
Executive Summary of the Thesis

On the Design of Multi-directional Systolic Arrays for Band and
Generic Matrix-Matrix Multiplications

Laurea Magistrale in Electronics Engineering - Ingegneria Elettronica

Author: Leonel Gouveia Ergin

Advisor: Prof. Christian Pilato

Co-advisor: Stephanie Soldavini

Academic year: 2021-2022

1. Introduction
Increasing computing performance can no longer
be achieved just with the miniaturization of
transistors [3]. Due to Post-Dennardian scal-
ing, the power densities in circuits are increasing
each generation, forcing larger and larger por-
tions of the circuit to be shut off (Dark Sili-
con) [3]. One way to address the dark silicon
problem is to employ specialized co-processors
(accelerators) [3]. The reliance of increasingly
popular AI applications on fast matrix multipli-
cations encouraged us to study systolic [1] co-
processors.

1.1. Contributions
We consider systems with fixed arrays of pro-
cessing elements, achieving different operations
by rerouting the connections between them. As
a working prototype, we have implemented an
array capable of two distinct matrix operations:
generic and band.
We have also implemented a complete workflow
allowing us to stitch RTL kernels into HLS sys-
tems. Our working system can be used as a ref-
erence example to understand how to interface
custom RTL kernels with complete Xilinx Sys-
tems using RTL-HLS hybrid design.

2. Background
2.1. Systolicism
Systolic systems are composed of regular, lo-
cally interconnected arrays of processing ele-
ments. Their principle is to fetch data rhyth-
mically and let it ripple through the processing
elements to achieve a computational result, as
shown in Figure 1. A systolic system develops
an algorithm in space rather than time.

Figure 1: Basic Systolic principle, from [1]

Many common problems have been studied us-
ing systolic approaches [1]. Recently, systolic ar-
chitectures are regaining a lot of attention due
to the increasing popularity of AI applications,
which exploit matrix multiplications intensively.

1

Executive summary Leonel Gouveia Ergin

a11 a12 a13 0 . . . 0

a21 a22 a23 a24 0 . . . 0

0 a32 a33 a34 a35 0
... 0 a43 a44 a45

...
.

0 0





q

p

b11 b12 0 . . . 0

b21 b22 b23 0 . . . 0

b31 b32 b33 b34 0

0 b42 b43 b44 b45

...
...

.
0 0





p

q

c11 c12 c13 c14 . . . 0

c21 c22 c23 c24 c25 . . . 0

c31 c32 c33 c34 c35 c36 . . . 0
c41 c42 c43 c44 c45 c46 c47

...
...

.
0 0




w

w

· =

Figure 2: Band matrices and their multiplication. Here p = 3, q = 2 and w = 4

Figure 3: K&L systolic array for BMMM

2.2. Systolic Array Design for Band
Matrix-Matrix Multiplication
(BMMM)

2.2.1 Kung and Leiserson Processing El-
ement (KPLE)

The KLPE features three inputs A, B and C,
and three outputs A, B, and C ′. The C ′ output
is defined by the operation C ′ = C+A×B. All
outputs are registered.

2.2.2 Band Matrices

The multiplication of two band matrices A (with
width p and height q) and B (with width q and
height p) result in a matrix C which has both
width and height w = p+ q − 1. We call w the
band width. This operation is shown in Figure
2.

2.2.3 Systolic Array for BMMM

By interconnecting KLPE’s, we build a multi-
plier introduced by Kung and Leiserson [2]. This
array can pipeline the multiplication of any size
of matrices, as long as their w is smaller or equal
than the lateral size of the array. In Figure 3,
we can see the array.

Figure 4: Systolic array for GMMM

2.3. Systolic Array Design for
Generic Matrix-Matrix Mul-
tiplication (GMMM)

Figure 4 displays an array which can achieve
GMMM. It is comprised of KLPE’s and delay
blocks, labeled D in the diagram. In order to
multiply two generic matrices of size N, we need
an array with (2N − 1)2 processing elements.

3. Parametric Multi-directional
Systolic Kernel

Based on the similarities between the BMMM
and GMMM systems, we have implemented
a Unified Matrix-Matrix Multiplier (UMMM).
The diagonal paths in the array can be rerouted,
allowing it to behave either like the BMMM or
the GMMM array. It reuses the same KLPE’s
for both operations, as shown in Figure 5.

3.1. GMMM Peripherals
Figure 6 shows the sequence of data dispatching
to/from the GMMM kernel. Each matrix is sent
at the rate of one line per cycle. The peripherals
must steer this data to the correct inputs. The
opposite steering happens at the output.

2

Executive summary Leonel Gouveia Ergin

Figure 5: Systolic array core for UMMM

Figure 6: GMMM peripherals

3.2. BMMM Peripherals
The band input peripheral device takes in rows
in the custom format and dispatches the ele-
ments according to the pattern seen in Figure 7.
Our solution employs internal buffers to access
multiple rows of data simultaneously. The same
operation happens in reverse for the output.

3.3. UMMM Kernel
A final overview of the UMMM kernel can be
seen in Figure 8. The opmode signal controls the
array configuration.

4. RTL Kernel Integration
4.1. HLS Wrapper
The HLS wrapper around our kernel deals with
memory transfers to and from the Host com-
puter. Its organization is shown in Figure 9.

4.2. Read and Write Functions
Our reading hardware must read data from the
256-bit High Bandwidth Memory (HBM) trans-
fers (called data chunks) and reconstruct vectors
of data. The writing hardware uses the same
structure in reverse. The algorithm is displayed
in Figure 10.

Figure 7: BMMM peripherals

Figure 8: Unified array

4.3. Equivalent HLS Implementation
Our HLS implementation is designed to fit in
place of the RTL. Both the GMMM and the
BMMM section are structured into a triple-for-
loop implementation of the matrix multiplica-
tion. We attempted to play both fields as fairly
as possible, optimising both RTL and HLS to
the extents of our capabilities.

5. Experiments and Results
5.1. First Comparison
This test is our first comparison of equally ca-
pable kernels. The results feature in Table 1.
All the metrics are similar except for the DPS’s.
The execution times are very similar.
From the architecture alone, we expected our
RTL to be much faster than our HLS in both
GMMM and BMMM. As we can see, this is not
the case. In addition, each GMMM operation

3

Executive summary Leonel Gouveia Ergin

Figure 9: HLS wrapper

Figure 10: Read Data Algorithm

on the RTL kernel should take 16 cycles. At
148.6MHz, this equates to 108ns per GMMM.
This is 100x faster than what we measured.

5.2. Kernel Running Rates
We have implemented a stall counter within our
RTL kernel’s GMMM section. We approach
a running rate of 1.36%. From these results,
we expect that this operation could run 73.5x
faster. For the BMMM, we have found that it
approaches a running rate of 3.81%. We could
expect an increase of performance of 26.25x,
with appropriate memory hardware.

5.3. RTL GMMM Analysis with Cus-
tom Memory Management

We have implemented bespoke memory hard-
ware for the GMMM section of a kernel with pa-
rameters MAT_SIZE = 16 and DATA_WIDTH = 8.
We ensured a 1 line per cycle data delivery rate.
the results of our experiment are in Figure 11:
• Until 1000 operations, the operating time is

dominated by the launch of the kernel.
• At high amounts of streamed operations, we

observe a performance gap of 2.6x between
our measured time and the theoretical time.

Figure 12 compares the former kernel with its
HLS counterpart:

• If the target application only runs occa-
sional GMMM operations, implementing a
systolic GMMM array compared to a HLS

Table 1: Comparison of area and performance
metrics. The GMMM time is averaged over 1000
streamed operations. The time for BMMM is
measured for one operation of size 1000.

MAT_SIZE=16 LUT REG DSP RAM Clock Time Time
DATA_WIDTH=8 Frequency GMMM BMMM

(%) (%) (%) (%) (MHz) (µs) (ms)

RTL 11.92 8.70 10.96 11.41 148.6 10.43 15.20
HLS 11.75 7.81 0.39 12.20 287.3 9.26 15.48

RTL/HLS ratio 1.014 1.114 28.10 0.935 0.517 1.126 0.982

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of generic operations streamed

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

T
im

e
 [
s
]

Total measured time

Total theoretical time

2.60x
22.02x

1451x

Figure 11: Time measurement for a RTL kernel
using custom memory management.

version is a waste of area (see Table 2).
• For many streamed GMMM operations, our

RTL kernel performs 6.63x faster than our
HLS kernel.

In Table 2, we see that theoretically, the HLS
is 20x slower than the RTL. By compounding
the 6.63x real-world gap with the 2.6x gap be-
tween the RTL and its theoretical time and by
adapting for clock frequency disparities, we ob-
tain 19.95x. This shows us that the HLS is run-
ning at its full potential but the RTL is being
throttled because data requirements are too de-
manding for our FPGA.

Table 2: Area comparison for optimised kernels
with custom memory management hardware.

MAT_SIZE =16 LUT REG DSP RAM FREQ Compute
DATA_WIDTH =8 (%) (%) (%) (%) (MHz) Cycles

HLS 11.00 7.62 0.33 11.46 250.0 20
RTL 11.58 8.53 10.83 13.05 216.4 1

RTL/HLS ratio 1.053 1.119 32.818 1.139 0.866 1/20

5.4. Final Kernels
The results of the area utilisation for a family of
kernels using our fully-parametric data manage-

4

Executive summary Leonel Gouveia Ergin

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of generic operations streamed

10
-4

10
-3

10
-2

10
-1

10
0

10
1

T
im

e
 [
s
]

RTL Total measured time

HLS Total measured time

6.63x

2.42x

Figure 12: Time comparison (RTL vs. HLS) for
GMMM with custom memory management.

ment hardware feature in Table 3.

Table 3: Area report for our final kernels. Every
kernel was compiled with DATA_WIDTH= 8.

MAT_SIZE FREQ LUT REG DSP RAM
(MHz) (%) (%) (%) (%)

R
T

L

4 242 10.32 7.45 0.75 11.41
8 214 10.98 7.69 2.70 11.41
16 203 12.17 8.55 10.86 11.76
32 153 15.14 11.81 44.19 12.80

H
L
S

4 251 10.47 7.48 0.79 11.46
8 226 10.97 7.54 0.28 11.46
16 199 11.83 7.63 0.37 11.81
32 174 12.55 7.78 0.54 13.37

R
T

L
H

L
S

ra
ti

o 4 0.97 0.99 1.00 0.95 1.00
8 0.95 1.00 1.02 9.64 1.00
16 1.02 1.03 1.12 29.35 1.00
32 0.88 1.21 1.52 81.83 0.96

5.4.1 GMMM Analysis

In Table 4, we see that both the HLS and RTL
kernels are limited by the writing hardware. Fig-
ure 13 shows the timing comparison. All the
comparable kernels take the same amount of
time to complete. In Figure 14, we see our tim-
ing predictions compared to the achieved times.

Table 4: Latency report for the GMMM opera-
tion, in number of cycles per line. The slowest
kernels in the chain are highlighted.

GMMM RTL HLS
MAT_SIZE Read Compute* Write Read Compute* Write

4 2 1 76 3 3.00 76
8 2 1 75 3 13.00 75
16 2 1 75 2 20.00 75
32 3 1 76 3 36.53 76

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of generic operations streamed

10
-4

10
-3

10
-2

10
-1

10
0

10
1

T
im

e
 [
s
]

RTL: 4

HLS: 4

RTL: 8

HLS: 8

RTL: 16

HLS: 16

RTL: 32

HLS: 32

Figure 13: Timing comparison between RTL
and HLS for GMMM.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of generic operations streamed

10
-6

10
-4

10
-2

10
0

10
2

T
im

e
 [
s
]

RTL: 4

Prediction: 4

RTL: 8

Prediction: 8

RTL: 16

Prediction: 16

RTL: 32

Prediction: 32

Figure 14: Timing results for our RTL kernels
running GMMM and the associated theoretical
predictions.

5.4.2 BMMM Analysis

In Table 5, we can see that the write function is
still the bottleneck for our RTL implementation.
However, the HLS is limited by the computa-
tion kernel. In Figure 15, we see that despite
using non-optimal data management hardware,
our RTL kernels are still faster than our HLS
kernels. Our timing predictions for the BMMM
kernels can be found on Figures 16 and 17. They
are very accurate, except for the smallest RTL
kernel, whose prediction grossly overestimates
the operating time.

6. Conclusions
We created a systolic RTL kernel for unify-
ing generic and band matrix-matrix multiplica-
tions. Our kernel contains 30x more DSP with

5

Executive summary Leonel Gouveia Ergin

Table 5: Latency report for the BMMM opera-
tion, in number of cycles per line. The slowest
kernels in the chain are highlighted.

BMMM RTL HLS
MAT_SIZE Read Compute* Write Read Compute Write

4 2 3 76 2 666 76
8 2 3 76 2 1591 76
16 3 3 150 3 3823 150
32 3 3 298 2 9824 298

10
1

10
2

10
3

10
4

10
5

Size of the band matrix

10
-4

10
-3

10
-2

10
-1

10
0

10
1

T
im

e
 [
s
]

RTL: 4

HLS: 4

RTL: 8

HLS: 8

RTL: 16

HLS: 16

RTL: 32

HLS: 32

13.42x

26.76x

18.08x

23.26x

Figure 15: Timing results for our RTL and
HLS kernels running BMMMM, using fully-
parametric memory management.

a theoretical performance improvement of 20x
for streamed GMMM operations and 610x for
streamed BMMM operations. However, our de-
sign has an inexplicable 2.6× performance gap
between our bottleneck-free kernels and their
theoretical maximum speed. This requires fur-
ther investigation of the underlying hardware.
For the hybrid RTL-HLS workflow, we will add
foolproofing for the setup of high-level parame-
ters in multiple files to avoid mismatching HLS
peripherals with RTL blackboxes.

7. Acknowledgements
I’d like to thank my friends and family for their
support. I would also like to thank my advi-
sor, Prof. Christian Pilato, for always asking
the right questions and single-handedly elevat-
ing the quality of my work. Finally, the most
special thanks have to go to Stephanie Soldavini,
who throughout this thesis has played the role
of advisor, assistant, helper, consoler, consul-
tant, Linux-guru, deadlock resetter, documen-
tation magician and last but certainly not least,
friend.

10
1

10
2

10
3

10
4

10
5

Size of the band matrix

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

T
im

e
 [
s
]

RTL: 4

Prediction: 4

RTL: 8

Prediction: 8

RTL: 16

Prediction: 16

RTL: 32

Prediction: 32

Figure 16: Timing results for our RTL kernels
running BMMM and the associated theoretical
predictions.

10
1

10
2

10
3

10
4

10
5

Size of the band matrix

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

T
im

e
 [
s
]

RTL: 4

Prediction: 4

RTL: 8

Prediction: 8

RTL: 16

Prediction: 16

RTL: 32

Prediction: 32

Figure 17: Timing results for our HLS kernels
running BMMM and the associated theoretical
predictions.

References
[1] Hsiang-Tsung Kung. Why systolic architec-

tures? Computer, 15(01):37–46, 1982.

[2] HT Kung and Charles E Leiserson. Systolic
arrays (for vlsi). In Sparse Matrix Proceed-
ings 1978, volume 1, pages 256–282, 1979.

[3] Michael B. Taylor. Is dark silicon use-
ful? harnessing the four horsemen of
the coming dark silicon apocalypse. In
ACM/EDAC/IEEE DAC, pages 1131–1136,
2012.

6

	Introduction
	Contributions

	Background
	Systolicism
	Systolic Array Design for Band Matrix-Matrix Multiplication (BMMM)
	Kung and Leiserson Processing Element (KPLE)
	Band Matrices
	Systolic Array for BMMM

	Systolic Array Design for Generic Matrix-Matrix Multiplication (GMMM)

	Parametric Multi-directional Systolic Kernel
	GMMM Peripherals
	BMMM Peripherals
	UMMM Kernel

	RTL Kernel Integration
	HLS Wrapper
	Read and Write Functions
	Equivalent HLS Implementation

	Experiments and Results
	First Comparison
	Kernel Running Rates
	RTL GMMM Analysis with Custom Memory Management
	Final Kernels
	GMMM Analysis
	BMMM Analysis

	Conclusions
	Acknowledgements

