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1. Introduction
In recent years, Reinforcement Learning (RL,
[24]) methods have proven to be successful in
a wide variety of applications, where sequential
decision-making problems are typically modelled
as a Markov Decision Process (MDP, [19]), a
formalism that addresses the agent-environment
interactions through discrete-time transitions.
Continuous-time control problems, instead, are
usually addressed by means of time discretiza-
tion, which induces a specific control frequency
f , or, equivalently, a time step δ = 1

f [17].
This represents an environment hyperparame-
ter, which may have dramatic effects on the
process of learning the optimal policy [14]. In-
deed, higher frequencies allow for greater control
opportunities, but they have significant draw-
backs. The most relevant one is related to the
toned down effect of the selected actions. In the
limit for time discretization δ → 0, the advan-
tage of each action collapses to zero, prevent-
ing the agent from finding the best action [25]
and leading to higher sample complexity. More-
over, a random uniform policy played at high
frequency may not be adequate for exploration,

as it tends to visit only a local neighborhood of
the initial state [17]. This is problematic, espe-
cially in goal-based or sparse rewards environ-
ments, where the most informative states may
never be visited. On the other hand, large time
discretizations benefit from a higher probability
of reaching far states, but they also deeply mod-
ify the transition process, hence a possibly large
subspace of states may not be reachable.
One of the solutions to achieve the advan-
tages related to exploration and sample com-
plexity, while keeping the control opportunity
loss bounded, consists in action persistence [11,
14]. When the dynamics are very rapid, action
repetition is equivalent to acting at lower fre-
quencies. Thus, the agent can achieve, in some
environments, a more effective exploration, bet-
ter capture the consequences of each action, and,
as a final consequence, learn the optimal policy
faster.
In this work, we propose a value-based ap-
proach in which the agent does not only choose
the action, but also its persistence, with the
goal of making the most effective use of sam-
ples collected at different persistences. The in-
formation collected at one persistence is then
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used to improve the action value function es-
timates of all the considered possible persis-
tences, by decomposing the observed history in
many sub-transitions of reduced length to up-
date lower persistence values, and by using a
suitable bootstrapping procedure of the missing
information for higher persistences. This pro-
cedure is formalized with the introduction of
the All-persistence Bellman Operator, which en-
joys a contraction property analogous to that of
the traditional optimal Bellman operator. This
new operator is then embedded into the classic
Q-learning algorithm, obtaining Persistent Q-
learning (PerQ-learning). This novel algorithm,
allowing for an effective use of the transitions
sampled at different persistences, let us experi-
ence a faster convergence and fosters a better ex-
ploration of the state space. Furthermore, in or-
der to deal with more complex domains, we con-
sider the Deep RL scenario, extending the Deep
Q-Network (DQN) algorithm to its persistent
version Persistent Deep Q-Network (PerDQN).
Finally, we evaluate the proposed algorithms, in
comparison on both illustrative and complex do-
mains, highlighting strengths and weaknesses.

2. Related Works
The first attempts to extend classical RL algo-
rithms with the introduction of action persis-
tence go back to 2003 [20]. In this paper, multi-
step actions (MSAs), i.e., a sequence of repeated
actions, were introduced, reducing the number
of decisions needed to reach the goal and mak-
ing the time scale coarser. Thus, MSAs extend
Q-Learning by allowing each action to be re-
peated and the next decision is taken only at
the end of the sequence. Action persistence has
acquired practical relevance since the introduc-
tion of Deep RL [16], because of the frame skip-
ping [2] for Atari games. Frame skipping con-
sists in letting the environment evolve for multi-
ple steps before observing the new state and per-
forming a new action. Several works [5, 14] had
shown the importance of persistence for helping
exploration and policy learning. Among these
works, [7] introduced an ϵz−greedy exploration,
with a random exploratory variable deciding the
duration of each action. As explained in [14],
changing frequency deeply modifies the underly-
ing MDP, as a special instance of a configurable
MDP [13], where environmental parameters can

be tuned to improve the performance. Indeed, in
[9] the authors proposed an algorithm to auto-
matically tune the control frequency, along with
other learning hyperparameters. Mann, Man-
nor, and Precup [12] illustrate that approximate
value iteration techniques can converge faster
with action persistence (seen as options with
longer duration).
Action repetition has many advantages, but
it reduces the control opportunities. Conse-
quently, researchers have been trying to include
the possibility to dynamically change the con-
trol frequency during learning. In the context of
Deep RL, [11] introduced the idea of enlarging
the action space, duplicating actions and par-
ing them with a specific repetition value. In
the Augmented DQN, the last layer of the net-
work is duplicated to output the Q-values for ac-
tions at two different repetition rates. The main
drawback is that repetition rates are hyper-
parameters, hence there is no automatic adap-
tation of frequency.
Two recent algorithms proposed different ap-
proaches. In [21], two networks are employed:
the first is a classic action policy, used to learn
primitive actions over the environment, while
the second one, called skip network is used to
learn how many times the action persistence in
a specific state, regardless of the chosen action.
In this way it is not possible to tune the per-
sistence for each action, but only to regulate it
according to its averaged effect on the perfor-
mance for the specific state.
One way to differentiate actions is introduced in
a similar fashion with TempoRL [4]. Here, two
different networks are employed: while the base
one is a normal DQN, the skip network depends
on both state and action and approximates Q-
values for different possible frequencies. While
the first network is used to choose the action to
perform in a state, the state-action pair is then
fed to the second network to choose skip value.
In the framework of policy-gradient methods, we
can find examples of persistence in [28], with
the introduction of secondary binary policy, with
the main purpose of choosing whether to repeat
the previous action or to change it according to
the principal agent. A completely different ap-
proach is presented by [17]. The authors claim
that when the δ → 0 policy-based methods tend
to degrade (in a similar way as in [25] for Q-
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learning). Persistence is a good solution, but in
systems with unexpected events, it may lead to
a loss of control. Their algorithm introduces the
notion of safe region, as the agent keeps repeat-
ing an action until the distance of the states vis-
ited overcomes a certain threshold. This state
locality can guarantee reactivity, especially in
some environments where the blind repetition
of an action can be dangerous.

3. Background
In this chapter we will introduce the main con-
cepts about Reinforcement Learning. We de-
fine a Markov Decision Process, a mathematical
framework widely adopted to describe the inter-
action between an agent and an environment.

3.1. Markov Decision Processes
A discrete-time Markov Decision Pro-
cess (MDP,[19]) is defined as a tuple
M := ⟨S,A, P, r, γ⟩, where S is the state space,
A the finite action space, P : S ×A →P(S) is
the Markovian transition kernel, r : S ×A → R
is the reward function, and γ ∈ [0, 1) is the
discount factor. A Markovian stationary policy
π : S → P(A) maps states to probability
measures over A. We denote with Π the set of
Markovian stationary policies. The action-value
function, or Q-function, of a policy π ∈ Π is
the expected discounted sum of the rewards
obtained by performing action a in state s and
following policy π thereafter:

Qπ(s,a)=Eπ
[+∞∑
t=0

γtrt+1|s0=s,a0=a
]
,

where rt+1 = r(st, at), at ∼ π(·|st), and st+1 ∼
P (·|st, at) for all t ∈ N.
The optimal Q-function is given by: Q⋆(s, a) =
supπ∈ΠQ

π(s, a) for all (s, a) ∈ S ×A. An op-
timal policy π⋆ ∈ Π is any policy greedy w.r.t.
Q⋆, i.e., π⋆(·|s) ∈P (argmaxa∈AQ

⋆(s, a)).

3.2. Q-learning
The Bellman Optimal Operator T ⋆ : B(S ×A)
→ B(S ×A) is defined for every f ∈ B(S ×A)
and (s, a) ∈ S ×A as [3]:

(T ⋆f)(s,a)=r(s,a)+γ

∫
S
P (ds′|s,a)max

a′∈A
f(s′,a′).

T ⋆ is a γ-contraction in L∞-norm and its unique
fixed point is the optimal Q-function (T ⋆Q⋆ =

Q⋆). When the P and r are known, the (ac-
tion) value-iteration algorithm [19] allows to re-
trieve Q⋆ by means of the iterative application
of T ⋆. When the environment is unknown, Q-
learning [27] collects samples with a behavioral
policy (e.g., ϵ-greedy) and then uses them to up-
date a Q-function estimate based on the updated
rule:

Q(st,at)←(1−α)Q(st,at)+

α(rt+1+γmax
a′∈A

Q(st+1,a
′)),

where α > 0 is the learning rate.

3.3. Deep Q-Network
Classic Q-learning suffers from curse of dimen-
sionality: in high dimensional state spaces, e.g.
with images, the number of state-action pairs
grows exponentially and the explicit computa-
tion of the action value function becomes un-
feasible. Among the most famous approaches,
DeepQ-Network (DQN, [15]) employs a function
approximator Qθ(s, a) parameterized by a deep
neural network with weights θ to estimate Q⋆.
Interactions with the environment are stored in
the replay buffer D = {(st, at, rt+1, st+1)}nt=1.
To improve stability, a target network, whose pa-
rameters θ− are kept fixed for a certain number
of steps, is employed. The Q-Network is trained
to minimize the mean squared temporal differ-
ence error r+γmaxa′∈AQθ−(s′, a′)−Qθ(s, a) on
a batch of tuples sampled from the replay buffer.

3.4. Action Persistence
The execution of actions with a persistence
k ∈ N can be modeled by means of the k-
persistent MDP [14], characterized by the k-
persistent transition model Pk and reward func-
tion rk. To formally define them, the persistent
transition model is introduced:

P δ(·,·|s,a)=
∫
S
P (ds′|s,a)δ(s′,a)(·,·),

which replicates in the next state s′ the previous
action a. Thus, we have:

Pk(·|s,a)=
(
(P δ)k−1P

)
(·|s,a),

rk(s,a)=
k−1∑
i=0

γi
(
(P δ)ir

)
(s,a).

This framework eases the analysis of fixed per-
sistences, but it does not allow the action repe-
tition for a variable number of steps.
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4. All-Persistence Bellman
Update

We introduce our approach to make effective use
of the samples collected at any persistence. In
our framework, the agent chooses a primitive ac-
tion a together with its persistence k with the
introduction of the persistence option.
Definition 4.1. Let A be the space of primitive
actions of an MDPM and K := {1, . . . ,Kmax},
where Kmax ≥ 1, be the set of persistences. A
persistence option o := (a, k) is the decision of
playing primitive action a ∈ A with persistence
k ∈ K. We denote with O(k) := {(a, k) : a ∈ A}
the set of options with fixed persistence k ∈ K
and O :=

⋃
k∈KO(k) = A×K.

At any acting step t, the agent observes st ∈ S,
selects a persistence option ot = (at, kt) ∈ O and
repeats the primitive action at for kt times, ob-
serving the sequence of the states encountered
and of the rewards collected. The next acting
step is then t+ kt. During the execution of the
persistence option, the agent is not allowed to
change the primitive action. We now extend
the policy and state-action value function defini-
tions to consider this particular form of options.
A Markovian stationary policy over persistence
options ψ : S → P(O) is a mapping between
states and probability measures over persistence
options. We denote with Ψ the set of the policies
of this nature. The state-option value function
Qψ : S ×O → R following a policy over options
ψ ∈ Ψ is defined as:

Qψ(s,a,k):=Eψ
[+∞∑
t=0

γtrt+1|s0=s,a0=a,k0=k
]
.

In this context, the optimal action-value func-
tion is defined as:

Q⋆K(s,a,k)=sup
ψ∈Ψ

Qψ(s,a,k).

4.1. All-Persistence Bellman
Operator

We start by defining a κ-persistence transition
as (s, s′, a, r1, r2, . . . , rκ) where s ∈ S is the state
where we choose action a ∈ A, s′ ∈ S is visited
after our agent repeated action a for κ time steps
and (r1, r2, . . . , rκ) are all the collected rewards.
When we collect a κ-persistence transition it is
important to underline that we are trying to

use that transition to learn Q⋆K(·, ·, k) ∀k ∈ K,
both for k values less than the actually collected
κ transition and for k values greater than κ.
Suppose that κ ≥ k, then, we can exploit any
sub-transition of k steps from the κ-persistence
transition to update the value Q⋆K(·, ·, k). Thus,
we extend the Bellman optimal operator to per-
sistence options, as follows T ⋆ : B(S × O) →
B(S ×O) with f ∈ B(S ×O):

(T ⋆f)(s,a,k)=rk(s,a)+γ
k

∫
S
Pk(ds

′|s,a) max
(a′,k′)∈O

f(s′,a′,k′).

If, instead, κ < k, in order to update the value
Q⋆K(·, ·, k), we partially exploit the κ-persistent
transition, but then, we need to bootstrap from
a lower persistence Q-value, to compensate the
remaining k − κ steps.
To this end, we introduce the bootstrapping op-
erator T κ : B(S × O) → B(S × O) with
f ∈ B(S ×O):

(
T κf

)
(s,a,k)=rκ(s,a)+γ

κ

∫
S
Pκ(ds

′|s,a)f(s′,a,k−κ).

By combining these two operators, we obtain the
All-Persistence Bellman operator Hκ : B(S ×
O)→ B(S×O) defined for every f ∈ B(S×O)
as:

(Hκf)(s,a,k)=
(
(1k≤κT

⋆+1k>κT
κ)f

)
(s,a,k).

Thus, given a persistence κ ∈ K, Hκ allows
updating all the Q-values with k ≤ κ by means
of T ⋆, and all the ones with k > κ by means
of T κ. The following result demonstrates the
soundness of the proposed operator.
Theorem 4.1. The all-persistence Bellman op-
erator Hκ fulfills the following properties:

(i) Hκ is a γ-contraction in L∞ norm;
(ii) Q⋆K is its unique fixed point;
(iii) Q⋆K is monotonic in k, i.e., for all (s, a) ∈

S ×A if k ≤ k′ then Q⋆K(s, a, k) ≥
Q⋆K(s, a, k

′).

Thus, operator Hκ contracts to the optimal
action-value function Q⋆K, which, thanks to
monotonicity, has its highest value at the low-
est possible persistence. In particular, it is sim-
ple to show that Q⋆K(s, a, 1) = Q⋆(s, a) for all
(s, a) ∈ S ×A, i.e., by fixing the persistence to
k = 1 we retrieve the optimal Q-function in the
original MDP, and consequently, we can recon-
struct a greedy optimal policy.
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Algorithm 1 All Persistence Bellman Update
Require: Sampling persistence κt,

partial history Hκt
t , Q-function Q.

Ensure: Updated Q-function Q′

Q′←Q
for j=κt,κt−1...,1 do

for i=j−1,j−2,...,0 do
k←j−i
Q′(st+i,at,k)←(1−α)Q(st+i,at,k)

+αT̂ ⋆
t+iQ(st+i,at,k)

for d=1,2,...,Kmax−k do
Q′(st+i,at,k+d)←(1−α)Q(st+i,a,k+d)

αT̂ k
t+iQ(st+i,at,k+d)

end for
end for

end for

5. Persistent Q-learning
It may not be immediately clear what are the ad-
vantages of Hκ over traditional updates. These
become apparent with its empirical counterpart
Ĥκt = 1k≤κT̂ ⋆t + 1k>κT̂

κ
t , where:(

T̂ ⋆t Q
)
(st, at, k) = rkt+1 + γk max(a′,k′)∈OQ(st+k, a

′, k′),(
T̂ κt Q

)
(st, at, k) = rκt+1 + γκQ(st+k, a

′, k − κ).

These empirical operators depend on the cur-
rent partial history, which we define as: Hκ

t :=
(st, at, rt+1, st+1, rt+2, . . . , st+κ), used by Algo-
rithm 1 to update each persistence in a backward
fashion, to allow for an even faster propagation
of values. At timestep t, given a sampling persis-
tence κt, for all sub-transitions of Hκ

t , starting
at t + i and ending in t + j, we apply Ĥj−it to
Q(st+i, at, k + d), for all d ≤ Kmax − k, where
k = j − i. With these tools, it is possible to ob-
tain the Persistent Q-learning algorithm (abbre-
viated as PerQ-learning), a persistent extension
of Q-learning [27]: the agent follows a policy ψϵQ,
which is ϵ-greedy w.r.t. the option space and the
current Q-function. This approach extends the
MSA-Q-learning algorithm presented in [20], by
bootstrapping higher persistence action values
from lower ones.
The asymptotic convergence of Persistent Q-
learning to Q⋆K directly follows from the applica-
tion of the results in [23], thanks to the fact that
Hκ is a contraction, provided that their (mild)
assumptions are satisfied.
In Figure 1 it is presented the interaction be-
tween the persistent agent and the environment.

After the agent chooses the persistence option
o := (a, k), it executes the action a for an
amount of k time steps. When the end of cur-
rent persistence is reached, i.e. the agent has
executed action a for k times, we can start the
train process with the current persistence his-
tory (see Algorithm 1). After that, the agent
can select the new persistence option.

Environment

End persistence

reached?

Collect

transition

Train

Choose 

action

Yes

No

New action

Previous
action

St+1

St

Rt

Agent

End persistence

reached?

Rt+1

At

Yes

Figure 1: Interaction between persistent agent
and the environment.

6. Persistent Deep Networks
In order to deal with high-dimensional settings,
we develop an extension of PerQ-learning. It
is straightforward to exploit Deep Q-Networks
for learning in the options space O. Standard
DQN is augmented with Kmax distinct sets of
action outputs, to represent Q-value of the op-
tions space O = A×K, while the first layers
are shared. The resulting algorithm, Persis-
tent Deep Q-Network (PerDQN) is obtained by
exploiting the application of the empirical all-
persistence Bellman operator. The main differ-
ences between PerDQN and standard DQN con-
sist in: (i) a modified ϵ-greedy strategy, which
is equivalent to the one described for its tabu-
lar version; (ii) the use of multiple replay buffers
accounting for persistence.

Persistence Replay Buffers Whenever an
option ot = (at, κt) is executed, the gener-
ated partial history Hκt

t is decomposed in all
its sub-transitions, which are stored in multi-
ple replay buffers Dk, one for each persistence
k ∈ K. Specifically, Dk stores tuples in the form
(s, at, s

′, r, κ), where s and s′ are the first and
the last state of the sub-transition, r is the κ-
persistent reward, and κ is a parameter to de-
note true length of the sub-transition, which will
then be used to suitably apply Ĥκt .
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Figure 2: Performance evaluation on tabular environments, Kmax = 8. 50 runs (95% c.i.).

Finally, the gradient update is computed by
sampling a mini-batch of experience tuples
from each replay buffer Dk, in equal propor-
tion. Given the current network and target
parametrizations θ and θ−, the temporal differ-
ence error of a sample (s, a, r, s′, κ) is computed
as ĤκQθ−(s, a, k) − Qθ(s, a, k). Our approach
differs from TempoRL DQN [4], which uses a
dedicated network to learn the persistence at
each state and employs a standard replay buffer,
ignoring the persistence at which samples have
been collected.

7. Empirical Advantages
of Persistence

In this section, we provide some numerical sim-
ulations to highlight the benefits of using action
persistence.

7.1. Exploration
One of the main advantages of persistence is re-
lated to faster exploration, especially in goal-
based environments (e.g., robotics and locomo-
tion tasks). Indeed, persisting an action al-
lows reaching faster states far from the start-
ing point and, consequently, propagating faster
the reward. The reason is due to the increased
chances of 1-persistent policies to get stuck in
specific regions. As explained in Amin et al. [1],
persistence helps to achieve self-avoiding trajec-
tories, by increasing the expected return time in
previously visited states. Hence, we study the
effects of a persisted exploratory policy on the
MDP, i.e., a policy ψ ∈ Ψ over persistence op-
tions O.
To this purpose, we compute the Kemeny’s con-
stant [6, 18], which corresponds to the expected
first passage time from an arbitrary starting
state s to another one s′ under the stationary

distribution induced by ψ. We consider four
discrete tabular environments: Open is a 10x10
grid with no obstacles, while the others, pre-
sented in [4], are described in Section 8. In Fig-
ure 4, we plot the variations of Kemeny’s con-
stant as a function of the maximum persistence
Kmax, while following a uniform policy ψ overO.
We observe that increasing Kmax promotes ex-
ploration, and highlights the different values of
Kmax attaining the minimum value of the con-
stant, due to the different complexity of the en-
vironments.

2 4 6 8 10 12 14 16

Max Persistence

K
em

Open
Cliff

Bridge
Zigzag

Figure 4: Normalized Kemeny’s constant in tab-
ular environments as function of the maximum
persistence Kmax. Bullets represent the mini-
mum value of the constant.

7.2. Sample Complexity
The second relevant effect of persistence con-
cerns with the sample complexity. The intu-
ition behind persistence relies on the fact that
the most relevant information propagates faster
through the state-action space, thanks to multi-
step updates. Moreover, these updates are as-
sociated to a lower discount factor, which al-
lows for better convergence rates. In order to
evaluate the sample efficiency of PerQ-learning,
separately from its effects on exploration, we
considered a synchronous setting [10, 22] in a
deterministic 6x6 Gridworld. At each itera-
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Figure 3: Atari games results for DQN and PerDQN, with Kmax = 4 and 8. 5 runs (avg± 95% c.i.).
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Figure 5: L∞ error on 6x6 grid-world between
synchronousQ-learning and PerQ-learning (left)
and for different persistence options k ∈
{1, ..., 6} of PerQ-learning (right). (100 runs,
avg ± 95 % c.i.)

tion t, the agent has access to a set of inde-
pendent samples for each state-action pair. In
standard Q-learning the samples are used to up-
date the action value function Q(s, a) for each
(s, a) ∈ S ×A. In PerQ-learning, the sam-
ples are combined to obtain each possible set
of κ-persistent transitions, i.e., the tuples re-
lated to each possible (s, a, k) ∈ S × O, with
Kmax = 6; finally, the persistent action value
function is updated. On the left side of Fig-
ure 5, we compare the L∞ error of Q-learning
estimating Q⋆(s, a), i.e., maxs,a∈S×A |Qt(s, a)−
Q⋆(s, a)|, and that of PerQ-learning estimat-
ing Q⋆K(s, a, k), i.e., maxs,a,k∈S×O |Qt(s, a, k) −
Q⋆K(s, a, k)|, as a function of the number of it-
erations t. We observe that, although estimat-
ing a higher-dimensional function (as Q⋆K(s, a, k)
is a function of the persistence k too), PerQ-
learning converges faster than Q-learning. On
the right side of Figure 5, we plot the L∞ er-
ror experienced by PerQ-learning for the differ-
ent persistence options O(k), i.e., Error∞(k) :=
maxs,a∈S×A |Qt(s, a, k) − Q⋆(s, a, k)| for k ∈ K.
We note that, as expected, higher values of k
lead to faster convergence; consequently, the
persistent Bellman operator helps improving the

estimations also for the lower option sets. In-
deed, we can see that alsoQt(·, ·, 1), which repre-
sents the action value function for the primitive
actions, converges faster than classic Q-learning.
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−100
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R
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PerDQN(16) TempoRL(8)
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Figure 7: Performance on MountainCar. Paren-
thesis denote Kmax. 20 runs (avg± 95% c.i.).

8. Experimental Evaluation
In this section, we show the empirical analysis of
our approach on both the tabular setting (PerQ-
learning) and the function approximation one
(PerDQN).

8.1. PerQ-learning
We present the results on the experiments in
tabular environments, particularly suited for
testing PerQ-learning because of the sparsity of
rewards. We start with the deterministic 6x10
grid-worlds introduced by [4]. In these environ-
ments, the episode ends if either the goal or a
hole is reached, with +1 or −1 points respec-
tively. In all the other cases, the reward is 0, and
the episode continues. Moreover, we experiment
the 16x16 FrozenLake, with rewards and transi-
tion process analogous to the previous case, but
with randomly generated holes at the beginning
of the episode. The results are shown in Figure
2, where we compared PerQ-learning with Tem-
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Figure 6: Atari games results for DQN, PerDQN and TempoRL, with Kmax = 4. 5 runs (avg± 95%
c.i.).

poRL (with the same maximum skip-length J =
8) and classic Q-learning. In all cases, PerQ-
learning outperforms the other methods, espe-
cially Q-learning, whose convergence is signifi-
cantly slower. In general, PerQ-learning shows
faster rates of improvements than TempoRL, es-
pecially in the first learning iterations.

8.2. PerDQN
Our implementation of PerDQN is based on
OpenAI Gym and Baselines [8] Python toolkits.
We start with MountainCar, as it is perhaps the
most suited to evaluate the performance of per-
sistence options, since 1-step explorative policies
usually fail to reach the goal because of their
low probability to commit to an action for long
times [14]. Figure 7 shows that TempoRL and
standard DQN cannot converge to the optimal
policy, while PerDQN can reach the optimal so-
lution, which consists in obtaining the minimum
loss required to reach the top of the mountain.
The algorithm is then tested in the challeng-
ing framework of Atari 2600 games. In Figure
3 we compare PerDQN and classic DQN. Our
PerDQN displays a faster learning curve thanks
to its ability of reusing experience, although in
some cases (e.g. Kangaroo) PerDQN seems to
inherit the same instability issues of DQN, we
conjecture due to the overestimation bias [26].
We have also compared our method with the
one described by TempoRL ([4]): the results are
shown in Figures 6. As we can see, PerDQN
outperforms TempoRL in all the environments
evaluated.

9. Conclusion
In this paper, we have considered RL policies
that implement action persistence, modeled as
persistence options, selecting a primitive action
and its duration. We defined the all-persistence
Bellman operator, which allows for an effective
use of the experience collected from the inter-
action with the environment at any time scale.
Thanks to this operator, action-value function
estimates can be updated simultaneously on the
selected persistence set: low persistences (and
primitive actions) can be updated by splitting
the samples in their sub-transitions; action value
functions for high persistences can instead be
improved by bootstrap, a procedure that takes
into account the estimation of the partial miss-
ing information. After proving that the new
operator is a contraction, we applied it to ex-
tend classic Q-learning and DQN with their
persistent version. We performed an experi-
mental campaign on tabular and deep RL set-
tings demonstrating the effectiveness of our ap-
proach and the importance of considering tem-
poral extended actions. Future research direc-
tions include, the introduction of criteria for
persistence interruptions (like for interrupting
options). Furthermore, one could investigate
the possibility of employing the operator in the
actor-critic framework to cope with continuous
action spaces.
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