, where a confusion
matrix is computed over the test set in order
to visualize the generalization capability of the
best trained classifier itself. Two tables with re-
sults are reported: each row corresponds to a
dataset, and the columns report the different
feature selection methods implemented. Each
method contains two separated columns labeled
with N and CV _score: N indicates the num-
ber of features of the model used to train the
best classifier and CV _score the accuracy score,
that we have called also cross-validation score.
In the columns with the methods solved with
Quantum Annealing, it is reported in parenthe-
sis the values of chain break fractions. This is a
float value between 0 and 1 indicating the pro-
portion of qubit chains, created during the em-
bedding, that broke during the search for the
state with minimum energy. For the last three
datasets, the Hybrid quantum system has been
used instead. With the hybrid approach we are
not able to determine the number (or fraction)
of chains that are broken during the execution.
These are the tables reported, with the following
references:
• Table 1: comparison across the QUBO

methods, solved with Quantum Annealing
(QA).

• Table 2: comparison of Graph-MIQUBO
(solved with QA) against classical methods.

The presented quantum-based algorithms solved
with quantum annealer machines are capable of
obtaining promising results with respect to the
classical ones: all three QUBO feature selec-
tion methods are able to discard a considerable
amount of features. Graph-MIQUBO is more in-
dicated for datasets with smaller dimensionality,
with remarkable reduction of the features used
in the classification problem. Q-Boosting and
Q-Correlation, on the other hand, are more in-
dicated for problems with a larger set of features.
With respect to other meta-heuristics, like Sim-
ulated Annealing [6] and Steepest Descent (a
greedy local search approach [1]), Quantum An-
nealing is able to find a solution with a speed-up.
For instance, with the "isolet" dataset that has
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All Features Graph-MIQUBO Q-Boosting Q-Correlation

Dataset N CV_score N CV_score N CV_score N CV_score

breast_cancer 30 0.957 17 0.957 (0.0) 25 0.960 (0.0) 28 0.960 (0.0)

robot-failures-lp5 90 0.702 70 0.754 (0.48) 80 0.745 (0.31) 19 0.754 (0.39)

SPECTF 44 0.790 9 0.817 (0.23) 12 0.838 (0.32) 36 0.817 (0.02)

thyroid-ann 21 0.995 12 0.997 (0.0) 11 0.997 (0.0) 5 0.946 (0.0)

isolet 617 0.979 539 0.986 114 0.986 174 0.986

swarm-behaviour 2400 1.000 746 1.000 171 1.000 257 1.0

Table 1: Quantum Annealing approach results across the algorithms. In the cross-validation score (CV_score)
field of the method columns, is reported in parenthesis the chain break fraction, except for the last two datasets,
which are solved with the hybrid approach. Highlighted in bold the results where a QUBO feature selection
method provided the highest number of features discarded and with the highest (or equal) score.

Quantum Annealing Classic Methods

All Features Graph-MIQUBO VarThr MI Chi2 ANOVA

Dataset N Score N Score N Score N Score N Score N Score

breast_cancer 30 0.957 17 0.957 (0.0) 29 0.957 21 0.960 22 0.960 24 0.960

robot-failures-lp5 90 0.702 70 0.754 (0.48) 50 0.745 80 0.763 83 0.746 78 0.737

SPECTF 44 0.790 9 0.817 (0.23) 43 0.806 21 0.833 8 0.828 23 0.822

thyroid-ann 21 0.995 12 0.997 (0.0) 20 0.996 19 0.997 11 0.997 17 0.997

isolet 617 0.979 539 0.986 50 0.983 63 0.986 51 0.988 51 0.986

swarm-behaviour 2400 1.000 746 1.000 50 1.000 1811 1.000 1175 1.000 294 1.000

Table 2: Results of Graph-MIQUBO solved with the QPU compared against classical filter feature selection
algorithms. In the cross-validation score field (here labelled as "Score") of the QUBO method column, is
reported in parenthesis the chain break fraction, except for the last two datasets, which are solved with the
hybrid approach.

617 features, these are the timings needed to find
the optimal solution of QUBO formulated with
Graph-MIQUBO algorithm:
• Quantum Annealing (hybrid): 1m 40s
• Steepest Descent: 20m 49s
• Simulated Annealing: 15h 21m 31s

The major drawback and bottleneck of QUBO
feature selection methods is the time needed to
generate the QUBO model itself. This becomes
more evident by comparing a QUBO method
with classical ones, which do not need any
QUBO generation. For example, with "swarm-
behaviour" dataset that has 2400 features, there
is a striking total difference between Graph-
MIQUBO (total time of 9 hours) and Variance
Threshold (less than a second).

5. Conclusions
In this thesis, we presented three methods
based on a QUBO problem solved with differ-
ent meta-heuristics, including Quantum Anneal-

ing. These methods are: Graph Mutual Informa-
tion QUBO, Quantum-Boosting and Quantum-
Correlation. These algorithms have been tested
and compared between themselves and with
classical ones.
The results obtained are promising, consider-
ing that quantum annealing devices is relatively
new technology. The next steps for this field
of research is to improve and speed-up the time
needed to compute a QUBO formulation, and
to express deeper insights of interaction and rel-
evance between the features themselves and with
the target variable. Furthermore, a development
of quantum annealers’ technology could open up
new possibilities for larger experiments that can
be carried out without any hybrid approach.

References
[1] Emile Aarts, Emile HL Aarts, and

Jan Karel Lenstra. Local search in combi-
natorial optimization. Princeton University

6



Executive summary Fabio Moroni

Press, 2003.

[2] Langley P. Blum A. Selection of relevant
features and examples in machine learning.
Artificial Intelligence, page 245, 1997.

[3] Bernhard E. Boser, Isabelle M. Guyon,
and Vladimir N. Vapnik. A training al-
gorithm for optimal margin classifiers. In
Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, COLT
’92, page 144–152, New York, NY, USA,
1992. Association for Computing Machin-
ery.

[4] Leo Breiman. Random forests. Machine
Learning, 45(1):5–32, Oct 2006.

[5] Vicky Choi. Minor-embedding in adia-
batic quantum computation: I. the param-
eter setting problem. Quantum Information
Processing, 7(5):193–209, Oct 2008.

[6] Scott Kirkpatrick, C. Gelatt, and M. Vec-
chi. Optimization by simulated annealing.
Science (New York, N.Y.), 220:671–80, 06
1983.

[7] Rajdeep Kumar Nath, Himanshu Thap-
liyal, and Travis S. Humble. Quantum an-
nealing for automated feature selection in
stress detection. 2021.

[8] H. Neven, V.S. Denchev, Geordie Rose, and
William Macready. Qboost: Large scale
classifier training with adiabatic quantum
optimization. Journal of Machine Learning
Research, 25:333–348, 01 2012.

[9] Xuan Vinh Nguyen, Jeffrey Chan, Simone
Romano, and James Bailey. Effective global
approaches for mutual information based
feature selection. page 512–521, 2014.

[10] Debbie L Hahs-Vaughn Richard G Lomax.
Statistical concepts: a second course. 2013.

[11] Zhihong Zhang and Edwin Hancock. A
graph-based approach to feature selection.
05 2011.

7



Politecnico di Milano
School of Industrial and Information Engineering

Master of Science in Computer Science and Engineering

Dipartimento di Elettronica, Informazione e Bioingegneria

A Survey on Feature Selection Methods for
Classification Solved with Quantum Annealing

Supervisor: Prof. Paolo Cremonesi
Co-supervisor: Dott. Maurizio Ferrari Dacrema

Master thesis by:
Fabio Moroni, mat. 946779

Academic Year 2020 - 2021



Abstract

Modern Machine Learning problems are getting more and more complex: their size
is increasing and the challenges to face are harder to overcome. The growth of the
datasets implies an huge increase of the computational time to execute algorithms
and train learners. Solving Feature Selection problem reduces the amount of data
used to learn a process, but it is computationally expensive. Thus, finding more
efficient strategies and approaches would lead to a significant impact.

Feature Selection is a phase of a Machine Learning pipeline that has the goal to
reduce the number of features of a dataset, without loosing generality and accuracy
of the learner used. Solving efficiently this problem is crucial: we may be able to
significantly reduce the number of features of a dataset, which implies a speed up
of the training phase of the learner. Despite this, the accuracy obtained should be
equal or better in both validation and test steps of the pipeline, thus improving its
generalization ability. Furthermore, in a research scenario, cutting unnecessary or
less relevant features gives a deeper insight about the dynamics of the process to
learn. However, solving a feature selection problem can be computationally very
expensive. So, it needs some speed-ups in terms of resources and new technologies.

This thesis focuses on the filter category of Feature Selection methods for super-
vised learning classification problems. These techniques exploit statistical measure-
ments (e.g. mutual information or correlation) between the features themselves and
with the target variable(s) in order to determine their relevance for the problem.

The goal of this work is to evaluate a graph based mutual information approach,
called Graph Mutual Information QUBO, Quantum-Boosting and Quantum-Correlation
methods, which can all be executed on Quantum Annealer devices. The evaluation
is achieved through a series of experiments, which results are used to compare the
quantum-based algorithms to classical (non-Quantum) ones from the point of view
of accuracy, efficiency, and execution timings.
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Sommario

I problemi moderni di Machine Learning stanno diventando sempre più complessi: la
loro dimensionalità continua a crescere a le sfide da affrontare sono sempre più difficili.
Questa crescita riguarda i set di dati impiegati, la quale implica un grande aumento
del tempo computazionale necessario per eseguire gli algoritmi e poter ”istruire” i re-
gressori o classificatori. Una soluzione a questo problema è una efficiente esecuzione
della fase di Feature Selection, letteralmente selezione delle caratteristiche.

Feature Selection è una delle fasi di un algoritmo di Machine Learning che ha
l’obiettivo di ridurre il numero di features (appunto, caratteristiche), senza però
influenzare in maniera negativa la precisione e accuratezza del regressore o clas-
sificatore (learner), impiegato per imparare le dinamiche di un processo. Risol-
vere in maniera efficiente questo problema risulta estremamente importante, poichè
diminuendo potenzialmente gran parte delle feature di un set di dati si ottiene una
riduzione signicativa della complessità di un problema, nonchè del tempo necessario
per l’addestramento del learner. Nonostante questa simplificazione, le performance
dei nuovi modelli possono rimanere uguali oppure anche migliorare sia negli step di
validazione che di test. Inoltre, soprattutto in analisi e problemi di ricerca, riuscire
ad eliminare feature che risultano non necessarie e meno rilevanti può contribuire ad
una maggiore comprensione delle dinamiche del processo da studiare.

Tuttavia, risolvere il problema di Feature Selection può essere molto dispendioso
dal punto di vista computazionale, con tempi di esecuzione che non rendono utile
l’impiego e la soluzione di tale fase. Per questo motivo, è necessario migliorare le
tecniche impiegate, nonchè le risorse e sfruttare nuove tecnologie.

Questa tesi si concentra sui metodi di selezione di feature di tipo ”filtro”, chiamati
filter methods, e su problemi di classificazione, con a disposizione anche la variabile
target da imparare (supervised classification problems). I filter methods sfruttano
delle grandezze statistiche (come mutual information e correlazione) tra le features
stesse e con la variabile target, in modo tale da determinare la loro rilevanza per il
problema.

ii



L’obiettivo di questa tesi è quello di testare e analizzare un metodo basato sui grafi
e la mutual information, chiamato Graph Mutual Information QUBO, e di valutare
i metodi Quantum-Boosting e Quantum-Correlation, i quali possono essere tutti es-
eguiti con un Quantum Annealer. Infine, confronteremo questi algoritmi con quelli
classici (di tipo non-Quantum) dal punto di vista dell’accuratezza, efficienza e tempi
di esecuzione.
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Chapter 1

Introduction

Machine Learning applications are nowadays getting more and more popular on a
growing scale of domains. Furthermore, the inner mathematical complexity and size
of the problems are expanding, requesting more resources and execution time to
be accomplished. To handle these issues, solving efficiently the problem of Feature
Selection becomes crucial.

Feature Selection (FS ) consists in reducing the number of features of a dataset,
without loosing generality and accuracy of the classifier (or regressor) used to learn
a concrete process. This phase of the pipeline is important because we may able to
solve the mentioned issues: significantly reduce the size of the problem, allow for a
faster execution of the training phase of the classifier without loss of generality and
also grasp deeper information about the dynamics of the problem. Indeed, imagine
a medical problem of cancer classification or detection: in a study or research phase,
given a dataset with an excessive amount of features, a feature selection algorithm
could help not only to improve the training time of specific classifiers, but also to
better understand the main correlation between the causing factors and formation
of the cancer itself.

Out of all the techniques and categories of approaches to solve Feature Selection,
in this work we will focus only on supervised learning classification problems with
filter methods, which consist in algorithms that exploit statistical measurements (e.g.
correlation) between the features themselves and with the target variable(s) to de-
termine their relevance for the problem.
The main statistical measures used for this purpose are the Mutual Information
(MI), which consists in a dependence measure between two random variables ob-
tained through their entropies, and the correlation between two variables.
In our work these variables coincide with the features of a given dataset, thus per-
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forming feature selection by considering the ”most relevant features” to solve classi-
fication problems.
The first approach described in this thesis uses Mutual Information: it consists in
an algorithm that transforms the FS problem into a weighted MaxCut Graph-based
combinatorial optimization problem. Since this problem has to be adapted to a
QUBO formulation in order to be exploited with a Quantum Annealer, this ap-
proach is called Graph Mutual Information QUBO (Graph-MIQUBO). Two other
quantum-based approaches are explained and tested in this work: Q-Boosting and
Q-Correlation. The former leverages the idea of boosting in Machine Learning, which
means to combine several simple classifiers to obtain a stronger and more robust one.
Q-Correlation formulates an optimization problem by using the Pearson correlation
between the features themselves and with the target variable.

The main goal of this thesis is to evaluate three feature selection methods that can
be executed on Quantum Annealer devices: a graph based mutual information ap-
proach, called Graph-MIQUBO, Q-Boosting and Q-Correlation. Then, we report the
results of our experiments, analysing their overall performance from both accuracy
and efficiency point of view with respect to classical and non-Quantum algorithms.
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Chapter 2

State of the art

Feature Selection is a crucial phase in the Machine Learning pipeline, where the main
goal is to reduce the number of features, such that the generalization power of the
predictor and model used is not negatively affected, but it may also get enhanced.
This step is getting more and more important in modern problems, since they become
more complex and their mathematical dimensionality gets too large too handle them
in reasonable execution times.

In this chapter, we are going to describe in general the overall problem of Feature
Selection and what are the different categories of methods. Then, we are going to
focus on one of these categories (the filter methods) and discuss various techniques
of this type that have been tested.

At the end of this chapter, a brief description of the Quantum device used is
made, along with quantum annealing, focusing on which kind of problems it can
efficiently solve.

2.1 Overview of Feature Selection methods

When dealing with Feature Selection, one possible way to determine the best subset
of features is to use a brute-force approach: use all the possible combinations of
feature subsets, train a classifier with it and evaluate the performance obtained. It is
trivial to understand that when the dimensionality of the problem (e.g. the number
of features) increases then the cardinality of all the possible combinations to test
grows significantly, thus making the computational cost hugely expensive.

Since the brute-force approach becomes unfeasible as the number of feature grows,
there are other techniques that are used for this purpose that can be divided in three
main categories:
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• Filter methods: the subset of features is selected independently from the data
modelling used and it is based primarily on statistical measures.

• Embedded methods: these are called also hybrid methods, since the selection
of the subset of features occurs during the execution of the modelling algo-
rithm. Some of these methods, like Lasso or Ridge Regression, perform feature
weighting and can be applied to any type of learner (a Support Vector Machine
with linear kernel, for instance).

• Wrapper methods: feature subsets are selected based on the performance on
a modelling and learning algorithm, considered as a black box.

All these methods share the same objective: find the best possible subset of fea-
tures that maximizes the generalization power of the learner (no matter if it is a
classification, regression or forecasting problem). [1, 14]

In this work the focus is on classification problems with filter methods, which are
going to be described in details in the next section.

2.2 Filter methods for Feature Selection

Filter methods for Feature Selection have the capability of finding the best subset
of features by computing statistical measures [46] between the features themselves
and with the target variable that has to be learned. Every method applies its own
criteria and measures to compute the relevance of a feature [7] with respect to the
other features and for the target variable. Generally, with this type of methods, a
”score” is associated to every feature of the dataset and a ranking is generated; thus,
through this ranking, it is possible to determine the most relevant features that best
describe the problem.

2.2.1 Variance Threshold

The Variance Threshold method (or Correlation criteria [1, 14]) is one of the sim-
plest algorithms to use in order to rank the features of a dataset [47, 18, 6, 19].
The statistical measure considered is the Pearson correlation [3] between the single
features and the target, following this formula:

Corr(fi, y) =
Cov(fi, y)

σfi σy
(2.1)

where:
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• fi is the i-th feature (column) of a dataset

• y is the target variable of the learning problem

• Cov(fi, y) is the covariance between the two variables

• σfi is the standard deviation of the i-th feature

• σy is the standard deviation of the target variable

Thus, this method ranks the features starting with the ones that are more correlated
with the target variable, without taking into consideration the interactions between
the features. There are two criteria in order to decide which features to use before
the final test evaluation with a classifier: one way is to pick the top k features of
the ranking, where k is an hyper-parameter to fix a priori. The second one is based
on selecting the features which ranking values are higher with respect to a fixed
threshold.

2.2.2 Mutual Information based methods

There are plenty of different filter feature selection methods that use at their base
the statistical measure of Mutual Information, also known as Shannon’s Information
[55, 44, 54]. Mutual Information is computed using the entropy, which measures the
level of ”uncertainty” of a random variable. Given a random variable X, with n
possible outcomes x1, . . . , xn, the entropy of X is computed in this way:

H(X) = −
n∑
i

p(xi) log2(p(xi)) (2.2)

The base of the log is 2 since the unit of the entropy is the bit. Given two random
variables X and Y , respectively with n and m possible outcomes (x1, . . . , xn and
y1, . . . , ym), it is also possible to define the joint entropy :

H(X, Y ) = −
n∑
i

m∑
j

p(xi, yj) log2(p(xi, yj)) (2.3)

and the conditional entropy :

H(X|Y ) = H(X, Y )−H(Y ) = −
n∑
i

m∑
j

p(xi, yj) log2(p(xi|yj)) (2.4)
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With these (2.2), (2.3) and (2.4) formulas, it is possible to compute the Mutual
Information (MI) between two random variables X and Y, that is a non-negative
value that indicates how these are related:

MI(X;Y ) = −
n∑
i

m∑
j

p(xi, yj) log2
p(xi|yj)
p(xi)

(2.5)

The higher the value of the Mutual Information, the higher is the certainty of the
relation between the variables themselves.

Thus, similar to the previous method, it is possible to formulate a ranking of
the features of a dataset by computing MI(Xi, y), where y is the target variable.
Secondly, choose a value for the hyper-parameter k and then pick the top k features
from the computed ranking.

As indicated in [55], through Mutual Information it is possible to describe the
concept of interaction between variables, since MI(X, Y ) can be seen as a measure
of the strength of a 2-way interaction between X and Y. Furthermore, as described in
[56], with Mutual Information we introduce with a formula the concept of relevance
of a variable with respect to another one:

Rel(X;Y ) =
MI(X;Y )

H(X) +H(Y )
(2.6)

Namely, the ratio between the Mutual Information of X and Y over the sum of the
single entropies.

By considering the relations between the Mutual Information and the entropy
[55], it is possible to rewrite the formula of the relevance only in terms of entropies.
In fact, given:

MI(X;Y ) = H(X) +H(Y )−H(X, Y )

Rel(X;Y ) =
MI(X;Y )

H(X) +H(Y )

we obtain:

Rel(X;Y ) =
H(X) +H(Y )−H(X, Y )

H(X) +H(Y )
= 1− H(X, Y )

H(X) +H(Y )
(2.7)

It is clear that Rel(X;Y ) is a value between 0 and 1: the closer to 1 it is, the higher
is the relevance of X to better ”understand” Y; that is the case because this scenario
happens when H(X, Y ) is close to zero, which means that the ”uncertainty” of X
and Y jointly is extremely low.
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2.2.3 Chi2 Test

The Chi2 Test, which is called after the Chi-square statistic, is another filter method
that can be used for feature selection. Similar to the Variance Threshold method
seen in section 2.2.1, the underlying idea is to compute a statistic measure, thus
giving a score and a ranking to the features of a dataset. Given a random variable
X, with n possible outcomes x1, . . . , xn, the Chi-square statistic value is computed,
as explained in [34, 53]:

χ2 =
∑
i

(xi − xi)2

xi
(2.8)

where:

• xi : is the observed value of random variable X

• xi : is the expected value of random variable X if the null-hypothesis is true

The Chi Squared test measures dependence between stochastic variables, thus show-
ing which ones are less ”relevant”; in our case, by performing the chi-square test
between features and the target variable, the features with the lowest score are the
ones that provide less information to learn the correct samples classification.

2.2.4 ANOVA F-Test

The name ANOVA comes from Analysis of Variance [47, 18, 6], while F-test is
named after the mathematician and statistician Fisher, who introduced the F value,
computed as [28]:

F =
MSB

MSW

(2.9)

where:

MSB =

∑m
i ni (xi − x)2

m− 1
(2.10)

MSW =

∑
i j(xij − xi)2

n−m
(2.11)

As described in [28], the terms of the above formulas are:

• m is a prefixed value indicating the number of ”groups” to compare: in our
case with classification problems, m indicates the number of classes (in binary
problems m = 2, and so on)
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• MSB is the “between-group variability”

• MSW is the “within-group variability”

• n is the total number of observations, while ni only for the i-th group

• xi denotes the empirical mean of the samples in the i-th group, while x denotes
the overall mean of all the observations

• xij denotes the j-th observation in the i-th group

The ANOVA F-Test feature selection method minimizes false negative errors and,
once again, associates to each feature of a dataset a score, thus producing a ranking
from which it is possible to pick the top k features.

2.3 Classifiers

In this thesis, as already mentioned, we focus on supervised classification problems,
thus the ”learner” is a classifier, which will output a label corresponding to the es-
timated learned class of the target variable.

There are several classifier models and methods to train them efficiently, here we
describe the Random Forest (RF) classifier, which is the one that has been used for
the experiments and results, and also the Support Vector Machine (SVM) because
it is used in one of the feature selection algorithms discussed in the third chapter.

2.3.1 Random Forest classifier

Random Forest (or random decision forest) is an ensemble learning method that
can be used for both classification and regression problems that leverages the usage
of multiple decision trees at training time. It is very powerful and flexible to be
applied also on large-scale datasets. Furthermore, it is a continuous object of research
for its versatility on a growing scale of problem domains, due to its inner relevant
mathematical and statistical mechanisms, such as the selection of parameters, the
resampling steps, and variable importance measures [5]. Since we consider only
classification problems, we describe the behaviour of this learner as a classifier.

This method was first introduced by Tim Kam Ho in 1995 [30]; nearly ten years
later in 2006, Leo Breiman developed the algorithm [10] and registered ”Random
Forest” as a trademark.
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In classification scenarios, a random forest classifier generates a series of decision
trees each on different and random subsets of the available features of a dataset.
This procedure is called ”feature bagging”, referring to the bagging ensemble tech-
nique, because if one or more features are highly relevant to correctly predict the
target variable, the generated decision trees that use those relevant features will be
more ”frequent” and thus the probability of making a correct prediction increases.
This would make these ”strong” trees and features to be correlated, leading to an
increase of the overall and final accuracy of the random forest classifier.

Once all these decision trees perform a prediction of a target class, it is counted;
the output of the random forest is just the single label of a target class that has won
with majority voting.

2.3.2 Support Vector Machine classifier

Support Vector Machine (SVM) is a supervised learning model first introduced ad
developed in the 90’s [9, 16], and can be used for different machine learning task,
such as regression, classification and clustering. For classification tasks, the objective
of this model is to find a subset of samples, called support vectors, which are used to
determine the maximum margin.

Consider a binary classification problem, so a problem with a target variable that
contains two different classes, the margin corresponds to the distance between the
points (e.g. samples) belonging to the different classes (Figure 2.1). Thus, training
an SVM consists in solving a maximization problem where the objective function
describes the margin itself. The samples that locate this margin are called support
vectors.

Support Vector Machines are capable to solve also multi-class problems: for ex-
ample, is to use different binary SVM classifiers that distinguish between one of the
labels and the rest (one-versus-all) or between every pair of classes (one-versus-one).

This classifier model has been and still is one of the most popular, due to its inner
structure and training process and also for its capability to determine also non-linear
boundaries between different classes [9]. It has been successfully used in different
applications and domains, for example in biology [11] and also text categorization
[31].

9



Figure 2.1: SVM margin example on binary classification problem.

2.4 Graph theory overview

This section introduces the main concepts and definitions about graph theory, since
they are going to be used throughout the description of our model, detailed in the
third chapter.

A graph G is a mathematical structure composed by nodes and edges; it is used
as a base model to represent and describe different problems and processes, such
as social network interactions [13], transportation [45], tasks assignment logic [50],
biomolecular structure [36] and many more [21].

The graph is fully described as G(V,E), where V is the set of vertices and E the
set of edges and it can be directed or undirected, weighted or not depending on the
values associated to each edge.

For our case, we will focus on undirected and weighted complete graphs, which
means that each node is linked with every other node inside the graph.
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Figure 2.2: Non-complete vs complete graphs

2.4.1 Weighted MaxCut problem

A graph is described through an adjancency (or weight) matrix W , that is a |V |×|V |
symmetric matrix with 0s on the diagonal and the weights of the linking edges as
off-diagonal elements. If there is no edge between two nodes, a 0 is placed instead.
Notice that, since we are focusing on complete undirected graphs, the weight matrices
that are going to be used will contain zeros only on the diagonal and are symmetric.

The weighted MaxCut problem, described by R. M. Karp in 1972 [32], consists
in finding the subset of vertices S that maximizes the weight of the edges in the cut;
that is, the sum of the weights of the edges with one endpoint in S and the other in
its complement.

This problem is can be solved with a variety of methods and has been a hot topic
of study and analysis in the last decades [26], since it is an NP-Complete problem.
But, for our study, we highlight the fact that the weighted MaxCut problem can be
written as a binary maximization problem, by simply using the adjacency matrix W
to define a quadratic objective function:

max
xn

xTWx (2.12)

x ∈ {0, 1}n
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This particular formulation is very helpful for our scope and objective, since it can
be easily translated into a Quadratic Unconstrained Binary Optimization (QUBO),
described in the following section.

2.5 Quadratic Unconstrained Binary Optimization

problems

In this section, the mathematical fundamentals of the Quadratic Unconstrained Bi-
nary Optimization (QUBO) problems are described, since they are at the base of the
Graph-MIQUBO algorithm which is going to be addressed in details in Chapter 3 of
this work.

2.5.1 QUBO: Mathematical description

Quadratic Unconstrained Binary Optimization (QUBO) consists in a class of NP-
Hard problems that covers a wide range of applications in the combinatorial opti-
mization domain.

QUBO problems have the goal to minimize an objective function, which is a
quadratic function, with no constraints on the search space of the solution. This
solution has to be with binary variables, which means they can only assume two
possible discrete values: 0 or 1.

A QUBO problem is mathematically defined as:

min q(x) = xT Q x (2.13)

x ∈ {0; 1}n

where:

• x is the vector with n binary variables

• n is the dimensionality of the problem

• Q is a n× n symmetric matrix describing the quadratic function q(x)

The quadratic objective function q(x) can be rewritten in non-matricial form, thus
obtaining the following equivalent problem formulation:

min q(x) =
n−1∑
i=0

n−1∑
j=0

xi xj Qij (2.14)
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x ∈ {0; 1} ∀i, j = 0, 1, ..., n− 1

For QUBO problems, theQ matrix is symmetric or upper triangular. It is possible
to convert any square matrix into a symmetrical or upper triangular one without loss
of information. By having an n× n matrix M , its symmetric equal Q is obtained in
this way:

Qij =
Mij +Mji

2
∀i,j i 6= j (2.15)

or in matricial form:

Q =
1

2
(M +MT ) (2.16)

To obtain the upper triangular form:

Qij = Mij +Mji ∀i,j j > i

Qij = 0 ∀i,j j < i
(2.17)

There’s a wide range of applications for QUBO problems [25], for instance:

• Assignment problems: knapsack, portfolio, etc.

• Graph based analysis: MaxCut/MaxClique, partitioning and clustering.

2.5.2 Classical algorithms to solve QUBO

As stated previously, QUBO is a class of NP-Hard problems. Thus, in order to find
a solution in a reasonable time, approximations and heuristics are needed.

In this specific subsection we are going to address some of these heuristics, which
are going to be used for the experiment and results section of this work.

Simulated Annealing

Simulated Annealing (SA) is a metaheuristic algorithm used in order to approximate
the global optimum of a given objective function. This algorithm is often used when
the search space is discrete. The name annealing derives by metallurgy, because
it consists in a technique involving heating and controlled cooling of a material in
order to alter its physical properties: the atoms of the material re-arrange as the
temperature of the system changes and gets low. The current arrangement of the
atoms is called state and an energy is associated to it. As the temperature gets
lower and lower, the atoms will arrange in a stable position, which coincides with
the state at the lowest energy, defined ground state.
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The algorithm is the one described in [33] by Kirkpatrick et al., and to make a
proper association with the QUBO problem that we are starting from:

• the physical/atomic state corresponds to the current solution xk of the algo-
rithm

• the energy coincides with the objective function, in our case with the quadratic
q(x) = xT Q x

• the ground state corresponds to the global minimum and solution of the prob-
lem (2.13).

The algorithm starts with a random state, a fixed number of iterations to perform,
and a high temperature value. Each iteration is associated with a temporary state.
In each iteration the temperature is lowered, following a decreasing function deter-
mined a priori, and a random neighbor state of the current one is selected. With a
certain probability that depends on the temperature, and on the energies of the cur-
rent state and its selected neighbor, the neighbor state is selected to be the new one
associated to the next iteration. This process lasts until the number of iterations are
finished, and the state associated to the final one is the estimated global minimum
of the energy function.
The fact that during its steps a random neighbor state of the current one is selected
is an advantage of this approach: the neighbor state has a chance of having a higher
(so, worst) energy. Thus, this feature increases the probability to escape from local
optima and search for the global one.

To summarize the Simulated Annealing approach: the goal is to bring the system,
from an arbitrary initial state, to a state with the minimum possible energy, coin-
ciding with an approximation of the global minimum of the objective function.

Tabu Search

Tabu Search (TS) is another metaheuristic search method proposed and refined by
Glover in late ’80s [23, 24]; it uses local search in order to find a global optimum in
an optimization problem. It is similar to Simulated Annealing, since both methods
search a possible solution ”down hill” by testing neighboring states of the given one.
Like SA, TS has the capability to accept with certain probability a state with higher
energy, thus ”climbing the hill”. This behaviour is for both algorithms a strong one,
since it is used to escape from possible local optima and search for the global one.
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However, TS operates by considering also a ”Tabu List”, which is a list containing
all the previous explored moves that will no longer be considered; this is also the
reason of the name of this method.

This ”Tabu List” has a fixed length of n, an hyper-parameter of the algorithm.
Thus, this data structure can be seen as a short-term memory containing solutions
(in this case, states) to be avoided in the local search for the current iteration of the
algorithm.

Steepest Descent

Steepest Descent is a technique that is used to find the global optimum of an objec-
tive function by following iteratively a specific direction. For QUBO problems the
direction at each step is obtained by computing a local minimization, so with local
search [2]. This computation consists in determining the dimension along which,
after a variable flip (0 to 1 or viceversa), the highest energy drop is observed.

This algorithm is considered greedy, because the one direction or choice taken is
based on a fixed criteria, in this case the one with the biggest energy drop. This
approach has advantages as well as disadvantages: while this criteria drastically
speeds up the search for an optimal solution, it has the main drawback of getting
stuck into local optima, thus returning a solution that is not at the lowest possible
energy.

2.6 Quantum Computing

In the last decades we have seen an increase in the amount of power for classical
computers, speeding up processes, opening many branches of research and solving
complex problems of any type: from economics, finance and logistics to bioinformat-
ics and medicine.

Despite this evolution, there are still major limits with classical computing, espe-
cially in solving highly computationally expensive problems, like simulations, queries
and heavy calculus tasks. These limits are linked with the core functionalities and
properties of classical computers, and that’s where Quantum Computing can help
us, by leveraging its different computational paradigm.

Quantum Computing refers to a specific branch of Computer science and Engineer-
ing where the core functionality and ”rules” of the computers are based on quantum
mechanics. The objective of this branch is to leverage and exploit the properties of
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quantum mechanics in order to overcome the current limits of classical computing, by
embedding and using the quantum mechanics phenomena in a computational model.

The idea and concept of quantum computers was first introduced by the physicist
Paul Benioff in 1980 when he proposed a quantum mechanical model of the Turing
machine [4]. This concept developed right after in 1982, when Richard Feynman and
Yuri Manin suggested that classical computer could not simulate certain quantum
mechanical effects [20, 35], thus creating the idea of quantum superiority regarding
computational power.

The interest for quantum computing started to grow more and more in the 90s,
because through applications and demonstrations a remarkable speed-up have been
achieved with algorithms proposed by Peter Shor in 1994 [51, 52] and by Lov Glover
in 1996 [27]: the former regarding integer factorization and the latter about the
search of an element in an unordered list, both obtaining the wanted outputs in
polynomial time.

After these discoveries, Quantum computing became increasingly active and cen-
tral for researchers and witnessed many studies and developed technologies, specifi-
cally in the last decade [29].

In Quantum computing, there are several types of machines called quantum com-
puting systems, and the two most relevant are gate-based quantum computing and
quantum annealing, also referred to as adiabatic quantum computing.

In this work we will focus on adiabatic quantum computing, since it is the model
that is used as base to develop the proposed algorithm and, of course, in the experi-
ments as well.

2.6.1 Quantum computing fundamentals

Before entering in details about the quantum annealing model, we need to introduce
the fundamental concepts and definitions of quantum computing and how quantum
mechanics plays a role in all of this.

First of all, from classical computing there’s a shift from the well known bit to its
quantum counterpart, called qubit. While classic bits are discrete and deterministic
variables whose values can be either 0 or 1, qubits are continuous and probabilistic,
since a qubit can have a value in the range between 0 and 1.

Furthermore, a qubit is a quantum object, thus it is capable of exploiting spe-
cific quantum characteristics and properties such as superposition and entanglement.
Superposition is the physical property of a quantum object to be in two different
states ”simultaneously”; in the case of the qubit, it is both 0 and 1 with different

16



probabilities. Despite this, at the end of the annealing procedure all the qubits
collapse in one of the two classical states.

Thus, the final collapsed state measured depends on the probabilities linked with
the superposition just before the measurement itself, and it is also influenced by how
the qubits are correlated and the coupling strengths applied to them.

While superposition is a property of a single qubit, entanglement involves two or
more qubits: it consists in a quantum phenomenon that indicates a ”bond” between
the qubits; it has no correspondence in classical computing, it can be simulated, but
inefficiently.

When two qubits are entangled, their states can only make sense if observed and
measured together, they cannot be described singularly; thus, measuring one of them
leads to the collapse into a classical state also of the entangled one.

2.6.2 Quantum Annealing

Given the definitions of the main quantum properties of superposition and entan-
glement, we can discuss in more details the quantum annealing system. The term
”annealing” have been already introduced in Section 2.5.2 and, indeed, this model
adopts the concepts of state and energy.

In fact, this type of machine exploits the natural behaviour of a system to reach
its ground state, which corresponds to the one with the lowest energy, like it has been
described with Simulated Annealing. However, the annealing process on a quantum
annealer works in a different way: because it leverages a specific quantum property
called quantum tunneling and no temperatures are used to control it.

Quantum tunneling happens when a particle/wave-function can propagate through
an high and ”thin” energy barrier and this effect is one of the quantum capabilities
that cannot be efficiently simulated through classical computing. In our case with
energy states, the objective is to find the solution that corresponds to the lowest
energy, the global minimum of the shape of an energy function. Quantum tunneling
is exploited in quantum annealing by passing through an high peak and thin energy
hill, thus speeding up the search for the global minimum of the energy function,
instead of climbing the energy hill itself [17].

Exploiting quantum tunneling for this solution search is like building a road tun-
nel into a mountain and pass through it instead of climbing all to way to the top
and descend, it is a much faster, easier and ”cheaper” (only from the energy spent
point of view) process to obtain the same result. This behaviour is applied to solve
NP-Hard problems and obtain acceptable solutions, but with the twist to leverage
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the quantum properties of qubits in the attempt to reduce the needed computational
time.

As stated in the previous Section 2.6.1, the qubits’ states and the final collapsed
one depend on the qubits properties: first, how the qubits themselves are correlated
between each other, then on their single magnetic field orientation. The correlation
between qubits corresponds to the entanglement property, while the magnetic field
orientation corresponds to the probability of each qubit’s superposition. These mea-
sures are necessary to represent a qubit, and can be programmed and used to define
the energy of the function to optimize.

How to represent quantum properties in a mathematical model?

As discussed multiple times, the objective to achieve with an annealer is to find the
ground state, so the state with the minimal energy. This leads to the problem on
how to calculate the energy of a quantum state.

The energy of the machine’s state is obtained with its Hamiltonian, which is a math-
ematical description of the energy of a system obtained through the sum of the
energies of its subparts, which in our case are the qubits and the interaction between
themselves. The annealing process for quantum annealers is different with respect
to the one of Simulated Annealing: in the simulated one, as we explained is Section
2.5.2, a temperature parameter is used to control the entire process and search for
the global optimum. In Quantum Annealing, instead, the annealing process is not
controlled with a temperature, but with two main parameters which are explained
with the formula of the Hamiltonian. Here’s the formula:

H = −A(s)

2

(∑
i

σ̂(i)
x

)
︸ ︷︷ ︸

Initial Hamiltonian

+
B(s)

2

(∑
i

hiσ̂
(i)
z +

∑
i>j

Jijσ̂
(i)
z σ̂

(j)
z

)
︸ ︷︷ ︸

Final Hamiltonian

(2.18)

where:

• s, the argument of A(·) and B(·), indicates the fraction of the annealing process,
so it is a value between 0 and 1

• σ̂x,z are the Pauli matrices:

σ̂x =

(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
(2.19)
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Figure 2.3: Evolution of functions A(s) and B(s) during the quantum annealing
process.

• hi is the bias of the i-th qubit, which represents its superposition

• Jij is the coupling strength between the i-th and j-th qubit, which indicates the
entanglement between them

A(s) and B(s) functions can be considered as ”weights” of the sums in the parenthe-
sis of the Hamiltonian formula (2.18), they control the annealing process and can be
considered as analogous to the temperature schedule used in Simulated Annealing.
These functions have different shapes, reported in Figure 2.3. As we can observe,
these functions have the following behaviours: A(s), which controls the initial Hamil-
tonian term, starts at a peak energy and it shrinks to zero as s tends to one, when
the annealing schedule is getting to its end. B(s) instead tends to be more and more
present as the annealing schedule is finishing, indeed it describes the final or prob-
lem Hamiltonian term. This means that the lowest possible energy of the system,
which coincides with the ground state (the solution that we are looking for), mainly
depends on what happens at the end of the annealing schedule, so by the problem
Hamiltonian.

Furthermore, the problem Hamiltonian is determined by the biases and the cou-
pling strengths, which are set by the machine user. This means that if the machine
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user is able to build an optimization problem and map it as the problem Hamiltonian,
the final result of the annealing schedule, the collapse of the qubits into a classical
state, is a solution of the optimization problem.

In our discussion, we are still missing the link between the QUBO formulation prob-
lem, the one that we have stated that the Quantum Annealer is good at solving, and
the Hamiltonian formula, which expresses the energy of a quantum system based
on the biases and coupling strengths between the qubits. This missing link is the
Ising model, which is the base model after which the problem Hamiltonian is defined.

The Ising model is a mathematical description of ferromagnetism in statistical me-
chanics, it consists of discrete variables that represent atomic ”spin” property, that
can assume the value of +1 or −1, which correspond to the spin directions. The
energy function of the Ising model is the following, and it contains familiar variables:

EIsing(s) =
N∑
i=1

hisi +
N∑
i=1

N∑
j=i+1

Jijsisj (2.20)

As seen previously with the Hamiltonian (2.18), hi indicates the bias of the i-th qubit
qi, Jij the coupling strength between two qubits and N is the number of variables.

The Ising model can describe any Hamiltonian, and therefore also the problem
Hamiltonian, so the energy of the final solution resulting from the annealing, where
all the qubits have collapsed to a classical state. This means that if we are able to
create an optimization problem that can be mapped to an Ising model, a solution
can be obtained through annealing.

Furthermore, it becomes evident the bond with a QUBO formulation: the Ising
formulation (2.20) coincides with a quadratic function that can be described with a
N×N symmetric matrix, and the link with the Q matrix introduced in (2.13) is that
the biases hi form the diagonal of Q, while the coupling strengths Jij correspond to
the off-diagonal elements of the matrix.

The only change that has to be performed regards the variables of the optimiza-
tion problem, since QUBO variables are binary, while in Ising the variable is a spin,
so +1 or -1. In fact, the spin s of the Ising model is related to the binary variable q
of a QUBO problem as:

si = 2qi − 1 (2.21)
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Problem embedding: from the mathematical problem to the Quantum
annealer

Once the mathematical model is built, the next step is to ”transfer” it onto the
quantum annealer chip, in order to start the quantum annealing schedule and solve
the optimization problem. From the square matrix to solving the problem with
quantum annealing, there is an intermediate step called problem embedding. Before
explaining it, an overview on the QPU architecture is needed. The QPU consists in
an arrangement of qubits that are connected between each other. Several qubits are
organised in units, arranged with a specific layout, called topology. A unit corresponds
to a graph, the nodes of this graph are the qubits, the edges are the couplers and
the arrangement of these edges is defined by the topology. A coupler is a link that
connects two qubits, thus establishing an entanglement between them.

An example of a topology of quantum annealer machine unit is the Chimera graph
topology, reported in Figure 2.4: it is composed by 8 nodes (qubits), which are not
fully connected. This lack of couplers (edges) between some pair of qubits inside

(a) Bipartite graph (b) Cross graph

Figure 2.4: Chimera graph of a single unit of DW-2000Q-6

an unit raises an issue. In fact, going back to the mathematical model, the ideal
scenario is to map each logical variable of the model to a single qubit, but as the
dimensionality of the problem increases, this is no more possible. The square matrix
that defines the quadratic objective function implies that there is a coupler (edge)
for each pair of nodes, thus building a fully connected graph. As already seen, this
is not the case with the topologies used.

This issue translates into the problem of fitting the structure of an Ising (or
QUBO) formulation in the QPU topology. This process is called minor embedding
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[15], which will trasform the original problem Hamiltonian into another that fits
on the QPU, respecting the topology of its units. This process is itself a NP-Hard
problem, but there are heuristic algorithms that are capable to obtain a solution in
polynomial time, like the one described in [12].

Consider the following example: imagine a starting problem with 3 variables and
an imaginary QPU unit of four qubits with a square topology. As it is shown in
Figure 2.5, the QUBO formulation of the problem is described by a 3× 3 symmetric
matrix, generating a fully connected graph with three nodes (the logical variables)
with a triangle structure. Due to the different structures, it is not possible to directly
embed one problem variable to a single qubit. To solve this, one of the problem vari-
ables is duplicated and represented with two physical qubits. This step will generate
a chain of qubits that represents the same problem variable. This embedding implies

Figure 2.5: Minor embedding example with basic problem.

a change in the objective function, which will have an added penalty term associated
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to the generated chain. With minor embedding, in order to maintain consistency in
the final results, all the qubits belonging to a chain must be equal.

Creating qubit chains to properly embed a QUBO problem onto the QPU has
several consequences. With the previous example we have seen that, through em-
bedding, multiple qubits are used to represent the same logical variable, thus the
number of ”free” variables that can be solved on the QPU descreases. Once the
chains are created, an automated process adjusts the coupling strengths and biases.
The coupling strengths of the qubits inside a chain is set to the maximum value
available in order to maximize the entanglement between them.

When dealing with large problems, through minor embedding multiple and long
qubit chains are created. These creation, along with the handling on all the parame-
ters (coupling strengths and biases), increase the probability to obtain a chain break.
A chain breaks if the qubits belonging to it have different values, this implies that
the solution obtained is inconsistent. The final value of the logical variable can be
decided via majority voting, but this leads to a solution that has a high probability
of being not only suboptimal, but also to violate constraints.

The machine used: Quantum Annealer Advantage System

D-Wave Systems Inc.1 is a Canadian quantum computing company, which sells their
quantum computers’ services to anyone, not only to corporates. The machine that
has been used for the experiments in this thesis is the latest one available for cloud
access through the company’s portal Leap2, the Advantage system3, 4 that has been
made available to the platform’s users in september 2020. This quantum annealer
has more than 5000 qubits, arranged on a QPU (Quantum Processing Unit) with a
Pegasus topology [8].

With respect to the previous generation of D-Wave’s quantum annealers, the
Advantage system offers overall superior performances due to its higher connectivity,
more qubits and couplers, thus providing the ability to embed larger problems. The
topology of the single units is different, because with the previous generation (D-Wave
2000Q 6th gen., DW-2000Q-6) a Chimera topology is used. A graphical comparison,
directly taken by D-Wave’s documentation of the Advantage machine, of the two
topologies is represented in Figure 2.6, where it is evident the increase of overall
connectivity between the qubits. In these graphs, the edges between the qubits

1D-Wave Systems website: https://www.dwavesys.com/
2https://cloud.dwavesys.com/leap/
3Full Specifications on: https://www.dwavesys.com/media/s3qbjp3s/14-1049a-a_the_

d-wave_advantage_system_an_overview.pdf
4Full documentation: https://docs.dwavesys.com/docs/latest/index.html
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Figure 2.6: Chimera vs Pegasus topology

of the same unit or of different ones are couplers, thus their weights indicate the
coupling strengths.

In this image there’s only a partial representation of the complete architecture
of the quantum machines; for example, the complete schema of the DW-2000Q-6
machine is reported in Figure 2.7, which presents a 16 × 16 matrix arrangement of
Chimera units, each one consisting in a bipartite graph with 8 nodes that correspond
to 8 qubits: its representation can be seen in Figure 2.4, which has been reported
in the previous paragraph to introduce the QPU architecture. As stated previously,
with Advantage quantum annealer it is possible to embed problems with a maximum
of 5640 qubits: this translates for our case into a maximum fit for a dataset composed
by around 120 features. For datasets above this value, D-Wave Systems provide a
solution called Hybrid Quantum-Classical Computing systems.

Hybrid Quantum-Classical Computing systems

Solving large problems with many variables is an issue with these machines, since
they are limited on the number of logical qubits embeddable into the QPU. That’s
where Hybrid Quantum-Classical systems can help.

With a problem of large dimensionality, for example a dataset with more than
120 features, this type of system decomposes the starting problem in subproblems in
order to be solved efficiently, using both classical and quantum computing [49].
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Figure 2.7: DW-2000Q-6 QPU topology

As for the previous approach with the Quantum annealer, the implementation and
service is offered by Leap platform, D-Wave’s cloud service.
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Chapter 3

Quantum-based feature selection
algorithms

The objective of this chapter is to describe in details the quantum-based feature
selection algorithms that can be embedded onto a QPU of a Quantum Annealer.

As we’ve stated in the previous chapter, if we are able to define an optimization
problem with an objective function that is quadratic, based on the symmetric Q ma-
trix that defines it, we can formulate a QUBO problem that can be solved efficiently
with a Quantum Annealer. The general schema of the algorithms described in this
chapter until the embedding on the QPU [37] is the same:

1. define the formulas with statistical measures (e.g. mutual information, corre-
lation and entropy) to build the matrix Q

2. create the matrix Q that describes the QUBO problem

3. embed the problem onto the QPU

4. solve the problem with the Quantum Annealer

Since we are dealing with the problem of feature selection, the final solution of the
quantum annealing phase is an array of binary values, indicating which features are
kept as relevant (1) or discarded (0).

These methods are going to be used in the fourth chapter ”Experiments and Re-
sults” in order to evaluate their quality against each other and against classical
methods.
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3.1 Graph-based algorithm

The algorithm described is called Graph Mutual Information QUBO (Graph-MIQUBO),
due to its main characteristics and output. It starts by building a fully connected
weighted graph from the features of a dataset: the nodes are the features, and the
weights of the edges are obtained by using the mutual information that has been
introduced in Section 2.2.2. Then, this method outputs a QUBO formulation that
can be then embedded and solved through quantum annealing.

The idea behind this method is to transform a feature selection problem into a
weighted MaxCut one. The first step to obtain this comes by the article from Xuan
Vinh Nguyen et al. [42], where a description of the MaxCut problem with a quadratic
objective function is provided.

As addressed in the second chapter, a graph is described through the adjacency
(or weight) matrix W which, in the case of a complete graph, consists in a square
and symmetric matrix with zeros only on the main diagonal. As suggested by Z.
Zhang and E. Hancock in 2011 [56], it is possible to determine a value between 0 and
1 indicating the interaction between two features, by using the mutual information
(MI) from (2.5) and the entropy from (2.2). Thus, it is possible to build a square
weight matrix W using the features of a dataset:

W =

{
Wij =

MI(fi,fj)

H(fi)+H(fj)
if i 6= j

Wij = 0 if i = j
(3.1)

where fi is the i-th feature of the given dataset.
At this point we are able to define the QUBO problem. The quantum annealer

solves a minimization problem and the weighted MaxCut is a maximization one, as
explained in Section 2.4.1. To comply with this technicality it suffices to flip the sign
of the objective function, thus obtaining the following formulation:

min
xn

−q(x) = −
(
xTWx

)
(3.2)

x ∈ {0, 1}n

The variable x is a vector containing n binary variables, where n is the number of
features of the starting dataset. Notice that the ordering of the variables inside x
and of the columns of W is determined by the original structure of the dataset itself.
This implies that the first entry of vector x, so x0, corresponds to the first column (or
row) of matrix W and to the first feature f0 of the dataset. The quadratic function
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q(x) is the one introduced in (2.13) and (2.14). Once the problem is written with
this minimization formulation (3.2), it is ready to be given in input to the Quantum
Annealer to embed it on its QPU architecture and then solve it.

3.2 Quantum-Boosting algorithm

The Quantum-Boosting (Q-Boosting) algorithm was first proposed in 2008 by Neven
et al. [41] and then revisited and tested in 2009 and 2012 [40, 39].

As the name suggests, this algorithm exploits the Boosting technique [48, 22],
which consists in the composition of very basic and weak learners trained on few
features in order to obtain a strong learner that uses only relevant features.

For these reasons, the matrix Q that describes the QUBO problem to embed onto
the QPU is the following:{

Qij = Corr(hi, hj) if i 6= j

Qij = S
N2 + λ− 2 ∗ Corr(hi, y) if i = j

(3.3)

where:

• Corr(·, ·) is the Pearson Correlation, defined in (2.1) in Section 2.2.1

• hi coincides with the estimate of a Support Vector Machine (SVM) classifier
trained only with the i-th feature of the analysed dataset

• y is the target variable

• S is the number of samples inside the dataset

• N is the number of features

• λ is an hyper-parameter of the algorithm, fixed a priori

3.3 Quantum-Correlation algorithm

Quantum-Correlation (Q-Correlation), introduced and tested by R. K. Nath et al.
in 2008 [38], is another algorithm that creates a QUBO problem from the features
of a dataset. More precisely, it computes the Pearson correlation (2.1) between the
features and the target variable and between the features themselves.
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In details, this is the formula to compute the matrix Q:{
Qij = Corr(fi, fj) if i 6= j

Qij = Corr(fi, y) if i = j
(3.4)

where:

• Corr(·, ·) is the Pearson Correlation, defined in (2.1) in section 2.2.1

• fi coincides with the i-th feature of the analysed dataset
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Chapter 4

Experiments and Results

In this chapter we are going to present the experiments and the obtained results. As
already mentioned in previous chapters, we are going to compare the three QUBO
feature selection methods Graph-MIQUBO, Q-Boosting and Q-Correlation between
themselves, as well as with the following classical filter methods, all explained in
Section 2.2: Variance Threshold, Mutual Information, Chi2 Test and ANOVA F-
Test.

For the three QUBO methods, the experiments are performed by solving the op-
timization problems with four solvers and approaches: Simulated Annealing (SA),
Tabu Search (TS), Steepest Descent (SD) and Quantum Annealing (QA), with the
usage of Hybrid Quantum systems instead of QA for datasets with over 124 features.
The details about these listed approaches are reported in Sections 2.5.2 and 2.6.2 of
the second chapter.

The results are going to be analysed from all perspectives, making comparisons and
comments between the solvers on the same method, but also compare the solutions
obtained by the different methods with respect to the same solver. This chapter is
structured as follows:

• Section 4.1: the detailed pipeline of the workflow and an example of the ex-
ecution is provided. This example shows specifically the execution of Graph-
MIQUBO solved with both Simulated and Quantum Annealing over the iris
dataset.

• Section 4.2: all the datasets used for the experiments are introduced and de-
scribed.

• Section 4.3 and 4.4: the analysis and comparison of the classification accuracies
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obtained with the best classifiers across the solvers given a method, and across
the methods (both quantum and non-quantum).

• Section 4.5: the confusion matrices computed with the best classifiers for some
specific datasets are presented and commented.

• Section 4.6 and 4.7: comparison of the execution times needed to find the
best classifiers for all QUBO methods across the solvers, and across all the
algorithms (both quantum and non-quantum).

4.1 Workflow: experiments pipeline

In this section, the different steps of the workflow used for the experiments are
presented.
To provide a quick overview, the pipeline starts with the splitting and preprocessing
of the datasets into training and test sets used for the experiments. Then, the
datasets are passed as input to start sequentially three feature selection methods
that can be embedded onto the quantum annealer: our algorithm Graph-MIQUBO,
Q-Boosting and Q-Correlation.

4.1.1 Dataset splitting and preprocessing

Each dataset used in the workflow is first handled to be split into training and test
subsets, which are respectively used to train a classifier and to test its generalization
capability with respect to unseen data. All the datasets used have been split with
a 70% - 30% distribution of samples for training and testing. The validation set is
generated from the training one, with the k-fold cross-validation method, explained in
Section 4.1.2. The problems we are focusing on are supervised learning classification
problems, so the splitting of a dataset into the subsets is performed by maintaining
as close as possible the distribution percentages of the target classes. For example,
if a dataset contains three classes distributed with this pattern:

• Class 0: 50%

• Class 1: 20%

• Class 2: 30%

Both training and testing sets will contain samples distributed with the a pattern as
close as possible to the starting one.
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4.1.2 Feature Selection methods applied steps

Overall, for all three methods implemented, the schema is the same. A block schema
summarising all the steps is reported in Figure 4.1. All these steps for one dataset

Figure 4.1: Block scheme of the evaluated methods’ workflow

are performed with every feature selection method and for every solver used for the
QUBO problem, thus the results will show each possible combination with Simulated
Annealing, Tabu Search, Steepest Descent and Quantum Annealing (Hybrid in the
case of datasets with over 124 features).

The details of these steps are addressed in the following paragraphs.

Step 1. QUBO formulation

After the data splitting phase into training and test set, the training set is given as
input to the feature selection algorithms described and it first faces the computation
of the square matrix.

In this thesis three methods are compared, each one with its logic to compute
the quadratic objective function and respective square symmetric matrix, with the
following references:

• Graph-MIQUBO : Equation (3.1), Section 3.1.

• Q-Boosting : Equation (3.3), Section 3.2.
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• Q-Correlation: Equation (3.4), Section 3.3.

Before embedding the problem onto the QPU, the signs of the elements of the ma-
trices are flipped, since each starting scenario describes a maximization problem:
we need to formulate it as a minimization one in order to properly solve it with
the quantum annealer, as explained in Section 2.6.2. This leads to flip the sign of
the objective function, which suffices to convert a maximization formulation into a
minimization one.

Step 2. K-combinations for QUBO

QUBO problems offer high flexibility, because by slightly changing the objective
function it is possible to force the number of binary variables set to 1 in the solution.
This is called k-combinations, and it is leveraged in our experiments. We need to
perform this because some formulations of the optimization problem can be ”unbal-
anced”, which means that the final solution is a trivial one (e.g. all features or none
of them are selected). This procedure adds to the general QUBO formulation (2.13)
a penalty term in the objective function. This addition pushes the solver, no matter
if classic like Simulated Annealing or Quantum, to select a certain percentage of the
variables, thus having more corresponding 1 (ones) in the solution found.

While using k-combinations for QUBO problems, the modified objective function
is the following:

min q(x) =
n−1∑
i=0

n−1∑
j=0

xi xj Qij + strength ∗

(
n−1∑
i=0

xi − kc

)2

(4.1)

x ∈ {0; 1} ∀i, j = 0, 1, ..., n− 1

The variable strength is an hyper-parameter fixed a priori that controls the magni-
tude of the imposed penalty. The parameter kc is a positive integer ranging from 1 to
n, the dimensionality of the problem (e.g. the features of the original dataset). From
the solution point of view, adding these penalties will result in the solver finding a
solution with exactly kc variables selected, so set to 1.

In our algorithm, since datasets of different sizes and number of features are used,
the total number of k-combinations problems formulated for each dataset is set up to
maximum of 50 different combinations, to prevent an extensive usage of computing
resources. If the number of features n of a dataset is higher than 50, then the 50
values of kc are equivalently spaced between 1 and n − 1. Whereas, if n is lower
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than 50, the integer values between 1 and n− 1 are used as kc. For example: given
n = 256, the values of kc are:

[1, 6, 11, 16, 21, . . . 229, 234, 239, 244, 249, 255]

Each solution of a k-combination problem computed by the solver, consisting in a
binary vector of 0s and 1s, will be passed as input to a classifier used to validate the
generalization power of the model with the features selected.

Step 3. Classifier

Once we have all the solutions computed with the solver, each one is used to filter
the training set of the dataset accordingly and used to train a classifier.

In this thesis, the classifier used is the Random Forest, which has been explained
in Section 2.3.1. For each kc-th solution computed at the previous step, a filtered
dataset is generated that is going to be used to train a Random Forest classifier. This
implies that one Random Forest is instantiated for each solution computed. Thus,
the outcome of this step is a set of Random Forests, each corresponding to a filtered
and reduced dataset.

Step 4. Validation: find the best classifier

Given the collection of all the classifiers each with the respective reduced dataset,
we need to determine the most promising from a generalization point of view. To
achieve this, we need to assign a score to each classifier in order to determine the
best one.

To assign a score, the criteria used is based on the stratified k-fold cross-validation
method: the training set is equally divided in kf parts, maintaining also the distri-
bution of the target classes as close as possible in each fold. During its iterations,
kf −1 folds are used as training subsets while one is used as a validation subset, over
which the accuracy of the classifier is computed. This process is repeated kf times,
meaning that all the folds are used once as validation subsets.

In our experiments, the number kf of folds is set to 5 and the score given to each
instantiated classifier is the mean of the classification accuracies over the validation
folds, consisting of a real value between 0 and 1. The winning classifier is the one
that has the highest classification accuracy, which we will refer to as cross-validation
score.
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Step 5. Testing

The final step of this workflow is the testing phase of the best classifier obtained as
output of the previous step. We need to highlight the fact that the test set obtained
by the splitting of the original dataset has never been used or ”seen” by the classifier
during its training phase. The test set is in fact used in this final step to prove the
generalization capability of the best Random Forest found in the validation step by
computing the confusion matrix.

Given as C the set of target classes to learn, the confusion matrix is a square
|C| × |C| matrix that presents on the diagonal the number of samples correctly
classified, while the number of misclassified samples per class are reported as off-
diagonal elements.

The closest to a diagonal matrix the confusion matrix is, the higher is the accuracy
of the best learner found over unseen data during the training phase and so its
generalization power to correctly classify new incoming samples.

4.1.3 Example: Graph-MIQUBO solution with Simulated
and Quantum Annealing

The iris dataset, downloaded with the sklearn [43] Python package1 and showed in
Table 4.1, cointains 150 samples and 4 features, which are all numerical and of float
type:

• sepal length (cm)

• sepal width (cm)

• petal length (cm)

• petal width (cm)

This is a quick overview of the dataset itself, only with the features. The target
variable consists of three labels (0, 1, 2) indicating respectively three species of iris
flowers: Iris setosa, Iris virginica and Iris versicolor.

Having 4 features means that the W adjacency weight matrix for the complete graph

1https://scikit-learn.org/stable/index.html
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#Sample sepal length sepal width petal length petal width
0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 . . . . . . . . . . . .
...

...
...

...
...

148 6.2 3.4 5.4 2.3
149 5.9 3.0 5.1 1.8

Table 4.1: Iris dataset

for the iris dataset, computed with the formula (3.1), is a 4× 4 symmetric matrix:

W =


0.0 0.23627 0.30466 0.25256

0.23627 0.0 0.24591 0.2076
0.30466 0.24591 0.0 0.29665
0.25256 0.2076 0.29665 0.0

 (4.2)

By using the weight matrixW computed above (4.2), we can formulate the QUBO
problem, and find a solution with one of the solvers listed and described in previous
chapters. Thus, the algorithm passes to the step where the different solvers are used
to find the solution coinciding with the ground state, which is the one with the lowest
energy.

In Tables 4.2 and 4.3 the solutions found with Quantum Annealing (QA) and
Simulated Annealing (SA) approaches with the corresponding energies are reported.
In these tables, the first three columns indicate respectively the variables (so, the
features) set to 0, the variables set to 1, and the corresponding state. The annealing
process, for both solvers, is repeated 1000 times each reporting a solution with the
minimum energy found. The final solution chosen is the state with the lowest energy.
The number of times that the same solution is found is reported under the column
labeled as ”Occurrences”. The final solutions found by both QA and SA can be also
visualized in the form of histograms in Figures 4.2 and 4.3. In these histograms, on
the x-axis are reported the energies of the solution states found, and on the y-axis
the occurrences.

As we can observe from the referenced tables with the solutions, the state with
the lowest energy, which is marked with a yellow row, is the same for both solvers.
This means that we are able to find the same conclusion: the second feature ”sepal
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Quantum Annealing (QA)
xi = 0 xi = 1 State Energy Occurrences

f1 f0, f2, f3 [1 0 1 1] -0.83888 658
f3 f0, f1, f2 [1 1 1 0] -0.74214 177
f0 f1, f2, f3 [0 1 1 1] -0.67196 45

f1, f3 f0, f2 [1 0 1 0] -0.64795 28
f0, f1 f2, f3 [0 0 1 1] -0.63977 25
f0, f3 f1, f2 [0 1 1 0] -0.56054 10

f2 f0, f1, f3 [1 1 0 1] -0.55646 24
f1, f2 f0, f3 [1 0 0 1] -0.55116 12
f2, f3 f0, f1 [1 1 0 0] -0.53365 18
f0, f2 f1, f3 [0 1 0 1] -0.47165 3

Table 4.2: Graph-MIQUBO applied to iris dataset: Quantum Annealing solutions
found with energy and number of occurrences. The first three columns indicate
respectively the variables (so, the features) set to 0, the variables set to 1, and the
corresponding state. The first yellow row indicates the final solution, so the state
found with the minimum energy.

Simulated Annealing (SA)
xi = 0 xi = 1 State Energy Occurrences

f1 f0, f2, f3 [1 0 1 1] -9.85387 472
f3 f0, f1, f2 [1 1 1 0] -9.78684 244
f0 f1, f2, f3 [0 1 1 1] -9.75016 162
f2 f0, f1, f3 [1 1 0 1] -9.69643 105
- f0, f1, f2, f3 [1 1 1 1] -9.54365 17

Table 4.3: Graph-MIQUBO applied to iris dataset: Simulated Annealing solutions
found with energy and number of occurrences. The first three columns indicate
respectively the variables (so, the features) set to 0, the variables set to 1, and the
corresponding state. The first yellow row indicates the final solution, so the state
found with the minimum energy.
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Figure 4.2: Graph-MIQUBO applied to iris dataset: QA solutions found with his-
togram energy and number of occurrences. In orange the solution with the minimum
energy.
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Figure 4.3: Graph-MIQUBO applied to iris dataset: SA solutions found with his-
togram energy and number of occurrences. In orange the solution with the minimum
energy.
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width” of the iris dataset is the least relevant in order to learn and predict the target
class.

Furthermore, we can show the histograms of how many features during all k-
combinations were selected (so with the corresponding xi set to 1) and, finally, which
ones are discarded or not with the computation of the best scoring classifier in the
validation phase. This representation is provided in Figure 4.4, where on the y-axis
is reported the frequency of features selected in the solutions found by the solver
(for the referenced figure, the approach used is the Quantum Annealing), and on the
x-axis the features of the dataset: in green the bars corresponding to the features
selected of the best scoring classifier, in red the features discarded. In the case of
the iris dataset, using Graph-MIQUBO and Quantum Annealing, out of four total
features only one is discarded and is ”sepal width”: as we can see by this frequency
histogram, the discarded feature is never been assigned a ”1” in one of the solutions
of k-combinations. We can visualize also how the Random Forest classifier trained

se
pa

l l
en

gt
h 

(c
m

)

se
pa

l w
id

th
 (c

m
)

pe
ta

l l
en

gt
h 

(c
m

)

pe
ta

l w
id

th
 (c

m
)

Features

1.0

0.0

0.50.5

1.0

Fr
eq

ue
nc

y

iris: RF (QPU)
Discarded
Selected

Figure 4.4: Iris dataset: histogram of solutions of Graph-MIQUBO solved with Quantum
Annealing (QA) during the k-combinations, as features frequency. It shows the frequency
of each feature being selected in the solutions of all k-combinations problems. The green
bars correspond to the features selected of the best Random Forest found in validation
phase, while the red bars correspond to the features discarded. In this case, the feature
discarded ”sepal width”, is never chosen.
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with this reduced dataset performs during the test phase with the confusion matrix.
The visualization of the confusion matrix is reported in Figure 4.5, and it is obtained
with only the features selected with the best classifier using the unseen test set.

From this confusion matrix, it is possible to see that by using the test set the
trained Random Forest misclassifies only one sample out of 45.

The description of all the datasets used in this thesis is presented in the following
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Figure 4.5: Confusion Matrix on test set of iris dataset with features selected by
Graph-MIQUBO with the QPU.

section, after which all the results obtained with them will be presented.

4.2 Datasets used

In this section an overview of all the datasets used for the experiments is reported.
Specifically, 18 datasets have been used, which have been downloaded from Openml.org2,
a website where open datasets of all types and dimensionalities are available to users,
free with no subscription.

In Table 4.4, all the properties of the 18 datasets are reported: the number of
total features, the number of samples and how many of them are divided between the
training set (70%) and testing set (30%), as well as the number of different classes that
represent the target variable for each one of the dataset. The last column, labeled as
”Balance”, corresponds with a tag regarding the balance of presence of the classes
in the target variable array. For instance, the iris dataset is tagged as ”balanced”
since it has 3 classes and they are all equivalently split in the target array, whereas

2https://www.openml.org/
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the thyroid-ann is ”very unbalanced”, since the percentage of samples belonging to
the same class is far greater with respect to the other classes’ (92,5% against 2,5%
and 5%). The details with the percentages of the classes for each dataset is reported
in Table 4.5. The datasets chosen for the experiments cover a variety of domains:

Samples Classes

Dataset Features Total Training [70%] Test [30%] # Balance

iris 4 150 105 45 3 balanced
breast cancer 30 569 398 171 2 unbalanced
wine 13 178 124 54 3 balanced
vehicle 18 846 592 254 4 balanced
ionosphere 34 351 245 106 2 balanced
robot-failures-lp5 90 164 114 50 5 unbalanced
waveform-5000 40 5000 3500 1500 3 balanced
steel-plates-fault 33 1941 1358 583 2 unbalanced
nomao 118 34465 24125 10340 2 unbalanced
SPECTF 44 267 186 81 2 unbalanced
cars1 7 392 274 118 3 unbalanced
LED-7digit 7 500 350 150 10 balanced
thyroid-ann 21 3772 2640 1132 3 very unbalanced
spambase 57 4601 3220 1381 2 unbalanced
tecator 124 240 168 72 2 balanced
isolet 617 600 420 180 2 balanced
USPS 256 1424 996 428 2 balanced
swarm-behaviour 2400 24016 16811 7205 2 unbalanced

Table 4.4: List of all the datasets used for the experiments with main properties.
There are reported the total number of features and samples, as well as the cardinality
of the training and testing sets. In the two columns on the right, There is reported the
number of different classes in the target variable and a ”Balance” tag, that indicates
the balance of presence of the classes in the target variable array. For instance, for
”thyroid-ann” dataset the tag is ”very unbalanced” because out of three classes, one
corresponds to more than 90% of the samples.

from flowers like ”iris”, animals like ”swarm-behaviour” and ”tecator”, to industrial
processes as ”robot-failures-lp5”, ”steel-plates-fault”, as well as medical ones with
”breast cancer”, ”SPECTF” (cardiovascular diagnosis) and ”thyroid-ann”. All these
datasets cover a variety of different scenarios: datasets with different amount of
features, with low or very high number of samples and also with different balances
of classes percentages in the target variable.
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Dataset #Classes Tag Balance

iris 3 balanced 33.33% 33.33% 33.33%
breast cancer 2 unbalanced 37.19% 62.81%
wine 3 balanced 33.06% 40.32% 26.61%
vehicle 4 balanced 25.84% 25.0% 25.68% 23.48%
ionosphere 2 balanced 35.92% 64.08%
robot-failures-lp5 5 unbalanced 15.79% 13.16% 28.95% 15.79% 26.32%
waveform-5000 3 balanced 33.83% 33.06% 33.11%
steel-plates-fault 2 unbalanced 65.32% 34.68%
nomao 2 unbalanced 28.56% 71.44%
SPECTF 2 unbalanced 20.43% 79.57%
cars1 3 unbalanced 17.52% 20.07% 62.41%
LED-7digit 10 balanced ≈ 10.0%(mean)
thyroid-ann 3 very unbalanced 2.46% 5.08% 92.46%
spambase 2 unbalanced 60.59% 39.41%
tecator 2 balanced 57.74% 42.26%
isolet 2 balanced 50.0% 50.0%
USPS 2 balanced 50.3% 49.7%
swarm-behaviour 2 unbalanced 62.5% 37.5%

Table 4.5: List of all the datasets used for the experiments with details of the balance
of the target classes occurrences.

4.3 Comparison across the QUBO solvers

In this section, the results obtained with the listed datasets are presented in order to
compare the best solutions obtained with the different solvers given a QUBO feature
selection method. Thus, we present three tables, one for each method containing the
four solvers used.

Solvers:

• Quantum Annealing (QA): for the corresponding column, it is reported in
parenthesis the values of chain break fractions. This is a float value between 0
and 1 indicating the proportion of qubit chains, created during the embedding,
that broke during the search for the state with minimum energy. For the last
three datasets, which all have more than 124 features, the Hybrid quantum
system has been used instead. With the hybrid approach we are not able
to determine the number (or fraction) of chains that are broken during the
execution.
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• Simulated Annealing (SA)

• Tabu Search (TS)

• Steepest Descent (SD)

The first table reported (Table 4.6, page 44) shows the results obtained with Graph-
MIQUBO. As we can see, across the different solvers, the performance is consistent:
for most of the datasets the overall cross-validation score (labeled as ”CV score”)
obtained with the features selected by the algorithm is equal or higher with respect
to the accuracy with all the features of the original dataset. Furthermore, it is no-
ticeable that also the number of features discarded is consistent across the solvers,
showing that the solutions obtained with Quantum Annealing are in line with the
ones computed with non-quantum solvers. For example, a promising result is ob-
tained for the medical datasets, where the algorithm is able to nearly half of the
features for ”breast cancer” and ”thyroid”, and to discard 35 out of 44 features for
the ”SPECTF” dataset, while obtaining improved accuracy and results similar if not
better with respect to the non-quantum solvers.

The last three rows coincide with the datasets where the hybrid approach has to
be adopted: here we see that the performances are consistent for the ”USPS” and
”swarm-behaviour” dataset, obtaining an higher or equal accuracy score no matter
the solver. Instead, for the ”isolet” one, the QPU struggles to find a bigger set of
features to discard, where with Simulated Annealing nearly 99% of features are cut,
but still maintaining the same accuracy.
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Graph-MIQUBO
All Features QA SA TS SD

Dataset N CV score N CV score N CV score N CV score N CV score
iris 4 0.924 3 0.924 (0.0) 3 0.933 3 0.924 3 0.924
breast cancer 30 0.957 17 0.957 (0.0) 19 0.962 15 0.957 29 0.960
wine 13 0.984 12 0.992 (0.0) 7 0.976 10 0.976 10 0.976
vehicle 18 0.753 16 0.753 (0.0) 17 0.747 16 0.748 14 0.748
ionosphere 34 0.918 32 0.931 (0.0) 32 0.935 32 0.935 33 0.935
robot-failures-lp5 90 0.702 70 0.754 (0.48) 74 0.746 80 0.746 63 0.746
waveform-5000 40 0.851 38 0.853 (0.07) 24 0.853 14 0.852 19 0.854
steel-plates-fault 33 0.989 32 0.982 (0.0) 32 0.983 32 0.982 32 0.982
nomao 118 0.966 92 0.966 (0.57) 106 0.967 105 0.966 113 0.967
SPECTF 44 0.790 9 0.817 (0.23) 9 0.817 33 0.822 17 0.828
cars1 7 0.799 6 0.803 (0.0) 5 0.814 5 0.811 5 0.811
LED-7digit 7 0.689 6 0.717 (0.0) 6 0.714 6 0.706 6 0.706
thyroid-ann 21 0.995 12 0.997 (0.0) 18 0.997 18 0.997 19 0.997
spambase 57 0.948 55 0.949 (0.05) 53 0.949 55 0.950 56 0.949
tecator 124 0.917 103 0.929 (0.57) 123 0.917 123 0.923 123 0.881

USPS 256 0.984 241 0.988 224 0.989 237 0.990 240 0.990
isolet 617 0.979 539 0.986 5 0.986 365 0.986 473 0.986
swarm-behaviour 2400 1.000 746 1.0 746 1.000 746 1.000 746 1.000

Table 4.6: Graph-MIQUBO results across the solvers. In the cross-validation score (CV score) field of the
QPU column, is reported in parenthesis the chain break fraction, except for the last three datasets, which
are solved with the hybrid approach. Approaches used to solve QUBO problems: Quantum Annealing (QA),
Simulated Annealing (SA), Tabu Search (TS) and Steepest Descent (SD). Highlighted in bold the results
where QA provided the highest number of features discarded, and better (or equal) score with respect to the
classifiers trained with all features and trained using the solutions of the other solvers.
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A different scenario is obtained with Q-Boosting, which results are reported in
Table 4.7 (page 46). In this table, we can observe that the number of cut features
is consistent across the solvers, even with the hybrid quantum one with only some
struggling with the ”isolet” dataset. In general, at least 20%-25% of features are
discarded by all different solvers. This results are not correlated with the type of the
analysed dataset: if we focus on the last three ones with hundreds of features, the
number of discarded features is not related to the balance of classes percentages in
the target variable. For instance, ”USPS” and ”isolet” are both balanced, but on the
former only 18 out of 256 features are discarded, whereas with the latter Q-Boosting
is able to discard from 35% (only with Tabu Search) to 94% of the features main-
taining equal accuracies.

The final table, the one that shows the results of Q-Correlation (page 47), presents
similar results with respect to the Q-Boosting one: the performances across the dif-
ferent solvers are comparable, even if for most datasets the algorithm struggles to
find a subset of features that allows to obtain an accuracy of the classifier in the
validation phase that is equal or higher to the one computed by using all the fea-
tures. Furthermore, it seems that it is not able to discard more than 15% to 20%
of features. This does not apply for the results obtained for the last three large
datasets: with the exception of ”USPS” dataset where Q-Correlation discards only
10-11 features (4% of the total), for ”isolet” and ”swarm-behaviour” from 72% to
89% of the features are cut and still the classification accuracies are equal or higher.
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Q-Boosting
All Features QA SA TS SD

Dataset N CV score N CV score N CV score N CV score N CV score
iris 4 0.924 3 0.924 (0.0) 3 0.924 3 0.924 3 0.924
breast cancer 30 0.957 25 0.96 (0.0) 25 0.960 22 0.960 19 0.957
wine 13 0.984 11 0.976 (0.0) 12 0.968 11 0.968 11 0.976
vehicle 18 0.753 16 0.74 (0.0) 17 0.748 17 0.748 17 0.745
ionosphere 34 0.918 25 0.939 (0.06) 19 0.939 18 0.943 18 0.939
robot-failures-lp5 90 0.702 80 0.745 (0.31) 66 0.746 77 0.755 61 0.737
waveform-5000 40 0.851 32 0.854 (0.35) 38 0.846 37 0.845 37 0.845
steel-plates-fault 33 0.989 28 0.992 (0.09) 32 0.992 10 0.998 15 0.996
nomao 118 0.966 83 0.967 (0.65) 103 0.967 116 0.967 91 0.967
SPECTF 44 0.790 12 0.838 (0.32) 6 0.844 5 0.844 17 0.833
cars1 7 0.799 4 0.814 (0.0) 5 0.810 4 0.807 4 0.807
LED-7digit 7 0.689 5 0.709 (0.0) 5 0.709 5 0.709 5 0.706
thyroid-ann 21 0.995 11 0.997 (0.0) 16 0.997 13 0.997 14 0.996
spambase 57 0.948 40 0.949 (0.46) 55 0.948 56 0.951 48 0.948
tecator 124 0.917 120 0.905 (0.03) 120 0.905 120 0.911 120 0.917

USPS 256 0.984 238 0.987 239 0.990 222 0.990 230 0.988
isolet 617 0.979 114 0.986 57 0.986 397 0.988 38 0.986
swarm-behaviour 2400 1.000 171 1.0 171 1.000 171 1.000 171 1.000

Table 4.7: Q-Boosting results across the solvers. In the cross-validation score (CV score) field of the QPU
column, is reported in parenthesis the chain break fraction, except for the last three datasets, which are solved
with the hybrid approach. Approaches used to solve QUBO problems: Quantum Annealing (QA), Simulated
Annealing (SA), Tabu Search (TS) and Steepest Descent (SD). Highlighted in bold the results where QA
provided the highest number of features discarded, and better (or equal) score with respect to the classifiers
trained with all features and trained using the solutions of the other solvers.
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Q-Correlation
All Features QA SA TS SD

Dataset N CV score N CV score N CV score N CV score N CV score
iris 4 0.924 3 0.933 (0.0) 3 0.933 3 0.933 3 0.933
breast cancer 30 0.957 28 0.96 (0.0) 29 0.960 27 0.957 27 0.957
wine 13 0.984 10 0.984 (0.0) 8 0.976 10 0.984 8 0.968
vehicle 18 0.753 15 0.748 (0.0) 16 0.747 13 0.745 15 0.752
ionosphere 34 0.918 30 0.931 (0.03) 23 0.931 25 0.927 30 0.939
robot-failures-lp5 90 0.702 19 0.754 (0.39) 77 0.745 74 0.771 76 0.737
waveform-5000 40 0.851 35 0.818 (0.05) 33 0.813 35 0.816 35 0.820
steel-plates-fault 33 0.989 29 0.993 (0.0) 29 0.992 29 0.991 29 0.990
nomao 118 0.966 82 0.967 (0.69) 85 0.967 90 0.967 99 0.967
SPECTF 44 0.790 36 0.817 (0.02) 36 0.817 14 0.806 14 0.806
cars1 7 0.799 5 0.821 (0.0) 5 0.814 5 0.825 4 0.818
LED-7digit 7 0.689 5 0.603 (0.0) 5 0.611 5 0.614 5 0.609
thyroid-ann 21 0.995 5 0.946 (0.0) 5 0.947 19 0.947 19 0.947
spambase 57 0.948 51 0.948 (0.16) 48 0.945 49 0.946 53 0.945
tecator 124 0.917 117 0.881 (0.02) 117 0.893 116 0.893 116 0.899

USPS 256 0.984 245 0.983 245 0.985 246 0.986 245 0.986
isolet 617 0.979 174 0.986 64 0.986 70 0.986 33 0.986
swarm-behaviour 2400 1.000 257 1.0 257 1.000 257 1.000 257 1.000

Table 4.8: Q-Correlation results across the solvers. In the cross-validation score (CV score) field of the QPU
column, is reported in parenthesis the chain break fraction, except for the last three datasets, which are solved
with the hybrid approach. Approaches used to solve QUBO problems: Quantum Annealing (QA), Simulated
Annealing (SA), Tabu Search (TS) and Steepest Descent (SD). Highlighted in bold the results where QA
provided the highest number of features discarded, and better (or equal) score with respect to the classifiers
trained with all features and trained using the solutions of the other solvers.
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In all three tables mentioned, in the columns related to the results computed with
Quantum Annealing, the chain break fraction tends to rise with a value between 0.60
and 0.70, corresponding to 60% and 70%, for the datasets in which the number of
features gets closer to 124. This behaviour is expected, since we know that the size
of a problem that can be embedded onto the QPU cannot be infinite. This means
that the results obtained with quantum annealing can be considered reliable only if
the corresponding value of chain break fraction is low enough.

4.4 Comparison across the algorithms

In this section we are going to visualize the same results shown in Section 4.3, but
with a different perspective: we will analyse a table containing the information of
the cross-validation score when all features are used, and the best solutions found by
the three QUBO algorithms solved with Quantum Annealing. Thus, we can see the
performance between the different methods directly.

Furthermore, in a separate subsection we report the tables showing a comparison
of the results obtained with Quantum Annealing for the three QUBO feature se-
lection methods against the classical methods mentioned at the beginning of this
chapter.

4.4.1 QUBO algorithms

Here is provided the table of the results obtained with the three QUBO methods
solved with Quantum Annealing. We are only focusing the results obtained with the
QPU, all the tables with the results obtained with the other solvers are reported in
Section A.1 of the Appendix.

Following this explanation, we focus on Table 4.9: overall, we can observe that with
all three QUBO algorithms is obtained an improvement of the classification task be-
cause all the accuracies of the best classifiers found are equal or higher with respect
to the one trained using all the features. Additionally, with Graph-MIQUBO we are
able to embed efficiently problems and maintain in general the highest accuracy score
across the methods, but discards less features with respect to the other QUBO fea-
ture selection methods. Instead, with Q-Boosting and Q-Correlation, more features
are discarded, thus with lighter and more compact filtered datasets, but with the cost
of obtaining less overall classification accuracy in validation. This behaviour can be
seen with ”wine”, ”vehicle”, ”LED-7Digit” and ”thyroid” datasets. It is important
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Quantum Annealing (QA)
All Features Graph-MIQUBO Q-Boosting Q-Correlation

Dataset N CV score N CV score N CV score N CV score
iris 4 0.924 3 0.924 (0.0) 3 0.924 (0.0) 3 0.933 (0.0)
breast cancer 30 0.957 17 0.957 (0.0) 25 0.96 (0.0) 28 0.96 (0.0)
wine 13 0.984 12 0.992 (0.0) 11 0.976 (0.0) 10 0.984 (0.0)
vehicle 18 0.753 16 0.753 (0.0) 16 0.74 (0.0) 15 0.748 (0.0)
ionosphere 34 0.918 32 0.931 (0.0) 25 0.939 (0.06) 30 0.931 (0.03)
robot-failures-lp5 90 0.702 70 0.754 (0.48) 80 0.745 (0.31) 19 0.754 (0.39)
waveform-5000 40 0.851 38 0.853 (0.07) 32 0.854 (0.35) 35 0.818 (0.05)
steel-plates-fault 33 0.989 32 0.982 (0.0) 28 0.992 (0.09) 29 0.993 (0.0)
nomao 118 0.966 92 0.966 (0.57) 83 0.967 (0.65) 82 0.967 (0.69)
SPECTF 44 0.790 9 0.817 (0.23) 12 0.838 (0.32) 36 0.817 (0.02)
cars1 7 0.799 6 0.803 (0.0) 4 0.814 (0.0) 5 0.821 (0.0)
LED-7digit 7 0.689 6 0.717 (0.0) 5 0.709 (0.0) 5 0.603 (0.0)
thyroid-ann 21 0.995 12 0.997 (0.0) 11 0.997 (0.0) 5 0.946 (0.0)
spambase 57 0.948 55 0.949 (0.05) 40 0.949 (0.46) 51 0.948 (0.16)
tecator 124 0.917 103 0.929 (0.57) 120 0.905 (0.03) 117 0.881 (0.02)

USPS 256 0.984 241 0.988 238 0.987 245 0.983
isolet 617 0.979 539 0.986 114 0.986 174 0.986
swarm-behaviour 2400 1.000 746 1.0 171 1.0 257 1.0

Table 4.9: Quantum Annealing approach results across the algorithms. In the cross-
validation score (CV score) field of the method columns, is reported in parenthesis the chain
break fraction, except for the last three datasets, which are solved with the hybrid approach.
Highlighted in bold the results where the QUBO feature selection method provided the
highest number of features discarded, and better (or equal) score with respect to the
classifiers trained with all features and trained using the solutions of the other algorithms.

to state that we cannot infer a general rule of the best solution obtained based on the
solutions computed of k-combinations: the behaviours of the three methods solved
with Quantum Annealing are not perfectly distinct. We can provide an example
by showing the solutions obtained on the datasets ”thyroid” and ”SPECTF”. This
example is shown in three figures, one for each QUBO method:

1. Graph-MIQUBO: referred to as G-MIQUBO, Figure 4.6

2. Q-Boosting: referred to as Q-Boost, Figure 4.7

3. Q-Correlation: referred to as Q-Corr, Figure 4.8

Each image shows on the left the ”thyroid” dataset, while on the right the ”SPECTF”
one. While we can observe that for the ”thyroid” dataset all three methods tend to
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cut features below a certain frequency and always picking the ones with the highest
bars, with only few exceptions, for ”SPECTF” we can see that the behaviour is
overall different. In fact, for the this dataset, except fot the Q-Correlation image
(Figure 4.8b), the features discarded are also the ones that are particularly frequent
during the computation of k-combinations.
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Figure 4.6: Thyroid vs SPECTF dataset: histograms of solutions of Graph-MIQUBO
solved with Quantum Annealing (QA) during the k-combinations, as features fre-
quency. It shows the frequency of each feature being selected in the solutions of all
k-combinations problems. The green bars correspond to the features selected of the
best Random Forest found in validation phase, while the red bars correspond to the
features discarded.

Furthermore, this gets more interesting by looking the feature frequency obtained
by using Simulated Annealing: in fact, in Figures 4.9, 4.10 and 4.11, we can see the
direct comparison between the two solvers’ solutions on ”SPECTF” dataset, on the
left column with Quantum Annealing (QA) and on the right with Simulated Anneal-
ing (SA). With respect to the previous comment, we can see that with Simulated
Annealing, all three algorithms discard features below some frequency threshold,
different for each one of them, with no exceptions. The shapes are very similar for
Q-Correlation with both SA and QA, while for Graph-MIQUBO and Q-Boosting are
different, even in the selection of the best features that provide the highest accuracy
score over all the solutions found with k-combinations.

4.4.2 QUBO vs classic feature selection algorithms

The reported Table 4.10 (page 54) contains the results of the classifiers with the
best accuracies obtained with Graph-MIQUBO, computed with Quantum Anneal-
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Figure 4.7: Thyroid vs SPECTF dataset: histograms of solutions of Q-Boosting
solved with Quantum Annealing (QA) during the k-combinations, as features fre-
quency. It shows the frequency of each feature being selected in the solutions of all
k-combinations problems. The green bars correspond to the features selected of the
best Random Forest found in validation phase, while the red bars correspond to the
features discarded.
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Figure 4.8: Thyroid vs SPECTF dataset: histograms of solutions of Q-Correlation
solved with Quantum Annealing (QA) during the k-combinations, as features fre-
quency. It shows the frequency of each feature being selected in the solutions of all
k-combinations problems. The green bars correspond to the features selected of the
best Random Forest found in validation phase, while the red bars correspond to the
features discarded.

ing, against the classical algorithms that have been explained in Section 2.2. Each
method contains two separated columns labeled with N and CV score: like the other
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Figure 4.9: SPECTF dataset: histograms of solutions of Graph-MIQUBO solved
with Quantum Annealing (QA) and Simulated Annealing (SA) during the k-
combinations, as features frequency. It shows the frequency of each feature being
selected in the solutions of all k-combinations problems. The green bars correspond
to the features selected of the best Random Forest found in validation phase, while
the red bars correspond to the features discarded.
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Figure 4.10: SPECTF dataset: histograms of solutions of Q-Boosting solved with
Quantum Annealing (QA) and Simulated Annealing (SA) during the k-combinations,
as features frequency. It shows the frequency of each feature being selected in the
solutions of all k-combinations problems. The green bars correspond to the features
selected of the best Random Forest found in validation phase, while the red bars
correspond to the features discarded.

tables that have been presented, N indicates the number of features of the model
used to train the best classifier and CV score the accuracy score, that we have called
also cross-validation score.
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Figure 4.11: SPECTF dataset: histograms of solutions of Q-Correlation solved with
Quantum Annealing (QA) and Simulated Annealing (SA) during the k-combinations,
as features frequency. It shows the frequency of each feature being selected in the
solutions of all k-combinations problems. The green bars correspond to the features
selected of the best Random Forest found in validation phase, while the red bars
correspond to the features discarded.

By looking at the mentioned table, it is possible to observe that the results across all
the methods, both QUBO and classic, are comparable: generally, all methods tend
to cut a consistent amount of features by increasing the accuracy with respect to the
classifier trained with all the features of the original datasets.

A distinct behaviour of the QUBO method against the classic ones is not evident:
with some datasets, Graph-MIQUBO solved with QA discards more features obtain-
ing a smaller accuracy score, but this gap is generally very low, only less than 1%
of difference between them. In other cases the classical algorithms tend to cut more
features, often obtaining equal or higher accuracies, like with datasets ”tecator” and
”isolet”.

Specifically for the Graph-MIQUBO algorithm, since its formulation is based on
the statistical measure of Mutual Information, it is interesting to make a direct com-
parison with its classical version that does not include any QUBO formulation or
quantum computing, but just a generated ranking of the features. The results are
comparable, both algorithms provide a considerable cut of features and with im-
proved accuracy from the starting learning problems.

Again, a general behaviour of this QUBO method against the classical ones can-
not be distinctively highlighted. In this section only the table with Graph-MIQUBO
has been commented. The tables with Q-Boosting and Q-Correlation results are
reported in the Appendix, Section A.2.
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All Features Graph-MIQUBO [QPU] Variance Threshold Mutual Information Chi2 test ANOVA f test
Dataset N CV score N CV score N CV score N CV score N CV score N CV score
iris 4 0.924 3 0.924 (0.0) 3 0.924 2 0.943 1 0.943 2 0.943
breast cancer 30 0.957 17 0.957 (0.0) 29 0.957 21 0.960 22 0.960 24 0.960
wine 13 0.984 12 0.992 (0.0) 12 0.976 12 0.984 10 0.968 7 0.976
vehicle 18 0.753 16 0.753 (0.0) 17 0.747 17 0.752 16 0.742 17 0.743
ionosphere 34 0.918 32 0.931 (0.0) 33 0.931 18 0.935 17 0.931 22 0.935
robot-failures-lp5 90 0.702 70 0.754 (0.48) 50 0.745 80 0.763 83 0.746 78 0.737
waveform-5000 40 0.851 38 0.853 (0.07) 39 0.849 34 0.854 38 0.854 35 0.856
steel-plates-fault 33 0.989 32 0.982 (0.0) 32 0.935 31 0.991 26 0.995 18 0.995
nomao 118 0.966 92 0.966 (0.57) 50 0.965 86 0.967 98 0.966 95 0.966
SPECTF 44 0.790 9 0.817 (0.23) 43 0.806 21 0.833 8 0.828 23 0.822
cars1 7 0.799 6 0.803 (0.0) 6 0.770 1 0.854 5 0.799 2 0.858
LED-7digit 7 0.689 6 0.717 (0.0) 6 0.566 5 0.660 6 0.717 5 0.669
thyroid-ann 21 0.995 12 0.997 (0.0) 20 0.996 19 0.997 11 0.997 17 0.997
spambase 57 0.948 55 0.949 (0.05) 50 0.948 56 0.949 53 0.949 39 0.950
tecator 124 0.917 103 0.929 (0.57) 50 0.893 85 0.935 63 0.940 73 0.947

USPS 256 0.984 241 0.988 50 0.976 218 0.990 249 0.988 249 0.988
isolet 617 0.979 539 0.986 50 0.983 63 0.986 51 0.988 51 0.986
swarm-behaviour 2400 1.000 746 1.0 50 1.000 1811 1.000 1175 1.000 294 1.000

Table 4.10: Graph-MIQUBO solved with the QPU results comparison against classical filter feature selection algorithms. In the
cross-validation score (CV score) field of the QUBO method column, is reported in parenthesis the chain break fraction, except
for the last three datasets, which are solved with the hybrid approach. Highlighted in bold the results where the Graph-MIQUBO
feature selection method provided one of the highest number of features discarded, and better (or equal) score with respect to the
classifiers trained with all features and trained using the solutions of the other algorithms.



4.5 Confusion matrices

Until this section, the results shown are obtained in the validation phase: this means
that the true knowledge of the trained classifiers have not yet been tested with unseen
data. The goal of the test phase is to visualize how the best classifiers trained on
the subset of features selected by the algorithms perform with the test set of each
dataset. This process unfolds the insights on what is called the generalization power
of a trained classifier to classify correctly samples that have never been used in the
training and validation steps of the machine learning pipeline.

As mentioned earlier, the criteria used to check the generalization capability of
the reduced models is the confusion matrix. In this section, we present the discus-
sion and analysis of some of the confusion matrices obtained with the experiments,
with the main objective to check comparisons across the QUBO algorithms solved
with Quantum Annealing, and also the results obtained with respect to the ones
computed with classical feature selection algorithms.

The objective of this section is to show the test results obtained with some of the
datasets that have been used for the experiments with all the algorithms described
in this work, the complete list of confusion matrices for all the datasets, for all three
QUBO methods (solved with Quantum Annealing), is reported in Section A.5 of the
Appendix. Furthermore, it is possible for the reader to view the test results also
with tables in Section A.6.

4.5.1 Test results on unbalanced dataset: breast cancer

An example result that we can consider is with the ”breast cancer” unbalanced
dataset. As reported in previous sections, this particular dataset contains 30 features
and has a target variable with two distinct classes, with a distribution of classes
approximately at 37.2% and 62.8%. A total of 7 different confusion matrices are
reported: in Figure 4.12 with three sub-figures each for a QUBO method, and in
4.13 with four confusion matrices, one for each classic method.

For the QUBO methods, the results are essentially the same, because in all three
confusion matrices at least 95% of test samples are correctly classified. These are the
results obtained considering the corresponding features selected and cross-validation
score (Table 4.9, page 49):

• Graph-MIQUBO: 7 misclassified samples over 171 (95,9%), 17 features selected
with accuracy (CV) equal to 0,957
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• Q-Boosting: 8 misclassified samples over 171 (95,3%), 25 features selected with
accuracy (CV) equal to 0,96

• Q-Correlation: 6 misclassified samples over 171 (96,5%), 28 features selected
with accuracy (CV) equal to 0,984

Despite the fact that Graph-MIQUBO has the lowest accuracy score (in validation)
out of the three methods, in test phase the difference between them is very small, it
is the method that discards nearly half of the starting 30 features.

The results obtained with classical methods are similar: the four methods show a
total of misclassifications between 4 to 8 samples. By looking back at the table with
the performances, Graph-MIQUBO is still the one with the most features discarded
with only 1,2% gap of accuracy in test phase. The closest to it in terms of features
discarded is classic Mutual Information, which selects 21 features out of 30. Overall,
we can conclude for this dataset that the performances are comparable, all with
acceptable results in the test phase.
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Figure 4.12: Confusion matrices on test set of breast cancer dataset with QUBO
methods solved with the QPU.

4.5.2 Test results on balanced dataset: isolet

Here is reported an example on the results obtained in test phase for a balanced
dataset. The ”isolet” dataset contains 617 features and 600 samples, 420 in training
set and the remaining 180 for the test set. This dataset has two classes in the target
variable and is balanced because the distribution of them corresponds to 50% and
50%. In Figures 4.14 and 4.15 the confusion matrices for the QUBO methods and
classic ones are reported respectively. In the first one with QUBO methods, the three
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Figure 4.13: Confusion matrices on test set of breast cancer dataset with classic
feature selection methods.

confusion matrices show that only 1 to 3 misclassifications only for one class out of
180 samples are made. By looking at the previous table with the QPU results, the
method that discards most features is Q-Boosting, selecting only 114 out of 617, and
provides in test phase only 3 misclassifications, with a test accuracy of 98,3%.

With classic methods, the results are again very similar: we can notice 2 to 4
total misclassifications across the four confusion matrices, scoring a test classification
accuracy of at least 97,8%. This result indicates that all algorithms (both quantum-
based and classical) obtain consistent test accuracies independently from the balance
of the balance of presence of the classes in the target variable array.

4.6 Execution Times: comparison across the QUBO

solvers

Another important metric is the execution time needed to compute all the previ-
ously shown results. In the following sections we provide another set of tables with
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Figure 4.14: Confusion matrices on test set of isolet dataset with QUBO methods
solved with the QPU.
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Figure 4.15: Confusion matrices on test set of isolet dataset with classic feature
selection methods.
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the goal to understand the main differences about total execution time between the
algorithms used for the experiments, both QUBO and classic, and also between the
solving approaches used to compute the solutions of the optimization problems. For
this current section, we focus on the comparison between the different solvers using
the same QUBO algorithm.

Similarly to Section 4,3, a table for each QUBO method is provided, each containing
the columns for the solvers implemented, reporting two different times:

• QUBO generation time: this field indicates the execution time needed to com-
pute the square matrix that defines the objective function of the optimization
problem.

• Sampling time: this is the total time needed for the corresponding solver to find
the optimal solutions, so the ones with minimum energy, of the k-combinations.
Thus, it is obtained with the sum of computational times needed to solve each
k-combination problem.

The measurement of the sampling time has to be carefully considered when analysing
the one obtained with Quantum Annealing: while the other approaches used to solve
the optimization problem are locally ran by the machine, the quantum one involves
the call to D-Wave’s cloud service Leap. This difference implies that the overall time
that passes from the call of the service to the moment in which the local system
receives the response of the quantum annealer is influenced by multiple factors: the
time needed to upload and send the model of the optimization problem to Leap, the
inner queue to access the quantum machine and also the time needed by the calling
machine to download and elaborate the response created. This is why in different
tables a big variance of the measured sampling time is observed.

For all the tables with execution times that will be referenced, four datasets
(”robot-failures-lp5”, ”nomao”, ”spambase” and ”tecator”) are not reported due to
the conditions of the experiments performed over them. This includes slow and un-
stable internet connection, which makes the execution times, measured while using
the Leap cloud service, unusable for a fair comparison.

In Table 4.11, the timings for the Graph-MIQUBO algorithm are reported. It is
visible that, as the number of features grows, the time needed to compute the QUBO
formulation increases: even if the square matrix used for the objective function is
the same for each solver, for completeness the timings for each one have been re-
ported, to have an overall idea of how much time is needed before starting the
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k-combinations. Furthermore, we can observe that the sampling times obtained
with the quantum annealer are comparable or way less than the ones obtained with
non-quantum heuristics, with some exceptions of very large times like with ”nomao”
and ”tecator” datasets, which measurements are effected by the factors mentioned
above when the Leap platform is used. In Tables 4.12 and 4.13, the timings of Q-

Graph-MIQUBO
QA SA TS SD

Dataset QUBO Sampling Sampling Sampling Sampling
iris < 1s < 1s < 1s 01m 03s < 1s
breast cancer 2s 6s 13s 05m 36s < 1s
wine < 1s < 1s 2s 03m 09s < 1s
vehicle < 1s < 1s 6s 05m 36s < 1s
ionosphere 2s 5s 25s 11m 33s < 1s
waveform-5000 13s 03m 09s 48s 09m 06s < 1s
steel-plates-fault 4s 01m 58s 34s 11m 12s < 1s
SPECTF 4s 05m 41s 48s 12m 15s < 1s
cars1 < 1s < 1s < 1s 01m 45s < 1s
LED-7digit < 1s < 1s < 1s 02m 06s < 1s
thyroid-ann 2s 17s 9s 07m 00s < 1s

USPS 03m 20s 01m 00s 01h 07m 53s 01h 02m 45s 53s
isolet 12m 51s 01m 40s 15h 21m 35s 04h 29m 20s 20m 49s
swarm-behaviour 08h 56m 03s 04m 09s 04h 10m 56s 02h 07m 28s 27m 00s

Table 4.11: Graph-MIQUBO execution times across the solvers. The ”Sampling” field
indicates what we called the sampling time, which is the total time needed by the solver to
find the solutions with minimum energy for all k-combinations problems. Approaches used
to solve QUBO problems: Quantum Annealing (QA), Simulated Annealing (SA), Tabu
Search (TS) and Steepest Descent (SD).

Boosting and Q-Correlation across the solvers are reported respectively. As for the
table for Graph-MIQUBO, the comments and analysis are similar: with some excep-
tions due to the Leap’s cloud platform calls, Quantum Anneling beats all the solvers
for sampling time when big datasets are used, while for smaller datasets Steepest
Descent (SD) is always faster. Furthermore, regarding time measurements, SD and
non-quantum approaches are more reliable since they are locally computed with no
external factors that can influence their execution.

It is interesting to see the timings for the final three datasets, which leverage the
hybrid quantum systems: with Hybrid-QPU the sampling times are not only much
lower with respect to other solvers, but also equal or lower with respect to Steepest
Descent (SD), which is the fastest non-quantum approach, due to its greedy policy
as explained in the second chapter in Section 2.5.2.
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Q-Boosting
QA SA TS SD

Dataset QUBO Sampling Sampling Sampling Sampling
iris < 1s < 1s < 1s 42s < 1s
breast cancer < 1s 01m 32s 13s 10m 09s < 1s
wine < 1s 2s 2s 03m 51s < 1s
vehicle < 1s 8s 6s 05m 57s < 1s
ionosphere < 1s 02m 17s 25s 11m 33s < 1s
waveform-5000 < 1s 04m 56s 01m 12s 13m 39s < 1s
steel-plates-fault < 1s 02m 21s 47s 11m 12s < 1s
SPECTF < 1s 07m 15s 01m 05s 15m 03s < 1s
cars1 < 1s < 1s < 1s 02m 06s < 1s
LED-7digit < 1s < 1s < 1s 02m 06s < 1s
thyroid-ann < 1s 17s 10s 06m 39s < 1s

USPS 7s 01m 43s 55m 20s 01h 32m 21s 01m 20s
isolet 37s 01m 58s 03h 55m 15s 04h 39m 16s 21m 52s
swarm-behaviour 22m 45s 04m 32s 08h 40m 46s 02h 12m 43s 28m 28s

Table 4.12: Q-Boosting execution times across the solvers. The ”Sampling” field indicates
what we called the sampling time, which is the total time needed by the solver to find the
solutions with minimum energy for all k-combinations problems. Approaches used to solve
QUBO problems: Quantum Annealing (QA), Simulated Annealing (SA), Tabu Search (TS)
and Steepest Descent (SD).

4.7 Execution Times: comparison across the algo-

rithms

Following the same schema of Section 4.3 to Section 4.4 and explanation of Section
4.6, the opposite perspective to visualize the execution and sampling times is con-
sidered: the comparison of the timings between the QUBO algorithms solved with
QPU and the one between QUBO and classic algorithms.

4.7.1 QUBO algorithms

In Table 4.14, we see the direct comparison across the QUBO algorithms, and a
general pattern is visible: Graph-MIQUBO requires way more time to compute the
formulation of the QUBO problem, while in general needs less time to perform all
the sampling phases. Q-Boosting and Q-Correlation, on the other hand, have similar
and comparable QUBO formulation and sampling times. This behaviour is expected
due to the inner complexity of the formulas and terms used to obtain the square
matrix that defines the optimization problem. This, specifically for Graph-MIQUBO,
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Q-Correlation
QA SA TS SD

Dataset QUBO Sampling Sampling Sampling Sampling
iris < 1s < 1s < 1s 01m 03s < 1s
breast cancer < 1s 01m 17s 9s 09m 06s < 1s
wine < 1s 2s 2s 04m 12s < 1s
vehicle < 1s 9s 3s 05m 57s < 1s
ionosphere < 1s 02m 30s 11s 11m 33s < 1s
waveform-5000 < 1s 04m 34s 38s 13m 39s < 1s
steel-plates-fault < 1s 02m 10s 20s 11m 12s < 1s
SPECTF < 1s 06m 50s 25s 12m 57s < 1s
cars1 < 1s < 1s < 1s 02m 06s < 1s
LED-7digit < 1s < 1s < 1s 02m 06s < 1s
thyroid-ann < 1s 18s 8s 07m 00s < 1s

USPS 7s 01m 55s 51m 21s 01h 31m 56s 01m 26s
isolet 36s 02m 18s 09h 49m 43s 04h 53m 49s 21m 25s
swarm-behaviour 20m 07s 05m 10s 13h 41m 18s 02h 16m 23s 28m 45s

Table 4.13: Q-Correlation execution times across the solvers. The ”Sampling” field indi-
cates what we called the sampling time, which is the total time needed by the solver to
find the solutions with minimum energy for all k-combinations problems. Approaches used
to solve QUBO problems: Quantum Annealing (QA), Simulated Annealing (SA), Tabu
Search (TS) and Steepest Descent (SD).

becomes an issue for problems of large scale: in fact, with ”swarm-behaviour”, which
is the biggest dataset out of all that have been used for the experiments, the difference
of time needed to compute QUBO across the algorithms is tremendously high. As
already mentioned is section 4.6, the sampling time measured using the QPU is
affected by multiple factors, since the approach is not directly computed on the local
machine, but via a cloud service. Then, that is why in the mentioned table there’s
a remarkable variance in the sampling time across all the algorithms.

4.7.2 QUBO vs classic feature selection algorithms

Finally, the last table that is relevant to discuss in this chapter is the one about
timing measurements comparison between QUBO methods and classic ones. Sim-
ilarly to Section 4.4.2, only Graph-MIQUBO is reported.The other two tables for
Q-Boosting and Q-Correlation are inserted in Section A.4 of the Appendix.

The details about Graph-MIQUBO against the classical feature selection methods are
in Table 4.15: as we have seen in previous sections, this QUBO method is the most
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Quantum Annealing (QA)
Graph-MIQUBO Q-Boosting Q-Correlation

Dataset QUBO Sampling QUBO Sampling QUBO Sampling
iris < 1s < 1s < 1s < 1s < 1s < 1s
breast cancer 2s 6s < 1s 01m 32s < 1s 01m 17s
wine < 1s < 1s < 1s 2s < 1s 2s
vehicle < 1s < 1s < 1s 8s < 1s 9s
ionosphere 2s 5s < 1s 02m 17s < 1s 02m 30s
waveform-5000 13s 03m 09s < 1s 04m 56s < 1s 04m 34s
steel-plates-fault 4s 01m 58s < 1s 02m 21s < 1s 02m 10s
SPECTF 4s 05m 41s < 1s 07m 15s < 1s 06m 50s
cars1 < 1s < 1s < 1s < 1s < 1s < 1s
LED-7digit < 1s < 1s < 1s < 1s < 1s < 1s
thyroid-ann 2s 17s < 1s 17s < 1s 18s

USPS 03m 20s 01m 00s 7s 01m 43s 7s 01m 55s
isolet 12m 51s 01m 40s 37s 01m 58s 36s 02m 18s
swarm-behaviour 08h 56m 03s 04m 09s 22m 45s 04m 32s 20m 07s 05m 10s

Table 4.14: Quantum Annealing approach execution times across QUBO algorithms. The
”QUBO” field reports the time needed to formulate the QUBO problem. The ”Sampling”
field indicates what we called the sampling time, which is the total time needed by the
solver to find the solutions with minimum energy for all k-combinations problems.

computationally expensive out of all three to formulate the optimization problem,
but the one with the lowest estimated sampling times. To make a fair comparison,
we would need to consider the sum of the QUBO generation time and of the sampling
time: that is because with classical feature selections there is no formulation of an
optimization problem and no search of a minimum energy state phase, but rather a
scoring computation given to all features and a greedy selection of the most promis-
ing. Following this schema, it is evident that some methods are faster than others:
for instance, Variance Threshold (indicated as VarThr) is always the faster one. By
recalling the formulas seen in Section 2.2, this classical method only computes the
correlation between a feature and the target variable, while others have a higher
inner mathematical complexity. The method with the highest complexity is Mutual
Information (indicated with Mutual Info), because computing all the entropies that
build the formula used to rank the features is more expensive to calculate.

It is interesting to compare Graph-MIQUBO and Mutual Information, because at
the base of their implementation, both leverage the Relevance Formula (2.6) that has
been introduced in Section 2.2.2. Despite this, there is a major difference between
these two feature selection methods: given N features of a dataset, classic Mutual
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Information has to compute N different values, one for each feature, that consist
as the relevance of a feature fi with respect to the target variable y, so Rel(fi, y).
Graph-MIQUBO, on the other hand, has to compute all the possible combinations
of relevances between the features themselves, thus making the starting computation
of QUBO formulation much more expensive. Mind that for QUBO algorithms, this
timing has to be then added to the sampling time needed for the solvers to obtain
the final solutions.

The timing gap between this specific QUBO method and the classic ones gets
intuitively more and more visible with larger datasets: with ”swarm-behaviour” for
instance, there is a striking total difference between Graph-MIQUBO (total time of
9 hours) and Variance Threshold (less than a second). Even if Q-Boosting and Q-
Correlation are much faster to formulate the QUBO problem than Graph-MIQUBO,
with a total time needed between 25 to 27 minutes, classical methods (except Mutual
Information) are always much quicker to obtain a final solution and subset of features
selected, due to inner simpler structure and overall implementation.

Graph-MIQUBO [QPU] Classic methods
Dataset QUBO Sampling VarThr Mutual Info Chi2 ANOVA
iris < 1s < 1s < 1s < 1s < 1s < 1s
breast cancer 2s 6s < 1s 2s < 1s < 1s
wine < 1s < 1s < 1s < 1s < 1s < 1s
vehicle < 1s < 1s < 1s 1s < 1s < 1s
ionosphere 2s 5s < 1s 2s < 1s < 1s
waveform-5000 13s 03m 09s < 1s 21s < 1s < 1s
steel-plates-fault 4s 01m 58s < 1s 6s < 1s < 1s
SPECTF 4s 05m 41s < 1s 3s < 1s < 1s
cars1 < 1s < 1s < 1s < 1s < 1s < 1s
LED-7digit < 1s < 1s < 1s < 1s < 1s < 1s
thyroid-ann 2s 17s < 1s 4s < 1s < 1s

USPS 03m 20s 01m 00s < 1s 01m 04s < 1s < 1s
isolet 12m 51s 01m 40s < 1s 01m 13s < 1s < 1s
swarm-behaviour 08h 56m 03s 04m 09s < 1s 02h 33m 06s 13s 37s

Table 4.15: Graph-MIQUBO solved with the QPU execution times comparison against
classical filter feature selection algorithms. The ”QUBO” field reports the time needed to
formulate the QUBO problem. The ”Sampling” field indicates what we called the sampling
time, which is the total time needed by the solver to find the solutions with minimum energy
for all k-combinations problems.
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Chapter 5

Conclusion

In this work, we have illustrated and explained filter feature selection algorithms
that exploit quantum mechanical properties on specific machines. We decribed a
graph based approach (Graph Mutual Information QUBO), Quantum-Boosting and
Quantum-Correlation, which are all based on the formulation and generation of a
QUBO model, and have all been tested with Quantum Annealing.

The results show the accuracies and timings obtained with quantum-based and clas-
sical algorithms. We have made detailed comparisons with different perspectives:
the performance of a single QUBO algorithm with respect to different heuristics,
including Quantum Annealing, and between all the algorithms themselves, given a
solver for the QUBO ones.

We tested all the described algorithms on 18 datasets with different size, structure,
and properties. We noticed that the accuracies of the Random Forests trained on
the reduced datasets obtained with the methods, both quantum and non-quantum,
are all comparable. By looking only at the QUBO algorithms, the results, in both
validation and test phase, were similar across the heuristics used and slightly different
across the algorithms themselves. While Graph-MIQUBO is the most expensive to
formulate the QUBO problem, it is on average the fastest out of all three algorithms
in solving the k-combinations problems.

Quantum-based algorithms solved with the quantum annealer, showed a consis-
tent and comparable performance against the solutions found with classical algo-
rithms. Furthermore, the analysed timings to solve a QUBO problem with Quantum
Annealing showed an interesting scalability with respect to classical methods. How-
ever, the total execution time needed for QUBO feature selection methods is still
higher compared with classical algorithms. So, the generation of the QUBO model
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becomes the bottleneck of the quantum-based methods.
Finally, we can conclude that the presented quantum-based algorithms solved

with quantum annealer machines are capable of obtaining promising results with re-
spect to the classic ones: Graph-MIQUBO is more indicated for datasets with smaller
dimensionality, with remarkable reduction of the features used in the classification
problem. Q-Boosting and Q-Correlation, on the other hand, are more indicated for
problems with a larger set of features, since the generation of the QUBO model is
much faster with respect to the graph-based one.

The results obtained are promising, considering that quantum annealer is relatively
new technology. The next steps for this field of research is to improve and speed-up
the time needed to compute a QUBO formulation, so to express deeper insights of
interaction and relevance between the features themselves and with the target vari-
able. Furthermore, a development of quantum annealers’ technology could open up
new possibilities for larger experiments that can be carried out without any hybrid
approach.
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Appendix A

All complete results

In this appendix section we are going to add all the tables, figures and results re-
garding the experiments performed and partially shown in the fourth chapter. All
the following added contents are provided for completion to the reader.

A.1 Results: comparison across the algorithms

This section provides more complete results with respect to Section 4.4.1 regarding
the comparison of the best classifiers obtained with a solver across the QUBO feature
selection methods. In the referenced section only the results with the QPU are
reported, here we provide the results obtained with:

• Simulated Annealing : Table A.1

• Tabu Search: Table A.2

• Steepest Descent : Table A.3

67



Simulated Annealing (SA)
All Features Graph-MIQUBO Q-Boosting Q-Correlation

Dataset N CV score N CV score N CV score N CV score
iris 4 0.924 3 0.933 3 0.924 3 0.933
breast cancer 30 0.957 19 0.962 25 0.960 29 0.960
wine 13 0.984 7 0.976 12 0.968 8 0.976
vehicle 18 0.753 17 0.747 17 0.748 16 0.747
ionosphere 34 0.918 32 0.935 19 0.939 23 0.931
robot-failures-lp5 90 0.702 74 0.746 66 0.746 77 0.745
waveform-5000 40 0.851 24 0.853 38 0.846 33 0.813
steel-plates-fault 33 0.989 32 0.983 32 0.992 29 0.992
nomao 118 0.966 106 0.967 103 0.967 85 0.967
SPECTF 44 0.790 9 0.817 6 0.844 36 0.817
cars1 7 0.799 5 0.814 5 0.810 5 0.814
LED-7digit 7 0.689 6 0.714 5 0.709 5 0.611
thyroid-ann 21 0.995 18 0.997 16 0.997 5 0.947
spambase 57 0.948 53 0.949 55 0.948 48 0.945
tecator 124 0.917 123 0.917 120 0.905 117 0.893

USPS 256 0.984 224 0.989 239 0.990 245 0.985
isolet 617 0.979 5 0.986 57 0.986 64 0.986
swarm-behaviour 2400 1.000 746 1.000 171 1.000 257 1.000

Table A.1: Simulated Annealing approach results across the algorithms.
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Tabu Search (TS)
All Features Graph-MIQUBO Q-Boosting Q-Correlation

Dataset N CV score N CV score N CV score N CV score
iris 4 0.924 3 0.924 3 0.924 3 0.933
breast cancer 30 0.957 15 0.957 22 0.960 27 0.957
wine 13 0.984 10 0.976 11 0.968 10 0.984
vehicle 18 0.753 16 0.748 17 0.748 13 0.745
ionosphere 34 0.918 32 0.935 18 0.943 25 0.927
robot-failures-lp5 90 0.702 80 0.746 77 0.755 74 0.771
waveform-5000 40 0.851 14 0.852 37 0.845 35 0.816
steel-plates-fault 33 0.989 32 0.982 10 0.998 29 0.991
nomao 118 0.966 105 0.966 116 0.967 90 0.967
SPECTF 44 0.790 33 0.822 5 0.844 14 0.806
cars1 7 0.799 5 0.811 4 0.807 5 0.825
LED-7digit 7 0.689 6 0.706 5 0.709 5 0.614
thyroid-ann 21 0.995 18 0.997 13 0.997 19 0.947
spambase 57 0.948 55 0.950 56 0.951 49 0.946
tecator 124 0.917 123 0.923 120 0.911 116 0.893

USPS 256 0.984 237 0.990 222 0.990 246 0.986
isolet 617 0.979 365 0.986 397 0.988 70 0.986
swarm-behaviour 2400 1.000 746 1.000 171 1.000 257 1.000

Table A.2: Tabu Search approach results across the algorithms.
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Steepest Descent (SD)
All Features Graph-MIQUBO Q-Boosting Q-Correlation

Dataset N CV score N CV score N CV score N CV score
iris 4 0.924 3 0.924 3 0.924 3 0.933
breast cancer 30 0.957 29 0.960 19 0.957 27 0.957
wine 13 0.984 10 0.976 11 0.976 8 0.968
vehicle 18 0.753 14 0.748 17 0.745 15 0.752
ionosphere 34 0.918 33 0.935 18 0.939 30 0.939
robot-failures-lp5 90 0.702 63 0.746 61 0.737 76 0.737
waveform-5000 40 0.851 19 0.854 37 0.845 35 0.820
steel-plates-fault 33 0.989 32 0.982 15 0.996 29 0.990
nomao 118 0.966 113 0.967 91 0.967 99 0.967
SPECTF 44 0.790 17 0.828 17 0.833 14 0.806
cars1 7 0.799 5 0.811 4 0.807 4 0.818
LED-7digit 7 0.689 6 0.706 5 0.706 5 0.609
thyroid-ann 21 0.995 19 0.997 14 0.996 19 0.947
spambase 57 0.948 56 0.949 48 0.948 53 0.945
tecator 124 0.917 123 0.881 120 0.917 116 0.899

USPS 256 0.984 240 0.990 230 0.988 245 0.986
isolet 617 0.979 473 0.986 38 0.986 33 0.986
swarm-behaviour 2400 1.000 746 1.000 171 1.000 257 1.000

Table A.3: Steepest Descent approach results across the algorithms.
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A.2 Results: comparison QUBO vs classic feature

selection algorithms

The following tables are additional results about the comparison between QUBO
versus classical feature selection algorithms. In the dedicated Section 4.4.2, only the
comparison with Graph-MIQUBO is provided. Here, the other tables for the missing
QUBO algorithms are reported:

1. Q-Boosting : Table A.4

2. Q-Correlation: Table A.5

Notice that the columns corresponding to these two methods contain the results
computed with Quantum Annealing, the other approaches to solve the optimization
problem are not reported.
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All Features Q-Boosting [QPU] Variance Threshold Mutual Information Chi2 test ANOVA f test
Dataset N CV score N CV score N CV score N CV score N CV score N CV score
iris 4 0.924 3 0.924 (0.0) 3 0.924 2 0.943 1 0.943 2 0.943
breast cancer 30 0.957 25 0.96 (0.0) 29 0.957 21 0.960 22 0.960 24 0.960
wine 13 0.984 11 0.976 (0.0) 12 0.976 12 0.984 10 0.968 7 0.976
vehicle 18 0.753 16 0.74 (0.0) 17 0.747 17 0.752 16 0.742 17 0.743
ionosphere 34 0.918 25 0.939 (0.06) 33 0.931 18 0.935 17 0.931 22 0.935
robot-failures-lp5 90 0.702 80 0.745 (0.31) 50 0.745 80 0.763 83 0.746 78 0.737
waveform-5000 40 0.851 32 0.854 (0.35) 39 0.849 34 0.854 38 0.854 35 0.856
steel-plates-fault 33 0.989 28 0.992 (0.09) 32 0.935 31 0.991 26 0.995 18 0.995
nomao 118 0.966 83 0.967 (0.65) 50 0.965 86 0.967 98 0.966 95 0.966
SPECTF 44 0.790 12 0.838 (0.32) 43 0.806 21 0.833 8 0.828 23 0.822
cars1 7 0.799 4 0.814 (0.0) 6 0.770 1 0.854 5 0.799 2 0.858
LED-7digit 7 0.689 5 0.709 (0.0) 6 0.566 5 0.660 6 0.717 5 0.669
thyroid-ann 21 0.995 11 0.997 (0.0) 20 0.996 19 0.997 11 0.997 17 0.997
spambase 57 0.948 40 0.949 (0.46) 50 0.948 56 0.949 53 0.949 39 0.950
tecator 124 0.917 120 0.905 (0.03) 50 0.893 85 0.935 63 0.940 73 0.947

USPS 256 0.984 238 0.987 50 0.976 218 0.990 249 0.988 249 0.988
isolet 617 0.979 114 0.986 50 0.983 63 0.986 51 0.988 51 0.986
swarm-behaviour 2400 1.000 171 1.0 50 1.000 1811 1.000 1175 1.000 294 1.000

Table A.4: Q-Boosting solved with the QPU results comparison against classical filter feature selection algorithms. In the cross-validation
score (CV score) field of the QUBO method column, is reported in parenthesis the chain break fraction, except for the last three datasets,
which are solved with the hybrid approach.



All Features Q-Correlation [QPU] Variance Threshold Mutual Information Chi2 test ANOVA f test
Dataset N CV score N CV score N CV score N CV score N CV score N CV score
iris 4 0.924 3 0.933 (0.0) 3 0.924 2 0.943 1 0.943 2 0.943
breast cancer 30 0.957 28 0.96 (0.0) 29 0.957 21 0.960 22 0.960 24 0.960
wine 13 0.984 10 0.984 (0.0) 12 0.976 12 0.984 10 0.968 7 0.976
vehicle 18 0.753 15 0.748 (0.0) 17 0.747 17 0.752 16 0.742 17 0.743
ionosphere 34 0.918 30 0.931 (0.03) 33 0.931 18 0.935 17 0.931 22 0.935
robot-failures-lp5 90 0.702 19 0.754 (0.39) 50 0.745 80 0.763 83 0.746 78 0.737
waveform-5000 40 0.851 35 0.818 (0.05) 39 0.849 34 0.854 38 0.854 35 0.856
steel-plates-fault 33 0.989 29 0.993 (0.0) 32 0.935 31 0.991 26 0.995 18 0.995
nomao 118 0.966 82 0.967 (0.69) 50 0.965 86 0.967 98 0.966 95 0.966
SPECTF 44 0.790 36 0.817 (0.02) 43 0.806 21 0.833 8 0.828 23 0.822
cars1 7 0.799 5 0.821 (0.0) 6 0.770 1 0.854 5 0.799 2 0.858
LED-7digit 7 0.689 5 0.603 (0.0) 6 0.566 5 0.660 6 0.717 5 0.669
thyroid-ann 21 0.995 5 0.946 (0.0) 20 0.996 19 0.997 11 0.997 17 0.997
spambase 57 0.948 51 0.948 (0.16) 50 0.948 56 0.949 53 0.949 39 0.950
tecator 124 0.917 117 0.881 (0.02) 50 0.893 85 0.935 63 0.940 73 0.947

USPS 256 0.984 245 0.983 50 0.976 218 0.990 249 0.988 249 0.988
isolet 617 0.979 174 0.986 50 0.983 63 0.986 51 0.988 51 0.986
swarm-behaviour 2400 1.000 257 1.0 50 1.000 1811 1.000 1175 1.000 294 1.000

Table A.5: Q-Correlation solved with the QPU results comparison against classical filter feature selection algorithms. In the cross-validation
score (CV score) field of the QUBO method column, is reported in parenthesis the chain break fraction, except for the last three datasets,
which are solved with the hybrid approach.



A.3 Execution Times: comparison across the al-

gorithms

This section provides more complete results with respect to Section 4.7.1 regarding
the comparison of the execution and sampling times of the solvers across the QUBO
feature selection methods. In the referenced section only the results with the QPU
are reported. Here we provide the results obtained with:

• Simulated Annealing : Table A.6

• Tabu Search: Table A.7

• Steepest Descent : Table A.8

For all the referenced tables with execution times, four datasets (”robot-failures-
lp5”, ”nomao”, ”spambase” and ”tecator”) are not reported due to the conditions
of the experiments performed over them. This includes slow and unstable internet
connection, which makes the execution times, measured while using the Leap cloud
service, unusable for a fair comparison.
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Simulated Annealing (SA)
Graph-MIQUBO Q-Boosting Q-Correlation

Dataset QUBO Sampling QUBO Sampling QUBO Sampling
iris < 1s < 1s < 1s < 1s < 1s < 1s
breast cancer 2s 13s < 1s 13s < 1s 9s
wine < 1s 2s < 1s 2s < 1s 2s
vehicle < 1s 6s < 1s 6s < 1s 3s
ionosphere 2s 25s < 1s 25s < 1s 11s
waveform-5000 13s 48s < 1s 01m 12s < 1s 38s
steel-plates-fault 4s 34s < 1s 47s < 1s 20s
SPECTF 4s 48s < 1s 01m 05s < 1s 25s
cars1 < 1s < 1s < 1s < 1s < 1s < 1s
LED-7digit < 1s < 1s < 1s < 1s < 1s < 1s
thyroid-ann 2s 9s < 1s 10s < 1s 8s

USPS 03m 20s 01h 07m 53s 7s 55m 20s 7s 51m 21s
isolet 12m 51s 15h 21m 35s 37s 03h 55m 15s 36s 09h 49m 43s
swarm-behaviour 08h 56m 03s 04h 10m 56s 22m 45s 08h 40m 46s 20m 07s 13h 41m 18s

Table A.6: Simulated Annealing approach execution times across QUBO algorithms. The ”QUBO” field reports
the time needed to formulate the QUBO problem. The ”Sampling” field indicates what we called the sampling
time, which is the total time needed by the solver to find the solutions with minimum energy for all k-combinations
problems.
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Tabu Search (TS)
Graph-MIQUBO Q-Boosting Q-Correlation

Dataset QUBO Sampling QUBO Sampling QUBO Sampling
iris < 1s 01m 03s < 1s 42s < 1s 01m 03s
breast cancer 2s 05m 36s < 1s 10m 09s < 1s 09m 06s
wine < 1s 03m 09s < 1s 03m 51s < 1s 04m 12s
vehicle < 1s 05m 36s < 1s 05m 57s < 1s 05m 57s
ionosphere 2s 11m 33s < 1s 11m 33s < 1s 11m 33s
waveform-5000 13s 09m 06s < 1s 13m 39s < 1s 13m 39s
steel-plates-fault 4s 11m 12s < 1s 11m 12s < 1s 11m 12s
SPECTF 4s 12m 15s < 1s 15m 03s < 1s 12m 57s
cars1 < 1s 01m 45s < 1s 02m 06s < 1s 02m 06s
LED-7digit < 1s 02m 06s < 1s 02m 06s < 1s 02m 06s
thyroid-ann 2s 07m 00s < 1s 06m 39s < 1s 07m 00s

USPS 03m 20s 01h 02m 45s 7s 01h 32m 21s 7s 01h 31m 56s
isolet 12m 51s 04h 29m 20s 37s 04h 39m 16s 36s 04h 53m 49s
swarm-behaviour 08h 56m 03s 02h 07m 28s 22m 45s 02h 12m 43s 20m 07s 02h 16m 23s

Table A.7: Tabu Search approach execution times across QUBO algorithms. The ”QUBO” field reports the time
needed to formulate the QUBO problem. The ”Sampling” field indicates what we called the sampling time, which is
the total time needed by the solver to find the solutions with minimum energy for all k-combinations problems.
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Steepest Descent (SD)
Graph-MIQUBO Q-Boosting Q-Correlation

Dataset QUBO Sampling QUBO Sampling QUBO Sampling

iris < 1s < 1s < 1s < 1s < 1s < 1s
breast cancer 2s < 1s < 1s < 1s < 1s < 1s
wine < 1s < 1s < 1s < 1s < 1s < 1s
vehicle < 1s < 1s < 1s < 1s < 1s < 1s
ionosphere 2s < 1s < 1s < 1s < 1s < 1s
waveform-5000 13s < 1s < 1s < 1s < 1s < 1s
steel-plates-fault 4s < 1s < 1s < 1s < 1s < 1s
SPECTF 4s < 1s < 1s < 1s < 1s < 1s
cars1 < 1s < 1s < 1s < 1s < 1s < 1s
LED-7digit < 1s < 1s < 1s < 1s < 1s < 1s
thyroid-ann 2s < 1s < 1s < 1s < 1s < 1s

USPS 03m 20s 53s 7s 01m 20s 7s 01m 26s
isolet 12m 51s 20m 49s 37s 21m 52s 36s 21m 25s
swarm-behaviour 08h 56m 03s 27m 00s 22m 45s 28m 28s 20m 07s 28m 45s

Table A.8: Steepest Descent approach execution times across QUBO algorithms. The ”QUBO” field reports the time
needed to formulate the QUBO problem. The ”Sampling” field indicates what we called the sampling time, which is
the total time needed by the solver to find the solutions with minimum energy for all k-combinations problems.
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A.4 Execution Times: comparison QUBO vs clas-

sic feature selection algorithms

The following tables are additional results about the comparison of execution and
sampling times between QUBO and classical feature selection algorithms. In the ded-
icated Section 4.7.2, only the comparison with Graph-MIQUBO is provided. Here,
the other tables for the missing QUBO algorithms are reported:

1. Q-Boosting : Table A.9

2. Q-Correlation: Table A.10

Notice that the columns corresponding to these two methods contain the results
computed with Quantum Annealing, the other approaches to solve the optimization
problem are not reported.

For all the referenced tables with execution times, four datasets (”robot-failures-
lp5”, ”nomao”, ”spambase” and ”tecator”) are not reported due to the conditions
of the experiments performed over them. This includes slow and unstable internet
connection, which makes the execution times, measured while using the Leap cloud
service, unusable for a fair comparison.
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Q-Boosting [QPU] Classic methods
Dataset QUBO Sampling VarThr Mutual Info Chi2 ANOVA
iris < 1s < 1s < 1s < 1s < 1s < 1s
breast cancer < 1s 01m 32s < 1s 2s < 1s < 1s
wine < 1s 2s < 1s < 1s < 1s < 1s
vehicle < 1s 8s < 1s 1s < 1s < 1s
ionosphere < 1s 02m 17s < 1s 2s < 1s < 1s
waveform-5000 < 1s 04m 56s < 1s 21s < 1s < 1s
steel-plates-fault < 1s 02m 21s < 1s 6s < 1s < 1s
SPECTF < 1s 07m 15s < 1s 3s < 1s < 1s
cars1 < 1s < 1s < 1s < 1s < 1s < 1s
LED-7digit < 1s < 1s < 1s < 1s < 1s < 1s
thyroid-ann < 1s 17s < 1s 4s < 1s < 1s

USPS 7s 01m 43s < 1s 01m 04s < 1s < 1s
isolet 37s 01m 58s < 1s 01m 13s < 1s < 1s
swarm-behaviour 22m 45s 04m 32s < 1s 02h 33m 06s 13s 37s

Table A.9: Q-Boosting solved with the QPU execution times comparison against classical
feature selection algorithms. The ”QUBO” field reports the time needed to formulate the
QUBO problem. The ”Sampling” field indicates what we called the sampling time, which
is the total time needed by the solver to find the solutions with minimum energy for all
k-combinations problems.
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Q-Correlation [QPU] Classic methods
Dataset QUBO Sampling VarThr Mutual Info Chi2 ANOVA
iris < 1s < 1s < 1s < 1s < 1s < 1s
breast cancer < 1s 01m 17s < 1s 2s < 1s < 1s
wine < 1s 2s < 1s < 1s < 1s < 1s
vehicle < 1s 9s < 1s 1s < 1s < 1s
ionosphere < 1s 02m 30s < 1s 2s < 1s < 1s
waveform-5000 < 1s 04m 34s < 1s 21s < 1s < 1s
steel-plates-fault < 1s 02m 10s < 1s 6s < 1s < 1s
SPECTF < 1s 06m 50s < 1s 3s < 1s < 1s
cars1 < 1s < 1s < 1s < 1s < 1s < 1s
LED-7digit < 1s < 1s < 1s < 1s < 1s < 1s
thyroid-ann < 1s 18s < 1s 4s < 1s < 1s

USPS 7s 01m 55s < 1s 01m 04s < 1s < 1s
isolet 36s 02m 18s < 1s 01m 13s < 1s < 1s
swarm-behaviour 20m 07s 05m 10s < 1s 02h 33m 06s 13s 37s

Table A.10: Q-Correlation solved with the QPU execution times comparison against clas-
sical feature selection algorithms. The ”QUBO” field reports the time needed to formulate
the QUBO problem. The ”Sampling” field indicates what we called the sampling time,
which is the total time needed by the solver to find the solutions with minimum energy for
all k-combinations problems.
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A.5 Confusion Matrices

In this section, the confusion matrices for all datasets are reported. Since there is a
huge number of combinations between the algorithms, both from QUBO and classic
categories, and all the solvers, the confusion matrices that are reported are only for
the QUBO feature selection methods solved with Quantum Annealing heuristic, so
with the QPU, for all datasets. Following the same definition used in Section 4.5,
the results are obtained with the best trained Random Forest over the test set of
each dataset.

The following 6 pages (from page 82 to 87) contain the confusion matrices, each
with a 3×3 schema: each row is a dataset, and each column corresponds to a QUBO
method (from left to right Graph-MIQUBO, Q-Boosting and Q-Correlation).

The pages are divided as follows:

1. Page 82: iris, breast-cancer and wine datasets.

2. Page 83: vehicle, ionosphere and robot-failures-lp5 datasets.

3. Page 84: waveform-5000, steel-plates-fault and nomao datasets.

4. Page 85: SPECTF, cars1 and LED-7digit datasets.

5. Page 86: thyroid-ann, spambase and tecator datasets.

6. Page 87: USPS, isolet and swarm-behaviour datasets. Mind that for this page
the results are obtained using the Hybrid QPU, since all these datasets have
more than 124 features.
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Figure A.1: All confusion matrices on test sets for all datasets with only the best subset of features selected
with the QUBO algorithms solved with the QPU. Part 1 of 6.

82



0 1 2 3

0

1

2

3
Tr

ue
 L

ab
el

63 1 0 1

1 27 32 4

4 20 39 2

0 1 0 59
0

10

20

30

40

50

60

vehicle

(a) vehicle: G-MIQUBO.

0 1 2 3

0

1

2

3

Tr
ue

 L
ab

el

60 0 1 4

1 22 37 4

2 18 43 2

0 0 2 58
0

10

20

30

40

50

60

vehicle

(b) vehicle: Q-Boost.

0 1 2 3

0

1

2

3

Tr
ue

 L
ab

el

63 0 0 2

2 22 36 4

2 17 44 2

0 0 0 60
0

10

20

30

40

50

60

vehicle

(c) vehicle: Q-Corr.

0 1

0

1

Tr
ue

 L
ab

el

35 3

3 65
10

20

30

40

50

60

ionosphere

(d) ionosphere: G-MIQUBO.

0 1

0

1

Tr
ue

 L
ab

el

33 5

1 67
10

20

30

40

50

60

ionosphere

(e) ionosphere: Q-Boost.

0 1

0

1

Tr
ue

 L
ab

el

34 4

2 66
10

20

30

40

50

60

ionosphere

(f) ionosphere: Q-Corr.

0 1 2 3 4

0

1

2

3

4

Tr
ue

 L
ab

el

6 1 1 0 0

3 2 1 0 0

0 0 11 1 2

0 0 3 3 2

0 0 0 0 14
0

2

4

6

8

10

12

14

robot-failures-lp5

(g) robot-f-lp5: G-MIQUBO.

0 1 2 3 4

0

1

2

3

4

Tr
ue

 L
ab

el
7 0 1 0 0

2 2 1 1 0

0 0 11 1 2

0 0 5 1 2

0 0 0 0 14
0

2

4

6

8

10

12

14

robot-failures-lp5

(h) robot-f-lp5: Q-Boost.

0 1 2 3 4

0

1

2

3

4

Tr
ue

 L
ab

el

7 0 1 0 0

4 2 0 0 0

0 0 10 1 3

0 0 3 0 5

0 0 1 0 13
0

2

4

6

8

10

12

robot-failures-lp5

(i) robot-f-lp5: Q-Corr.

Figure A.2: All confusion matrices on test sets for all datasets with only the best subset of features selected
with the QUBO algorithms solved with the QPU. Part 2 of 6.
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Figure A.3: All confusion matrices on test sets for all datasets with only the best subset of features selected
with the QUBO algorithms solved with the QPU. Part 3 of 6.
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Figure A.4: All confusion matrices on test sets for all datasets with only the best subset of features selected
with the QUBO algorithms solved with the QPU. Part 4 of 6.
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Figure A.5: All confusion matrices on test sets for all datasets with only the best subset of features selected
with the QUBO algorithms solved with the QPU. Part 5 of 6.
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Figure A.6: All confusion matrices on test sets for all datasets with only the best subset of features selected
with the QUBO algorithms solved with the QPU. Part 6 of 6. The three reported datasets have more than
124 features, so the hybrid approach has to be adopted.
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A.6 Test classification accuracies: tables

The following tables are additional results obtained in test phase about the compar-
ison of the QUBO (quantum) based features selection methods between themselves,
and the comparison between QUBO versus classical feature selection algorithms. In
the dedicated Section 4.5 (with the additional images in Section A.5), only the com-
parison with the confusion matrices is provided. Here, the tables for all datasets are
reported:

1. Table A.11 (page 89): comparison across QUBO feature selection methods of
the classification accuracies obtained with the best classifier found in validation
phase using the unseen test set of each dataset.

2. Table A.12 (page 90): comparison between Graph-MIQUBO and classical fea-
ture selection algorithms of classification accuracies using the test set of each
dataset.

3. Table A.13 (page 91): comparison between Q-Boosting and classical feature se-
lection algorithms of classification accuracies using the test set of each dataset.

4. Table A.14 (page 92): comparison between Q-Correlation and classical fea-
ture selection algorithms of classification accuracies using the test set of each
dataset.

Notice that the columns corresponding to the QUBO feature selection methods for
the last three tables contain the results computed with Quantum Annealing, the
other approaches to solve the optimization problem are not reported.
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Quantum Annealing (QA)
All Features Graph-MIQUBO Q-Boosting Q-Correlation

Dataset N Test Acc. N Test Acc. N Test Acc. N Test Acc.
iris 4 97.8% 3 97.8% 3 97.8% 3 97.8%
breast cancer 30 95.9% 17 95.9% 25 95.3% 28 96.5%
wine 13 100.0% 12 100.0% 11 98.1% 10 100.0%
vehicle 18 77.2% 16 74.0% 16 72.0% 15 74.4%
ionosphere 34 94.3% 32 94.3% 25 94.3% 30 94.3%
robot-failures-lp5 90 72.0% 70 72.0% 80 70.0% 19 64.0%
waveform-5000 40 85.4% 38 85.5% 32 85.6% 35 83.3%
steel-plates-fault 33 99.7% 32 98.3% 28 99.3% 29 99.5%
nomao 118 96.8% 92 96.7% 83 96.6% 82 96.8%
SPECTF 44 79.0% 9 77.8% 12 77.8% 36 79.0%
cars1 7 87.3% 6 86.4% 4 87.3% 5 85.6%
LED-7digit 7 74.0% 6 74.7% 5 69.3% 5 60.0%
thyroid-ann 21 99.4% 12 99.6% 11 99.6% 5 94.3%
spambase 57 95.7% 55 95.2% 40 94.4% 51 95.5%
tecator 124 90.3% 103 91.7% 120 86.1% 117 93.1%

USPS 256 97.7% 241 97.7% 238 97.9% 245 97.2%
isolet 617 98.9% 539 98.9% 114 98.3% 174 99.4%
swarm-behaviour 2400 100.0% 746 100.0% 171 100.0% 257 100.0%

Table A.11: Quantum Annealing approach test results across the algorithms. Only
for the last three datasets, the hybrid approach has to be adopted. In the ”Test Acc.”
field is reported as percentage the classification accuracy with the best classifiers over
the test set of each dataset.
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All Features Graph-MIQUBO [QPU] Variance Threshold Mutual Information Chi2 test ANOVA f test
Dataset N Test Acc. N Test Acc. N Test Acc. N Test Acc. N Test Acc. N Test Acc.
iris 4 97.8% 3 97.8% 3 95.6% 2 97.8% 1 93.3% 2 95.6%
breast cancer 30 95.9% 17 95.9% 29 95.9% 21 95.9% 22 96.5% 24 95.9%
wine 13 100.0% 12 100.0% 12 100.0% 12 100.0% 10 100.0% 7 100.0%
vehicle 18 77.2% 16 74.0% 17 78.0% 17 74.4% 16 77.2% 17 71.7%
ionosphere 34 94.3% 32 94.3% 33 94.3% 18 95.3% 17 96.2% 22 95.3%
robot-failures-lp5 90 72.0% 70 72.0% 50 68.0% 80 72.0% 83 76.0% 78 74.0%
waveform-5000 40 85.4% 38 85.5% 39 83.8% 34 85.5% 38 85.3% 35 85.7%
steel-plates-fault 33 99.7% 32 98.3% 32 93.0% 31 99.0% 26 99.8% 18 99.8%
nomao 118 96.8% 92 96.7% 50 96.6% 86 96.7% 98 96.7% 95 96.7%
SPECTF 44 79.0% 9 77.8% 43 81.5% 21 80.2% 8 77.8% 23 80.2%
cars1 7 87.3% 6 86.4% 6 85.6% 1 83.1% 5 87.3% 2 83.1%
LED-7digit 7 74.0% 6 74.7% 6 62.0% 5 66.0% 6 72.7% 5 65.3%
thyroid-ann 21 99.4% 12 99.6% 20 99.5% 19 99.3% 11 99.6% 17 99.6%
spambase 57 95.7% 55 95.2% 50 95.4% 56 95.8% 53 95.3% 39 95.4%
tecator 124 90.3% 103 91.7% 50 91.7% 85 93.1% 63 90.3% 73 91.7%

USPS 256 97.7% 241 97.7% 50 96.5% 218 97.7% 249 97.7% 249 97.4%
isolet 617 98.9% 539 98.9% 50 98.3% 63 98.3% 51 98.9% 51 98.3%
swarm-behaviour 2400 100.0% 746 100.0% 50 100.0% 1811 100.0% 1175 100.0% 294 100.0%

Table A.12: Graph-MIQUBO solved with the QPU test results comparison against classical filter feature selection algorithms. Only for
the last three datasets, the hybrid approach has to be adopted. In the ”Test Acc.” field is reported as percentage the classification accuracy
with the best classifiers over the test set of each dataset.



All Features Q-Boosting [QPU] Variance Threshold Mutual Information Chi2 test ANOVA f test
Dataset N Test Acc. N Test Acc. N Test Acc. N Test Acc. N Test Acc. N Test Acc.
iris 4 97.8% 3 97.8% 3 95.6% 2 95.6% 1 93.3% 2 97.8%
breast cancer 30 95.9% 25 95.3% 29 95.9% 21 96.5% 22 96.5% 24 96.5%
wine 13 100.0% 11 98.1% 12 100.0% 12 100.0% 10 100.0% 7 100.0%
vehicle 18 77.2% 16 72.0% 17 75.6% 17 73.6% 16 74.8% 17 75.2%
ionosphere 34 94.3% 25 94.3% 33 95.3% 18 95.3% 17 95.3% 22 94.3%
robot-failures-lp5 90 72.0% 80 70.0% 50 68.0% 80 72.0% 83 72.0% 78 70.0%
waveform-5000 40 85.4% 32 85.6% 39 84.0% 34 85.1% 38 85.9% 35 85.4%
steel-plates-fault 33 99.7% 28 99.3% 32 93.8% 31 99.5% 26 99.5% 18 100.0%
nomao 118 96.8% 83 96.6% 50 96.5% 86 96.7% 98 96.7% 95 96.7%
SPECTF 44 79.0% 12 77.8% 43 80.2% 21 80.2% 8 77.8% 23 80.2%
cars1 7 87.3% 4 87.3% 6 85.6% 1 82.2% 5 87.3% 2 83.9%
LED-7digit 7 74.0% 5 69.3% 6 61.3% 5 66.7% 6 71.3% 5 66.0%
thyroid-ann 21 99.4% 11 99.6% 20 99.4% 19 99.5% 11 99.5% 17 99.6%
spambase 57 95.7% 40 94.4% 50 95.6% 56 95.4% 53 95.7% 39 95.1%
tecator 124 90.3% 120 86.1% 50 91.7% 85 93.1% 63 90.3% 73 94.4%

USPS 256 97.7% 238 97.9% 50 96.0% 218 97.9% 249 97.7% 249 97.4%
isolet 617 98.9% 114 98.3% 50 98.3% 63 98.3% 51 98.9% 51 98.3%
swarm-behaviour 2400 100.0% 171 100.0% 50 100.0% 1811 100.0% 1175 100.0% 294 100.0%

Table A.13: Q-Boosting solved with the QPU test results comparison against classical filter feature selection algorithms. Only for the last
three datasets, the hybrid approach has to be adopted. In the ”Test Acc.” field is reported as percentage the classification accuracy with
the best classifiers over the test set of each dataset.



All Features Q-Correlation [QPU] Variance Threshold Mutual Information Chi2 test ANOVA f test
Dataset N Test Acc. N Test Acc. N Test Acc. N Test Acc. N Test Acc. N Test Acc.
iris 4 97.8% 3 97.8% 3 95.6% 2 95.6% 1 93.3% 2 97.8%
breast cancer 30 95.9% 28 96.5% 29 95.3% 21 97.7% 22 95.9% 24 96.5%
wine 13 100.0% 10 100.0% 12 100.0% 12 100.0% 10 100.0% 7 100.0%
vehicle 18 77.2% 15 74.4% 17 76.0% 17 75.2% 16 73.2% 17 73.2%
ionosphere 34 94.3% 30 94.3% 33 94.3% 18 94.3% 17 94.3% 22 95.3%
robot-failures-lp5 90 72.0% 19 64.0% 50 70.0% 80 72.0% 83 70.0% 78 70.0%
waveform-5000 40 85.4% 35 83.3% 39 84.4% 34 86.0% 38 85.7% 35 85.6%
steel-plates-fault 33 99.7% 29 99.5% 32 93.0% 31 99.5% 26 99.8% 18 99.8%
nomao 118 96.8% 82 96.8% 50 96.6% 86 96.7% 98 96.7% 95 96.7%
SPECTF 44 79.0% 36 79.0% 43 79.0% 21 80.2% 8 76.5% 23 79.0%
cars1 7 87.3% 5 85.6% 6 85.6% 1 82.2% 5 88.1% 2 83.1%
LED-7digit 7 74.0% 5 60.0% 6 58.7% 5 66.0% 6 72.7% 5 66.0%
thyroid-ann 21 99.4% 5 94.3% 20 99.2% 19 99.4% 11 99.6% 17 99.6%
spambase 57 95.7% 51 95.5% 50 95.4% 56 95.1% 53 95.6% 39 95.3%
tecator 124 90.3% 117 93.1% 50 93.1% 85 93.1% 63 93.1% 73 93.1%

USPS 256 97.7% 245 97.2% 50 97.0% 218 97.7% 249 97.7% 249 97.7%
isolet 617 98.9% 174 99.4% 50 97.8% 63 98.3% 51 98.9% 51 98.9%
swarm-behaviour 2400 100.0% 257 100.0% 50 100.0% 1811 100.0% 1175 100.0% 294 100.0%

Table A.14: Q-Correlation solved with the QPU test results comparison against classical filter feature selection algorithms. Only for the
last three datasets, the hybrid approach has to be adopted. In the ”Test Acc.” field is reported as percentage the classification accuracy
with the best classifiers over the test set of each dataset.
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