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1. Introduction
With the increasing need of hydrocarbons world-
wide, oil and gas industries are collecting several
hundreds of gigabytes of seismic data to find pos-
sible oil and gas reservoirs. Up to now, the col-
lected data needed to be processed by field do-
main experts, such as geologists and geophysi-
cists, to find possible locations of underground
hydrocarbons. This hand-made process of ana-
lyzing huge amount of data is extremely costly
and time consuming for gas industries, but that
is not the only issue: it is known that gas and oil
reservoirs are usually located near underground
salt basins, which are notoriously difficult to im-
age correctly due to their elastic properties.
The task of picking salt bodies in seismic images
can be considered a segmentation problem, and
can be efficiently solved by deep learning algo-
rithm efficiently like Convolutional neural net-
works (CNNs). CNNs are widely used in auto-
matic image processing and can be very efficient
in terms of training and testing time. From these
premises, in this work we focus on:

• Develop a salt segmentation method for
seismic images investigating the impact of
several loss functions to train a CNN.

• Exploit eXplainable AI (XAI) techniques

to better understand which are the leading
motivations that make a CNN classify a cer-
tain image region as salt.

Our first contribution will help domain experts
in their salt analysis work. The second contri-
bution will help in increasing the level of trust-
worthiness in CNN results.

2. State of the Art
This section reports some useful state of the art
on salt segmentation and XAI.

2.1. State of the art for salt segmen-
tation

Salt segmentation is composed of three different
salt picking phases. After each one of them, the
produced salt mask is provided to the migration
algorithm that adjust the velocity model of mi-
grated image taking into consideration the salt
perimeter, thus enabling the next picking phase
iteratively. CNNs for salt segmentation can
achieve human level accuracy in some specific
situations, but greatly suffer dataset domain
shifting, meaning that to effectively use CNNs
for salt segmentation, a portion of the data set
must first be interpreted by humans to create an
ad hoc training set for fine tuning. To tackle the
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problem of domain shift a full learning pipeline
called SaltNet [3] have been proposed. SaltNet
copes with the absence of unlabeled data from
the new dataset by generating proxy labels for
CNN training using semisupervised learning:
an ensemble of five pre-trained CNNs with
different architectures is used to generate an
initial prediction on the new, unlabeled dataset.
Using CNNs ensembles usually provides better
performances than single a single CNN, in this
case different architectures have been used to
provide different views on the target dataset.

2.2. XAI state of the art
The reason why Deep learning is so widely used
is that it does not require direct coding of hand-
crafted featurs. Trained algorithm can be con-
sidered "black boxes" since developers do not
need to explicitly code the the solution of a prob-
lem but need to pay more attention to the defini-
tion of the training procedure. The field of XAI
studies methods and techniques to shed light on
those black boxes, making them more reasonable
and interpretable. Multiple methods are avail-
able available to inspect the working principles
of CNNs.
As an example, Class Activation Mapping
(CAM) was the first XAI technique to introduce
the concept of saliency maps: a saliency map is
a heat map built over the original image that
highlights which part of the image contributed
the most to the final prediction. CAM algorithm
uses the property of the Global Average Pooling
(GAP) layer to address which feature map in-
fluences the final decision the most. The GAP
layer projects every channel of the CNN latent
representation to a dense layer by performing an
average on each channel. The saliency map is
obtained by simply weighting the feature maps
fk(x, y) with their weight value wk as

C(x, y) =
∑
k

wkfk(x, y) (1)

The obtained weighted sum is a linear combi-
nation of all the feature maps and can be up-
sampled to match the input image shape thus
highlighting regions that impact on the classifi-
cation result.

3. Salt Segmentation
This section is devoted to our proposed salt seg-
mentation method.

3.1. Problem definition
Salt recognition task can be considered a binary
segmentation problem: performing binary seg-
mentation on an image means assigning a bi-
nary label to each pixel depending on his con-
tent. In the case of salt segmentation, we can
define our two labels as background and salt.
To be more specific, given two labels (S,B) rep-
resenting class salt and background, performing
segmentation on in image I means assigning to
each of his pixel I(x, y) one of the two labels
producing a binary mask M with the same di-
mension of I. Formally, we can define the ideal
segmentation mask as

M(x, y) =

{
0, if I(x, y) ∈ B

1, if I(x, y) ∈ S
(2)

where I(x, y) ∈ B means that the pixel in posi-
tion (x, y) belongs to class B (with a slight abuse
of notation).
Our goal is to develop a CNN that is able to pro-
duce a mask M as close as possible to the ground
truth mask when fed with an input image I.

3.2. Proposed Salt Segmentation
Method

The proposed segmentation method follows the
pipeline depicted in Figure 1.
The first step of input preprocessing is patch ex-
traction; 2D images are in fact too large to be
used directly for training. The patch extraction
implemented is tunable, depending on the needs.
One can decide how big a patch should be and
how much close patches overlaps (patch shape
and stride). The second part of preprocessing is
the normalization step. Normalization improves
CNNs learning capabilities by standardizing the
input to fixed range values, in this case z-score
normalization have been applied: given an im-
age patch we simply subtracted its mean and
divided by its standard deviation. After prepro-
cessing the training and validation step is per-
formed, which provides a trained CNN ready
for testing. At test time, the trained CNN is
fed with testing patches and is required to pro-
duce binary masks for each of them: once all the
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Figure 1: Segmentation process pipeline. Blocks
coloured in blue are the core part of the segmen-
tation process.

patches have been processed, those are stitched
together forming a complete 2D image. The last
step is metric evaluation, the process of com-
paring ground truth masks and CNN produced
masks to compute performance scores for the
tested CNN.

3.3. Segmentation CNN
The input patch, after being normalized, is fed
to the CNN input layer and processed by pass-
ing through an encoder and decoder: the chosen
network backbone is Unet. Unet architecture is
widely known to be very effective for segmenta-
tion tasks. Unet architecture is made by an en-
coder and decoder part: the encoder contracts
the input image reducing its dimensionality to
a small latent representation, while the decoder
up-samples the compressed data to match the

input image dimension, creating a mask. On
the encoder and decoder architectural side, the
selected model is ResNet34.

Figure 2: ResNet34 encoder architecture. For
simplicity skip connection have been added only
on the first block. Coloured layers at the end of
each blocks are concatenated to create the final
latent representation.

The reasons for this decision are mainly two:
ResNet34 has already proven to be optimal for
salt segmentation problems in the literature
[3], also the same CNN architecture has been
selected by our reference baseline, ensuring a
faithful comparison of results. ResNet34 is
made of four convolutional blocks connected
together, at the end of each block, the number
of channels doubles, and a pooling layer halves
the image dimensionality. In order to use
ResNet34 with single-channel images like ours,
we added a convolutional layer called "merger"
made of three 1x1 convolutions. Every block of
ResNet architecture outputs a stack of channels
with different dimensionality: The final latent
representation, gray in Figure 2, is formed by
concatenating the final output of all four blocks,
encapsulating information in four different
processing stages.

The main focus of the proposed study on salt
segmentation is loss testing. Many different
losses are available for segmentation tasks, each
of one leads the optimization process to differ-
ent minima. For the sake of brevity, only the
names of the losses will be reported, without
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introducing any formula or graph associated to
them. The selected losses are: Binary Crossen-
tropy (BCE), Contour, Dice, Focal, Hausdorff,
Jaccard , Kullback-Leibler (KL) divergence, Lo-
vasz, Mean square error (MSE), and Wing.

4. CNN Interpretation
This section will dive into the details of two
different XAI techniques we used: Activation
maximization (AM) and Network inversion
(NI). Each of them have a different scope and
tries to inspect how a CNN works under a
different prospective.

4.1. Activation Maximization
The AM technique is based on the following
idea: to understand the meaning of a specific
neuron in a CNN, we have to find out which is
the input image x∗ that maximizes the activa-
tion of that neuron. The resulting image could
be a good representation of what that neuron is
doing. Given a neuron of a neural network with
parameters θ, the input image x∗ we are looking
for can be found by solving the problem [1]

x∗ = argmax
x

h(θ, x), (3)

where h computes the neuron output when fed
with image x. Since CNNs are differentiable
with respect to their input, it is possible to find
the target input image by tuning it iteratively.
The steps to be taken are:
• Initialize an image x0 as random noise for

all pixel values.
• Compute the gradient on the input image

using back-propagation.
• Update each pixel of the image to maximize

the neuron activation by moving on the pre-
viously computed gradient: the update it-
eration is known as gradient ascent.

A shortcoming of the standard AM method is
that in this way it is possible to inspect only one
neuron at a time. Looking at only one neuron
activation might be enough when inspecting
a specific class neuron, but is not enough to
capture how intermediate layers work. Without
introducing any transformation robustness or
parameterization, the optimal input image
that activates a neuron might be covered with
random noise. This happens because the target

neuron strongly respond to this high-frequency
patterns that covers the image. Transformation
robustness substantially increase the quality
of target images without penalizing legitimate
high frequencies components. The intuition
behind transformation robustness is that, since
the CNN is usually trained to identify targets
at different scales and positions, if an image
maximizes activation of a neuron also a slightly
transformed version of it does.

4.2. Network Inversion
NI can be used to effectively inspect a layer as a
whole, both convolutional or fully connected [2].
To do so a dataset sample image x is fed into
the CNN, and his representation is computed up
to the layer A to be inspected obtaining the so
called "feature map" A(x). The algorithm goal
is to find an input image x∗ whose feature maps
A(x∗) is close to A(x), adding also a regulariza-
tion therm such that x∗ resembles in some ways
the dataset sample x.
The optimal image x∗ is obtained iteratively by
optimizing an input image x such that [2]

x∗ = argmin
x

(||A(x)−A(x∗)||2 − λ(x)) (4)

The algorithm tweak iteratively the input noise
x0 until the minimum distance between feature
maps A(x0) and A(x) is reached. The main goal
of NI is to find out what part of input image
information is lost and what is kept at a specific
network layer.

5. Results
In this thesis two datasets have been used in
total. One, the SEAM dataset, has first been
used to train CNNs for segmentation purposes.
SEAM dataset has then been processed to per-
form classification on segmentation networks for
the purpose of CNN explainability. To trans-
form the segmentation dataset in a classification
one, a label has been assigned to each patch de-
pending on the percentage of salt present. The
second dataset used is called LANDMASS, a
classification dataset that contains images be-
longing to four different types of seismic arti-
facts: Reflectors, Chaotic horizons, Faults and
Salt domes.
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Loss DICE PS
BCE 0.8914 0.748591
Contour 0.902134 0.773261
Dice 0.923534 0.88268
Focal 0.890961 0.727423
Hausdorff 0.893505 0.936658
Jaccard 0.917728 0.784634
KL 0.907488 0.798635
Lovasz 0.907314 0.903268
MSE 0.824938 0.692863
Wing 0.90502 0.923319
BCE + Dice 0.905626 0.862574

Table 1: Summary of 3D scores obtained from
segmentation experiments with different losses

5.1. Segmentation results
To evaluate segmentation CNN performance
many score functions have been used, for the
sake of brevity we will report here only Dice
and Perimetric similarity (PS). PS have been se-
lected since we are mainly interested in delineat-
ing the border of salt domes: PS is in fact Volu-
metric score only on the Salt perimeter. Table 1
reports scores obtained by testing the proposed
losses. The last raw of the table represent the
"baseline", that is a CNN trained with the same
Unet-Resnet34 architecture but with combined
loss function. The baseline loss is a linear com-
bination of BCE and Dice coefficient (DIC) loss
functions, with weights equal to one. Baseline
details have been given to us by ENI; the pur-
pose of this testing session is to see if some other,
less common losses can perform better. Dice loss
scored the best Dice score among all the tested
losses, meaning that Dice loss performs overall
better with respect to the other loss functions.
Hausdorff on the other hand reached the top PS,
meaning that Hausdorff is the best loss for salt
perimeter recognition.

5.2. Interpretation results
CNN Inversion techniques discussed in Section
4 investigate on how a CNN interprets differ-
ent classes: to apply AM for example, we need
some specific target to optimize that embodies
how our CNN sees one class or another. It is im-
possible to apply those techniques directly to a
segmentation networks since it maps 2D inputs
in 2D outputs, there are no specific objective

that resembles one class or another. To cope
with this problem we come up with two differ-
ent alternatives:
• Remove the decoder from a pre-trained

segmentation CNN, append a classification
head and train the new CNN lowering the
encoder Learning rate (LR).

• Train a new classification CNN from
scratch.

Only in the first case we are effectively inspect-
ing a CNN trained for segmentation purposes
by keeping the encoder almost the same. For
brevity purposes, only SEAM dataset images
produced on the pre-trained segmentation net-
work are reported, leaving aside LANDMASS
dataset CNNs.
The CNN to be inspected uses a pre-trained en-
coder for segmentation purposes, classification
head is then trained on a new classification task
splitting salt patches with a threshold of 20%.
Note that there is no gap between background
and salt class, so definition of salt and back-
ground can be ambiguous at times.

(a) AM on class salt on
segmentation CNN

(b) AM on class salt on
classification CNN

Figure 3: AM on class salt considering the seg-
mentation (a) and classification (b) CNN.

Figure 3a shows AM applied to class neuron
of the segmentation CNN. Note how salt body
discontinuity is sharp and stands out with re-
spect to the rest of the image: this tells that
the CNN has effectively learned to recognize salt
bodies by looking at surface discontinuity be-
tween background and salt. The same AM algo-
rithm on classification CNN (Figure 3b) suggests
that the CNN only learned to recognize the gen-
eral discontinuity between salt and background.
Figure 4 shows NI applied to the segmentation
CNN. Note how the deeper layer we inspect, the
more the input image is modified by the encoder.
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Figure 4: NI applied to a pretrained CNN. The
firs image on the left is the input image.

Figure 4 shows a segmentation CNN hardly
modify the input image, leaving intact all the de-
tails: this happens probably because segmenta-
tion CNNs need to retain as much spatial infor-
mation as possible about the input image to be
able to reconstruct the output mask with great
precision. CNNs trained appositely for classi-
fication do not need to "understand" salt bod-
ies in such a detailed manner since classification
task does not need to retain any spatial infor-
mation about the input image.

6. Conclusions
In this work we tackled the problem of salt seg-
mentation in two different ways: in the first part
we proposed a baseline segmentation CNN and
took care of all the steps, from data prepara-
tion to testing and metric evaluation. In the
second part we inspected network behavior us-
ing two XAI techniques called Network Inversion
and Activation Maximization. Now that all the
considered losses have been successfully tested,
the next step to make to reach even higher seg-
mentation performances is hyperparameter tun-
ing, one further improvement to reach state
of the art performances could be implementing
ensemble-based predictions using multiple archi-
tectures. On the side of CNN inspection, we
successfully implemented AM and NI techniques
to ResNet34 architecture achieving highly inter-
pretable results. By looking ad AM-produced
images, we explained how a segmentation en-
coder interprets class salt and background: the
produced images contain usually only one very
detailed replica of the selected class, embodying
the concept of salt or background label. NI tech-
nique confirmed the made hypotheses by show-
ing how differently the two encoders process the
input image: the segmentation encoder barely
modify the image shape and size, classification
encoders modify the input dramatically already
from from shallower layers, progressively loos-
ing image details leaving behind only its general
concept. One bigger step could be implement-

ing a generator network using Generative adver-
sarial network (GAN) training: AM generated
images can be used as preferred initialization to
train a generator network using GAN training,
resulting in impressively realistic images. By re-
ducing the number of optimization steps of the
already implemented AM algorithm one can pro-
duce perfect starting images for generator net-
works.
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