
Design Patterns and Anti-Patterns
in Microservices Architecture: A
Classification Proposal and Study
on Open Source Projects

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria In-
formatica

Author: Ömer Esas

Student ID: 917254
Advisor: Prof. Elisabetta Di Nitto
Academic Year: 2021-22

i

Abstract

As tech giants adopted microservices architecture successfully in the past decade, there
has been an increase in the microservices research in the academia and greater interest
from many companies towards this method of building distributed, fault-tolerant and
complex applications. More research and practical experience led to the emergence of
several desirable and undesirable ways of solving problems of microservice-based systems,
called microservices design patterns and anti-patterns. In this study, we take a look into
the academia through literature review and into practical cases through popular open
source microservices projects. We aim to discover whether there is a classification in
the academia regarding microservice patterns and anti-patterns and propose one in case
there is no consensus, in addition to investigating the actual presence of these pattern
and anti-patterns manually in ten well-known microservice-based open source applica-
tions. Our analysis shows that there does not exist a general agreement in the academia
in terms of classification of microservices patterns and anti-patterns, hence we proposed
our taxonomy by trying to find common ground and providing relevant justification. Re-
garding the presence of design patterns and anti-patterns, we selected ten open source
microservices applications, which have the highest number of stars on GitHub, excluding
tool-kits, frameworks and libraries from the search result. Through a manual process on
these projects, we found that while some design patterns and anti-patterns can be verified
to exist in practical cases, there are also some patterns and anti-patterns which are rare,
if not absent at all. In conclusion, we discuss the results found and experiences gained in
this study, before adding a few statements about future work.

Keywords: Microservice, design pattern, anti-pattern, classification, open source project

Abstract in lingua italiana

Mentre i giganti della tecnologia hanno adottato con successo l’architettura a microservizi,
negli ultimi dieci anni c’è stato un aumento della ricerca sui microservizi nel mondo
accademico e un maggiore interesse da parte di molte aziende verso questo metodo di
costruzione di applicazioni distribuite, fault-tolerant e complesse. Ulteriori ricerche ed
esperienze pratiche hanno portato all’emergere di diversi modi desiderabili e indesider-
abili per risolvere i problemi dei sistemi basati su microservizi, chiamati design pattern
e anti-pattern. In questo studio, facciamo un’analisi della letteratura e e di progetti a
microservizi open source. Miriamo a scoprire se esiste un consenso su come classificare
pattern e anti-pattern a microservizi e, in caso contrario, a proporne una nuova. Inoltre,
vogliamo indagare l’effettiva presenza di questi pattern e anti-pattern manualmente in
dieci applicazioni note open source basate su microservizi. La nostra analisi mostra che
non esiste un accordo generale nel mondo accademico in termini di classificazione dei
pattern e degli anti-pattern per applicazioni a microservizi, quindi abbiamo proposto la
nostra tassonomia cercando di trovare un terreno comune e fornendo una giustificazione
pertinente. Per quanto riguarda la presenza di design pattern e anti-pattern, abbiamo
selezionato dieci applicazioni open source a microservizi, selezionandole tra quelle che
hanno il numero più alto di stelle su GitHub ed escludendo toolkit, framework e librerie
dal risultato della ricerca. Attraverso un processo manuale di analisi su questi progetti,
abbiamo scoperto che mentre alcuni patter e anti-pattern di progettazione possono essere
verificati esistere in casi pratici, ce ne sono anche altri che sono rari, se non del tutto
assenti. In conclusione, discutiamo dei risultati trovati e delle esperienze maturate in
questo studio e delineiamo un piano di lavoro per il futuro.

Parole chiave: Microservizio, design pattern, anti-pattern, classificazione, progetto open
source

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1

2 State of the Art 3
2.1 Microservices Architecture . 3

2.1.1 General Characteristics . 5
2.1.2 Differences from Service Oriented Architecture 7

2.2 Design Patterns and Anti-Patterns in Microservices Architecture 8
2.2.1 Design Patterns . 8
2.2.2 Anti-Patterns . 26

2.3 Summary . 32

3 Research Methodology 35
3.1 Research Questions . 35
3.2 Adopted Methodology . 35

3.2.1 Methods Adopted for Research Question 1 35
3.2.2 Methods Adopted for Research Question 2 36
3.2.3 Methods Adopted to Detect Patterns and Anti-Patterns in Open

Source Projects . 37

4 Results of Research Question 1 45
4.1 Classification of Patterns and Anti-Patterns Papers 45
4.2 Analysis of the Classifications . 49
4.3 Systematic Mapping Studies . 51
4.4 A Proposal for a New Classification . 53

vi | Contents

5 Results of Research Question 2 57
5.1 R1: eShopOnContainers . 58

5.1.1 Overview of the Application R1 . 58
5.1.2 Microservices Design Patterns and Anti-Patterns in R1 58

5.2 R2: GCP Online Boutique Microservices 64
5.2.1 Overview of the Application R2 . 64
5.2.2 Microservices Design Patterns and Anti-Patterns in R2 64

5.3 R3: Piggy Metrics . 69
5.3.1 Overview of the Application R3 . 69
5.3.2 Microservices Design Patterns and Anti-Patterns in R3 70

5.4 R4: Event Sourcing & CQRS Example . 75
5.4.1 Overview of the Application R4 . 75
5.4.2 Microservices Design Patterns and Anti-Patterns in R4 76

5.5 R5: Food-to-Go Application . 80
5.5.1 Overview of the Application R5 . 80
5.5.2 Microservices Design Patterns and Anti-Patterns in R5 81

5.6 R6: CoolStore Microservices . 85
5.6.1 Overview of the Application R6 . 85
5.6.2 Microservices Design Patterns and Anti-Patterns in R6 86

5.7 R7: Cinema Microservices . 90
5.7.1 Overview of the Application R7 . 90
5.7.2 Microservices Design Patterns and Anti-Patterns in R7 91

5.8 R8: Dotnetcore Insurance Microservices . 95
5.8.1 Overview of the Application R8 . 95
5.8.2 Microservices Design Patterns and Anti-Patterns in R8 95

5.9 R9: Elgris Microservice To-Do App Example 99
5.9.1 Overview of the Application R9 . 99
5.9.2 Microservices Design Patterns and Anti-Patterns in R9 100

5.10 R10: Run-Asp.NetCore-Microservices . 104
5.10.1 Overview of the Application R10 104
5.10.2 Microservices Design Patterns and Anti-Patterns in R10 105

5.11 Discussion of Findings Related to Research Question 2 110

6 Conclusion 115

Bibliography 117

List of Figures 121

List of Tables 123

List of Abbreviations 126

Acknowledgements 127

1

1| Introduction

In the past decade, there is no doubt that there has been a constant change towards using
online services in every part of our lives. Many people choose to do their various kinds
of shopping through e-commerce sites, whether it is to buy clothing, grocery or different
kinds of appliances. For entertainment purposes, people prefer to stream their favourite
songs or movies through subscription-based services, instead of downloading and listening
or watching them offline, let alone buying or renting hard-copies. Online housing services
offer people a quick way of finding accommodation when needed, in addition to online
taxi services helping them to go to a destination in a comfortable manner. These services
conduct their operations in many countries around the world, serve millions of users each
day and seem to be functional and avaliable all the time. These companies, to name a
few, Amazon, eBay, Zalando, Netflix, Spotify, SoundCloud, Airbnb, Uber and Twitter,
all share a common design choice in terms of how they built their systems, they made use
of microservices architecture.
In an effort to define microservices architecture in one sentence, basically, we might state
that the microservices architecture is about creating a set of software components, each of
which carry out tasks related to one business domain of the application, and is indepen-
dent in the sense that they are treated as separate services, in terms of implementation
and deployment by self-sufficient teams. As expected, this rather complex architecture
contains a number of methods that varies in quality to solve common problems faced
in microservice-based applications. These methods are called design patterns and anti-
patterns of microservices architecture, that are utilized or avoided to make the best of
this architectural choice and see its promised advantages.
In this study, we aim to explore these patterns and anti-patterns, specifically, in terms of
classification in the literature and detection of them on a group of open source microser-
vices projects. We aim to observe the way the patterns and anti-patterns are classified in
the literature, check if there exists a common way of classification and propose our own
taxonomy in case there is no consensus in the literature. Then, we select ten open source
microservice projects and manually inspect source code to detect the design patterns and
anti-patterns of microservices architecture, in order to observe the correlation between the

2 1| Introduction

"theory" in the literature and practical cases to some extent. To the best of our knowl-
edge, there is no study that considers taxonomy of both patterns and anti-patterns of
microservices architecture through literature review and related justification. Regarding
inspection of projects for patterns and anti-patterns, however, there are two studies that
conduct similar work, which are similar in the sense that they utilize manual inspection
on projects to detect design patterns and anti-patterns from a holistic point-of-view, in
other words, they do not look for one or two pattern or anti-patterns but inspect the
project considering all kinds of pattern or anti-patterns. The researchers in the study [1]
inspect a set of thirty open source microservice projects using automated tools that check
the dependency files ("pom.xml" or "docker-compose.yml") of projects to detect utilized
frameworks, and verify the use of the pattern by checking the documentation of the uti-
lized framework. The researchers of the study [2] manually check sixty seven projects to
detect anti-patterns, which they discover as a result of their systematic literature review
for microservices anti-patterns. Our study differs from the two studies in considering not
only design patterns or anti-patterns, but both of these good and bad practices, in addi-
tion to using only manual inspection on projects that use many different technologies.
As for the presentation of this study, Chapter 2 starts by taking a look at the microser-
vices architecture in more detail, by focusing on its principles and differences from other
architectures, followed by a detailed description of each design pattern and anti-pattern.
Next, at the beginning of Chapter 3, the aim of the study is presented by constructing
two research questions, specifically, one regarding the taxonomy and another regarding
the patterns and anti-patterns in open source microservices projects. Then, the method-
ology adopted to find answers to the two research questions is described. As for the
results, in Chapter 4, the outcomes of our first research process related to classification
of patterns and anti-patterns are provided. For the second research question about the
presence of microservices patterns and anti-patterns in open source projects, the results
and a short discussion about the findings from open source projects are presented in
Chapter 5. Lastly, Chapter 6 concludes this study by giving a short summary, in addition
to mentioning possible contribution of this study to microservices literature and a few
statements about future work.

3

2| State of the Art

2.1. Microservices Architecture

Although the microservice architecture style has already been a de-facto standard for
some large tech companies, and is embraced today by numerous firms in the industry,
because of the novelty of the architecture, not all developers and architects in the tech
industry and researchers in the academia are aware of what it means and which paradigms
it advertises. Microservice architecture is, not in the least meaning of the word, vastly
different from the traditional way of building a web application, namely the monolithic
architecture. Hence, it is a valuable effort to define microservice architecture, what it
is about and describe features and trends which emerged from this rather unorthodox
architecture.
Most importantly, microservice architecture is, as the name suggests, a software archi-
tecture. There are numerous and slightly different definitions based on the particular
discipline of software engineering for what a software architecture is. However, a very
simple yet powerful definition is that a software architecture is a representation of signif-
icant design decisions that shape a system, where significant is measured by the cost of
change1. In the case for microservices architecture, the most signification design decision
is splitting the system into small and autonomous services that work together. Focusing
on each element of this design decision will bring about more clarity about the architec-
ture.
First, the microservice architecture divide the system into parts, as other architectural
styles do, based on various points of views of the system. Single Responsibility Principle,
one of the famous SOLID principles of software engineering, promotes the idea that every
module, class or a function in a computer program should have responsibility over a single
part of that program’s functionality, and it should encapsulate that part2. The microser-
vice architecture takes that idea to the extreme and encourages developing independent
microservices that tackle just one business functionality. Unlike a monolithic applica-

1https://www.bredemeyer.com/whatis.htm
2Microsoft Docs: Architectural Principles

https://www.bredemeyer.com/whatis.htm
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/architectural-principles

4 2| State of the Art

tion, the system is not layered as database, back-end and front-end, or more generally,
data, logic and UX layers, but consists of microservices that are created around business
capabilities, as displayed in Figure 2.1.

Figure 2.1: Monolithic vs Microservices Architecture

Second, the microservice architecture advocates for those services to be small. It is not
easy and in some cases inaccurate (e.g, in terms of LOC) to give an estimate of the mag-
nitude of a service, however, a rule of thumb to keep in mind is, microservices should be
small enough and not smaller [3]. Each service should focus on one business functionality
and do it well.
Third, and the last major aspect that defines the microservice architecture is autonomy.
Each service in the microservice architecture is a separate entity, even to the degree that
they are mostly designed, developed and deployed by separate teams. Each team has staff
that can together carry out full range of skills required for development, such as database,
UX and project management.
At this point, in order to summarize the mentioned major aspects of the microservice
architecture and make the architecture more concrete by adding a bit more detail about
the implementation, it is a good opportunity to take a look at the definition of the mi-
croservice architecture given by an influential software engineer in the field. According
to Fowler, the microservice architecture is, "in short, an approach to developing a single
application as a suite of small services, each running in its own process and communicat-
ing with lightweight mechanisms, often an HTTP resource API. These services are built
around business capabilities and independently deployable by fully automated deploy-
ment machinery. There is a bare minimum of centralized management of these services,

2| State of the Art 5

which may be written in different programming languages and use different data storage
technologies."[4]. In the next section, each characteristic of the microservice architecture
is explained in more detail.

2.1.1. General Characteristics

• Each microservice is developed by a small, cross-functional team. The team decides
which programming language(s) and technology stack to choose to implement the
microservice, and has their own CI/CD tools for testing, release and deployment.
Each microservice is considered not just a project, but a product, and the devel-
opment teams are responsible also for the deployment and productions processes of
their microservice, in the Amazon’s notion of "you build it, you run it"3.

• Each microservice is a light-weight component that is independently deployable.
In case of a change in a particular library, systems that have multiple libraries in
a single process like a monolithic architecture has to redeploy entire application.
Instead, in a same scenario, having multiple services facilitates redeploying only the
changed service. Moreover, this kind of ease in deployment enables the system to
be more fault-tolerant and scalable in a more dynamic way, scaling only the desired
services, as illustrated Figure 2.2, which is adapted from a figure in Fowler’s blog4.

Figure 2.2: Scalability in Monolithic vs Microservice Architectures

• Microservices communicate with each other by means of network calls, using well-
defined APIs, and simple protocols like REST over HTTP. While some other ar-
chitectures incorporate smart (and heavy-weight) messaging mechanisms, such as
Enterprise Service Buses (ESB) that can do routing, transformation, choreography
and some business logic, the microservices architecture opt for simple communica-

3https://www.infoq.com/news/2015/12/microservices-amazon/
4https://martinfowler.com/articles/microservices.html

https://www.infoq.com/news/2015/12/microservices-amazon/
https://martinfowler.com/articles/microservices.html

6 2| State of the Art

tion infrastructure that can do basic routing of messages. In short, they have smart
endpoints and dumb pipes.

• Each microservice is a loosely-coupled business unit, that is responsible for a single
part of the capabilities of the system. Each model of a microservice is designed using
the concept of bounded context, which is part of domain driven design technique
[5]. Conceptual model of the real world entities are decentralized, meaning that the
representation (name) and modeling (attributes) of same real world entities might
be distinct in microservices that deal with a particular business domain. Figure 2.3
illustrates an example bounded context design and highlights the representation of
the same entities with different attributes belonging to different business aspect of
the system.

Figure 2.3: Decomposition methods using traditional vs. bounded context models

• Just like the decentralized modeling, the persistence layer of the whole application is
decentralized, in other words, each microservice and associated team is responsible
for managing their own data. The team decides on which kind of database (SQL,
NoSQL, graph, columnar, etc) they make use of, taking into consideration their own
models and needs.

2| State of the Art 7

2.1.2. Differences from Service Oriented Architecture

The profound idea of microservice architecture, which proposes splitting a system into
loosely-coupled, reusable, specialized components is not new. In the late 90’s, Service
Oriented Architecture (SOA) emerged as an enterprise-wide approach to software devel-
opment of components that takes advantage of reusable software components, or services.
Similar to microservice architecture, each service is designed to execute business func-
tions.
Although the two architectures look quite identical at the first glance, they take different
stands on the solutions of common problems in software architecture and therefore there
are substantial differences between the two. Listing the distinctions under three categories
will help explain the difference.

• Scope: SOA in general relates to enterprise-wide service exposure, while the mi-
croservice architecture has an application scope. The services are designed using
common standards across development teams, aiming at re-usability and sharing of
components, resources and data in SOA. On the other hand, microservices architec-
ture embraces more relaxed governance approach, giving development teams more
freedom of choice. Foregoing potential re-usability of code and data, microservices
architecture prefers de-coupling of teams and services.

• Granularity: Having "re-usability across enterprise-wide system" in mind results in
services that are fewer in number and larger in size in SOA. Each service typically
handles more business functionalities compared to each microservice. As for the
persistence, SOA has a single data storage layer which is shared by all services,
while each microservice has its own persistence mechanism, if needed for its specific
business functionality. Although this results in data duplication in microservices
architecture, it enables each microservice to be an independent business unit in
general5. Moreover, with respect to fine-grained microservices, coarse-grained ser-
vices in SOA causes time-consuming deployment and less scalability.

• Communication: SOA makes use of ESB concept, which can handle, in addition
to the communication between services using multiple protocols (RESTful API,
SOAP, AMQP, MSMQ), management and configuration of services and even some
business logic if needed [6]. Having multiple capabilities like these can solve difficult
integration problems in large scale systems, however, can possess the danger of
single point of failure. In addition, the services across the enterprise frequently
make synchronous calls, which can lead to latency issues and impact performance.

5https://www.guru99.com/microservices-vs-soa.html

https://www.guru99.com/microservices-vs-soa.html

8 2| State of the Art

To keep things simple, within an application scope, the microservices architecture
prefers less elaborate and straightforward messaging protocols such as HTTP, REST
and Apache Thrift6. To provide communication and data synchronization across
microservices, asynchronous communication models like event sourcing and pub/sub
model are preferred.

2.2. Design Patterns and Anti-Patterns in Microser-

vices Architecture

Since its introduction by Netflix and discussions at workshops and software architecture
conferences, the microservices architecture has gained quite a lot of popularity. As the
architecture is adopted more and more as time goes, legacy systems have been migrated
and new projects have been developed utilizing the microservices architecture. By shar-
ing the experience after successful projects, similar to the evolution of design patterns in
other paradigms, reusable solutions to commonly occurring problems have been identified
and consequently design patterns in the microservice architecture showed up. On the flip
side, there has also been sub-optimal solutions during this period, resulting from several
factors, some of which might be lack of experience, misunderstanding of the microservice
architecture or just old habits from SOA. In the same manner as design patterns, the
anti-patterns of the microservice architecture has been identified by researchers and ex-
perienced engineers. In the next two sections, the design patterns and anti-patterns that
exist in microservice architectures are explored. In doing so, in addition to the resources
cited in appropriate places, Microsoft Docs website for cloud patterns [7] and microser-
vice patterns book [8] have been consulted. For the anti-patterns, the two studies about
microservice anti-patterns [2][9] have been utilized, details of which are provided as part
of the argumentation related to one of the research questions of this study.

2.2.1. Design Patterns

API Gateway

API gateway acts as a single point of entry for all clients as well as an edge service for
exposing microservices to the outside world as managed APIs. It sounds like a reverse
proxy, but also has additional responsibilities like simple load-balancing, authentication,
authorization, failure handling, auditing, protocol translations, and routing. An API
Gateway should always be a highly-available and performant component, since it is the

6https://thrift.apache.org

https://thrift.apache.org

2| State of the Art 9

entry point to the entire system, as illustrated in Figure 2.4.

Figure 2.4: An example diagram of API gateway pattern

The most common duties of an API gateway include:

• Gateway Aggregation: Aggregate multiple client requests (usually HTTP requests)
targeting multiple internal microservices into a single client request, reducing chat-
tiness and latency between consumers and services.

• Gateway Offloading: Enable individual microservices to offload their shared service
functionality to the API gateway level. Such cross-cutting functionalities include
authentication, authorization, service discovery, fault tolerance mechanisms, QoS,
load balancing, logging, analytics etc.

• Gateway Routing (layer 7 routing, usually HTTP requests): Route requests to the
endpoints of internal microservices using a single endpoint, so that consumers don’t
need to manage many separate endpoints.

Developers can choose from implementing their own API gateway, using an existing API
gateway solution such as Kong7 or Express-Gateway8, or in case of cloud deployment,
choose from products such as Google Cloud Platfrom (GCP) API Gateway9, Amazon
Web Services (AWS) API Gateway10 or Azure Application Gateway11.

7https://konghq.com
8https://www.express-gateway.io
9https://cloud.google.com/api-gateway

10https://aws.amazon.com/api-gateway
11https://docs.microsoft.com/en-us/azure/application-gateway/overview

https://konghq.com
https://www.express-gateway.io
https://cloud.google.com/api-gateway
https://aws.amazon.com/api-gateway
https://docs.microsoft.com/en-us/azure/application-gateway/overview

10 2| State of the Art

Service Mesh with Sidecar

A service mesh is a configurable, low-latency infrastructure layer that is designed to tackle
high volume of network-based inter-process communication among application infrastruc-
ture services through APIs. Service mesh pattern is in general implemented as an array
of lightweight network proxies called sidecar, without needing the application to be aware
of proxies [10]. The sidecar proxies in each service instance handles inter-process com-
munication, monitoring and many other concerns. Some aspects provided by this helper
infrastructure include resiliency (fault tolerance, load balancing), service discovery, rout-
ing, observability, security, access control, communication protocol support and alike.
The service mesh pattern is divided into two parts, namely, the control part and the data
part, commonly referred as the control plane and the data plane. The control plane gen-
erates routing tables and deploy routing configuration to the proxies in the data plane.
The actual forwarding of the network traffic is done by the proxies in the data plane,
and for this reason, the data plane is also said to be the forwarding plane. Figure 2.5
shows the diagram of an application with service mesh pattern, with the distinction of
the control and data planes.

Figure 2.5: An application architecture utilizing service mesh with sidecar proxy

Some of the advantages of making use of a service mesh are:

• Logic Decoupling: Decoupling of network communications from microservice busi-
ness logic code allows developers to focus on the business capabilities.

• Routing: Primitive routing capabilities, but no routing logic related to the business
functionality of the service.

2| State of the Art 11

• Resiliency for inter-service communications: Circuit-breaking, retries and timeouts,
fault injection, fault handling, load balancing and fail-over.

• Service Discovery: Discovery of service endpoints through a dedicated service reg-
istry.

• Observability: Metrics, monitoring, distributed logging, distributed tracing.

• Security: Transport level security (TLS) and key management.

• Access Control: Simple blacklist and whitelist based access control.

• Deployment: Native support for containers, Docker12 and Kubernetes13.

• Support for inter-service communication protocols: HTTP1.x, HTTP2, gRPC14.

Implementations of the service mesh pattern include products such as Istio15, Linkerd16

and Consul17.

Service Registry and Discovery

In order for services to communicate, they expose a remote API at a particular location,
specified by host and port number. However, the number of service instances and locations
change dynamically. Scaling of services are done thanks to virtualization/containerization
technologies and virtual machines and containers are usually assigned dynamic IP ad-
dresses. For a service client to get a service, it needs to know the location of that particu-
lar service and this is done through service registry and discovery pattern. When making
a request, the client (of a service, it can be API gateway or another service) consults di-
rectly or indirectly to a service registry that keeps the up-to-date addresses of all service
instances. The clients of the service registry need to know the location(s) of the service
registry instances, hence service registry instances must be deployed on fixed and well
known IP addresses. Although clients should cache data provided by the service registry,
if the service registry fails that data will eventually become out of date. Consequently,
the service registry must be highly available.

• Service Registry: Service instances register themselves or a third party registers
the service. A service registry might invoke a service instance’s health check API
to verify that it is able to handle requests. Systems that provide service registry

12https://www.docker.com
13https://kubernetes.io
14https://grpc.io
15https://istio.io
16https://linkerd.io
17https://www.consul.io

https://www.docker.com
https://kubernetes.io
https://grpc.io
https://istio.io
https://linkerd.io
https://www.consul.io

12 2| State of the Art

include middlewares such as Netflix Eureka18, Apache Curator19 with centralized
configuration service Apache Zookeeper20; and service meshes such as Consul and
distributed key-value stores such as Etcd21. Some other systems such as Kubernetes
and AWS Elastic Load Balancer (ELB)22 have implicit service registry.

• Client-side Service Discovery: Query (of service registry) logic is built into the
client. In other words, it is the client who has to talk to the service registry to
learn the host address and port number to make the final request to the service
it is interested in. Spring Cloud framework23 provides client-side service discovery,
which is implemented by Netflix Open Source Software components: service registry
Eureka and HTTP client Ribbon24 that queries Eureka registry.

• Server-side Service Discovery: The client makes the request via a router that runs
on a well known location. The router queries the service registry, which might
as well be built into the router, and forwards the request to an available service
instance. Hence, server-side service discovery results in simpler client code, since it
is the router who has to implement the actual service query logic. As an example,
AWS ELB acts as a router that load balances both external and internal traffic and
also acts as a service registry for AWS EC2 instances. Some clustering solutions
such as Kubernetes run a proxy (“service” in Kubernetes terminology) on each host,
which functions as a server-side discovery router. In order to access a service, a
client connects to its local proxy service using the port assigned to that service.
The proxy then forwards the request to a service instance or to controller such as
Ingress-nginx25 running in the cluster.

Backends For Frontends

Instead of using one common backend service for multiple clients, there are separate
deployments of the same service with different configurations or implementations that
can meet different UI requirements of different clients. Each microservice that implements
backends for frontends pattern provides an API, tailored specifically for one kind of client.
Because each backend is specific to one kind of client, it can be optimized for the interface
the client uses. As an example, while a microservice returns the detailed result of a query

18https://github.com/Netflix/eureka
19https://curator.apache.org
20https://zookeeper.apache.org
21https://etcd.io
22https://aws.amazon.com/elasticloadbalancing
23https://spring.io/projects/spring-cloud
24https://github.com/Netflix/ribbon
25https://github.com/kubernetes/ingress-nginx

https://github.com/Netflix/eureka
https://curator.apache.org
https://zookeeper.apache.org
https://etcd.io
https://aws.amazon.com/elasticloadbalancing
https://spring.io/projects/spring-cloud
https://github.com/Netflix/ribbon
https://github.com/kubernetes/ingress-nginx

2| State of the Art 13

for the web application to use, another microservice with the same business capability,
implemented with slightly different logic or configuration can return a concise version of
the result to a mobile client. As a result, each interface team has autonomy to control
their own backend and does not need to rely on a centralized backend development team.

Asynchronous Messaging

The distributed nature of microservices requires messaging mechanisms, ideally in a
loosely-coupled manner. The synchronous messaging results in tight run-time coupling,
that is, both the client and the service need to be available during the whole messaging pe-
riod. To solve these issues and improve scalability, asynchronous messaging mechanisms
are widely used in microservices architecture. Solutions typically include light-weight
event buses and message brokers. Although an extra layer adds complexity, event buses
and message brokers decrease run-time coupling by buffering messages, in other words,
allowing the recipient to process messages when it becomes available. Moreover, topics
and content filtering can be used to create subsets of messages, delivered only to the in-
terested parties. With the help of built-in mechanisms of message brokers, different asyn-
chronous messaging styles such as request/response, notification and publish/subscribe
can be achieved. Figure 2.6 illustrates an example diagram that includes RabbitMQ26 as
a message broker, providing the publish/subscribe messaging manner.

Figure 2.6: RabbitMQ message broker with pub/sub mechanism

Implementations of message brokers include RabbitMQ and Apache Kafka27. The in-
memory database Redis28 can also be used as a message broker. In addition, cloud

26https://www.rabbitmq.com
27https://kafka.apache.org
28https://redis.io

https://www.rabbitmq.com
https://kafka.apache.org
https://redis.io

14 2| State of the Art

providers offers message brokers and event buses with different capabilities, such as AWS
Simple Notification Service (SNS)29, AWS Simple Queuing Service (SQS)30, AWS Event-
bridge31, Azure Service Bus32 and GCP Pub/Sub33.

Database per Service

For the sake of loose-coupled services, each service’s persistent data is private to that
service and accessible only via its API. Even though keeping private tables or schema
per service facilitates private data, having separate database instances per service also
enables the deployment and scaling of services and allows the teams to be more indepen-
dent. By this means, each service can use the type of database that is best suited to
its needs. For example, an archiving service that provides fast text searches could use
ElasticSearch34, while another service that models social interactions using graphs could
use graph database Neo4j35. Although having a separate database server per service is
aligned with loose coupling idea, it increases complexity in terms of implementation of
transactions that span multiple services, since not all No-SQL databases support atomic
commits among distributed database instances, which are in general implemented us-
ing atomic transaction algorithms (two-phase or three-phase commit) in ACID-compliant
relational databases.

Saga

In order to solve the issue of implementing business transactions across multiple services,
each multi-service transaction is implemented as a sequence of local transactions, which is
called a saga. If a local transaction fails because it violates a business rule then the saga
executes a series of compensating transactions that undo the changes that were made by
the preceding local transactions. The two ways of implementing a saga pattern are:

• Choreography-based Saga: A transaction is first targeted to a particular service
(“order” service receives a POST request to "/orders"). The service completes local
transaction with its own database and emits an event to the event bus or a particular
event channel (“order created” event in “order events” or a common channel). The
service that subscribed to that kind of event sees the emitted event and does its

29https://docs.aws.amazon.com/sns/latest/dg/welcome.html
30https://docs.aws.amazon.com/sqs/
31https://aws.amazon.com/eventbridge
32https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
33https://cloud.google.com/pubsub/docs/overview
34https://www.elastic.co
35https://neo4j.com

https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/sqs/
https://aws.amazon.com/eventbridge
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
https://cloud.google.com/pubsub/docs/overview
https://www.elastic.co
https://neo4j.com

2| State of the Art 15

own logic and local transaction to its own database and emits another event for any
service that listens for that kind of event. If all steps are successful, the last service
will let the first service know by emitting an event. Otherwise, if a failure occurs in
a step, the service that could not get its job done (in terms of logic or infrastructure)
fires a failure event for the previous step, so the services that have worked before
this step can sequentially perform rollbacks.

• Orchestration-based Saga: In this approach, unlike the above method, there is an
orchestrator that manages the entire transaction. When a transaction order that
is related to multiple services comes to the service, the service sends a command
to the orchestrator. The orchestrator starts calling services to be called directly or
indirectly and after a successful response, it calls the next one. Upon an answer that
tells about a failure, the orchestrator then starts sending rollback messages to the
previous services. With respect to the choreography approach, this method brings
about scalability and single point of failure issues.

In addition, in some systems where saga or event sourcing patterns are used, transactional
outbox method solves the issue of atomicity between changing the state and sending of
messages, if there are requirements that are not met with eventual consistency and require
atomicity. A business microservice that uses a relational database inserts messages/events
into an outbox table in the database as part of the local business logic transaction, with
an additional boolean attribute that means "unpublished" for newly created messages,
and "published" for messages that are acknowledged by message relay service. A separate
message relay service either polls the outbox table or reads the transaction log of business
services, to get the "unpublished" messages. Then, the message relay service sends those
"unpublished" messages to a message broker that delivers messages to interested parties.
The message relay service then waits for acknowledgement from message broker, and
upon an acknowledgement, changes the status of successfully sent "unpublished" messages
to "published" in the outbox table of the business microservice. In short, by storing
messaging as part of business transaction in the DBMS and using a buffer service between
business microservices and message broker, the atomicity between database transactions
and messages can be achieved.

API Composition

A simple way to implement queries that spans multiple services is API composition pat-
tern. API composer service can take the query, then starts querying individual services
that are related to the main query, join the responses and format the main query result
to the client. However, some queries would result in inefficient, in-memory joins of large

16 2| State of the Art

datasets.

Command Query Responsibility Segregation (CQRS)

Another way to respond to a query that covers numerous services is Command Query
Segregation Pattern. A service is wrapped around a view database that is a read-only
replica that fulfils the query responsibility of the application. The service keeps the
database up-to-date by subscribing to domain events, published by the service that owns
the data. As the name suggests, separate services are responsible for the query (read) and
command (write and any other logic) parts of the application. Although it comes with
potential complexity, code duplication and eventually consistent view nature, it supports
multiple de-normalized views that are scalable and performant in terms of command and
query throughput.

Event Sourcing

A microservice typically needs to update its data and send or publish messages that con-
veys some information about the transaction or related business action. For example, a
service that participates in a saga needs to atomically update the database and sends mes-
sages or events. If the database transaction is executed successfully, resulting messages
must be sent and later, if the entity in the database rolls back to its previous state or
changed again into a new state, related appropriate messages must be send to interested
microservices. In addition, the ordering of messages must be preserved across multiple
service instances that update the same entity.
A good solution to this problem is to use event sourcing pattern. Event sourcing persists
the state of a business entity such as Order or a Customer as a sequence of state-changing
events. Whenever the state of a business entity changes, a new event is fired from the
respective microservice, and stored in a database named as the event store, which can be
an ACID-compliant database, a time-series database or a database server specifically im-
plemented for event sourcing pattern, such as EventStore36. The most recent state of the
application data is constructed by processing the events and storing the data in a materi-
alised view that handles read-only queries. Embracing the eventual consistency paradigm,
the materialised view can be updated according to the constraints of the domain of the
application, by finding the most recent snapshot of the application data and processing
the persisted events that have occurred since that snapshot. Figure 2.7 illustrates the flow
and storage of the events in a possible software version tracking application that makes use
of event sourcing pattern, where event store is benefited especially for temporal queries

36https://www.eventstore.com

https://www.eventstore.com

2| State of the Art 17

that show the state of the software in a particular point in time.

Figure 2.7: A possible use of event sourcing pattern for a software version tracking appli-
cation

Moreover, event sourcing pattern makes it possible to implement temporal queries that
determine the state of an entity at any point in time. Append-only storage mechanism
enables to see the actions taken related to a particular set of data, as well as assisting in
testing and debugging [11].

Service Instance per Virtual Machine

The microservices architecture promotes some ideas also for the deployment stage of the
software lifecycle and these ideas are, as expected, built around loose-coupling paradigm.
The first of these patterns regarding the deployment process is service instance per virtual
machine (VM) pattern. Basically, in this method, each microservice is packaged as a VM
image and deployed as an application running in its own VM, possibly with other VMs
running on an hypervisor-based machine which is managed by Infrastructure-as-a-Service
(IaaS) provider, such as AWS Elastic Compute Cloud (EC2) 37, Google Compute Engine38

and Digital Ocean39. Packaging of a service as a VM image results in ease of scaling of
services, which can also be automatically done by the IaaS provider based on the load.
Moreover, the details of the implementation of the service can be encapsulated in a VM
image, therefore the dependence of the service technology over the physical host can be
reduced. With regard to the drawbacks, it is time-consuming for developers to create VM

37https://aws.amazon.com/ec2/
38https://cloud.google.com/compute
39https://www.digitalocean.com

https://aws.amazon.com/ec2/
https://cloud.google.com/compute
https://www.digitalocean.com

18 2| State of the Art

images and configure infrastructure components such as load balancers and firewalls.

Service Instance per Container

Another microservice pattern regarding the deployment aspect is service instance per con-
tainer pattern. Similar to packaging each service as a VM image, this pattern proposes
packaging each service as a container image, in most cases, as a Docker image. According
to the official docs, Docker is an open platform for developing, shipping, and running
applications, and provides the ability to package and run an application in a loosely iso-
lated environment called a container [12]. Docker containers provide many of the same
advantages as VM images, however, due to the underlying virtualization method, Docker
containers are much more lightweight with respect to VMs [13]. Rather than using a
separate operating system, containers share a operating system, resulting in a signifi-
cantly smaller size of each deployment. Underneath, Docker make use of "linux kernel
namespaces" and "control groups" to isolate resources of a single virtual or physical host
(resources of a single operating system in both cases) and allows Docker containers and
services inside to consume resources of the host. Being a more "micro" approach, con-
tainers make it easier for developers to package and share an application through Docker
Hub40 and deploy a service as a container image, which is built with specifications taken
from a "Dockerfile", to a private cloud or a Container-as-a-Service (CaaS) provider, such
as Google Cloud Run41 or AWS Fargate42. Moreover, the overall resiliency of the appli-
cation can be improved since it takes less time and effort to run a container with respect
to a service with its own operating system. For the sake of a clear understanding of the
two virtualization methods mentioned and how they differ from traditional deployment
methods, the evolution of concepts are illustrated in Figure 2.8. As a side note, it is inter-
esting to see the same evolution towards fine-granularity, seen in application architecture
from monoliths and SOA to microservices, also in software deployment approaches.

40https://hub.docker.com
41https://cloud.google.com/run
42https://aws.amazon.com/fargate

https://hub.docker.com
https://cloud.google.com/run
https://aws.amazon.com/fargate

2| State of the Art 19

Figure 2.8: Comparison and evolution of traditional, hypervisor-based and container-
based deployment, by Kubernetes Documentation under CC-BY-4.0 license

Microservice applications consist of tens or hundreds of microservices, and considering
multiple instances for some services, the total number of service instances can be quite
high. In order for the advantages promised by the microservices architecture, supposing
the adoption of container-based deployment, the cluster of containers must be properly
instantiated, managed and observed. To simplify the management of a cluster of con-
tainers, there are container orchestration platforms, such as Kubernetes and AWS Elastic
Container Service (ECS)43, in addition to a few deprecated tools, such as Docker Swarm
and Mesosphere. Kubernetes was initially developed by Google, open-sourced in 2014
and since then has been the most widely used container orchestration platform, according
to a 2019 survey[14] by Cloud Native Computing Foundation44. At this point, to see
how containerization technology and orchestration platforms comes together to realize a
microservices application, it is crucial to mention some capabilities of Kubernetes and
challenges it tackles. According to official documentation[15], some of the features of
Kubernetes are:

• Service Discovery and Load Balancing: Kubernetes exposes container via a DNS
name or IP address to the cluster, can deploy an "ingress-nginx" component that can
act as an API gateway, and can distribute network traffic between service instances
if the load is high.

• Storage orchestration: Allows mounting (attaching, binding) of different storage
options such as local storage and public cloud provider, to the containers.

• Automated rollouts and rollbacks: Enables developers to describe the desired state

43https://aws.amazon.com/ecs
44https://www.cncf.io

https://aws.amazon.com/ecs
https://www.cncf.io

20 2| State of the Art

of the containers at hand and via a feed-back mechanism, tries to realize the desired
state into the actual state of the cluster. In other words, "rolls out" changes in a
progressive way and if something bad happens, "rolls back" changes to the previous
stable state. It can create or remove containers and some kinds of Kubernetes
objects such "Pods", "Deployments" and "Services" to carry out the task.

• Automatic bin packing: When provided with the information of how much CPU
and memory a container needs, Kubernetes can figure out how to place containers
to a set of nodes so that the resources are best utilized.

• Self-healing: Restarts containers that failed, and based on user-defined health-check,
replaces or kills containers that do not respond. Moreover, it routes traffic to healthy
instances until the failed container is ready to handle requests.

• Secret and Configuration Management: Stores and manages sensitive information
such as passwords, OAuth access token and SSH keys. Without having to re-build
container images, stores and updates application configuration such as environment
variables.

In addition to stand-alone Kubernetes platform for on-premise solution, the cloud providers
offer Kubernetes-as-a-Service options, such as Google Kubernetes Engine (GKE)45, AWS
Elastic Kubernetes Service (EKS)46 and Azure Kubernetes Service (AKS)47, that enables
to run Kubernetes clusters on the cloud, by means of container images and Kubernetes
configuration files.
As a consequence of the capabilities explained above, and as also stated by researchers
from IBM in a research paper [16], it is appropriate to say that Docker has been a dis-
ruptive technology which changed the way applications are developed and distributed.
Following the same concepts and ideas as microservices architectural paradigm itself,
Docker is quite a good fit for building and deploying microservices.

Serverless

To deploy a microservice application, the services as source codes can be packaged (e.g.,
as a ZIP file) and uploaded to the deployment infrastructure, which is an utility operated
by a public cloud provider. The infrastructure hides any concept of servers, resources,
virtual machines and containers, it just takes the code and runs it. Under the hood, it
uses virtual machines and containers to isolate the services. The client (of this service) is

45https://cloud.google.com/kubernetes-engine
46https://aws.amazon.com/eks/
47https://azure.microsoft.com/en-us/services/kubernetes-service/

https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks/
https://azure.microsoft.com/en-us/services/kubernetes-service/

2| State of the Art 21

charged for each request based on the resources consumed. This solution is very elastic
in terms of scaling, however, it comes with significant constraints in the environment. As
an example, AWS Lambda48 limits the maximum time it can take for a microservice to
serve a request to be fifteen minutes, making it unsuitable for microservices that need
to execute for longer amount of time, such as data-processing batch jobs [17]. Another
important constraint in serverless pattern is, the microservices need to be "stateless",
in other words, the microservice should not assume the existence of a particular data in
its local file storage or memory to serve requests, instead, the state should be stored in
persistence services such as AWS Simple Storage Service (S3)49. Constraints such as these
allow small microservices to be instantiated quickly, making it suitable for developers to
deploy not the entire microservice application but some particular microservices that are
not called frequently enough to be deployed to its own host, reducing the insfrastructure
costs. Examples include AWS Lambda, Google Cloud Functions50, Azure Functions51.

Health Check API

Microservices, like any other software component, can crash or fail to serve the requests
even if they still run. During the times of unavailability, it is critical to notice those
services that cannot carry out requests so that the requesting services do not wait un-
necessarily, and instead, if there is another healthy instance of the failing service, are
routed to those available instances. Since the scope of a microservice is in general small,
the availability status in terms of sufficient disk memory, connection to a database or a
cache service or in general any other service it is dependant upon, can be coded or created
from features of the framework being used. As an example, the microservice can have an
health check endpoint such as "/api/v1/health", and can respond to GET request with
the status of the service described in a simple JSON file, possibly with one of the HTTP
status codes such as 200, 204, 500 or 503 which stand for "OK", "No Content", "Internal
Server Error" and "Service Unavailable", respectively.
In addition to health check mechanisms as code, the container orchestration platform
Kubernetes offers health check methods that can be configured descriptively in Kuber-
netes configuration files by developers. Kubernetes offers two kinds of health checking or
"probing" options, named as liveness and readiness, and can carry out the health checks
in periodic time intervals specified. The first type, liveness, refers to whether a set of one
or more containers, also knows as a "pod", is responsive or not. In cases of a crash or

48https://aws.amazon.com/lambda
49https://aws.amazon.com/s3
50https://cloud.google.com/functions
51https://docs.microsoft.com/en-us/azure/azure-functions

https://aws.amazon.com/lambda
https://aws.amazon.com/s3/
https://cloud.google.com/functions
https://docs.microsoft.com/en-us/azure/azure-functions

22 2| State of the Art

a deadlock situation, restarting the pod can help make the service available again. The
second type, readiness, is used to decide if the service is ready to serve the requests, i.e.,
serves request only after loading data or configuration files or checking with services it
depends on. The health check API pattern, as seen from examples, is in fact helpful to
detect and manage failures in microservices and hence in the whole system, improving
the resiliency of the application.

Log Aggregator

As mentioned in the previous health check API pattern, from time to time, microservices
may fail to serve the request and in some cases, it takes more than simply restarting the
service to solve the issue. Developers might need to take a look in the log files to find the
exact cause of the problem. In a microservice application, however, inspecting log files of
a microservice by connecting to its host can be frustrating. One reason is, there can be
multiple instances of a microservice on different hosts, and it would be time-consuming
to find the right host, especially if the services are scaled to new hosts automatically.
Another reason might be that, merely finding log files in most cases does not suffice to
remove the bug, but trouble-shooting the microservices and comparing the logs from a
chain of microservices is needed. In order to ease the trouble-shooting process, log aggre-
gator pattern can be utilized.
Essentially, what log aggregator pattern proposes is, creating a central service and simply
aggregating all log files from other microservices instances. Although this is simple idea,
with some additions, the trouble-shooting process and developer experience can be sig-
nificantly improved. Through a configuration or log aggregator service, different logging
types with various levels of detail can be specified during run-time of microservices. After
creating a structured logging for all microservices with appropriate fields, to some extent,
aggregated log files can be searchable. Furthermore, advanced analyzing tools can be used
to have more insights about the whole system. As an example, ElasticSearch, Logstash
and Kibana tools, also known as the "ELK" stack52, are widely used for this purpose.
From microservices themselves or from a message broker, the logs are sent to data inges-
tion tool Logstash, and afterwards, ElasticSearch is used to analyze text or JSON data and
Kibana is used to visualize the results to make the data more presentable for developers
and data analysts. Another example from a public cloud provider is AWS CloudWatch53.
In addition to above-mentioned capabilities of ELK stack, CloudWatch can be configured
to send alerting events or do some operational changes such as auto-scaling, if a particular
word or a message occurs among the logs.

52https://www.elastic.co/elastic-stack
53https://aws.amazon.com/cloudwatch

https://www.elastic.co/elastic-stack
https://aws.amazon.com/cloudwatch

2| State of the Art 23

Distributed Tracing

In a microservice-based application, in contrary to a monolithic application, a request
does not get handled by a single software component but rather by multiple microservices
needed for that particular request. From a system-wide point of view, a request, whether
it is from an external UI agent or an internal microservice for a background job, results
in an execution of a chain of microservices. Naturally, this type of multi-call mecha-
nism of microservices brings about complexity in terms of application development and
performance monitoring. For example, it would be helpful for developers to see which
microservices are being called and which bounded domain contexts are being touched by
a specific request. Another exemplary scenario is that, some microservices might take
more time to execute their tasks before calling the next microservice in the chain, so it
would be beneficial to acquire how long it takes for microservices to complete their tasks
so that the bottleneck of the system can be pinpointed and improved. For these kind of
tasks, distributed tracing pattern can be quite advantageous.
In essence, distributed tracing pattern suggests assigning IDs to each external requests
and passing it along with each call down the chain or path of execution, so that the
path can be traced. Each microservice is attached or instrumented with an agent that
creates new spans for incoming requests and attaches context information required for
identification to outgoing request. Similar to log aggregator pattern, a central collector
service receives trace data from agents, validates and stores data to be queried. Finally, a
query process queries the tracing database and shows the result of the query, possibly as a
visualization using nodes, arrows, nested spans and related data. Figure 2.9 illustrates a
detailed view of inter-service calls resulted from a GET request to an endpoint in frontend
service, created by Jaeger54, which is an open-source distributed tracing system.

54https://www.jaegertracing.io

https://www.jaegertracing.io

24 2| State of the Art

Figure 2.9: Visualization of inter-service calls and timing data in Jaeger, by Jaeger Doc-
umentation under CC-BY-4.0 license

As mentioned above, the distributed tracing pattern, similar to a service mesh, can be
divided into two parts, an intrumentation or tracing part and the collection part. Un-
surprisingly, in order for a system to have distributed tracing capability, these two parts
must be compatible, in other words, they must adhere to the same API specification. In
the open-source community, although there is no standardization yet, collective efforts
such as OpenTracing55 tries to create a standardization of APIs, naming of concepts and
shows tools such as Jaeger that complies with the OpenTracing standard. Another major
distributed tracing system is Zipkin56, which supports distributed tracing integration with
popular cloud frameworks such as Spring Cloud.

Circuit Breaker

From time to time, microservice instances may become unresponsive to other microser-
vices, due to a high load that makes the service instance run out of resources, or a bug in
the source code that makes the instance crash during run-time. In a typical microservice
application, the failure of microservice instances can be remedied by provisioning new
ones, taking advantage of agile deployment capability thanks to fine-grained nature of
the microservice architecture. Nonetheless, in some cases, provisioning new instances of

55https://opentracing.io
56https://zipkin.io

https://opentracing.io
https://zipkin.io

2| State of the Art 25

the failing microservice after the failure might not be good enough in terms of quality
of service of the entire application. As an example, if a call from the client side needs a
service from a particular microservice and the request is routed to the failing microservice
instance, the client would need to wait indefinitely, resulting in poor user experience. In
another and possibly more serious situation, if there are microservices that depend on the
failing microservice instance, calls on the failing microservice might result in poor utiliza-
tion of precious resources such as threads in other microservices, therefore causing poor
performance and possible unresponsiveness in those client microservice instances as well,
effectively cascading the original failure to other connected components in the system.
The circuit breaker pattern, in effect, intends to block a failure in a microservice instance
from spreading to other instances in the rest of the system. The mechanism of doing so is
basically wrapping calls to a service and inspecting the result of call in terms of success
or failure. If there are enough failures, the circuit breaker component cuts the connection
logically, or "trips" as the electrical circuit breaker does. After that, all attempts to invoke
the failing instance immediately returns an error for a specified period of time, so that
the clients of the service do not wait or consume resources in a futile waiting mode. The
circuit breaker pattern can be implemented in either the client or server side, or it can
have its own microservice instance as a proxy between them [18]. Figure 2.10 shows the
three states found in the circuit breaker pattern and the flow between them.

Figure 2.10: State diagram of circuit breaker pattern

• Closed State: The closed state is the normal state of operation in which the requests
are conveyed to the invoked service. The number of cases, in which there is a
erroneous return value from the called service or no return at all, is counted, and

26 2| State of the Art

when the threshold is reached, the circuit breaker trips to the open state.

• Open State: In the open state, the requests are not conveyed and instead an imme-
diate failure message is given back to the caller service. By means of periodically
polling the failing service and checking if there is a successful return, or just waiting
for a specified amount of time, the half-open state is reached.

• Half-Open State: The half-open state acts as an intermediary step before making
the circuit closed and granting all requests admission to the invoked service. In this
state, only a limited number of requests are permitted to the target service, while
others are returned with an immediate error message. In case any of the limited
calls made to the service fails, the circuit goes back to the open state. Lastly, if the
limited calls are handled and returned successfully by the previously failing instance,
the circuit becomes closed again, returning to the normal operation with counters
being reset.

Example libraries that implement the circuit breaker pattern include Netflix Hystrix57

and Resiliency4j58 for Java, Opossum59 for Node.js and Gobreaker60 for Go languages.

2.2.2. Anti-Patterns

Wrong Cut

As mentioned previously, microservices are designed using bounded context method, that
is, each microservice is designed to carry out tasks related to one small business capability.
One misconception for the separation of microservices is the construction of microservices
in a layered fashion, as opposed to assigning one business capability per microservice.
Designing microservices so that each microservice takes care of a major task from a tech-
nical perspective of the whole application is in fact a bad habit from SOA. To explain
shortly and to not repeat the differences between SOA and microservices architecture, it
is appropriate to say that, while designing microservices in a layered style like UI, logic
and data increases re-usability of both code and data, it conflicts with the requirements
needed for the microservices architecture to deliver its benefits. The wrong cut anti-
pattern causes deployments to be dependant on other services, breaks team independence
and brings about high-coupling, since each business task would then require more mi-
croservices to be available. To avoid this pattern, microservices should be designed from

57https://github.com/Netflix/Hystrix
58https://resilience4j.readme.io/docs
59https://github.com/nodeshift/opossum
60https://github.com/sony/gobreaker

https://github.com/Netflix/Hystrix
https://resilience4j.readme.io/docs
https://github.com/nodeshift/opossum
https://github.com/sony/gobreaker

2| State of the Art 27

a business perspective and the ownership of logic and data to a development team should
be preserved.

Nano Microservice

Another anti-pattern due to bad design choices in terms of separation of microservices
is the nano microservice anti-pattern. Unlike the wrong cut anti-pattern, the nano mi-
croservice anti-pattern does not stem from a misconception of the design paradigm but
the excess use of separation of business boundaries. As the name suggests, there might
be cases that the microservices are designed so small that they cannot carry out business
capabilities in a more or less indepedent way. Designing microservices unnecessarily small
results in a larger number of microservices in the system, and increases communication
overhead. This anti-pattern can also manifests itself as a cyclic dependency among a set of
microservices, hinting at the fact that they are designed to be dependant on each other’s
logic or data to serve an outside request. To remedy this anti-pattern, the nano microser-
vices can be re-designed around business capabilites, aimed at one business capability per
microservice. In case of cyclic dependencies and frequent calls related to one business
request, the microservices that take part in the related cluster or cycle can merged into a
single microservice, while taking caution so that the new microservice does not become a
megaservice.

Mega Microservice

At the opposite end, there is the mega microservice anti-pattern, which means, designing
one or more microservices in the system so that they can accomplish multiple business
capabilities. Having mega microservices in the application puts more work on the shoul-
ders of the development team, and adding developers to the team leads to a situation
that resembles a monolithic architecture. It also results in additional difficulty in the
deployment process, since in this case the part of system that changes in each deployment
is larger, on contrary to one small microservice. Again, it is important to design mi-
croservices in a way that each microservice performs one business capability. Refactoring
a mega microservice into a couple of microservices can help ease the deployment stage,
and increase team independence.

ESB Usage

In Section 2.1.2, the differences between the microservice and service-oriented architec-
tures have been explained and particular roles each architectural paradigm assigns to the

28 2| State of the Art

message broker component have been discussed. Related to this difference, there is in
fact an anti-pattern called ESB usage in the microservices world, that is based on the
usage of ESB-like smart communication components in a microservice application. The
use of communication components that additionally takes care of service registry and
discovery, transformation and some business logic contradicts with the "smart endpoints,
dumb pipes" principle of the microservice architecture. Rather than relying on the trans-
formation of messages by an ESB, microservices should understand and handle different
outlines of messages, register and discover services through a separate mechanism them-
selves. Removing additional tasks such as these from the messaging component and using
a lightweight message broker makes it easier to maintain the software and decreases the
probability of a single point of failure case for the entire system.

Hardcoded Endpoints

For a microservice to be able to make a request to another microservice, the requesting
microservice need to know the location of the provider microservice. The location of a
microservice on the network is specificed via an IP address of its host and also a port
number that is allocated for the process by the host in order to route network packets
to the related process. For that reason, to be able to communicate on the network, mi-
croservices need to know IP addresses and the port numbers of other microservices that
they need to make a request to. In short, there are two main methods to handle this
task. The first solution is to delegate this task of knowing which microservice is where
on the network to a separate microservice or an underlying infrastructure designed for
microservice architectures, namely, using the service registry and discovery design pat-
tern. The second way, however, is the anti-pattern that is about to be explained, the
hardcoded endpoints anti-pattern. The solution of the second way, and the poor one,
is explicitly stating the addresses of microservices through different mechanisms, such as
writing in the source code or storing them in a configuration file or environment variable.
Although this method can be used during the development process, it makes it harder to
scale the services in the production stage, since it would be necessary to update all other
microservice instances to know about the location of a new microservice deployment. In
addition, using hardcoded endpoints undermines the benefits of an internal load balancer,
if one is used to distribute some share of the traffic of requests to a recently instantiated
microservice. Taking into consideration the promises proposed by the microservice ar-
chitecture, it is quite beneficial and in some cases necessary to employ design patterns
such as service registry and discovery that shapes the system in a way that allows those
promises to be delivered.

2| State of the Art 29

No API Gateway

Similar to the two previous anti-patterns, the no API gateway anti-pattern is in fact the
absence of a microservice design pattern, namely API gateway pattern. Without an API
gateway, clients of the microservice application need to communicate directly with the
microservice that are needed for a particular task. The clients have to know the location
of multiple microservices and might have to send multiple requests for the resources they
need. The auxiliary tasks such as authentication, without an API gateway, are needed to
be done for each microservice. Last and probably the biggest difficulty of not having an
API gateway is that the clients need to know how the application is structured, in other
words, the names, locations and capabilities of microservices need to be conveyed to the
client side. For all these reasons, having an API gateway is of utmost importance for a
microservice application to be able to communicate with the client in an effortless way.

Shared Persistence

In Section 2.1.1, while listing the general characteristics of the microservices architecture,
it is stated that each microservice in general has its own persistence layer, meaning that
each microservice deals with storing and managing its own data in its own database
instance. The shared persistence anti-pattern, as the name suggests, stem from using
the same database record (entity, row or document) or the same database instance to
serve requests from multiple microservices. It is important to note that, unlike many
of the previous anti-patterns, the shared persistence anti-pattern contains a spectrum of
choices that can be made to decide the extent how much flexibility is desired at the cost
of duplication of data and less efficient use of infrastructure resources. Besides having
one database instance per service, microservices can share a single database instance,
a database schema in a database and even tables in a database schema. While the
use of a single database maximizes re-usability, private database schemes and private
database tables allow for various degrees of data privacy and ownership, at the expense
of possible data duplication and redundancy in the database instance. In some cases, the
decision to share data among multiple microservices may seem reasonable to developers
and architects, however, it is crucial to remember that shared persistence anti-pattern
diminishes team independence in the sense that changes to schema and table design need
to be coordinated, hence increasing run-time coupling, since all microservices need a
particular database instance to be up and running to serve a single business capability.

30 2| State of the Art

Shared Libraries

Similar to the shared persistence anti-pattern, the shared libraries is a common anti-
pattern in the sense that developers opt for sharing logic instead of data for this partic-
ular anti-pattern. Extracting common code to a library is one of the best practices in
software development discipline, since it reduces development efforts by following "Don’t
repeat yourself" (DRY) principle. In addition, if there are multiple microservices on the
same host, they can share a run-time library so that the resources of the host are best
utilized. However, sharing both development and run-time libraries can be detrimental to
the independent development principle of the microservices architecture. Because of shar-
ing libraries, a change in the shared library requires careful coordination among teams,
slowing down development speed in the long term. Furthermore, if the change is not
coordinated well enough, an update on a shared library may cause significant changes in
other microservices, potentially breaking the entire application. As a remedy, the run-
time libraries can be refactored into a separate microservice, so that if there is a need to
change the library, the change can be incrementally introduced, in other words, there can
be separate instances that support both versions, or the library can a have versioned API.
For the shared development libraries, developers should prefer code duplication instead
of risking wrong abstraction so that the development efforts remain predictable in the
future.

No CI/CD Tools

One of the main pillars of the microservices architecture is creating teams that develop
microservices that handle one business capability. The fine-grained decomposition allows
teams to develop and maintain the microservice they own in an agile yet solid way. To
support the integration of development and operation tasks, teams are encouraged to
use CI/CD tools, which allows for faster delivery without compromising software quality.
While it may seem easier to develop software without CI/CD tools at the first glance,
the development and testing stage takes more time since a human agent needs to test
the changed software part and possibly the whole software component, causing the time
it takes to give feedback to developers to be longer. On the other hand, having version
control repositories for microservices, unit and integration tests in appropriate places,
automated delivery mechanisms on successful commits and merges makes development
faster and more under control. Although the absence of CI/CD tools can also be dis-
advantageous for other software architectures, it is especially beneficial to use them in
complex and modern architectures such as microservices so that the agility for microser-
vice development can be achieved.

2| State of the Art 31

Multiple Service Instances per Host

For a microservices application, one of the deployment ways is deploying multiple mi-
croservice instances on a single virtual or physical host. While this deployment option
makes best use of resources of the underlying infrastructure, it severely harms the ease
of scaling of services, since simply scaling a host results in all services that runs on the
host to be scaled. Moreover, different microservices may try to use different software
components that runs on different OSs, or they can require different versions of the same
dependency on the host machine, resulting in conflicting technologies and the need for
a substantial amount of cooperation between teams during the development period. In
short, deploying multiple microservices on a single host is an anti-pattern and should be
avoided in a microservice architecture.

No API Versioning

When a new version of a microservice is deployed, the developers may also decide to
introduce a modified version of the former API, if it has been seen as a better fit for the
newer version of the microservice. In order not to break the communication between the
altered microservice and other microservices, from time to time it is necessary for the
altered microservice to support both the new and the old versions of its API, until other
teams make changes required in their code that adopts the new API. In cases such as these,
API versioning can help identify the version of the API to be used between the client and
the modified microservice. The version of the API can be inserted in the URL path to
be used by the client, or inserted as one of the custom headers in the HTTP request. In
addition, the degree of the change made to the API can be clarified to some extent, by
using semantic versioning method. The teams can coordinate and agree on a particular
way of interpreting version numbers, or they also can make use of standization efforts such
as SemVer61. In summary, utilizing API versioning is simple yet rewarding practice for
microservices applications and not doing so may lead to inefficient communication efforts
between teams.

No Health Check

Microservice applications may contain dozens of microservice instances, and for this rea-
son, a failure or a crash in a microservice instance does not necessarily lead to an entire
system-wide breakdown, making the failure hard to notice. Not implementing a health
check API endpoint in microservices or utilizing the related health check feature of the

61https://semver.org

https://semver.org

32 2| State of the Art

underlying container orchestration platform such as the one from Kubernetes is not just
a trade-off but an anti-pattern in microservice architectures. Specifying periodic health
check in the orchestration platform or adding a couple of simple health check logic into
request handling code of microservices is a valuable investment that can help monitor
the whole application, making it easier to find and fix the service instance down or route
requests to up-and-running instances until the problem is solved.

Local Logging

Another bad practice that makes microservice applications less transparent to the devel-
opers is local logging anti-pattern. Although implementing a distributed logging service
is not trivial, say, compared to adding a health check endpoint, because of the signif-
icant disadvantages it causes in applications with large number of microservices, solely
storing logs locally per microservice basis constitutes an anti-pattern. Without a log
aggregation mechanism, analyzing the state of the application requires more time and
unimaginable effort in cases where the logs are larger in size and number. In consequence,
having a distributed logging structure in staging and production environments reduces
trouble-shooting efforts and helps with monitoring processes.

2.3. Summary

In summary, the microservices architecture promotes the division of the application do-
main into bounded contexts and small business capabilities, carried out by one microser-
vice per bounded context in general. Each microservice is treated as a small software
product that is designed, implemented and maintained by a small cross-functional team.
Unlike SOA, the communication agent between microservices should perform plain and
simple message distribution, without additional capabilities such as transformation of
messaging format depending on the sender or receiver microservice or integration of ser-
vices into the application. For these infrastructure-related or auxiliary tasks, instead of
having a central service that takes care of these duties, microservices application should
have separate helper service instances, either through deploying these services themselves
or using the ones offered by cloud platforms. As an example, rather than collecting re-
mote procedure call data between microservices thanks to an intelligent message broker,
microservices should have a separate distributed trace collector service (such as Zipkin or
Google Cloud Trace) in the system, and integrate themselves with the collector service
by having a client SDK (such as Jaeger Client or Google Stackdriver Agent) in the mi-
croservice source code.

2| State of the Art 33

To solve the common problems faced in microservices architecture, there are numerous
approaches that vary in quality. Choosing the right ones and implementing the design
patterns related to the task at hand can help improve the quality of the architecture
and hence quality of the service to end-users. On the other hand, having anti-patterns
in the application harms the independence of services and teams, diminishes the ease of
scaling of individual services and results in poor developer experience and unsatisfactory
end-users.
As one can notice, there are quite a number of design patterns and anti-patterns about
microservices architecture. Utilizing the design patterns and avoiding the anti-patterns, in
short, keeping in mind both kinds of practices might be intimidating from a practitioner’s
point of view who is new to microservices. For this reason, we develop two research ques-
tions about these practices. In the first one, we take a look into the literature to see if
there exists a common classification regarding patterns and anti-patterns, that may help
microservices practitioners and enthusiasts learn, embrace or avoid the practices, in the
sense that the classification provides some structure of these practices, gathers similar
ones into groups from some kind of perspective, making it easier for people to connect
dots of microservice principles. In case there is no consensus regarding patterns and anti-
patterns, we aim to develop and propose a classification that we think may help people in
the microservices area. In the second research question, we change our perspective from
literature to open source microservice applications and try to check and verify the use
of the design patterns and the occurrence of the anti-patterns. By doing so, we intend
to see the level of correspondence between the "theory" and "practice" regarding these
practices, in addition to providing example cases of design patterns and anti-patterns.

35

3| Research Methodology

In this chapter, the work conducted is described. First, the research questions constructed
for the study are introduced and in the next section, the methodology used to answer those
research questions are explained.

3.1. Research Questions

For the scope of this study, the following two research questions have been established.

• RQ1: Is there a consistent categorization or classification of design patterns and
anti-patterns of microservices architecture in the academia? If not, what could be
an alternative way to structure those design patterns and anti-patterns?

• RQ2: Which of these design patterns and anti-patterns exist in popular open source
microservices applications?

Through these two research questions, the goal of this study is to see the level of so-
phistication and finesse in which the microservice design patterns and anti-patterns are
categorized in the academia, propose a classification in case there is no consensus and to
validate the occurrence of microservice design patterns and anti-patterns mentioned in
the academia on a limited set of open source microservice projects.

3.2. Adopted Methodology

3.2.1. Methods Adopted for Research Question 1

To answer first research question, the following steps have been adopted.

• First of all, in order to find out whether there exists a consistent classification of mi-
croservice design patterns and anti-patterns, research papers about the topic have
been investigated. Digital libraries such as IEEE Explore, ACM Digital Library,
Springer, Scopus, and the literature research tool, Google Scholar, have been con-
sulted. The keywords used in the search queries made to the libraries included

36 3| Research Methodology

"microservice pattern", "microservice pattern classification", "microservice anti-
pattern" and "microservice anti-pattern classification".

• After initial review of the studies found, few more studies have been added through
snowballing technique, and from this extended set, the studies that do not contain
a classification or grouping of patterns and anti-patterns have been eliminated. The
studies found in this step have been labeled as primary studies.

• To be able to propose a classification of patterns and anti-patterns on a sound ba-
sis, various perspectives through which microservice architectures can be examined
needed to be identified. For this reason, the systematic mapping studies found in
the literature review process have been consulted. Because these studies do not
bring a classification, they have been labeled as secondary studies.

• The contents of primary and secondary studies that are related to RQ1 have been
summarized and under the light of findings a classification proposal is developed in
Chapter 4.

3.2.2. Methods Adopted for Research Question 2

Regarding the research method for the second research question, the work provided in the
steps below have been conducted.

• As a first step, open source projects implemented with a microservice architecture
are searched in the repository hosting service GitHub. The keyword pattern "mi-
croservice OR micro-service" have been utilized.

• The search result are sorted using "most stars" sorting option. The rationale be-
hind this decision is to see both the "text-book" microservice application examples
provided by software companies and other projects that are potentially being used
for microservice architecture reference. Although this decision does not necessarily
result in a set of very high quality microservice applications with various design
patterns implemented to solve microservice challenges, it is helpful in identifying
the projects that has some visibility among the open source community and the
patterns and anti-patterns that exist in those projects.

• The number of projects to be examined is selected as ten and accordingly ten mi-
croservice applications implemented either as a case study from software companies
or example applications from individuals or group of developers have been selected.
The repositories that are software development tools implemented to aid in mi-
croservice application development, such as frameworks, libraries, tool-kits and mi-

3| Research Methodology 37

croservice application templates are excluded. Additionally, the repositories that
include microservice term but implemented as examples of other architectures, or
application repositories that do no have the source code but only the readily-built
Docker images are excluded, since neither kinds of applications are suitable for the
investigation to be conducted.

• Because of the technological heterogeneity that exist in both individual microservices
in a microservice project and in the set of microservice projects to be examined, two
design patterns, namely "saga" and "shared libraries" which require a competent
understanding of the programming language being used and a thorough comprehen-
sion of the business logic are excluded from the list of patterns and anti-patterns to
be identified.

• For the detection of other design patterns and anti-patterns, manual inspection of
the source code of the application has been carried out, and if available, explana-
tion of the application in terms of technologies involved in the repository has been
consulted. The reason automated code analysis has not been utilized is that, the
projects are implemented using various languages, libraries and frameworks, so there
are a number of ways these patterns and anti-patterns can exist, such as through
annotations in source code or including a ".yaml" or similar file that is related to the
pattern. By inspecting a dependency management file (e.g., "pom.xml") to check if
the library that implements a particular feature is utilized would not simply work
for all kinds of pattern and anti-patterns. Furthermore, the way a pattern is im-
plemented in a particular language or framework has not been known prior to the
actual inspection of the project for all kinds of patterns, and through consulting to
the documentation of the library or framework, the particular use of the library has
been recognized in the examined application. The methods of detecting patterns
and anti-patterns are explained in more detail in Section 3.2.3.

3.2.3. Methods Adopted to Detect Patterns and Anti-Patterns

in Open Source Projects

Below, the methods used to detect patterns and anti-patterns have been described.

API Gateway We checked the presence of a separate non-business microservice that
makes calls to business microservices depending on the incoming requests, in cases where
the connection to other services can be detected in source code of API gateway. For appli-
cations that use a third-party API gateway component, we simply looked for a ".yaml",

38 3| Research Methodology

".json", ".settings" or any similar file that involves routing logic rules, which mostly de-
pend on the URL of the requested resource.

Service Mesh with Sidecar We looked for dependencies that suggests the use of a
common sidecar implementation, such as Linkerd, Envoy and Istio. We searched for those
sidecar names in the source code, and examined repository to check whether there are
deployment instructions to "turn on" those sidecars on a specific deployment platform.

Service Registry and Discovery The service registry and discovery pattern had two
main ways to be utilized in the application, either through the use of a common service
registry component (e.g., Eureka) or by delegating this mechanism to the infrastructure
such as Kubernetes. In cases where Eureka is used, we examined source code of microser-
vices to check if there are necessary code or annotation related to the Eureka service
discovery. For cases that uses the service discovery of Kubernetes, we checked the service
definitions inside Kubernetes ".yaml" files, that are constructed either on service basis or
a single file that includes all service definitions. For applications that use other infrastruc-
tures such as Docker Compose, Dapr, and Docker Swarm, we checked if the infrastructure
provides service discovery in scenarios where the application is to be deployed on a multi
host platform, by consulting official documentations and software forums. As a result of
the research on this issue, we concluded Dapr and Docker Swarm provides service discov-
ery if the services are deployed on multiple hosts, while Docker Compose networking is
only useful if the services are deployed on the same host.

Backends for Frontends We looked for business services that have similar names and
are related to the same business domain in the system, that might be implemented or
configured in a slightly different way.

Asynchronous Messaging We checked the source code of services to see if there is the
notion of events/messages/channels in the business logic, and the presence of a message
broker instance that the business microservices connect to in the application, without
diving deep in the business logic of the entire system.

Database per Service We checked if the business microservices have their own database
instances, by checking the number of database instance definitions in Docker/Kubernetes
files that deploy the whole application. If most of the business microservices had their own
database instances, and the microservices are not provided with the connection strings to

3| Research Methodology 39

other databases except for their own database instance, we concluded that the application
has database per service pattern.

API Composition For the API composition pattern, in order to not misjudge and
state the status of presence correctly, we decided to look only for API composer or aggre-
gator services, which serve API endpoints that combine responses from multiple business
microservices. The reason we omitted the inspection for API composition in the source
code of business microservices is that, it would require understanding the business logic
of the application, which might be doable for some small applications but would require a
substantial amount of time and effort for applications that have, for example, nine or ten
microservices which also use business abstractions or data-transfer objects provided by
the utilized framework. To spend less time on the business aspect of applications and to
look for more patterns and anti-patterns in more projects, we made no observation about
API composition that is part of the business logic in business microservices and conclude
that the application utilizes API composition pattern only if the architecture involves a
separate API aggregator service.

CQRS We looked for microservices that deal only with query or command tasks, by
inspecting the business logic of the services. Additionaly, we searched for keywords "com-
mand", "query" and "handler" to see if a mechanism similar to CQRS has been imple-
mented in the source code, possibly in the endpoint handlers of services.

Event Sourcing To detect event sourcing pattern, we first looked for an event store
instance, which might be a database instance itself or might be a service that is featured
as an event store and acts as wrapper or proxy to the stand-alone database. Then, we
checked if there is a connection from business microservices to event store and if the
services use the notion of events.

Service Instance per Virtual Machine We investigated the repository of the ap-
plication to see if it includes VM-images, such AWS AMI or images for any other cloud
provider, or any instruction for how to deploy the application using VM image per service
method.

Service Instance per Container We checked if the repository contains Docker or
Kubernetes files, which would result in, by applying them through tools such as "docker-
compose" or "kubectl", one container instance per service.

40 3| Research Methodology

Serverless We simply checked if the repository contains instructions for serverless de-
ployment as one of the possible deployment approaches.

Health Check With the help of keyword-searching (keywords such as "health", "check",
"hc" "healthz"), we examined the source code of microservices to see if they implement
health endpoints manually, or use automatic health endpoint feature of frameworks, for
example by calling "addHealthChecks()" method of some interface provided by a frame-
work. In addition to the health endpoints of services, we checked if those endpoints are
indeed probed by a monitoring service, for example, defined in Kubernetes .yaml files
as "liveness" or "readiness", or a separate "status" service that periodically calls those
health endpoints.

Distributed Tracing Similar to health check method, we looked for trace generator
libraries in source code and dependency files of services. To conclude the presence of
distributed tracing pattern positively, we also checked if the architecture contains a trace
collector such as Zipkin or Jaeger. In cases the microservices are instrumented with trace
generators but the architecture does not contain a trace collector service, we checked if the
trace generators are compatible with any cloud provider trace collector component, and
if compatible, we concluded positively by justifying that the application is distributed-
tracing-ready in a cloud environment.

Log Aggregator Similarly, we checked for structured logging libraries in the source
code of services manually and for the presence of a log aggregator service in the archi-
tecture. Because the microservices are in general deployed to cloud platforms, to benefit
from scalability in the best possible way, we also concluded positively if the application
is ready for log monitoring component of a cloud platform.

Circuit Breaker: For the circuit breaker pattern, we manually inspected the source
code of services to see implementation or use of a circuit breaker library. In our criteria,
we also checked for possible circuit breaker mechanism definition in the deployment on a
service mesh scenario, if the service mesh ".yaml" configuration files are provided in the
repository.

Wrong Cut To detect the wrong cut anti-pattern, we checked whether the microservices
are designed around domains that are similar to actual business aspects or divisions that
might be found in an application related to that area of expertise. We checked the names
of services and examined the source code to see whether one service is all about logic while

3| Research Methodology 41

some other service only deals with persistence tasks of multiple business services. For user
interface tasks, we did not count the presence of a single frontend service as wrong cut
anti-pattern, as separating also the user interface components per business domain is not
a must-have for microservice architectures. Concerning this, there is also the "micro-
frontends"62 paradigm which takes microservice mindset also to frontend components in
a way that is not always present in microservice applications.

Nano or Mega Microservice As for the imbalance in terms of business tasks, we
simply judged the design of the application in a subjective way. Again, without trying
to go deep and understand the business logic of all services, we checked for services that
have much more or much less endpoints than other services to be able to state the service
is a candidate for nano or mega microservice anti-pattern. Because the applications are
exemplary applications, in general, the business services were expected to consist of simple
endpoints such as "get all items" or "get item by ID". In these cases, we did not conclude
that the microservice is a candidate for nano microservice anti-pattern, as the logic is not
quite imbalanced considering the other business microservices have similar logic and the
scope of the application is small in general.

ESB Usage We checked whether the implementation contains a ESB component such
as NServiceBus63, Apache Camel64 or Tibco Enterprise Message Service65, instead of
simpler message brokers such as RabbitMQ or Kafka.

Hardcoded Endpoints For hardcoded endpoints, we checked for hardcoded IP address
and port number pairs that are used to locate services from one service or through config-
uration files. The port numbers are manually found in most cases inside Docker or Kuber-
netes files. For IP addresses, we opted for simple regular expression "\b\d{1,3}\.\d{1,3}
\.\d{1,3}\.\d{1,3}\b" that finds four numbers up to three digits separated by dots, such
as "0.0.0.0" but also "999.999.999.999", since there was already few items in the search
result. We inspected the found cases to see if it is indeed related to a bad practice
about service discovery, and omitted cases where the IP addresses such as "0.0.0.0" and
"127.0.0.1", in addition to word "localhost", are used in tests for the individual microser-
vices, or for starting servers and binding them to localhost inside Docker containers. In
short, we tried to inspect the use of hardcoded IPs and port numbers in a way that sepa-
rates the cases where they are used to by-pass the service discovery mechanism from cases

62https://micro-frontends.org
63https://particular.net/nservicebus
64https://camel.apache.org
65https://www.tibco.com/products/tibco-enterprise-message-service

https://micro-frontends.org
https://particular.net/nservicebus
https://camel.apache.org
https://www.tibco.com/products/tibco-enterprise-message-service

42 3| Research Methodology

where they are used for testing or legitimate server starting code from the point of view
inside the Docker container.

Shared Persistence To detect shared persistence anti-pattern, we checked whether
there are connections to the same database instance from multiple microservices. To
inspect connections, we manually looked for the same connection string to the same
database instance provided to microservices as environment variables, which are defined
in Docker or Kubernetes .yaml files or any other file in case these tools are not utilized.

No CI/CD We inspected the repository if there is a display of development status, as
in a sign or statement about build or test status of the accepted pull request. In addition,
we checked the repository for folders or files that might include scripts that define the
CI/CD pipeline, through one of the common CI/CD tools.

Multiple Service Instance per Host Regarding this anti-pattern, since there is no
way that we know of that prevents developers to deploy all microservices to the same
host, we decided to check if there are conditions in the repository that might compel
or "pressure" developers to deploy multiple services on the same host. For this reason,
we checked the containerization of services and see if there are cases that containerize
multiple services or components to the same Docker image, which might be a result of a
misunderstanding about microservice architecture paradigm. In short, if the services have
their own Docker image and do not share the image with other services, we concluded
there is no multiple services per host anti-pattern, even though individual containerization
does not prevent the actual bad practice.

No API Versioning We manually checked API endpoints in the source code of services
and API gateway component to see whether the URL contains "/v1/" or any similar
substring.

No Health Check We considered the presence of a health check pattern in the appli-
cation and simply negated the result. In case the health check pattern is implemented for
a subset of services, we concluded that the pattern is utilized to some degree, as most of
these applications are built for exemplary purposes, and concluded that there is evidence
about the concept and implementation of health check pattern in the application.

Local Logging Similarly, we took into consideration the log aggregator pattern and
negated its result. As for the implementation for a subset of services, we followed the

3| Research Methodology 43

same reasoning that we did for health check aspect, and concluded negatively for this
anti-pattern even if only some of services send their logs to a log collector service instance.

45

4| Results of Research Question 1

In this chapter we address Research Question 1. According to the methodology we de-
scribed in Section 3.2.1, we have conducted a literature review. We have detected that,
while there exists many studies regarding one or more design patterns or anti-patterns of
microservice architectures, few studies approach to the topic from holistic point of view,
in other words, mention or conduct a study involving different kinds of design patterns
and anti-patterns of microservice architectures. In this chapter we start presenting those
papers that we have identified at the end of our literature review, after the inclusion of
papers found using snowballing technique and exclusion of papers that do not present
a taxonomy of patterns or anti-patterns. Then we highlight the differences between the
various classifications and motivate the need for a new proposal that we present at the
end of the chapter.

4.1. Classification of Patterns and Anti-Patterns Pa-

pers

The primary studies that has been used to answer the first research question are listed in
Table 4.1.

46 4| Results of Research Question 1

ID Title Format

P1 Architectural patterns for microservices: a systematic mapping
study [19]

Conference

P2 Deployment and communication patterns in microservice archi-
tectures: a systematic literature review [20]

Journal

P3 Patterns related to microservice architecture: a multivocal liter-
ature review [21]

Journal

P4 A pattern language for scalable microservices-based systems [22] Conference

P5 Actual use of architectural patterns in microservices-based open
source projects [1]

Conference

P6 Quality attributes in patterns related to microservice architec-
ture: a systematic literature review [23]

Conference

P7 Microservices anti-patterns: a taxonomy [24] Book chapter

P8 On the study of microservices antipatterns: a catalog proposal
[2]

Conference

P9 Towards a collaborative repository for the documentation of
service-based antipatterns and bad smells [25]

Conference

P10 Quality assurance for microservice architectures [9] Conference

Table 4.1: Primary studies that contain classification of patterns or anti-patterns

A concise explanation of primary studies and their views on the categorization of mi-
croservice design patterns and anti-patterns are given below.

P1 P1 is a systematic mapping study that reports on the widely used microservice ar-
chitecture patterns and presents a catalogue regarding the advantages and disadvantages
of microservice patterns. As a result, they establish three categories, namely "orchestra-
tion and communication", "deployment" and "data storage". In the first category, they
include "API gateway", "service discovery" and "hybrid" patterns, and in the second
category, "multiple service per host" and "single service per host" patterns. Lastly, in the
data storage category, they add "database per service", "database cluster" and "shared
database server" patterns. The "hybrid" pattern is, according to their definition, is a
combination of "API gateway" and "service discovery" patterns, and is similar to ESB
used in service-oriented architectures, which is, in fact, presented as an anti-pattern in
this study. Next, P1 suggests "multiple service per host" as a microservice pattern, ex-

4| Results of Research Question 1 47

plaining its advantages and disadvantages, while in this study, it is clearly stated as an
anti-pattern. In addition, P1 presents several options in the data management spectrum,
presenting every option as a pattern, although in this study, some options such as "shared
database server" is counted as an anti-pattern.

P2 In P2, the researchers make a systematic literature review, exploring "deployment"
and "communication" patterns in microservice architectures. While the researchers do
not attempt to study other kinds of microservice patterns, they list several microser-
vice patterns in the two categories, hence the study was considered useful in regard to
the selection of patterns into different categories. In the "deployment" category, they
present "serverless", "service instance per VM" and "service instance per container" ap-
proaches, while in the "communication" category, they list "synchronous communication",
"publish/subscribe communication", "combination of HTTP and message queue", "asyn-
chronous communication", "communication using binary protocols" and "point-to-point
communication" patterns. Although the patterns belonging to the "deployment" category
are also presented as patterns in this study, some communication approaches presented
as options such as "publish/subscribe" and "communication using binary protocols" are
described as communication patterns in P2, suggesting that there can be different levels
of granularity in the detail of patterns that can be viewed as separate design patterns by
researches.

P3 The authors of P3 make a literature review of patterns related to microservice ar-
chitectures and come up with group names encompassing design patterns. The grouping
is made by quality attributes and benefits associated with each pattern and the resulting
group names include "data persistence", "communication", "entry point", "distribution",
"fault tolerance" and "supplementals". Moreover, the quality attributes used in grouping
involves "maintainability", "reliability", "performance efficiency", "security", "compat-
ibility", and "portability". Similar to the different levels of treatment towards design
patterns and finer techniques around patterns seen in P2, the researchers of P3 choose to
state what is presented in this study as options and techniques as patterns.

P4 The researchers of P4 present a taxonomy of microservices architectural patterns and
further investigates design patterns that might help software architects develop highly
scalable systems. The taxonomy in the paper includes "migration", "design", "miti-
gation", "IOT", "front-end", "back-end", "DevOps", "deployment", "communication",
"behaviour" and "orchestration" as microservice architectural patterns. Coming to the
architectural patterns related to scalability, they propose three categories, namely, "load

48 4| Results of Research Question 1

balancer patterns", "decomposition patterns" and "grouping patterns". Finally, resulting
from two-step filtering activity, they suggests three actual microservice patterns, each
of which belongs to the aforementioned category respectively: "internal load balancer",
"circuit breaker" and "container" patterns.

P5 The next study P5 investigates microservice design patterns first in the academia
and then in the open source software platform GitHub. The two authors of P4 in this sep-
arate study P5 uses the same classification names that they do in P4, and also differentiate
between the design patterns that are also used in SOA and the design patterns that solely
belongs to microservice architectures. One observation about P5 is that the researchers
leave out some of the categories while assigning design patterns into the categories. As
a result, the pattern categories "deployment", "mitigation", "communication", "migra-
tion", "orchestration" and "back-end" has a number of design patterns selected for those
categories, even though the categories "design", "behaviour", "front-end", "DevOps" and
"IOT" do not have any patterns inside these groups.

P6 The three authors of P3 investigate quality attributes in microservice patterns in
the study P6. While doing so, they use the same quality attributes and present the same
grouping of microservice patterns from P3.

P7 In the study P7, the authors conduct a survey that involves developers and practi-
tioners who have experience in microservice architectures and ask them about microservice
anti-patterns and their perceived harmfulness. The anti-patterns mentioned by developers
are then divided into two main groups: "technical" and "organizational" anti-patterns.
The technical anti-patterns are further classified into "internal", "communication" and
"others", while organizational anti-patterns are segregated into "team oriented" and
"technology and tool oriented". The first observation about P7 is that it includes the
behavioral pitfalls that can be seen in companies trying to embrace microservices, which
are not included in this study. For the technical anti-patterns, the authors choose to
categorize anti-patterns based on the number of microservices each anti-pattern directly
affects, in other words, according to the authors, internal anti-patterns impact individ-
ual authors, while communication anti-patterns undermines the communication between
microservices and other anti-patterns, namely "lack of monitoring", "shared persistence"
and "wrong cuts" hurts more or less the whole system.

P8 The researchers of the study P8 conduct a literature review and examine open source
microservice projects to find anti-patterns of microservice architectures. As a result of

4| Results of Research Question 1 49

the study, they find sixteen microservice anti-patterns and categorize them based on the
development cycle of a microservice system. The four categories of microservice anti-
patterns the authors present in P8 are "design", "implementation", "deployment" and
"monitoring".

P9 The authors of the study P9 conduct a systematic literature review and extract 36
service-based anti-patterns that can be found in both SOA and microservice architec-
tures. While categorizing anti-patterns, they choose to consider the levels of abstraction
the anti-patterns impact in the system and propose the "business", "application" and
"architecture" anti-pattern categories.

P10 In the study P10, the researchers present the bad practises found in microservice
architecture, and in doing so, they try to differentiate anti-patterns of microservice ar-
chitectures from architectural (bad) smells. For example, while in this study, "hardcoded
endpoints" and "shared persistence" are considered anti-patterns, P10 considers them
as architectural smells, nonetheless stating that the difference is blurred. For the anti-
patterns, the authors refer to the study P8 and present the same anti-patterns under the
same categories as P8.

4.2. Analysis of the Classifications

Considering the studies and the classifications listed above, there exists 5 pattern-related
papers (P1, P3, P4, P5, P6) that gives output to 3 different categorizations (those from
P1, P3, P5), since the study pairs P3-P6 and P4-P5 are written by the same researchers
and use the same classification of patterns, and P2 presents only the patterns that the
authors have seen fit to be placed under "communication" and "deployment" categories.
In addition, although the literature review was limited to the studies presented in the
academia, during the literature review phase, one classification from a microservice pat-
terns blog appeared valuable to be considered. The author of the book [8], in his blog [26],
divides microservice design patterns into three main "application", "application infras-
tructure" and "infrastructure" categories, and considers some of what is presented in this
study as the finer techniques as patterns, which can be put into many smaller categories.
With regard to the classifications of anti-patterns of microservices, it has been observed
that 4 anti-pattern related papers (P7 to P10) bring 3 different classifications, as the
authors of P10 refer to P8 and use the same classification.
In the light of these findings, it can be concluded that, although there are studies that
investigate a particular aspect of microservices and attempt to associate design patterns

50 4| Results of Research Question 1

with that category, there does not exist a consistent classification of both the design pat-
terns and anti-patterns of microservice architectures.
In an attempt to develop another classification of microservice design patterns and anti-
patterns, it is useful to take into consideration the names of the categories the patterns
and anti-patterns are associated with in other studies. For ease of reference, the names
of the categories of patterns and anti-patterns, including those from P2 and excluding
empty group names from P5, are presented in Table 4.2.

ID Category Names Type

P1 Orchestration & Coordination, Deployment, Data Storage Pattern

P2 Communication, Deployment Pattern

P3 & P6 Data Persistence, Communication, Entry Point, Distribution,
Fault Tolerance, Supplementals

Pattern

P4 & P5 Deployment, Mitigation, Communication, Migration, Orches-
tration, Back-End

Pattern

P7 Technical: Internal, Communication, Others; Organizational:
Team Oriented, Technology and Tool Oriented

Anti-Pattern

P8 & P10 Design, Implementation, Deployment, Monitoring Anti-Pattern

P9 Architecture, Application, Business Anti-Pattern

Table 4.2: Names of pattern and anti-pattern categories used in related studies

From the category names presented in Table 4.2, the concepts and aspects around which
the authors categorize the patterns and anti-patterns can be inferred. First of all, the clas-
sifications from P1, P2, P4 and P8 use the explicit "deployment" category for patterns and
anti-patterns related to the deployment aspect of microservices. When examined thor-
oughly, the "distribution" name used in P3 encapsulates techniques such as "container",
"microservice DevOps", "self-contained services" and "enable continuous integration", in
other words, the methods that aid in the deployment of microservice systems. In re-
gard to P7, the bad practises of deployment aspect of microservices is discussed under
"organizational" and further "technology and tool oriented" anti-pattern category. The
wrong-doings in the deployment aspect is not discussed in P9 in detail, possibly because
the study P9 aims to encompass anti-patterns in the traditional service-oriented architec-
tures, and the deployment of SOA could be said to be more similar and follows more or
less the deployment norms of monolithic systems.
Another observation about the classifications is that the category "communication" is

4| Results of Research Question 1 51

often used in the studies. For those studies that do no explicitly use "communication"
category, when examined in detail, it is observed that the communication aspect is dealt
with in different categories. For example, the communication aspect of microservices is
mentioned to some extent in P1 under "orchestration & coordination" category, although
the term "orchestration" is more used in the community to imply infrastructure-related
tasks, such as the ones Kubernetes can carry out. While P9 does not use "communication"
category, P8 places some anti-patterns that undermines the communication in a microser-
vice system to some extent. As an example, P8 puts "hardcoded endpoints" anti-pattern
into "implementation" category and "no API gateway" anti-pattern into "deployment"
anti-pattern category.
The last commonality that could be observed from the classifications is that the classi-
fications from P1 and P3 choose to use "data storage" and "data persistence" category
names to emphasis those patterns related to the persistence aspect of microservices.
As a side note, again, from the careful examination of studies, it has been observed
that some classifications use particular category names that do not effectively convey the
underlying aspect, benefit of patterns or harm of anti-patterns that are put into those
categories. One exemplary case could be of P1 using "orchestration" category to present
"service discovery" and "API gateway" patterns. Another example about this point is
that the study P5 presents "circuit breaker" under "deployment", "service discovery" un-
der "migration" and "continuous integration" under "orchestration" categories, while P8
associates "no API gateway" under "deployment" anti-pattern category.

4.3. Systematic Mapping Studies

In order to aid the development of a classification for microservice patterns and anti-
patterns, it can be beneficial to take a look at the studies that conduct systematic mapping
studies. The three papers listed in Table 4.3 present a list of keywords that are gathered
around similar concepts.

ID Title Format

S1 A systematic mapping study in microservice architecture [27] Conference

S2 Microservices: a systematic mapping study [28] Conference

S3 Towards a taxonomy of microservices architectures [29] Conference

Table 4.3: Secondary studies about concepts and keywords in microservice architectures

52 4| Results of Research Question 1

Short explanations about the parts found in these studies that could be helpful in devel-
opment of classification are stated below.

S1 The authors of S1 present the challenges and quality attributes of microservice archi-
tectures that they discovered during their literature review that involves 33 studies. The
microservice challenges include "communication/integration", "service discovery", "per-
formance", "fault-tolerance", "security", "tracing and logging", "application performance
monitoring", and "deployment operations", any of which is tackled by one or more design
patterns presented in this study. Another observation that could be made about the find-
ings presented in S1 is that the top six quality attributes mentioned in the literature are
"scalability", "independence", "maintainability", "deployment", "health management"
and "modularity", hinting at the fact that the emphasis on the microservice systems is
that they are built as a set of small independent software products that are developed
and maintained independently.

S2 The researchers in S2 extract keywords out of 21 studies and based on the results,
it can be observed that the four most frequent key terms are "scalability", "indepen-
dently deployable", "testing" and "architectural style", again, putting emphasis on the
nature of microservice that microservices are a composition of small independently de-
ployable software components. Additionaly, as a result of the research, the authors of
S2 states that they can distinguish two technical perspectives about the methods found
in microservice architectures: "architecture" and "methods". The "architecture" per-
spective encompasses architecture design and implementation methods, while "methods"
perspective is more process-centric, according to the authors.

S3 Lastly, the author of S3 conducts a literature review and based on the 46 relevant
primary work, proposes a taxonomy of concepts that exists in microservice architecture
landscape. The six core categories of the suggested taxonomy include "design", "im-
plementation", "deployment", "runtime", "crosscutting concerns" and "organizational
aspects". In this taxonomy, the domain-related and architecture-related design tasks are
placed under the "design" category, while data storage kinds (SQL or NoSQL), data
exchange methods (REST or RPC) and service discovery methods are found in the "im-
plementation" category. Next, the "deployment" category involves different options to
where the code physically runs, such as cloud or in-house, and "runtime" encompasses
the deployment approaches presented in this study, such as containers, virtual machines
and serverless options. The aspects that are in general considered supplementary tech-
niques such as monitoring, testing and DevOps are divided into "crosscutting concerns"

4| Results of Research Question 1 53

and "organizational aspects" category.

The first observation about the secondary studies is that there are indeed a number of
ways the patterns and anti-patterns can be categorized. Using challenge key terms directly
from S1 would result in a large number of categories, although some challenges can be
merged under a larger category. The two perspectives "architecture" and "methods"
from S2 sounds promising since the placement of patterns and anti-patterns could be
intuitive, that is, whether a pattern or an anti-pattern belongs to architecture or methods
category might be deduced from the size of the change it brings into the architecture. For
example, while the "service discovery" pattern makes a big change in the architecture,
the "no health check API" anti-pattern is more process-centric hence belongs to the
methods category. On the other hand, the taxonomy of S3 uses the stages of microservice
application development as categories and add supplementary methods into two new
categories.

4.4. A Proposal for a New Classification

Considering the classifications from primary studies and insights from secondary stud-
ies explained in detail above, we propose the taxonomy of patterns and anti-patterns in
microservice architectures given in Table 4.4 and Table 4.5, respectively. The impor-
tant aspects valued during the development of the classification is that, first, we aimed
at categories being more rigid in that one pattern or anti-pattern in a category do not
influence the other categories much, whether it is a challenge, attribute or development
stage in microservice architectures. For example, having "asynchronous communication"
pattern solely in "communication" category would be acceptable at first, however, when
examined in detail, the mechanisms of utilizing an asynchronous communication might
require a messaging pipeline or an event source that is capable of storing messages in
queues, and would in turn influence how the application business domain is reflected
in the implementation. Another example could be of that using a separate "data per-
sistence" category for the patterns and anti-patterns. Our argument of not using any
data-related category is that it also influences other parts of the system in a significant
way. To illustrate, having "event sourcing" or "CQRS" patterns or "shared database in-
stance" anti-pattern in a data-related category would look good at first glance, although
patterns such as "event sourcing" and "CQRS" considerably changes the architecture of
the system, in the sense that those patterns change the ways and logical layers through
which microservices communicate with each other. While "event sourcing" and "CQRS"
adds persistence mechanisms other than the norm of database-per-service pattern, "event

54 4| Results of Research Question 1

sourcing" imposes the use of pub/sub mechanism for microservices to be able to benefit
from it, and "CQRS" alters the way the front-end and back-end communicate, causing the
front-end to use different data models based on the particular request. As for the "shared
database instance" anti-pattern, it relieves microservices from the constraint that they
should communicate only through API calls, by their API definitions and not directly use
the target data source.

Architectural Patterns Deployment Patterns
Monitoring &

Reliability Patterns

API Gateway
Service Instance per

Container
Health Check

Service Mesh with Sidecar Service Instance per VM Distributed Tracing

Service Registry &
Discovery

Serverless Log Aggregator

Backends for Frontends Circuit Breaker

Asynchronous Messaging

Database per Service

Saga

API Composition

CQRS

Event Sourcing

Table 4.4: Proposed Classification of Microservice Design Patterns

4| Results of Research Question 1 55

Architectural
Anti-Patterns

Deployment
Anti-Patterns

Monitoring &
Reliability

Anti-Patterns

Wrong Cut No CI/CD No Health Check

Nano Microservice
Multiple Service Instances

per Host
Local Logging

Mega Microservice No API Versioning

ESB Usage

Shared Libraries

Hardcoded Endpoints

No API Gateway

Shared Persistence

Table 4.5: Proposed Classification of Microservice Anti-Patterns

The reason why an "implementation" category is not used, although it is for sure one of the
stages of typical software development and could be used for a category, is that, we argue
that points illustrated in "implementation" categories are actually indications related to
other groups or concepts. For instance, the "hard-coded endpoint" and "shared libraries"
anti-patterns given in P8 are the result of bad architectural design choices, in the sense
that the first is the direct result of the absence or neglect of the "service discovery" pattern,
and the second is related to a bad design decision about whether a common logic should
be employed as a library or a microservice, and not necessarily an original wrong-doing
that show up during the implementation phase. One counter-argument claiming that the
"hard-coded endpoint" anti-pattern is still related to the implementation category might
be that, even though a service discovery mechanism is utilized in the system, developers
can hard-code endpoints and by-pass the service discovery for some of the microservices.
About this argument, we argue that the same can be true as well for many other design
decisions, and not obeying the design and not implementing microservices accordingly
should count as implementation anti-patterns for each of the design decision in a trivial
manner. We claim that creating a separate implementation anti-pattern for each design
decision serves no purpose for research purposes other than cluttering the landscape, and
it is a reasonable assumption to make that the benefits and drawbacks of options stated
in this study are only valid if they are executed or chosen to do so.
For the reasons stated above, it has been seen fit in this study to merge main topics

56 4| Results of Research Question 1

such as communication, data, design and implementation into one main category called
"architectural design" patterns and anti-patterns, similar to the categorization used for
techniques related to microservices in systematic mapping study S2. For the techniques
that are more process-centric, we have chosen to split the remaining patterns and anti-
patterns into two method-oriented categories, namely "deployment" and "monitoring &
reliability". While the "deployment" category is also used by other studies, we have
seen it suitable to merge the challenges "tracing and logging", "application performance
monitoring" and "fault-tolerance" presented in S1, into the "monitoring & reliability"
category. We believe that this classification is also intuitive in the sense that it reflects
the deployment and maintenance periods of a software product lifecycle, hence might be
more useful for developers to see all kinds of patterns and anti-patterns during a particular
step of software development period. Inside the "deployment" category, in addition to the
deployment options such as "service instance per container" and "serverless", the pitfalls
"no CI/CD" and "no API versioning" have been judged appropriate to be placed under
"deployment" anti-patterns since they occur during the deployment stage, the first tool
not being utilized to make the deployment more frequent and the second is a bad practice
when developers change the API definition between the two releases of a microservice.
As for the "monitoring & reliability" category, the patterns and anti-patterns that helps
or undermines the actual capability and continuity of serviceability have been considered
relevant to be placed.
Effectively, the proposed taxonomy merges the inter-related topics such as communication,
data and architectural design into one "architecture" category and presents "architectural
patterns" and "architectural anti-patterns" categories, and then gather the process-centric
techniques and pitfalls into the four "deployment patterns", "deployment anti-patterns",
"monitoring & reliability patterns" and "monitoring & reliability anti-patterns".

57

5| Results of Research Question 2

To investigate the occurrence of patterns and anti-patterns of microservice architecture in
open source microservice projects, ten microservice project repositories on GitHub have
been identified. The list of projects examined are given in Table 5.1, with the number of
GitHub stars that indicates to a certain degree that the projects have significant visibility
to the practitioners.

ID Repository Name URL
GitHub
Stars

R1 dotnet-architecture/eShopOnContainers https://bit.ly/3uQzv6e 20.3k

R2 GoogleCloudPlatform/microservices-demo https://bit.ly/3JrKOFX 12k

R3 sqshq/piggymetrics https://bit.ly/34GC4gv 11.5k

R4 cer/event-sourcing-examples https://bit.ly/3JqMeAz 2.9k

R5 microservices-patterns/FTGO-application https://bit.ly/3oPndHn 2.4k

R6 vietnam-devs/coolstore-microservices https://bit.ly/3v4YVgL 2k

R7 Crizstian/cinema-microservice https://bit.ly/3GOe3RC 1.6k

R8 asc-lab/dotnetcore-microservices-poc https://bit.ly/3sE87FU 1.5k

R9 elgris/microservice-app-example https://bit.ly/3sIn6i7 1.4k

R10 aspnetrun/run-aspnetcore-microservices https://bit.ly/3pB7zjd 1.1k

Table 5.1: List of examined projects

Starting from the repository R1, the result of the examination is presented in the following
pages. First, a table that indicates the existence of each design pattern and anti-pattern
for the project examined is prepared. Then, a few sentences that explain the state of
presence of each design pattern or anti-pattern in terms of implementation and libraries
or frameworks used are provided.

https://bit.ly/3uQzv6e
https://bit.ly/3JrKOFX
https://bit.ly/34GC4gv
https://bit.ly/3JqMeAz
https://bit.ly/3oPndHn
https://bit.ly/3v4YVgL
https://bit.ly/3GOe3RC
https://bit.ly/3sE87FU
https://bit.ly/3sIn6i7
https://bit.ly/3pB7zjd

58 5| Results of Research Question 2

5.1. R1: eShopOnContainers

5.1.1. Overview of the Application R1

The first examined application is "eShopOnContainers" application, developed by Mi-
crosoft to provide use cases for .NET framework features implemented for microservice
architectures. As the name suggests, the application is intended to be an e-commerce ap-
plication, involving four business microservices, namely "identity", "catalog", "ordering"
and "basket" services. In addition business services, the system contains an event bus,
two separate API gateways for web and mobile clients, a web status service that conducts
health checks and a log collector service. Figure 5.1 shows the architectural diagram of
the application, adapted from the architectural diagram in the repository.

Figure 5.1: Architectural diagram of eShopOnContainers application, adapted from dia-
gram in repository under MIT license

5.1.2. Microservices Design Patterns and Anti-Patterns in R1

As a result of inspection for design patterns and anti-patterns, we present Table 5.2 which
shows the presence of each pattern and anti-pattern in the application.

5| Results of Research Question 2 59

Design Pattern ✓\– Anti-Pattern ✓\–

API Gateway ✓ Wrong Cut –

Service Mesh with Sidecar ✓ Nano Microservice –

Service Registry & Discovery ✓ Mega Microservice –

Backends for Frontends ✓ ESB Usage –

Asynchronous Messaging ✓ Hardcoded Endpoints –

Database per Service – No API Gateway –

API Composition ✓ Shared Persistence ✓

CQRS ✓ No CI/CD –

Event Sourcing – Multiple Service Instances per Host –

Service Instance per VM – No API Versioning –

Service Instance per Container ✓ No Health Check –

Serverless – Local Logging –

Health Check ✓

Distributed Tracing –

Log Aggregator ✓

Circuit Breaker –

Table 5.2: Presence of microservice design patterns and anti-patterns in repository R1

Below, the particular implementation of design patterns and explanations about anti-
patterns are provided.

API Gateway The application uses two API gateways, one for web applications in
browsers and another one for mobile clients using Xamarin-based app. The gateways
are implemented using Envoy66 proxies, which routes incoming requests from clients to
internal microservices based on the route of the particular HTTP request. The routing
rules are specified by "envoy.yaml" files, which matches the HTTP requests with string
prefixes and routes requests to hosts specified in the same "envoy.yaml" file.

Service Mesh with Sidecar Because of its complexity, the service mesh pattern is not
employed throughout the eShopOnContainers application but only provided as a deploy-
ment option. The required configuration files for configuring sidecars per microservice

66https://www.envoyproxy.io

https://www.envoyproxy.io

60 5| Results of Research Question 2

container are given as examples for two microservices, namely Linkerd "ServiceProfile"
files "basket-api-sp.yaml" and "catalog-api-sp.yaml" files. The remaining instructions to
deploy the application on Linkerd service mesh (installing Linkerd and then deploying
the application on Kubernetes and so on) are presented in the deployment section of the
repository.

Service Registry and Discovery The application is provided with both "docker-
compose" yaml files, to deploy multiple containers on a single host, and Kubernetes yaml
files, to deploy the containers on multiple hosts. The Kubernetes files are provided as
Helm67 yaml files, which is a package manager that is used to create template yaml files,
called "Helm charts", and values to be used in those templates for Kubernetes, so that
the deployment specifications can be changed easily without creating multiple Kubernetes
files or changing them manually. In short, the application does not include a microservice
for service registry and discovery purposes but uses the service registry and discovery
features of the underlying deployment infrastructure.

Backends for Frontends For mobile clients that use Xamarin mobile app and for web
clients, there are two different API gateways and two different aggregator microservices.
While the routing rules for the API gateways are identical, the controllers for aggregator
services are different, implying the fact that the returned data would be different based
on the kind of the client.

Asynchronous Messaging The application uses the concept of events as part of some
of the logic involved and proposes two kinds of message queues. For on-premise use cases,
the microservices use a RabbitMQ instance to communicate about events, while for on-
cloud deployment, instead of RabbitMQ, the application offers integration with Azure
Service Bus.

Database per Service Even though there is not an evidence detected that signals
accessing the same data entry from multiple microservices, the three microservices "cata-
log", "ordering" and "identity" uses the same MySQL server instance to store their data,
by creating their own database schema in the same database instance. The only other
microservice that involves data storing and accessing is the "basket" microservice and it
utilizes Redis key-value store as another container instance. At this point, it is important
to note that this repository is created as an example to be tinkered by developers who
are new to the microservice architecture and it is stressed by creators of this project in

67https://helm.sh

https://helm.sh

5| Results of Research Question 2 61

the Wiki page of repository that this decision is not ideal for microservice projects in
production and is only taken to lower the infrastructure requirements for the application
to let it run on also on hosts with lower computing resources. Nonetheless, since the
detection criteria for this pattern is set in this study such that each microservice that
needs a data-related service should have its own database instance, it can be concluded
that the database per service pattern is not employed in this application.

API Composition As previously said, the application utilizes two aggregator services
and the client requests that are data-wise complex are handled by those aggregator ser-
vices. Instead of regular HTTP requests, the aggregator services use gRPC protocol to
communicate with "ordering", "catalog" and "basket microservices, take required data,
execute logic to transform data into appropriate structure for response and respond to
API gateways with HTTP responses.

CQRS The CQRS pattern is utilized to some degree inside the "ordering" microservice.
The API definition of "ordering" service is divided into two command and query parts,
where the command part involves commands and respective command handler classes,
and the query part includes query classes that makes a connection to the database and
returns the result. In contrary to using different data models for command and query,
the two parts read or write data through the same "OrderAggregate" data model. The
implementation of these classes are aided by MediatR68 library, created to help implement
CQRS and mediator patterns in .NET platforms.

Event Sourcing Although the use of event concept is detected in the application,
the architecture is not constructed in a way that there exists a separate event store for
microservices to send and consume events.

Service Instance per Virtual Machine The repository does not include service in-
stance per VM as a deployment option with readily-built VM images.

Service Instance per Container The application utilizes one microservice instance
per container deployment pattern as the default deployment method. The containers can
be instantiated locally using Docker Compose or Kubernetes or deployed onto cloud using
Azure Kubernetes Service or any other Container-as-a-Service platform.

68https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-
patterns/microservice-application-layer-implementation-web-api

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/microservice-application-layer-implementation-web-api
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/microservice-application-layer-implementation-web-api

62 5| Results of Research Question 2

Serverless Even though integration with Azure Functions is provided in a few sentences,
the application is neither ready nor suitable to be deployed to a serverless environment
since the microservices involved work with databases and replacing those databases with
persistent cloud resources would not be trivial.

Health Check The microservices use built-in health monitoring feature of .NET plat-
form and implement health check endpoint "\hc" and liveness endpoint "\liveness" in
source code. The Kubernetes yaml files are decorated with liveness and readiness probes
that makes HTTP requests to respective health check endpoints when the application is
deployed on Kubernetes. Additionaly, a separate microservice called "WebStatus" uses
those endpoints as well and provides users with a UI in the browser that display the health
status of each microservice.

Distributed Tracing In the application no distributed tracing client library or trace
collector mechanism has been found.

Log Aggregator The application uses structured logging mechanism Serilog69 of .NET
framework per microservice basis and Seq70 log collector service instantiated as a separate
container during run-time. Thanks to structured logging mechanism of Serilog and UI
feature of Seq the logs can be inspected using different filters that involves tags, event
types and application contexts.

Circuit Breaker The system does not have a fully implemented circuit breaker pattern
but uses retry logic implemented by sidecars when deployed on Linkerd service mesh. Re-
lated to the circuit breaker, one microservice named "basket" has a "FailingMiddleware"
example feature that can be enabled or disabled by HTTP calls, when "FailingMiddle-
ware" is enabled, all calls to "basket" microservice returns a HTTP 500 response, and
when disabled works normally.

Wrong Cut The application consists of "basket", "ordering", "catalog", "payment",
"identity" business domain microservices and other infrastructure-related components,
such as API gateways, API aggregator and log aggregators, web frontend and status
microservices and an event bus. Although the business domain microservices access to the
same SQL database instance, the architecture is not layered as in traditional monolithic
systems and does not have the wrong cut anti-pattern.

69https://serilog.net
70https://datalust.co/seq

https://serilog.net
https://datalust.co/seq

5| Results of Research Question 2 63

Nano or Mega Microservices The separation of business domains seems to reflect
good practice of bounded context technique, so the microservices are not designed in a
way that results in a nano or mega microservice anti-pattern.

ESB Usage The application utilizes both synchronous and asynchronous calls, and
for the asynchronous calls, it uses RabbitMQ, which is a simple message queue without
advanced features of a typical ESB. As a result, ESB usage anti-pattern is avoided in this
application.

Hardcoded Endpoints The system makes use of Kubernetes service discovery and
does not have hardcoded fully qualified IP addresses in the source code.

No API Gateway The architecture includes two API gateways that acts as interme-
diaries between frontend and microservices.

Shared Persistence The microservices access the same MySQL server instance even
though create their own schemas, so it can be concluded that there exists shared persis-
tence anti-pattern to some degree.

No CI/CD In the "workflows" folder the repository has ".yaml" files that define GitHub
Actions71 workflows and on the repository page the build status of each microservice is
shown. Hence, the repository makes use of GitHub Actions as their choice of CI/CD
pipeline.

Multiple Service Instances per Host The application does not containerize multiple
services into one single container, so that it does not force multiple services to be deployed
on the same host.

No API Versioning Even though implemented as an example and all endpoints have
the same version number, the good practice is employed and the endpoints of microservices
start with version numbers, for example, the "catalog" microservice has a GET endpoint
"/api/v1/Catalog/items".

No Health Check As explained in the health check pattern, the presence of health
check endpoints and probing mechanism of Kubernetes prevents no health check anti-
pattern.

71https://github.com/features/actions

https://github.com/features/actions

64 5| Results of Research Question 2

Local Logging Thanks to the structured logging and log collector service, local logging
anti-pattern is avoided in this application.

5.2. R2: GCP Online Boutique Microservices

5.2.1. Overview of the Application R2

The second examined application is Online Boutique application implemented by Google
Cloud Platform, similar to eShopOnContainers application, to show some of the cloud
technologies provided by GCP for microservice applications. The nine business microser-
vices include "email service", "ad service", "payment service", "checkout service", "ship-
ping service", "currency service", "product catalog service", "recommendation service"
and "cart service", together with a Redis store for "cart service", a frontend app for static
assets, single point of entry for HTTP calls and calling internal microservices using gRPC
protocol. Additionally, the system contains a load generator for tinkering purposes. The
microservices are implemented using Node.js, Python, Java, C# and Go, hence the appli-
cation is a good example of polygot microservice architecture. The architectural diagram
provided in the repository of the application is used as it is, in Figure 5.2.

Figure 5.2: Architectural diagram of GCP Online Boutique application, from repository
under Apache 2.0 license

5.2.2. Microservices Design Patterns and Anti-Patterns in R2

The presence of design patterns and anti-patterns have been listed in Table 5.3.

5| Results of Research Question 2 65

Design Pattern ✓\– Anti-Pattern ✓\–

API Gateway ✓ Wrong Cut –

Service Mesh with Sidecar ✓ Nano Microservice –

Service Registry & Discovery ✓ Mega Microservice –

Backends for Frontends – ESB Usage –

Asynchronous Messaging – Hardcoded Endpoints –

Database per Service – No API Gateway –

API Composition – Shared Persistence –

CQRS – No CI/CD –

Event Sourcing – Multiple Service Instances per Host –

Service Instance per VM – No API Versioning ✓

Service Instance per Container ✓ No Health Check –

Serverless – Local Logging –

Health Check ✓

Distributed Tracing ✓

Log Aggregator ✓

Circuit Breaker –

Table 5.3: Presence of microservice design patterns and anti-patterns in repository R2

To clarify each pattern or anti-pattern item, a few sentences are provided below.

API Gateway The "frontend" microservice serves static web app assets (HTML, CSS,
JS) and acts as an API gateway by making the appropriate gRPC calls to other business
domain microservices when an HTTP request is made to an endpoint, providing the clients
with a single entry point to communicate with microservices.

Service Mesh with Sidecar Similar to the eShopOnContainers application, the use
of a service mesh is provided as an option and sidecar configuration files are given for
only one microservice. When the application is to be deployed to GCP cloud, by apply-
ing "istio-manifests.yaml" file, the "frontend" service can be injected with a sidecar and
communicate with other GCP services for monitoring, profiling and other similar tasks.
Additionaly, instructions for GCP service mesh Anthos72 are also provided.

72https://cloud.google.com/anthos/service-mesh

https://cloud.google.com/anthos/service-mesh

66 5| Results of Research Question 2

Service Registry and Discovery As with the previous project, the service registry
and discovery tasks are delegated to Kubernetes. The application of Kubernetes .yaml files
containing Kubernetes "deployment" and "service" object descriptions per microservice
container solves this critical aspect for the Online Boutique project.

Backends for Frontends In this application, there is no multiple microservice imple-
mentations or detected configurations for different kinds of clients.

Asynchronous Messaging The architecture does not contain a message broker such as
RabbitMQ or any other temporary message storage mechanism. Communication between
microservices are done through the synchronous gRPC calls.

Database per Service Out of the ten microservices, the only microservice that uses
a database is the "cart" microservice, which stores and retrieves user’s items in his/her
shopping cart in Redis key-value store, instantiated as a separate container. Because of
the limited complexity of the application, the database per service pattern is not needed
and utilized.

API Composition The "frontend" microservice makes calls to multiple microservices
and combines the responses into one data structure to be rendered in an HTML template
as a response to specific endpoints. Because a separate aggregator service is not present,
according to the detection criteria, the API composition pattern is not utilized.

CQRS The only microservices that reads and writes data is the "cart" microservice and
there is no separation of read and write tasks that signals the presence of CQRS pattern.

Event Sourcing The application does not make use of notion of events and does not
contain an event store.

Service Instance per Virtual Machine The repository does not contain VM images
as deployment option.

Service Instance per Container The microservices are containerized into Docker
images and the Kubernetes .yaml files are provided for running the entire application.

Serverless Although the application may be deployed using serverless approach by
making additional effort, in the repository, no instructions about serverless deployment is
provided.

5| Results of Research Question 2 67

Health Check The health check mechanism is implemented by using Kubernetes live-
ness and readiness probes, configured to execute a health check utility for gRPC applica-
tions called "grpc-health-probe"73.

Distributed Tracing Except for "payment" and "cart" microservices, all other services
are instrumented with either StackDriver (renamed now as Google Cloud Operations74

or Jaeger, which are OpenCensus-compatible tracing libraries. Additionally, StackDriver
library is compatible with GCP so that the tracing information can also be collected by
Google Cloud Trace75.

Log Aggregator The presence of log aggregator mechanism depends on the selected
deployment method. When deployed locally using Kubernetes, the logs of all microservices
can be collected and saved to a file but cannot be analyzed efficiently since the logs might
not have the same structure and text readers might not have filtering mechanisms helpful
for particular log reading. On the other hand, the deployment on GCP Google Kubernetes
Engine (GKE) method offers automatic structured logging and filtering options since
containers are automatically injected with StackDriver logging agent when deployed on
GKE.

Circuit Breaker The application in its current state does not employ circuit breaker
pattern but additional service mesh Istio configuration files can be created and applied
to enable the tripping mechanism when deployed on Istio.

Wrong Cut The architecture consists of one frontend/API gateway service, one load
generator service for tinkering purposes and nine business domain microservices, namely
"cart", "productcatalog", "currency", "payment", "shipping", "email", "checkout", "rec-
ommendation" and "ad" services, implemented in various programming languages, all
executing logic based on their names. As a result, the layered separation of wrong cut
anti-pattern is not detected.

Nano or Mega Microservices The gRPC API definitions are given "demo.proto" file,
which is a gRPC file used to auto-generate client libraries according to API definitions
in various languages. From this file, it is seen that each microservice has three or four
API endpoints, implying that there is not significant difference in the amount of tasks
the microservices carry out. As a side note, only the two "currency" and "frontend"

73https://github.com/grpc-ecosystem/grpc-health-probe
74https://cloud.google.com/products/operations
75https://cloud.google.com/trace

https://github.com/grpc-ecosystem/grpc-health-probe
https://cloud.google.com/products/operations
https://cloud.google.com/trace

68 5| Results of Research Question 2

microservices might be discussed as potential candidates for nano and mega microservices,
respectively. Separating the task of converting currencies and updating on the latest
conversion rates as a separate business domain and a microservice might be an excessive
interpretation and be an example of nano microservice, while combining the frontend
and API gateway tasks in a single microservice might constitute an example of mega
microservice. Nonetheless, considering the scope of the entire application, it is safe to
conclude that there is not a big difference that would be seen in microservice applications
with true nano or mega microservice anti-patterns.

ESB Usage The architecture does not contain any simple or advanced message broker
mechanism.

Hardcoded Endpoints One hardcoded IP address that is not excluded as explained
in the adopted method section was "169.254.169.254", in the deployment files to be used
to deploy the application on GCP cloud proud. However, upon further investigation it
has been seen that the mentioned IP address is a private IP address, not to be used on
the Internet, and used by the containers to access the metadata of the hosting VM, when
deployed on cloud. In this case, the IP address would be, when deployed on GCP, the
metadata server of Google Cloud Engine (GCE), to be used to collect metadata of the
VM hosting the container on cloud. Therefore, even though the repository contains one
hardcoded IP address, it is specific to one deployment scenario and is not relevant to the
hardcoded endpoint anti-pattern, which is related to the absence of a service discovery
mechanism.

No API Gateway The architecture contains one API gateway that acts as a single
entry point.

Shared Persistence In the application only one microservice uses a database and the
other microservices do not access the instantiated database directly, but the the API
definition. Hence, the system does not have shared persistence anti-pattern.

No CI/CD The repository has GitHub Actions continuous integration files that defines
unit and other tests on pushes and master releases, as a result, no CI/CD anti-pattern is
avoided.

Multiple Service Instances per Host Since each service is containerized into its own
container, the system does not force deploying multiple services on the same host.

5| Results of Research Question 2 69

No API Versioning The frontend microservice does not utilize API versioning on the
HTTP endpoints, while other microservices does not have versioned gRPC API defini-
tions.

No Health Check The system contains health check mechanisms offered by Kuber-
netes, therefore does not have the related anti-pattern.

Local Logging Even though the architecture does not contain a separate log collector
microservice, because the cloud deployment options include log aggregator mechanism,
and the microservices are supposed to be deployed to the cloud in general, it would be
inappropriate to conclude that the example project contains local logging anti-pattern.
Since the microservices are instrumented with StackDriver agent to be used for cloud
deployment, the system does not contain local logging anti-pattern.

5.3. R3: Piggy Metrics

5.3.1. Overview of the Application R3

The next examined repository belongs to the Piggy Metrics application, designed as a
financial budget application to demonstrate Spring Boot, Spring Cloud and Docker for
microservice architectures. The three microservices "statistics service", "account service"
and "notification service" constitute business domain microservices, while "auth service"
deals with user authentication, each of the four services having their own MongoDB
database instance. The implementation makes use of Spring Cloud components such as
API gateway Zuul76, service discovery server Eureka, Spring Cloud support for service
registry and Spring Cloud Config77 for centralized configuration for services. Last but
not least, the architecture contains Turbine stream aggregator78, which is used to collect
performance metrics from services via Spring Cloud Bus79 component, which in turn uses
a RabbitMQ message broker instance to collect and push metrics. The architectural
diagram is shown in Figure 5.3, modified from the diagram in the repository in a way
that reflects the current state of implementation, as the original diagram does not include
ELK log aggregator mechanism and correctly shows the current state of the architecture.

77https://github.com/Netflix/zuul
77https://cloud.spring.io/spring-cloud-config/reference/html/
78https://github.com/Netflix/Turbine
79https://spring.io/projects/spring-cloud-bus

https://github.com/Netflix/zuul
https://cloud.spring.io/spring-cloud-config/reference/html/
https://github.com/Netflix/Turbine
https://spring.io/projects/spring-cloud-bus

70 5| Results of Research Question 2

Figure 5.3: Architectural diagram of Piggy Metrics application, adapted and modified
from diagram in repository under MIT license

5.3.2. Microservices Design Patterns and Anti-Patterns in R3

The presence of each pattern and anti-pattern is displayed in Table 5.4.

5| Results of Research Question 2 71

Design Pattern ✓\– Anti-Pattern ✓\–

API Gateway ✓ Wrong Cut –

Service Mesh with Sidecar – Nano Microservice –

Service Registry & Discovery ✓ Mega Microservice –

Backends for Frontends – ESB Usage –

Asynchronous Messaging – Hardcoded Endpoints –

Database per Service ✓ No API Gateway –

API Composition – Shared Persistence –

CQRS – No CI/CD –

Event Sourcing – Multiple Service Instances per Host –

Service Instance per VM – No API Versioning ✓

Service Instance per Container ✓ No Health Check –

Serverless – Local Logging ✓

Health Check ✓

Distributed Tracing ✓

Log Aggregator –

Circuit Breaker ✓

Table 5.4: Presence of microservice design patterns and anti-patterns in repository R3

A few statements about each item below explains the related item concisely.

API Gateway The application is built around microservice framework Spring Cloud
and the architecture contains microservice architecture components and features sup-
ported by Spring Cloud framework. One such component is the Zuul API gateway com-
ponent, which is implemented by Netflix and open sourced later on as part of the set of
open source distributed system components, namely Netflix OSS. Thanks to the support
of Spring Cloud framework, Zuul API gateway is enabled by specifying the respective
module in "pom.xml" and stating the "@EnableZuulProxy" annotation in a Spring ap-
plication. The HTTP requests are automatically transmitted to underlying microservices
according to the path matching routing rules defined in "gateway.yml" file, to be applied
by the docker-compose file that instantiates all services.

Service Mesh with Sidecar The repository does not contain instruction to deploy the
application on a service mesh or to inject individual microservices with a sidecar proxy.

72 5| Results of Research Question 2

Service Registry and Discovery Another Netflix OSS component supported by
Spring Cloud framework is the Eureka service registry component. Similar to the API
gateway, service registry is enabled by a dependency in "pom.xml" and a "@EnableEureka-
Server" annotation in a Spring application. The microservices that has "@EnableDiscov-
eryClient" annotation are automatically registered to the Eureka service registry and
microservices can look up the location of other services by the service names. The loca-
tion of the Eureka instance is provided by Spring Cloud Config server to all microservice
instances, which stores the configurations for microservices locally or points to a remote
GitHub repository that stores the configurations.

Backends for Frontends The repository does not contain different implementations of
the same business or aggregator microservice instance or different endpoints for different
kinds of clients.

Asynchronous Messaging The business microservices only communicate with the
API gateway microservice, which also serves static frontend assets to be client browser,
and only communicates through synchronous HTTP requests. As a side note, the archi-
tecture contains one RabbitMQ instance not for conveying business domain related mes-
sages but for pushing application metrics to a monitoring service. Because the business
microservices only use synchronous communication, the asynchronous messaging pattern
is not utilized.

Database per Service The three business microservices "account", "notification" and
"statistics" each has their own separate MongoDB instances, which is the suggested so-
lution that offers maximum separation of tasks in terms of data storage, access and de-
ployment.

API Composition The architecture does not contain any aggregator service that com-
poses API calls to answer a complex query.

CQRS There is no separation of command and query aspects per microservice or han-
dler logic basis.

Event Sourcing The communication mechanism does not utilize notion of messages
and an event store is not present in the system.

Service Instance per Virtual Machine The repository does not contain VM images
as a readily provided deployment option.

5| Results of Research Question 2 73

Service Instance per Container The microservices are containerized into Docker
images and stored in Docker Hub to be downloaded and instantiated by applying the
provided docker-compose file.

Serverless Similar to other projects, no instructions about serverless deployment is
provided deploy the application in the repository.

Health Check The clients that register to the Eureka service registry periodically send
heartbeat signals to the Eureka instance, in order to stay registered in the registry so
that the other services can locate them. Additionaly, Eureka provides a dashboard in the
browser that displays the status of registered microservices.

Distributed Tracing The distributed tracing pattern is employed through the use of
another component of the Spring Cloud ecosystem. As with other Spring Cloud libraries,
the distributed tracing library Spring Cloud Sleuth is included as a dependency inside
the "pom.xml" file, and it automatically tags the logs with the labels "spanId" and
"traceId". The architecture does not contain a compatible trace collector service, such as a
Zipkin server. Nonetheless, because microservices are instrumented with trace generating
instruments, it is concluded that the system is ready for enabling the distributed tracing
mechanism.

Log Aggregator The application does not contain a log aggregator service.

Circuit Breaker The circuit breaker pattern is implemented through the use of Feign80

and Hystrix Spring Cloud libraries. Feign is a HTTP web client that makes implementing
microservices easier by providing a set of tools often needed in microservice architectures,
and Hystrix is, although can be used without Feign, one such tool that implements circuit
breaker pattern. Additionaly, by adding additional annotations, Hystrix provides users
with a dashboard that displays whether the communication circuit is open or closed,
number of errors and average latency of remote procedure calls.

Wrong Cut Similar to the other inspected microservice projects, the microservices are
constructed around separate business domains. Being a banking system that displays
incomes, outcomes and savings, the application consists of "accounts", "statistics" and
"notifications" microservices with additional microservices that deals with API call rout-
ing, identity, performance monitoring, configuration and service discovery. Because the

80https://spring.io/projects/spring-cloud-openfeign

https://spring.io/projects/spring-cloud-openfeign

74 5| Results of Research Question 2

core microservices are not layered as explained in the state-of-the-art section, the wrong
cut anti-pattern is avoided.

Nano or Mega Microservices Considering the scope of the application, the number
of HTTP endpoints of the three business microservices are similar and do not possess a
difference that implies the presence of nano or mega microservices anti-patterns.

ESB Usage The application does not utilize a ESB component.

Hardcoded Endpoints The source code or configuration files do not contain a hard-
coded IP address, as the architecture contains a service discovery mechanism.

No API Gateway The system makes use of Zuul API gateway, preventing the related
no API gateway anti-pattern.

Shared Persistence The business microservices only access their own MongoDB in-
stances directly, and use other REST API’s when access to other kinds of data is needed.

No CI/CD The repository uses Travis CI81 to first trigger docker image builds on
GitHub pushes, then triggers Codecov82 to carry out a code coverage test, and then
deploys the new docker images automatically using continuous deployment method, or
with one-click approach using continuous delivery option, depending on the configuration.

Multiple Service Instances per Host Similar to the most examined projects, the
microservices are containerized into docker images, hence not resulting in the absolute
need to deploy all instances on the same host.

No API Versioning The REST API endpoints do not have prefixes that implies API
versioning practice.

No Health Check The microservices make use of heartbeats to the Eureka service to
employ health check pattern.

Local Logging As stated earlier, the application does not involve a log aggregation
mechanism, causing local logging anti-pattern to exist and make log analysis more difficult.

81https://travis-ci.org
82https://about.codecov.io

https://travis-ci.org
https://about.codecov.io

5| Results of Research Question 2 75

5.4. R4: Event Sourcing & CQRS Example

5.4.1. Overview of the Application R4

The fourth examined application is an example application for event sourcing and CQRS
patterns, implemented by Eventuate83 team to demonstrate the use of their Eventuate
Tram event store, which is a database for storing events that utilizes MySQL and Kafka
under the hood. The business microservices are separated into two command and query
sides. The command-side services include "customer command-side service", "account
command-side service" and "transactions command-side service", while the query-side
services "customer query-side service" and "account query-side service" deal with query
tasks from the client. The business microservices and the API gateway are implemented
as Spring Boot applications. Figure 5.4, which is provided in the application repository,
displays the architectural diagram of the application.

Figure 5.4: Architectural diagram of Event Sourcing & CQRS example application, by
Chris Richardson under Apache 2.0 license

83https://eventuate.io

https://eventuate.io

76 5| Results of Research Question 2

5.4.2. Microservices Design Patterns and Anti-Patterns in R4

Table 5.5 presents the presence of design patterns and anti-patterns detected in this
application.

Design Pattern ✓\– Anti-Pattern ✓\–

API Gateway ✓ Wrong Cut –

Service Mesh with Sidecar – Nano Microservice –

Service Registry & Discovery – Mega Microservice –

Backends for Frontends – ESB Usage –

Asynchronous Messaging ✓ Hardcoded Endpoints ✓

Database per Service – No API Gateway –

API Composition – Shared Persistence ✓

CQRS ✓ No CI/CD ✓

Event Sourcing ✓ Multiple Service Instances per Host –

Service Instance per VM – No API Versioning ✓

Service Instance per Container ✓ No Health Check ✓

Serverless – Local Logging ✓

Health Check –

Distributed Tracing –

Log Aggregator –

Circuit Breaker –

Table 5.5: Presence of microservice design patterns and anti-patterns in repository R4

Next, a short clarification about each item is provided below.

API Gateway The application uses a Spring Boot application implemented as a API
gateway. The routing rules are defined in a "application.properties" file based on the
specifics of the HTTP request.

Service Mesh with Sidecar The repository does not include instructions to deploy
the application on a service mesh and the microservices are not injected with a sidecar
proxy that makes the application ready for service mesh option.

5| Results of Research Question 2 77

Service Registry and Discovery The architecture does not contain a separate service
registry such as Eureka and in its current state, does not utilize a infrastructure platform
such as Kubernetes. The only deployment option readily provided is through the use of
a "docker-compose" file, that is used to create a cluster (set of nodes in which containers
are instantiated), and a network that is useful only in the case the cluster is created on
the same physical machine. In other words, the service discovery mechanism provided
in this application in its current state only works if the entire application is deployed
to the same host. Because the application does not utilize a separate service registry
and discovery mechanism or one from underlying infrastructure, the service registry and
discovery pattern is not employed.

Backends for Frontends The system does not have different aggregators, different
implementations or endpoints of microservices depending on the kind of the client.

Asynchronous Messaging The microservices employ the communication through mes-
sages and events indirectly by means of a separate event store, which is similar to a mes-
sage broker but implemented also a persistent data store that stores and relays events as
abstractions of data. The pattern that captures this mechanism is called event sourcing,
and since event sourcing is one way of embracing asynchronous messaging pattern, this
application can be said to also have the asynchronous messaging pattern.

Database per Service In this architecture the persistence tasks are delegated to the
event store and individual microservice do not make use additional databases, except for
two query services that create view-only schemes in MongoDB. Because the databases do
not have their own database instances, database per service pattern is not utilized.

API Composition Because the system does not have aggregator or query-specific mi-
croservices, the API composition pattern is not utilized.

CQRS The business domain microservices are separated into command and query
microservices. The microservices that handle the command duties include "customer
command-side", "account command-side" and "transactions command-side" services, while
there are "customer query-side" and "account query-side" services that execute query
needs. As the name of the project suggests, the application is designed to separate the
two tasks to the full extent and create independent microservices for command and query
side. For this reason, the CQRS pattern can be said to be entirely adopted in this appli-
cation.

78 5| Results of Research Question 2

Event Sourcing As previously stated, the microservices communicate through events
and delegate persistence needs to an independent event store instance. The application
uses Eventuate Local84 component for the event store instance, which is an open source
event store built using MySQL and Kafka. Similar to CQRS pattern, the application is
built to be an example case for event sourcing pattern, specifically showcasing an open
source event store and a SaaS version to be deployed on AWS, therefore employs the event
sourcing pattern.

Service Instance per Virtual Machine The repository does not contain readily-built
VM images as a deployment option.

Service Instance per Container The individual microservices are containerized into
separate Docker images, making deployment using containers the go-to option for the
application.

Serverless In its current state, the repository does not contain instructions to deploy
the application using the serverless approach.

Health Check The microservices offer "/health" endpoints thanks to the Spring Boot
Actuator85 library. However, the architecture lacks an infrastructure or service discovery
server that pings the endpoints during run-time to ensure the liveness of services or take
action accordingly. For this reason, the health check pattern is not utilized.

Distributed Tracing The microservices are not instrumented with trace generating
libraries and there does not exists a trace collector service.

Log Aggregator Similarly, the system does not contain a log aggregation mechanism.

Circuit Breaker The microservices do not make use of circuit breaker libraries offered
by Spring Cloud framework and there is no infrastructure like a service mesh that readily
offers the circuit breaking mechanism.

Wrong Cut By separating the duties in terms of business domains and not using tech-
nical layered architecture, the wrong cut anti-pattern is preventing in this application.

84https://github.com/eventuate-local/eventuate-local
85https://docs.spring.io/spring-boot/docs/1.5.22.RELEASE/reference/html/production-ready-

endpoints.html

https://github.com/eventuate-local/eventuate-local
https://docs.spring.io/spring-boot/docs/1.5.22.RELEASE/reference/html/production-ready-endpoints.html
https://docs.spring.io/spring-boot/docs/1.5.22.RELEASE/reference/html/production-ready-endpoints.html

5| Results of Research Question 2 79

Nano or Mega Microservices The system consists of three command-handling "cus-
tomer", "account" and "money transfer" microservices, and two query-handling "cus-
tomer" and "account" microservices, in addition to an API gateway and an event store.
Regarding the scope of the microservices, there is no difference among microservice that
would result in a nano or mega microservice anti-pattern.

ESB Usage The architecture does not contain an ESB for communication purposes.

Hardcoded Endpoints The implementation contains hardcoded endpoints anti-pattern
by specifying host addresses of all five microservices as "localhost" inside the "appli-
cation.properties" file, which API gateway component uses to configure the routing of
incoming requests.

No API Gateway The architecture makes use of a Spring Boot application as API
gateway component, hence avoiding the no API gateway anti-pattern.

Shared Persistence The persistence needs of all microservices is handled by the same
event store instance. However, this design choice is related to the particular persistence
mechanism selected for the application, which is using the event source pattern. For this
reason, the common use of the same event store instance is not regarded as the shared
persistence anti-pattern, which usually implies using a traditional database instance for
multiple microservices. Nonetheless, because the two query-side services make use of a
single MongoDB instance in the sense that they create their own data models tailored for
queries results in shared persistence anti-pattern, as the failure in the shared database
instance might effect the both query services.

No CI/CD The repository does not contain a CI/CD mechanism.

Multiple Service Instances per Host Also with this application, the microservices
are containerized, preventing the multiple service instances per host deployment anti-
pattern.

No API Versioning The REST endpoints do not contain any API versioning prefixes.

No Health Check Although the microservices provide "/health" endpoints, no health
check mechanism is implemented.

80 5| Results of Research Question 2

Local Logging As stated in the relative pattern, the absence of log aggregation mech-
anism results in local logging anti-pattern in this application.

5.5. R5: Food-to-Go Application

5.5.1. Overview of the Application R5

The fifth examined application is the Food-to-Go (FTGO) application, implemented as
a food ordering platform to be used by both customers and restaurants. The application
illustrates a number of microservice design patterns since it is also implemented as an
example of design patterns explained in his book by software architect Chris Richardson86.
The business microservices include "accounting", "consumer", "restaurant", "delivery",
"order" and "order history". For message broker purposes, Eventuate CDC (Change-
Data-Capture)87 framework is used, which utilizes Kafka, Apache Zookeeper and MySQL
under the hood. In addition, although omitted from set of patterns to be examined in this
study, saga pattern is implemented using Eventuate Tram88 framework for coordinating
distributed business transaction across multiple microservices. The persistence tasks of
six microservices are handled by one MySQL database instance, while "order history"
service uses a DynamoDB89 Local (downloadable version of DynamoDB) SQL database
instance. Last but not least, a Zipkin instance in included in the application to collect
trace data from API gateway and the order service. The architectural diagram of the
application is illustrated in Figure 5.5.

86https://www.chrisrichardson.net
87https://eventuate.io/docs/manual/eventuate-tram/latest/cdc-configuration.html
88https://eventuate.io/abouteventuatetram.html
89https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

https://www.chrisrichardson.net
https://eventuate.io/docs/manual/eventuate-tram/latest/cdc-configuration.html
https://eventuate.io/abouteventuatetram.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

5| Results of Research Question 2 81

Figure 5.5: Architectural diagram of Food-to-Go application

5.5.2. Microservices Design Patterns and Anti-Patterns in R5

The presence of each pattern and anti-pattern is displayed in Table 5.6.

82 5| Results of Research Question 2

Design Pattern ✓\– Anti-Pattern ✓\–

API Gateway ✓ Wrong Cut –

Service Mesh with Sidecar – Nano Microservice –

Service Registry & Discovery ✓ Mega Microservice –

Backends for Frontends – ESB Usage –

Asynchronous Messaging ✓ Hardcoded Endpoints -

Database per Service – No API Gateway –

API Composition – Shared Persistence ✓

CQRS ✓ No CI/CD ✓

Event Sourcing ✓ Multiple Service Instances per Host –

Service Instance per VM – No API Versioning ✓

Service Instance per Container ✓ No Health Check –

Serverless – Local Logging ✓

Health Check ✓

Distributed Tracing ✓

Log Aggregator –

Circuit Breaker –

Table 5.6: Presence of microservice design patterns and anti-patterns in repository R5

A short comment about each design pattern and anti-pattern is provided below.

API Gateway The implementation of the FTGO application uses Spring Cloud Gate-
way90 component as the API gateway of the application. The routing rules are specified in
the source code using the related route builder classes of Spring Cloud Gateway according
to the specifics of the HTTP requests. Additionally, for exemplary purposes, the reposi-
tory contains another API gateway implemented by an API query language GraphQL91,
which defines APIs using types and fields, unlike REST APIs that define endpoints.

Service Mesh with Sidecar The repository does not contain instructions to deploy
the application on a service mesh and there is no microservices detected that has a sidecar
injected.

90https://spring.io/projects/spring-cloud-gateway
91https://graphql.org

https://spring.io/projects/spring-cloud-gateway
https://graphql.org

5| Results of Research Question 2 83

Service Registry and Discovery The application uses the service registry and discov-
ery mechanism of Kubernetes. Apart from this option, the architecture does not contain
a service registry microservice.

Backends for Frontends The application does not contain different versions of mi-
croservices, aggregators or API gateways depending on the client.

Asynchronous Messaging The architecture uses Eventuate Tram framework, MySQL
and Apache Kafka to implement asynchronous messaging pattern. Eventuate Tram frame-
work makes it easier for microservices to publish and consume domain events and com-
mands, with the help of a compatible message broker such as Kafka for message exchange
and a compatible database such as MySQL for message persistence purposes.

Database per Service The application contains one DynamoDB Local instance that
"order history" service uses, while the remaining six business microservices access to their
own database schemas in only one MySQL instance. According to the criteria set in this
study, this is not the best practice for data persistence needs for microservices, therefore
the database per service pattern is not fully utilized.

API Composition The architecture does not contain separate API aggregator services
although the complex business logic might involve composition of responds from multiple
services.

CQRS The "order history" microservice is designed to consume domain events pub-
lished by other microservices and update the view-only database created in DynamoDB
Local instance. In other words, while other business microservices both handle write and
read requests from client, the "order history" service does not serve any write requests
directly from the user and acts as a query-only microservice. Although the CQRS pattern
is not utilized for all kinds of microservices, the "order" and "order history" microservices
can be counted as an example of CQRS mechanism.

Event Sourcing The event sourcing pattern is utilized in the "account" microservice,
which processes events stored in the event store Eventuate Local by making use of event
processing methods provided by Eventuate Client92 framework for Java language.

Service Instance per Virtual Machine Similar to other repositories, there are no
instructions or readily built VM images to deploy microservices as virtual machine images.

92https://eventuate.io/docs/java/eventuate-client-framework-for-java.html

https://eventuate.io/docs/java/eventuate-client-framework-for-java.html

84 5| Results of Research Question 2

Service Instance per Container The business microservices, API gateway and in-
frastructure microservices are containerized into Docker images.

Serverless The repository does not contain instructions to deploy the application on a
serverless platform.

Health Check With the help of Spring Boot Actuator library, which implements
"/health" endpoints for microservices automatically, and Kubernetes probing to the im-
plemented health endpoints, the health check pattern is utilized.

Distributed Tracing The distributed tracing pattern is implemented for exemplary
purposes to show the communication only between API gateway and "order" service.
The instrumentation library used to generate traces is the Spring Cloud Sleuth93 library,
while a Zipkin server is chosen to collect the traces and present trace data with a user
interface. Even though not all microservices are instrumented, the presence of intrumen-
tation libraries and trace collector service shows that the distributed tracing pattern is
employed to a considerable extent.

Log Aggregator In the architecture there is not any log aggregator service.

Circuit Breaker Similarly, there is no circuit breaker library or the use of a circuit
breaking infrastructure feature that suggests the presence of circuit breaker pattern.

Wrong Cut The business logic is separated into "consumer", "restaurant", "order",
"kitchen", "accounting", "delivery" and "order history" microservices and not into tech-
nical layers, hence the wrong cut anti-pattern is avoided.

Nano or Mega Microservices Taking into account the fact that this application
is implemented as an example of a number of design patterns, the complex business
logic, different communication and persistence mechanisms result in a fairly complex
application. However, noting that the nano or mega microservice anti-patterns are related
to the difference in the relative share of business tasks among microservices, there is
no such unequal distribution of business tasks that would suggest the presence of the
mentioned anti-patterns.

ESB Usage The implementation does not include an ESB component.

93https://spring.io/projects/spring-cloud-sleuth

https://spring.io/projects/spring-cloud-sleuth

5| Results of Research Question 2 85

Hardcoded Endpoints The application uses service discovery mechanism of Kuber-
netes and does not contain any hardcoded endpoints.

No API Gateway Thanks to the use of Spring Cloud Gateway component, no API
gateway anti-pattern is prevented in this application.

Shared Persistence Except the "order history" service, other six microservices access
to the same MySQL database instance, even though they create their own schemes. As
previously said, according to the criteria set in this study, the absence of separate database
instances is count as shared persistence anti-pattern, such as in this case.

No CI/CD The repository contains CircleCI94 configuration files as that enables con-
tinuous integration.

Multiple Service Instances per Host Having separate Docker images for individual
microservices prevents the absolute need to deploy all services to the same host.

No API Versioning There is no API versioning detected as part of the API endpoints,
resulting in the presence of this anti-pattern.

No Health Check The use of Spring Boot Actuator and Kubernetes health check
mechanisms prevents no health check anti-pattern.

Local Logging The absence of a log aggregation mechanism results in local logging
anti-pattern in this application.

5.6. R6: CoolStore Microservices

5.6.1. Overview of the Application R6

The sixth examined application is the CoolStore microservices application, which is a sim-
ple e-commerce application that is implemented to demonstrate primarily the utilization
of Microsoft Tye95 tool and Dapr96 microservice run-time for microservice applications
implemented using .NET framework. The architecture consists of five business services,
namely the "identity app", "inventory app", "product catalog app", "shopping app" and

94https://circleci.com
95https://github.com/dotnet/tye
96https://dapr.io

https://circleci.com
https://github.com/dotnet/tye
https://dapr.io

86 5| Results of Research Question 2

"sale app", with the addition of an API gateway and frontend web application. All of
the services are instrumented with Dapr sidecars, which are similar to service mesh side-
car, but help with developing microservice applications by providing service invocation,
state management and such, rather than focusing on the infrastructure related tasks.
The architectural diagram of the system is shown in Figure 5.6, which is provided in the
repository and displayed below as it is.

Figure 5.6: Architectural diagram of CoolStore web application, by Vietnam Developer
Group under MIT license

5.6.2. Microservices Design Patterns and Anti-Patterns in R6

The presence of design patterns and anti-patterns are indicated in Table 5.7.

5| Results of Research Question 2 87

Design Pattern ✓\– Anti-Pattern ✓\–

API Gateway ✓ Wrong Cut –

Service Mesh with Sidecar ✓ Nano Microservice –

Service Registry & Discovery ✓ Mega Microservice –

Backends for Frontends – ESB Usage –

Asynchronous Messaging ✓ Hardcoded Endpoints ✓

Database per Service – No API Gateway –

API Composition – Shared Persistence ✓

CQRS – No CI/CD –

Event Sourcing – Multiple Service Instances per Host –

Service Instance per VM – No API Versioning ✓

Service Instance per Container ✓ No Health Check –

Serverless – Local Logging ✓

Health Check ✓

Distributed Tracing ✓

Log Aggregator –

Circuit Breaker –

Table 5.7: Presence of microservice design patterns and anti-patterns in repository R6

A short description about each item is provided below.

API Gateway The architecture contains an API gateway built with .NET framework
that routes incoming requests to four business domain microservices, with rules specified
in the source code in "Startup.cs" file in API Gateway folder.

Service Mesh with Sidecar The repository contains configuration files that injects
Istio sidecars to services when the application is deployed on Azure Kubernetes Service and
the service mesh Istio is installed. Additionally, the application uses Dapr run-time, which
is similar to a service mesh in injecting sidecars and controlling via a control plane, but
focuses more on aiding developers with business related tasks, such as service invocation,
state management and publish/subscribe mechanism97.

97https://docs.dapr.io/concepts/overview/

https://docs.dapr.io/concepts/overview/

88 5| Results of Research Question 2

Service Registry and Discovery The application utilizes Tye tool, which aims to
simplify microservices implementation and deployment by creating Docker files, images
and pushing them to Docker Hub, generating Kubernetes files (called "manifests) and
deploying applications to Kubernetes, in a way that works the same or require minimal
configuration for both local and cloud deployment options98. For service registry and dis-
covery tasks, after deploying the application using "tye run" command to apply rules in
"tye.yaml", Tye deploys the services on Kubernetes and uses Kubernetes service registry
and discovery under the hood. Service invocation between services is handled by combi-
nation of Dapr sidecars and Tye tool, which is enabled by specifying Dapr extension in
"tye.yaml" file, which is explained more using a separate project in related directory of
Tye documentation99.

Backends for Frontends The implementation does not contain different services or
aggregators for different kinds of clients.

Asynchronous Messaging The Dapr run-time provides publish/subscribe mechanism
for events by making use of one of the compatible message brokers, such as Redis store
in this case.

Database per Service The implementation makes use of one PostgreSQL database
instance, hence database per service pattern is not employed.

API Composition The architecture does not contain any aggregator service.

CQRS There is no division of tasks into command and query services in the project.

Event Sourcing Similarly, the architecture does not involve an event store that enables
event sourcing pattern.

Service Instance per Virtual Machine There is no readily built VM images for this
deployment pattern to be employed.

Service Instance per Container The microservices are containerized into Docker
images to be instantiated using Docker Compose, Kubernetes or Azure AKS.

Serverless The repository does not contain instructions for serverless deployment.

98Service discovery of Tye in more detail
99https://github.com/dotnet/tye/blob/main/docs/recipes/dapr.md

https://github.com/dotnet/tye/blob/main/docs/reference/service_discovery.md
https://github.com/dotnet/tye/blob/main/docs/recipes/dapr.md

5| Results of Research Question 2 89

Health Check The application uses health check feature of .NET framework and prob-
ing function of gRPC health check utility73 found in R2, specified to be executed by
Kubernetes to the "/healthz" endpoints.

Distributed Tracing The Dapr sidecars that run along the microservices generate
trace data, while a compatible trace collector service, Zipkin server in this case, collects
the traces and provides users with an interface for querying traces.

Log Aggregator The architecture uses Serilog structured logger for logging events and
Dapr provides ability to send the logs to a compatible log collector, such as Fluentd server
or Azure OMS cloud service. However, because the architecture does not contain a log
aggregator in its current state, the log aggregator pattern is not utilized.

Circuit Breaker The application does not apply circuit breaker pattern through li-
braries or as an enabled capability through underlying infrastructure.

Wrong Cut The application is intended to be an e-commerce application and business
microservices are separated into "identity", "inventory", "product catalog", "shopping
cart" and "sale" microservices. Since the application is not separated into technical
layers, the wrong cut anti-pattern is avoided.

Nano or Mega Microservices Regarding the division of business tasks and the fact
that each service has three or four API endpoints, there is no difference in size between
microservices that resembles nano or mega microservice anti-pattern.

ESB Usage The architecture does not contain any ESB component.

Hardcoded Endpoints The implementation contains IP addresses such as "0.0.0.0"
and "127.0.0.1" as part of Helm values, however these variables are not used while replac-
ing variables with actual values in creating Kubernetes manifests. The application uses
service discovery mechanism of Tye and Kubernetes in case the application is deployed
using Tye, which does not utilize any hardcoded endpoints in this case. In other cases
where the microservices are instantiated one-by-one in the same host, the folders of each
service contain "appsettings.json" files that have key-value pairs, pointing to, for example,
identity service by specifying "http://localhost:5001". Because of these cases, we could
state that the implementation contains hardcoded endpoints that can be used to locate
services, in case the actual service discovery mechanism by Tye and Kubernetes are not
utilized in the deployment of application.

90 5| Results of Research Question 2

No API Gateway Because of the presence of an API gateway, this anti-pattern is
avoided.

Shared Persistence In the "tye.yaml", which is a configuration file for Tye deployment
tool, the same connection string to PostgreSQL database instance is used by "inventory",
"product catalog" and "sale" microservices. According to the detection criteria, the ap-
plication hence contains shared persistence anti-pattern.

No CI/CD The repository includes a Travis CI file that triggers Docker image builds
and pushes new images to Docker Hub upon accepted pull requests on master branch.

Multiple Service Instances per Host Thanks to containerisation of services, there
is no constraint that would cause deployment of all services on the same host.

No API Versioning The endpoints do no contain API version numbers.

No Health Check The application implements and pings health check endpoints.

Local Logging The absence of a log aggregator service results in local logging anti-
pattern in this application.

5.7. R7: Cinema Microservices

5.7.1. Overview of the Application R7

The next examined application is cinema microservice application, which consists of an
API gateway, business microservices "booking", "cinema catalog", "movies", "notifica-
tion" and "payment", and a single MongoDB instance shared by services, without any
frontend service that provides a graphical UI to users. Unlike other examined applications
in this study, the last commit on this repository has taken place in 2017, which suggests
a "red flag" from a software engineering perspective since it has not been maintained
for at least four years. Indeed, the project does not makes use of modern solutions such
as Kubernetes and utilizes Docker Swarm, a cluster management tool for Docker im-
ages that is different from Docker "swarm mode" and not actively maintained, as stated
in an official announcement100. In addition, the implementation of the project is not
quite self-explanatory and the blog post provided for explanation is outdated and not

100https://docs.docker.com/engine/swarm/

https://docs.docker.com/engine/swarm/

5| Results of Research Question 2 91

clear. Nonetheless, even though this project is not one of the reference projects from
well-known software companies or good developer teams, this project is included in this
study in order to take a look at changes over the years in understanding of microservice
principles and used libraries and tools. Figure 5.7 shows the architectural diagram of the
application.

Figure 5.7: Architectural diagram of Cinema microservices application

5.7.2. Microservices Design Patterns and Anti-Patterns in R7

The presence of each design pattern and anti-pattern is provided in Table 5.8.

92 5| Results of Research Question 2

Design Pattern ✓\– Anti-Pattern ✓\–

API Gateway ✓ Wrong Cut –

Service Mesh with Sidecar – Nano Microservice –

Service Registry & Discovery ✓ Mega Microservice –

Backends for Frontends – ESB Usage –

Asynchronous Messaging – Hardcoded Endpoints ✓

Database per Service – No API Gateway –

API Composition – Shared Persistence ✓

CQRS – No CI/CD ✓

Event Sourcing – Multiple Service Instances per Host –

Service Instance per VM – No API Versioning ✓

Service Instance per Container ✓ No Health Check ✓

Serverless – Local Logging ✓

Health Check –

Distributed Tracing –

Log Aggregator –

Circuit Breaker –

Table 5.8: Presence of microservice design patterns and anti-patterns in repository R7

Furthermore, a short comment about each item has been provided below.

API Gateway The application contains an API gateway implemented in Node.js that
routes requests to five business microservices. The API definitions are specified using
RAML101 API definition tool in the "api.raml" files of service folders, which is consumed
by API gateway for correct routing.

Service Mesh with Sidecar The implementation does not contain sidecar proxies or
instructions to deploy application on a service mesh.

Service Registry and Discovery The architecture uses service discovery mechanism
of Docker Swarm mode, which is similar to Kubernetes in providing multi-host networking
and embedded DNS server.

101https://raml.org

https://raml.org

5| Results of Research Question 2 93

Backends for Frontends Similarly, there is no different implementations of services
or aggregators depending on the kind of the client.

Asynchronous Messaging The microservices do not use events and message queues
but only use synchronous HTTP calls.

Database per Service The application contains one MongoDB instance with two
replica sets, which holds the same data for redundancy and high-availability purposes.
Because the microservices do not have their own database instances, the database per
service pattern is not employed.

API Composition The application does not contain a separate API composer service.

CQRS The microservices are not grouped into command and query groups in this
application.

Event Sourcing Similarly, the system does not involve an event store.

Service Instance per Virtual Machine The repository does not contain readily built
VM images.

Service Instance per Container The repository does not contain readily built Docker
images, however the deployment scripts build one Docker image per service, hence the
service instance per container pattern can be said to be employed.

Serverless There is no instructions for serverless deployment in the repository.

Health Check No manual or readily-provided health check mechanisms are detected
in the application.

Distributed Tracing Similarly, the services are not instrumented with trace generator
mechanisms.

Log Aggregator The architecture does not include a log aggregator service or struc-
tured log creation that can easily integrate with such a service.

Circuit Breaker No circuit breaker feature is implemented or used from libraries or
infrastructure services.

94 5| Results of Research Question 2

Wrong Cut The system is intended to be movie querying and ticket purchasing system,
so the implemented microservices are "movie", "cinema catalog", "booking", "payment"
and "notification", with an API gateway. Because of the absence of the technical layers
related to domain separation tasks, wrong cut anti-pattern is avoided in this example
application.

Nano or Mega Microservices The scope of the application is quite small and each
microservice handles two or three REST endpoints. For this reason, there is no nano or
mega microservice anti-pattern detected in this application.

ESB Usage The implementation does not contain any ESB component.

Hardcoded Endpoints The connection to Docker host and database servers are con-
structed using hardcoded private IP addresses "tcp://192.168.99.100:2376" and "192.168.99
.100:27017, 192.168.99.101:27017 and 192.168.99.102:27017" in the implementation and
integration test code.

No API Gateway The use of an API gateway prevents no API gateway pattern in
this application.

Shared Persistence The application contains one MongoDB instance, shared by all
five business microservices, therefore constitutes an example of shared persistence anti-
pattern.

No CI/CD The repository does not make use of any CI/CD automation tool.

Multiple Service Instances per Host Similar to other applications, containerisation
of services prevent multiple service instances per host anti-pattern.

No API Versioning There is no API version prefixes detected in the definition of
endpoints.

No Health Check The absence of a health check mechanism results in no health check
anti-pattern for this application.

Local Logging Similarly, the service logs are not sent to a log collector service, hence
the application contains the local logging anti-pattern.

5| Results of Research Question 2 95

5.8. R8: Dotnetcore Insurance Microservices

5.8.1. Overview of the Application R8

The eight examined project is a simplified insurance sales application implemented by Al-
tkom Software102 using .NET framework and compatible microservice components. The
system consists of "document", "dashboard", "product", "pricing", "payment", "policy"
and "policy search" business services, with additional "chat" and "auth" services, a Vue.js
frontend app, an API gateway for routing, a RabbitMQ instance for message broker pur-
poses. For persistence tasks, one single PostgreSQL instance is utilized for all services.
The architectural diagram is shown in Figure 5.8, which is provided in the related repos-
itory of the application.

Figure 5.8: Architectural diagram of Dotnetcore insurance application, by Altkom Soft-
ware under Apache 2.0 license

5.8.2. Microservices Design Patterns and Anti-Patterns in R8

The presence of each design pattern and anti-pattern is presented in Table 5.9.

102https://github.com/asc-lab

https://github.com/asc-lab

96 5| Results of Research Question 2

Design Pattern ✓\– Anti-Pattern ✓\–

API Gateway ✓ Wrong Cut –

Service Mesh with Sidecar – Nano Microservice –

Service Registry & Discovery ✓ Mega Microservice –

Backends for Frontends – ESB Usage –

Asynchronous Messaging ✓ Hardcoded Endpoints –

Database per Service – No API Gateway –

API Composition – Shared Persistence ✓

CQRS ✓ No CI/CD –

Event Sourcing – Multiple Service Instances per Host –

Service Instance per VM – No API Versioning ✓

Service Instance per Container ✓ No Health Check ✓

Serverless – Local Logging ✓

Health Check –

Distributed Tracing –

Log Aggregator –

Circuit Breaker –

Table 5.9: Presence of microservice design patterns and anti-patterns in repository R8

In the following pages, we provide short explanations about each microservice pattern
and anti-pattern in the application.

API Gateway The architecture contains an API gateway built with .NET framework
and named Ocelot103, which makes it easier to integrate with .NET components. Ocelot
routes incoming HTTP requests to business microservices according to the rules specified
in the JSON file "ocelot.json".

Service Mesh with Sidecar The repository does not contain instructions to inject
sidecars or deploy the application on a service mesh.

Service Registry and Discovery The application uses Eureka service discovery server
and discovery clients for microservices that registers microservices to the Eureka discovery

103https://github.com/ThreeMammals/Ocelot

https://github.com/ThreeMammals/Ocelot

5| Results of Research Question 2 97

server. For this project, Steeltoe104 discovery client is used on microservices, which is a
.NET discovery client implementation that is compatible with Eureka discovery server.

Backends for Frontends There is no custom aggregators or microservices imple-
mented regarding the particular kind of the client.

Asynchronous Messaging The implementation contains a RabbitMQ message broker
instance that relays business domain events between microservices.

Database per Service The architecture contains one PostgreSQL database instance
which is accessed by multiple business microservices, therefore does not qualify for the
actual database per service pattern in this application.

API Composition There is no API composer microservice found in this project.

CQRS Similar to the examined project R2, the segregation of command and query
tasks is implemented not on the entire application level but inside microservices with
different handlers for the two tasks, by making use of MediatR library, which helps imple-
ment CQRS pattern in .NET microservices. For example, the "policy" service separates
"create policy" command from "get policy details" query, by utilizing different data mod-
els required for these two tasks. Similarly, the "product" service separates commands
that creates new products or changes the state of the products, from queries that return
product details by product ID. Additionally, there are also services that utilizes only the
command or query related tasks. For example, the "dashboard" service only conducts
queries that returns information about sales of the staff, while "pricing" service only
executes price calculation commands based on a number of parameters.

Event Sourcing In this architecture there is no event store used to implement event
sourcing pattern. As a side note, the microservices use MartenDB105 tool, which is similar
to an ORM in making it easier to talk to database entities by making use of classes, but
also offers features such as enabling PostgreSQL databases to be used as a document
database or an event store. However, in this application, MartenDB is not used as an
event store but as an intermediary for PostgreSQL by microservices.

Service Instance per Virtual Machine There is no readily built VM images or
necessary instructions in the repository.

104https://github.com/SteeltoeOSS/Steeltoe
105https://github.com/JasperFx/marten

https://github.com/SteeltoeOSS/Steeltoe
https://github.com/JasperFx/marten

98 5| Results of Research Question 2

Service Instance per Container The business and infrastructure microservices are
containerized in this application and can be instantiated by applying .yml files by Docker
Compose.

Serverless The repository does not contain instructions for serverless deployment.

Health Check No manual or built-in health check mechanism is found in the applica-
tion.

Distributed Tracing The microservices are not instrumented and the architecture
does not contain a trace collector service.

Log Aggregator Although the "policy" and "pricing" services use Serilog that can be
used with a log aggregator, the architecture does not contain a log aggregator service.

Circuit Breaker The "policy" microservice, by making use of Polly106 circuit breaker
library for .NET services, implements a simple retry logic in the "PricingClient.cs" file.
In case an "HttpRequestException" occurs, the policy service is configured to retry up
to three times the request. However, because the full circuit breaker feature is not used
in this service or any other service, the circuit breaker pattern is not utilized in this
application.

Wrong Cut The application is intended to be a portal for insurance policy salespeople,
hence the designed microservices are "document", "dashboard", "product", "pricing",
"payment", "policy" and "policy search" services. Because the system is divided regarding
business domains and not technical layers, the wrong cut anti-pattern is prevented in this
application.

Nano or Mega Microservices Regarding the scope of the application, there is no
imbalance detected about the amount of tasks dedicated to each service that would result
in a nano or mega microservice anti-pattern.

ESB Usage The architecture does not contain a ESB component for communication
purposes.

106https://github.com/App-vNext/Polly

https://github.com/App-vNext/Polly

5| Results of Research Question 2 99

Hardcoded Endpoints Although the microservices have a number of "launchSet-
tings.json" files that points to "localhost" and specific port numbers, those files are in-
tended to be used only in development stage by .NET tools (such as Visual Studio Code
or dotnet-cli) and the setting files used in containerized deployment using Docker does
not contain hardcoded endpoints to specific microservices.

No API Gateway The application uses Ocelot API gateway which prevents no API
gateway anti-pattern.

Shared Persistence The business microservices access the same single PostgreSQL
instance, hence become an example of shared persistence anti-pattern in this study.

No CI/CD The repository makes use of Travis CI to instantiate database and run tests
upon accepted pull requests.

Multiple Service Instances per Host Thanks to containerization of services, there
is no absolute need to deploy multiple services to the same host.

No API Versioning; The application does not utilize API versioning to define API’s
of microservices in a versioned manner.

No Health Check The implementation is an example of no health check anti-pattern
since no health mechanism is detected in the application.

Local Logging Likewise, the implementation becomes an example of local logging since
the architecture lacks a log aggregator service.

5.9. R9: Elgris Microservice To-Do App Example

5.9.1. Overview of the Application R9

The next examined application is an example to-do app, implemented by individual con-
tributors, for exemplary purposes for microservices architecture. Similar to R7, the project
is not actively maintained since 2018, yet it uses Docker Compose and Kubernetes, mak-
ing it easier for inspection since it provides more modern organization of services. The
systems contains a frontend service implemented in Vue.js and also takes on routing tasks
as an API gateway. The business services include "Auth API" service in Go, "Users API"
in Spring Boot, "TODOs API" in Node.js and "log message processor" in Python, with

100 5| Results of Research Question 2

a Redis instance used only between "TODOs API and "log message processor". Last but
not least, the system includes a Zipkin server instance that collect traces to construct
distributed tracing data. The architectural diagram of the application is illustrated in
Figure 5.9, adapted from the application repository.

Figure 5.9: Architectural Diagram of Example To-Do Application

5.9.2. Microservices Design Patterns and Anti-Patterns in R9

The presence of design patterns and anti-patterns are indicated in Table 5.10.

5| Results of Research Question 2 101

Design Pattern ✓\– Anti-Pattern ✓\–

API Gateway ✓ Wrong Cut –

Service Mesh with Sidecar – Nano Microservice –

Service Registry & Discovery ✓ Mega Microservice –

Backends for Frontends – ESB Usage –

Asynchronous Messaging ✓ Hardcoded Endpoints ✓

Database per Service – No API Gateway –

API Composition – Shared Persistence –

CQRS – No CI/CD ✓

Event Sourcing – Multiple Service Instances per Host –

Service Instance per VM – No API Versioning ✓

Service Instance per Container ✓ No Health Check ✓

Serverless – Local Logging ✓

Health Check –

Distributed Tracing ✓

Log Aggregator –

Circuit Breaker –

Table 5.10: Presence of microservice design patterns and anti-patterns in repository R9

Next, we provide a short explanation about each pattern and anti-pattern below.

API Gateway The architecture contains a frontend service component written in Vue.js
that also acts as an API gateway by routing requests to "auth" and "to-do" services.

Service Mesh with Sidecar The microservices do not use sidecar proxies and there
is no instruction provided to deploy the application on a service mesh.

Service Registry and Discovery The service registry and discovery tasks are dele-
gated to Kubernetes by defining the "deployment" and "service" Kubernetes objects per
microservice basis.

Backends for Frontends In terms of responses to requests, there is no differentiation
based on the kind of the requesting client.

102 5| Results of Research Question 2

Asynchronous Messaging The architecture contains a Redis instance for demonstrat-
ing message queuing mechanism in a microservice application. Basically, it acts as a
message buffer between "to-do" and "log message processor" services.

Database per Service None of the microservices in this example use a database for
persistence purposes.

API Composition The architecture does not contain a microservice that is imple-
mented solely for composing API’s of different services.

CQRS There is no separation of the two tasks in microservice or handler level in this
application.

Event Sourcing The application does not use notion of events and does not contain
an event store.

Service Instance per Virtual Machine The microservices are not built into VM
images in this repository.

Service Instance per Container Similar to other examples, the microservices are
built into Docker images to be instantiated by Docker Compose, Kubernetes or any other
appropriate tool.

Serverless The repository does not contain instructions for serverless deployment pat-
tern.

Health Check There is no manual or automatically featured health endpoint in services
and no probing mechanism defined in Kubernetes .yaml files.

Distributed Tracing All of the microservices are instrumented with Zipkin trace gen-
erator libraries in the programming languages they are written, and the architecture
contains a Zipkin trace collector server that collects generated traces to display trace data
in its UI.

Log Aggregator Although one microservice is named as "message log processor", it
only prints a subset of log messages generated by one single "to-do" microservice. Because
the microservices lack structured log generation and an appropriate log collector, this
example application does not utilize log aggregator pattern.

5| Results of Research Question 2 103

Circuit Breaker No circuit breaker mechanism code or library is detected in this ap-
plication.

Wrong Cut The application is intended as a To-Do creator with simple authentication
mechanism. Accordingly, the designed microservices are "frontend", "auth", "users",
"to-do" and "message log processor", with an additional Redis instance used as message
queue. Although there are only two actual business microservices, namely "users" and
"to-do", and the remaining microservices are either microservice architecture components
such as "frontend" and "message queue" or cross-cutting services such as "auth", in
our interpretation, it would be incorrect to conclude that the application contains the
wrong cut anti-pattern, since the small scope of the application resulted in a few business
microservices and the architecture is not layered into three main UI, logic and persistence
layers seen in microservice applications that have the wrong cut anti-pattern.

Nano or Mega Microservice Similarly,the "message log processor" would be a can-
didate for nano microservice anti-pattern in a regular microservice application, however,
the small scope of this example makes it incorrect, in our interpretation, to conclude that
the example contains a nano microservice anti-pattern.

ESB Usage The architecture does not contain a ESB component.

Hardcoded Endpoints Although the application uses service registry and discovery
mechanism of Kubernetes, the source code contains the hardcoded IP addresses followed
by the port number, such as "http://127.0.0.1:8081" in "index.js" file of frontend to point
to the "auth" service, in case Kubernetes is used not for deployment and all microservices
are deployed to the same host. Because the address "127.0.0.1" is used to point to another
service in the source code, this case constitutes as an example of hardocded endpoints
anti-pattern.

No API Gateway The presence of frontend service that acts like an API gateway
prevents no API gateway anti-pattern by serving a single entry point to the microservices.

Shared Persistence Because of the lack of any persistence mechanism, the shared
persistence anti-pattern is not detected in this application.

No CI/CD The repository does not use any CI/CD tool for automation purposes.

104 5| Results of Research Question 2

Multiple Service Instance per Host There is no absolute need for multiple service
instance per host anti-pattern to occur in this application, thanks to individual container-
ization of microservices.

No API Versioning The endpoints of services do not utilize API versioning, hence
causing this application to be an example of no API versioning anti-pattern.

No Health Check The lack of health check mechanisms results in no health check
anti-pattern in this implementation.

Local Logging Similarly, this application becomes an example of local logging anti-
pattern as a result of not utilizing a log aggregator service.

5.10. R10: Run-Asp.NetCore-Microservices

5.10.1. Overview of the Application R10

The last examined application is the Run-Asp.NetCore-Microservices application, which
is an e-commerce application that has microservice architecture and implemented using
.NET microservice components. The architecture contains an API gateway, an aggrega-
tor service that serves additional API endpoints by combining calls from actual business
microservices, four business microservices that have their own database instances, a Rab-
bitMQ message broker instance and a web status service. All four business microservices
have API endpoints defined using regular HTTP, while "discount" microservice has an
additional API definition using gRPC protocol. The architectural diagram of the appli-
cation is illustrated in Figure 5.10, which is found in the repository and displayed here as
it is.

5| Results of Research Question 2 105

Figure 5.10: Architectural diagram of Run-Asp.NetCore-Microservices application, by
Aspnetrun under MIT license

5.10.2. Microservices Design Patterns and Anti-Patterns in R10

The presence of each design pattern and anti-pattern is indicated in Table 5.11.

106 5| Results of Research Question 2

Design Pattern ✓\– Anti-Pattern ✓\–

API Gateway ✓ Wrong Cut –

Service Mesh with Sidecar – Nano Microservice –

Service Registry & Discovery – Mega Microservice –

Backends for Frontends – ESB Usage –

Asynchronous Messaging ✓ Hardcoded Endpoints ✓

Database per Service ✓ No API Gateway –

API Composition ✓ Shared Persistence –

CQRS ✓ No CI/CD ✓

Event Sourcing – Multiple Service Instances per Host –

Service Instance per VM – No API Versioning –

Service Instance per Container ✓ No Health Check –

Serverless – Local Logging –

Health Check ✓

Distributed Tracing –

Log Aggregator ✓

Circuit Breaker ✓

Table 5.11: Presence of microservice design patterns and anti-patterns in repository R10

Below, the design patterns and anti-patterns in this application are concisely explained.

API Gateway Similar to the project R8, the architecture contains Ocelot API gate-
way, which is a .Net microservice component that routes requests to the underlying four
business microservices, according to the routing rules defined in "ocelot.json" file.

Service Mesh with Sidecar The microservices are not injected with sidecars and the
repository does not contain instructions for deployment on a service mesh.

Service Registry and Discovery The application uses Docker, which provides service
registry and discovery only on a single host in case a "network" in "docker-compose.yml"
is defined. The application does not even define a network a single host using this feature
and calls services using "localhost" and port numbers. Because the application lacks
a service registry and discovery mechanism that is suitable for deployment in a actual

5| Results of Research Question 2 107

distributed setting, the service registry and discovery pattern is not employed in this
example.

Backends for Frontends The architecture contains an aggregator service, which could
be used for a different kind of client. However, including the aggregator service, none of
the microservices differentiate responses to the API calls based on the kind of client, and
for this reason, the backends for frontends pattern is not utilized by this application.

Asynchronous Messaging The two of the business microservices utilize RabbitMQ
message broker instance for asynchronous communication, in a publish/subscribe man-
ner. Specifically, the "basket" microservice publishes "BasketCheckout" event, while the
"ordering" service consumes the events put into the "BasketCheckout" event queue.

Database per Service All four business microservices have their own SQL or NoSQL
database instances.

API Composition The "shopping" microservice is an example of an API composer
microservice. While it does not apply complex logic, it serves one endpoint by making
calls to actual "catalog", "basket" and "ordering" business microservices and transforming
the responses into a single data structure.

CQRS Similar to examined .NET microservice applications, the CQRS pattern is im-
plemented as an example inside one business microservice. In this example, the "ordering"
microservice separates checkout, create and delete order commands from order queries by
making use of .NET CQRS library MediatR.

Event Sourcing Although the implementation makes use of the notion of events for
communication, the system lacks and event store for event sourcing pattern to be utilized.

Service Instance per Virtual Machine The repository does not include readily built
VM images or instruction to build and deploy them in an appropriate setting.

Service Instance per Container The business and auxiliary microservices are con-
tainerized into individual Docker images, making service instance per container deploy-
ment pattern to be the go-to option for this application.

Serverless Similar to other projects, the repository does not provide instructions to
deploy the application on a serverless platform.

108 5| Results of Research Question 2

Health Check The individual microservices implement "/hc" health check endpoints
by utilizing the .NET health check endpoint feature, while a separate watchdog service
named "WebStatus" pings the health check endpoints of services and display the status
of services in a simple UI in the browser.

Distributed Tracing The microservices are not instrumented with a trace generator
client and the system is missing a trace collector service such as Zipkin.

Log Aggregator The microservices make use of Serilog for structured logging in mi-
croservices, an ElasticSearch instance for log storage and filtering purposes and a Kibana
instance for log visualisation. Because the architecture contains all basic elements of log
aggregation, it can be concluded that this application is indeed a good example of log
aggregator pattern.

Circuit Breaker The frontend service and the "shopping" aggregator utilize Polly
library to implement circuit breaking mechanism. Unlike the examined project R8, the
services use not only the retry mechanism but actual circuit breaking feature of Polly
library, by specifying the number of allowed exceptions and the time period the circuit
stays in the open state.

Wrong Cut The application is intended to be an example e-commerce website, so the
designed microservices are "catalog", "basket", "ordering", "discount" and "shopping
aggregator", along with an API gateway, event bus and monitoring services. Similar to
other examples, this application is not layered into three technical layers and hence does
not contain the wrong cut anti-pattern.

Nano or Mega Microservices None of the microservices seem to be a nano or mega
microservice since each service handles a couple of ordinary GET and POST requests.

ESB Usage The system does not contain an ESB component.

Hardcoded Endpoints The implementation of application contains URLs such as
"http://localhost:8000/hc" in "appsettings.json" file of web health status checking ser-
vice to locate services to be checked, and URLs to "catalog", "basket" and "ordering"
services in the "appsettings.json" file of API composer "shopping" service, such as "’Cat-
alogUrl’:’http://localhost:8000’". In addition, locating the services from API gateway is
done through specifying "localhost" as hosts of services and specifying port numbers of

5| Results of Research Question 2 109

services in "ocelot.json" file, although they are not fully qualified hardcoded endpoints
but hardcoded specifications to be consumed by API gateway to locate business microser-
vices for routing purposes. Because of these cases, the application contains the hardcoded
endpoints anti-pattern.

No API Gateway The presence of the Ocelot API gateway prohibits the no API
gateway anti-pattern in this application.

Shared Persistence The business microservices have their own different database in-
stances and no shared connection string is detected in Docker Compose .yaml files.

No CI/CD The repository does no contain any automation file to trigger a CI/CD
mechanism.

Multiple Service Instances per Host The business and auxiliary microservices are
containerized into individual Docker images, preventing the requirement to deploy all
instances to the same host.

No API Versioning The endpoints of the microservices contain "api/v1/" prefix, even
though the only version used is v1. Although the version number does not seem to change
during any stage of software development lifecycle, because the repository is intended to
be an example microservice architecture and not an actual product to be deployed in
production stage, the practice of API versioning can be said to be employed in this
application.

No Health Check The health check mechanisms explain in the related item prevents
no health check anti-pattern for this application.

Local Logging Lastly, the application avoids local logging anti-pattern by employing
a structured logging tool and a log aggregator service.

110 5| Results of Research Question 2

5.11. Discussion of Findings Related to Research Ques-

tion 2

Referring back to the research questions, the reason why we conducted this study was to
find answers to two research questions, which are about the taxonomy of design patterns
and anti-patterns of microservices architecture and the presence of those patterns and
anti-patterns in the popular open source microservice applications. In addition to the
main work, regarding the second research question about the presence of patterns and
anti-patterns, it is also beneficial, we believe, to take a look at the number of appearance
of design patterns and anti-patterns in the examined projects. Below, Table 5.12 lists the
total number of occurrence of patterns and anti-patterns detected during this study on
the ten open source microservice projects.

Design Pattern # Anti-Pattern #

API Gateway 10 Wrong Cut –

Service Mesh with Sidecar 3 Nano Microservice –

Service Registry & Discovery 8 Mega Microservice –

Backends for Frontends 1 ESB Usage –

Asynchronous Messaging 7 Hardcoded Endpoints 5

Database per Service 2 No API Gateway –

API Composition 2 Shared Persistence 6

CQRS 5 No CI/CD 5

Event Sourcing 2 Multiple Service Instances per Host –

Service Instance per VM – No API Versioning 8

Service Instance per Container 10 No Health Check 4

Serverless – Local Logging 7

Health Check 6

Distributed Tracing 5

Log Aggregator 3

Circuit Breaker 2

Table 5.12: Total number of design patterns and anti-patterns in examined projects

First observation about the number of occurrences is that, there are two design patterns

5| Results of Research Question 2 111

that are employed in all of the examined projects, namely, the API gateway and service
instance per container patterns. The reason why the API gateway pattern is always uti-
lized might be that, it is one of the design patterns that returns a substantial amount
of value after a small investment, meaning that, it is relatively easier to understand and
implement. Also, when it is combined with required frontend tasks, as seen in most of the
examined projects, it also serves static assets to the browser and provides a single entry
point to the backend services. For the service instance per container pattern, it reflects
the "micro" aspect of microservice architectures quite well, provides developers with a
deployment option that have a smaller learning curve with respect to service instance
per VM and serverless options, and alleviates the burden of implementing or configuring
services to the specifics of underlying operating system.
The second observation that draws attention immediately is that there are a number of
patterns and anti-patterns that are not detected in any of the examined projects. About
the deployment aspect, it might be stated that the service instance per VM and serverless
patterns are not employed since they are relatively harder to learn and provides addi-
tional value with respect to per container pattern only in relatively specific cases. For
the multiple service instance per host anti-pattern, we have stated in detection criteria
that even though microservices are containerized, there is no mechanism to prevent the
malpractice of deploying all containers to the same host, so we checked if two or more
of the microservices in an application are containerized into the same Docker image. As
a matter of fact, the containerisation of multiple services to the same container might
be even harder than to containerize one service to one container image, since it would
require finding more complex Docker base images than to find simpler base images such
as "node:alpine" which contains Node.js run-time on top of a small Alpine Linux distri-
bution, for services that need different run-times to be built, copied and run on top of
the same Docker base image. As a result, we might state that the microservices are in
general containerized into individual images since it is easier to implement and provides
better organization of the whole application.
Coming to the architectural anti-patterns that are avoided in each examined application,
we might observe that the design principles of microservice architectures are very well
embraced and digested by the projects. The microservices are designed around business
capabilities in a balanced way and the principle of "smart endpoints, dumb pipes" is put
into practice in those designs.
Next, we see that the three design patterns, namely, service registry and discovery, asyn-
chronous messaging and health check, are employed more frequently with respect to the
remaining ones. While service registry and discovery is a must for microservices to work in
a distributed environment, we observe that through the use of health checks, the reliability

112 5| Results of Research Question 2

aspect is also emphasized in those applications. Together with tools such as Kubernetes
and in essence the feedback loop that pings health endpoints of services and creates or
deletes pods accordingly, health check mechanism increases fault-tolerance abilities of the
application. Additionally, the utilization of message queues is in alignment with the notion
of fault-tolerance in the sense that, if implemented accordingly, the business microservices
could consume messages sent by other services when they are up and running after they
experience a run-time failure.
Another observation about the numbers is that the most frequent anti-pattern has been
no API versioning anti-pattern. Even though it is quite simple to implement API version-
ing as code, because the examined applications are not actual microservice products that
are maintained by a number of different development teams, it might be deemed not nec-
essary by developers of examined repositories to make use of API versioning practice. On
the other hand, we see that even though the repositories are not actual software products,
the developers of half of the repositories chose to utilize some sort of CI/CD mechanism
to automatically build images or automatically test their code, as these practices are not
about changing API definitions but to cope with recurrent tasks through automation dur-
ing development stage.
Considering the next two most frequent patterns, we observe that although the distributed
tracing and CQRS patterns are not trivial to implement, five of the repositories utilize
those patterns, at least as part of some of their microservices. Visualization of inter-service
calls and hence having some sort of "big-picture" view of business logic might be one of
the biggest benefits for those projects utilizing distributed tracing across most of their
services. On the other hand, from a subjective point-of-view, the use of CQRS pattern
might be a case of "over-engineering" in those projects, since the applications do not have
many microservices and have relatively simple business logic to implement, which might
be also doable without segregating the read and write tasks. Therefore, CQRS pattern
might be implemented for exemplary purposes and employed together with event sourcing
pattern to feature a commercial CQRS framework as in Eventuate framework examples
in R4 and R5, or to promote a CQRS library in as in MediatR use cases in R1, R8 and
R10, as part of the .NET framework.
Next, we see that the data-related patterns are not very frequently utilized, probably as
a result of small scope of applications, opting to share a single database instance or not
utilizing any database instance at all. The relatively simple business logic of applications
might also contribute to the fact that the developers did not choose to employ event
sourcing and API composition as separate service patterns, considering that those pat-
terns might complicate the architecture rather than transform complex logic into simpler
handling mechanisms.

5| Results of Research Question 2 113

The last observation about the presence of patterns and anti-patterns is that the log ag-
gregator, circuit breaker and backends for frontends patterns have been the three least
utilized patterns by the examined microservice projects. The reason why they are not
frequently employed might be, as a result of our contemplation, that the log aggregator
and circuit breaker solve problems that might be faced later on the production stage. In
other words, as the application is used by users for some time, the architecture is verified
to be working but the resilience of application is needed to be improved through circuit
breaker and some action is needed to be introduced to ease the problem solving and de-
bugging tasks through a mechanism such as log aggregator. Even though it is better to
incorporate those mechanisms during design stage for an actual microservice product, the
implementation of these two design patterns is not prioritized by most examined projects
in this study. As for the backends for frontends pattern, it is embraced by only one
project, namely R1, which is developed to be the reference microservice application by
Microsoft for the use cases of features of .NET framework for microservice architecture,
hence the backends for frontends pattern is implemented to show how developers can
implement the same pattern in case they want to differentiate the kind of clients in their
.NET microservice applications.
Aside from the observations stated above, we would like to note that there are a number
of limitations involved in this study which might harm the reliability of the results. First,
due to the manual inspection of source code, which mainly resulted from heterogeneity of
technologies utilized in the projects, the number of projects examined was limited to ten,
meaning that the small sample size of examined projects might result in reduced ability to
generalise the results to other microservice projects. Particularly, the frequency of design
patterns and anti-patterns in the examined projects might not be conserved in another
study which might examine a different or larger set of microservice projects.
The second limitation is that, to define "popularity" of projects, we chose to observe
the GitHub stars of the projects, which basically state how many GitHub accounts add
the particular project to their set of favourite projects or just saved them for later use
or observation. As a result, in addition to the examined well-maintained projects, all of
which has last commit dates in 2021, we added three not-relatively maintained microser-
vice projects into the sample set. The two projects, R4 and R7, have been modified last
in 2017, while R9 has the last commit date in 2018. Although those projects have rela-
tively high number of GitHub stars, it is important to note that they might not be used,
tinkered with or deployed by practitioners to learn about microservices architecture any-
more, simply because they do not utilize common modern technologies, such as R7 using
Docker Swarm instead of Kubernetes, or because they might not find answers to their
questions about the projects because there are no more active contributors to those three

114 5| Results of Research Question 2

projects. The limitation regarding finding most popular microservice projects nowadays
might be removed to some extent in another study that also inspects commit dates and
the heartbeat diagram of the projects on GitHub that visualise contributor activity in the
past year.
Lastly, for the sake of completion, we would like to repeat the limitation about not detect-
ing the saga pattern and shared libraries anti-pattern in this study, since the detection
of these two pattern and anti-pattern requires a deeper understating of the business logic
and a more competent literacy in the utilized programming language and the framework,
which would demand so much more time and effort from the researchers.

115

6| Conclusion

With this study, we investigated the literature about classifications regarding microser-
vice patterns and anti-patterns, and observed that there are indeed a number of different
categorizations present in the studies. By taking into account the way these studies cat-
egorize the patterns and anti-patterns and by constructing our own argumentation, we
presented our taxonomy proposal by suggesting to utilize "architectural", "deployment"
and "monitoring & reliability" categories, in order to provide a simple and valid struc-
ture in terms of classification for patterns and anti-patterns. Furthermore, we manually
inspected ten open source microservice projects to see if those patterns and anti-patterns
are actually present in implemented microservice architectures. We noticed that, among
the set of design patterns and anti-patterns, there are two design patterns, namely the
API gateway and service instance per container patterns, that are employed in each ex-
amined microservices project. Then, we made additional observations about the presence
of microservice patterns and anti-patterns in those projects.
We hope this study to be beneficial for students, researchers and developers who may want
to learn about microservices architecture, the design patterns to utilize to solve common
problems of microservices and anti-patterns to avoid during various stages of a microser-
vice application lifecycle. Through our proposed classification, we aim to ease the learning
curve regarding the patterns and anti-patterns by broadly structuring them, in addition
to bringing another point-of-view regarding possible classifications in this area. More-
over, by providing concrete examples of microservice design patterns and anti-patterns
through open source projects, we wish to support understanding of microservices archi-
tecture principles.
Regarding the future work on microservice patterns and anti-patterns, one valuable re-
search effort could be to conduct studies on projects in a way that does not involve the
limitations faced in this study. By inspecting more open source projects, the ability to
generalise the result might be increased, and focusing on projects that make use of the
same framework and the same technologies, a precise and thorough understanding of the
implemented business logic could be achieved, enabling more observations about patterns
and anti-patterns related to the logic of the application.

117

Bibliography

[1] Gastón Márquez and Hernán Astudillo. Actual use of architectural patterns in
microservices-based open source projects. In 2018 25th Asia-Pacific Software Engi-
neering Conference (APSEC), pages 31–40, 2018. doi: 10.1109/APSEC.2018.00017.

[2] Rafik Tighilt, Manel Abdellatif, Naouel Moha, Hafedh Mili, Ghizlane El Boussaidi,
Jean Privat, and Yann-Gaël Guéhéneuc. On the study of microservices antipatterns:
A catalog proposal. In Proceedings of the European Conference on Pattern Lan-
guages of Programs 2020, EuroPLoP ’20, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450377690. doi: 10.1145/3424771.3424812.

[3] Sam Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media Inc., 2015.

[4] Martin Fowler. Microservices: a definition of this architectural term, 2014. URL
https://martinfowler.com/articles/microservices.html.

[5] Cesar de la Torre, Bill Wagner, and Mike Rousos. .NET Microservices: Architecture
for Containerized .NET Applications. Microsoft Corporation, 2021.

[6] IBM Cloud Team. Soa vs. microservices: What’s the difference?, 2021. URL https:

//www.ibm.com/cloud/blog/soa-vs-microservices.

[7] Microsoft Docs. Cloud design patterns, 2022. URL https://docs.microsoft.com/

en-us/azure/architecture/patterns/.

[8] Chris Richardson. Microservice Patterns. Manning Publications Co., 2019.

[9] Thomas Schirgi and Eugen Brenner. Quality assurance for microservice architectures.
In 2021 IEEE 12th International Conference on Software Engineering and Service
Science (ICSESS), pages 76–80, 2021. doi: 10.1109/ICSESS52187.2021.9522227.

[10] Wubin Li, Yves Lemieux, Jing Gao, Zhuofeng Zhao, and Yanbo Han. Service mesh:
Challenges, state of the art, and future research opportunities. In 2019 IEEE Interna-
tional Conference on Service-Oriented System Engineering (SOSE), pages 122–1225.
IEEE, 2019.

https://martinfowler.com/articles/microservices.html
https://www.ibm.com/cloud/blog/soa-vs-microservices
https://www.ibm.com/cloud/blog/soa-vs-microservices
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/

118 | Bibliography

[11] Microsoft Docs. Event sourcing pattern, 2022. URL https://docs.microsoft.com/

en-us/azure/architecture/patterns/event-sourcing.

[12] Docker documentation. The docker platform. URL https://docs.docker.com/

get-started/overview/.

[13] Michael Eder. Hypervisor-vs. container-based virtualization. Future Internet (FI)
and Innovative Internet Technologies and Mobile Communications (IITM), 1, 2016.

[14] Ryan Dawson. How did kubernetes win the container or-
chestration war?, 2020. URL https://hackernoon.com/

how-did-kubernetes-win-the-container-orchestration-war-lp1l3x01.

[15] Kubernetes Documentation. What is kubernetes?, 2021. URL https://kubernetes.

io/docs/concepts/overview/what-is-kubernetes/.

[16] David Jaramillo, Duy V Nguyen, and Robert Smart. Leveraging microservices archi-
tecture by using docker technology. In SoutheastCon 2016, pages 1–5. IEEE, 2016.

[17] AWS Lambda Documentation. Aws lambda frequently asked questions. URL https:

//aws.amazon.com/lambda/faqs/.

[18] Fabrizio Montesi and Janine Weber. Circuit breakers, discovery, and API gateways
in microservices. CoRR, abs/1609.05830, 2016. doi: https://doi.org/10.48550/arXiv.
1609.05830. URL http://arxiv.org/abs/1609.05830.

[19] D Taibi, V Lenarduzzi, and Claus Pahl. Architectural patterns for microservices: A
systematic mapping study. In CLOSER 2018: Proceedings of the 8th International
Conference on Cloud Computing and Services Science; Funchal, Madeira, Portugal,
19-21 March 2018. SCITEPRESS, 2018. ISBN 9789897582950.

[20] Işıl Karabey Aksakalli, Turgay Çelik, Ahmet Burak Can, and Bedir Tekinerdoğan.
Deployment and communication patterns in microservice architectures: A systematic
literature review. Journal of Systems and Software, 180:111014, 2021. ISSN 0164-
1212. doi: https://doi.org/10.1016/j.jss.2021.111014.

[21] J. A. Valdivia, A. Lora-González, X. Limón, K. Cortes-Verdin, and J. O. Ocharán-
Hernández. Patterns related to microservice architecture: a multivocal literature
review. Programming and Computer Software, 46(8):594–608, 2020. doi: 10.1134/
S0361768820080253. URL https://doi.org/10.1134/S0361768820080253.

[22] Gastón Márquez, Mónica M. Villegas, and Hernán Astudillo. A pattern language for
scalable microservices-based systems. In Proceedings of the 12th European Conference

https://docs.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://docs.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://hackernoon.com/how-did-kubernetes-win-the-container-orchestration-war-lp1l3x01
https://hackernoon.com/how-did-kubernetes-win-the-container-orchestration-war-lp1l3x01
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/lambda/faqs/
http://arxiv.org/abs/1609.05830
https://doi.org/10.1134/S0361768820080253

6| BIBLIOGRAPHY 119

on Software Architecture: Companion Proceedings, ECSA ’18, New York, NY, USA,
2018. Association for Computing Machinery. ISBN 9781450364836. doi: 10.1145/
3241403.3241429. URL https://doi.org/10.1145/3241403.3241429.

[23] José A. Valdivia, Xavier Limón, and Karen Cortes-Verdin. Quality attributes in
patterns related to microservice architecture: a systematic literature review. In
2019 7th International Conference in Software Engineering Research and Innovation
(CONISOFT), pages 181–190, 2019. doi: 10.1109/CONISOFT.2019.00034.

[24] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Microservices Anti-patterns:
A Taxonomy, pages 111–128. Springer International Publishing, Cham, 2020. ISBN
978-3-030-31646-4. doi: 10.1007/978-3-030-31646-4_5. URL https://doi.org/10.

1007/978-3-030-31646-4_5.

[25] Justus Bogner, Tobias Boceck, Matthias Popp, Dennis Tschechlov, Stefan Wagner,
and Alfred Zimmermann. Towards a collaborative repository for the documentation
of service-based antipatterns and bad smells. In 2019 IEEE International Conference
on Software Architecture Companion (ICSA-C), pages 95–101, 2019. doi: 10.1109/
ICSA-C.2019.00025.

[26] A pattern language for microservices. URL https://microservices.io/patterns/

index.html.

[27] Nuha Alshuqayran, Nour Ali, and Roger Evans. A systematic mapping study in
microservice architecture. In 2016 IEEE 9th International Conference on Service-
Oriented Computing and Applications (SOCA), pages 44–51, 2016. doi: 10.1109/
SOCA.2016.15.

[28] Claus Pahl and Pooyan Jamshidi. Microservices: A systematic mapping study.
In Proceedings of the 6th International Conference on Cloud Computing and
Services Science - Volume 1 and 2, CLOSER 2016, pages 137–146, Setubal,
PRT, 2016. SCITEPRESS - Science and Technology Publications, Lda. ISBN
9789897581823. doi: 10.5220/0005785501370146. URL https://doi.org/10.5220/

0005785501370146.

[29] Martin Garriga. Towards a taxonomy of microservices architectures. In International
Conference on Software Engineering and Formal Methods, pages 203–218, Cham,
2018. Springer International Publishing. ISBN 978-3-319-74781-1.

https://doi.org/10.1145/3241403.3241429
https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/10.1007/978-3-030-31646-4_5
https://microservices.io/patterns/index.html
https://microservices.io/patterns/index.html
https://doi.org/10.5220/0005785501370146
https://doi.org/10.5220/0005785501370146

121

List of Figures

2.1 Monolithic vs Microservices Architecture 4
2.2 Scalability in Monolithic vs Microservice Architectures 5
2.3 Decomposition methods using traditional vs. bounded context models . . . 6
2.4 An example diagram of API gateway pattern 9
2.5 An application architecture utilizing service mesh with sidecar proxy . . . 10
2.6 RabbitMQ message broker with pub/sub mechanism 13
2.7 A possible use of event sourcing pattern for a software version tracking

application . 17
2.8 Comparison and evolution of traditional, hypervisor-based and container-

based deployment, by Kubernetes Documentation under CC-BY-4.0 license 19
2.9 Visualization of inter-service calls and timing data in Jaeger, by Jaeger

Documentation under CC-BY-4.0 license 24
2.10 State diagram of circuit breaker pattern 25

5.1 Architectural diagram of eShopOnContainers application, adapted from
diagram in repository under MIT license 58

5.2 Architectural diagram of GCP Online Boutique application, from reposi-
tory under Apache 2.0 license . 64

5.3 Architectural diagram of Piggy Metrics application, adapted and modified
from diagram in repository under MIT license 70

5.4 Architectural diagram of Event Sourcing & CQRS example application, by
Chris Richardson under Apache 2.0 license 75

5.5 Architectural diagram of Food-to-Go application 81
5.6 Architectural diagram of CoolStore web application, by Vietnam Developer

Group under MIT license . 86
5.7 Architectural diagram of Cinema microservices application 91
5.8 Architectural diagram of Dotnetcore insurance application, by Altkom Soft-

ware under Apache 2.0 license . 95
5.9 Architectural Diagram of Example To-Do Application 100

122 | List of Figures

5.10 Architectural diagram of Run-Asp.NetCore-Microservices application, by
Aspnetrun under MIT license . 105

123

List of Tables

4.1 Primary studies that contain classification of patterns or anti-patterns . . . 46
4.2 Names of pattern and anti-pattern categories used in related studies 50
4.3 Secondary studies about concepts and keywords in microservice architectures 51
4.4 Proposed Classification of Microservice Design Patterns 54
4.5 Proposed Classification of Microservice Anti-Patterns 55

5.1 List of examined projects . 57
5.2 Presence of microservice design patterns and anti-patterns in repository R1 59
5.3 Presence of microservice design patterns and anti-patterns in repository R2 65
5.4 Presence of microservice design patterns and anti-patterns in repository R3 71
5.5 Presence of microservice design patterns and anti-patterns in repository R4 76
5.6 Presence of microservice design patterns and anti-patterns in repository R5 82
5.7 Presence of microservice design patterns and anti-patterns in repository R6 87
5.8 Presence of microservice design patterns and anti-patterns in repository R7 92
5.9 Presence of microservice design patterns and anti-patterns in repository R8 96
5.10 Presence of microservice design patterns and anti-patterns in repository R9 101
5.11 Presence of microservice design patterns and anti-patterns in repository R10106
5.12 Total number of design patterns and anti-patterns in examined projects . . 110

125

126 | List of Abbreviations

List of Abbreviations

Abbreviation Description

AMQP Advanced Messaging Queuing Protocol

API Application Programming Interface

BC Bounded Context

CI/CD Continuous Integration / Continuous Delivery

CaaS Container-as-a-Service

DDD Domain Driven Design

DNS Domain Name System

DevOps A combination of software development and IT operations

DRY Don’t Repeat Yourself

ESB Enterprise Service Bus

HTTP Hypertext Transfer Protocol

IaaS Infrastructure-as-a-Service

LOC Lines of Code

MSMQ Microsoft Messaging Queuing

NoSQL Not-Only-SQL, to refer to different kinds of non-relational databases

ORM Object Relational Mapping

QoS Quality of Service

REST Representational State Transfer

RESTful API an API that adheres to REST principles

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSH Secure Shell

TLS Transport Layer Security

UI User Interface

UX User Experience

VM Virtual Machine

127

Acknowledgements

First and foremost, I would like to thank my advisor Prof. Elisabetta Di Nitto for her kind
support and guidance throughout my thesis. Her suggestion of the topic of microservices
excited me at the beginning, since a study about a novel software architecture would help
me learn about different aspects of modern software development and see the big picture
by connecting several theoretical parts, and in doing so, preparing me to my new career as
a software engineer, graduated with a masters degree from one of the best universities in
Europe. As I started my initial research about the topic, I started to realize how big the
knowledge gap is that I have regarding this area and technologies around this architecture.
Nonetheless, thanks to the encouragement, never-ending patience and assistance of Prof.
Di Nitto, I continued my study on microservices and created a work that I am proud of
today.
Next, I would like to acknowledge the authorities of Politecnico di Milano regarding the
"Diritto allo Studio Universitario" scholarship that they provided me during the course
of my masters degree. Without this financial aid, it would be much more difficult to
continue my studies that require me to work long hours while stressing financially in a
foreign country for me.
I would also like to thank all of my friends in Italy and my family in Turkey for the
support they showed and the joy they brought to my life during this chapter of my life.
In addition to the academic achievement, these few years have definitely been remarkable
for me in the sense that I got to experience more in life, learn lessons and expand my
vision.
As I am writing these words now, my two brothers Tarık and İlke are studying hard for
their university and high school entrance exams. I would like to dedicate my work to
them in the hope that they will be able to pass their exams, enter a good university and
a good high school and take their first steps in their happy and successful lives.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	State of the Art
	Microservices Architecture
	General Characteristics
	Differences from Service Oriented Architecture

	Design Patterns and Anti-Patterns in Microservices Architecture
	Design Patterns
	Anti-Patterns

	Summary

	Research Methodology
	Research Questions
	Adopted Methodology
	Methods Adopted for Research Question 1
	Methods Adopted for Research Question 2
	Methods Adopted to Detect Patterns and Anti-Patterns in Open Source Projects

	Results of Research Question 1
	Classification of Patterns and Anti-Patterns Papers
	Analysis of the Classifications
	Systematic Mapping Studies
	A Proposal for a New Classification

	Results of Research Question 2
	R1: eShopOnContainers
	Overview of the Application R1
	Microservices Design Patterns and Anti-Patterns in R1

	R2: GCP Online Boutique Microservices
	Overview of the Application R2
	Microservices Design Patterns and Anti-Patterns in R2

	R3: Piggy Metrics
	Overview of the Application R3
	Microservices Design Patterns and Anti-Patterns in R3

	R4: Event Sourcing & CQRS Example
	Overview of the Application R4
	Microservices Design Patterns and Anti-Patterns in R4

	R5: Food-to-Go Application
	Overview of the Application R5
	Microservices Design Patterns and Anti-Patterns in R5

	R6: CoolStore Microservices
	Overview of the Application R6
	Microservices Design Patterns and Anti-Patterns in R6

	R7: Cinema Microservices
	Overview of the Application R7
	Microservices Design Patterns and Anti-Patterns in R7

	R8: Dotnetcore Insurance Microservices
	Overview of the Application R8
	Microservices Design Patterns and Anti-Patterns in R8

	R9: Elgris Microservice To-Do App Example
	Overview of the Application R9
	Microservices Design Patterns and Anti-Patterns in R9

	R10: Run-Asp.NetCore-Microservices
	Overview of the Application R10
	Microservices Design Patterns and Anti-Patterns in R10

	Discussion of Findings Related to Research Question 2

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Acknowledgements

