
Dipartimento di Elettronica, Informazione e Bioingegneria

Master Degree in Music and Acoustic Engineering

Combining Automatic
Speaker Verification and

Prosody Analysis for
Synthetic Speech Detection

by:
Luigi Attorresi

matr.:
945624

Supervisor:
Paolo Bestagini

Co-supervisor:
Davide Salvi
Clara Borrelli

Academic Year
2020-2021

Dipartimento di Elettronica, Informazione e Bioingegneria

Laurea Magistrale in Music and Acoustic Engineering

Rilevamento di Parlato
Sintetico Combinando

Caratteristiche Prosodiche e
Identità del Parlatore

di:
Luigi Attorresi

matr.:
945624

Relatore:
Paolo Bestagini

Correlatore:
Davide Salvi
Clara Borrelli

Anno Accademico
2020-2021

Abstract

Recent developments in artificial intelligence have led to incredible inno-
vations that are rapidly becoming part of our daily lives. This is the case
of deepfakes, a new practice that allows generating hyper-realistic fake
multimedia content. For example, it is possible to replace one person’s
face with that of another in a photo or video or imitate the voice of
someone by making them say anything.

However, significant innovations often come with great threats. In fact,
this technology can be very dangerous when exploited to steal someone’s
identity, discredit him, or spread false news. A video that portrays a
public figure with a strong social impact in a speech that was never
delivered would have tremendous consequences. The same would happen
for pornographic material that depicts a world-renowned celebrity with
a simple exchange of faces. Finally, a cloned voice could be suitable for
phone fraud or forgery of judicial evidence. Unfortunately, this is not a
dystopian description of the near future but rather actual facts.

Therefore, it is crucial to have the methodologies to neutralize such
counterfeits. This thesis proposes a system capable of recognizing whether
a given speech audio signal is synthetic or authentic. Our approach starts
from the hypothesis that counterfeiting techniques are not yet able to
recreate the most complex semantic aspects of the voice realistically. For
this reason, we use a speech representation that takes into account two
high-level features: vocal identity, related to timbre and intonation, and
prosody, which we consider a very subtle but distinctive aspect of voice,
related to behavioral characteristics and speech habits, such as style,
accent or tone.

We evaluate our system from different perspectives through a series of
ad-hoc experiments involving a large amount of real and deepfake audio
tracks. In this way, we demonstrate the effectiveness and novelty of our
method compared to existing ones. In addition, we analyze its ability
to generalize in less controlled scenarios and robustness to additional
manipulations, such as compression, typically applied to deepfakes to
hide traces of counterfeiting. These analyses lead to excellent results and
open up possible future scenarios and improvements to the model.

Sommario

I recenti sviluppi dell’intelligenza artificiale hanno portato a incredibili
innovazioni che stanno rapidamente prendendo parte alla nostra vita
quotidiana. È questo il caso dei deepfake, una nuova pratica che permette
di generare dei contenuti multimediali iperrealistici, ma falsi. È possibile,
ad esempio, sostituire il viso di una persona con quello di un’altra in una
foto o in un video, oppure imitare la voce di qualcuno facendogli dire ciò
che si vuole.

Tuttavia, molto spesso a importanti innovazioni corrispondono anche
grandi minacce. Infatti, tale tecnologia può essere molto pericolosa quando
la si sfrutta con lo scopo di rubare l’identità della vittima, screditarla
o diffondere notizie false. Un video che ritrae un personaggio pubblico
con un forte impatto sociale in un discorso mai pronunciato potrebbe
avere conseguenze tremende. La stessa cosa accadrebbe per del materiale
pornografico che, con un semplice scambio di volti, ritrae una celebrità
di fama mondiale. Infine, una voce clonata potrebbe prestarsi a frodi
telefoniche o contraffazioni di prove giudiziarie. Purtroppo, questa non
è una descrizione distopica di un futuro prossimo, ma si tratta di fatti
realmente accaduti.

È cruciale quindi avere a disposizione dei mezzi per contrastare tali
contraffazioni. Questa tesi propone un sistema in grado di riconoscere se
un dato audio contenga del parlato sintetico, oppure autentico. Il nostro
approccio parte dall’ipotesi che le tecniche di contraffazione non siano
ancora in grado di ricreare in modo realistico gli aspetti semantici più com-
plessi della voce. Per questo motivo ci serviamo di una rappresentazione
del parlato che tenga conto di due caratteristiche di alto livello: l’identità
vocale, legata al timbro e all’intonazione, e la prosodia, che consideriamo
un aspetto molto sottile, ma distintivo della voce, legato a caratteristiche
comportamentali e abitudini nel parlare, come stile, accento o tono.

Valutiamo il nostro sistema sotto diversi aspetti mediante una serie
di esperimenti ad-hoc che coinvolgono una grande quantità di audio reali
e deepfake. In questo modo dimostriamo l’efficacia e l’innovazione del
nostro metodo rispetto a quelli già esistenti. Inoltre, analizziamo la sua
capacità di generalizzare in contesti meno controllati e la robustezza a
manipolazioni aggiuntive, come ad esempio la compressione, tipicamente
applicata ai deepfake per nascondere le tracce di contraffazione. I risultati
di queste analisi sono eccellenti e aprono a possibili scenari futuri e
miglioramenti del modello.

Ringraziamenti

Ringrazio innanzitutto Paolo, Davide e Clara per avermi guidato per tutto
il lavoro di tesi, ho imparato tanto da voi. In particolare grazie Davide
per essere stato sempre presente ed avermi spronato a dare il massimo.
Grazie ai miei genitori, che da sempre mi supportano (e sopportano!).

Anche se lontani vi porto sempre con me, siete il mio punto di riferimento.
Ringrazio i nonni, gli zii, i cugini e tutta la famiglia per laffetto che mi
hanno sempre dimostrato. Ringrazio chi mi ha accompagnato in tutti

questi anni restando sempre al mio fianco, gli amici di una vita e quelli
più recenti. Grazie a Chiara, Pico, Cate e Nenna per esserci sempre stati,
ora che siete a Milano è tutto più bello. Marina, Alessio, Giulia, Arianna,
Eleonora, Michele, Elisa, Andrea, Alice, Erika, Lucia e Marco, siete la
mia casa, è sempre bello ritrovarsi dopo tanti anni come se nulla fosse
cambiato. Grazie a Polifonia, una delle esperienze più belle mai vissute.

Grazie a chi ho conosciuto tramite questa associazione, Andrea, Marco,
Nicole, Clara, i membri dei due direttivi e tutti i ragazzi con cui ho
passato momenti indimenticabili. In particolar modo grazie a Bea, il mio
braccio destro, una fonte di ispirazione e sostegno. Grazie ai Fotonici per

aver reso questi anni di magistrale indimenticabili. Grazie ai Lambrate
Boys per i momenti passati insieme, vi voglio bene.

L.A.

Contents

Abstract i

Sommario ii

Ringraziamenti iii

List of Figures vii

List of Tables viii

Introduction ix

1 Theoretical Background 1
1.1 Audio Feature Extraction 1

1.1.1 Mel Spectrogram 1
1.1.2 Mel Frequency Cepstral Coefficients 3
1.1.3 Prosodic Features 3
1.1.4 Feature Preprocessing 4

1.2 Machine Learning . 6
1.2.1 Support Vector Machine 7
1.2.2 Grid Search . 8

1.3 Deep Learning . 8
1.3.1 Multilayer Perceptron 9
1.3.2 Convolutional Neural Network 9
1.3.3 Recurrent Neural Network 11
1.3.4 Self-attention . 12
1.3.5 Time Delay Neural Network 13
1.3.6 Autoencoder . 14

1.4 Conclusive Remarks . 15

2 State of the Art 16
2.1 Automatic Speaker Verification 16

2.1.1 Traditional Techniques 17
2.1.2 Deep Learning Methods 19

2.2 Audio Deepfake Generation Techniques 21
2.2.1 Text-to-Speech 22
2.2.2 Voice Conversion 23

2.3 Prosody Modeling . 25

iv

Contents v

2.3.1 Prosody Labeling 26
2.3.2 Expressive Speech Synthesis 26

2.4 Deepfake Detection . 29
2.4.1 Artifacts-based Approaches 30
2.4.2 Semantic-based Approaches 31

2.5 Conclusive Remarks . 33

3 Proposed System 34
3.1 Problem Formulation . 34
3.2 System Architecture . 34

3.2.1 Speaker Embedding Extraction 35
3.2.2 Prosody Embeddings Extraction 38
3.2.3 Classifier . 45

3.3 Conclusive Remarks . 46

4 Experimental Setup 47
4.1 Datasets Description . 47
4.2 Evaluation Metrics . 49
4.3 Features Extraction & Training Details 50
4.4 Baselines . 52
4.5 Experiments . 53
4.6 Conclusive Remarks . 55

5 Results 56
5.1 Embeddings Comparison 56
5.2 Baseline Comparison . 58
5.3 Generalization Capability 59
5.4 Ablation Study . 61
5.5 Compression Robustness 63
5.6 Conclusive Remarks . 65

6 Conclusions and Future Works 67

List of Figures

1.1 Example of a Mel Spectrogram [1]. 2
1.2 Block scheme showing the computation of a Mel Spectro-

gram [2]. 2
1.3 Block scheme showing the computation of Mel Frequency

Cepstral Coefficients (MFCCs) [3]. 3
1.4 Support Vector Machine (SVM) binary (a) and SVM mul-

ticlass classification (b) [4]. 7
1.5 Relations between Deep Learning (DL), Machine Learning

(ML) and Artificial Intelligence (AI) [5]. 8
1.6 Graph of a Multi Layer Perceptron (MLP) with one hidden

layer [6]. 10
1.7 Graph of a Convolutional Neural Network (CNN) ending

with a fully connected layer [7]. 11
1.8 Scheme of a Recurrent Neural Network (RNN) unit (left)

and its unrolled representation (right) [8]. 12
1.9 Self-attention mechanism for the input sentence “Walk by

river bank” [9]. 13
1.10 Time Delay Network (TDNN) convolution with dilation.

The blue matrix is the input, its shady regions represent
the receptive field and the green vector is the output. . . 14

1.11 Architecture of an autoencoder [10]. 14

2.1 Tacotron 2 architecture [11]. 23
2.2 Expressive Tacotron Architecture presented in [12]. . . . 28
2.3 Phase spectra of bicoherence estimated from a spoof (on

top) and real (on bottom) speeches [13]. 31
2.4 deepfake (DF) detection method exploiting audio-visual

emotion analysis proposed in [14]. 33

3.1 Pipeline of the proposed system. 35
3.2 Architecture of the ECAPA-TDNN model described in [15].

k is the kernel size and d the dilation coefficient of the
convolutional layers or SE-Res2Blocks. S is the number of
training speakers, while the channel and temporal dimen-
sions of the intermediate feature maps are denoted as C
and T , respectively. 36

3.3 Insight into the architecture of a SE-Res2Block. [15] . . . 37

vi

List of Figures vii

3.4 (a) and (b) show the comparison between the original
temporal contour and the one approximated in each voice
segment by Legendre polynomial for fundamental frequency
(f0) and energy (E0), respectively. In particular, in the
upper plot of (a) is highlighted the division into voiced
segments, represented by the colored sections. The text
of the considered audio is “He will address the nation this
evening" and intuitively each voiced segment represents a
word. 42

3.5 CBHG-encoder architecture [16]. 43
3.6 Pipeline of the prosody enhanced Tacotron presented in [17]. 44
3.7 Architecture of the prosody encoder included in [17]. . . 45

4.1 Example of a Receiver Operating Characteristic (ROC)
curve, with the associated Area Under the Curve (AUC)
and Equal Error Rate (EER) values [18]. 51

4.2 Attention alignment graphs extracted at different training
epochs of the expressive Tacotron model presented in [17] 52

5.1 Comparison of ROC curves extracted from the three fp
extraction methods on ASVspoof 2019 Logical Attack (LA)
eval set. 58

5.2 Cross-correlation matrix Rff of feature vectors f realiza-
tions of ASVspoof 2019 eval set. 58

5.3 Histogram showing the distribution of the output scores of
ProsoSpeaker computed on ASVspoof 2019 eval set. . . . 59

5.4 ROC curves for the proposed method and the considered
baselines, evaluated on ASVspoof 2019 LA eval set. . . . 60

5.5 Bar plot of the percentage of correct attribution values of
the proposed model on each partition of each considered
dataset. 61

5.6 ROC curves obtained for the three models using different
embeddings (ProsoSpeaker, Speaker Emb, Prosody Emb)
and tested on the three scenarios (TTS, VC, ALL). . . . 63

5.7 Confusion matrices obtained for the three models using dif-
ferent embeddings (ProsoSpeaker, Speaker Emb, Prosody
Emb) and tested on the three scenarios (TTS, VC, ALL). 63

5.8 Histogram showing the distribution of the output scores of
ProsoSpeaker computed on ASVspoof 2021 eval set. . . . 65

5.9 ROC AUC, EER and Bal. Acc. values computed on
compressed versions of ASVspoof 2019 LA eval at different
bitrates. 65

5.10 ROC curves of the proposed method and the considered
baselines computed on ASVspoof 2021 DF eval set. . . . 66

List of Tables

4.1 Composition of the training, development and testing sets
for the front-end binary classifier. 49

5.1 EER, AUC and balanced accuracy values for the three fp
extraction methods on ASVspoof 2019 LA eval set. . . . 57

5.2 EER, AUC and balanced accuracy values for the proposed
ProsoSpeaker method and the considered baselines, evalu-
ated on ASVspoof 2019 LA eval set. 60

5.3 EER, AUC and balanced accuracy values for the three
models (ProsoSpeaker, Speaker Emb, Prosody Emb) tested
on the three scenarios (TTS, VC, ALL). 62

5.4 EER and AUC values for the proposed method and the
considered baselines, evaluated on ASVspoof 2021 DF eval
set. 64

viii

Introduction

In recent years, Artificial Intelligence (AI) has made impressive progress,
thanks to the advent of Machine Learning (ML) and Deep Learning
(DL) techniques. We are witnessing a remarkable technological develop-
ment that will not slow down and affect almost every field. AI-based
algorithms are responsible for the most astonishing and futuristic dis-
coveries: software capable of beating world champions in chess [19] or
other creative-thinking games [20], computers able to recognize objects
with greater accuracy than humans [21] and even self-driving cars [22].
Every day, we interact with voice assistants such as Siri, Alexa, Google
Home, which can talk to us, understand our questions, and know how to
answer by performing advanced research in a few instants. Automated
translators are increasingly reliable, close to human accuracy and able to
work in real-time [23]. New technologies are even being tested to trans-
late brainwaves into messages and instructions that enable non-verbal
communication [24].

However, while this technological revolution is leading to great innova-
tions, it also has its downsides. AI, represents a tool as useful as harmful,
depending on the intent with which it is used and in many cases it has
paved the way for malicious purposes. One example that has been in the
spotlight lately and is becoming increasingly popular is the deepfake (DF)
technology. The term DF comes from the combination of “deep learning”
and “fake”. Indeed, it is a DL technique used to create realistic but fake
images, videos and audio. For example, it allows to replace a person’s face
in a video, make someone’s photo smile or more generally change facial
expression, imitate the voice of a certain speaker by copying its main char-
acteristics and much more. The recent developments in this technology
have made such forgeries increasingly realistic and accessible. This enables
producing manipulated media that are almost impossible to distinguish
from the original ones. Moreover, there are many apps in circulation that
allow anyone to generate a DF in a matter of seconds by just uploading a
single image, audio or video. This has led to widespread popularity on
social media as pure entertainment and even in the artistic field. How-
ever, together with this seemingly innocent use of this technology, other
harmful uses have spread. They involve DFs to generate and promote
identity-stealing multimedia content, passing it off as real in order to
discredit the depicted victim, spread fake news, or even commit fraud and

Introduction x

appropriate their data. Many examples have already featured political
or more generally public characters with a strong social impact [25]. In
this regard, they can contribute to the proliferation of misinformation
by creating situations that have never occurred in reality, portraying the
subjects in contexts in which they have never been or that could appear
compromising, to influence public opinion. Moreover, there are many
cases in which face-swap has been applied in pornographic contexts, thus
giving birth to new adult material in which the protagonists are often
celebrities [26] or other victims. Generally, this technology can be used
to discredit and damage people’s image and is at everyone’s reach [27].
In the same way, synthetically generated voices, corresponding to audio
DFs, have proven equally dangerous. With the increasing quality and
accessibility of the two main speech synthesis techniques, Text-to-Speech
(TTS) and Voice Conversion (VC), it is possible to generate increasingly
realistic voices with the same timbre and characteristics of target speakers.
The first method generates speech that resembles a specific voice, starting
from a textual input containing the words to be spoken. The second takes
speech audio as input and transforms the voice characteristics into those
of a target speaker, keeping the linguistic content unchanged. In this way
it is possible to make the imitated people say anything so as to pretend
to be them and access personal information. Real-life examples show how
such voices can fool voice recognition systems and commit fraud [28] [29]
or support voice phishing attacks.

As the development of DFs is moving very fast, it is necessary to work
on countermeasures to defeat their misbehaving uses. With new systems
for generating such counterfeit content, there is a need for new systems to
recognize it, keeping pace with this evolving technology. As a result, the
two branches of research involved in developing techniques for generating
and recognizing DFs are constantly developing and challenging each
other. One seeks to create increasingly realistic DFs capable of evading
recognition systems, while the other constantly seek their weaknesses and
traits relevant to identifying them. Several state-of-the-art methods have
been proposed in relation to the DF detection task [30]. Some can search
for artifacts introduced by the generator at pixel or sample level, which
can be interpreted as fake fingerprints. This analysis usually concerns
low-level features since such traces are not noticeable at high-level. For
example, the authors of [31] perform detection of AI-generated fake images
by looking for artifacts through high-frequency component analysis. On
the other hand, the method proposed in [13] looks for them in synthesized
speech through high-order spectral analysis. Other methods rely on more
semantically meaningful features and exploit high-level inconsistencies to
discriminate DFs, assuming their weakness in emulating the finest aspects
of human nature. For example, [32] detects fake videos by modeling how
people move as they speak, while [33] focuses on the detection of the lack
of natural eye blinking. The authors of [34] show how synthetic voices
lack natural emotional behavior and can be discriminated by feeding

Introduction xi

a classifier with high-level features obtained from a Speaker Emotion
Recognition (SER) system.

In this thesis we propose a method, called ProsoSpeaker, for audio
DF detection, that, given an input speech signal, is able to determine
if it is authentic or a fake. In particular, the types of fake audio that
our system recognizes are those generated via TTS and VC techniques,
which are the most advanced and common for DF generation. To do
so, we consider two high-level features that describe the voice’s semantic
aspects. The first one refers to the spectro-temporal characteristics of
the analyzed voice, i.e., timbre specific properties or pitch contour of the
voice, extracted using a state-of-the-art model for Automatic Speaker
Verification (ASV) tasks. The second describes prosodic aspects of the
voice, like speech signal variations in rhythm, intonation and style. It is
extracted by means of the prosody encoder presented in [17], originally
designed to increase the expressiveness of TTS speech synthesis. We
feed the concatenation of these two representations to a classifier which
labels the corresponding audio as real or DF. The novelty of our approach
lies in using these two features together to address the task of audio
DF detection. In fact, there are methods that use either spectral [35] or
prosody [36] features to implement ASV systems, but not some that jointly
consider them for the task at hand. Indeed, we believe that combining
two semantic representations as speaker-identity and prosody, generates
a more informative one, able to model both the voice’s physiological and
behavioral characteristics. This constitutes a basis we can leverage to
identify DF speech generated via different technologies that may be flawed
in one semantic aspect or the other.

To validate our system from different perspectives, we performed five
experiments that include a total of almost 800000 traces between authentic
and counterfeits. We keep the same training set for all experiments,
while varying the test set according to the aspect of the model to be
evaluated. Moreover, the datasets involved in the various test phases are
not necessarily the same ones considered during training. We guarantee
uniformity of the experiments and a robust evaluation of the results on
unseen generation algorithms and real-world data. The evaluation setup
aims to analyze the chosen features, demonstrate the effectiveness of the
method compared to the state-of-the-art and verify the generalization
capabilities and robustness to post-processing manipulations. The results
are promising since ProsoSpeaker proves to be better than the state-of-
the-art methods considered, with a Area Under the Curve (AUC) of 98.85
in a controlled scenario, while 91.59 in the most complex case.

This thesis is organized as follows. In Chapter 1 we provide the reader
with all the specific knowledge needed to understand the content of our
work, i.e., we describe the features we use as input to the system and
the Machine Learning (ML) and Deep Learning (DL) concepts involved.
In Chapter 2 we describe the state-of-the-art related to our work, i.e.,
Automatic Speaker Verification (ASV), audio deepfake (DF) generation

Introduction xii

techniques, prosody modeling and DF detection. Then, in Chapter 3 we
formalize the problem that this thesis addresses and describe the system
proposed to solve it, that we call ProsoSpeaker. Chapter 4 describes the
experimental setup implemented to test our method, that is, the datasets
and metrics chosen, the details for feature extraction and model training,
the baselines used as reference, and the series of experiments performed. In
Chapter 5 we show and analyze the obtained results interpreting them and
validating our starting hypothesis. Finally, in Chapter 6 we summarize
our work and propose possible future scenarios and improvements to the
model.

1
Theoretical Background

In this chapter we will present the theoretical background needed to
understand the following sections completely.

1.1 Audio Feature Extraction
Feature extraction is a crucial procedure needed to build an informative
representation of the data. It consists of extracting meaningful character-
istics that can be used to fully describe and distinguish the data. This
section will present the main representations and features involved in our
study.

1.1.1 Mel Spectrogram
A Spectrogram is a representation of an audio signal in both its time and
frequency domains. In the Mel Spectrogram, shown in Figure 1.1, the
frequency axis is converted into the Mel scale, which is an approximation
of the human psychological sensation of heights of a pure sinusoid. This
scale resembles the logarithmic behavior of the auditory filters in the
cochlea — organ which plays a key role in the sense of hearing — and
thus, is used to provide sound information similar to what a human
would perceive [37]. There is not an exact formula for the Hz-to-Mel
conversion, being the Mel scale a psychoacoustic concept, but there are
many approximations. In our work we adopt the popular formula proposed
by O’Shaughnessy [38]:

m = 2595 ∗ log10 (1 + f/700), (1.1)

Chapter 1. Theoretical Background 2

Figure 1.1: Example of a Mel Spectrogram [1].

Figure 1.2: Block scheme showing the computation of a Mel Spectrogram [2].

where f is the considered frequency and m is the associated value on the
Mel scale.

The general algorithm to compute a Mel Spectrogram is described in
Figure 1.2. First, a time-frequency representation of the input signal is
extracted through the Fast Fourier Transform (FFT), a fast algorithm
for computing the Discrete Fourier Transform (DFT). It is performed
by dividing the signal into shorter overlapping segments through the
windowing process, as in

xl[n] = w[n]x[n+ lR] 0 ≤ n ≤ N − 1, (1.2)
and then applying the DFT at frame-level (1.3),

X(l, k) =
N−1∑︂
n=0

xl[n]e
−j2πnk/N . (1.3)

Here, xl[n] is the windowed frame l extracted using a window w[n]
with a hop-size R, X(l, k) is the value of the DFT of xl[n] at the frequency
bin k and N is length of xl[n]. Then, the result is multiplied by a Mel
filter bank, computed from a series of overlapping triangular windows at
a series of evenly spaced Mels. Finally, the Mel Spectrogram is obtained
by summing all the filter bank outputs.

Chapter 1. Theoretical Background 3

Figure 1.3: Block scheme showing the computation of MFCCs [3].

1.1.2 Mel Frequency Cepstral Coefficients
The Mel Frequency Cepstral Coefficients (MFCCs) are a compact rep-
resentation of a signal spectrum, widely used in speech processing. The
name comes from the fact that they express in the Mel scale the rate of
change in spectral bands, often referred to as cepstrum [39].

Figure 1.3 shows the steps required to extract the MFCCs. The
first two are intended to calculate the Mel Spectrogram of the signal,
as described previously. Therefore, once the signal has been divided
into N fragments of the same length, the DFT computes the spectrum
of the signal from them and a Mel filter bank of K filters transforms
the frequency into the Mel scale. Then, we compute the log filter bank
energies as a logarithm of the Spectrogram and use the Discrete Cosine
Transform (DCT) to decorrelate their values. The resulting K×N matrix
contains the MFCCs values of the signal.

1.1.3 Prosodic Features
Prosody Definition

Prosody is a general term used to describe the confluence of many phenom-
ena in speech, such as temporal variations in rhythm, intonation, stress
and style. Such elements, known as suprasegmentals, convey information
that is not explicitly specified by the text. The same sentence might de-
note a number of different intentions and nuances, depending on how it is
pronounced. Such aspects are only capable through suprasegmentals and
are closely influenced by the speaker’s emotion, language, and speaking
style. Moreover, different languages can have very different intonation
rules [40] as well as other individuals can have their own speaking habits
[41].

Many methods have been proposed to model prosody, such as [42, 43].
These approaches decouple the concept of prosody from that of speaker
identity and model them separately. In this work we will intend the
prosody based on the “subtractive definition” adopted in [42] that is:
prosody is the variation in speech signals that remains after accounting
for variation due to phonetics, speaker identity, and channel effects (i.e.
the recording environment).

Chapter 1. Theoretical Background 4

Features

Among those aspects related to the definition of prosody, two of the most
used are the fundamental frequency (f0) and energy (E0) contours of
the audio signal, which can be expressed as functions of time. Their
behaviour provides lots of information about most phenomena ascribable
as prosody. Among the most commonly used features are the minimum
and maximum of these functions computed over short fragments and
their first four statistical moments, namely average, standard deviation,
skewness and kurtosis.

Among all the proposed methods for extracting such features, the
majority can be grouped into two main categories:

1. Windowed-segments Methods: the audio signal is divided into
short-term frames via fixed-length, overlapping windows and a
feature vector is extracted for each one of them.

2. Voiced-segments Methods: the audio signal is divided into
voiced segments, like words or syllables [44], and a feature vector is
extracted for each one of them. These methods discard the pauses
between each segment, assuming that their placement does not
considerably influence prosody.

Depending on the length of the inputs, these methods can provide long
feature vectors with variable sizes.

Another set of prosody features used occasionally is based on the
duration and position of voiced and unvoiced segments [45]. Among them
are:

• Duration of voiced segments: duration of speech voiced sounds.

• Duration of unvoiced segments: duration of speech voiceless sounds.

• Duration of pauses: duration of silences between words.

• VUP ratios: ratios between the voiced, unvoiced and pause seg-
ments.

This kind of prosodic features is normally extracted in a global fashion
from the whole audio, providing fixed-length vectors regardless of the
inputs lengths.

1.1.4 Feature Preprocessing
Once the features have been extracted, for most cases it is important to
include a preprocessing phase in which they are rearranged, transformed
and optimized for the problem at hand.

Chapter 1. Theoretical Background 5

Feature Scaling

Feature scaling is needed whenever the feature supports do not coincide
[46]. This technique standardizes each feature independently to have
them all defined over the same range. In this way they will be comparable,
otherwise, the used system will assign different weights to those with
different domains. There are two commonly used scaling techniques:

1. Min-Max Normalization: re-scales a feature set in the range
[0, 1]

x̂ =
x−min(x)

max(x)−min(x)
, (1.4)

where x̂ is the normalized feature and x is the original one.

2. Standardization: re-scales a feature value so that it has distribu-
tion with 0 mean value and unitary variance

x̂ =
x− x

σ
, (1.5)

where x̂ is the standardized feature, x is the original one, x = avg(x)
is the mean of the feature vector and σ is its standard deviation.

Feature Correlation

Feature correlation is considered a crucial step in the preprocessing phase.
It is a way to understand the amount of shared information among the
extracted features. Correlation is a statistical term, which, in common
usage refers to how close two variables are to having a linear relationship
with each other. Hence, it can be used as a measure of similarity. Suppose
two features are uncorrelated or have a low correlation degree. In that case,
it means that they can model and focus on independent characteristics
of the input data. On the other hand, if they show a high degree of
correlation, they share a significant amount of information and, therefore,
are redundant. In this work we intend the linear correlation between two
variables x and y in terms of Pearson’s correlation, defined as the ratio of
their covariance cov(x, y) and the product of their standard deviations
σx and σy

rxy =
cov(x, y)

σxσy

(1.6)

The resulting value rxy ranges from -1 to 1 and the higher its module the
greater the correlation, so it is maximum at the extreme of the range, and
minimum at the center. A negative correlation means that if a feature
increases, the other decreases, while they are directly proportional for a
positive correlation. An easy way to visualize the correlation between all
possible feature pairs is the correlation matrix. It is symmetrical since
rows and columns contain the same values and each element of the matrix
is the correlation coefficient between the features at its indices.

Chapter 1. Theoretical Background 6

1.2 Machine Learning
ML [47] is a branch of Artificial Intelligence (AI) [48], which encom-
passes systems able to perform a task without having been explicitly
pre-programmed to succeed it. ML models are presented with many
examples relevant to a task so that they can find a statistical structure in
the data that eventually allows them to come up with rules to automate
it. That is why such systems are trained rather than programmed. The
set of examples used during the training phase is called training set and it
should be comprehensive and representative enough for the given problem.
The one used to test the model performances is called test set. It should
contain unseen samples, not provided during training, so that it tests the
ability of the model to generalize, i.e., to perform well on never-seen-before
data. In addition to the first two, a validation set can also be used to
get an early estimate of the system’s performance. Validation monitors
weather the model has properly learnt by evaluating it at the end of each
training epoch. This serves as a guide to eventually modify its parameters
before testing the final version on the test set.

Overfitting is a common ML problem highlighted by a considerable
difference in performances between training and test sets. This occurs
when the model adapts too much to the training data and learns its
structure “by heart”, without being able to generalize over unseen data.
Its cause could be the high complexity of the model with respect to the
low quantity of available training data. The opposite situation, called
underfitting, happens when the model, being too simple, is not able to
catch the structure of the input data. Poor performances on the training
set underline this case.

There are different approaches in training a ML system. The two
most common are:

• Supervised Learning: it consists of learning a function that
maps input data to known targets, also called labels, given a set of
examples that have been previously annotated. Then, the inferred
function is used to predict the output from any unseen instance of
input. The model’s goodness can be described according to various
metrics and depends on how close the predictions on unseen test
data are to the ground truth ones.

• Unsupervised Learning: in this training approach, data are
supplied to the system without any indication of the desired result.
The purpose of this second method of learning is to “trace” hidden
patterns and models, i.e., to identify a logical structure in the input
data, without previously labeling it. In this approach, the model’s
accuracy depends on how close the original distribution of the data
is to the learned one.

Chapter 1. Theoretical Background 7

Figure 1.4: SVM binary (a) and SVM multiclass classification (b) [4].

1.2.1 Support Vector Machine
Support Vector Machine (SVM) [49] is a supervised ML method widely
used for the task of classification [50]. Classification consists of assigning
to each input sample a label selected from a given set. This predictive task
is accomplished by learning a function f(xi) = yi where xi ∈ x1, x2, ..., xn

is the input sample and yi ∈ y1, y2, ..., yn is the predicted label from the
given set.

SVM approaches this problem by learning good decision boundaries
between the set of points belonging to different categories and then check-
ing in which region the unseen samples fall. As shown in Figure 1.4,
these boundaries can be geometrically represented as hyperplanes sepa-
rating the training data into spaces corresponding to different categories.
The method first maps the data into a new high-level representation,
called feature space. Then, it computes hyperplanes by maximizing their
distance from the nearest data points in each class. This step, defined
margin maximization, allows the boundaries to generalize well to the
new samples. The higher the margins, the better the separation between
classes and the more robust the model.

If the input data are not linearly separable, SVM cannot partition the
space with hyperplanes and, therefore, needs to perform a data transfor-
mation. It maps the input data into a higher-dimensional space where the
classes are more readily separable and the classification problem becomes
more straightforward. However, explicitly computing the coordinates of
the points in the new space can be computationally intractable and for
this reason it employs a shortcut called the kernel trick, named after the
kernel function. A kernel function is an operation that maps any two
points from the initial space to the distance between them in the target
space, bypassing the explicit computation of the new representation.

Chapter 1. Theoretical Background 8

Figure 1.5: Relations between DL, ML and AI [5].

1.2.2 Grid Search
One of the most challenging parts in ML is tuning the hyperparameters

— the set of external characteristics of a model whose values cannot be
estimated from data — since only experience can help to optimize them.
However, there are algorithms which try to find their optimum values
via trial and error approaches. One of these is Grid Search [51], which
receives as input the set of trials as different hyperparameters values to
try, and trains and evaluates the model performances for each possible
combination. The one that maximizes a chosen metric over the validation
set is considered the best choice.

1.3 Deep Learning
DL [52] is a a specific sub-field of ML as shown in Figure 1.5. It is
based on the idea of learning successive layers of increasing meaningful
representations from data.

In DL the learning of high-level representations is mostly carried
out by models called Artificial Neural Networks (ANNs). An ANN is a
computing system inspired by how biological neural networks work. It
is composed of a series of computing units, called neurons, connected
and organized in layers. The input flows through the first layer, whose
output is the input of the second one and so on. By going deeper into the
ANN, the representation becomes increasingly different from its original
form and informative about the final result. The output of each layer
depends on how it weights the inputs. Therefore, learning means finding
a set of weights for all the layers, such that the network will correctly
map the inputs to their associated targets. It is crucial in this sense to
adopt a score as feedback to adjust the weights and push the learning in
the right direction. This process is performed by backpropagation, which
is a fundamental algorithm in DL. Once the input has passed through

Chapter 1. Theoretical Background 9

the ANN, resulting in the first output (or prediction), backpropagation
computes the gradient of a defined cost function, called loss function,
and propagates back the error. This serves to update the weights of
each layer and marks the end of an epoch. The goal is to minimize the
loss function across the epochs to obtain the desired output. We can
do so using different optimization methods, and the most known is the
Stochastic Gradient Descent.

The reason why DL is usually more performing than ML is that it
completely automates what used to be the most crucial step in a ML
workflow: feature engineering. DL models do not require the input to be
provided as a set of features since they can directly work on raw data. By
building high-level representations, each layer can be considered a feature
extraction step where features, i.e., the layer’s output, do not necessarily
make sense for humans but are meaningful and representative from the
machine point of view. From this idea comes the concept of embedding,
a low-dimensional representation of data analogous to a feature vector,
extracted with an ANN by taking one of its layers output.

Due to this incredible power, DL has lately become the state-of-the-art
for most tasks and is adopted in this work too. We will now outline the
main characteristics of the ANNs involved in our research.

1.3.1 Multilayer Perceptron
A Multi Layer Perceptron (MLP) [53] is a feedforward ANN connecting
the nodes (or neurons) of multiple layers in a directed graph. Each neuron
performs a weighted sum of the input values and applies a function, called
activation function to get the output

yj = fj(
N∑︂

n=1

wijxi), (1.7)

where yj is the output of neuron j in a layer, fj is the the activation
function, xi is the input i to the node and wij is the learning weight cor-
responding to that input. The MLP’s architecture consists of a minimum
of three layers, an input layer, one or more hidden layers and an output
layer. Except for the input neurons, fj is generally non-linear in order to
allow the network to capture complex structures inside the given data.
These ANNs are also called fully-connected neural networks since each
node in one layer connects to every other node in the following layer, as
shown in Figure. 1.6.

1.3.2 Convolutional Neural Network
A Convolutional Neural Network (CNN) [54] is a type of ANNs specialized
in processing grid-like data, such as images. For this reason, it is widely
employed in the field of Computer Vision. Nonetheless, this network

Chapter 1. Theoretical Background 10

Figure 1.6: Graph of a MLP with one hidden layer [6].

frequently processes audio signals, when converted into two-dimensional
representations, like the Mel Spectrogram [55] previously presented.

As for MLP, a CNN is composed of an input layer, a variable number
of hidden layers and an output layer. Typically it alternates between two
types of hidden layers: convolutional and pooling. Each convolutional
layer performs a mathematical operation called convolution between the
input matrix and one or more filters, also called kernels (corresponding
to the layer’s neurons), such as

y(i, j) = (I ∗K)(i, j) =
∑︂
m

∑︂
n

I(m,n)K(i−m)(j − n), (1.8)

where y(i, j) is the feature map, I and K are respectively the input and
kernel matrices and ∗ is the convolution operator. In other words, the
kernel slides over the input matrix with a stride s — meaning that it
moves by s positions at time — covering at each step different regions,
called receptive fields, and performing convolution with them. The result,
called feature map, is then fed to a non-linear activation function. The
role of pooling layers, instead, is to downsample feature maps in order to
reduce the number of coefficients to process and introduce spatial-filter
hierarchies by making successive convolutional layers focus on increasingly
larger windows.

Depending on their values, filters encode specific aspects of the input
data which become higher-level representations by going deeper through
the CNN. The first layers, for example, will be able to detect low-level
information as straight lines, edges and other simple geometrical shapes.
In contrast, the last layers will eventually capture complex patterns like
faces or objects. The goal of this network is to find the best filters values,
i.e, the weights, applying the backpropagation algorithm.

These networks can process many channels in parallel, as it is common
to have a multi-channel input, like an RGB image. In this case, the kernel
is a stack of matrices, one for each channel, denoting its depth. After

Chapter 1. Theoretical Background 11

Figure 1.7: Graph of a CNN ending with a fully connected layer [7].

convolution, the output feature map of a layer is obtained by summing
the results of each channel. Similarly, the number of kernels in one layer
identifies the number of its output channels.

CNNs usually end with one or more fully connected layers aimed at
mapping the last feature map to a prediction. The connection of the two
networks is carried out by a process called flattening, which consists of
unfolding the bi-dimensional CNN output to match the MLP input shape,
as it is shown in Figure 1.7.

CNNs generally refer to the bi-dimensional scenario just described,
but they can be adapted to process data of different dimensions too.
One-dimensional CNNs, for example, are particularly suited to work with
sequential data, like audio signals or word sequences [56]. They behave
as described above, but deal with one-dimensional vectors instead of
matrices.

1.3.3 Recurrent Neural Network
A Recurrent Neural Network (RNN) [57] is a type of ANNs best suited
for processing sequential data or time series. Hence, some of the main
application areas of RNNs are Natural Language Processing (NLP),
machine translation, and speech recognition. In fact, they are provided
with a “memory”, which can capture variable-length time dependencies
from the input.

A RNN unit builds its memory by iterating over the input sequence
and generating at each time step t a state vector ht which depends on the
current input xt and the previous state vector ht−1, as shown in Figure 1.8.
In this way, every state vector includes the information of the previous
ones and the final output will encode the temporal dependencies of the
whole sequence.

During training, the RNN does not perform the standard backpropa-
gation algorithm, but a variant of it called back propagation through time
(BPTT). It approximates the full gradient by unrolling state vectors up to
a finite number of time steps and applies standard backpropagation over
this subsequence. Due to its recursive behavior BPTT suffers from the

Chapter 1. Theoretical Background 12

Figure 1.8: Scheme of a RNN unit (left) and its unrolled representation (right)
[8].

vanishing gradient and exploding gradient problems. When the gradient is
too small, it continues to become smaller, updating the weights until they
become insignificant. On the contrary, when the gradient is too large,
the weights grow too much, generating an unstable model. One solution
to this can be using an advanced RNN unit, the Gated Recurrent Unit
(GRU) [58], explicitly designed to mitigate this problem. It makes use of
two vectors, the update gate and the reset gate, to control how much and
which information should be passed to the output. It can model many
longer-term dependencies since it can train the gates to keep information
from long ago or remove irrelevant information to the prediction.

1.3.4 Self-attention
Self-attention [59] is a DL mechanism first introduced in the field of
NLP for helping to build a more meaningful representation of each word
considering its semantic role in the context of a sentence. This method has
also become popular for audio signal processing, dealing with sequential
data. Still, for the sake of clarity, it is appropriate to introduce it in the
context of NLP.

Embeddings make it possible to represent each word in a sequence as
a vector, which encodes its meaning but is blind to the context-related
concept. As an example, the word “lie” always has the same embedding
vector regardless of the sentence where we use it. Still, depending on
the context, it could be a verb or a noun and could even represent
very different concepts. Self-attention, instead, transforms the standard
vectors into contextualized representations, whose values also depend on
the relationships with the other elements in the sequence.

Figure 1.9 shows the whole process. Three different linear projections
are applied to the input embeddings, resulting in the queries, keys and
values matrices. These representations allow focusing on different aspects
of the input embeddings. Then, the scalar product is performed between
queries and keys to extract similarity coefficients for each pair of word
embeddings. The result is normalized and passed to a softmax activation
function, which returns a similarity score for each word. Finally, the
contextualized embeddings are obtained as a linear combination of the
values of the vectors using softmax scores as weights.

Chapter 1. Theoretical Background 13

Figure 1.9: Self-attention mechanism for the input sentence “Walk by river
bank” [9].

Multi-head attention enhances this model by repeating the same
process multiple times using different linear projections and then concate-
nating the results. Each projection set can focus on computing different
relationships between the words and create specific contextualized em-
beddings.

1.3.5 Time Delay Neural Network
Time Delay Networks (TDNNs) [60] are types of ANNs, often adopted for
speech processing tasks [61], effective in modeling long range temporal
dependencies, as RNNs do, but with training times comparable to standard
feed-forward ANNs. They work in a similar way to CNNs, so much so
that they are seen as their precursor. The input to the network is a set
of t frames in the form of feature vectors containing m feature values
each. Hence, they can be collected into a m× t matrix where each column
identifies a frame and each row a feature. The Mel Spectrogram and
MFCCs are well suited to this type of representation, therefore, they are
mostly employed as input. As for CNNs, the layers of a TDNN perform
convolution between the input matrix and a trainable weight matrix (the
kernel or filter). The difference is that in this case, the receptive field
embraces the whole dimension m, thus focusing on each entire fragment
t. The length of the receptive field, instead, defines the context or delay
since it sets how many past and future frames the convolution takes into
consideration with respect to the current frame, which is at the center
of the receptive field. Another difference is that the stride is always set
to one, making the kernel move step-by-step over the temporal axis. In
the latest TDNN architectures, the filters may not pass over contiguous

Chapter 1. Theoretical Background 14

Figure 1.10: TDNN convolution with dilation. The blue matrix is the input, its
shady regions represent the receptive field and the green vector is the output.

Figure 1.11: Architecture of an autoencoder [10].

frames during convolution but consider context frames further away from
the target one [62]. This operation, referred as dilation or subsampling,
allows the network to focus in a broader context that may be less related
to the target frame than the one extracted from its neighbors as shown
in Figure 1.10.

1.3.6 Autoencoder
The autoencoder [63] is a DL implementation of the classical encoder-
decoder architecture, where the encoder generates a compressed repre-
sentation of the input through a lossy process and the decoder decodes
it back to its original version. Figure 1.11 shows its complete pipeline.
Both the encoder and decoder are ANNs. The former learns a function gφ
to map the input x into a lower-dimension representation z, defined over
the so called latent space. In contrast, the latter learns a function fθ to
output a reconstruction x′ of the original input from the latent vector z.
The training process is carried out in an unsupervised manner, without
ground-truth labels. The parameters φ and θ of both ANNs are updated
during training in order to reduce dissimilarity between the true input
and its reconstruction.

Chapter 1. Theoretical Background 15

The autoencoder belongs to the class of generative models since, once
trained, by randomly sampling a vector z from the latent space, its
decoded output can be a new realistic sample, not present in the original
data, but showing the same distinctive features. In fact, each dimension
of the latent space can be interpreted as a high-level descriptor of the
input data. For this reason, the latent space can be interpreted as an
embedding space, and thus the trained encoder can be used on its own
for the embedding extraction process.

1.4 Conclusive Remarks
In this section we explained the main theoretical concepts involved in this
work. In particular, we have focused on input data representations and
feature extraction by analyzing different aspects of it. Then we introduced
ML and DL and the models that we use for our method.

2
State of the Art

In this chapter we present the state-of-the-art in the field of the proposed
work. In particular we focus on ASV, audio DF generation techniques,
prosody modeling and DF detection, which are the four main topics on
which our research is based.

2.1 Automatic Speaker Verification
Biometric recognition and authentication enable a system to ensure a
person’s identity and uniqueness based on specific physiological and
behavioral characteristics, unlike traditional methods. For this reason,
this practice is becoming increasingly popular, bringing several benefits
as to not having to remember passwords or carry unlocking devices. The
most common types of recognition biometrics are the face, iris, fingerprint
and voice. While the first ones deal with physical traits of the human
body, the last one also encompasses traits learned and acquired along
with life and environment. For example, an individual’s accent changes
according to the geographical area in which they were born and raised,
and speech style is influenced by personality and habits. At the same
time, a voice may vary based on factors such as emotion, age, health
status, distance from the interlocutor, referred as to speaker-variability.
Finally, the recording conditions may vary based on the device used,
environmental characteristics and signal-to-noise ratio, referred to as
channel-variability. For this reason, speech represents one of the most
complex and variable and one of the most complete types of biometrics.

We can group recognition techniques by task and by functioning when
it comes to automating this process. Tasks can be different depending
on the goal of the recognition system. ASV aims at determining whether

Chapter 2. State of the Art 17

two given voices belong to the same individual or not. This is equivalent
to finding out whether a given unseen input voice x and a voice vi, known
to the system, belong to the same identity i

f(x, vi) =

{︄
same identity if x, vi ∈ i.
different identity otherwise.

(2.1)

On the other hand, we define Speaker Identification (SI) the task of
recognizing which of the known identities I = 1...n the input voice x is
more similar to

f(x, v) = i, (2.2)
where i is one of the known identities I and v = v1...vn are the voices
associated to them.

Finally, the most general task of Speaker Recognition (SR) is given by
the concatenation of SI and ASV and consists of ensuring that a given
unseen input voice x corresponds to one of the known identities I = 1...n
and is who it claims to be

f(x, v) =

{︄
identity i verified if x, v ∈ i.
authentication failed otherwise.

, (2.3)

where i is one of the known identities I and v = v1, ..., vn are the voices
associated to them. Therefore, SI and ASV can work orthogonally. The
former selects among the known identities the one that most closely
resembles the input, while the latter checks that both belong to the same
person. The result can be the authentication of the person or not.

In terms of functioning, there can be two types of recognition systems:
text-dependent and text-independent. The former requires that the text of
the two compared speech utterances is known to the system, while the
latter does not. While text-independent systems are suitable for a more
flexible scenario, they represent a more complex problem and usually
achieve lower performance than their counterparts. In our work we will
concentrate on text-independent ASV system. The following subsections
will discuss the state-of-the-art approaches to this task.

2.1.1 Traditional Techniques
Many ASV methods rely on extracting hand-crafted spectro-temporal
features and passing them to a binary classifier to determine whether the
two input identities match or not. For instance, [35] combines temporal
pitch information and cepstral coefficients and uses them to represent
the short-time spectral envelope of speech. These features are used to
train a Hidden Markov Model (HMM) which proves to be suitable for the
text-independent scenario classification. The authors show that including
temporal features yields better results for both English and Cantonese
Chinese languages. Similar approaches rely on prosodic features, which

Chapter 2. State of the Art 18

model the component of speech related to speaking style and habits
learned over a period of time. These features are mostly based on the
analysis of the temporal contours of f0 and E0. In this regard, [36] implies
that each speaker has their own prosodic signature. As a result, any
sentence repeated by a speaker in the same context show a consistency
of prosody, not exhibited across different speakers. We can exploit this
trait to distinguish the voices of different people. The authors of [64]
enhance a speaker verification system by adding two new features: jitter,
i.e., the cycle-to-cycle variation of fundamental frequency and shimmer,
i.e., the variability of the peak-to-peak amplitude in decibel. The result
is a more discriminative feature set and demonstrates that jitter and
shimmer can provide complementary information to both spectral and
prosodic components.

Other approaches extract representations from data through ML
methods. One of the earliest examples is the GMM-UBM [65]. Gaussian
Mixture Model (GMM) is a linear combination of Gaussians Probability
Density Functions (PDFs) which can be used to model the distribution
of the speaker’s data [66]. In this way, each known identity is associated
to a GMM. Instead, Universal Background Model (UBM) is a type of
GMM that models the distribution of the entire speech data in a speaker-
independent fashion. The accept or reject result of authentication comes
from comparing the unseen utterance with these two distributions. Later
variants of this model achieve better performance by deriving the GMM of
each speaker from the already trained UBM, using Bayesian adaptation.

In [67] the authors aim at solving the problem of variable-length speech
samples, which results in variable-length feature vectors. For this purpose
they introduce supervectors, obtained by concatenating the parameters
of the GMM, which are fixed in number. This allows extracting a fixed-
dimensional representation out of a single variable-length utterance. The
previous model suffers from speaker and channel variability. Hence,
Joint Factor Analysis (JFA) was introduced to solve this issue [68]. It
consists on splitting each supervector V , into speaker-dependent s and
channel-dependent c components such that V = s+ c. The training phase
is JFA-based and the supervectors do not include channel-dependent
information. On the contrary in the testing stage, such information is
acquired from test utterance and the obtained supervector is ranked using
the linear dot product.

In 2009 [69] proposed a model known as i-vectors approach that has
been the state-of-the-art for ASV until the diffusion of DL. Its power is
due to the low dimensional representation capability and the availabil-
ity of robust countermeasures against channel and speaker variabilities.
This approach can be seen as a dimensionality reduction of the GMM
supervectors and aims to reduce the performance loss of JFA caused by
channel-dependent content being ignored during the training phase. In
fact, it involves a single variability space T where GMM speaker- and

Chapter 2. State of the Art 19

session-dependent supervectors ms,h are defined as

ms,h = V + Tws,h, (2.4)

where V is the GMM-UBM supervector and ws,h ∼ N (0, 1) is called
total factor. The total factors, being hidden variables, are not observable,
but can be estimated by their posterior expectation. The estimates are
used as input features to a classifier and are known as identity-vectors or
i-vectors for short.

In general, once the features have been extracted for an ASV task,
computing the probability that the two audios belong to the same person
is typically performed using two types of similarity measures: Cosine
Distance (CD) and Probabilistic Linear Discriminant Analysis (PLDA).
CD is calculated between the feature vectors xi and xt extracted from
the two input and target utterances to compare and gives a measure of
similarity. It consists on the normalized dot product between the two
vectors:

CD(xi, xt) =
xi · xt

∥xi∥ · ∥xt∥
. (2.5)

On the other hand, PLDA is a probabilistic approach to Linear Discrimi-
nant Analysis (LDA) which finds orthogonal axes for minimizing intra-
class variability and maximizing inter-class variability. In fact, when a
biometric trait has low intra-class variability, it demonstrates permanence
and repeatability. On the contrary, if it has high inter-class variability,
we can successfully use it to distinguish between people. Although these
two are the most widely used techniques for ASV classification, many
approaches make use of more common ML classifiers such as SVM.

2.1.2 Deep Learning Methods
The advent of DL has made it possible to implement many new state-
of-the-art approaches, which very often achieve better performance than
previous ones. In ASV tasks DL is typically involved in the feature
extraction or classification stages. In the first case traditional ASV
decision making techniques (e.g. CD, PLDA) are applied to DL extracted
features. In the second case traditional ASV features (e.g. i-vectors)
represents the input to an ANN.

Several works aim to extract features similar to i-vectors using ANNs.
In [70] the authors propose a 4 hidden layers MLP in which the output
of the last one is selected as feature vector and called deep-vector or
d-vector for short. The classification probabilities are then computed by
CD comparison. This method achieves similar performance to the i-vector
one and exceeds it primarily for noisy environments. However, combining
the two models significantly outperforms it in almost all possible operating
points and noise conditions.

The work of [71] extends the d-vector method by presenting a MLP
with a multi-task learning approach. Assuming each speaker has their own

Chapter 2. State of the Art 20

style on each syllable or word, the authors provide speaker ids and texts
as targets for the training stage. Finally, as for the d-vector approach,
the features are extracted at the output of the last MLP’s hidden layer
and are called j-vector. The results show that this method outperforms
the d-vector one.

In 2018, [72] proposed a novel feature extraction method, which is still
at the basis of the state-of-the-art best performing techniques for ASV
tasks. The extracted features are fixed-length and are called x-vectors.
Similar to the previous methods it is still based on considering the output
of the last hidden layer of an ANN, which in this case is a TDNN. The
network consists of three 1D convolutional layers with different temporal
contexts, a statistical pooling layer that computes the input sequence’s
mean and standard deviation, and two fully connected layers. The inputs
of the TDNN are 24-dimensional filter banks with a frame-length of
25 ms and mean-normalized over a sliding window of up to 3 seconds.
Furthermore, a Speech Activity Detector (SAD) is used to filter out non-
speech frames. The first layers operate at frame-level and the deeper the
network goes, the more the temporal context increases. For example, the
second layer has a temporal context of 9, while the third of 15 frames. On
the contrary, the statistics pooling layer aggregates frame-level outputs so
that the subsequent layers deal with global information. After training,
the x-vectors are extracted and used as input to a PLDA classifier. This
approach has been shown to capture speaker characteristics across the
entire recording and outperform the i-vector model, mainly when applied
data augmentation.

In the context of multi-speaker conversation ASV, [73] extends the
x-vectors architecture. This variant uses a slightly wider temporal context
by adding another 1D convolutional layer and interleaves dense layers
between the frame-level layers. Besides, differently from the original
model, it passes vectors of 30 MFCCs extracted from each frame as input
to the TDNN.

The described x-vectors approaches give equal importance to all the
hidden vectors extracted since they apply statistic pooling to all frame-
level outputs without distinction. However, some frames could contain
more speaker-discriminative information than others. For this reason
[74] replaces the statistic pooling layer with an attention-layer to assign
different importance to frames based on their content. This new layer
extracts from the outputs of the previous ones a weighted mean and a
standard deviation vector. It updates its weights to maximize speaker
classification performance for the entire system. This model uses a 23-
dimensional MFCCs feature vector extracted from each frame as input.
The results show that this approach exceeds previous baselines, especially
when the number of attention heads increases, capturing different aspects
of a speaker’s speech.

In [75] the authors propose a new pooling method for deep speaker
embeddings extraction, called attentive statistic pooling, believing that

Chapter 2. State of the Art 21

both higher-order statistics and attention mechanisms are effective at
discriminating between speakers. The vector of averages and standard
deviations output from this layer thus considers frame-level features,
scaled by attention.

Finally, a recent model, ECAPA-TDNN presented in [15] enhances to
the x-vector approach just discussed, and places greater emphasis on chan-
nel attention, propagation, and aggregation using Squeeze-Excitation [76]
and Res2Net [77] blocks, extra skip connections and channel-dependent
attentive statistics pooling. This system brings significant improvements
over previous models and, being an integral part of our work, will be
discussed later.

Rather than reinforcing the representation of a speaker’s voice through
robust and discriminative deep features, DL can be used for scoring and
comparison instead of traditional techniques such as PLDA and CD. For
instance, in [78] an ANN replaces the UBM in the GMM-UBM model while
[79] introduces SincNet, an end-to-end CNN architecture for classification
purpose. Since a comparison of two vectors is required in ASV, the loss
function to use for training the ANN is the contrastive loss that calculates
the distance between the network output for a positive example and an
example of the same class and contrasts it with the distance from the
negative examples.

2.2 Audio Deepfake Generation Techniques
The advent of DL has been revolutionizing many aspects of life for a few
years now [80, 22, 23, 24]. Many fields have greatly benefited from this
new technology and new scenarios and possibilities are opening up. DF
technology is one of these and has lately been in the spotlight arousing
great fascination, but also concerns and alarm. It refers to a category of
synthetic multimedia content, such as videos, audios or photos, generated
through AI techniques that depict individuals in actions and behaviors
that do not belong to them [81, 82]. Such forgeries can make a person
say or do something they never said or did. Thanks to their realism they
pass it off as true and jeopardize their reputation. The term deepfake
comes from the nickname of a Reddit user who first posted online in
2017 some digitally generated videos of famous actresses with their faces
exchanged on pornographic content. Revenge porn is one of the most
common uses, in which the victim becomes the protagonist of a porn
video and this happens especially for famous actresses for whom there is
enough media material available online [26]. Indeed, politicians are also
attractive targets for counterfeit videos [25]. Often DF videos are used to
discredit their image, pilot elections or spread fake news [83, 84]. Likewise,
DF voices have proved equally dangerous by fooling ASV systems into
accessing the victim’s personal information and committing fraud or by
providing support for voice phishing attacks [28, 29]. If initially generating
DFs was very complicated and required specific knowledge, today they are

Chapter 2. State of the Art 22

easily accessible thanks to applications such as FaceApp [85], ZAO [86],
Wombo [87] and VoiceApp [88]. Using these you can create a DF in a few
seconds without any computer science knowledge. A further reason that
has led to the spread of DFs is the massive amount of data and helpful
material to train their generation models available online as a result of the
proliferation of mass media. This has led to even more realistic counterfeit
media almost impossible to distinguish from the original ones.

Regarding the audio domain, which is our case study, there are different
methods to generate counterfeit speech: impersonation, replay speech,
Text-to-Speech (TTS) and Voice Conversion (VC) techniques. The first
two do not require the use of DL. Impersonation is performed by a
professional voice actor who can realistically emulate a target voice. The
impersonator usually tries to imitate both timbre and prosodic aspects
such as pronunciation, accent, etc. Replay techniques consist of cutting,
concatenating and clipping different recordings of the victim’s voice to
modify the message conveyed by the uttered sentence. On the contrary,
TTS and VC are techniques that largely benefit from DL and represent
the most powerful tools to generate spoof speech. In the following sections
we will review the state-of-the-art of these last two methods since they
are considered in our work.

2.2.1 Text-to-Speech
TTS is a technique able to generate a target speaker voice from a given
input text that defines its linguistic content. It has been around for
many years, but while the earliest methods generated unrealistic and
low-quality results [89, 90, 91], this technique has undergone significant
improvements with the advent of DL. It is possible to train an ANN on
the vocal characteristics of a speaker so that it is then able to replicate
them while changing the linguistic content.

The first breakthrough in this regard was WaveNet [92] presented in
2016. WaveNet is an ANN for generating raw audio waveforms capable of
emulating the characteristics of many different speakers in a much more
natural way than previous methods. It relies on the computation of the
joint probability p(x) of a waveform x = x1, ..., xT which can be written
as:

p(x) =
T∏︂
t=1

p(xt|x1, ..., xt−1). (2.6)

To do so it uses a CNN made of causal convolutions that ensure the
preservation of temporal order. In addition, it does not employ pooling
layers to increase the receptive field but dilated convolutions in which
the filter slides through the signal values with a specific step. In this way,
the output, a categorical distribution over the next xt value, maintains
the same length as the input. This architecture was the state-of-the-art
until the release of Tacotron [16] in 2017 by Google.

Chapter 2. State of the Art 23

Tacotron is a seq2seq model, which includes an encoder, an attention-
based decoder, and a post-processing net [93, 94]. Unlike WaveNet, this
model takes text characters as input and outputs the corresponding raw
Spectrogram, which is then fed to a vocoder to synthesize speech. Instead
of working at sample-level as WaveNet does, it works at frame-level and,
therefore, can generate audio in much less time. The encoder extracts high-
level representations from the input text while the decoder generates the
Spectrogram from these representations, applying attention to each step.
Finally, the task of the post-processing net is to generate the waveform
from the Spectrogram. For this purpose, the authors use Griffin-Lim, but
any other synthesizer can be employed.

The following year Google unveiled a new version of the model called
Tacotron 2 [11], which retains the same seq2seq structure of encoder,
decoder and synthesizer. As it is shown in Figure 2.1 the main difference

Figure 2.1: Tacotron 2 architecture [11].

concerns the use of a modified version of WaveNet (which takes a Mel
Spectrogram as input) as a post-processing net instead of Griffin Lim, so
as to take the best of the previous two approaches. This new version of
Tacotron achieves results that are almost indistinguishable from natural
speech and is therefore still one of the state-of-the-art TTS models.

The above-mentioned powerful end-to-end speech synthesizer models
have enabled the production of large-scale commercial products, such as
Google Cloud TTS services (both Standard and Wavenet) [95], Amazon
AWS Polly [96], Microsoft Azure [97] and IBM Watson [98]. In this way,
the creation of digital voices that are indistinguishable from real ones is
now within everyone’s reach.

2.2.2 Voice Conversion
VC consists of modifying a source voice to resemble that of a target
speaker while keeping the linguistic and paralinguistic content unchanged.

Chapter 2. State of the Art 24

Therefore, the input and output audio signals share the same text and
prosodic characteristics, while they differ in timbres, which identify two
different speakers. VC techniques often involve high-level speech features
such as voice timbre and prosody. This makes it particularly suitable for
the task of expressive speech synthesis.

The earliest VC models [99, 100, 101] were based on spectrum mapping
using parallel training data, where speech samples from both the source
and target speaker uttering the same linguistic content are required during
training. However, it is not easy to find large-scale paired source and target
speaker utterances in the real world, so lately much more sophisticated
models that do not impose this constraint have been developed. These are
mostly Generative-Adversarial-Network (GAN) [102] based approaches,
able to learn a mapping from source to target speaker without relying on
parallel data and are therefore called non-parallel.

CycleGAN-VC [103], unveiled in 2018, is an adaptation to the VC task
of a network originally aimed at unpaired image-to-image translation [104].
It can capture sequential and hierarchical structures while preserving
linguistic information, simultaneously using adversarial loss for inverse
mapping and cycle-consistency loss for direct mapping. The first measures
how similar the target and generated audio signals are, while the second
is responsible for preserving the contextual information of the input audio.
During training, they induce the network to find <input, output> pairs
with the same contextual information and desired timbre. However, the
results show a perceptual gap between the real target and converted
speech.

An improved version of the previous model, CycleGAN-VC2 [105],
was presented to fill this gap. To mitigate the over smoothing problem
caused by the cycle-consistency loss the authors introduce an additional
discriminator and use adversarial losses twice for each cycle. Moreover,
instead of using a 1D-CNN generator as for CycleGAN it employs a
network architecture called a 2-1-2D CNN, built as a stack of 2D, 1D and
2D convolutions. This results in downsampling and upsampling, which
is good at effectively capturing the wide-range structures. As a final
enhancement, the discriminator, called patchGAN [106], analyzes the
data section by section and determines their authenticity. This requires
fewer parameters than considering the entire audio at once and therefore
eases the training. Although CycleGAN-VC2 generates good results,
a significant limitation of the method is that it performs a one-to-one
VC. This means that it can only generate audio belonging to the one
identity on which it is trained. Including multiple speakers would require
training new generators and classifiers independently, even though they
all represent speech and thus have a certain amount of common latent
features that can be shared across different domains.

To overcome this limitation Star-GAN [107] was presented as a non-
parallel many-to-many VC method capable of simultaneously modeling the
identities of multiple speakers. It has a similar structure to Cycle-GAN,

Chapter 2. State of the Art 25

but with adaptations that allow the speaker’s identity to be considered
as well. This time the objective of the generator is not only to create
a realistic sequence of acoustic features from a given input but also
to make it as similar as possible to the considered identity. On the
other hand, the role of the discriminator is to produce a probability
that the generated audio is true. At the same time, a new component
called classifier computes the probability that the audio belongs to the
considered identity. The loss function thus includes a new component
concerning Cycle-GAN, called Domain Classification Loss, which induces
the network to maintain speaker identity consistency. This allows the
model to learn multiple identities simultaneously and switch between
them while maintaining some shared attribute domains.

Lately, some new techniques [108, 109, 110] are pushing the envelope
even further to make VC faster and more flexible. These are called one-
shot methods and implement an any-to-any mapping that requires neither
the input nor the output speakers to have been seen during training.
They need only a reference utterance for the target speaker and the input
audio to be transformed to do this. This allows any target voice to be
modeled without needing a lot of data at hand and makes VC accessible
to everyone, as there is no need to train the model on any identity.

2.3 Prosody Modeling
Prosody is the part of speech consisting of suprasegmental aspects such
as rhythm, intonation, stress, style, etc., which can enrich with different
nuances of meaning the linguistic content of a sentence. Generally, this
aspect is responsible for giving the voice expressiveness and reflects
the style and emotional state of the speaker. For this reason, prosody
modeling is a very active field of research, especially concerning speech
synthesis. While VC techniques can transfer the expressive cues of the
input audio to the output, TTS ones cannot, since they generate audio
from text and can result in flat and unexpressive voices. For this reason
the TTS techniques benefit most from prosodic reinforcement to their
model. Another challenging task in this regard is prosody labeling. Given
the difficulty in formalizing prosody, there are no clear and shared labels
to define it and the annotation process is difficult. For this reason many
methods seek a criterion to categorize different nuances of prosody, which
we can also include in expressive speech synthesis pipelines. Moreover,
as described previously, ASV systems can also rely on and benefit from
modeling prosodic aspects. Indeed, since the human voice is described
by a set of features that are both timbral and physiological as well as
emotional and adaptive, including a prosodic representation helps explain
it more in-depth.

Chapter 2. State of the Art 26

2.3.1 Prosody Labeling
Prosody labeling refers to the task of assigning an audio file one or more
labels that describe and identify its prosodic content. Unfortunately,
there is no single standard for transcription or symbolism of prosody as
there is, for example, for phonetic representations.

A first attempt to meet this need was ToBi [111], a standard approach
to label english prosody, designed in 1992 by a group of researches with
expertise in prosodic analysis and speech technology. The system consists
of parallel tiers, reflecting the multiple components of prosody, each
comprising symbols for prosodic events and their timestamps. The highest
level one is the tonal tier, closely resembling traditional intonational
analysis. Then, the break index tier adds to the tonal information a
representation of the rhythmic structure as well as the nature of pauses
and lenghtening between adjacent words. In fact, in addition to tonal
makeup, utterances can differ in the way words are grouped or separated
by non-tonal means. Finally, according to ToBi there is one last type
of variability in speech: hesitations, disfluencies, breaths, laughter, false
starts, and other spontaneous dynamics. Their onsets and offsets are
marked in the various tier. While this method offers a wide range of
annotations, it also allows transcribers to express uncertainty in some
circumstances to avoid forcing decisions into all-or-nothing choices.

In 2010, the ToBi standard was digitized by a publicly available
tool called AuToBi [112], able to automatically hypothesize the presence
and type of prosodic events in a spoken utterance. If provided with
both the audio track and its word segmentation AuToBi can perform
different tasks: pitch accent detection and classification, intonational and
intermediate phrase detection, phrase accent classification and boundary
tone/phrase accent classification. It first extracts pitch, intensity and
spectral information from the speech signal. These acoustic contours
are then aligned to the word-defined regions. Then, a series of different
classifiers, one for each task, is run on the acoustic contours of every word
and the prosodic events are predicted.

Another approach called SLAM [113] performs the automatic labeling
of intonation assuming that a specific dictionary of elementary contours
can be derived for each linguistic unit. To do so, it analyzes for each unit
the variations in the contour of f0 that are considered relevant to the
description of the speech prosody. The method is based on the French
language, but can be easily adapted to other stressed languages.

2.3.2 Expressive Speech Synthesis
Now that the synthesized voices are almost perceptually flawless, more
emphasis is being placed on the emotional side to make them even more
natural. This is why prosody modeling is becoming increasingly crucial
since, in order to provide true human-like speech, a voice generation
system must learn to reproduce this aspect. TTS systems in particular

Chapter 2. State of the Art 27

would benefit from that as they only take a textual input without explicit
prosody specifications for the generation process.

The first attempt in this direction was a tool presented in 1994, called
ProTran, aimed at prosody transplantation for improving synthetic speech
[114]. This technique consists of including pitch and duration values
taken from a reference audio with the desired prosody in the phonetic
transcription of the phrase to be synthesized. The obtained enriched
phonetic transcription, containing linguistic and prosodic annotations, is
the input to a TTS system.

Given the complexity in annotating prosody with handcrafted labels,
underlined in the previous section, [115] treats emotional speech synthesis
with an unsupervised clustering approach to produce automatic expression
annotations. The method extracts prosodic features such as f0, voicing
probability, jitter, shimmer, logarithmic harmonic to noise ratio and their
statistics from audiobook tracks. Then, it uses a hierarchical k-means
algorithm to place expressively similar utterances in equal or nearby
clusters. Finally, a HMM-based speech synthesis is trained incorporating
the expressive cluster assignments as context features.

Many works aim to augment the Tacotron model [16, 11], being a
state-of-the-art for TTS techniques, through the inclusion of explicit
prosodic aspects and controls. For example, the authors of [116] present
a fully automatic method that makes Tacotron prosody-aware. This is
done through a small set of naturally disjoint and interpretable prosodic
observations, called prosody info, evaluated at utterance level. During
training, the system is provided with measured prosody info vectors,
embedded in a 2-dimensional latent space (one dimension represents pace
and the other represents pitch) and concatenated with each vector in
the Tacotron encoder output sequence. Then, a prosody-info prediction
module is separately trained to extract info vectors from the phonetic
sequence output by the encoder. In this way at inference time the model
does not require external prosodic controls but automatically extracts
them from the encoder output and enables to modify them in order
to obtain the desired result. This mechanism is proven to improve the
expressivity of synthesized voices while preserving or even improving its
quality and naturalness.

Similarly [117] presents an extension of the Tacotron architecture,
which aims to learn syllable-level discrete prosodic representations from
speech data in order to transfer or control the output prosody. The
authors change the text-encoder from phoneme-level to syllable-level since
it is more appropriate for working with prosody. Then, a continuous
prosodic representation based on prosodic features, such as f0, intensity,
and duration is extracted for each syllable and discretized through a
Vector-Quantised Variational Auto-Encoder (VQ-VAE). Finally, as for
the previous approach, the discrete representations are concatenated with
text encoder output, generating speech with a desired prosody.

In 2017 a research group from Google introduced a method to control

Chapter 2. State of the Art 28

the prosodic style of a synthesized voice [12]. They achieved this by
including the concept of style tokens to the Tacotron architecture. In
practice, they added to the model a new encoder, called style encoder,
which takes K style tokens as input, and outputs fixed-length embedding
vectors fed to a style attention layer as shown in Figure 2.2. On the
decoder side text and style attention heads are computed in parallel
and their context vectors are combined through a weighted sum. The
whole set of tokens can be interpreted as a latent representation of the
utterance’s style, obtained as a weighted sum of independent prosodic
styles represented by each token. Therefore, the authors demonstrate
how, by modifying single tokens, learned in an unsupervised way, one
can modify independent stylistic voice features, e.g., sloppy style, robotic-
sounding style, high-pitched voice etc.

Figure 2.2: Expressive Tacotron Architecture presented in [12].

In [17] a similar approach is presented relying on the extraction of
prosody embeddings used to condition Tacotron synthesis. Compared to
the previous case, the difference lies in how these prosody embeddings
are extracted and transferred between input and output. In fact, in this
case the authors add to the model a prosodic encoder that receives an
audio with a target prosody and represents it as a vector that takes part
of the attention context. As a result, the synthesized audio will show
the same expressive style of the target one. The authors show that the
results match the prosody with fine temporal detail even when the target
and reference speakers are different. In this way, the transfer of prosody
between utterances is almost a speaker-independent operation. We will
further analyze this model in the following sections, being it part of the
proposed system.

The work presented in [118] encompasses the two previous approaches
since it uses the same prosody encoder presented in [17], but then the
prosody embeddings are fed as input to a global style token layer similar
to the one in [12].

However, these methods using fixed length prosodic representations
cannot retain all the temporal information, allowing to change the ex-
pressive style at utterance-level (e.g., a happy or sad mood), but not
at a specific moment of speech. To solve this problem [119] introduces
two types of prosody control methods, speech-side and text-side, which

Chapter 2. State of the Art 29

involve the use of variable-length prosody embeddings to enable sequential
prosody control. Speech-side ones have the same length as the reference
speech, while text-side ones have the same length as the input text. To do
this, the authors align and downsample the prosody embeddings to match
the number of decoder time steps or the number of encoder time steps,
respectively. The method outperforms [118] and interestingly shows that
it is able to transfer the prosody of a song to another speaker, resulting
in a vocal conversion of a song.

2.4 Deepfake Detection
As previously anticipated, audio DFs represent a great threat to ASV
systems as they can be used to fool them. In this respect, there are two
ways of attacking an ASV system: Physical Attack (PA) and Logical
Attack (LA). The former involves the reproduction of the counterfeit
victim’s voice through an audio device. In this way the recognition
system sensor that captures the audio receives a recorded and played back
sound wave, not directly uttered by the speaker. This is why such an
attack is said to occur at sensor level. The latter consists of injecting the
counterfeit audio signal after the sensor pretending it was captured by it.

Given the threat posed by these attacks on ASV systems, there is an
urgent need to address a DF detection task, where a speech audio x must
be labeled as REAL or DF

f(x) =

{︄
REAL

DF
(2.7)

This verification can be incorporated as the last block of an ASV system
to ensure the authenticity of the input voice and foil malicious attacks.

In recent years, audio DF detection has become a hot topic in the
forensic research community, as it tries to keep up with the rapid evolution
of major counterfeiting techniques, namely TTS and VC, described in
Section 2.2. To this end, there are international challenges with the pur-
pose of sustaining the research, where participants compete to implement
the best anti-spoofing systems. The Automatic Speaker Verification and
Spoofing Countermeasures (ASVspoof) challenge is the most famous one
and played a key role in advancing research on spoofed speech detection
to protect ASV systems from manipulation. Held for the first time in
2015 [120] it is repeated every two years presenting participants with new
tasks, data, or baseline methods to compare against. Until 2019 [121]
it proposed competitions for LA and PA, considering the spoof speech
detection task in relation to an ASV system. However, in the latest ver-
sion, held in 2021 [122], a task exclusively finalized to audio DF detection
has been added. Other than ASVspoof, similar challenges are emerging
such as the brand new Audio Deep synthesis Detection (ADD) challenge
launched in 2022 to further accelerate research on deep synthesis detection

Chapter 2. State of the Art 30

and manipulated audio [123]. It includes new algorithms of TTS and VC
and, differently from ASVspoof, some challenging attacking situations in
realistic scenarios, e.g., diverse background noises and disturbances or
several small fake clips hidden in a real speech audio.

In general, DF detection methods start from similar assumptions, be
it an image, audio or video and can be divided into two main groups. The
first one focuses on low-level aspects, looking for artifacts introduced by
the generators at the pixel or sample level, while the second one focuses
on higher-level features representing semantic aspects.

2.4.1 Artifacts-based Approaches
Very often, DF synthesis processes leave traces in the form of artifacts,
which serve as hidden fingerprints that we can exploit to determine the
authenticity of the given data. For example, the authors of [31] perform
detection of AI-generated fake images by looking for artifacts through high-
frequency component analysis. They show how the energy distribution
analysis in the high-frequency domain leads to very good classification
results in both supervised and unsupervised scenarios, even when only a
few annotated training samples are available.

On the other hand, [124] addresses the same problem considering a set
of local features specifically designed to model the convolutional traces
that could be left in DF images. This extraction is performed as a reverse
engineering problem at the last computational layer of the generation
network and such features are extracted in an unsupervised way though
the Expectation Maximization (EM) algorithm. The method considers
five different types of DF generation techniques, all relying on GANs, and
not only it is able to classify an image as fake but also to predict the
most likely technique used to generate it.

The work of [125] aims to secure ASV systems against PAs through
channel pattern noise analysis. In fact, in PAs converge different types of
noise introduced by intermediate recording and playback devices. There-
fore, the authors train a SVM to capture this manipulation fingerprint
and thus detect spoof attacks.

In [13] the authors assume that a real recording has greater non-
linearity than a counterfeit one. This is motivated primarily by two
elements: the neural networks used in spoofing speech generation fail
to introduce enough non-linearity into the process, and typical non-
linearity due to microphone processing blocks are absent in synthesized
audio. Then, they use specific features to analyze these aspects, such as
bicoherence, i.e., a normalized version of 2-dimensional Fourier transform
of the third-order cumulants. Figure 2.3 shows the marked difference
between the phase spectra of the bicoherence estimated from the spoof
and real speech. It is evident from the graphs how flat and monotonous
the bicoherence phase of spoofed speech is compared to real speech.

Bicoherence is also employed in [126] along with a number of features

Chapter 2. State of the Art 31

Figure 2.3: Phase spectra of bicoherence estimated from a spoof (on top) and
real (on bottom) speeches [13].

based on the idea of modeling speech as a auto-regressive process. The
authors investigate whether these features complement and benefit each
other. They conduct tests in both closed-set and an open-set scenarios.
In the former, the method detects whether the speech is real or synthetic
and, if so, the generation technology. In the second, it is able to de-
tect whether a fake speech was generated through a never-before-seen
algorithm. The research shows how the combined use of these features
provides an accuracy gain in some situations.

2.4.2 Semantic-based Approaches
Some DF detection methods rely on more semantically meaningful features
and exploit high-level inconsistencies to discriminate them, assuming their
weakness in emulating the finest aspects of human nature.

Sometimes, for example, synthetic processes are unable to replicate
spontaneous and involuntary physiological activities such as breathing,
pulse or eye movements, which are intrinsic to human beings. The work of
[33] leverages just that, detecting the lack of natural eye blinking in syn-

Chapter 2. State of the Art 32

thesized videos. The model employs a Long-term Recurrent Convolutional
Neural Network (LRCN) obtained as the combination of a CNN and a
RNN. In this way it is able to capture both the phenomenological and
temporal regularities in the eye blinking process, as the CNN generates
single-frame predictions while the RNN analyzes temporal coherence.

Other times a mismatch between some interrelated semantic aspects
is present in DFs. For example [127] looks for dissimilarities between the
audio and visual modalities in DF videos assuming that manipulation of
either one leads to dis-harmony such as loss of lip-sync, unnatural facial
and lip movements, etc. The system takes both audio and video signals
as input and via the Modality Dissonance Score (MDS) labels the data
as real or fake. The MDS is modeled after contrastive loss, which has
traditionally been used to discover lip sync problems in video.

On the other hand the authors of [128] perform face-swap DF detection
by comparing two different estimates of the subject’s head pose, one
involving all facial landmarks and one only the central region. The results
show that the two estimates are close for original faces, while there is a
significant difference for face-swap DFs since the central region belongs
to a different person.

Similarly, [129] approaches the same problem combining a static
biometric based on facial recognition with a temporal, behavioral biometric
based on facial expressions and head movements. The first is extracted
using VGG [130], a state-of-the-art method for face recognition tasks.
For the second, the authors adapt a network called Facial Attributes-
Net (FAb-Net) [131], to distinguish spatio-temporal behavior features
between individuals. In fact, the original FAb-Net captures frame-based
movements and facial expressions well, but is identity agnostic. Finally,
for each video they analyze through a cosine-similarity metric how much
these two representations are coherent between them and in this way
perform classification.

Other methods leverage semantic aspects that are very difficult to
formalize and replicate, such as human emotional behaviors. For example,
the work presented in [34] exploits the lack of emotionality in synthetic
voices generated via TTS techniques to recognize them. To do this they
take the Convolutional Recurrent Neural Network (CRNN) originally
proposed in [132] for a Speaker Emotion Recognition (SER) task and
consider as emotional embeddings the output of the final attention layer.
These representations are fed to a SVM classifier that learns the mapping
between the emotional content of an audio and its authenticity.

Finally, the work presented in [14] leverages the inconsistency between
emotions conveyed by audio and visual modalities in a joint audio-visual
DF, as shown in Figure 2.4. The authors rely on a valence-arousal diagram
used to describe and represent emotions. Valence denotes an emotion’s
positivity or negativity level, while arousal its intensity. The model
extracts low-level descriptors from audio and video signals and uses them
to compute valence and arousal values through a supervised classifier.

Chapter 2. State of the Art 33

Finally, depending on the coherence of these two values it determines if
the video is authentic or a DF.

Figure 2.4: DF detection method exploiting audio-visual emotion analysis
proposed in [14].

2.5 Conclusive Remarks
In this chapter, we have first reviewed the main state-of-the-art works
related to ASV, showing how voice can be used as a biometric. Afterwards,
we have introduced the main techniques for DF generation, with a focus
on synthetic voices and showed how prosody modeling can make them
even more expressive and natural. Finally, we have examined how audio
DFs pose a threat to ASV systems and illustrated the main techniques to
detect them.

3
Proposed System

In this chapter we better formalize the problem we are going to address,
namely, audio DF detection. Next, we present our proposed method, that
leverages the extraction and concatenation of high-level semantic features
from an input audio signal.

3.1 Problem Formulation
The problem we want to tackle in this thesis is that of audio DF detec-
tion. Formally, given a discrete-time input speech signal x sampled with
sampling frequency Fs, the goal is to predict the associated label y such
that

y ∈ {REAL,DF}, (3.1)
where REAL identifies authentic speech samples, while DF corresponds
to speech that has been synthetically generated. We consider as REAL
audio signals those containing the speaking voice of a real human, directly
captured by a microphone. Consequently, any artifacts and compressions
they may contain are not considered as forgeries, but as audio processing
operations. On the other hand, we consider as DF any audio that has
been altered or fully synthesized. In particular, our work focuses on DFs
generated using the two main speech synthesis techniques, TTS and VC,
discussed in Section 2.2.

3.2 System Architecture
We propose a method for audio DF detection named ProsoSpeaker. Fig-
ure 3.1 shows its complete pipeline. Our approach leverages the difficulty

Chapter 3. Proposed System 35

Binary
Classifier

<latexit sha1_base64="uLGoRWjIsakTkgUIJyIvV7gewQ4=">AAAB83icbVC7TsNAEDzzDOEVoKQ5ESFRRTZCQBlBQ5lI5CElVrS+bMIp54fu9pCiKF9ACxUdouWDKPgXbOMCEqYazexqZydIlDTkup/Oyura+sZmaau8vbO7t185OGyb2GqBLRGrWHcDMKhkhC2SpLCbaIQwUNgJJreZ33lEbWQc3dM0QT+EcSRHUgClUnM6qFTdmpuDLxOvIFVWoDGofPWHsbAhRiQUGNPz3IT8GWiSQuG83LcGExATGGMvpRGEaPxZHnTOT60BinmCmkvFcxF/b8wgNGYaBulkCPRgFr1M/M/rWRpd+zMZJZYwEtkhkgrzQ0ZomTaAfCg1EkGWHLmMuAANRKglByFS0aaVlNM+vMXvl0n7vOZd1rzmRbV+UzRTYsfshJ0xj12xOrtjDdZigiF7Ys/sxbHOq/PmvP+MrjjFzhH7A+fjG4oQkYg=</latexit>y

Prosody
Embedding
Extraction

Speaker
Embedding
Extraction

<latexit sha1_base64="bjl6eZhK1BXHKI/bWPPyPAR0eP4=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmIzGxIneGqCXRxhIT+YhAyN4y4Ia9vcvunJFc8FfYamVnbP0vFv4X75BCwVe9vDeTefP8SElLrvvp5JaWV1bX8uuFjc2t7Z3i7l7DhrERWBehCk3L5xaV1FgnSQpbkUEe+Aqb/ugy85v3aKwM9Q2NI+wGfKjlQApOqXTbCTjd+YPkYdIrltyyOwVbJN6MlGCGWq/41emHIg5Qk1Dc2rbnRtRNuCEpFE4KndhixMWID7GdUs0DtN1kmnjCjmLLKWQRGiYVm4r4eyPhgbXjwE8ns4R23svE/7x2TIPzbiJ1FBNqkR0iqXB6yAoj0yqQ9aVBIp4lRyY1E9xwIjSScSFSMU67KaR9ePPfL5LGSdk7LVeuK6XqxayZPBzAIRyDB2dQhSuoQR0EaHiCZ3hxHp1X5815/xnNObOdffgD5+MbylyVqg==</latexit>x

<latexit sha1_base64="UGR6SNvoC14gwfttOmgFj7Dllyw=">AAACB3icbVC7TsNAEDyHVwivQEqaExESVWSjCCgjaCiDRB5SYlnnyzqccj5bd2tEZOUD+ApaqOgQLZ9Bwb9gBxeQMNVoZlc7O34shUHb/rRKK6tr6xvlzcrW9s7uXnX/oGuiRHPo8EhGuu8zA1Io6KBACf1YAwt9CT1/cpX7vXvQRkTqFqcxuCEbKxEIzjCTvGptGDK884M0mHlDhAdM45lXrdsNew66TJyC1EmBtlf9Go4inoSgkEtmzMCxY3RTplFwCbPKMDEQMz5hYxhkVLEQjJvOw8/ocWIYRjQGTYWkcxF+b6QsNGYa+tlkHtUsern4nzdIMLhwU6HiBEHx/BAKCfNDhmuRtQJ0JDQgsjw5UKEoZ5ohghaUcZ6JSVZTJevDWfx+mXRPG85Zo3nTrLcui2bK5JAckRPikHPSItekTTqEkyl5Is/kxXq0Xq036/1ntGQVOzXyB9bHN8B+mgs=</latexit>

fp

<latexit sha1_base64="pmygCE73M4fsHCYIi8kcsDorzOI=">AAACB3icbVC7TsNAEDyHVwgvQ0qaExESVWSjCCgjaCiDRB5SbEXnyyaccn7obo2ILH8AX0ELFR2i5TMo+Bds4wISphrN7Gpnx4uk0GhZn0ZlZXVtfaO6Wdva3tndM/cPejqMFYcuD2WoBh7TIEUAXRQoYRApYL4noe/NrnK/fw9KizC4xXkErs+mgZgIzjCTRmbd8RneeZNkko4chAdMdDoyG1bTKkCXiV2SBinRGZlfzjjksQ8Bcsm0HtpWhG7CFAouIa05sYaI8RmbwjCjAfNBu0kRPqXHsWYY0ggUFZIWIvzeSJiv9dz3ssk8ql70cvE/bxjj5MJNRBDFCAHPD6GQUBzSXImsFaBjoQCR5cmBioByphgiKEEZ55kYZzXVsj7sxe+XSe+0aZ81WzetRvuybKZKDskROSE2OSdtck06pEs4mZMn8kxejEfj1Xgz3n9GK0a5Uyd/YHx8A8Uumg4=</latexit>

fs

<latexit sha1_base64="K2tK87XGFcjrOeKw1iXXYQijtws=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIRAsoIGsogkYdIomh92YRTzmfrbo0UWeEraKGiQ7T8CwX/gm1SQMJUo5ld7ez4kZKWXPfTKSwtr6yuFddLG5tb2zvl3b2mDWMjsCFCFZq2DxaV1NggSQrbkUEIfIUtf3yV+a0HNFaG+pYmEfYCGGk5lAIole66AdC9P0yG03654lbdHHyReDNSYTPU++Wv7iAUcYCahAJrO54bUS8BQ1IonJa6scUIxBhG2EmphgBtL8kTT/lRbIFCHqHhUvFcxN8bCQTWTgI/ncwS2nkvE//zOjENL3qJ1FFMqEV2iKTC/JAVRqZVIB9Ig0SQJUcuNRdggAiN5CBEKsZpN6W0D2/++0XSPKl6Z9XTm9NK7XLWTJEdsEN2zDx2zmrsmtVZgwmm2RN7Zi/Oo/PqvDnvP6MFZ7azz/7A+fgGrjyVmA==</latexit>

f

Figure 3.1: Pipeline of the proposed system.

of DFs in generating complex semantic aspects of voice naturally. Hence,
the proposed ProsoSpeaker method relies on a rich set of high-level fea-
tures that we extract from the input x. We will refer to each one of
them as speaker (fs) and prosody (fp) embeddings. Then, we use this
representation as input to a fast supervised classifier, which outputs for
each input x a prediction of the label y.

3.2.1 Speaker Embedding Extraction
The principle of VC algorithms is to operate on pristine speech signals
and modify their frequency content to match a target identity. We believe
that this kind of forgeries could leave traces in the speaker timbre quality
that we can leverage to perform synthetic speech detection. We propose to
do so through a feature set that describes each voice’s unique fingerprint
compactly, extracting the spectro-temporal characteristics of the analyzed
spokesperson, i.e., timbre specific properties or pitch contour of the
voice. This feature set, that we indicate with fs, is extracted exploiting a
state-of-the-art network, called ECAPA-TDNN [15], originally proposed
for an ASV task, as mentioned in Section 2.1.2. The proposed speaker
embeddings can spot voice anomalies and allow us to discriminate between
real and synthetic tracks generated through VC engines, as we will prove
in the results section. The ECAPA-TDNN model enhances the typical
x-vectors architectures [72, 73, 133] and significantly outperforms state-
of-the-art TDNN based systems. Figure 3.2 shows an overview of its
pipeline. The design allows projecting variable-length utterances into
fixed-length representations. Being a TDNN, the model involves several
1D convolutions with C = 1024 channels that gradually increase the
temporal context. Each of them comes with a non-linear ReLU activation
function and a Batch Normalization (BN).

Chapter 3. Proposed System 36

Figure 3.2: Architecture of the ECAPA-TDNN model described in [15]. k
is the kernel size and d the dilation coefficient of the convolutional layers or
SE-Res2Blocks. S is the number of training speakers, while the channel and
temporal dimensions of the intermediate feature maps are denoted as C and
T , respectively.

The ECAPA-TDNN architecture resembles the x-vectors one, widely
used for ASV tasks, but enhances it with several improvements. The first
one builds on the work of [75], which presents a new pooling method for
extracting deep speaker embeddings, called attentive statistical pooling.
It exploits both the effectiveness of higher-order statistics and attention
mechanisms for calculating content-based weights at frame-level in an
ASV temporal pooling layer. ECAPA-TDNN extends this temporal
attention mechanism to be channel-dependent. The network focuses
more on speaker characteristics that do not activate on identical or
similar temporal instances, e.g., vowel-specific versus consonant-specific
properties. Furthermore, by extending self-attention to global properties
of the utterance, they enlarge the temporal context of the pooling layer.
In this way the network better adapts to global audio properties such

Chapter 3. Proposed System 37

Figure 3.3: Insight into the architecture of a SE-Res2Block. [15]

as noise or recording conditions. The second type of improvements
draws from recent trends in face verification and computer vision, such as
Squeeze-Exitation (SE) Blocks [76], and ResBlocks [77]. The former models
interdependencies between channels, while the latter involves skipping
connections between layers and is widely employed in very deep ANNs
since it solves the problem of vanishing gradient and exploits multi-layer
information. ECAPA-TDNN exploits SE blocks to rescale the frame-
level features, concerning global properties of the recording. However, to
combine them with the benefits of residual connections without increasing
the total number of parameters, it implements a SE-Res2Block. Figure 3.3
shows its structure. Two 1D convolutional layers with a unit kernel size
serve to reduce and restore the feature size, respectively. A Res2Net
module [134] improves the dilated 1D convolutional layer in the middle,
making it capable of processing multi-scale features by building residual
hierarchical connections within. Finally, a SE block scales each channel.
The dimension of the convolutional bottleneck is 128, while the scale
dimension in the Res2Block is 8. As a final computer vision influence,
the last layer, the Additive Angular Margin (AAM)-Softmax, which
computes the speaker probabilities during training, is widely used for
face recognition tasks. The third and final enhancement concerns the
aggregation of features extracted from different layers. Traditional x-
vectors architectures only consider the output of the last frame-layer to

Chapter 3. Proposed System 38

compute pooled statistics. On the other hand, it can be advantageous
to correlate the deeper and therefore more complex features with the
more superficial ones, strongly related to the speaker’s identity. To do
so, ECAPA-TDNN concatenates for each frame the features coming out
from the three SE-Res2Blocks. In addition, the shortcut present in each
SE-Res2Block reinforces this aspect, by further enabling the exploitation
of multi-layer information.

During training, for each considered speaker, the model outputs the
probability that the identity of the input voice belongs to them,
through the AAM-Softmax layer. On the contrary, at inference time it
measures the similarity of the identities of two different audios through
CD between their embeddings, extracted after the fully-connected layer.
We use this model as an embedding extractor by first training it for the
original task (i.e., ASV) and then feeding the considered input x to the
trained network. We then assume the output of the network as embedding
representation discarding the final classification layer, hence adopting a
transfer-learning strategy. In particular, the variable length signal x is
first pre-processed, i.e., transformed in time-frequency domain applying a
Short Time Fourier Transform (STFT) with window length Ws and hop
size Hs. From the resulting Spectrogram X we compute a set of MFCCs,
i.e.,

XMFCC = MFCC(x) ∈ RMs×B, (3.2)
where Ms corresponds to the number of time windows and B is the total
number of Mel-frequency cepstrum coefficients. This feature map is then
used as input to the trained ECAPA-TDNN network, which projects it
into the fixed-length speaker embedding fs of length Ns.

3.2.2 Prosody Embeddings Extraction
Complementary to the aspects described by the speaker embeddings, we
believe that high-level prosodic aspects, like speech signal variations in
rhythm, intonation and style, constitute another aspect we can leverage
to discriminate deepfake speech tracks. The rationale behind this choice
lies in the subtractive definition of prosody introduced in Section 1.1.3,
which describes it as the variation in speech signals that remains after
accounting for variation due to phonetics, speaker identity, and channel
effects. It follows that speaker identity and prosody are two disjoint and
complementary properties of speech. For this reason, we believe that a rep-
resentation that includes both the aspects is capable of describing speech
signals more comprehensively. Moreover, prosody measures an intrinsic
human voice characteristic that we assume TTS synthesis algorithms
struggle at recreating. In fact, despite the recent advances, synthetic
prosody has different quality and intensity w.r.t. to human speech, and
this difference can be captured using a set of prosody embeddings. The
obtained results later prove this assumption. To extract this feature set,
that we indicate as fp in Figure 3.1, we experimented with two different

Chapter 3. Proposed System 39

extraction approaches based on the main prosodic modeling methods
presented in Section 2.3. The first one employs hand-crafted features
typically used to describe prosody, while the second one makes use of DL
and extracts features learned by the network.

3.2.2.1 Handcrafted Features

Inspired by several state-of-the-art approaches to prosodic modeling, we
extract a representation of prosody based on handcrafted features from
an audio signal. As already mentioned in Section 1.1.3, most approaches
derive them from three speech properties: the temporal contour of f0,
which encodes aspects related to intonation, such as the rising pitch in
a question; the temporal contour of energy E0, which encodes aspects
related to emphasis and emotional depth; the duration of voiced, unvoiced
and pause segments, associated with the speaking rate.

We tested two different approaches to feature extraction. The first
divides each audio into overlapping segments using fix-length windows.
The second divides each audio into non-overlapping segments of variable
length in which the presence of voice is detected. We will refer to the
features extracted by the first method as windowed features fw and the
others as voiced features fv. Before applying either method, we preprocess
the audio. As a first step we eliminate the initial and final silence
by analyzing the first and the last instant in which voice is detected.
Subsequently, we either trim or zero-pad the signal to 4 seconds. Finally,
we normalize the audio and shift the average f0 to 150 Hz to achieve sex
invariance.

Windowed Features

This method assumes that pauses in speech also play an important role
in prosodic representation, together with the voiced component. For this
reason, it partitions the audio into segments of constant length that may
contain both voiced and unvoiced speech material. To do so, it employs
triangular windows of length Ww and with a hop size Hw. Then, for each
window it estimates the temporal contours of f0 and E0 with fine time
detail. Finally, it extracts a set of 23 features we deemed relevant from
the two contours, computed in each segment through minimum (min),
maximum (max) and the first four statistical moments, average (avg),
standard deviation (stdev), skewness (skew) and kurtosis (kurt):

• Features directly calculated on the values of f0 for each segment:
avg(f0), stdev(f0), max(f0), min(f0), max(f0)−min(f0), skew(f0),
kurt(f0).

• Features calculated on the Tilt of a linear estimation of f0 for each
segment: avg(tilt(f0)), stdev(tilt(f0)), max(tilt(f0)), min(tilt(f0)),
skew(tilt(f0)), kurt(tilt(f0)).

Chapter 3. Proposed System 40

• Features calculated on the Mean Square Error (MSE) of a linear es-
timation of f0 for each segment: avg(MSE(f0)), stdev(MSE(f0)),
max(MSE(f0)), min(MSE(f0)), skew(MSE(f0)),
kurt(MSE(f0)).

• Features directly calculated on the values of E0 for each segment:
avg(E0), stdev(E0), skew(E0), kurt(E0).

In this way we extract from each audio a matrix Mw × 23 where Mw
is the number of windows and hence of audio fragments. To change
from this two-dimensional representation to a one-dimensional vector we
compute the same six statistics (avg, stdev, skew, kurt, min, max) for
each feature along the temporal dimension Mw. As a result we obtain a
vector of 138 features describing each audio.

To take explicitly into account the distribution of the pauses and
of the voiced and unvoiced segments we extract an additional vector of
features in a global fashion from the whole utterance. It is composed of
25 features:

• Voiced rate: voiced segments per second.

• Features based on the duration of voiced segments Dv: avg(Dv),
stdev(Dv), skew(Dv), kurt(Dv), max(Dv), min(Dv).

• Features based on the duration of unvoiced segments Du: avg(Du),
stdev(Du), skew(Du), kurt(Du), max(Du), min(Du).

• Features based on the duration of pauses P : avg(P), stdev(P),
skew(P), kurt(P), max(P), min(P).

• Features based on duration ratios: P
Dv+Du

, P
Du

, Dv

Dv+Du
, Du

Dv+Du
, Dv

P
,

Du

P
.

To obtain the final representation of the prosody of an input speech signal
we concatenate the two feature vectors described above into a single one
of length Nw, which we denote as fw.

Voiced Features

This method assumes that prosody depends on the sequence of words or
syllables. Therefore, it is appropriate to only consider such voiced units
for feature extraction, discarding the pauses between them. By analyzing
the temporal contour of f0, this method identifies voiced segments that
plausibly represent the single words in the audio signal. To do so it
estimates the temporal contours of f0 with fine time detail and selects as
voiced segments those portions of audio containing speech voice sounds
that are at least Dv long, as depicted in the upper graph of Figure 3.4a.
Then, for each segment it extracts a set of 36 features:

Chapter 3. Proposed System 41

• f0 and E0 statistical features: the same set of 23 features of the
windowed case described above.

• Duration of each voiced segment.

• f0 and E0 approximation coefficients: a set of 12 coefficients we de-
rive from a Legendre polynomial expansion of the temporal contour
of f0 and E0, respectively, as described in [135]. These coefficients
can accurately approximate the two contours as

f(t) =
N∑︂
i=0

aiLi(t), (3.3)

where f(t) is either the frequency or energy contour, Li(t) is the ith
Legendre polynomial, and N its order. Therefore, by setting N equal
to 5 we end up with 6 coefficients. Figure 3.4 visually demonstrates
the approximation of both f0 and E0 temporal contours for each
voiced segment.

Consequently, the method extracts from each audio a matrix Nv × 36,
where Mv is the number of voiced segments, which is variable and generally
much lower than Mw, used in the windowed case. To change from this
two-dimensional representation to a one-dimensional vector we compute
the six statistics (avg, stdev, skew, kurt, min, max) for each feature
along the temporal dimension Mv. As a result we obtain a vector of Nv
features, which we denote as fv, describing the prosody of an input speech
signal.

3.2.2.2 Prosody Encoder

In order to extract a learned representation of audio prosody we rely on
the reference encoder described in [17]. The authors originally introduced
this module in Tacotron’s architecture [16, 118] to improve the naturalness
of the synthesized voices, enhancing their prosody controls.

The original Tacotron model, as already mentioned in section 2.2.1,
performs a generative end-to-end TTS synthesis and generates speech
starting from a text input, depending on the speaker’s identity considered
in the training phase. The core of Tacotron is a seq2seq model, com-
prising an encoder, an attention-based decoder, and a post-processing
net [93, 94]. The model takes as input a sequence of characters from
which the encoder extracts a high-level representation, successively trans-
formed in Spectrogram by the decoder. Finally, a vocoder produces
the corresponding waveform from the resulting Spectrogram. As a first
step, the character sequence is encoded in an embedding where a one-hot
vector represents each character. Then, each embedding undergoes a
series of transformations, collectively called pre-net and is input to a
CBHG-encoder, shown in Figure 3.5. CBHG stands for 1D convolution
bank - highway network - bidirectional GRU and comes from the work of

Chapter 3. Proposed System 42

0 200 400 600 800 1000 1200 1400

Time [s]

80

100

120

140

F
re

qu
en

cy
[H

z]
Original Frequency

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time [s]

120

140

160

180

F
re

qu
en

cy
[H

z]

Frequency Approximation

0 200 400 600 800 1000 1200 1400

Time [s]

80

100

120

140

F
re

qu
en

cy
[H

z]
Original Frequency

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time [s]

120

140

160

180

F
re

qu
en

cy
[H

z]

Frequency Approximation

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Time [s]

−50

−40

−30

−20

−10

E
n

er
gy

[d
B

]

Original Energy

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time [s]

−50

−40

−30

−20

−10

E
n

er
gy

[d
B

]

Energy Approximation

(b)

Figure 3.4: (a) and (b) show the comparison between the original temporal con-
tour and the one approximated in each voice segment by Legendre polynomial
for f0 and E0, respectively. In particular, in the upper plot of (a) is highlighted
the division into voiced segments, represented by the colored sections. The
text of the considered audio is “He will address the nation this evening" and
intuitively each voiced segment represents a word.

Chapter 3. Proposed System 43

Figure 3.5: CBHG-encoder architecture [16].

[136] in machine translation. CBHG is a particularly effective module for
extracting representations from sequences. Its architecture first convolves
the input with K sets of 1D convolutional filters to explicitly model local
and contextual information. Then, it stacks together the convolution’s
outputs and max-pools them along time to increase local invariances.
Successively, it feeds the processed sequence to some fixed-width 1D
convolutions and adds the outputs to the original input sequence via resid-
ual connections. Next, a multi-layer highway network derives high-level
features from the convolutional outputs. Finally, a bidirectional GRU
extracts sequential features from the context both forward and backward.
From this transcript embedding Tacotron generates multiple Spectrogram
frames simultaneously, using a content-based tanh attention decoder,
where a static recurrent layer produces the attention request at each
decoder time step. Once the Spectrogram is ready, a pre-trained vocoder
transforms it into audio. In the original model [16] the authors employ
Griffin-Lim, but we can use any other. Later implementations of the
model use WaveNet [92] for this purpose [11]. During training, the first
decoder step is conditioned on an all-zero frame and the model is trained
on <text, audio> inputs, considering their 80-band Mel Spectrograms as
targets.

The authors of [17], make two main improvements to the Tacotron’s
architecture as shown in Figure 3.6. First, they adapt it to the mul-
tispeaker scenario by conditioning the decoder also on the speakers’s
identity in the training set. Second, they include an explicit representa-
tion of prosody to make the output voices more expressive and be able to
modify or transfer their style. This is done by broadcast-concatenating

Chapter 3. Proposed System 44

Figure 3.6: Pipeline of the prosody enhanced Tacotron presented in [17].

both a speaker embedding and a prosody embedding to the transcript
one. Therefore, the matrix used as context for the attention layer has
dimensions LT × (dt +ds +Ne), where LT is the length of the encoded rep-
resentation of the transcript, dt is the transcription embedding dimension,
ds speaker embedding one, and Ne the prosody embedding one. When the
encoder is conditioned on this learned embedding the synthesized audio
is able to match the prosody of a reference signal with fine time detail
even when the reference and synthesis speakers are different. Figure 3.7
shows an insight into the architecture of the reference encoder. It is a
6-layer CNN where each layer includes 3× 3 filters with 2× 2 stride, same
padding and ReLU activation with BN. Compared to the downsampling
rate the number of filters in each layer doubles by half: 32, 32, 64, 64,
128, 128. The Lr × dr reference signal is downsampled 64 times in both
dimensions. Then, a single 128-width GRU [137] compresses the sequence
produced by the CNN layers down to a single fixed-length vector. The
final output of the GRU is taken as the pooled summarization of the
sequence. Finally, a fully-connected layer followed by a tanh activation
function projects the output to the desired dimensionality, allowing to
compute the Ne-dimensional embedding. This design sufficiently bot-
tlenecks the input information to force the encoder to learn a compact

Chapter 3. Proposed System 45

Figure 3.7: Architecture of the prosody encoder included in [17].

representation of prosody.
For this work, we train Tacotron and prosody encoder jointly by

synthesizing target audio signals, provided as input to both, and using
the reconstruction error as loss function. On the contrary, the target
audio for prosody can be any utterance whose style is to be transferred
to the output at inference time. Once the prosody encoder is trained, we
use it as an embedding extractor, feeding as input the Mel Spectrogram
of the input signal x

Xmel = MelSpec(x) ∈ RMp×K , (3.4)

where Mp is the number of time windows and K corresponds to the total
number of frequency bins, extracted with window size Wp and hop size
Hp. We denote the output of the prosody encoder as fe, of length Ne.

3.2.3 Classifier
As shown in Figure 3.1, the final part of the ProsoSpeaker pipeline is a
supervised binary classifier. We concatenate the two embeddings fs and fp
obtaining a final feature vector fed to the classification stage and defined
as

f = [fs, fp] ∈ RNs+Np , (3.5)

Chapter 3. Proposed System 46

where fp can be either fw or fv or fe depending on the prosody extraction
method used and Np is its length which can be can be Nw, Nv or Ne,
respectively. The supervised classifier is trained to predict the class y
of the input speech x. We decide to adopt a simple classification front-
end because we mostly rely on the discriminative capacity of the rich
proposed feature set. Moreover, it is worth noting that any supervised
classifier algorithm can be used at this stage, as our pipeline is classifier-
independent.

3.3 Conclusive Remarks
In this chapter we have formalized the problem that this thesis attempts
to solving and presented the pipeline of the method proposed to tackle it.
In particular, we have explained the various approaches tested to extract
high-level semantic features and then the classifier we use to label the
input audio signals as real or deepfake.

4
Experimental Setup

This chapter describes the environment of the experimental setup we used
to validate our method. We provide details about the datasets involved,
the training and feature extraction procedures and the evaluation metrics.
Then, we describe the baselines against which we compare the method
and the experiments we performed to evaluate it.

4.1 Datasets Description
In this section we introduce the datasets involved in the training and
testing phases of the presented work, that in total count almost 800000
tracks. We considered multiple datasets containing tracks of both REAL,
i.e, authentic, and DF, i.e., synthetic, classes, aiming at testing the
generalization properties of the proposed method. In the following we
provide further details for each dataset, that will be later useful in
interpreting the experimental results.
ASVspoof 2019 [121] is the official dataset of the ASVspoof 2019 chal-
lenge, in which participants competed to implement the best antispoofing
system for ASV, as mentioned in Section 2.4. It is a speech audio dataset
with both real and synthetic tracks belonging to the same speakers. It
contains two partitions, one for PA and one for LA, further divided into
train, dev and eval. The former is designed against attacks that physically
reproduce the counterfeit voice of the victim through an audio device,
while the latter against those that directly inject the spoofed signal into
an ASV system. We considered the LA partition since it includes spoofing
attacks generated through TTS, VC and TTS/VC hybrid techniques.

Chapter 4. Experimental Setup 48

Each partition comprises authentic signals along with speech samples
generated with 19 different synthesis algorithms. The train and dev
partitions have been created using the same set of synthesis algorithms
(named A01, A02, ..., A06), while the eval partition includes samples
generated with different techniques (A07, ..., A19). We use train and dev
partitions for training and fine-tuning the proposed method, while eval
partition is used in test.
ASVspoof 2021 [122] is the dataset from the 2021 version of the
ASVspoof challenge. While train and dev are the same as in the 2019
version, eval comprises a new partition, so called DF, specifically designed
for the problem we are addressing. This has been built by processing
with different lossy codecs the data from ASVspoof 2019 LA eval set and
additional sources. However, unlike the 2019 version, the labels are not
yet fully released at the time of writing so the synthesis and compression
algorithms are unknown.
LibriSpeech [138] is an open-source dataset containing about 1000
hours of authentic speech from different speakers. From this corpus we
considered the subset train-clean-100. We decided to include audio tracks
from this dataset in the training set to increase the number of authentic
tracks, helping the model to generalize better.
LJSpeech (LJS) [139] is a dataset containing short audio tracks of REAL
speech recorded from a single speaker reciting pieces from non-fiction
books. This dataset is part of the testing set.
Cloud 2019 [140] is a collection of TTS generated audio signals proposed
in [140]. It includes tracks from different state-of-the-art speech generators
available as cloud services: Amazon AWS Polly (PO), Google Cloud
Standard (GS), Google Cloud WaveNet (GW), Microsoft Azure (AZ) and
IBM Watson (WA). We include this dataset in the test set as DF signals.
These algorithms are different from those considered in the training set,
and thus provide additional in-the-wild synthetic data to the test set.
Interactive Emotional Dyadic Motion Capture (IEMOCAP)
(IEM) [141] is a dataset originally designed for the SER task. The data
were recorded during scripted and improvised conversations by 10 actors.
It contains video and audio signals annotated with information about
the speakers’ facial expressions and hand movements. We include this
dataset in the test set as authentic signals.
VoxCeleb is an audio-video dataset containing short clips extracted
from celebrity interviews on YouTube. It counts more than 7000 different
speakers, embracing a wide range of ethnicities, ages and accents, for
a total of more than one million utterances. The dataset consists of
two versions, VoxCeleb1 [142] and VoxCeleb2 [143], each with its own
train/test split. The first contains about 100000 audio tracks, while the
second contains about 1000000.

Chapter 4. Experimental Setup 49

Table 4.1: Composition of the training, development and testing sets for
the front-end binary classifier.

Dataset N. Tracks REAL DF Train Dev Test

ASVspoof 2019 121 461 ✓ ✓ ✓ ✓ ✓
ASVspoof 2021 611 829 ✓ ✓ ✓
LibriSpeech 28 539 ✓ ✓
LJSpeech 13 100 ✓ ✓
Cloud2019 11 888 ✓ ✓
IEMOCAP 10 039 ✓ ✓

Total 796 856 86 778 710 078 53 919 24 844 718 093

Blizzard 2013 [144] is a dataset including the speech of a professional
narrator reading the text of a collection of classic novels in an expressive
and emotional storytelling style.

In Table 4.1 we report the train and testing split used for the front-end
binary classifier and the type of speech signal, REAL or DF, included in
each dataset.

4.2 Evaluation Metrics
To evaluate the performance of our method and analyze its behavior, we
relied on well-known metrics. The first is balanced accuracy, often used
in binary classification problems when dealing with unbalanced datasets,
i.e., when the classes do not share the same number of samples. In order
to define it we must first introduce two other metrics from which it is
calculated: True Positive Rate (TPR), also known as sensitivity, and True
Negative Rate (TNR), also known as specificity. We refer with positive
and negative to the two classes for the problem at hand, which in our
case are respectively REAL and DF. TPR is the ratio between the True
Positive (TP), which is the number of correctly classified positive samples,
and the total amount of positive samples

TPR =
TP

TP + FN , (4.1)

where False Negative (FN) is the number of positive samples incorrectly
classified as negatives. On the other hand, TNR is the ratio between the
True Negative (TN), which is the number of correctly classified negative
samples, and the total amount of negative samples

TNR =
TN

TN + FP , (4.2)

where False Positive (FP) is the number of negative samples incorrectly
classified as positives. Finally we can define the balanced accuracy as

Bal. Acc. = TPR + TNR
2

(4.3)

Chapter 4. Experimental Setup 50

The closer to 1 the balanced accuracy, the higher the performance of the
model. Another metric we adopt is the confusion matrix which allows
the visualization of the classification performances. It either displays TP,
FP, TN, FN values or their normalized percentage. It is defined as[︃

TN FP
FN TP

]︃
(4.4)

Another widely used metric we employ is the Receiver Operating Charac-
teristic (ROC) curve with the associated Area Under the Curve (AUC).
The ROC curve is a graph showing the performance of a classification
model at all classification thresholds. It can be graphically represented by
plotting at different classification thresholds the TPR against the False
Positive Rate (FPR) defined as

FPR =
FP

FP + TN (4.5)

AUC is defined as the two-dimensional area underneath the entire ROC
curve. The AUC represents the separability ability of the model, e.g, how
much the model is able to distinguish between the classes. The closer to
100 the AUC, the better the model is at predicting TP and TN. The last
metric we employ is Equal Error Rate (EER), typically used to evaluate
performance of biometric security systems. It individuates the point on a
ROC curve at which the FPR is equal to the False Negative Rate (FNR),
defined as

FNR =
FN

TP + FN (4.6)

Therefore, the number of correctly and incorrectly classified samples is
equal between the two classes at this operating threshold. The closer to
0 the EER value, the the higher the accuracy of the biometric system.
Figure 4.1 shows an example of a ROC curve with a visual understanding
of what AUC and EER represent.

4.3 Features Extraction & Training Details
Our system involves two different types of feature extraction methods,
namely windowed and voiced features and three independent training
stages, namely for ECAPA-TDNN network, for the prosody encoder and
for the final binary classifier.

To extract the windowed features we use Mw triangular windows of
length Ww = 0.5 s, with a hop size Hw = 0.1 s. After the concatena-
tion between their statistics vector and the global features extracted at
utterance-level we obtain a final feature vector fw of length Nw = 163.
On the other hand, we extract voice features on a variable number Mv
of segments that contain voice traces. In particular we include in this
analysis all the segments in which the speech voice sounds detected have

Chapter 4. Experimental Setup 51

Figure 4.1: Example of a ROC curve, with the associated AUC and EER values
[18].

a minimum length of Dv = 60 ms as suggested in [135]. After computing
the statistics over all segments, we obtain a final feature vector fv of
length Nv = 216.

Regarding the speaker embedding extractor, we use a version of
ECAPA-TDNN available at [145], which uses Additive Margin Softmax
Loss and is trained on VoxCeleb 1 and VoxCeleb 2 datasets. As men-
tioned in Section 3.2.1, the input waveform x, to be used as input to
ECAPA-TDNN network, must be first transformed in its MFCC represen-
tation XMFCC. For this operation we consider B = 80 MFCCs extracted
with Ws = 25 ms windows with hop size Hs = 10 ms, leading to a M × 80
representation, where the number of windows M depends on the length
of the audio. The final embedding vector fs has dimension Ns = 192. For
the prosody learned features, we train the prosody encoder on Blizzard
2013 dataset, for 200000 epochs, following the training procedure detailed
in [17]. For computational issues, we modify only one parameter value, the
mini-batch size, that in our training process is equal to 8. Before feeding it
to the encoder, the input signal x is transformed into a Mel Spectrogram
Xmel using window length Wp = 50 ms and hop size Hp = 12.5 ms. The
number of frequency bins used is K = 80. This lead to a final input of
dimension M × 80. The resulting embedding vector fp has length and
Np = 128. In Figure 4.2 we show the learned attention alignments at
different epochs when jointly training Tacotron and the prosody encoder.
The graphs, showing how well the encoded input matches the decoder

Chapter 4. Experimental Setup 52

(a) 50k epochs (b) 130k epochs (c) 200k epochs

Figure 4.2: Attention alignment graphs extracted at different training epochs
of the expressive Tacotron model presented in [17]

output for each timestep, reflect a marked learning throughout the epochs
as the line gets neater and well-defined.

The final set of concatenated features is f as a fusion of fs extracted
via ECAPA-TDNN and fp represented by either prosody encoder output
fe or by windowed/voiced features, fw and fv, respectively. This vector is
then standardized by removing the mean and scaling to unit variance, as
described in Section 1.1.4 and acts as input to the binary classifier. The
supervised classification algorithm we adopt is SVM classifier, following
the training-development partition detailed in Table 4.1. To find the
best set of hyper-parameters we performed a grid search on development
partition using balanced accuracy as a metric. We considered the following
parameters: C ∈ [0.01, 0.1, 1, 10, 100], kernel coefficient γ ∈ [1/N, 1/(N ∗
σ2
f)], where N is dimensionality of the feature vector f and σ2

f is the
variance of f over the training dataset. In addition, we vary the kernel
type between radial basis function kernel, polynomial kernel and sigmoid
kernel. The best configuration proved to be C = 100, γ = 1/(N ∗ σ2

f) and
using radial basis function kernel.

4.4 Baselines
To test the validity and novelty of our method, we compare its perfor-
mances with those of three different baselines. They rely on various
representations of the input data, allowing us to have an orthogonal
approach to the problem. The first one is RawNet2 [146], a state-of-the-
art end-to-end neural network that operates on raw waveforms. It has
been first proposed for the ASVspoof 2019 challenge and included as a
baseline in the ASVspoof 2021 challenge both for LA and DF tasks. We
train the network for 100 epochs on the same training set we adopted
for the proposed method, using a cross-entropy loss function with Adam
optimization [147], a mini-batch size of 32 and a learning rate of 0.0001.
The second and third baselines are variants of ResNet [77], a residual
CNN that creates shortcuts between layers by skipping connections that
help stabilize training. We consider two versions of the ResNet, with an
almost identical architecture, but fed with different representations of the
input audio track, as presented in [148]. The first one, referenced as Spec-

Chapter 4. Experimental Setup 53

ResNet, takes as input the log-magnitude representation of the STFT of
the considered audio, computed on hamming windows with window size
= 2048 and 25% overlap. The second one, called MFCC-ResNet, is fed
with the first 24 MFCCs of the input data, together with their first and
second derivatives. Input transformation and training strategy for these
two networks are implemented following [148]. We train both of them on
the same training set we adopted for the proposed method by minimizing
a cross-entropy loss function with different weights assigned to genuine
and spoofed examples, to mitigate the imbalance in the training data
distribution. We use Adam optimizer with learning rate = 0.00005 and
train the networks for 200 epochs with a mini-batch size of 32.

4.5 Experiments
This section lists the experiments we conducted to test our method from
different perspectives. We set the sampling frequency Fs to 16 kHz for
all of them, hence if necessary down-sampling the audio tracks but never
upsampling them. We note that we keep the same training set for all
considered scenarios, as defined in Table 4.1, and only change the test set
depending on the experiment. Likewise, we maintain the same classifier
hyperparameters described in Section 4.3.
Embedding Comparison As a first experiment we compare the per-
formance of the different approaches considered for prosodic extraction,
presented in Section 3.2.2. To this regard we examine three different
models, all following the pipeline described in 3.1, but only differing in the
feature set passed to the classifier. In particular, in the first one we only
consider the vector of windowed features fw, in the second one only the
vector of voiced features fv and in the third one only the embeddings fe,
extracted using the prosody encoder. Being a purely prosodic analysis, in
all three cases we exclude speaker embedding fs. To compare the models
with each other and find the most accurate prosodic representation for the
task of audio DF detection we test them on ASVspoof 2019 LA eval set.
The purpose of this test is to choose the best performing one and include
it in the system pipeline as fp to continue with subsequent experiments,
while definitively discarding the others. Then, once the method is selected,
we compare the two representation, fs and fp. In particular, we inspect
how much the two embeddings differ from each other to avoid computing
redundant information.
Baseline Comparison In this experiment, we compare the results
obtained using the proposed method with those of the three considered
baselines on the LA eval partition of the ASVspoof 2019. The purpose is
to validate the novelty and effectiveness of our method with respect to
the state-of-the-art of the specific task we are addressing.
Ablation Study In this third experiment we further analyze the char-

Chapter 4. Experimental Setup 54

acteristics and the importance of each embedding subset, namely the
speaker embeddings fp and the prosody embeddings fs, used in our method.
Through an ablation study we test how they perform individually in dif-
ferent scenarios. In this analysis, we consider three distinct models, all
based on the proposed architecture, differing only for the embeddings
subset that the final SVM classifier receives as input. The first model,
that we indicate with Prosody Emb, is fully-prosodic and it is based on
fp only. The second only considers the speaker information of fs and it
is indicated with Speaker Emb. The third model is the complete one,
i.e., ProsoSpeaker, and it performs classification using the concatenation
of fp and fs. We then considered three test scenarios, depending on
the synthesis techniques used to generate the synthetic speech signals
of the test set. In the first scenario (a) we consider only speech tracks
created with TTS techniques; in the second scenario (b) only speech
tracks created with VC techniques; in the third scenario (c) both synthe-
sis techniques are considered. All the tracks for the three scenarios are
selected from ASVspoof 2019 dataset. Please notice that we consider the
hybrid TTS/VC techniques into category (a) because their starting point
is a fully-synthetic, non-human voice.
Generalization Capability This fourth experiment aims to test the
generalization capabilities of the model. Therefore, we first verify the
performances of the proposed detector singularly on each algorithm present
in ASVspoof 2019 eval to check the classification performances consistency
over different synthesis strategies. Then, we consider a more complex
open-set scenario made of multiple datasets, unseen during training and
external to the ASVspoof challenge corpora. Therefore, ProsoSpeaker
detector is tested on ASVspoof 2019 LA eval, LJSpeech, IEMOCAP and
Cloud2019.
Robustness Analysis In this fifth and final test we aim to verify the
robustness of the proposed method to common signal manipulation. In
fact, in a real-world scenario, we can perform many operations to hide the
artifacts introduced by deepfake generation algorithms, like for instance
lossy compression. Some signal information is lost by compressing an
audio track, including traces that may help deepfake detectors determine
the signal’s authenticity. Since our method does not rely on low-level
signal characteristics but analyzes semantic features, we hypothesize that
compression should not affect its performance significantly. In practice,
speaker and prosody embeddings should only partially impact this type
of data augmentation and keep their discriminative potential. To test
such aspect, we create three versions of the ASVspoof 2019 LA eval
dataset using MP3 compression at different bitrates, namely 128 kBits/s,
64 kBits/s and 32 kBits/s, using SoX tool [149]. By testing our model
on these compressed datasets, we monitor performance, checking for
any signs of degradation. Finally, to further validate this aspect, we
test the proposed method on the DF partition of ASVspoof 2021, which

Chapter 4. Experimental Setup 55

comprises more than 600000 tracks from both REAL and DF classes,
compressed with different codecs to simulate VoIP transmission. In
this case, compared to the previous, we are not aware of which audio
manipulation technique or parameters have been applied to the analyzed
tracks. This represents the most complex real-world scenario in which
our method must deal with a large amount of new data generated and
post-processed with unseen techniques.

4.6 Conclusive Remarks
In this chapter we have described the environment and datasets on which
we perform our experiments, along with the metrics used to evaluate
the results and the training details. Afterward, we have introduced
the baselines against which we compare our method and outlined the
experiments conducted to analyze different aspects of the model. In the
next chapter, we will report the results of these experimental setups.

5
Results

In this chapter we present the results of the tests outlined in Section 4.5.
These experiments aim to analyze the proposed ProsoSpeaker method
from different perspectives. Each test allows to evaluate a specific qual-
ity of the system and better understand its functioning concerning the
audio DF detection task. In the first experiment, we compare the em-
beddings extraction methods. In the second, we test the performance
of the ProsoSpeaker model in relation to that of the chosen baselines
to prove the effectiveness and novelty of our work. Through the third
experiment, we analyze the proposed method’s behavior more in-depth
to understand its strengths and functioning. The fourth one aims at
verifying the generalization capabilities when confronted with unknown
datasets. Finally, in the fifth and last experiment we introduce distortions
in the test set and measure the robustness of the ProsoSpeaker method
to this aspect.

5.1 Embeddings Comparison
Here we compare the classification performance of our model when we feed
the classifier with different embedding sets, to understand which prosodic
representation is more suitable for the task at hand. The considered
embeddings are fw, fv and fe and Figure 5.1 shows the results of the
investigation, in terms of ROC curves. These are named as windowed
features, voiced features and prosody encoder, respectively. There is an
evident difference in performance between the handcrafted features fw/fv
and the learned ones fe. The EER, AUC and balanced accuracy values
shown in Table 5.1 confirm this trend. The prosody encoder extraction
method widely outperforms the other two, with an improvement of ≈ 23%

Chapter 5. Results 57

Table 5.1: EER, AUC and balanced accuracy values for the three fp
extraction methods on ASVspoof 2019 LA eval set.

fp extraction EER % AUC Bal. Acc. %

Prosody Encoder 15.13 91.99 85.05
Windowed Features 37.49 67.54 53.94

Voiced Features 38.92 65.18 53.08

in EER, more than 26 in AUC and ≈ 31% in balanced accuracy. The two
handcrafted features extraction methods have the same performance, very
almost identical ROC curves and similar metrics values. However, we
note a slight improvement in the case of windowed features. These results
confirm the power of DL, which, as highlighted earlier in Section 1.3,
fully automates the crucial step of feature engineering. In fact, it allows
learning from raw data the most effective representation, which does not
necessarily make sense to humans but is meaningful and optimized from
the machine’s point of view. Thus, for complex tasks such as prosody
modeling, DL approaches may derive learned features (fe) that are much
more effective than handcrafted ones (fw, fv). Given these results, from
now on we will consider fp = fe extracted by the prosody encoder, since, in
addition to having largely exceeded the other methods, it already achieves
good performance for the task we face.

As a second analysis, we compare the newly selected prosody em-
bedding fp with the speaker embedding fs to see how much they differ
from each other and avoid the computation of redundant information.
To do so, we measure the sample Pearson correlation coefficient rfifj
for each pair of elements (fi, fj) of the vector f = [f0, f1, ..., fN−1] over
the test dataset, as explained in Section 1.1.4. The resulting matrix
Rff describes both cross-correlation between prosody and speaker em-
beddings Rfsfp = RT

fpfs both auto-correlations of each embedding vector
Rfpfp and Rfsfs . Figure 5.2 shows the results of this analysis computed
in the ASVspoof 2019 eval partition in the form of a correlation matrix.
The diagonal has been set to 0 for visualization purposes. There, we can
identify two rectangular regions, one at the top left, corresponding to
Rfsfs , and one at the bottom right, corresponding to Rfpfp . Although the
elements of fp have a higher degree of internal correlation than those of fs,
with mean value µ(Rfpfp) = 0.21 and standard deviation σ(Rfpfp) = 0.08,
respectively, the cross coefficients present low values, with an average
value of µ(Rfsfp) = 0.07. This means that the two embedding vectors do
not strongly correlate with each other and do not share much information.
The spectro-temporal and prosodic characteristics we are considering have
turned out to be orthogonal to each other, benefiting our detector.

Chapter 5. Results 58

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Prosody Encoder

Windowed Features

Voiced Features

Figure 5.1: Comparison of ROC curves extracted from the three fp extraction
methods on ASVspoof 2019 LA eval set.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

<latexit sha1_base64="6zTF4N7dPQHdylCQrPaBzhjiojU=">AAACB3icbVC7TsNAEDzzDOFlSElzIkKiimyEgDKChjJI5CEllnW+rMMp54fu1ojI8gfwFbRQ0SFaPoOCf8E2LiBhqtHMrnZ2vFgKjZb1aSwtr6yurdc26ptb2zu75t5+T0eJ4tDlkYzUwGMapAihiwIlDGIFLPAk9L3pVeH370FpEYW3OIvBCdgkFL7gDHPJNRujgOGd56d+5o4QHjCNM9dsWi2rBF0kdkWapELHNb9G44gnAYTIJdN6aFsxOilTKLiErD5KNMSMT9kEhjkNWQDaScvwGT1KNMOIxqCokLQU4fdGygKtZ4GXTxZR9bxXiP95wwT9CycVYZwghLw4hEJCeUhzJfJWgI6FAkRWJAcqQsqZYoigBGWc52KS11TP+7Dnv18kvZOWfdayb06b7cuqmRo5IIfkmNjknLTJNemQLuFkRp7IM3kxHo1X4814/xldMqqdBvkD4+Mbv4iaCA==</latexit>

fp

<latexit sha1_base64="07WwmpCFPHCJI9dsSJ4RdhpcrRw=">AAACB3icbVC7TsNAEDzzDOFlSElzIkKiimyEgDKChjJI5CEllnW+rMMp54fu1ojI8gfwFbRQ0SFaPoOCf8E2LiBhqtHMrnZ2vFgKjZb1aSwtr6yurdc26ptb2zu75t5+T0eJ4tDlkYzUwGMapAihiwIlDGIFLPAk9L3pVeH370FpEYW3OIvBCdgkFL7gDHPJNRujgOGd56d+5o4QHjDVmWs2rZZVgi4SuyJNUqHjml+jccSTAELkkmk9tK0YnZQpFFxCVh8lGmLGp2wCw5yGLADtpGX4jB4lmmFEY1BUSFqK8HsjZYHWs8DLJ4uoet4rxP+8YYL+hZOKME4QQl4cQiGhPKS5EnkrQMdCASIrkgMVIeVMMURQgjLOczHJa6rnfdjz3y+S3knLPmvZN6fN9mXVTI0ckENyTGxyTtrkmnRIl3AyI0/kmbwYj8ar8Wa8/4wuGdVOg/yB8fENxDiaCw==</latexit>

fs

<latexit sha1_base64="6zTF4N7dPQHdylCQrPaBzhjiojU=">AAACB3icbVC7TsNAEDzzDOFlSElzIkKiimyEgDKChjJI5CEllnW+rMMp54fu1ojI8gfwFbRQ0SFaPoOCf8E2LiBhqtHMrnZ2vFgKjZb1aSwtr6yurdc26ptb2zu75t5+T0eJ4tDlkYzUwGMapAihiwIlDGIFLPAk9L3pVeH370FpEYW3OIvBCdgkFL7gDHPJNRujgOGd56d+5o4QHjCNM9dsWi2rBF0kdkWapELHNb9G44gnAYTIJdN6aFsxOilTKLiErD5KNMSMT9kEhjkNWQDaScvwGT1KNMOIxqCokLQU4fdGygKtZ4GXTxZR9bxXiP95wwT9CycVYZwghLw4hEJCeUhzJfJWgI6FAkRWJAcqQsqZYoigBGWc52KS11TP+7Dnv18kvZOWfdayb06b7cuqmRo5IIfkmNjknLTJNemQLuFkRp7IM3kxHo1X4814/xldMqqdBvkD4+Mbv4iaCA==</latexit>

fp
<latexit sha1_base64="07WwmpCFPHCJI9dsSJ4RdhpcrRw=">AAACB3icbVC7TsNAEDzzDOFlSElzIkKiimyEgDKChjJI5CEllnW+rMMp54fu1ojI8gfwFbRQ0SFaPoOCf8E2LiBhqtHMrnZ2vFgKjZb1aSwtr6yurdc26ptb2zu75t5+T0eJ4tDlkYzUwGMapAihiwIlDGIFLPAk9L3pVeH370FpEYW3OIvBCdgkFL7gDHPJNRujgOGd56d+5o4QHjDVmWs2rZZVgi4SuyJNUqHjml+jccSTAELkkmk9tK0YnZQpFFxCVh8lGmLGp2wCw5yGLADtpGX4jB4lmmFEY1BUSFqK8HsjZYHWs8DLJ4uoet4rxP+8YYL+hZOKME4QQl4cQiGhPKS5EnkrQMdCASIrkgMVIeVMMURQgjLOczHJa6rnfdjz3y+S3knLPmvZN6fN9mXVTI0ckENyTGxyTtrkmnRIl3AyI0/kmbwYj8ar8Wa8/4wuGdVOg/yB8fENxDiaCw==</latexit>

fs

Figure 5.2: Cross-correlation matrix Rff of feature vectors f realizations of
ASVspoof 2019 eval set.

5.2 Baseline Comparison
In this section we test the classification performance of our method and
compare the results with those of the considered baselines on the same test

Chapter 5. Results 59

set of the previous experiment, the LA eval partition of the ASVspoof 2019
dataset. First, we test how well the method can separate the REAL and
DF classes. Figure 5.3 shows the results on a histogram, by representing
on the y-axis the number of audio signals, expressed as a percentage
of the total, and on the x-axis the scores that ProsoSpeaker assigns to
them. We choose REAL as the positive class, associated to a score of
1 and DF as the negative class, with a score of 0. In this sense, the
closer an output score s = ProsoSpeaker(x) is to either of these values,
the greater the confidence with which the model assigns to the input
signal x the corresponding class label. It is evident from the histogram
that the method can separate the two classes effectively. It assigns to
most DF audio signals a score lower than 0.2 and to most REAL ones
a score higher than 0.8. Next, we calculate the metrics presented in
Section 4.4 to test the performance of our method and compare it to
the baselines, RawNet2, MFCC-ResNet and Spec-ResNet. Figure 5.4
shows the ROC curves of the three detectors and Table 5.2 shows the
corresponding AUC, EER and balanced accuracy values. ProsoSpeaker
detector outperforms all the three baselines in the considered metrics. In
particular, the most remarkable improvement is seen over Spec-ResNet
with a difference of about 15% for EER and balanced accuracy, while 10
for AUC. A significant gain is also shown concerning RawNet2, which
is the best-performing baseline among those proposed for the ASVspoof
2021 challenge. Here, our method improves by almost 3% over EER and
balanced accuracy, while 2 over AUC. This shows that our method can
compete with and improve upon the proposed state-of-the-art for the
audio DF detection task.

0.0 0.2 0.4 0.6 0.8 1.0

Score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

b
ab

ili
ty

REAL

DF

Figure 5.3: Histogram showing the distribution of the output scores of ProsoS-
peaker computed on ASVspoof 2019 eval set.

5.3 Generalization Capability
In this third set of experiments, we aim to analyze the consistency and
generalization ability of the proposed method by augmenting the consid-

Chapter 5. Results 60

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

ProsoSpeaker (Ours)

RawNet2 (Baseline)

Spec− ResNet (Baseline)

MFCC− ResNet (Baseline)

Figure 5.4: ROC curves for the proposed method and the considered baselines,
evaluated on ASVspoof 2019 LA eval set.
Table 5.2: EER, AUC and balanced accuracy values for the proposed
ProsoSpeaker method and the considered baselines, evaluated on ASVspoof
2019 LA eval set.

Model EER % AUC Bal. Acc. %

RawNet2 (Baseline) 8.15 97.09 91.66
MFCC-ResNet (Baseline) 13.98 93.52 84.96
Spec-ResNet (Baseline) 18.75 88.31 79.50

ProsoSpeaker (Ours) 5.39 98.85 94.43

ered test set. First, we verify the performances of the proposed detector
singularly on each algorithm present in ASVspoof 2019 eval to check the
classification performances consistency over different synthesis strategies.
Then, we want to assess ProsoSpeaker ’s generalization capabilities across
multiple datasets, unseen during training and external to the ASVspoof
challenge corpora. Figure 5.5 shows the percentage of correct attribution
values obtained for each synthesis algorithm included in ASVspoof 2019
eval set (A07, A08, ..., A13) and for LJSpeech, IEMOCAP and Cloud2019
(divided in PO, AZ, GS, GW, WA). The label AU corresponds to real
speech samples distributed in ASVspoof 2019. The proposed method is
successful in almost all the considered cases, with a percentage of correct
attribution value always higher than 0.80. This means that ProsoSpeaker
has good generalization capabilities, and we can consider it a reliable
method. The only exception is represented by the TTS generator IBM

Chapter 5. Results 61

Watson, included in Cloud2019, where the accuracy is equal to 0.50. We
believe this issue is due to the fact that the IBM TTS method is specifi-
cally trained considering a “prosodic-phonology" approach for generating
expressive speech [150], hence deceiving our detection method.

LJS IEM AU A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 PO AZ GS GW WA

Dataset

0.5

0.6

0.7

0.8

0.9

1.0

P
er

ce
nt

ag
e

of
C

or
re

ct
A

tt
ri

b
u

ti
on

1.00 0.98

0.93

0.99 0.98 0.98

0.94

0.98 0.99 1.00

0.84

0.94

0.99 0.99

0.88

0.93
0.96

0.92

0.84 0.83

0.50

Figure 5.5: Bar plot of the percentage of correct attribution values of the
proposed model on each partition of each considered dataset.

5.4 Ablation Study
In this analysis, we consider the three distinct models presented in Sec-
tion 4.5, based on the proposed architecture, but differing for the embed-
dings subset fed to the final classifier. Prosody Emb, is the fully-prosodic
one, Speaker Emb only considers the speaker information and the proposed
method, ProsoSpeaker, is the fusion of the two. Table 5.3 and Figure 5.6
show the binary classification performances of this analysis, the first in
terms of EER, AUC and balance accuracy obtained for the three models
in the three considered test scenarios, (a) VC, (b) TTS and (c) ALL,
the second showing the corresponding ROC curves. The predictions of
the two partial models are orthogonal to each other and each performs
better on a distinct scenario. In particular, prosodic embeddings fp can
discriminate speech signals generated with TTS algorithms well but are
less effective with VC methods, while speaker embeddings fs achieves
better results in the VC case than TTS. This is further confirmed by the
confusion matrices shown in Figure 5.7. They contain the percentages
of correctly and incorrectly classified signals for all the models in the
three scenarios, computed with a 0.5 threshold on the output scores.
Note how the bottom row, concerning the REAL audio signals, remains
unchanged for each type of embedding used for each matrix. Only the DF
partition changes between different scenarios, while the REAL one stays
the same. Clearly, the worst cases are when only fs is used to classify
TTS-generated audio (top-left) and only fp to classify VC-generated audio
(center). On the other hand, the complementary cases (top-center and

Chapter 5. Results 62

Table 5.3: EER, AUC and balanced accuracy values for the three models
(ProsoSpeaker, Speaker Emb, Prosody Emb) tested on the three scenarios
(TTS, VC, ALL).

(a) TTS

EER % AUC Bal. Acc. %

ProsoSpeaker 4.93 99.02 94.77
Prosody Emb 8.58 96.68 90.64
Speaker Emb 26.21 81.64 74.62

(b) VC

EER % AUC Bal. Acc. %

ProsoSpeaker 6.70 98.29 93.28
Prosody Emb 30.04 76.35 66.44
Speaker Emb 9.82 96.53 88.20

(c) ALL

EER % AUC Bal. Acc. %

ProsoSpeaker 5.39 98.85 94.43
Prosody Emb 15.13 91.99 85.05
Speaker Emb 22.88 85.08 77.75

center-left) show very good performances, confirming the effectiveness of
fs in the VC scenario and fp in the TTS scenario. Consequently, for both
cases when all the algorithms are considered the performances worsen.
Confirming what was demonstrated earlier with ROC curves and metrics,
the last row of matrices, related to the use of f , shows better results
in all three scenarios, especially the more general one that includes all
synthesis techniques. From these results we can confirm our initial hy-
pothesis, i.e., that each one of the two speech generation techniques fails
in reproducing one of the semantic features encoded by fs or fp. On
one side, TTS systems struggle at recreating natural sounding prosody,
starting from a pure textual input, and hence prosody embeddings are
effectively discriminating them from real speech. On the other hand,
VC techniques manipulate an authentic speech sample to impersonate a
target speaker, introducing artifacts in the timbre qualities that can be
detected leveraging speaker embeddings. Nonetheless, the fusion of the
two embeddings improves the predictions in all the considered scenarios,
reaching an AUC = 0.99 in the case of the complete dataset. We can
conclude that the concatenation of the two embeddings provides a more
comprehensive and significant representation of the input speech signal,
leading to higher binary classification performances.

Chapter 5. Results 63

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Fusion (ProsoSpeaker)

Speaker Emb

Prosody Emb

(a) TTS

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Fusion (ProsoSpeaker)

Speaker Emb

Prosody Emb

(b) VC

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Fusion (ProsoSpeaker)

Speaker Emb

Prosody Emb

(c) ALL

Figure 5.6: ROC curves obtained for the three models using different embed-
dings (ProsoSpeaker, Speaker Emb, Prosody Emb) and tested on the three
scenarios (TTS, VC, ALL).

Fake Real
Predicted label

Fake

Real

T
ru

e
la

b
el

0.964 0.036

0.068 0.932

0.0

0.2

0.4

0.6

0.8

1.0

Fake Real
Predicted label

Fake

Real

T
ru

e
la

b
el

0.674 0.326

0.182 0.818

0.0

0.2

0.4

0.6

0.8

1.0

Fake Real
Predicted label

Fake

Real

T
ru

e
la

b
el

0.952 0.048

0.139 0.861

0.0

0.2

0.4

0.6

0.8

1.0

Fake Real
Predicted label

Fake

Real

T
ru

e
la

b
el

0.468 0.532

0.139 0.861

0.0

0.2

0.4

0.6

0.8

1.0

Fake Real
Predicted label

Fake

Real

T
ru

e
la

b
el

0.934 0.066

0.068 0.932

0.0

0.2

0.4

0.6

0.8

1.0

Fake Real
Predicted label

Fake

Real

T
ru

e
la

b
el

0.946 0.054

0.182 0.818

0.0

0.2

0.4

0.6

0.8

1.0

Fake Real
Predicted label

Fake

Real

T
ru

e
la

b
el

0.957 0.043

0.068 0.932

0.0

0.2

0.4

0.6

0.8

1.0

Fake Real
Predicted label

Fake

Real

T
ru

e
la

b
el

0.840 0.160

0.139 0.861

0.0

0.2

0.4

0.6

0.8

1.0

Fake Real
Predicted label

Fake

Real
T
ru

e
la

b
el

0.737 0.263

0.182 0.818

0.0

0.2

0.4

0.6

0.8

1.0

<latexit sha1_base64="d09RTnheh5dSXOgYzSj+EScL4og=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCQBlBQxkEeUiJFa0vm3DK+aG7NRBZ+QRaqOgQLd9Dwb9gGxeQMNVoZlc7O16kpCHb/rQWFpeWV1ZLa+X1jc2t7crObsuEsRbYFKEKdccDg0oG2CRJCjuRRvA9hW1vfJn57XvURobBLU0idH0YBXIoBVAq3TT6j/1K1a7ZOfg8cQpSZQUa/cpXbxCK2MeAhAJjuo4dkZuAJikUTsu92GAEYgwj7KY0AB+Nm+RRp/wwNkAhj1BzqXgu4u+NBHxjJr6XTvpAd2bWy8T/vG5Mw3M3kUEUEwYiO0RSYX7ICC3TDpAPpEYiyJIjlwEXoIEIteQgRCrGaSnltA9n9vt50jquOac15/qkWr8omimxfXbAjpjDzlidXbEGazLBRuyJPbMX68F6td6s95/RBavY2WN/YH18A+Qwkko=</latexit> P
x

<latexit sha1_base64="U87fZuU8PKfu585gBrd3jr952Lg=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESFRRTZCQBmRhjJI5IESKzpfNuGUu7N1t0ZElr+CFio6RMvHUPAvOMYFJEw1mtnVzk4QSWHRdT+dpeWV1bX10kZ5c2t7Z7eyt9+2YWw4tHgoQ9MNmAUpNLRQoIRuZICpQEInmDRmfucBjBWhvsVpBL5iYy1GgjPMpLs+wiMm7UY6qFTdmpuDLhKvIFVSoDmofPWHIY8VaOSSWdvz3Aj9hBkUXEJa7scWIsYnbAy9jGqmwPpJHjilx7FlGNIIDBWS5iL83kiYsnaqgmxSMby3895M/M/rxTi69BOhoxhB89khFBLyQ5YbkTUBdCgMILJZcqBCU84MQwQjKOM8E+OsmnLWhzf//SJpn9a885p3c1atXxXNlMghOSInxCMXpE6uSZO0CCeKPJFn8uKkzqvz5rz/jC45xc4B+QPn4xvG45UR</latexit>

VC
<latexit sha1_base64="eOFFApaqp+Dk5+LQpt+NQUqhhJs=">AAAB/HicbVC7TsNAEFzzDOEVoKQ5ESFRRTZCQBlBQxlEXiKJovNlE045n627NSKywlfQQkWHaPkXCv4Fx6SAhKlGM7va2fEjJS257qezsLi0vLKaW8uvb2xubRd2dus2jI3AmghVaJo+t6ikxhpJUtiMDPLAV9jwh5cTv3GPxspQV2kUYSfgAy37UnBKpds24QMl1erNuFsouiU3A5sn3pQUYYpKt/DV7oUiDlCTUNzaludG1Em4ISkUjvPt2GLExZAPsJVSzQO0nSRLPGaHseUUsggNk4plIv7eSHhg7Sjw08mA052d9Sbif14rpv55J5E6igm1mBwiqTA7ZIWRaRXIetIgEZ8kRyY1E9xwIjSScSFSMU67yad9eLPfz5P6cck7LXnXJ8XyxbSZHOzDARyBB2dQhiuoQA0EaHiCZ3hxHp1X5815/xldcKY7e/AHzsc3iFOVfQ==</latexit>

TTS
<latexit sha1_base64="mVDd7C8IAmumEi6DBSkFd84GePk=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIRAsoADUWKIJGHSKzofNmEU85n626NiKzwFbRQ0SFa/oWCf8E2LiBhqtHMrnZ2vFAKg7b9aRUWFpeWV4qrpbX1jc2t8vZOywSR5tDkgQx0x2MGpFDQRIESOqEG5nsS2t74MvXb96CNCNQNTkJwfTZSYig4w0S67SE8YHxer0/75YpdtTPQeeLkpEJyNPrlr94g4JEPCrlkxnQdO0Q3ZhoFlzAt9SIDIeNjNoJuQhXzwbhxlnhKDyLDMKAhaCokzUT4vREz35iJ7yWTPsM7M+ul4n9eN8LhmRsLFUYIiqeHUEjIDhmuRVIF0IHQgMjS5ECFopxphghaUMZ5IkZJN6WkD2f2+3nSOqo6J1Xn+rhSu8ibKZI9sk8OiUNOSY1ckQZpEk4UeSLP5MV6tF6tN+v9Z7Rg5Tu75A+sj29TBZVb</latexit>

ALL

<latexit sha1_base64="q1MbN+aDjr6gHfr3/Zy006J+HeY=">AAACBnicbVC7TsNAEDzzDOEVQklzIkKiimyEgDKChjJIeUmJFa0vm3DK+aG7NUpkpecraKGiQ7T8BgX/gh1cQMJUo5ld7ex4kZKGbPvTWlldW9/YLGwVt3d29/ZLB+WWCWMtsClCFeqOBwaVDLBJkhR2Io3gewrb3vgm89sPqI0MgwZNI3R9GAVyKAVQKvVL5R7hhJKGjpEr8FDNiv1Sxa7ac/Bl4uSkwnLU+6Wv3iAUsY8BCQXGdB07IjcBTVIonBV7scEIxBhG2E1pAD4aN5lnn/GT2ACFPELNpeJzEX9vJOAbM/W9dNIHujeLXib+53VjGl65iQyimDAQ2SGSCueHjNAyLQX5QGokgiw5chlwARqIUEsOQqRinLaU9eEsfr9MWmdV56Lq3J1Xatd5MwV2xI7ZKXPYJauxW1ZnTSbYhD2xZ/ZiPVqv1pv1/jO6YuU7h+wPrI9vtoyYzQ==</latexit> T
ru
e
la
b
el

<latexit sha1_base64="nvbPvfx8+KjzOQHArnl7C8aUo5s=">AAACCXicbVC7TsNAEDyHVwivAKKiOREhUUU2QkAZQUMZEHlISRStL5twyvmhuzUisvwFfAUtVHSIlq+g4F+wTQpImGI1mtnV7o4bKmnItj+twsLi0vJKcbW0tr6xuVXe3mmaINICGyJQgW67YFBJHxskSWE71Aieq7Dlji8zv3WP2sjAv6VJiD0PRr4cSgGUSv3yXpfwgeK8SopvEFSSlPrlil21c/B54kxJhU1R75e/uoNARB76JBQY03HskHoxaJJCYVLqRgZDEGMYYSelPnhoenF+fsIPIwMU8BA1l4rnIv6eiMEzZuK5aacHdGdmvUz8z+tENDzvxdIPI0JfZItIKswXGaFlmgvygdRIBNnlyKXPBWggQi05CJGKURpUlocz+/08aR5XndOqc31SqV1MkymyfXbAjpjDzliNXbE6azDBYvbEntmL9Wi9Wm/W+09rwZrO7LI/sD6+AfKFmqU=</latexit> R
ea
l

<latexit sha1_base64="0t47nA5aUZVLH1HugQPVgVB/cxo=">AAACCXicbVDLSgNBEJyNrxhfUfHkZTAInsKuiHoMCuIxgnlAEkLvpBOHzD6Y6RXDsl/gV3jVkzfx6ld48F/cXXPQxDo0RVU33V1uqKQh2/60CguLS8srxdXS2vrG5lZ5e6dpgkgLbIhABbrtgkElfWyQJIXtUCN4rsKWO77M/NY9aiMD/5YmIfY8GPlyKAVQKvXLe13CB4rzKim+gjEmSalfrthVOwefJ86UVNgU9X75qzsIROShT0KBMR3HDqkXgyYpFCalbmQwBDGGEXZS6oOHphfn5yf8MDJAAQ9Rc6l4LuLviRg8Yyaem3Z6QHdm1svE/7xORMPzXiz9MCL0RbaIpMJ8kRFaprkgH0iNRJBdjlz6XIAGItSSgxCpGKVBZXk4s9/Pk+Zx1TmtOjcnldrFNJki22cH7Ig57IzV2DWrswYTLGZP7Jm9WI/Wq/Vmvf+0FqzpzC77A+vjG935mpg=</latexit> F
ak
e

<latexit sha1_base64="q1MbN+aDjr6gHfr3/Zy006J+HeY=">AAACBnicbVC7TsNAEDzzDOEVQklzIkKiimyEgDKChjJIeUmJFa0vm3DK+aG7NUpkpecraKGiQ7T8BgX/gh1cQMJUo5ld7ex4kZKGbPvTWlldW9/YLGwVt3d29/ZLB+WWCWMtsClCFeqOBwaVDLBJkhR2Io3gewrb3vgm89sPqI0MgwZNI3R9GAVyKAVQKvVL5R7hhJKGjpEr8FDNiv1Sxa7ac/Bl4uSkwnLU+6Wv3iAUsY8BCQXGdB07IjcBTVIonBV7scEIxBhG2E1pAD4aN5lnn/GT2ACFPELNpeJzEX9vJOAbM/W9dNIHujeLXib+53VjGl65iQyimDAQ2SGSCueHjNAyLQX5QGokgiw5chlwARqIUEsOQqRinLaU9eEsfr9MWmdV56Lq3J1Xatd5MwV2xI7ZKXPYJauxW1ZnTSbYhD2xZ/ZiPVqv1pv1/jO6YuU7h+wPrI9vtoyYzQ==</latexit> T
ru
e
la
b
el

<latexit sha1_base64="nvbPvfx8+KjzOQHArnl7C8aUo5s=">AAACCXicbVC7TsNAEDyHVwivAKKiOREhUUU2QkAZQUMZEHlISRStL5twyvmhuzUisvwFfAUtVHSIlq+g4F+wTQpImGI1mtnV7o4bKmnItj+twsLi0vJKcbW0tr6xuVXe3mmaINICGyJQgW67YFBJHxskSWE71Aieq7Dlji8zv3WP2sjAv6VJiD0PRr4cSgGUSv3yXpfwgeK8SopvEFSSlPrlil21c/B54kxJhU1R75e/uoNARB76JBQY03HskHoxaJJCYVLqRgZDEGMYYSelPnhoenF+fsIPIwMU8BA1l4rnIv6eiMEzZuK5aacHdGdmvUz8z+tENDzvxdIPI0JfZItIKswXGaFlmgvygdRIBNnlyKXPBWggQi05CJGKURpUlocz+/08aR5XndOqc31SqV1MkymyfXbAjpjDzliNXbE6azDBYvbEntmL9Wi9Wm/W+09rwZrO7LI/sD6+AfKFmqU=</latexit> R
ea
l

<latexit sha1_base64="0t47nA5aUZVLH1HugQPVgVB/cxo=">AAACCXicbVDLSgNBEJyNrxhfUfHkZTAInsKuiHoMCuIxgnlAEkLvpBOHzD6Y6RXDsl/gV3jVkzfx6ld48F/cXXPQxDo0RVU33V1uqKQh2/60CguLS8srxdXS2vrG5lZ5e6dpgkgLbIhABbrtgkElfWyQJIXtUCN4rsKWO77M/NY9aiMD/5YmIfY8GPlyKAVQKvXLe13CB4rzKim+gjEmSalfrthVOwefJ86UVNgU9X75qzsIROShT0KBMR3HDqkXgyYpFCalbmQwBDGGEXZS6oOHphfn5yf8MDJAAQ9Rc6l4LuLviRg8Yyaem3Z6QHdm1svE/7xORMPzXiz9MCL0RbaIpMJ8kRFaprkgH0iNRJBdjlz6XIAGItSSgxCpGKVBZXk4s9/Pk+Zx1TmtOjcnldrFNJki22cH7Ig57IzV2DWrswYTLGZP7Jm9WI/Wq/Vmvf+0FqzpzC77A+vjG935mpg=</latexit> F
ak
e

<latexit sha1_base64="q1MbN+aDjr6gHfr3/Zy006J+HeY=">AAACBnicbVC7TsNAEDzzDOEVQklzIkKiimyEgDKChjJIeUmJFa0vm3DK+aG7NUpkpecraKGiQ7T8BgX/gh1cQMJUo5ld7ex4kZKGbPvTWlldW9/YLGwVt3d29/ZLB+WWCWMtsClCFeqOBwaVDLBJkhR2Io3gewrb3vgm89sPqI0MgwZNI3R9GAVyKAVQKvVL5R7hhJKGjpEr8FDNiv1Sxa7ac/Bl4uSkwnLU+6Wv3iAUsY8BCQXGdB07IjcBTVIonBV7scEIxBhG2E1pAD4aN5lnn/GT2ACFPELNpeJzEX9vJOAbM/W9dNIHujeLXib+53VjGl65iQyimDAQ2SGSCueHjNAyLQX5QGokgiw5chlwARqIUEsOQqRinLaU9eEsfr9MWmdV56Lq3J1Xatd5MwV2xI7ZKXPYJauxW1ZnTSbYhD2xZ/ZiPVqv1pv1/jO6YuU7h+wPrI9vtoyYzQ==</latexit> T
ru
e
la
b
el

<latexit sha1_base64="nvbPvfx8+KjzOQHArnl7C8aUo5s=">AAACCXicbVC7TsNAEDyHVwivAKKiOREhUUU2QkAZQUMZEHlISRStL5twyvmhuzUisvwFfAUtVHSIlq+g4F+wTQpImGI1mtnV7o4bKmnItj+twsLi0vJKcbW0tr6xuVXe3mmaINICGyJQgW67YFBJHxskSWE71Aieq7Dlji8zv3WP2sjAv6VJiD0PRr4cSgGUSv3yXpfwgeK8SopvEFSSlPrlil21c/B54kxJhU1R75e/uoNARB76JBQY03HskHoxaJJCYVLqRgZDEGMYYSelPnhoenF+fsIPIwMU8BA1l4rnIv6eiMEzZuK5aacHdGdmvUz8z+tENDzvxdIPI0JfZItIKswXGaFlmgvygdRIBNnlyKXPBWggQi05CJGKURpUlocz+/08aR5XndOqc31SqV1MkymyfXbAjpjDzliNXbE6azDBYvbEntmL9Wi9Wm/W+09rwZrO7LI/sD6+AfKFmqU=</latexit> R
ea
l

<latexit sha1_base64="0t47nA5aUZVLH1HugQPVgVB/cxo=">AAACCXicbVDLSgNBEJyNrxhfUfHkZTAInsKuiHoMCuIxgnlAEkLvpBOHzD6Y6RXDsl/gV3jVkzfx6ld48F/cXXPQxDo0RVU33V1uqKQh2/60CguLS8srxdXS2vrG5lZ5e6dpgkgLbIhABbrtgkElfWyQJIXtUCN4rsKWO77M/NY9aiMD/5YmIfY8GPlyKAVQKvXLe13CB4rzKim+gjEmSalfrthVOwefJ86UVNgU9X75qzsIROShT0KBMR3HDqkXgyYpFCalbmQwBDGGEXZS6oOHphfn5yf8MDJAAQ9Rc6l4LuLviRg8Yyaem3Z6QHdm1svE/7xORMPzXiz9MCL0RbaIpMJ8kRFaprkgH0iNRJBdjlz6XIAGItSSgxCpGKVBZXk4s9/Pk+Zx1TmtOjcnldrFNJki22cH7Ig57IzV2DWrswYTLGZP7Jm9WI/Wq/Vmvf+0FqzpzC77A+vjG935mpg=</latexit> F
ak
e

<latexit sha1_base64="q1MbN+aDjr6gHfr3/Zy006J+HeY=">AAACBnicbVC7TsNAEDzzDOEVQklzIkKiimyEgDKChjJIeUmJFa0vm3DK+aG7NUpkpecraKGiQ7T8BgX/gh1cQMJUo5ld7ex4kZKGbPvTWlldW9/YLGwVt3d29/ZLB+WWCWMtsClCFeqOBwaVDLBJkhR2Io3gewrb3vgm89sPqI0MgwZNI3R9GAVyKAVQKvVL5R7hhJKGjpEr8FDNiv1Sxa7ac/Bl4uSkwnLU+6Wv3iAUsY8BCQXGdB07IjcBTVIonBV7scEIxBhG2E1pAD4aN5lnn/GT2ACFPELNpeJzEX9vJOAbM/W9dNIHujeLXib+53VjGl65iQyimDAQ2SGSCueHjNAyLQX5QGokgiw5chlwARqIUEsOQqRinLaU9eEsfr9MWmdV56Lq3J1Xatd5MwV2xI7ZKXPYJauxW1ZnTSbYhD2xZ/ZiPVqv1pv1/jO6YuU7h+wPrI9vtoyYzQ==</latexit> T
ru
e
la
b
el

<latexit sha1_base64="nvbPvfx8+KjzOQHArnl7C8aUo5s=">AAACCXicbVC7TsNAEDyHVwivAKKiOREhUUU2QkAZQUMZEHlISRStL5twyvmhuzUisvwFfAUtVHSIlq+g4F+wTQpImGI1mtnV7o4bKmnItj+twsLi0vJKcbW0tr6xuVXe3mmaINICGyJQgW67YFBJHxskSWE71Aieq7Dlji8zv3WP2sjAv6VJiD0PRr4cSgGUSv3yXpfwgeK8SopvEFSSlPrlil21c/B54kxJhU1R75e/uoNARB76JBQY03HskHoxaJJCYVLqRgZDEGMYYSelPnhoenF+fsIPIwMU8BA1l4rnIv6eiMEzZuK5aacHdGdmvUz8z+tENDzvxdIPI0JfZItIKswXGaFlmgvygdRIBNnlyKXPBWggQi05CJGKURpUlocz+/08aR5XndOqc31SqV1MkymyfXbAjpjDzliNXbE6azDBYvbEntmL9Wi9Wm/W+09rwZrO7LI/sD6+AfKFmqU=</latexit> R
ea
l

<latexit sha1_base64="0t47nA5aUZVLH1HugQPVgVB/cxo=">AAACCXicbVDLSgNBEJyNrxhfUfHkZTAInsKuiHoMCuIxgnlAEkLvpBOHzD6Y6RXDsl/gV3jVkzfx6ld48F/cXXPQxDo0RVU33V1uqKQh2/60CguLS8srxdXS2vrG5lZ5e6dpgkgLbIhABbrtgkElfWyQJIXtUCN4rsKWO77M/NY9aiMD/5YmIfY8GPlyKAVQKvXLe13CB4rzKim+gjEmSalfrthVOwefJ86UVNgU9X75qzsIROShT0KBMR3HDqkXgyYpFCalbmQwBDGGEXZS6oOHphfn5yf8MDJAAQ9Rc6l4LuLviRg8Yyaem3Z6QHdm1svE/7xORMPzXiz9MCL0RbaIpMJ8kRFaprkgH0iNRJBdjlz6XIAGItSSgxCpGKVBZXk4s9/Pk+Zx1TmtOjcnldrFNJki22cH7Ig57IzV2DWrswYTLGZP7Jm9WI/Wq/Vmvf+0FqzpzC77A+vjG935mpg=</latexit> F
ak
e

<latexit sha1_base64="q1MbN+aDjr6gHfr3/Zy006J+HeY=">AAACBnicbVC7TsNAEDzzDOEVQklzIkKiimyEgDKChjJIeUmJFa0vm3DK+aG7NUpkpecraKGiQ7T8BgX/gh1cQMJUo5ld7ex4kZKGbPvTWlldW9/YLGwVt3d29/ZLB+WWCWMtsClCFeqOBwaVDLBJkhR2Io3gewrb3vgm89sPqI0MgwZNI3R9GAVyKAVQKvVL5R7hhJKGjpEr8FDNiv1Sxa7ac/Bl4uSkwnLU+6Wv3iAUsY8BCQXGdB07IjcBTVIonBV7scEIxBhG2E1pAD4aN5lnn/GT2ACFPELNpeJzEX9vJOAbM/W9dNIHujeLXib+53VjGl65iQyimDAQ2SGSCueHjNAyLQX5QGokgiw5chlwARqIUEsOQqRinLaU9eEsfr9MWmdV56Lq3J1Xatd5MwV2xI7ZKXPYJauxW1ZnTSbYhD2xZ/ZiPVqv1pv1/jO6YuU7h+wPrI9vtoyYzQ==</latexit> T
ru
e
la
b
el

<latexit sha1_base64="nvbPvfx8+KjzOQHArnl7C8aUo5s=">AAACCXicbVC7TsNAEDyHVwivAKKiOREhUUU2QkAZQUMZEHlISRStL5twyvmhuzUisvwFfAUtVHSIlq+g4F+wTQpImGI1mtnV7o4bKmnItj+twsLi0vJKcbW0tr6xuVXe3mmaINICGyJQgW67YFBJHxskSWE71Aieq7Dlji8zv3WP2sjAv6VJiD0PRr4cSgGUSv3yXpfwgeK8SopvEFSSlPrlil21c/B54kxJhU1R75e/uoNARB76JBQY03HskHoxaJJCYVLqRgZDEGMYYSelPnhoenF+fsIPIwMU8BA1l4rnIv6eiMEzZuK5aacHdGdmvUz8z+tENDzvxdIPI0JfZItIKswXGaFlmgvygdRIBNnlyKXPBWggQi05CJGKURpUlocz+/08aR5XndOqc31SqV1MkymyfXbAjpjDzliNXbE6azDBYvbEntmL9Wi9Wm/W+09rwZrO7LI/sD6+AfKFmqU=</latexit> R
ea
l

<latexit sha1_base64="0t47nA5aUZVLH1HugQPVgVB/cxo=">AAACCXicbVDLSgNBEJyNrxhfUfHkZTAInsKuiHoMCuIxgnlAEkLvpBOHzD6Y6RXDsl/gV3jVkzfx6ld48F/cXXPQxDo0RVU33V1uqKQh2/60CguLS8srxdXS2vrG5lZ5e6dpgkgLbIhABbrtgkElfWyQJIXtUCN4rsKWO77M/NY9aiMD/5YmIfY8GPlyKAVQKvXLe13CB4rzKim+gjEmSalfrthVOwefJ86UVNgU9X75qzsIROShT0KBMR3HDqkXgyYpFCalbmQwBDGGEXZS6oOHphfn5yf8MDJAAQ9Rc6l4LuLviRg8Yyaem3Z6QHdm1svE/7xORMPzXiz9MCL0RbaIpMJ8kRFaprkgH0iNRJBdjlz6XIAGItSSgxCpGKVBZXk4s9/Pk+Zx1TmtOjcnldrFNJki22cH7Ig57IzV2DWrswYTLGZP7Jm9WI/Wq/Vmvf+0FqzpzC77A+vjG935mpg=</latexit> F
ak
e

<latexit sha1_base64="q1MbN+aDjr6gHfr3/Zy006J+HeY=">AAACBnicbVC7TsNAEDzzDOEVQklzIkKiimyEgDKChjJIeUmJFa0vm3DK+aG7NUpkpecraKGiQ7T8BgX/gh1cQMJUo5ld7ex4kZKGbPvTWlldW9/YLGwVt3d29/ZLB+WWCWMtsClCFeqOBwaVDLBJkhR2Io3gewrb3vgm89sPqI0MgwZNI3R9GAVyKAVQKvVL5R7hhJKGjpEr8FDNiv1Sxa7ac/Bl4uSkwnLU+6Wv3iAUsY8BCQXGdB07IjcBTVIonBV7scEIxBhG2E1pAD4aN5lnn/GT2ACFPELNpeJzEX9vJOAbM/W9dNIHujeLXib+53VjGl65iQyimDAQ2SGSCueHjNAyLQX5QGokgiw5chlwARqIUEsOQqRinLaU9eEsfr9MWmdV56Lq3J1Xatd5MwV2xI7ZKXPYJauxW1ZnTSbYhD2xZ/ZiPVqv1pv1/jO6YuU7h+wPrI9vtoyYzQ==</latexit> T
ru
e
la
b
el

<latexit sha1_base64="nvbPvfx8+KjzOQHArnl7C8aUo5s=">AAACCXicbVC7TsNAEDyHVwivAKKiOREhUUU2QkAZQUMZEHlISRStL5twyvmhuzUisvwFfAUtVHSIlq+g4F+wTQpImGI1mtnV7o4bKmnItj+twsLi0vJKcbW0tr6xuVXe3mmaINICGyJQgW67YFBJHxskSWE71Aieq7Dlji8zv3WP2sjAv6VJiD0PRr4cSgGUSv3yXpfwgeK8SopvEFSSlPrlil21c/B54kxJhU1R75e/uoNARB76JBQY03HskHoxaJJCYVLqRgZDEGMYYSelPnhoenF+fsIPIwMU8BA1l4rnIv6eiMEzZuK5aacHdGdmvUz8z+tENDzvxdIPI0JfZItIKswXGaFlmgvygdRIBNnlyKXPBWggQi05CJGKURpUlocz+/08aR5XndOqc31SqV1MkymyfXbAjpjDzliNXbE6azDBYvbEntmL9Wi9Wm/W+09rwZrO7LI/sD6+AfKFmqU=</latexit> R
ea
l

<latexit sha1_base64="0t47nA5aUZVLH1HugQPVgVB/cxo=">AAACCXicbVDLSgNBEJyNrxhfUfHkZTAInsKuiHoMCuIxgnlAEkLvpBOHzD6Y6RXDsl/gV3jVkzfx6ld48F/cXXPQxDo0RVU33V1uqKQh2/60CguLS8srxdXS2vrG5lZ5e6dpgkgLbIhABbrtgkElfWyQJIXtUCN4rsKWO77M/NY9aiMD/5YmIfY8GPlyKAVQKvXLe13CB4rzKim+gjEmSalfrthVOwefJ86UVNgU9X75qzsIROShT0KBMR3HDqkXgyYpFCalbmQwBDGGEXZS6oOHphfn5yf8MDJAAQ9Rc6l4LuLviRg8Yyaem3Z6QHdm1svE/7xORMPzXiz9MCL0RbaIpMJ8kRFaprkgH0iNRJBdjlz6XIAGItSSgxCpGKVBZXk4s9/Pk+Zx1TmtOjcnldrFNJki22cH7Ig57IzV2DWrswYTLGZP7Jm9WI/Wq/Vmvf+0FqzpzC77A+vjG935mpg=</latexit> F
ak
e

<latexit sha1_base64="q1MbN+aDjr6gHfr3/Zy006J+HeY=">AAACBnicbVC7TsNAEDzzDOEVQklzIkKiimyEgDKChjJIeUmJFa0vm3DK+aG7NUpkpecraKGiQ7T8BgX/gh1cQMJUo5ld7ex4kZKGbPvTWlldW9/YLGwVt3d29/ZLB+WWCWMtsClCFeqOBwaVDLBJkhR2Io3gewrb3vgm89sPqI0MgwZNI3R9GAVyKAVQKvVL5R7hhJKGjpEr8FDNiv1Sxa7ac/Bl4uSkwnLU+6Wv3iAUsY8BCQXGdB07IjcBTVIonBV7scEIxBhG2E1pAD4aN5lnn/GT2ACFPELNpeJzEX9vJOAbM/W9dNIHujeLXib+53VjGl65iQyimDAQ2SGSCueHjNAyLQX5QGokgiw5chlwARqIUEsOQqRinLaU9eEsfr9MWmdV56Lq3J1Xatd5MwV2xI7ZKXPYJauxW1ZnTSbYhD2xZ/ZiPVqv1pv1/jO6YuU7h+wPrI9vtoyYzQ==</latexit> T
ru
e
la
b
el

<latexit sha1_base64="nvbPvfx8+KjzOQHArnl7C8aUo5s=">AAACCXicbVC7TsNAEDyHVwivAKKiOREhUUU2QkAZQUMZEHlISRStL5twyvmhuzUisvwFfAUtVHSIlq+g4F+wTQpImGI1mtnV7o4bKmnItj+twsLi0vJKcbW0tr6xuVXe3mmaINICGyJQgW67YFBJHxskSWE71Aieq7Dlji8zv3WP2sjAv6VJiD0PRr4cSgGUSv3yXpfwgeK8SopvEFSSlPrlil21c/B54kxJhU1R75e/uoNARB76JBQY03HskHoxaJJCYVLqRgZDEGMYYSelPnhoenF+fsIPIwMU8BA1l4rnIv6eiMEzZuK5aacHdGdmvUz8z+tENDzvxdIPI0JfZItIKswXGaFlmgvygdRIBNnlyKXPBWggQi05CJGKURpUlocz+/08aR5XndOqc31SqV1MkymyfXbAjpjDzliNXbE6azDBYvbEntmL9Wi9Wm/W+09rwZrO7LI/sD6+AfKFmqU=</latexit> R
ea
l

<latexit sha1_base64="0t47nA5aUZVLH1HugQPVgVB/cxo=">AAACCXicbVDLSgNBEJyNrxhfUfHkZTAInsKuiHoMCuIxgnlAEkLvpBOHzD6Y6RXDsl/gV3jVkzfx6ld48F/cXXPQxDo0RVU33V1uqKQh2/60CguLS8srxdXS2vrG5lZ5e6dpgkgLbIhABbrtgkElfWyQJIXtUCN4rsKWO77M/NY9aiMD/5YmIfY8GPlyKAVQKvXLe13CB4rzKim+gjEmSalfrthVOwefJ86UVNgU9X75qzsIROShT0KBMR3HDqkXgyYpFCalbmQwBDGGEXZS6oOHphfn5yf8MDJAAQ9Rc6l4LuLviRg8Yyaem3Z6QHdm1svE/7xORMPzXiz9MCL0RbaIpMJ8kRFaprkgH0iNRJBdjlz6XIAGItSSgxCpGKVBZXk4s9/Pk+Zx1TmtOjcnldrFNJki22cH7Ig57IzV2DWrswYTLGZP7Jm9WI/Wq/Vmvf+0FqzpzC77A+vjG935mpg=</latexit> F
ak
e

<latexit sha1_base64="q1MbN+aDjr6gHfr3/Zy006J+HeY=">AAACBnicbVC7TsNAEDzzDOEVQklzIkKiimyEgDKChjJIeUmJFa0vm3DK+aG7NUpkpecraKGiQ7T8BgX/gh1cQMJUo5ld7ex4kZKGbPvTWlldW9/YLGwVt3d29/ZLB+WWCWMtsClCFeqOBwaVDLBJkhR2Io3gewrb3vgm89sPqI0MgwZNI3R9GAVyKAVQKvVL5R7hhJKGjpEr8FDNiv1Sxa7ac/Bl4uSkwnLU+6Wv3iAUsY8BCQXGdB07IjcBTVIonBV7scEIxBhG2E1pAD4aN5lnn/GT2ACFPELNpeJzEX9vJOAbM/W9dNIHujeLXib+53VjGl65iQyimDAQ2SGSCueHjNAyLQX5QGokgiw5chlwARqIUEsOQqRinLaU9eEsfr9MWmdV56Lq3J1Xatd5MwV2xI7ZKXPYJauxW1ZnTSbYhD2xZ/ZiPVqv1pv1/jO6YuU7h+wPrI9vtoyYzQ==</latexit> T
ru
e
la
b
el

<latexit sha1_base64="nvbPvfx8+KjzOQHArnl7C8aUo5s=">AAACCXicbVC7TsNAEDyHVwivAKKiOREhUUU2QkAZQUMZEHlISRStL5twyvmhuzUisvwFfAUtVHSIlq+g4F+wTQpImGI1mtnV7o4bKmnItj+twsLi0vJKcbW0tr6xuVXe3mmaINICGyJQgW67YFBJHxskSWE71Aieq7Dlji8zv3WP2sjAv6VJiD0PRr4cSgGUSv3yXpfwgeK8SopvEFSSlPrlil21c/B54kxJhU1R75e/uoNARB76JBQY03HskHoxaJJCYVLqRgZDEGMYYSelPnhoenF+fsIPIwMU8BA1l4rnIv6eiMEzZuK5aacHdGdmvUz8z+tENDzvxdIPI0JfZItIKswXGaFlmgvygdRIBNnlyKXPBWggQi05CJGKURpUlocz+/08aR5XndOqc31SqV1MkymyfXbAjpjDzliNXbE6azDBYvbEntmL9Wi9Wm/W+09rwZrO7LI/sD6+AfKFmqU=</latexit> R
ea
l

<latexit sha1_base64="0t47nA5aUZVLH1HugQPVgVB/cxo=">AAACCXicbVDLSgNBEJyNrxhfUfHkZTAInsKuiHoMCuIxgnlAEkLvpBOHzD6Y6RXDsl/gV3jVkzfx6ld48F/cXXPQxDo0RVU33V1uqKQh2/60CguLS8srxdXS2vrG5lZ5e6dpgkgLbIhABbrtgkElfWyQJIXtUCN4rsKWO77M/NY9aiMD/5YmIfY8GPlyKAVQKvXLe13CB4rzKim+gjEmSalfrthVOwefJ86UVNgU9X75qzsIROShT0KBMR3HDqkXgyYpFCalbmQwBDGGEXZS6oOHphfn5yf8MDJAAQ9Rc6l4LuLviRg8Yyaem3Z6QHdm1svE/7xORMPzXiz9MCL0RbaIpMJ8kRFaprkgH0iNRJBdjlz6XIAGItSSgxCpGKVBZXk4s9/Pk+Zx1TmtOjcnldrFNJki22cH7Ig57IzV2DWrswYTLGZP7Jm9WI/Wq/Vmvf+0FqzpzC77A+vjG935mpg=</latexit> F
ak
e

<latexit sha1_base64="q1MbN+aDjr6gHfr3/Zy006J+HeY=">AAACBnicbVC7TsNAEDzzDOEVQklzIkKiimyEgDKChjJIeUmJFa0vm3DK+aG7NUpkpecraKGiQ7T8BgX/gh1cQMJUo5ld7ex4kZKGbPvTWlldW9/YLGwVt3d29/ZLB+WWCWMtsClCFeqOBwaVDLBJkhR2Io3gewrb3vgm89sPqI0MgwZNI3R9GAVyKAVQKvVL5R7hhJKGjpEr8FDNiv1Sxa7ac/Bl4uSkwnLU+6Wv3iAUsY8BCQXGdB07IjcBTVIonBV7scEIxBhG2E1pAD4aN5lnn/GT2ACFPELNpeJzEX9vJOAbM/W9dNIHujeLXib+53VjGl65iQyimDAQ2SGSCueHjNAyLQX5QGokgiw5chlwARqIUEsOQqRinLaU9eEsfr9MWmdV56Lq3J1Xatd5MwV2xI7ZKXPYJauxW1ZnTSbYhD2xZ/ZiPVqv1pv1/jO6YuU7h+wPrI9vtoyYzQ==</latexit> T
ru
e
la
b
el

<latexit sha1_base64="nvbPvfx8+KjzOQHArnl7C8aUo5s=">AAACCXicbVC7TsNAEDyHVwivAKKiOREhUUU2QkAZQUMZEHlISRStL5twyvmhuzUisvwFfAUtVHSIlq+g4F+wTQpImGI1mtnV7o4bKmnItj+twsLi0vJKcbW0tr6xuVXe3mmaINICGyJQgW67YFBJHxskSWE71Aieq7Dlji8zv3WP2sjAv6VJiD0PRr4cSgGUSv3yXpfwgeK8SopvEFSSlPrlil21c/B54kxJhU1R75e/uoNARB76JBQY03HskHoxaJJCYVLqRgZDEGMYYSelPnhoenF+fsIPIwMU8BA1l4rnIv6eiMEzZuK5aacHdGdmvUz8z+tENDzvxdIPI0JfZItIKswXGaFlmgvygdRIBNnlyKXPBWggQi05CJGKURpUlocz+/08aR5XndOqc31SqV1MkymyfXbAjpjDzliNXbE6azDBYvbEntmL9Wi9Wm/W+09rwZrO7LI/sD6+AfKFmqU=</latexit> R
ea
l

<latexit sha1_base64="0t47nA5aUZVLH1HugQPVgVB/cxo=">AAACCXicbVDLSgNBEJyNrxhfUfHkZTAInsKuiHoMCuIxgnlAEkLvpBOHzD6Y6RXDsl/gV3jVkzfx6ld48F/cXXPQxDo0RVU33V1uqKQh2/60CguLS8srxdXS2vrG5lZ5e6dpgkgLbIhABbrtgkElfWyQJIXtUCN4rsKWO77M/NY9aiMD/5YmIfY8GPlyKAVQKvXLe13CB4rzKim+gjEmSalfrthVOwefJ86UVNgU9X75qzsIROShT0KBMR3HDqkXgyYpFCalbmQwBDGGEXZS6oOHphfn5yf8MDJAAQ9Rc6l4LuLviRg8Yyaem3Z6QHdm1svE/7xORMPzXiz9MCL0RbaIpMJ8kRFaprkgH0iNRJBdjlz6XIAGItSSgxCpGKVBZXk4s9/Pk+Zx1TmtOjcnldrFNJki22cH7Ig57IzV2DWrswYTLGZP7Jm9WI/Wq/Vmvf+0FqzpzC77A+vjG935mpg=</latexit> F
ak
e

Figure 5.7: Confusion matrices obtained for the three models using different
embeddings (ProsoSpeaker, Speaker Emb, Prosody Emb) and tested on the
three scenarios (TTS, VC, ALL).

5.5 Compression Robustness
In these final tests we verify the robustness of ProsoSpeaker to different
types of compressions. This is definitely the most real-world scenario,
as compressions are commonly applied to DFs to make them even more
difficult to detect. As a starting point, we test the model on the three
versions of ASVspoof 2019 LA eval sets compressed at different bitrates
described in Section 4.5. Figure 5.9 shows the correspondent AUC, EER
and balanced accuracy values for different compression bitrates. The

Chapter 5. Results 64

detector’s performance deteriorates as we increase the compression factor,
observing AUC and EER values dropping by 2 and 4%, respectively,
between the two extreme cases. Balanced accuracy decreases significantly
when compression is firstly introduced, with a drop of 4% between the
no-compression and 128 kBits/s cases. At the same time, it maintains
stable values when the bitrate decreases, falling only by 1% between
128 and 32 kBit/s cases. We can conclude that, overall, the proposed
system, thanks to its high-level semantic approach, is able to maintain
its effectiveness even in presence of heavy signal compression.

Finally, we report the results computed over the DF partition of
ASVspoof 2021 in which the synthesis and post-processing manipulation
techniques are unknown. For this reason, together with the very high
number of signals in this unseen dataset, this final scenario represents
the most complex one. As for the 2019 case of Section 5.2, we test the
abilities of the method in separating the two classes, REAL and DF. The
histogram in Figure 5.8 shows the results. Overall the classes are well
separated, however a considerable amount of REAL audio falls closely to
the DF side, while the opposite is true to a lesser extent. This result is
less successful than the ASVspoof 2019 case, representing a much more
controlled and less complex case. Regarding the ROC curves and metrics,
the ProsoSpeaker method’s results are reported respectively in Figure 5.10
and Table 5.4, together with those obtained with the three considered
baselines, namely RawNet2 and two versions of ResNet. Our method
performs significantly better than all the others, with a difference of
≈ 7% on both EER and AUC compared to RawNet2, which is the best
performing baseline. The performance improvement on the baselines is
even more significant than that obtained on ASVspoof 2019, proving great
robustness of our method in a realistic and challenging scenario.

Therefore, we can conclude that our method outperforms the main
state-of-the-art methods for all the considered scenarios and is also more
robust at compression. The best performing baseline RawNet2 between
the tests performed on ASVspoof 2019 and 2021 loses 16% in EER, 13.71 in
AUC and 15.02% in balanced accuracy. On the other hand, ProsoSpeaker
only loses 11.77% in EER, 7.26 in AUC and 14.27% in balanced accuracy.

Table 5.4: EER and AUC values for the proposed method and the
considered baselines, evaluated on ASVspoof 2021 DF eval set.

Model EER % AUC Bal. Acc. %

RawNet2 (Baseline) 24.15 84.19 76.64
Spec-ResNet (Baseline) 34.67 70.40 66.49

MFCC-ResNet (Baseline) 31.33 73.41 67.72
ProsoSpeaker (Ours) 17.16 91.59 80.16

Chapter 5. Results 65

0.0 0.2 0.4 0.6 0.8 1.0

Score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
ab

ili
ty

REAL

DF

Figure 5.8: Histogram showing the distribution of the output scores of ProsoS-
peaker computed on ASVspoof 2021 eval set.

No Compr. 128 64 32

Compression Rate [kBits/s]

96.5

97.0

97.5

98.0

98.5

99.0

99.5

R
O

C
A

U
C

No Compr. 128 64 32

Compression Rate [kBits/s]

5

6

7

8

9

10

E
E

R
%

No Compr. 128 64 32

Compression Rate [kBits/s]

88

90

92

94

B
al

an
ce

d
A

cc
u

ra
cy

%

Figure 5.9: ROC AUC, EER and Bal. Acc. values computed on compressed
versions of ASVspoof 2019 LA eval at different bitrates.

5.6 Conclusive Remarks
In this chapter, we have evaluated the proposed methodology through
five experiments to analyze different aspects and confront them with

Chapter 5. Results 66

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

ProsoSpeaker (Ours)

RawNet2 (Baseline)

Spec− ResNet (Baseline)

MFCC− ResNet (Baseline)

Figure 5.10: ROC curves of the proposed method and the considered baselines
computed on ASVspoof 2021 DF eval set.

state-of-the-art methods. We have first compared the proposed prosody
extraction methods and have chosen to incorporate the prosody encoder
into the whole pipeline definitively. Through correlation coefficients, we
have found that prosody and speaker embeddings do not share much
information. Regarding the goodness of the model, we have first observed
how ProsoSpeaker achieves excellent performance in a controlled environ-
ment such as ASVspoof 2019, outperforming all the considered baselines.
Subsequently, through an ablation study on the same dataset we validated
our initial hypothesis, i.e, that the speaker embeddings are effective in
detecting VC-generated audio, while the prosody embeddings in that of
TTS-generated audio. We have then found their combination beneficial,
especially in a mixed scenario where both technologies are considered.
Next, we found good generalization capabilities when testing the system
on several unseen datasets. As a final qualitative analysis we have focused
on robustness by testing the method first on versions of ASVspoof 2019
compressed at different bitrates and then on the DF partition of ASVpoof
2021 dataset, together with the baselines. In the first case, ProsoSpeaker
showed good stability in all evaluation metrics and in the second it proved
to be more robust to compression than the other methods.

In the next and final chapter, we will draw the summaries of our
research and propose possible future developments of the model.

6
Conclusions and Future Works

Recent developments in DL have produced a new media content synthesis
technology called deepfake, which can potentially have a damaging impact
on people’s lives. These generate counterfeited audio and video material
to discredit people’s reputations. This threat has raised the need to
implement systems that can automatically detect such forgeries with high
accuracy. As a result, the two areas of research dealing with generating
and detecting DFs are in constant development, with one constantly
trying to prevail over the other.

In this thesis we presented a method for audio DF detection, named
ProsoSpeaker, capable of detecting spoofed signals generated with the two
most common speech generation techniques: VC and TTS. Adopting a
semantic approach, we based our system on the concatenation of high-
level features, denoted as speaker fs and prosody fp embeddings. We used
this representation as input to a fast supervised binary classifier that
predicts whether the speech signal is authentic or synthetically generated.
fs encodes spectro-temporal aspects of the voice associated with the
speaker’s identity and is extracted through a state-of-the-art model for
ASV, called ECAPA-TDNN. On the other hand, fp encodes prosody,
associated with the voice’s tone and expression, and is extracted via a
prosody encoder, initially included in Tacotron.

To perform a robust evaluation, we have tested ProsoSpeaker on multi-
ple datasets containing both DF and REAL audio signals and used several
evaluation metrics. In addition, we have performed several experiments to
compare our work with state-of-the-art and test it in different scenarios.
We inspected its generalization capabilities over unseen datasets, intrinsic
functioning and robustness to real-world audio manipulation, as lossy
compression. The results validated our initial hypothesis, that speaker

Chapter 6. Conclusions and Future Works 68

embeddings can detect DFs generated through VC algorithms, while
prosody embeddings are more effective with TTS synthesis. Nonethe-
less, the fusion the two embeddings has proved to be the more effective
strategy, achieving higher classification performances, good generalization
capabilities and robustness to lossy compression. The obtained results
validate the idea of exploiting semantic features to discriminate deepfakes
and highlight some of the aspects on which speech generators still fail.

We can still apply many improvements to the proposed methodology.
The first one focuses on improving the extraction of speaker and prosody
embeddings, obtaining a more discriminative and robust representation
of the two semantic features. For example, if we manage to reduce the
degree of correlation between prosody embedding features we could pro-
duce a more significative representation of the speech signal, beneficing
the method’s perfomrnace. For example, suppose we manage to reduce
the degree of correlation between the prosody and speaker embeddings.
In that case, we could produce a more meaningful representation of the
speech signal to benefit the method’s performance. Additional experi-
mental setups can be designed to individually validate the classification
capabilities of the two embeddings and understand how to improve the
performance of each. The final result will surely be even better once the
two representations are optimized and totally uncorrelated. Another pos-
sible improvement to the model might be considering a third embedding
that encodes an additional semantic aspect of the voice. For example,
we could include a representation of the emotionality of the voice, as
proposed in many works discussed in Section 2.4. Alternatively, we could
also consider a vector of low-level features that can detect the traces left by
the generation methods, as they may show signs of forgery that semantic
features do not capture. This can take inspiration from the numerous
artifacts-based approaches proposed in the state-of-the-art for audio DF
detection presented in Section 2.4. In this way, the analysis would focus
on two different levels at the same time, combining the advantages of the
two main DF detection methods based on high-level semantic aspects or
low-level artifact detection. Finally, we could consider the channel effects,
not related to the quality of the voice, but the recording environment.
The subtractive definition of prosody presented in Section 1.1.3 describes
it as what remains in audio after accounting for speaker identity and
channel effects. It follows that these three components may be able to
describe audio in its entirety. Therefore, this the channel effects represent
an additional level of analysis to detect DFs. For example, besides being
flawed in the generation of realistic voices and their semantic aspects,
voice synthesis techniques may recreate a non-natural sound environment
that we can leverage to detect them. As a result of these updates we
believe that the model may become more robust in recognizing audio DFs
and its overall performance may further improve.

Bibliography

[1] “Mel spectrogram example.” https:
//learn.vonage.com/blog/2019/03/20/
building-a-machine-learning-model-for-answering-machine
-detection-dr.

[2] “Mel spectrogram scheme.” https://it.mathworks.com/help/
audio/ref/melspectrogram.html.

[3] J.-G. Kim and B. Lee, “Appliance classification by power signal anal-
ysis based on multi-feature combination multi-layer lstm,” Energies,
vol. 12, no. 14, p. 2804, 2019.

[4] H. Wu, L. Wang, Z. Zhao, C. Shu, and C. Lu, “Support vector
machine based differential pulse-width pair brillouin optical time
domain analyzer,” IEEE Photonics Journal, vol. 10, no. 4, pp. 1–11,
2018.

[5] “Artificial intelligence, machine learning, deep
learning.” https://master-iesc-angers.com/
artificial-intelligence-machine-learning-and-deep-
learning-same-context-different-concepts.

[6] C. Shao, “A quantum model for multilayer perceptron,” arXiv
preprint arXiv:1808.10561, 2018.

[7] V. H. Phung, E. J. Rhee, et al., “A high-accuracy model average
ensemble of convolutional neural networks for classification of cloud
image patches on small datasets,” Applied Sciences, vol. 9, no. 21,
p. 4500, 2019.

[8] “Recurrent neural network.” https://necst.it/
exploring-boundary-accuracy-performances-recurrent-
neural-networks.

[9] “Self-attention mechanism.” https://peltarion.com/blog/
data-science/self-attention-video.

[10] “Autoencoder architecture.” https://blog.nikhiljay.com/
floating-in-latent-space-fb0747aa667f.

69

https://learn.vonage.com/blog/2019/03/20/building-a-machine-learning-model-for-answering-machine
https://learn.vonage.com/blog/2019/03/20/building-a-machine-learning-model-for-answering-machine
https://learn.vonage.com/blog/2019/03/20/building-a-machine-learning-model-for-answering-machine
-detection-dr
https://it.mathworks.com/help/audio/ref/melspectrogram.html
https://it.mathworks.com/help/audio/ref/melspectrogram.html
https://master-iesc-angers.com/artificial-intelligence-machine-learning-and-deep-
https://master-iesc-angers.com/artificial-intelligence-machine-learning-and-deep-
learning-same-context-different-concepts
https://necst.it/exploring-boundary-accuracy-performances-recurrent-
https://necst.it/exploring-boundary-accuracy-performances-recurrent-
neural-networks
https://peltarion.com/blog/data-science/self-attention-video
https://peltarion.com/blog/data-science/self-attention-video
https://blog.nikhiljay.com/floating-in-latent-space-fb0747aa667f
https://blog.nikhiljay.com/floating-in-latent-space-fb0747aa667f

Bibliography 70

[11] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,
Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan, et al., “Natural tts
synthesis by conditioning wavenet on mel spectrogram predictions,”
in 2018 IEEE international conference on acoustics, speech and
signal processing (ICASSP), pp. 4779–4783, IEEE, 2018.

[12] Y. Wang, R. Skerry-Ryan, Y. Xiao, D. Stanton, J. Shor, E. Batten-
berg, R. Clark, and R. A. Saurous, “Uncovering latent style factors
for expressive speech synthesis,” arXiv preprint arXiv:1711.00520,
2017.

[13] H. Malik, “Securing voice-driven interfaces against fake (cloned) au-
dio attacks,” in 2019 IEEE Conference on Multimedia Information
Processing and Retrieval (MIPR), pp. 512–517, IEEE, 2019.

[14] B. Hosler, D. Salvi, A. Murray, F. Antonacci, P. Bestagini, S. Tubaro,
and M. C. Stamm, “Do Deepfakes Feel Emotions? A Semantic
Approach to Detecting Deepfakes via Emotional Inconsistencies,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[15] B. Desplanques, J. Thienpondt, and K. Demuynck, “Ecapa-tdnn:
Emphasized channel attention, propagation and aggregation in tdnn
based speaker verification,” arXiv preprint arXiv:2005.07143, 2020.

[16] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio, et al., “Tacotron: Towards
end-to-end speech synthesis,” arXiv preprint arXiv:1703.10135,
2017.

[17] R. Skerry-Ryan, E. Battenberg, Y. Xiao, Y. Wang, D. Stanton,
J. Shor, R. Weiss, R. Clark, and R. A. Saurous, “Towards end-to-
end prosody transfer for expressive speech synthesis with tacotron,”
in international conference on machine learning, pp. 4693–4702,
PMLR, 2018.

[18] R. Tronci, G. Giacinto, and F. Roli, “Dynamic score combination:
A supervised and unsupervised score combination method,” in
International Workshop on Machine Learning and Data Mining in
Pattern Recognition, pp. 163–177, Springer, 2009.

[19] T. Guardian, “Deep Blue computer beats world chess cham-
pion.” https://www.theguardian.com/sport/2021/feb/12/
deep-blue-computer-beats-kasparov-chess-1996.

[20] T. N. Y. Times, “Computer Wins on Jeopardy!: Triv-
ial, Its Not.” https://www.nytimes.com/2011/02/17/science/
17jeopardy-watson.html.

https://www.theguardian.com/sport/2021/feb/12/deep-blue-computer-beats-kasparov-chess-1996
https://www.theguardian.com/sport/2021/feb/12/deep-blue-computer-beats-kasparov-chess-1996
https://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html
https://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html

Bibliography 71

[21] T. N. Y. Times, “A Learning Advance in Ar-
tificial Intelligence Rivals Human Abilities.”
https://www.nytimes.com/2015/12/11/science/
an-advance-in-artificial-intelligence-rivals-human-
vision-abilities.html.

[22] I. Spectrum, “At last, a self-driving car that
can explain itself.” https://spectrum.ieee.org/
at-last-a-self-driving-car-that-can-explain-itself.

[23] Lionbridge, “The Future of Language Technology:
The Future of Machine Translation.” https://www.
lionbridge.com/blog/translation-localization/
the-future-of-language-technology-the-future-of-machine
-translation.

[24] T. Guardian, “Elon Musks brain chip firm Neu-
ralink lines up clinical trials in humans.” https:
//www.theguardian.com/technology/2022/jan/20/
elon-musk-brain-chip-firm-neuralink-lines-up-clinical-
trials-in-humans.

[25] T. Guardian, “The rise of the deepfake and the
threat to democracy.” https://www.theguardian.
com/technology/ng-interactive/2019/jun/22/
the-rise-of-the-deepfake-and-the-threat-to-democracy.

[26] Forbes, “Deepfakes, revenge porn, and the impact on women.”
https://www.forbes.com/sites/chenxiwang/2019/11/01/
deepfakes-revenge-porn-and-the-impact-on-women/?sh=
45b66a961f53.

[27] The New York Times, “Pennsylvania Woman Ac-
cused of Using Deepfake Technology to Harass Cheer-
leaders.” https://www.nytimes.com/2021/03/14/us/
raffaela-spone-victory-vipers-deepfake.html.

[28] Forbes, “Fraudsters Cloned Company Directors Voice
In 35$ Million Bank Heist, Police Find.” https:
//www.forbes.com/sites/thomasbrewster/2021/10/14/
huge-bank-fraud-uses-deep-fake-voice-tech-to-steal-
millions.

[29] Mimecast, “Why Deepfakes are Revolutionizing the
World of Phishing.” https://www.mimecast.com/blog/
deepfakes-revolutionizing-phishing.

[30] L. Verdoliva, “Media forensics and deepfakes: an overview,” IEEE
Journal of Selected Topics in Signal Processing, vol. 14, no. 5,
pp. 910–932, 2020.

https://www.nytimes.com/2015/12/11/science/an-advance-in-artificial-intelligence-rivals-human-
https://www.nytimes.com/2015/12/11/science/an-advance-in-artificial-intelligence-rivals-human-
vision-abilities.html
https://spectrum.ieee.org/at-last-a-self-driving-car-that-can-explain-itself
https://spectrum.ieee.org/at-last-a-self-driving-car-that-can-explain-itself
https://www.lionbridge.com/blog/translation-localization/the-future-of-language-technology-the-future-of-machine
https://www.lionbridge.com/blog/translation-localization/the-future-of-language-technology-the-future-of-machine
https://www.lionbridge.com/blog/translation-localization/the-future-of-language-technology-the-future-of-machine
-translation
https://www.theguardian.com/technology/2022/jan/20/elon-musk-brain-chip-firm-neuralink-lines-up-clinical-
https://www.theguardian.com/technology/2022/jan/20/elon-musk-brain-chip-firm-neuralink-lines-up-clinical-
https://www.theguardian.com/technology/2022/jan/20/elon-musk-brain-chip-firm-neuralink-lines-up-clinical-
trials-in-humans
https://www.theguardian.com/technology/ng-interactive/2019/jun/22/the-rise-of-the-deepfake-and-the-threat-to-democracy
https://www.theguardian.com/technology/ng-interactive/2019/jun/22/the-rise-of-the-deepfake-and-the-threat-to-democracy
https://www.theguardian.com/technology/ng-interactive/2019/jun/22/the-rise-of-the-deepfake-and-the-threat-to-democracy
https://www.forbes.com/sites/chenxiwang/2019/11/01/deepfakes-revenge-porn-and-the-impact-on-women/?sh=45b66a961f53
https://www.forbes.com/sites/chenxiwang/2019/11/01/deepfakes-revenge-porn-and-the-impact-on-women/?sh=45b66a961f53
https://www.forbes.com/sites/chenxiwang/2019/11/01/deepfakes-revenge-porn-and-the-impact-on-women/?sh=45b66a961f53
https://www.nytimes.com/2021/03/14/us/raffaela-spone-victory-vipers-deepfake.html
https://www.nytimes.com/2021/03/14/us/raffaela-spone-victory-vipers-deepfake.html
https://www.forbes.com/sites/thomasbrewster/2021/10/14/huge-bank-fraud-uses-deep-fake-voice-tech-to-steal-
https://www.forbes.com/sites/thomasbrewster/2021/10/14/huge-bank-fraud-uses-deep-fake-voice-tech-to-steal-
https://www.forbes.com/sites/thomasbrewster/2021/10/14/huge-bank-fraud-uses-deep-fake-voice-tech-to-steal-
millions
https://www.mimecast.com/blog/deepfakes-revolutionizing-phishing
https://www.mimecast.com/blog/deepfakes-revolutionizing-phishing

Bibliography 72

[31] R. Durall, M. Keuper, F.-J. Pfreundt, and J. Keuper, “Unmasking
deepfakes with simple features,” arXiv preprint arXiv:1911.00686,
2019.

[32] D. Cozzolino, A. Rössler, J. Thies, M. Nießner, and L. Verdoliva,
“Id-reveal: Identity-aware deepfake video detection,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[33] Y. Li, M.-C. Chang, and S. Lyu, “In ictu oculi: Exposing ai cre-
ated fake videos by detecting eye blinking,” in IEEE International
Workshop on Information Forensics and Security (WIFS), 2018.

[34] E. Conti, D. Salvi, C. Borrelli, B. Hosler, P. Bestagini, F. Antonacci,
A. Sarti, M. C. Stamm, and S. Tubaro, “Deepfake Speech Detection
Through Emotion Recognition: a Semantic Approach,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2022.

[35] Y. Cheng and H. C. Leung, “Speaker verification using fundamental
frequency.,” in ICSLP, 1998.

[36] L. Mary and B. Yegnanarayana, “Prosodic features for speaker
verification,” in Ninth International Conference on Spoken Language
Processing, Citeseer, 2006.

[37] S. S. Stevens and J. Volkmann, “The relation of pitch to frequency:
A revised scale,” The American Journal of Psychology, vol. 53, no. 3,
pp. 329–353, 1940.

[38] D. O’Shaughnessy, Speech Communication: Human and Machine.
Addison-Wesley series in electrical engineering, Addison-Wesley
Publishing Company, 1987.

[39] A. V. Oppenheim and R. W. Schafer, “From frequency to quefrency:
A history of the cepstrum,” IEEE signal processing Magazine, vol. 21,
no. 5, pp. 95–106, 2004.

[40] F. Cummins, F. Gers, and J. Schmidhuber, “Comparing prosody
across many languages,” Instituto Dalle Molle di Studie sullIntelli-
genza Artificiale, Lugano, Switzerland, Tech. Rep., IDSIA-07-99,
1999.

[41] L. Mary and B. Yegnanarayana, “Prosodic features for speaker
verification,” in Ninth International Conference on Spoken Language
Processing, Citeseer, 2006.

[42] R. Skerry-Ryan, E. Battenberg, Y. Xiao, Y. Wang, D. Stanton,
J. Shor, R. Weiss, R. Clark, and R. A. Saurous, “Towards end-to-
end prosody transfer for expressive speech synthesis with tacotron,”

Bibliography 73

in international conference on machine learning, pp. 4693–4702,
PMLR, 2018.

[43] J. Weston, R. Lenain, U. Meepegama, and E. Fristed, “Learning
de-identified representations of prosody from raw audio,” in Interna-
tional Conference on Machine Learning, pp. 11134–11145, PMLR,
2021.

[44] E. Shriberg, L. Ferrer, S. Kajarekar, A. Venkataraman, and A. Stol-
cke, “Modeling prosodic feature sequences for speaker recognition,”
Speech communication, vol. 46, no. 3-4, pp. 455–472, 2005.

[45] A. Batliner, E. Nöth, J. Buckow, R. Huber, V. Warnke, and H. Nie-
mann, “Duration features in prosodic classification: why normaliza-
tion comes second, and what they really encode,” 2001.

[46] M. M. Ahsan, M. Mahmud, P. K. Saha, K. D. Gupta, and Z. Sid-
dique, “Effect of data scaling methods on machine learning algo-
rithms and model performance,” Technologies, vol. 9, no. 3, p. 52,
2021.

[47] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, per-
spectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260,
2015.

[48] S. Russell and P. Norvig, “Artificial intelligence: a modern ap-
proach,” 2002.

[49] W. S. Noble, “What is a support vector machine?,” Nature biotech-
nology, vol. 24, no. 12, pp. 1565–1567, 2006.

[50] Q. Wu and D.-X. Zhou, “Analysis of support vector machine classi-
fication.,” Journal of Computational Analysis & Applications, vol. 8,
no. 2, 2006.

[51] I. Syarif, A. Prugel-Bennett, and G. Wills, “Svm parameter opti-
mization using grid search and genetic algorithm to improve classi-
fication performance,” Telkomnika, vol. 14, no. 4, p. 1502, 2016.

[52] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016.

[53] H. Ramchoun, M. A. J. Idrissi, Y. Ghanou, and M. Ettaouil, “Mul-
tilayer perceptron: Architecture optimization and training.,” Int. J.
Interact. Multim. Artif. Intell., vol. 4, no. 1, pp. 26–30, 2016.

[54] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,
D. Mollura, and R. M. Summers, “Deep convolutional neural net-
works for computer-aided detection: Cnn architectures, dataset
characteristics and transfer learning,” IEEE transactions on medi-
cal imaging, vol. 35, no. 5, pp. 1285–1298, 2016.

Bibliography 74

[55] B. Thornton, “Audio recognition using mel spectrograms and con-
volution neural networks,” 2019.

[56] J. Zhao, X. Mao, and L. Chen, “Speech emotion recognition using
deep 1d & 2d cnn lstm networks,” Biomedical Signal Processing
and Control, vol. 47, pp. 312–323, 2019.

[57] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn)
and long short-term memory (lstm) network,” Physica D: Nonlinear
Phenomena, vol. 404, p. 132306, 2020.

[58] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical eval-
uation of gated recurrent neural networks on sequence modeling,”
arXiv preprint arXiv:1412.3555, 2014.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, pp. 5998–6008,
2017.

[60] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,
“Phoneme recognition using time-delay neural networks,” IEEE
transactions on acoustics, speech, and signal processing, vol. 37,
no. 3, pp. 328–339, 1989.

[61] A. Waibel, “Modular construction of time-delay neural networks for
speech recognition,” Neural computation, vol. 1, no. 1, pp. 39–46,
1989.

[62] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural
network architecture for efficient modeling of long temporal con-
texts,” in Sixteenth annual conference of the international speech
communication association, 2015.

[63] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” arXiv
preprint arXiv:2003.05991, 2020.

[64] M. Farrús, J. Hernando, and P. Ejarque, “Jitter and shimmer
measurements for speaker recognition,” in 8th Annual Conference
of the International Speech Communication Association; 2007 Aug.
27-31; Antwerp (Belgium).[place unknown]: ISCA; 2007. p. 778-81.,
International Speech Communication Association (ISCA), 2007.

[65] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker ver-
ification using adapted gaussian mixture models,” Digital Signal
Processing, vol. 10, no. 1, pp. 19–41, 2000.

[66] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker
identification using gaussian mixture speaker models,” IEEE trans-
actions on speech and audio processing, vol. 3, no. 1, pp. 72–83,
1995.

Bibliography 75

[67] W. M. Campbell, D. E. Sturim, and D. A. Reynolds, “Support
vector machines using gmm supervectors for speaker verification,”
IEEE signal processing letters, vol. 13, no. 5, pp. 308–311, 2006.

[68] N. Dehak, P. Kenny, R. Dehak, O. Glembek, P. Dumouchel, L. Bur-
get, V. Hubeika, and F. Castaldo, “Support vector machines and
joint factor analysis for speaker verification,” in 2009 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing,
pp. 4237–4240, IEEE, 2009.

[69] N. Dehak, R. Dehak, P. Kenny, N. Brümmer, P. Ouellet, and
P. Dumouchel, “Support vector machines versus fast scoring in the
low-dimensional total variability space for speaker verification,” in
Tenth Annual conference of the international speech communication
association, 2009.

[70] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-
Dominguez, “Deep neural networks for small footprint text-
dependent speaker verification,” in 2014 IEEE international con-
ference on acoustics, speech and signal processing (ICASSP),
pp. 4052–4056, IEEE, 2014.

[71] N. Chen, Y. Qian, and K. Yu, “Multi-task learning for text-
dependent speaker verification,” in Sixteenth annual conference
of the international speech communication association, 2015.

[72] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur,
“X-vectors: Robust dnn embeddings for speaker recognition,” in
2018 IEEE international conference on acoustics, speech and signal
processing (ICASSP), pp. 5329–5333, IEEE, 2018.

[73] D. Snyder, D. Garcia-Romero, G. Sell, A. McCree, D. Povey, and
S. Khudanpur, “Speaker recognition for multi-speaker conversa-
tions using x-vectors,” in ICASSP 2019-2019 IEEE International
conference on acoustics, speech and signal processing (ICASSP),
pp. 5796–5800, IEEE, 2019.

[74] Y. Zhu, T. Ko, D. Snyder, B. Mak, and D. Povey, “Self-attentive
speaker embeddings for text-independent speaker verification.,” in
Interspeech, vol. 2018, pp. 3573–3577, 2018.

[75] K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive statistics pool-
ing for deep speaker embedding,” arXiv preprint arXiv:1803.10963,
2018.

[76] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 7132–7141, 2018.

Bibliography 76

[77] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770–778, 2016.

[78] O. Ghahabi and J. Hernando, “Deep belief networks for i-vector
based speaker recognition,” in 2014 IEEE international conference
on acoustics, speech and signal processing (ICASSP), pp. 1700–1704,
IEEE, 2014.

[79] M. Ravanelli and Y. Bengio, “Speaker recognition from raw wave-
form with sincnet,” in 2018 IEEE Spoken Language Technology
Workshop (SLT), pp. 1021–1028, IEEE, 2018.

[80] Forbes, “The Most Amazing Artificial In-
telligence Milestones So Far.” https://www.
forbes.com/sites/bernardmarr/2018/12/31/
the-most-amazing-artificial-intelligence-milestones-so
-far.

[81] T. T. Nguyen, Q. V. H. Nguyen, C. M. Nguyen, D. Nguyen, D. T.
Nguyen, and S. Nahavandi, “Deep learning for deepfakes creation
and detection: A survey,” arXiv preprint arXiv:1909.11573, 2019.

[82] M. Masood, M. Nawaz, K. M. Malik, A. Javed, and A. Ir-
taza, “Deepfakes generation and detection: State-of-the-art, open
challenges, countermeasures, and way forward,” arXiv preprint
arXiv:2103.00484, 2021.

[83] S. Greengard, “Will deepfakes do deep damage?,” Communications
of the ACM, vol. 63, no. 1, pp. 17–19, 2019.

[84] M. Westerlund, “The emergence of deepfake technology: A review,”
Technology Innovation Management Review, vol. 9, no. 11, 2019.

[85] “FaceApp.” https://www.faceapp.com/.

[86] “ZAO.” https://apps.apple.com/cn/app/zao/id1465199127.

[87] “Wombo.” https://play.google.com/store/apps/details?id=
com.womboai.wombo&hl=en&gl=US.

[88] “VoiceApp.” https://apps.apple.com/nl/app/
voiceapp-ai-voice-changer.

[89] R. Gagnon, “Votrax real time hardware for phoneme synthesis of
speech,” in ICASSP’78. IEEE International Conference on Acous-
tics, Speech, and Signal Processing, vol. 3, pp. 175–178, IEEE,
1978.

https://www.forbes.com/sites/bernardmarr/2018/12/31/the-most-amazing-artificial-intelligence-milestones-so
https://www.forbes.com/sites/bernardmarr/2018/12/31/the-most-amazing-artificial-intelligence-milestones-so
https://www.forbes.com/sites/bernardmarr/2018/12/31/the-most-amazing-artificial-intelligence-milestones-so
-far
https://www.faceapp.com/
https://apps.apple.com/cn/app/zao/id1465199127
https://play.google.com/store/apps/details?id=com.womboai.wombo&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.womboai.wombo&hl=en&gl=US
https://apps.apple.com/nl/app/voiceapp-ai-voice-changer
https://apps.apple.com/nl/app/voiceapp-ai-voice-changer

Bibliography 77

[90] W. I. Hallahan, “Dectalk software: Text-to-speech technology and
implementation,” Digital Technical Journal, vol. 7, no. 4, pp. 5–19,
1995.

[91] B. G. Greene, J. S. Logan, and D. B. Pisoni, “Perception of synthetic
speech produced automatically by rule: Intelligibility of eight text-
to-speech systems,” Behavior Research Methods, Instruments, &
Computers, vol. 18, no. 2, pp. 100–107, 1986.

[92] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio.,” SSW, vol. 125, p. 2,
2016.

[93] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine transla-
tion by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[94] O. Vinyals, Ł. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton,
“Grammar as a foreign language,” Advances in neural information
processing systems, vol. 28, 2015.

[95] “Google cloud tts services.” https://cloud.google.com/
text-to-speech.

[96] “Amazon aws polly tts services.” https://aws.amazon.com/polly.

[97] “Microsoft azure tts services.” https://azure.microsoft.com/
en-us/services/cognitive-services/text-to-speech.

[98] “Ibm watson tts services.” https://www.ibm.com/watson/
services/text-to-speech.

[99] S. Desai, A. W. Black, B. Yegnanarayana, and K. Prahallad, “Spec-
tral mapping using artificial neural networks for voice conversion,”
IEEE Transactions on Audio, Speech, and Language Processing,
vol. 18, no. 5, pp. 954–964, 2010.

[100] S. Desai, E. V. Raghavendra, B. Yegnanarayana, A. W. Black, and
K. Prahallad, “Voice conversion using artificial neural networks,”
in 2009 IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 3893–3896, IEEE, 2009.

[101] T. Toda, A. W. Black, and K. Tokuda, “Voice conversion based on
maximum-likelihood estimation of spectral parameter trajectory,”
IEEE Transactions on Audio, Speech, and Language Processing,
vol. 15, no. 8, pp. 2222–2235, 2007.

[102] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

https://cloud.google.com/text-to-speech
https://cloud.google.com/text-to-speech
https://aws.amazon.com/polly
https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech
https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech
https://www.ibm.com/watson/services/text-to-speech
https://www.ibm.com/watson/services/text-to-speech

Bibliography 78

[103] T. Kaneko and H. Kameoka, “Cyclegan-vc: Non-parallel voice
conversion using cycle-consistent adversarial networks,” in 2018 26th
European Signal Processing Conference (EUSIPCO), pp. 2100–2104,
IEEE, 2018.

[104] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-
to-image translation using cycle-consistent adversarial networks,”
in Proceedings of the IEEE international conference on computer
vision, pp. 2223–2232, 2017.

[105] T. Kaneko, H. Kameoka, K. Tanaka, and N. Hojo, “Cyclegan-vc2:
Improved cyclegan-based non-parallel voice conversion,” in ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 6820–6824, IEEE, 2019.

[106] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 1125–1134, 2017.

[107] H. Kameoka, T. Kaneko, K. Tanaka, and N. Hojo, “Stargan-vc:
Non-parallel many-to-many voice conversion using star generative
adversarial networks,” in 2018 IEEE Spoken Language Technology
Workshop (SLT), pp. 266–273, IEEE, 2018.

[108] H. Lu, Z. Wu, D. Dai, R. Li, S. Kang, J. Jia, and H. Meng, “One-
shot voice conversion with global speaker embeddings.,” in INTER-
SPEECH, pp. 669–673, 2019.

[109] S. Liu, J. Zhong, L. Sun, X. Wu, X. Liu, and H. Meng, “Voice
conversion across arbitrary speakers based on a single target-speaker
utterance.,” in Interspeech, pp. 496–500, 2018.

[110] J.-c. Chou, C.-c. Yeh, and H.-y. Lee, “One-shot voice conversion
by separating speaker and content representations with instance
normalization,” arXiv preprint arXiv:1904.05742, 2019.

[111] K. E. Silverman, M. E. Beckman, J. F. Pitrelli, M. Ostendorf,
C. W. Wightman, P. Price, J. B. Pierrehumbert, and J. Hirschberg,
“Tobi: A standard for labeling english prosody.,” in ICSLP, vol. 2,
pp. 867–870, 1992.

[112] A. Rosenberg, “Autobi-a tool for automatic tobi annotation,” in
Eleventh Annual Conference of the International Speech Communi-
cation Association, 2010.

[113] N. Obin, J. Beliao, C. Veaux, and A. Lacheret, “Slam: Automatic
stylization and labelling of speech melody,” in Speech Prosody,
p. 246, 2014.

Bibliography 79

[114] B. COILE, “Protran: A prosody transplantation toll for text-to-
speech application,” in ICSLP94, 1994.

[115] F. Eyben, S. Buchholz, N. Braunschweiler, J. Latorre, V. Wan, M. J.
Gales, and K. Knill, “Unsupervised clustering of emotion and voice
styles for expressive tts,” in 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 4009–4012,
IEEE, 2012.

[116] S. Shechtman and A. Sorin, “Sequence to sequence neural speech
synthesis with prosody modification capabilities,” arXiv preprint
arXiv:1909.10302, 2019.

[117] G. Zhang, Y. Qin, and T. Lee, “Learning syllable-level discrete
prosodic representation for expressive speech generation.,” in IN-
TERSPEECH, pp. 3426–3430, 2020.

[118] Y. Wang, D. Stanton, Y. Zhang, R.-S. Ryan, E. Battenberg,
J. Shor, Y. Xiao, Y. Jia, F. Ren, and R. A. Saurous, “Style tokens:
Unsupervised style modeling, control and transfer in end-to-end
speech synthesis,” in International Conference on Machine Learning,
pp. 5180–5189, PMLR, 2018.

[119] Y. Lee and T. Kim, “Robust and fine-grained prosody control of end-
to-end speech synthesis,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 5911–5915, IEEE, 2019.

[120] Z. Wu, T. Kinnunen, N. Evans, J. Yamagishi, C. Hanilçi, M. Sahidul-
lah, and A. Sizov, “Asvspoof 2015: the first automatic speaker verifi-
cation spoofing and countermeasures challenge,” in Sixteenth annual
conference of the international speech communication association,
2015.

[121] M. Todisco, X. Wang, V. Vestman, M. Sahidullah, H. Delgado,
A. Nautsch, J. Yamagishi, N. Evans, T. Kinnunen, and K. A.
Lee, “Asvspoof 2019: Future horizons in spoofed and fake audio
detection,” arXiv preprint arXiv:1904.05441, 2019.

[122] J. Yamagishi, X. Wang, M. Todisco, M. Sahidullah, J. Patino,
A. Nautsch, X. Liu, K. A. Lee, T. Kinnunen, N. Evans, et al.,
“Asvspoof 2021: accelerating progress in spoofed and deepfake
speech detection,” arXiv preprint arXiv:2109.00537, 2021.

[123] J. Yi, R. Fu, J. Tao, S. Nie, H. Ma, C. Wang, T. Wang, Z. Tian,
Y. Bai, C. Fan, et al., “Add 2022: the first audio deep synthesis
detection challenge,” arXiv preprint arXiv:2202.08433, 2022.

Bibliography 80

[124] L. Guarnera, O. Giudice, and S. Battiato, “Deepfake detection
by analyzing convolutional traces,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[125] Z.-F. Wang, G. Wei, and Q.-H. He, “Channel pattern noise based
playback attack detection algorithm for speaker recognition,” in
IEEE International Conference on Machine Learning and Cyber-
netics (ICMLC), 2011.

[126] C. Borrelli, P. Bestagini, F. Antonacci, A. Sarti, and S. Tubaro, “Syn-
thetic speech detection through short-term and long-term prediction
traces,” EURASIP Journal on Information Security, vol. 2021, no. 1,
pp. 1–14, 2021.

[127] K. Chugh, P. Gupta, A. Dhall, and R. Subramanian, “Not made for
each other-audio-visual dissonance-based deepfake detection and
localization,” in International Conference on Multimedia (ACM),
2020.

[128] X. Yang, Y. Li, and S. Lyu, “Exposing deep fakes using inconsistent
head poses,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2019.

[129] S. Agarwal, H. Farid, T. El-Gaaly, and S.-N. Lim, “Detecting deep-
fake videos from appearance and behavior,” in IEEE International
Workshop on Information Forensics and Security (WIFS), 2020.

[130] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[131] O. Wiles, A. Koepke, and A. Zisserman, “Self-supervised learn-
ing of a facial attribute embedding from video,” arXiv preprint
arXiv:1808.06882, 2018.

[132] M. Chen, X. He, J. Yang, and H. Zhang, “3-d convolutional recurrent
neural networks with attention model for speech emotion recogni-
tion,” IEEE Signal Processing Letters, vol. 25, no. 10, pp. 1440–1444,
2018.

[133] H. Zeinali, S. Wang, A. Silnova, P. Matějka, and O. Plchot, “BUT
system description to voxceleb speaker recognition challenge 2019,”
in The VoxCeleb Challenge Workshop, 2019.

[134] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and
P. Torr, “Res2net: A new multi-scale backbone architecture,” IEEE
transactions on pattern analysis and machine intelligence, vol. 43,
no. 2, pp. 652–662, 2019.

Bibliography 81

[135] N. Dehak, P. Dumouchel, and P. Kenny, “Modeling prosodic features
with joint factor analysis for speaker verification,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 15, no. 7,
pp. 2095–2103, 2007.

[136] J. Lee, K. Cho, and T. Hofmann, “Fully character-level neural
machine translation without explicit segmentation,” Transactions
of the Association for Computational Linguistics, vol. 5, pp. 365–378,
2017.

[137] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine trans-
lation,” arXiv preprint arXiv:1406.1078, 2014.

[138] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
an ASR corpus based on public domain audio books,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015.

[139] K. Ito and L. Johnson, “The LJ Speech Dataset.” https://
keithito.com/LJ-Speech-Dataset/, 2017.

[140] A. Lieto, D. Moro, F. Devoti, C. Parera, V. Lipari, P. Bestagini,
and S. Tubaro, ““Hello? Who Am I Talking to?" A Shallow CNN
Approach for Human vs. Bot Speech Classification,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2019.

[141] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim,
J. N. Chang, S. Lee, and S. S. Narayanan, “IEMOCAP: Interactive
emotional dyadic motion capture database,” Language resources
and evaluation, vol. 42, no. 4, pp. 335–359, 2008.

[142] A. Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb: a large-scale
speaker identification dataset,” in Conference of the International
Speech Communication Association (INTERSPEECH), 2017.

[143] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep
speaker recognition,” in Conference of the International Speech
Communication Association (INTERSPEECH), 2018.

[144] S. King and V. Karaiskos, “The Blizzard Challenge 2013,” in Bliz-
zard Challenge Workshop, 2013.

[145] M. Ravanelli, T. Parcollet, P. Plantinga, A. Rouhe, S. Cornell,
L. Lugosch, C. Subakan, N. Dawalatabad, A. Heba, J. Zhong, J.-C.
Chou, S.-L. Yeh, S.-W. Fu, C.-F. Liao, E. Rastorgueva, F. Grondin,
W. Aris, H. Na, Y. Gao, R. D. Mori, and Y. Bengio, “SpeechBrain:
A General-Purpose Speech Toolkit,” arXiv:2106.04624, 2021.

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/

Bibliography 82

[146] H. Tak, J. Patino, M. Todisco, A. Nautsch, N. Evans, and A. Larcher,
“End-to-end anti-spoofing with RawNet2,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
2021.

[147] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in ICLR (Poster), 2015.

[148] M. Alzantot, Z. Wang, and M. B. Srivastava, “Deep residual neural
networks for audio spoofing detection,” in Conference of the In-
ternational Speech Communication Association (INTERSPEECH),
2019.

[149] “SoX Sound eXchange.” http://sox.sourceforge.net.

[150] J. F. Pitrelli, R. Bakis, E. M. Eide, R. Fernandez, W. Hamza, and
M. A. Picheny, “The IBM expressive text-to-speech synthesis system
for American English,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 14, no. 4, pp. 1099–1108, 2006.

http://sox.sourceforge.net

	Abstract
	Sommario
	Ringraziamenti
	List of Figures
	List of Tables
	Introduction
	Theoretical Background
	Audio Feature Extraction
	Mel Spectrogram
	Mel Frequency Cepstral Coefficients
	Prosodic Features
	Feature Preprocessing

	Machine Learning
	Support Vector Machine
	Grid Search

	Deep Learning
	Multilayer Perceptron
	Convolutional Neural Network
	Recurrent Neural Network
	Self-attention
	Time Delay Neural Network
	Autoencoder

	Conclusive Remarks

	State of the Art
	Automatic Speaker Verification
	Traditional Techniques
	Deep Learning Methods

	Audio Deepfake Generation Techniques
	Text-to-Speech
	Voice Conversion

	Prosody Modeling
	Prosody Labeling
	Expressive Speech Synthesis

	Deepfake Detection
	Artifacts-based Approaches
	Semantic-based Approaches

	Conclusive Remarks

	Proposed System
	Problem Formulation
	System Architecture
	Speaker Embedding Extraction
	Prosody Embeddings Extraction
	Classifier

	Conclusive Remarks

	Experimental Setup
	Datasets Description
	Evaluation Metrics
	Features Extraction & Training Details
	Baselines
	Experiments
	Conclusive Remarks

	Results
	Embeddings Comparison
	Baseline Comparison
	Generalization Capability
	Ablation Study
	Compression Robustness
	Conclusive Remarks

	Conclusions and Future Works

