
Executive Summary of the Thesis

Deepfake detection using LSTMs, Transformers and video-level arti-
facts

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Nicola Rosetti

Advisor: Prof. Mark James Carman

Co-advisor: Prof. Paolo Bestagini

Academic year: 2020-2021

1. Introduction
Nowadays, media manipulation is widely spread-
ing in many different fields of our lives; it is very
easy, for example, to come across a modified
video or a selfie with a filter. Another type of
media manipulation are the so called deepfakes.
Deepfakes are media modified via deep learning
techniques whose peculiarity is their ability to
quickly and cheaply generate pretty convincing
crafted videos (or images). They are based on
the replacement of a person with another similar
person.
These powerful tools have been firstly devel-
oped by researchers, who were trying to come up
with new efficient methods to manipulate media.
Afterwards, these techniques started to spread
among non-expert users. The diffusion of these
videos has been huge in the last couple of years.
We need to be well aware of this phenomenon,
since most of these videos are used and spread
for malicious deeds. Indeed, the threats these
kind of video pose are serious: they can be used
to defame people publicly, to spread fake news
or to fool face recognition systems.
To tackle this problem, researchers have started
studying ways to detect these deepfakes, mainly
employing deep learning techniques.

The goal of our work is to further investigate
the time domain in deepfake detection: in par-
ticular, we propose new architectures and a new
approach based on artifacts detection.

1.1. Deepfake generation techniques
As of now, we can divide deepfake generation
techniques in 5 main categories, which are based
on face manipulation:
• face swapping, based on entirely swapping

a face with another face;
• attribute manipulation, based on modifying

face attributes (like gender, age) while leav-
ing the rest unchanged;

• puppet mastery, based on the control of a
face in a video with another face in the
source video;

• lip syncing, based on modifying the lip
movement to be coherent with a specific au-
dio clip;

• face synthesis, based on creating from
scratch not existing faces.

1.2. Deepfake generation
The architectures used to generate deepfakes are
Deepfake Autoencoders (DFAE) and Generative
Adversarial Networks (GAN).

1

Executive summary Nicola Rosetti

For DFAE generation, 3 architecture blocks are
used: a (shared) encoder, decoder A and decoder
B. At first, the shared encoder with decoder A is
trained on the source images. Then, the shared
encoder with decoder B is trained on the target
images. At generation time, an input image is
fed to the autoencoder composed of encoder and
decoder B, thus creating the modified face.
GANs have been recently employed to improve
deepfakes quality, improving smoothness of the
output features and creating more realistic eye
movement.

2. Related work
Deepfake detection is a very popular research
field. There are mainly 2 approaches to tackle
this problem, both exploiting deep learning
models: frame-based and video-based. Here we
cite just some works on the topic.
Among the frame-based works, the CNN archi-
tectures are the current state of the art. Rossler
et al. [5] showed that CNN-based architecture
such as XceptionNet are very good in the Face
Forensics dataset. As the winner of the Deepfake
Detection Challenge, Selim Sef 1 showed that
EfficientNet-B4 and B7 outperform any other
method on the DFDC dataset.
Video-based approach has not been widely stud-
ied and the current state of the art is based on
convolutional LSTMs. The most famous work
on the topic is the one of Güera et al. [2], who
proposed a convolutional LSTM with Inception-
V3 as backbone, obtaining 99.7% accuracy on
their own test set. Another famous conv-LSTM
work is the one by Li et al. [3]. They proposed
an unconventional way to detect deepfakes: in-
consistent eye blinking patterns. The approach
was very effective but it soon became obsolete
after new deepfake techniques tackled this prob-
lem.
In the current state of the art, few researchers
have tried to use other video-level architectures
for deepfake detection. Some works proposed a
way to detect deepfakes via 3DCNN, showing
how these architectures have a better general-
ization capability with respect to other ones.

1https://github.com/selimsef/dfdc_deepfake_
challenge

3. Dataset
The dataset we use for our work is the DFDC
dataset, which is the largest deepfake video
dataset available on the Web. The dataset
is composed of 119,154 clips. These clips
are 10 seconds long and most of them have
a resolution of 1920x1080. We perform a
train/validation/test split of 60%/20%/20%,
considering the size of the dataset, using the first
30 directories as training set, from 31 to 40 as
validation set and from 41 to 50 as test set.

4. Video-level deepfake detec-
tion

As a first time-related approach we propose
video-level detection models. The employed
pipeline for our work is showed in fig. 1. At first,
we need to select a restricted number of frames
to keep computation time low. Then, since the
modifications are in the facial traits, from every
frame we crop only a small region centered in
the face area, using Blazeface. The sequence of
faces of the selected frames is fed as input to our
classifiers, which detects if a video is pristine or
has been modified.

Figure 1: Proposed pipeline.

4.1. Preprocessing
For the preprocessing step we opt for a selec-
tion of 15 evenly spaced frames across the videos.
We tried considering more frames, but the per-
formance dropped. For every video, a crop of
size 224 × 224 centered around the face is ex-
tracted, in order to be compatible with most ar-
chitectures, to keep computational time low and
to have enough information to correctly perform
classification. The crops are extracted consider-
ing the Blazeface detection output and adapting
the detection to a 224× 224 final region.

4.2. Architectures
As video-level detection models, we propose 3
architectures: convolutional LSTM (as the one
proposed by [2]), Video Transformer Network

2

https://github.com/selimsef/dfdc_deepfake_challenge
https://github.com/selimsef/dfdc_deepfake_challenge

Executive summary Nicola Rosetti

(architecture similar to [4], code taken from 2)
and Timesformer [1] (code taken from the official
repository). The convolutional LSTM archetype
is studied to employ a state-of-the-art method
with which we could compare the Transformers,
state of the art for video classification but not
yet used for deepfake detection.
We propose a convolutional LSTM with
Inception-V3 pretrained on Imagenet as back-
bone, with a GAP layer to shrink the feature
vector. The 2048-dimensional feature vector is
fed into a 2048-units LSTM layer with 0.3 chance
of dropout to reduce overfitting. The last hid-
den state of the LSTM is enth fed to 2 fully
connected layers to finalize classification.
In addition, we propose another convolutional
LSTM architecture, using EfficientB4 as back-
bone pretrained on the DFDC.
The VTN is composed by a CNN backbone and
a self-attention module. As feature extractor,
we choose EfficientNetB0 pretrained on Ima-
genet. We select it because we had memory
constraints with other architectures and because
it is a pretty effective network on the DFDC
dataset. The feature vector is shrunk with a
GAP layer and then fed to the 16-heads self-
attention module.
The Timesformer architecture is based on divid-
ing all frames into smaller crops and them per-
forming spatio-temporal self-attention over all
the crops. In our work we propose the result
on the architecture pretrained on Kinetics-600
and with the divided space-time attention. d

5. Artifacts detection
As a second time-related approach, we perform a
study on the video-level inconsistencies in deep-
fake videos. After having analyzed some videos
we have come up with several potential incon-
sistency labels:
• Flickering: face features abruptly change

across consecutive frames;
• Obfuscated Face: face blurred in consecu-

tive frames of the video;
• Irregular facial traits: deepfake generation

generates clearly artificial facial traits;
• Face proportions inconsistency: deepfake

generation messes up right face proportions;
2https://github.com/ppriyank/

Video-Action-Transformer-Network-Pytorch-

• Color inconsistency: deepfake generation
messes up colors in the face;

• Glasses inconsistency: deepfake generation
introduces glasses but some parts of them
are missing.

5.1. Artifacts detection via Web In-
terface

Via a Web Interface, we collect data from users
which are requested to detect above mentioned
inconsistencies in deepfake videos. The dataset
used for the survey is a collection of videos from
the last 10 folders of the DFDC dataset. In total,
we randomly select 200 video, 20 pristine and
the others fake, divided in two 5-seconds chunks
to make users’ life easier.

5.2. Automatic flickering detection
As a further investigation, we propose a way to
automatically detect flickering. We decide to de-
tect flickering since it is the most frequent in-
consistency and it can be, to a certain extent,
synthetically replicated.

5.2.1. Synthetic dataset generation
To train a model to detect flickering we create
our own ground truth for training and valida-
tion purposes. We start from DFDC dataset
samples. We process every single sample of the
first 40 directories of the DFDC. Every sample is
treated as described in the following algorithm:

Algorithm 1 Samples selection
1: if label == FAKE then
2: if ‘original′_not_processed then
3: ‘original’ processed
4: choice = random.binomial(0.5)
5: if choice then
6: create flickering sample
7: else
8: label ‘original’ as NO_FLICKERING
9: end if

10: else
11: discard sample
12: end if
13: else
14: discard sample
15: end if

For the frame selection step, we opt for 30 con-
secutive frames from every video, taken ran-

3

https://github.com/ppriyank/Video-Action-Transformer-Network-Pytorch-
https://github.com/ppriyank/Video-Action-Transformer-Network-Pytorch-

Executive summary Nicola Rosetti

domly from the entire sequence, because flick-
ering is a more noticeable effect in consecutive
frames. The creation of flickering samples is ex-
plained as follows:

Algorithm 2 Flickering samples generation
1: originalList = ‘original’ video stable cropping
2: fakeList = fake video stable cropping
3: index = 0
4: flickering_sample = []
5: while index < 30 do
6: choice = random.binomial(0.5)
7: if choice then
8: flickering_sample.append(fakeList[index])
9: end if

10: index +=1
11: end while
12: return flickering_sample

The basic idea of this approach is to try and
force abrupt changes in consecutive frames by
alternating real and fake frames. As mentioned
in Algorithm 2 we perform a stable cropping of
the samples. This cropping is performed since
the face detector is not always correct or, if there
are multiple subjects, it may fail at always recog-
nizing the same face across consecutive frames,
thus introducing abrupt changes that may mis-
lead the classifier.
A video is considered stable if the standard de-
viation of the detection pixels coordinates (in
terms of width and height) does not go above a
certain threshold, namely the half of the average
detection width (or height).
If the sample is not stable (in the case of flicker-
ing samples, both ‘original’ and fake video must
be stable) then it is discarded. If the sample is
stable, then a 224×224 crop is considered, fixed
for every frame, symmetrically generated from
the average detection pixel (in coordinates).

5.2.2. Flickering test set
The flickering test set is composed of 200 videos
from the last 10 folders of the DFDC dataset. In
particular, the dataset is composed of 180 FAKE
videos and 20 REAL ones. We manually label
these videos in order to have an available ground
truth to evaluate our models.

6. Experiments
In this section we show the results of our work.

6.1. Video-level deepfake detection
To train our models we use Keras (for conv-
LSTMs) and Pytorch (for Transformers). Con-
sidering the large amount of data used for train-
ing, models reach the validation minimum after
few epochs (max 15 epochs).
Since the test set in unbalanced, we consider as
additional evaluation metric the balanced accu-
racy together with accuracy and Area Under the
Curve (AUC).
Results are shown in Table 1. As we can we can
see, the conv-LSTM-IV3 and VTN approaches
outperform all the other approaches. In fig. 2
and fig. 3 we can observe their confusion matri-
ces.
Timesformer model does not really perform
good on deepfake detection, having very poor
performance on pristine samples.

Approach Accuracy Bal.acc.

conv-LSTM-IV3 0.91 0.86

conv-LSTM-IV3-

bal

0.89 0.88

conv-LSTM-EB4 0.90 0.84

VTN-EB0 0.90 0.90
Timesformer 0.83 0.65

Table 1: Metrics of the models.

Figure 2: Confusion matrix of the VTN-EBO
approach.

4

Executive summary Nicola Rosetti

Figure 3: Confusion matrix of the conv-LSTM-
IV3 approach.

6.2. Web Interface data
We have collected a total of 925 annotations,
with 347 annotated samples. To evaluate
human-level performance in detecting inconsis-
tencies we make use of two statistics evaluating
the agreement among several raters: inter-rater
agreement and normalized inter-rate agreement.

Inter-rater agreement (IRA) The IRA is a
metric that takes into consideration the number
of samples with all coherent labels with respect
to the total number of samples. The IRA is de-
fined as the percentage of pair of coherent labels
with respect to the total number of pair of la-
bels. The equation of the IRA is the following:

IRA =
Npos−pos +Nneg−neg

NTOT
(1)

where Npos−pos and Nneg−neg are respectively
the number of pairs of annotations with posi-
tive answers and negative answers and NTOT is
the total number of pairs of labels.

Normalized IRA The normalized IRA is a
metric that gives a more precise evaluation of
the agreement, since it takes consideration the
possibility of raters giving the same answer by
chance. The formula to compute the IRA is the
following:

norm_IRA =
IRA− pe
1− pe

(2)

where pe is the probability that 2 raters will give
the same answer by chance.
The statistics of the collected data are shown in
Table 2.

Class IRA(%) pe(%) n_IRA

Flickering 65 52.4 0.27

Obf. face 80.6 66 0.43

Prop. incon. 75.1 73.5 0.06

Irr. traits 67.4 60.8 0.168

Color incon. 66.3 61 0.135
Glasses incon. 83.6 70 0.45

Table 2: Statistics collected from our Web In-
terface study.

6.3. Flickering detection
Here we show the results of some approaches we
adopt for automatic flickering detection. The
training is done similarly to the deepfake detec-
tion task.

6.3.1. Test set labeling
To label a test sample, we first crop the entire
video with the stable cropping as described is
Section 5. Then we consider 30 frames at a time,
with a sliding window of 25 frames, from the be-
ginning of the video until the end, and we label
every single subsequence. If a subsequence is
labeled as FLICKERING then the entire video
is labeled as FLICKERING. The rationale be-
hind this choice is that the flickering effect has
no pattern and it may appear in a small portion
of the video, therefore a flickering subsequence
is enough to label the entire sample.

6.3.2. Results
The best results are obtained by the convolu-
tional LSTM with Inception-V3 as backbone, us-
ing synthetic dataset generation as we have pre-
viously described. The approach obtains an ac-
curacy of 76%. This method has problems with
dark videos, therefore we tried to apply con-
trast enhancement, but this decreased the per-
formance to 74%. Many other approaches were
tried, like balancing the synthetic dataset or con-
sidering the difference among frames (with and
without feature extraction), but no approach
outperformed the most basic one. Table 3 shows
the results of the 2 best approaches, adding Pre-
cision and Negative Predictive Value (NPV) as
evaluation metrics.

5

Executive summary Nicola Rosetti

Approach Accuracy Precision NPV

stable crops 0.76 0.68 0.84
contrast+ 0.74 0.68 0.80

Table 3: Flickering results.

7. Conclusions
In our work, we have explored different video-
level approaches to deal with deepfake detection.
As first approach, we have proposed state of the
art models (conv-LSTMs) and unseen models
for deepfake detection at video-level (VTN and
Timesformer). VTN was able to reach LSTM
performance in deepfake video detection show-
ing pretty good results when exploiting finetun-
ing of a convolutional feature extractor.
Unfortunately, presented video-level models are
not able to reach frame-based classifiers perfor-
mance. This result does not come unexpected
since the winner of the DFDC came to the same
conclusion, but it should not mislead. Indeed
video-level detection is a much more challenging
task. First, because it requires much more data
than what is currently available on datasets.
Second, because the employed architectures are
aiming at spotting very little pixel discrepan-
cies across frames and they are doing it by feed-
ing to the LSTM (or self-attention, in our case)
layer not the frames but their high-level fea-
tures. It would be interesting as a future work
to further explore video-level deepfake detection
and in particular new Transformer architectures
(or any combination of them), maybe with more
available training data.
As second approach, we have analyzed deepfake
videos and we have noticed some recurrent in-
consistencies in them.
In particular, at first, we have focused on flick-
ering and we have proposed a way to syntheti-
cally reproduce and detect it, showing the per-
formance of our models. The overall achieved
accuracy is 76% on our test set. With more
available time, it would have been interesting to
test other approaches and see if the performance
could have been improved.
As a parallel study, we have built a Web Inter-
face to collect user data, asking users to detect
inconsistencies in videos. The annotations have
been used to study human level performance on

these inconsistencies and to compare it with our
own models. Indeed our models accuracy (76%)
has outperformed the average agreement of peo-
ple on flickering (65%). As a research direction,
it could be useful to use our interface to collect
more data in order to directly use it as a training
set; with this data we could train models on all
inconsistencies we have come up with, evaluat-
ing and comparing the performance with respect
to our models based on synthetic dataset gener-
ation.

References
[1] Gedas Bertasius, Heng Wang, and Lorenzo

Torresani. Is space-time attention all you
need for video understanding? arXiv
preprint arXiv:2102.05095, 2021.

[2] David Güera and Edward J Delp. Deepfake
video detection using recurrent neural net-
works. In 2018 15th IEEE international con-
ference on advanced video and signal based
surveillance (AVSS), pages 1–6. IEEE, 2018.

[3] Yuezun Li, Ming-Ching Chang, and Siwei
Lyu. In ictu oculi: Exposing ai created fake
videos by detecting eye blinking. In 2018
IEEE International Workshop on Informa-
tion Forensics and Security (WIFS), pages
1–7. IEEE, 2018.

[4] Daniel Neimark, Omri Bar, Maya Zohar,
and Dotan Asselmann. Video transformer
network. arXiv preprint arXiv:2102.00719,
2021.

[5] Andreas Rössler, Davide Cozzolino, Luisa
Verdoliva, Christian Riess, Justus Thies,
and Matthias Nießner. Faceforensics: A
large-scale video dataset for forgery de-
tection in human faces. arXiv preprint
arXiv:1803.09179, 2018.

6

POLITECNICO DI MILANO
Master of Science in Computer Science and Engineering

Dipartimento di Elettronica, Informazione e Bioingegneria

Deepfake detection using LSTMs,

Transformers and video-level artifacts

Supervisor: Prof. Mark James Carman

Cosupervisor: Prof. Paolo Bestagini

Master Thesis of:

Nicola Rosetti, matr. 940435

Academic Year 2020-2021

Ringraziamenti

Innanzitutto mi sembra doveroso ringraziare il mio relatore, Mark Carman,

e il mio co-relatore, Paolo Bestagini, che mi hanno trasmesso gli strumenti,

le conoscenze e la passione per gli argomenti di questa tesi.

Un ringraziamento speciale va fatto anche a tutto l’Image and Sound

Processing Lab, per avermi messo a disposizione la potenza di calcolo senza

la quale non avrei potuto ottenere ciò che ho ottenuto in questo lavoro.

Questo risultato, la tesi di laurea magistrale, non è solo calcoli, codice e

stesura; è il culmine di tanti anni di un percorso a tratti tortuoso, portato

a termine grazie ad una serie di persone che in ogni momento mi hanno

accompagnato ed hanno contribuito alla realizzazione di questo traguardo.

Un enorme grazie ai miei genitori e mio fratello Lorenzo, che sono sempre

stati dietro ad ogni mia decisione assecondandomi quando fosse necessario e

mi hanno sostenuto per tutta la mia vita.

Ringrazio Lorenzo, Riccardo, Martina e Federica, che dal primo momento

mi hanno sempre fatto sentire a casa seppur fossi distante.

Grazie anche a tutti i miei amici di triennale e magistrale, con cui ho

condiviso intere giornate e interminabili sessioni.

Un ringraziamento va a Francesco, Enrico, Matteo, Gianluca, Dario, che

dal liceo ci sono sempre stati; nonostante le strade si sono divise, sembra che

con voi il tempo non passi mai.

Non posso poi non menzionare le amicizie più recenti, che in questo ultimo

difficile periodo sono state in grado di rendere migliori le giornate.

Grazie infinite a Simone, Fabio e Michele, le mie colonne portanti, con i

quali ho condiviso tantissimi bei ricordi e le serate giochi da tavolo.

Infine un grazie speciale a Giulia, per tutto. Con amore e certezze mi hai

sostenuto e accompagnato in questo percorso e nella vita. Non sarei Nicola

senza di te oggi.

I

Abstract

Deepfakes are swiftly becoming a reality. These media are generated by

very powerful tools which allow fast and cheap media manipulation. Along

with potential positive uses of such tools come malevolent uses and threats.

Indeed, these videos can be used to defame people, spread fake news or

impersonate others to access a bank account. Given the upcoming problems

these media pose, researchers have started working on different ways to try

and detect these types of media. As of now, several powerful frame-based

detectors have been proposed, but the time domain has not been studied in

depth.

In our work, we show two different approaches to study deepfake videos

in the time domain. We first present several video-level deepfake detectors:

from deepfake detection state of the art convolutional Long Short-Term Mem-

ory to previously untested architectures for this field, namely, Transformers.

Afterwards, we focus on video-level artifacts in videos. These errors appear

since the most used deepfake generation tools work frame-by-frame, causing

inconsistencies across consecutive frames. We build a synthetic dataset of

such videos by replicating the inconsistencies, and propose methods to spot

them automatically using the models described above. At the same time,

we build a Web Interface that allows users to label videos, asking them to

spot inconsistencies. We use these labelled videos to evaluate our models

and compare their performance with human annotators.

III

Sommario

I deepfakes stanno rapidamente divenendo realtà. Questi media sono generati

da tecniche molto potenti di deep learning, le quali permettono di manipolare

un video o un’immagine molto rapidamente e a basso costo. Il loro potenziale

è altissimo, ma se vengono usati per scopi criminosi rappresentano un mi-

naccia concreta: possono essere utilizzati per diffamare, spargere fake news o

impersonare altre persone per riuscire a bypassare sistemi di riconoscimento.

Dati i problemi che stanno sorgendo, i ricercatori hanno iniziato a stu-

diare tecniche per il riconoscimento di tali video. Ora come ora la maggior

parte delle tecniche efficaci è costituita da classificatori frame-based, ossia che

classificano un frame alla volta, mentre il dominio temporale (quindi cercare

di studiare il video nel suo insieme) è ancora piuttosto acerbo.

Nel nostro lavoro presentiamo due approcci per studiare il dominio tem-

porale nel riconoscimento di deepfakes. Prima di tutto, presentiamo vari

modelli video-level: dalle Long Short-Term Memory convoluzionali, stato

dell’arte per quanto riguarda il riconoscimento video-level, ai Transformers,

nuovi in questo campo. Successivamente, come secondo approccio, studiamo

artefatti temporali in questi video. Questi errori si verificano poichè la mag-

gior parte delle tecniche di generazione dei deepfakes lavora frame per frame,

causando inconsistenze tra frames consecutivi. Proponiamo quindi un modo

di riconoscere queste inconsistenze, utilizzando i modelli descritti prima e

il nostro dataset sintetico, basato sul tentare di replicare tali inconsistenze.

Parallelamente, attraverso il crowdsourcing, raccogliamo una serie di anno-

tazioni di diversi utenti, i quali devono riconoscere inconsistenze nei video e

la cui performance viene utilizzata per valutare i risultati dei nostri modelli.

V

Contents

Acknowledgements I

Abstract III

Sommario V

1 Introduction 1

1.1 Work description . 4

1.2 Document structure . 4

2 Background 7

2.1 Facial manipulation approaches 7

2.2 Deepfakes . 11

2.2.1 Deepfake generation 11

2.2.2 History . 11

2.2.3 Applications and threats 13

2.3 Deep learning background . 14

2.4 Models for video classification 16

2.4.1 Convolutional LSTMs 16

2.4.2 Transformers for video detection 18

3 Related work 23

3.1 Hand-crafted Features . 23

3.2 Deep learning approaches . 24

3.2.1 Frame-level deepfake detectors 24

3.2.2 Video-level deepfake detectors 26

4 Research problem 27

VII

5 Proposed Methods 29

5.1 DeepFake detection . 29

5.1.1 Approach overview . 29

5.1.2 Data preprocessing for classic deepfake detection 31

5.1.3 Detection models employed 35

5.2 Artifacts detection . 43

5.2.1 Approach overview . 43

5.2.2 Artifacts definition . 44

5.2.3 Flickering detection . 48

6 Datasets and Web Interface 51

6.1 Off-the-shelf employed dataset 51

6.2 Flickering dataset generation 52

6.2.1 Stable videos . 53

6.3 Deepfake Artifacts Dataset generation via Web Interface . . . 56

6.3.1 Web Interface . 56

7 Experiments 61

7.1 Deepfake detection . 61

7.1.1 Training setup . 61

7.1.2 Evaluation metrics . 62

7.1.3 LSTM performance comparison 63

7.1.4 Transformer performance comparison 66

7.1.5 Deepfake detection architectures performance study . . 67

7.1.6 Frame-level models comparison 71

7.2 Flickering detection . 73

7.2.1 Test samples labeling 73

7.2.2 Evaluation metrics . 74

7.2.3 Performance evaluation for synthetic training sets . . . 74

7.3 Performance study using interface data 75

7.3.1 Labels collected . 75

7.3.2 Extracted data . 76

7.3.3 Statistics . 77

8 Conclusion 83

8.1 Future work . 85

Bibliography 87

Chapter 1

Introduction

Media manipulation is something that is present in our life since the begin-

ning of the 20th century. In the 1920s, the Soviet Union was performing

visual manipulation of images and pictures for political purposes [1].

Throughout the 20th century, media manipulation has started to fill our

lives in different contexts and for different tasks. During 1990s, video editing

techniques were perfected in Hollywood, but they were employed only in a

few movies, given the expensiveness of such tools. Nowadays, media manip-

ulation is becoming cheaper and cheaper. When we surf the Internet or we

are using a social network, it is rare to not come across any altered media

- whether that be a simple selfie with a filter, a meme or a video edited to

add certain effects. Media manipulation is something we have to deal with

everyday of our life. An example of manipulated, widely spreading, media is

the deepfake.

The word deepfake is used for videos or images that are synthetically cre-

ated via deep learning tools by replacing a person in it with another similar

person. Some of these deepfakes have become very famous, like the ones

where Obama (Figure 1.1) or Putin appear to say something they never said

or did. These tools to create deepfakes were first developed for academic

purposes, aiming at reducing the cost and complexity of generating con-

vincingly edited videos. Afterwards, these methods have spread across the

Internet and have become very popular even among non-expert people, due

to their easiness of use and their cheapness. FaceApp, the famous mobile app

that everyone was using to post selfies on Instagram, is an example of these

available techniques. To use this app you just need to have a smartphone

2 Chapter 1. Introduction

Figure 1.1: Selection of frames taken from the famous Obama deepfake. Image taken from

[2].

and to install it. After that, with a simple click, users are able to have in

their phone versions of their younger or their older self; these kind of pictures

are none other than deepfakes.

The number of deepfakes available on the Internet is rapidly increas-

ing day by day [3]. Just to give some numbers, consider that in February

2021 there were approximately 60000 of these synthetic videos posted online.

These tools, as we will see later, can be potentially dangerous if used for

malicious ends: they can be employed, for example, to spread fake news or

defame people.

Along with their diffusion, a number of researchers started working on

the topic in order to find good ways to detect these videos. In 2019, Face-

book started a competition on deepfake recognition, giving money prize to

the winners. A new and very large dataset was presented based on several

state-of-the-art deepfake generation techniques. This dataset is currently

the largest one available for research purposes. A number of brilliant minds

joined the competition, given the prize money on offer, pushing deepfake

detection forward by a large margin. Right now indeed, given also the help

brought by the competition, we can rely on pretty good detectors based on

machine learning techniques, but we cannot settle with what we already have.

Deepfake generation techniques are improving at very high pace and soon the

detectors we have will not be able to recognize deepfakes, whose quality is

becoming higher and higher. An example of astonishing deepfake is the Tom

Cruise one, shown in Figure 1.2. Almost every month someone comes up

with new improved tools for fooling observers and recognition software. Our

deepfake detectors will need to be updated soon before it is too late.

Nevertheless there is light at the end of the tunnel since, as experts said

3

[3], the vast majority of these forged videos/images are not very convincing

and they are based on the manipulation of the face. This is because most

of these videos are created using the same cheap open source tools which

exploit algorithm based on Artificial Intelligence in order to forge videos.

As of now, there are mainly two ways to try and detect these videos:

frame-based approaches and time-related (video-based) approaches. Frame

based approaches are based on trying to classify single frames as modified

or not. Time-related approaches, instead, classify the videos considering a

sequence of frames and classify the sequence as deepfake or pristine video.

The goal of this work is to explore time-related approaches for deepfake

detection. Since it has not been studied in depth, our work aims at discussing

and comparing several video-level models. A further investigation is done

concerning artifacts and inconsistencies in deepfake videos: since the datasets

available for the problem are generated frame-by-frame, this may generate

inconsistencies in the videos and we are aiming at trying to spot them. In

order to help us in this task, we employ a Web Interface. The interface is used

to collect data from users. We exploit this data to generate a new dataset,

with our own custom labels. Finally, we discuss how this dataset has been

useful in assessing the performance of our artifacts detection models and the

human-level performance on artifacts recognition.

Figure 1.2: Crop of a frame taken from the famous Tom Cruise’s deepfake.

4 Chapter 1. Introduction

1.1 Work description

The main focus of this work is to investigate the temporal aspect of deep-

fake detection. We propose several video-level models and approaches. The

dataset used in this work, for train and test purposes, is the DeepFake De-

tection Challenge dataset. At first, we present some state of the art models,

namely convolutional Long Short-Term Memory. We show different varia-

tions of them and different data preprocessings. We describe the training and

testing of these models, comparing the performances of all the approaches.

Then, some new models are presented: Transformers, which are applied for

video classification tasks, and we compare their performance with the convo-

lutional LSTMs. The proposed models are: the Video Transformer Network

[4] and the Timesformer [5].

Afterwards, an investigation on the inconsistencies concerning the videos

is shown. We identify several recurring inconsistencies. We talk about the

flickering effect, how we propose to replicate it and how we detect it. In

order to test the models, we perform a survey via a Web Interface to get

people to label some ground truth videos. This labeling has been helpful for

our final evaluation on flickering detection and in giving insight on what is

human performance in detecting inconsistencies in videos.

1.2 Document structure

The rest of the work is composed of seven chapters.

Chapter 2 goes more in deep into the deepfakes field: here we present

deepfakes generation techniques, a brief historical introduction and their pos-

sible applications and threats. Afterwards, we present a brief description on

deep learning techniques.

In Chapter 3 we display the state of the art models for the deepfake

detection task. We describe 2 categories: hand-crafted features and deep

learning techniques (frame-based and video-based).

Chapter 4 shows the research problem we are tackling, proposing research

questions and how we have answered to them.

In Chapter 5 we present the methods and the pipeline utilized, both for

deepfake detection and for artifacts (in particular flickering) detection.

1.2. Document structure 5

In Chapter 6 the employed dataset is presented. We talk about our

own synthetic dataset generation for flickering detection and about the Web

Interface we have built to collect user data.

In Chapter 7 we assess and compare model performance, both for deepfake

detection and flickering detection. We show confusion matrices, Receiver

Operating Characteristic curves and other metrics. At the end, we assess

flickering detection performance via some indices computed on the collected

data of the Web Interface.

Chapter 8 wraps up our work, drawing conclusions and explaining possible

future research directions.

6 Chapter 1. Introduction

Chapter 2

Background

In this chapter we first describe deepfakes, their generation tools, their story

and possible applications and threats. Then, we present an introduction on

some useful deep learning techniques to understand our work.

2.1 Facial manipulation approaches

Media editing has always been a part of our lives. With the help of deep

learning techniques, this field has been pushed forward, creating this new

phenomenon of deepfakes.

Deepfakes are starting to spread across the Internet and, as time goes

on, we need to familiarize with this kind of techniques. As of now, the vast

majority of the employed techniques works on facial manipulation. According

to [6], there are 5 different types of facial distortion:

• attribute manipulation, a technique that focuses on modifying specific

attributes of the face, while leaving the rest unchanged. Examples of

this approach can be skin retouching or age/gender modification. Some

obtainable results with this approach are shown in Figure 2.1. A tool

that performs this techniques is FaceApp1;

• face swapping [7], or face replacement, a technique based on automatic

replacement of the face of a person in the source video with another

1https://faceapp.com

 https://faceapp.com

8 Chapter 2. Background

Figure 2.1: Attribute manipulation examples. The image on the left is the original one,

while the other ones are modifications. Taken from [6].

face in the target video. Examples are shown in Figure 2.2. Two tools

that perform this task are FaceSwap2 and FaceSwapGAN3;

• lip synching [8], a technique based on modifying a source video such

that it generates a clip with a consistent mouth region using an arbi-

trary audio recording. An example is shown in Figure 2.3. The most

famous tool is Wav2Lip4;

• puppet mastery [9], also known as face reenactment, a technique in

which the facial expression and movements of the person in the target

video or image are controlled by the person in the source video. Ex-

amples are shown in Figure 2.4. A tool that performs puppet mastery

is Face2Face [10];

• entire face synthesis, an approach that is based on creating from scratch

faces not existing in real life. Examples are shown in Figure 2.5. A

tool that allows to perform face synthesis is StyleGAN2 [11].

2https://github.com/deepfakes/faceswap
3http://github.com/shaoanlu/faceswap-GAN
4https://github.com/Rudrabha/Wav2Lip

https://github.com/deepfakes/faceswap
http://github.com/shaoanlu/faceswap-GAN
https://github.com/Rudrabha/Wav2Lip

2.1. Facial manipulation approaches 9

Figure 2.2: Face swapping example. We can see the source image on the left (the face to

modify), the target image (the image whose features are used to modify the source) in the

middle and the result on the right. Image taken from [6].

Figure 2.3: Lip syncing scheme. A source video and an input audio are used to synchronize

lip with audio in the original video. Image taken from [6].

10 Chapter 2. Background

Figure 2.4: Face reenactment examples. In the picture, we can see the input pictures on

top (source and target) and the modified ones in the bottom. Image taken from [10].

Figure 2.5: Face synthesis examples. The first row of pictures shows real existing faces,

while on the second row there are synthetic ones. Image taken from [12].

2.2. Deepfakes 11

2.2 Deepfakes

In this section we talk about deepfakes, how are generated, their story and

we go through their possible applications and threats.

2.2.1 Deepfake generation

The first technique used to generate deepfakes was the deep autoencoder [13],

employed in the first ever deepfake tool, named FakeApp.

The deep autoencoder is a deep learning architecture able to achieve very

good performance in the image compression or denoising fields that has been

adapted to the creation of deepfake videos. The name of the architecture

used in this field is Deepfake autoencoder (DFAE). It is composed of two

parts, the encoder and the decoder.

As stated in [14], two datasets are required to train these models. The first

dataset is composed of original images, or rather the pictures that contain the

faces to be replaced. The second dataset is composed of images containing

the desired faces that will be swapped in the target video. In the training

process, the weights of the encoder are shared between the two datasets (in

order to capture common features in the two datasets) while instead two

separate decoders, one for each dataset, are used. Encoder+Decoder A is

trained on the first dataset and Encoder+Decoder B is trained on the second

dataset. In the generation phase, an original image to be modified is given

as input to the Encoder+Decoder B architecture, thus obtaining the face

swapped picture. A scheme of this process is given in Figure 2.6.

Lately, GANs (short for Generative Adversarial Networks [15]) have be-

come the de-facto standard for deepfake generation. The use of these models

has improved the quality of videos generated, enhancing the smoothness of

the forged features and creating more realistic eye movement [12]. FaceSwap-

GAN is an example of a tool that makes use of GANs.

2.2.2 History

The term deepfake comes from a Reddit user named “deepfakes” that, in the

late 2017 [16], created a Reddit section name “r/deepfakes”. In this section,

users started to share pornographic content with pornstars swapped with

12 Chapter 2. Background

Figure 2.6: Autoencoder training and generation scheme. Image taken from [14].

female celebrities. The page became quite popular and by the time Reddit

started taking action the page had more than 90000 active users. Nowadays,

these non-consensual porn videos are still the vast majority of the deepfakes

on the Web, but celebrities are not the only targets. Reports underlined an

increase in videos targeting Youtube or Twitch personalities.

Alongside the spread of pornographic deepfakes, the diffusion of these

videos in other fields has not gone unnoticed. Several cases of ID forgery

deepfakes have been registered, where people are trying to impersonate some-

one in order to access a bank account or a Bitcoin wallet [3].

Another field where there has been a noticeable spread of deepfakes is

politics. As an example, let us think about the Obama deepfake shown in

Chapter 1. During US elections in 2020, the threat of political deepfakes

was real and a lot of effort was put into verifying the authenticity of videos

circulating on various media.

2.2. Deepfakes 13

2.2.3 Applications and threats

Deepfake tools are simply doing what other techniques were already doing in

the past, but better and faster. Once trained, these tools just need an image

(or a video) in input and they are able to create convincingly forged video.

The potential of this technology is quite high. Deepfakes can be used in

the acting field, in order to reduce operational and production time. Disney

has started doing that by training its own face swapping models based on

deepfakes and iterating the operation in order to refine outputs. Soon movie

and television production will adapt to this. With this techniques, there will

also be the possibility to resurrect and revive characters for fans to enjoy

[16].

The application of deepfake techniques is not restricted just to TV shows

and movies. Let us just think the video editing potential that content creators

on the Web could have available.

Social networks are impacted too; just think of all the possible filters that

these tools can make available.

Another potential use of deepfakes is translation services. During 2020,

an Indian team has developed a software able to translate videos by trans-

lating the audio and changing the lip movement accordingly. If this area is

investigated further, we will be able to communicate with people around the

world with ease.

Unfortunately, a lot of criminal groups have adapted and have started

to use these new tools to nefarious ends: indeed, most of the videos posted

on the Web had malicious ends. As described briefly before in the history

section, the amount of deepfakes concerning pornography is huge. A lot of

deepfakes available are videos where the face of a pornstar is swapped with

the one of a famous celebrity. This phenomenon is mainly targeting female

celebrities, moving from the entertainment world to the content creation

world (like Twitch or Youtube). This is mainly because deep learning tech-

niques need a large amount of images to be tuned and on the Web there are

a lot of available images of known personalities. Hence, famous personalities

are very easy targets.

More in general, the damage that can be dealt to individuals is huge.

These videos can be used to defame people or blackmail them. They can

also be used as ID forgery mechanism to be able to fool facial recognition

14 Chapter 2. Background

systems, to access a bank account or a bitcoin Wallet.

Unfortunately, targeting individuals is not the only problem these videos

pose. Deepfakes can be used to spread fake news, create warmongering situ-

ations by showing fake videos of missiles launched to destroy the enemy state

[6] or break diplomatic agreements by showing a major state president giving

a speech.

2.3 Deep learning background

Deepfake tools make use of deep learning techniques. Therefore it is useful,

in order to better understand our work, to have a basis on the techniques

used. Here, we briefly introduce architectures we have used: Convolutional

Neural Networks, Recurrent Neural Networks and Transformers. Again, this

is just an introduction, to know deep learning techniques more in details see

[17].

The basic building block of deep learning is the neural network. A neural

network is an architecture constituted by nodes organized in layers. Layers

are connected as a directed graph, where the output of one layer is the input

of the next layer. The output of a neuron is the weighted sum of its inputs and

via an activation function we can see if the neuron has been activated or not.

Each link has a weight that needs to be learned with some training procedure.

These weights are updated at every training step, trying to minimize a loss

function that is defined depending on the specific problem.

There can be potentially infinite variations of a neural network, obtained,

for example, by changing the number of layers in it or the number of neurons

in each layer. By increasing the size of the neural network, its complexity

and learning power increases, but overfitting probability increases too.

Nowadays, the most famous Neural Network architectures are very com-

plex ones, since they are able to solve very complex tasks with enough training

data available.

A first example of a network is the Feed Forward Neural Network, where

layers are organized in chronological order, such that the output of a layer

can only be the input of the following layer.

The Convolutional Neural Network (CNN) is an architecture mainly used

to deal with images. The architecture is composed of two parts: the convo-

2.3. Deep learning background 15

Figure 2.7: General CNN scheme. Here you can clearly see the network divided in two

parts: the first, convolutional part for feature extraction; the second, fully connected for

classification.

lutional and the feed-forward part. The convolutional part is based, as the

name suggests, on the convolution operation. As we can see in Figure 2.7,

the convolution is performed in multiple layers and, combined with pooling

operations, it is able to reduce the size of the input and extract high-level

semantic features of the image. This is crucial in order to correctly perform

classification or regression task in images. The second part is a simple feed-

forward neural network used to classify the input image. There can be a lot

of variations of the CNN, adapting the network to solve other problems, like

object localization, but we will not make use of these architectures hence

they are not discussed here.

Recurrent Neural Networks (RNNs) are networks built to deal with time se-

ries or, more in general, with time-varying input. The term recurrent comes

from the presence in the network of recurrent connections, which allows the

system to remember old input by “storing” it as an hidden state. They are

able to predict the next value of a series, given the information they store

and the next input. In Figure 2.8 we can see how RNN deals with time series.

Classic RNNs suffer from the vanishing gradient problem, which means

that they are not able to remember old data. New architectures, such as

the Long Short-Term Memory (LSTM) [18], have been studied to tackle this

problem. In this architecture, the recurrency weight is set to 1 enabling,

to a certain extent, the training of RNNs with arbitrarily old data. LSTM

architectures were initially thought for Natural Language Processing tasks,

but they have been adapted to perform other tasks, like visual question

answering or image captioning.

16 Chapter 2. Background

Figure 2.8: General RNN scheme. Here the architecture (block A) has been unrolled to

exemplify how input (x0,...,xt) is fed one at a time and how hidden states (h0,...,ht) are

generated.

In the last few years, Transformers [19] have become the de-facto standard

for natural language processing tasks. These architecures are very different

from classic Neural Networks since they do not make use of any convolution or

recurrency. They make use of a mechanism called self-attention to compute

the features for a specific input, that is how much a part of the input is

important with respect to the other parts of the input.

2.4 Models for video classification

In this section we explain more in detail the architecture paradigms we have

employed in our work.

2.4.1 Convolutional LSTMs

Convolutional LSTMs are architectures widely used in the video classification

field, mainly for action recognition tasks. As we can see from Figure 2.10

they are composed of three parts: the first part is the feature extraction

part, the second is the recurrency part and the third is the classification

part. The first part is composed by any network that can extract high-level

features: any hand-made CNN, well-known CNN architecture (like VGG,

EfficientNet, Resnet) or any self-attention transformer model that computes

attention over a single frame (like the Convolutional Vision Transformer [20],

or CViT). Every frame is fed to this network and features are extracted. The

high-level semantic features are then fed into the recurrency part, which is

composed by any layer/cells able to store an hidden state, namely classic

RNNs or LSTM/GRU cells. The hidden state of the recurrent part is then

2.4. Models for video classification 17

Figure 2.9: Scheme of the Transformer architecture. Image taken from [19].

18 Chapter 2. Background

Figure 2.10: Scheme of a convolutional LSTM architecture. Here the feature extraction

performed via a CNN. The CNN network is only one, every frame passes through the same

network.

fed to the third section, composed of fully connected layers. The last layer

has the softmax as activation function and the number of units equal to the

number of classes of the task.

2.4.2 Transformers for video detection

In recent years, Transformers have quickly become the state of the art for

most of the Natural language processing tasks and now researchers are start-

ing to apply them also to other tasks, like for example Image or Video clas-

sification.

CViT is an example of Transformer used for Image Classification and,

as we will mention in Chapter 3, people have also tried it in the deepfake

detection field.

New Transformer architectures are coming up every day trying to tackle

action recognition problems or other video classifications tasks. This is a very

2.4. Models for video classification 19

hot topic nowadays since the performance on current most famous datasets

(e.g. Kinetics) is not so high and people are still trying to figure out effec-

tive techniques. The main problem is mostly related to the fact that these

Transformer architectures have a huge number of parameters and therefore

training from scratch is not possible. The only feasible things are: smart

initialization of the parameters or fine-tuning [21].

Transformers architecture

Transformers are architectures that, without any need of convolutional or

recurrent neural networks, are able to solve a lot of different problems. They

make use of the self-attention mechanism to perform the encoding (and even-

tually the decoding) of the input. In this work we only consider the building

blocks used in image and video classification. In the classic architecture,

there are two parts, the encoding part and the decoding part, but here we

consider only the encoding.

Input embedding The input can be a single frame divided into multiple

patches (image classification, see CViT), a sequence of frames divided into

patches or simply a sequence of frames embedding (video classification, see

Timesformer [5] and Video Transformer Network [4]).

Positional encoding The positional embedding layer is required in order

to give information to the transformer about the order in the input. Differ-

ently from the LSTM, where inputs are fed sequentially (and one at a time)

to it, in the Transformer the inputs are fed all at the same time, so it is

required to have order information in the input embedding to preserve the

semantics given by the order. Transformers do this by using the positional

encoding layer, which is a layer that adds to the input embedding a vector,

namely positional embedding, with order information. In the original Trans-

former paper, they used sin and cosine function to represent this embedding.

The equation are the following:

PE(pos,2i) = sin

(
pos

10000
2i
d

)
(2.1)

PE(pos,2i+1) = cos

(
pos

10000
2i
d

)
(2.2)

20 Chapter 2. Background

Where pos is the position in the sequence, i is the i-th feature in the

input, and d is the total dimension of the embedding.

Multi-Head attention module The embeddings are then fed into the

main module of the Transformer encoder, the multi-head attention module.

Here the self-attention is computed (the main building block is shown in

Figure 2.11). The block has linear layers to shrink the size of the input

embedding to speed up computation. Then, 3 vectors are defined: Q, the

query vector, K, the key vector and V the value vector. As an example to

better understand what these vectors are, let us imagine the Q is a query,

like a text we input to search a video on Youtube; K are the results of the

search and V is the value of the similarity among Q and K. The self-attention

matrix is then computed as follows:

Attention(Q,K, V) = softmax

(
QK√
dk

)
V (2.3)

As we can see, the cosine similarity is used to compute the self-attention,

which is then shrunk between 0 and 1 using a softmax layer. In general,

more of these blocks are used in parallel (that is why we the module is called

”Multi-Head attention”, Figure 2.12) to improve accuracy and confidence

over the attention generated. Each input of this block is then concatenated

and shrunk again to become the final encoding of our model. In video detec-

tion, we can think the self-attention between part of a single frame (in image

classification) or attention between the same spatial patch across different

frames (in video classification).

2.4. Models for video classification 21

Figure 2.11: Scheme of the scaled dot product attention. Image taken from [19].

Figure 2.12: Scheme of the Multi Head attention layer; h is the number of heads. Image

taken from [19].

22 Chapter 2. Background

Chapter 3

Related work

In this chapter we present the state of the art for deepfake detection. All

the techniques can be summed up in three different categories: hand-crafted

features, frame-based deep learning techniques and video-based deep learning

techniques.

3.1 Hand-crafted Features

This first approach is characterized by the manual selection of the features

to use for discriminating if a video is original or fake. The main advantage of

using hand-crafted features is the interpretability of the results, as [22] said.

As a new hand-crafted feature approach Siegel et al. [22] proposed 3

different possibilities for hand-crafted features: eyes blinking, mouth region

and image foreground region.

Yang et al. [23] presented a study over the inconsistent 3D head poses that

are originated from the face swapping algorithms. They used Support Vector

Machines to classify images as pristine or fake. Even if this technique is good

for detecting face swapping, it performs pretty poorly on other deepfake

generation techniques, like puppet mastery of lip syncing [24].

McCloskey et al. [25] showed their study over the colors of an image

generated by GANs, explaining that the patterns present in these images (in

terms of colors) are quite different from the ones generated by cameras.

Gu et al. [24] proposed a study on the detection of deepfakes generated

by different types of techniques. They claimed that in fake videos there are

23

24 Chapter 3. Related work

inconsistencies in the facial movements and expressions - whether it being a

lip synced video (mouth inconsistent with the rest of the face) or a puppet-

master video (the expression is inconsistent since an impersonator is choosing

what to say).

Korshunov et al. [26] have presented a way to detect lip syncing videos,

considering audio-visual features for every image and adopting an approach

based on Principal Component Analysis and SVM as a classifier.

3.2 Deep learning approaches

In this section, the described methods are able to learn by themselves the

features during training.

3.2.1 Frame-level deepfake detectors

Frame level detectors are based on classifying one single frame at a time. A

lot of works are based on CNN architectures [27, 28, 29, 30, 31, 32, 33], and

all the techniques make use of face detectors since it has been shown that

cropping around the face helps improving the accuracy of the detectors [33].

Nguyen et al. [27] proposed a method based on capsule networks. At

first, a CNN used to extract features is used. Features are then fed to the

capsule network [34] in order to correctly perform the detection.

Afchar et al. [28] presented Mesonet architectures as detectors (namely

Meso-4 and MesoInception-4) to deal with deepfake detection. They trained

their architectures on the Face2Face generated videos, obtaining an accuracy

of 0.96.

Rossler et al. [33] showed some CNN approaches to detect fakes using

their own dataset [35]. The dataset is a collection of different deepfake gener-

ation techniques used (in 2019), like Face2Face and FaceSwap. They showed

that XceptionNet outperforms other approaches such as Mesonet [28] and

that finetuning is the way to go, considering the large amount of parameters

these architectures have to learn, obtaining as accuracy 0.98.

Li et al. [30] used other popular CNN architectures, such as VGG and

ResNet. They generated their own training data by taking images from

the Internet and applying deepfake generation algorithm to some of these

3.2. Deep learning approaches 25

samples. The accuracy obtained on UAFDV and Deepfake-Timit datasets

[36] was respectively 0.97 and 0.99.

Amerini et al. [37] proposed a CNN architecture based on optical flow

computation [38]. The idea behind it is that the optical flow of a fake video

in different from a natural video, so a model trained on it would detect

it pretty easily. The architecture they presented worked by computing the

optical flow and by feeding this vector field to a CNN, called Flow-CNN,

using as backbone VGG and Resnet.

Other authors [29, 32] proposed ensemble methods to try and improve

accuracy of frame-based classifiers.

Bonettini et al. [29] presented an ensemble of CNNs (EfficientNets) and

a way to produce attention over the parts of the image, showing which ones

are the most important for classification.

Rana et al. [32] proposed an ensemble between several popular CNN

architectures and proposed a method to also learn a way to combine different

predictions, obtaining pretty good results on Face Forensics dataset, with

over 0.99 overall accuracy.

Wodajo et al. [39] used the Convolutional Vision Transformer [20] to

perform deepfake detection. The architecture is composed by, at first, a

VGG-like convolutional network. Then, the various feature maps are flat-

tened and fed into a transformer encoder network, which computes, the final

encoding used for classification. They obtained discrete results: 91% in the

DFDC dataset but other bad results on other datasets.

Jeon et al. [31] showed another self-attention model, concatenating Fine-

Tune Transformer(FTT) model with a convolutional pretrained network.

They obtained 0.97 in Face2Face and Deepfake dataset. They also did an

ablation study on the FineTune Transformer showing how using the FTT

improves performance with respect to not using it.

The winner of the Deepfake Detection Challenge 1 2 obtained 0.82 on the

private test set, showing how it is still difficult to detect deepfakes. He used

CNN-based architectures, obtaining the best results with EfficientNetB4, and

performed strong augmentation in the training images (e.g. completely re-

1https://www.kaggle.com/c/deepfake-detection-challenge/discussion/

145721
2https://github.com/selimsef/dfdc_deepfake_challenge

https://www.kaggle.com/c/deepfake-detection-challenge/discussion/145721
https://www.kaggle.com/c/deepfake-detection-challenge/discussion/145721
https://github.com/selimsef/dfdc_deepfake_challenge

26 Chapter 3. Related work

moving parts of the face).

3.2.2 Video-level deepfake detectors

Video level detectors are based on trying to classify the video as a whole,

considering multiple frames. The basic idea is trying and spotting pixel

artifacts across frames.

Other researchers [14, 40, 41, 42, 43] have tried to used RNNs in combi-

nation with CNN architectures. The CNN part is used for feature extraction,

while the RNN part is used for combining the features of chronogically or-

dered, consecutive or not, frames.

Güera et al. [14] used their own deepfake dataset. They used Inception-

V3 as backbone. The performance was very good on their own test set since

they obtained more than 99%.

Chinthia et al. [42] proposed their own network using XceptionNet and

using bidirectional LSTMs. They then diversified the model trainings by

trying different loss functions, namely cross-entropy and KL divergence, also

called relative entropy. They then proposed an ensemble of the previous two

loss functions. The results they obtained were pretty good, obtaining 0.93

of pristine videos correctly classified and an overall 0.84 of fakes correctly

classified.

Li et al. [43] proposed the use of conv-LSTM to detect eye blinking

pattern inconsistencies. In their work they claimed that deepfake techniques

used at that time did not make people blink regularly and they tried to

estimate the pace of blinking in videos to detect fake ones. Unfortunately,

this method soon became obsolete as new deepfake techniques added eye

blinking to the forged videos [24].

Sabir et al. [41] showed that RNN architectures performed worse on

Face Forensics dataset with respect to current state-of-the-art CNN-based

methods.

Ganiyusufoglu et al. [44] presented 3D-CNN approaches to deepfake de-

tection, using R3D or ID3 (respectively the 3D version of Resnet and In-

ception) architectures. This methods showed a pretty good generalization

performance, computed by training an all except one deepfake generation

method at a time and testing the model on the left-out method.

Chapter 4

Research problem

Our effort in this work is to answer research questions about deepfakes in the

time domain. In particular, we follow 2 different approaches: investigation on

video-level artifacts and investigation on video-level models. In the following

we report the research questions goal of this work.

1. What kind of video-level artifacts can we identify in deepfake datasets?

Deepfake videos are generated using frame-based techniques and aggre-

gated into a single video without any preprocessing. This process may

generate inconsistencies in the crafted deepfake. Furthermore, deepfake

generation works best with images where there is a face in front of the

camera; this means that when the face recognition fails, it generates

inconsistencies across the video. Studying the DFDC dataset and us-

ing a Web Interface, we define several inconsistency labels: flickering,

wrong proportions, irregular facial traits, obfuscated face, glasses in-

consistency and color inconsistency. We use collected annotations from

the Web Interface to build a new dataset.

• Which one can we detect automatically?

Detecting these inconsistencies can be helpful for deepfake detec-

tion. Unfortunately, in order to train models on these inconsisten-

cies, new ground truth is needed. We collect some samples with

the required labels, but the collected data is not enough to be

used for training. Luckily, some inconsistencies can be syntheti-

cally replicated in order to try and spot them. This was the case

28 Chapter 4. Research problem

for flickering in our work, where we present a way to generate a

dataset to train models to detect it.

• What is human level performance on detecting coherently incon-

sistencies?

Alongside with the automatic mechanism to detect these inconsis-

tencies, we test human level performance on labeling the dataset.

We show statistics related to the agreement among the raters and

compare them with the performances of our flickering detectors.

2. Can video-based models outperform frame-based classifiers?

Video-level detectors have been recently studied and employed for deep-

fake detection. Studying the video as a whole may be useful to spot

some pixel artifacts in the frames. As of now though, video-level models

are outperformed by frame-based classifiers. In our work, we explore

several video-level models and approaches to try and better character-

ize this field: we show different convolutional LSTM approaches and

newly unseen video-level Transformers.

• Can Transformer models reach state of the art results on video-

based deepfake detection?

Transformers are becoming the de-facto standard in NLP tasks

and in several computer vision tasks. Recently, researchers are

starting to apply them to video classification problems. In our

work, we explore different Transformer approaches, showing that

they can reach the performance of our state-of-the-art convolu-

tional LSTM models.

Chapter 5

Proposed Methods

In this chapter we describe the proposed approaches for deepfake video de-

tection and for artifacts detection.

5.1 DeepFake detection

In this section we define the employed approaches for deepfake video detec-

tion. We described the general pipeline, moving then to describe in detail

each single part of it.

5.1.1 Approach overview

Deepfake detection is a binary classification problem where given an input

video a label must be assigned to it. In our problem the labels used are

REAL (or label 0) and FAKE (or label 1). The FAKE label is associated to

deepfake videos, while the REAL label is associated to pristine videos.

As the works presented in Chapter 3 show, the best way to proceed is

depicted in Figure 5.1.

We first preprocess the input video by extracting some of the frames,

typically 30 or less is enough to get sufficient information. Afterwards, for

each frame, only the area around the face is considered. The sequence of

frames is then fed into the detector block, which can be any video-level model

like convolutional LSTMs or Transformers, which outputs the predicted label

for that specific input video.

30 Chapter 5. Proposed Methods

Figure 5.1: Scheme of the adopted pipeline.

5.1. DeepFake detection 31

5.1.2 Data preprocessing for classic deepfake detection

Before training the model, a preprocessing step is necessary. This way of

proceeding has been the go-to approach by all works described in Chapter

3, correctly balancing computational cost and accuracy, having sufficiently

informative data to learn how to correctly classify these videos.

Blazeface As [33] explains, focusing on other region of the image rather

than the faces in the video is not going to help classification performance.

This is because, in the current datasets and with the current open-source

tools available (like Face2Face, FaceSwap, etc...), the modifications are per-

formed only in the face area.

In our work we employ a face detector named Blazeface [45] with which

we are able to crop the area around the face in every frame consistently for

every video (frontal camera face detection accuracy is 0.986).

Selection of frames

We select 15 frames evenly spaced across every video in the dataset, in order

to have samples on the entire length of the videos. With this approach we

have the possibility to capture, potentially, much different head poses and

face expressions and therefore it is easier for the architectures to spot some

inconsistencies in the video.

Croppings

Here, the employed cropping are presented:

• Detection adjusted to 224 × 224 crops. For each frame, the most

confident face detection is considered; each of them, that in principle

may have arbitrary dimensions, is adapted to a region in the frame of

size 224× 224, always centered around the face.

We choose 224× 224 since it is a resolution that can be used in many

different architectures without the need of rescaling and, at the same

time, it is able to capture enough information while keeping computa-

tional time low.

32 Chapter 5. Proposed Methods

Figure 5.2: Examples of 224× 224 croppings around the face.

The adaptation is performed simmetrically, adding/removing the same

number of pixels to both sides along the x (width) and y (height)

dimensions. In the case this is not feasible (due to the fact that the

region reached the frame borders), the adaption is made such that the

cropped region is still 224×224, adding the quantity we could until the

frame border is reached and the remaining quantity to the other side.

In Figure 5.2 we can see examples of this cropping while in Figure 5.3

we show the entire sequence (15 frames) of a sample.

• Detection adjusted to 380× 380 crops. The crop generation is the

same as the 224×224 crops, but here, instead, we adapt to a larger crop

of size 380× 380. We choose this size as a comparison to the 224× 224

one since it is able to capture more information of the frames.

Examples of this cropping are shown in Figure 5.4.

• Detection with a small margin. The last cropping we propose con-

siders only the face detections given by Blazeface detector, adding a

small margin around them. The margin is computed as: margin =

0.2×detection width, where detection width is the width of the detec-

tion in terms of pixels. This quantity is simmetrically added to all 4

points of the detection. Then, for every frame, only the face detection

with highest confidence score is considered.

5.1. DeepFake detection 33

Figure 5.3: An example of 15 evenly spaced frames across one sample video, 224 × 224

croppings around the face.

Figure 5.4: Examples of 380× 380 croppings around the face.

34 Chapter 5. Proposed Methods

Figure 5.5: Mosaic of detections with small margin. As we can see the detections are

different in terms of size and therefore they need to be rescaled.

This approach generates differently sized and, in general, not squared

detections. This a key point since these images need a rescale without

keeping the aspect ratio.

Examples of this cropping are shown in Figure 5.5.

Final preprocessing

Before giving input samples to the architectures, some additional prepro-

cessing is needed. A rescaling step(to the target dimension) is required for

all the detections with small margin, while no manipulation is performed on

224× 224 or 380× 380 crops.

Furthermore, in our work, we compare and test several architecture, each

one requiring different preprocessing. The performed additional preprocess-

ings are the following:

• For the architectures with Inception-v3 as backbone, we rescale the

RGB values ([0, 255]) to the range [-1, +1];

• For the models using EfficientNetB4, augmentation as used by [29] is

needed, coming from the winner of the DFDC 1.
1https://github.com/selimsef/dfdc_deepfake_challenge

https://github.com/selimsef/dfdc_deepfake_challenge

5.1. DeepFake detection 35

5.1.3 Detection models employed

In our work, we propose different video-level techniques to perform deepfake

video detection, from the state-of-the-art methods to newly unseen ones. We

explore the utilization of convolutional LSTM networks, Video Transformer

Network and Timesformer. These last two approaches are state of the art

for video classification and therefore we wanted to further explore deepfake

detection and see what these models can bring up to the task.

Convolutional Long-short term memory

This architecture is the most commonly used to perform video-level deepfake

detection. The first convolutional part is used to extract high level features

from every single frame, while the LSTM layer is used to extract temporal

features across different frames. Then, after the recurrent part, fully con-

nected layers are used to perform classification.

Backbone employed For our work, we use Inception-V3 (as proposed

by [14]) and EfficientNetB4 (since it is one of the best performing frame-

based architectures on the DFDC dataset [29]). We decide to keep Inception-

V3 for the LSTM models although performances with EfficientNetB0 and

EfficientNetB1 are comparable.

Inception-V3

Inception-V3 is an architecture that has been presented by Szegedy et al. [46]

in 2015. It has been proposed, alongside other bigger CNN architectures,

mainly to increase efficiency during training and to keep parameter count

relatively low, which are two big bottlenecks in big data scenarios. In our

scenario, this comes particularly useful since we have to deal with up to

100,000 videos and more than 1 million images every training, so training

time is definitely the bottleneck we need to take care of in our work.

Inception-V3 in newer version of the original Inception network [47]. The

basic idea behind the original architecture is to try and optimize in terms of

parameters (and therefore in terms of computational time) large n×n convo-

lution and, at the same time, propose a way to apply different convolutional

filters (1 × 1, 3 × 3, 5 × 5) to the same input volume. Large convolutional

36 Chapter 5. Proposed Methods

Figure 5.6: Base module of the Inception architecture. Multiple units of this module are

used in the network. Image taken from [47].

filters are better since they are able to capture more dependencies, since they

capture a larger area of the image, but at the same time they require a lot

more parameters and the computation becomes a bottleneck.

The basic building block of the Inception network is shown in Figure 5.6.

In [46] a further optimization has been proposed, which consist in factor-

izing large convolution into smaller convolutions and thus obtaining another

parameter reduction. For example, if we consider a 5×5 convolutional filter,

that can be reduced to a sequence of 2 layers with 3× 3 convolutional filters,

which in the end obtain the same result as 5×5 convolutional filters but with

28% less parameters. More in general, we could factorize n×n convolutional

filters with n×1 filters followed bu 1×n filters. An example scheme is shown

in Figure 5.7. This approach, as [46] says, has been proven to be particularly

successful with medium sized input volumes (width/height between 12 and

20, and using 7× 7 convolutions).

EfficientNetB4

EfficientNetB4 is a CNN of the family of the EfficientNet networks [48]. This

group of architectures is composed of several models, scaling in complexity

and number of parameters, from EfficientNetB0 to EfficientNetB7 (recently

an EfficientNetB7-v2 has been released). EfficientNet architectures have been

5.1. DeepFake detection 37

Figure 5.7: Improved base module to perform n × n convolutions of the Inception archi-

tecture, used in Inception-V2 and Inception-V3. Image taken from [46].

Figure 5.8: Architecture scheme of the EfficientNetB0 network.

studied in order to correctly balance number of parameters, computation

and performance, demonstrating how they can simply build a network that

is scalable without dropping the performance. In Figure 5.8 we can observe

EfficientNetB0, the most basic EfficientNet architecture.

Proposed architectures

The proposed Convolutional LSTM architectures are 2:

• Inception-V3+LSTM, with Inception-V3 pretrained on Imagenet. This

architecture has 35 millions parameters. It receives an input in RT×W×H×3,

where T are the number of frames, W is the image width and H is

the image height. Every frame (dimension W × H × 3) is fed into a

38 Chapter 5. Proposed Methods

shared-weights Inception-V3. Since Inception-V3 is fully convolutional,

it can accept any kind of input-shape, but we mainly tried 224 × 224

and 380 × 380 resolutions. Inception-V3 generates a feature volume

of F × F × 2048, where F is the dimension of the feature maps that

depends from the input resolution used (5 for 224 and 7 for 380). The

feature volume is too big to be directly fed to the LSTM. We initially

tried giving the entire embedding to the LSTM but the model was not

able to learn and we rapidly discarded this approach. Therefore, we opt

for a Global Average Pooling layer (GAP) in between the CNN and the

recurrent part. Like this, we are able to shrink the embedding vector

dimension to ”only” 2048, which is still big, but affordable. Models are

able to learn with this approach and therefore no further dimensional-

ity reduction is needed. The 2048-feature vector for each frame is then

fed into the 2048-unit LSTM layer (with a 0.3 chance of dropout). The

last hidden state on the LSTM, namely the one obtained after the last

frame iteration, is fed into a fully connected layer of 1000 units with a

tan-h activation function. The last layer is the classification layer and

has 2 units and a softmax activation function. In figure Figure 5.9 an

example scheme of the network is presented;

• EfficientNetB4 + LSTM, with EB4 weights taken from [29] (pretrained

on DFDC), and EB4 backbone being frozen during training. The input

of this network is still in RT×W×H×3, where the single frames are fed

into a shared-weights EfficientNetB4. EB4 accepts 224 × 224 input

resolutions, and generates a feature vector (already passed through a

GAP layer) of 1792 units for each frame. The input of the recurrent

layer is 1792 × T , where T is the number of frames we used for the

training (in this case 15). The remaining part of the network is the

same as the one described for the Inception-V3 case.

Transformers

Transformer architectures have not been widely explored for deepfake de-

tection task, and therefore, in our work, using the DFDC dataset (100k

videos) [49], we test some of these networks. For our work, we propose two

5.1. DeepFake detection 39

Figure 5.9: Scheme of the convolutional (inception-V3) LSTM architecture used for 224×
224 crops.

40 Chapter 5. Proposed Methods

video-level state-of-the-art architectures: Video Transformer Network [4] and

Timesformer [5].

Video Transformer Network This architecture is taken from a github

repository2 and can be seen as a revisitation of the Convolutional Vision

Transformer. Neimark et al. [4] used this type of architecture in their recent

work. The github repository does not aim at reproducing the paper (also

since the code was released far before [4] came out) but can be seen as an

implementation of it.

Thea architecture takes as input N RGB frames with the dimension of

224×224. The network is composed of two parts: the feature extraction part

and the self-attention module. In [4] they have opted for different feature

extraction methods, such as ResNet or other self-attention models like the

Vision Transformer. In our work we opt for Resnet50 (using the original code)

and EfficientNetB0, pretrained on Imagenet. We choose EfficientNetB0 since

it is a small, well-performing architecture.

After the feature extraction of every single frame, the positional embed-

ding is computed and added to the embedding of every frame. Everything

is then fed to the self-attention modules (Multi-Head attention). The MHA

module has 16 parallel heads and 3 consecutive modules to compute the en-

coding. Every module encoding is used to compute the final encoding, using

the encoding from the previous MHA layer as the new query vector for the

next encoder, while V and K vectors remain the same across all the passages.

The middle frame initial embedding is used as query value Q.

Every frame embedding is split into 16 parts (1 per each head) in order to

speed up the training process. At the end of the encoders, all the computed

attentions are concatenated once again and normalized. To finally perform

classification, a fully connected layer (1024 units down to 1) with the sigmoid

activation function is employed in order to classify the input as REAL or

FAKE.

A scheme of the architecture is shown in Figure 5.10.

Timesformer The second architecture is the Timesformer [5]. The archi-

tecture presented in the paper is an attempt of completely getting rid of the

2https://github.com/ppriyank/Video-Action-Transformer-Network-Pytorch-

https://github.com/ppriyank/Video-Action-Transformer-Network-Pytorch-

5.1. DeepFake detection 41

Figure 5.10: Scheme of the Video Transformer Network architecture used for 224 × 224

crops.

42 Chapter 5. Proposed Methods

Figure 5.11: Different types of attention, as shown in [5]. In our work we use divided

space-attention.

feature extraction part, replacing it with a spatial self-attention instead.

The architecture takes as input N RGB frames (in our case 8) with the

dimension of 224 × 224. Every frames is then divided into patches of di-

mension P × P (where P is an hyperparameter, in our case it is equal to

8). Every patch is then associated with a learnable embedding composed of

a learnable matrix and a positional embedding. These embeddings are then

fed to the encoder, which is composed of N encoding blocks. Each one of

these computes the Q, K, V values for the next encoding block.

Different attention types have been proposed in the paper: spatial only,

divided space-time, joint space-time, sparse local-global attention and Axial.

An example to better clarify which are the involved patches in every type

of attention is shown in Figure 5.11. For our work, we propose divided

space-time (Figure 5.12), as a good trade-off between computational time

and accuracy.

For this architecture, or, more in general, for these very big Transformer

architectures, fine-tuning is fundamental in order to achieve decent perfor-

mances. Indeed, we are forced to choose 8 frames since it is the only feasible

fine-tuning, in terms of space and time constraints. In our work we show

the results of Timesformer on the DFDC dataset, pretrained on Kinetics-600

5.2. Artifacts detection 43

Figure 5.12: Scheme of the self-attention module employed. z is the embedding vector.

The embedding vector at encoding layer l-1 is used to compute the input to the next

encoding layer l. Image taken from [5].

[50] dataset, one of the best dataset for action recognition.

5.2 Artifacts detection

Artifacts detection is something that has been widely explored to spot deep-

fakes. On the other hand, video-level artifacts have not been studied in

depth and no work has yet tried to explicitly spot these artifacts in videos.

A big problem towards this direction is the lack of available datasets to train

models to detect such inconsistencies.

Therefore, our aim is to collect new data on deepfakes regarding these

inconsistencies and to propose a way to spot some of them.

5.2.1 Approach overview

Artifacts detection is a more general multi-class classification problem where

given an input video one label must be assigned to it. In our problem the

labels are defined by different classes of inconsistencies that may occur in

videos. The assigned label is one of the following errors if detected, or NOTH-

ING if no error is detected. The video can still be FAKE, nevertheless here

we are aiming at spotting video-level artifacts. All the inconsistencies are

concerning the face area, since the video manipulation occurs only in that

area. These inconsistencies are due to the fact that the deepfake generation

occurs frame-by-frame and no post-processing to correct it is performed.

Our approach is based on the fact that videos on the Internet show these

kind of artifacts. This hypothesis is fair because, as stated in Chapter 1,

44 Chapter 5. Proposed Methods

most of the uploaded videos are forged using the same cheap open source

tools which generate not very convincing deepfakes.

5.2.2 Artifacts definition

Analysing videos from the DFDC dataset, we have come up with several

artifacts labels. In this section, we introduce them.

Flickering The ”flickering” phenomenon can be described as a sequence

of consecutive frames across which some face traits abruptly change. This

phenomenon happens for two causes:

• deepfake generation occurs frame-by-frame;

• the face detector fails at recognizing the face in the image. This may

happen because the person is too far away from the camera, the video

is too dark or the face is turned.

A peculiarity of flickering is that it does not have a particular pattern, there-

fore it means that there can be flickering across the whole video or in just

a couple of frames. Examples of flickering are shown in Figure 5.13 and

Figure 5.14.

Figure 5.13: Example of the flickering effect in three consecutive frames. Here the effect

is pretty strong and noticeable, even frame-by-frame. In the middle frame we can see how

the deepfake generator has failed in detecting the face and therefore in generating the

modified face for that frame. Sample taken from the DFDC dataset.

Obfuscated Face There are several videos where the deepfake generation

process has made some mistakes and therefore we may have sequences of

5.2. Artifacts detection 45

Figure 5.14: Another example of the flickering effect in 20 consecutive frames. We can

notice how the beard and eyebrows change throughout the sequence. Sample taken from

the DFDC dataset.

frames where the face is completely obfuscated. An example is shown in

Figure 5.15.

Color Inconsistency The color inconsistency phenomenon occurs where

the deepfake generation has created a facial area with inconsistent colors

with respect to the rest of the face. An example is shown in Figure 5.16.

Face Proportion Inconsistency The face proportion inconsistency is due

to not perfect deepfake generation, where the deepfake generation creates

inconsistencies (also across multiple frames) in the proportions of the face

traits. An example of this may be a nose too big or eyes too small. A sample

frame is shown in Figure 5.17.

Irregular facial traits This category is constituted by all the videos where

the deepfake generation procedure has crafted faces with non-natural facial

46 Chapter 5. Proposed Methods

Figure 5.15: Example of an obufuscated face sample. Sample taken from the DFDC

dataset.

Figure 5.16: Example of a sample with color inconsistency. We can see how the color in

the eye area is different from the rest of the face. Sample taken from the DFDC dataset.

traits. An example of this maybe a person with double-mouth, clearly arti-

ficial traits and so on. An example is shown in Figure 5.18.

Glasses Inconsistency This category is constituted by all the videos in

which there are inconsistencies in the glasses. Since the face manipulation

is performed in the face region, this generates inconsistencies in the glasses

5.2. Artifacts detection 47

Figure 5.17: Example of a sample with wrong proportions. Here we can notice that the

nose is too big with respect to the rest of the face. Sample taken from the DFDC dataset.

Figure 5.18: Example of a sample with irregular facial traits. We can see the chin area

being clearly irregular in terms of color and shape (this sample could also be labeled as

color inconsistency). Sample taken from the DFDC dataset.

arms which are missing in most of the videos where the face swapped has

glasses and the original does not. An example is shown in Figure 5.19.

48 Chapter 5. Proposed Methods

Figure 5.19: Example of a sample with glasses inconsistency. Here we can see how the

glasses arms are clearly missing. Sample taken from the DFDC dataset.

5.2.3 Flickering detection

In our work we decide to detect flickering in videos. We make this choice

since this inconsistency can be, to a certain extent, synthetically replicated.

Using the synthetic dataset as ground truth, we train our video-level models.

The employed pipeline is the same as the deepfake detection one, the only

differences are:

• training data is taken from our synthetic dataset (which will be further

explained in Chapter 6);

• the final label is one between FLICKERING/NO FLICKERING.

Frame selection We select 30 consecutive frames (randomly sampled from

the entire sequence of frames) for each sample, considering that the flickering

effect needs to be spotted across multiple consecutive frames. We use 30 and

not 15 frames because we want to have a larger time span covered by a single

sequence, in order to better identify the effect.

Detection model employed We opt for the same conv-LSTM architec-

ture with Inception-V3 used for deepfake detection, since it is the most suc-

cessful approach.

5.2. Artifacts detection 49

Final preprocessing As for deepfake detection, the only preprocessing

needed is the rescale of RGB values in the [-1,+1] interval.

50 Chapter 5. Proposed Methods

Chapter 6

Datasets and Web Interface

In this chapter we describe the off-the-shelf employed dataset, our flickering

dataset generation and the Web Interface.

6.1 Off-the-shelf employed dataset

The dataset used for this work is the DeepFake Detection Challenge Dataset

(DFDC) [49], a dataset that was used for the homonymous challenge on

Kaggle. We choose it since for our work we need videos and the DFDC is

the only one that had enough video samples to work with. Currently this is

the biggest deepfake dataset, composed of more than 100,000 videos about

10 seconds long; every video has a frame-rate of 30 fps, for a total of more

than 10 millions frames in the dataset. For our task we only use the training

part of the dataset composed of 119,154 clips (RGB frames), most of them

with a resolution of 1920x1080. The clips are divided into 50 folders which

are organized in actors such that the same actor only ends up in one of the

folders. In each of the 50 directories, there are multiple pristine videos with

their respective deepfakes generated.

We split the dataset into training, validation and test set: the split is

respectively 60%, 20% and 20%. We propose these percentages because the

dataset is big enough to have sufficient data for training even with only 60%;

at the same time, it allows us to have more test data, meaning that we

can obtain a more accurate estimate of the generalization performance of

our models. We take folder from 1 to 30 as training set, from 31 to 40 as

52 Chapter 6. Datasets and Web Interface

validation set and from 41 to 50 as test set. We choose this split in order to

have videos with the same actor in the same set, thus avoiding overfitting.

Indeed, at first, we tried splitting every single folder in train/validation/test

and that resulted in a strong overfitting on the test data, since we were using

very similar data for training, validation and testing.

The deepfakes in this dataset are generated using some of the state of the

art methods: DFAE, MM/NN face swap [51], Neural Talking Head (NTH)

[52], FaceSwap-GAN, StyleGAN.

6.2 Flickering dataset generation

For flickering detection, we need a ground truth in order to train our su-

pervised models. Therefore, we employ the DFDC dataset (split as previ-

ously described) to build a training and validation set. The main idea of

the synthetic dataset is to replicate flickering by forcing abrupt changes in

consecutive frames of a video. The problem remains a binary classification,

but there is no REAL/FAKE classification; instead we have a FLICKER-

ING/NO FLICKERING distinction to detect.

Before talking about the dataset generation we need to define what is an

‘original’ video. Given a video labeled as fake, we call ‘original’ the video

from where the deepfake is generated. The dataset already provides this

information, making things easier for us.

To generate samples, different approaches are considered whether we are

dealing with a fake video or a pristine video. We process all the training and

validation samples one at a time and we proceed like this:

• if it is a pristine video, we discard the current sample;

• if it is a fake video, then at first we check if the ‘original’ video has

already been processed;

– if it has been processed, then a choice has to be made and with a

Bernoulli probability of 0.5 the sample is chosen to be FLICKER-

ING or NO FLICKERING. If it should be a no flickering sample,

then the video is discarded, since it would be equal to another

no flickering one with the same video as ‘original’;

6.2. Flickering dataset generation 53

– if it has not been processed, with a Bernoulli probability of 0.5

the sample is chosen to be FLICKERING or NO FLICKERING.

If it is a no flickering sample, its ‘original’ is marked as processed.

Flickering samples A flickering sample is generated considering a fake

video and its ‘original’ one. The same sequence of frames in both videos is

processed and cropped. Then, the flickering series is generated. Sequence

starts from t0, the initial frame, to tf , the final frame, where tf − t0 is

equal to 30. For every i from t0 to tf , with a Bernoulli probability of 0.5, a

sample is selected either from the fake or the ‘original’ sequence of frames.

Following this selection process, abrupt changes in facial traits are forced

between consecutive frames. We can see, in Figure 6.1, examples of synthetic

flickering sequences.

No Flickering samples These samples are ‘original’ videos from the DFDC

dataset.

With this approach the training dataset contains 25940 flickering sam-

ples and 4940 no flickering samples. As we can see, the dataset is highly

unbalanced towards the flickering class.

6.2.1 Stable videos

The reason why we define and use this category of videos is to avoid having

flickering samples with uncontrolled abrupt changes, which could happen

when the face detector recognizes something other than the face in the video

or there are multiple people and therefore the face detector does not always

detect the same person throughout a sequence. In order to define what a

stable video is, we need to specify some useful values.

We denominate the average detection width of the video as the average

of the width of the detections of the considered frames:

avg width =

∑T
i=1(xmax[i]− xmin[i])

T
(6.1)

where T is the number of frames considered, xmin[i] is the smallest horizontal

position of all detection pixels of the i-th frame considered and xmax[i] the

54 Chapter 6. Datasets and Web Interface

highest horizontal position.

In the same way, but for the height, we defined the average detection height:

avg height =

∑T
i=1(ymax[i]− ymin[i])

T
(6.2)

where ymin and ymax refer to ordinates.

We define the average width point and the average height point of a video,

with T frames considered, as follows:

avg width point =

∑T
i=1

∑xmax[i]
j=xmin[i]

j∑T
i=1

∑xmax[i]
j=xmin[i]

1
(6.3)

avg height point =

∑T
i=1

∑ymax[i]
j=ymin[i]

j∑T
i=1

∑ymax[i]
j=ymin[i]

1
(6.4)

here the denominator corresponds to the count of the number of total pixels

considered across the entire video.

We define other two quantities: the width standard deviation and the

height standard deviation. The width standard deviation is defined as the

std dev of of the x coordinates of the detection of all the frames, with respect

to the average width point. The same holds for the height standard deviation,

but considering y coordinates.

Finally, we define two ratios, one for the height and one for the width, as

follows:

width ratio =
std dev width

avg width
(6.5)

height ratio =
std dev height

avg height
(6.6)

We define a video as stable if both ratios are smaller than 0.5. Using

this definition of stable video, we discard videos that are not stable for the

training, and subsequently, for the validation and test. In particular, for the

synthetic flickering samples we discard the sample if either the fake video or

its ‘original’ one are not stable. The threshold value 0.5 has been tested to

be a good trade-off between keeping enough videos and their stability.

For stable samples instead, the region cropped is fixed for all its frames

and it is a 224 × 224 crop adapted simmetrically from the avg width point

6.2. Flickering dataset generation 55

and the avg height point. In Figure 6.1 we can see two examples of stable

synthetic flickering samples.

Figure 6.1: Example of synthetic flickering stable videos.

56 Chapter 6. Datasets and Web Interface

Flickering test set In order to build a small ground truth for testing, we

randomly sample 200 stable videos from the test set directories of the DFDC

dataset(split as described before). Ninety percent of videos we randomly

select are fake and ten percent pristine. We use this split since the flickering

effect we want to detect is only present in fake videos. We manually label

these samples ourselves in order to test our models.

6.3 Deepfake Artifacts Dataset generation via

Web Interface

A problem we face in our work is the lack of labeled datasets on inconsisten-

cies.

A first attempt to address this problem is made with our synthetic dataset

generation, where we artificially force flickering in videos. Labels regarding

artifacts have been described in Chapter 5, where we have defined every

single category providing examples of them.

A second attempt is made by showing a Web Interface we develop to

users, where they are required to see clips and to try and label them the

best they could. Finally, the annotation collected via the Web Interface are

employed to assess performance of our flickering detection models, as we will

explain in Chapter 7.

6.3.1 Web Interface

The Web Interface we use to interact with users is coded using HTML5,

CSS, Javascript and JQuery. We extensively make use of the Bootstrap

library (version 4.0), a very useful and high-level library that helps with the

management of forms and elements positioning in websites.

The interface is composed of two pages, one for the introduction and the

second one for video annotations. Furthermore, the interface has 2 versions,

Italian and English, to allow usage as much as possible.

6.3. Deepfake Artifacts Dataset generation via Web Interface 57

Figure 6.2: Screen from the introduction page. Here we can notice the brief text intro-

duction for the user and some examples shown of the flickering effect. The pictures are

autoplaying videos.

Introductory page

The first page is a welcome page. It briefly introduces the users to the

deepfake concept and to the threats related to these videos. It then clarifies

to the user what is the purpose of our work (artifacts detection) and proceeds

in showing users different examples of the labels we want to collect. A screen

of a portion of the page is shown in Figure 6.2.

Annotation page

As we can see from Figure 6.3, the page shows a short clip on the left, which

is autoplaying and muted by default. Users can control the video with classic

controls.

Since sometimes the faces are quite small and the inconsistencies may not

be easily noticeable, we add a zoom functionality (Figure 6.4) that shows the

user the video zoomed on the face region. This functionality, as several users

reported, is very useful in labeling some videos.

On the right side of the page there is a single, multiple choice question.

58 Chapter 6. Datasets and Web Interface

The question asks the user to report what types of artifacts (if any) are

present in the video. The answers are the types of artifacts presented in

Chapter 5 with an additional ”Other” answer. This answer is a custom one,

where users can type whatever error/inconsistency they notice that is not

captured by the previous categories. When the user finishes answering the

question, he can confirm his selections and go to the next video.

Examples of possible answers are shown in Figure 6.5 and Figure 6.6.

Figure 6.3: Screen of the annotation page.

Figure 6.4: Example of the zooming functionality.

Dataset used

To collect annotations we use the DFDC test set, according to the directory

split described before. From every folder, we take 20 fake videos and 2 pristine

6.3. Deepfake Artifacts Dataset generation via Web Interface 59

Figure 6.5: Example of a possible answer on a flickering video with obfuscated face. Answer

taken from the collected annotations.

Figure 6.6: Example of a possible custom answer. Answer taken from the collected anno-

tations.

60 Chapter 6. Datasets and Web Interface

videos. Every video is then split into two 5-seconds chunks, for a total of

400 fake chunks and 40 pristine chunks in the dataset. This split is done to

show users shorter clips in order to make answering easier and less bothering.

Every considered video is a stable video, following the definition explained

above, given that we want to remove wrong face detections in zoomed videos.

Chapter 7

Experiments

In this chapter we explain the performed experiments on deepfake detec-

tion and on flickering detection. Finally, we report some statistics on the

annotations collected via the Web Interface we have developed.

7.1 Deepfake detection

In this section we evaluate and compare our proposed approaches on deepfake

detection.

7.1.1 Training setup

In this subsection we describe the framework employed to train the models

shown in Chapter 5. Considering the vast amount of offered libraries for

deep learning and its flexibility, we use Python as a programming language

for our work (version 3.6.0).

LSTM training

For the convolutional LSTM models we opt for the use of the Tensorflow

framework (version 2.3.0). In particular, we decide to use Keras to build and

train our models, due to its understandability and easiness of use. To prepare

the dataset as input to the models we use some Tensorflow libraries to adapt

the models to our problem. In particular, we use them to create our own

dataset generator. The most successful trainings (other hyperparameters

62 Chapter 7. Experiments

were tried but with less success) use a batch size of 4, a learning rate of

10−4 and Adam as the optimizer. Since it is a classification problem and the

softmax is used to classify the data, we choose the sparse categorical cross-

entropy as the loss function. Given the large quantity of data available and

the fact that the dataset is highly unbalanced, 15 epochs are enough to make

most of the models overfit. The validation step is performed at the end of

each epoch. No cross-validation is performed, given the size of the dataset.

Transformers training

For Transformers architectures (Timesformer and Video Transformer Net-

work) we use the Pytorch (version 1.9.0) framework. We decide to change

the framework given the high number of parameters of these architectures

and the huge training time these architectures require. Indeed, Pytorch offers

a more optimized training when dealing with huge quantity of data and big

models, saving a considerable amount of time.

The most successful training use a batch size of 2 (more was not possible

due to memory constraints), a learning rate of 10−4 and Adam as the opti-

mizer. Here we opt for a sigmoid activation function and, subsequently, for

the binary cross-entropy with logits loss as a loss function.

Even with these models, 15 epochs are enough to make them overfit. The

validation step is performed at the end of each epoch.

7.1.2 Evaluation metrics

The same preprocessing applied to the training set (as described in Chap-

ter 5) is performed on the test samples before evaluation. The sequence of

cropped frames is fed as input to a trained model (with the lowest validation

loss checkpoint) which predicts class scores.

The metrics we select to evaluate performance are: accuracy, balanced

accuracy and area under the curve. We compute these metrics on the test

set, following the split defined in Chapter 6.

7.1. Deepfake detection 63

Accuracy

The accuracy of a model is the percentage of samples correctly classified with

respect to the total number of samples:

Accuracy =
TP + TN

N
(7.1)

where TP are the True positives (fake samples correctly classified), TN are

the true negatives (pristine samples correctly classified) and N is the total

number of test samples.

Balanced Accuracy

The balanced accuracy (or average recall) is a metric that is really important

in our study since our training dataset is highly unbalanced. This quantity is

defined as the average between sensitivity (or True Positive Rate or Recall)

and specificity (or negative Recall). These values are defined below:

TruePositiveRate = TPR =
TP

TP + FN
(7.2)

Specificity = Negative Recall =
TN

FP + TN
(7.3)

Balanced Accuracy =
TPR + Specificity

2
(7.4)

where FN are the False Negatives (fake samples classified as REAL) and FP

are the False Positives (pristine samples classified as FAKE).

Area Under the Curve(AUC)

The area under the curve is the area below the ROC curve. The ROC curve is

defined by True Positive Rate and False Positive Rate computed at different

classification thresholds. Here we define False Positive Rate, while the True

Positive Rate has been defined above.

FalsePositiveRate = FPR =
FP

FP + TN
(7.5)

7.1.3 LSTM performance comparison

In the following section we present the results related to the Inception-

V3+LSTM model (described in Chapter 5) trained with different approaches.

64 Chapter 7. Experiments

The effect of rescaling

In this section, two different preprocessings, differing in the rescaling part,

are compared:

1. 224×224 crops, centered around the face, no rescale and augmentation

performed;

2. face detection crops with a small margin, rescaled to 224× 224.

In Table 7.1 we can notice the difference in the performance.

Preprocessing Accuracy Balanced accuracy AUC

1 0.911 0.864 0.952

2 0.88 0.82 0.92

Table 7.1: Performance metrics of the two approaches using the same architecture (conv-

LSTM-IV3) but with different rescaling.

As an additional experiment and following the ICPR work [29], we tried as

cropping approach to only consider for each frame a squared region containing

only the face detection, with no added margin, and rescaling it to 224× 224,

but the approach did not help improving classification accuracy with LSTMs.

Crop size choice

In this section, two different preprocessings, differing in the crop size, are

compared:

1. 224× 224 crops, centered around the face, no rescale and no augmen-

tation performed;

2. 380× 380 crops, centered around the face, no rescale and no augmen-

tation performed.

In Table 7.2 we can notice the difference in the performance.

Frame selection approaches comparison

In this section we show the comparison between two approaches. They both

use the most successful preprocessing: 224 × 224 crops centered around the

face, no rescale and augmentation performed. The difference is the number

of frames per video selected:

7.1. Deepfake detection 65

Cropping Accuracy Balanced accuracy AUC

224× 224 0.911 0.864 0.952

380× 380 0.90 0.82 0.93

Table 7.2: Performance metrics of the two approache using the same architecture (conv-

LSTM-IV3) but with different crop sizes.

1. 15 evenly spaced frames across the video;

2. 30 evenly spaced frames across the video.

In Table 7.3 we can notice the difference in the performance.

Frames used Accuracy Balanced accuracy AUC

15 0.911 0.864 0.952

30 0.88 0.77 0.90

Table 7.3: Performance metrics of the two approaches using the same architecture (conv-

LSTM-IV3) but with different selected number of frames.

As an additional experiment, we tried using 45 or more frames but the

performances dropped considerably, therefore results are not shown.

Another frame selection approach we thought could help was trying and

considering 30 consecutive frames per video. In theory, if there is an inconsis-

tency, like flickering, it should contain it. The problems with this approach

are mainly 2:

• the probability of catching an inconsistency while cropping in that re-

gion is quite low, since inconsistencies are random in the video and we

do not know a priori if there is one in the video;

• in 30 consecutive frames (corresponding to more or less 1 second) the

face does not move too much, therefore we are not catching enough

information to maybe catch pixel differences in the frames.

Trainings indeed showed no improvement in classification accuracy and

therefore we discarded this approach.

The effect of balancing the dataset

In this section we show the comparison between two approaches. They both

use the most successful preprocessing: 224 × 224 crops centered around the

66 Chapter 7. Experiments

face, no rescale and augmentation performed. The difference is the training

set used:

1. full training set as described above, so DFDC dataset folders from 1 to

30;

2. DFDC training set, with downsampling of the FAKE samples (tak-

ing more or less 30% of the FAKE samples), in order to have a more

balanced dataset.

In Table 7.4 we can notice the difference in the performance.

Dataset Accuracy Balanced Accuracy AUC

Full 0.911 0.864 0.952

Balanced 0.89 0.884 0.956

Table 7.4: Performance metrics of the two approaches using the same architecture (conv-

LSTM-IV3) but with different training set.

As an additional experiment, we tried to oversample the REAL class by

taking more sequences from the same video, but since the sequences are very

similar in several cases, this resulted in overfitting in the training set and

therefore results were not worth showing.

Furthermore, as we will show later in this chapter, we can notice how

downsampling helps with the recognition of pristine samples by making the

training dataset more balanced. At the same time though, having less train-

ing samples makes the classifier less accurate.

7.1.4 Transformer performance comparison

In the following subsection we discuss about the Transformer approaches we

have tested.

Video Transformer Network

Since the 224 × 224 crop is the best performing approach on convolutional

LSTMs, we decide to employ this preprocessing to Transformers architectures

too.

We first propose the VTN with Resnet50 as feature extractor (as in the

original code). Then, as a comparison, we change the backbone, selecting a

7.1. Deepfake detection 67

small but effective network (since we had memory limits with other architec-

tures): EfficientNetB0. Metrics are shown in Table 7.5.

As an additional experiment, we tried changing VTN hyperparameters,

like the number of heads, obtaining comparable performances with the one

shown in Table 7.5.

Backbone Accuracy Balanced Accuracy AUC

Resnet50 0.905 0.846 0.930

EfficientNetB0 0.901 0.897 0.965

Table 7.5: Performance metrics of the two best versions of the Video Transformer Network

(VTN)(16 heads), with different backbones.

7.1.5 Deepfake detection architectures performance study

Here we present and compare the test performances of the architectures

shown in Chapter 5. We decide to show these approaches since they are

the best performing ones for all the proposed models. The approaches ex-

amined are:

1. convolutional LSTM (IV3 pretrained of Imagenet), 224×224 crops, no

rescale no augmentation, end-to-end training, 15 frames;

2. convolutional LSTM (IV3 pretrained on Imagenet), 224×224 crops, no

rescale no augmentation, smaller balanced dataset, end-to-end training,

15 frames;

3. convolutional LSTM (EB4 pretrained of DFDC dataset), 224 × 224

crops, no rescale, augmentation, EfficientNet frozen during training, 15

frames;

4. Video Transformer Network (EB0 pretrained on Imagenet), 224× 224

crops, no rescale no augmentation, end-to-end training, 15 frames;

5. Timesformer (pretrained on Kinetics-600), 224 × 224 crops, 8 frames,

no rescale no augmentation. end-to-end training.

The metrics computed for every approach are shown in Table 7.6.

68 Chapter 7. Experiments

Approach Accuracy
Balanced

accuracy
AUC

conv-LSTM-IV3 0.911 0.864 0.952

conv-LSTM-IV3-balanced 0.897 0.884 0.956

conv-LSTM-EB4 0.905 0.845 0.93

VTN-EB0 0.901 0.897 0.965

Timesformer 0.83 0.65 0.85

Table 7.6: Performance metrics of the proposed models.

Predictions study

Figure 7.1: Confusion matrices of conv-LSTM-IV3 approaches. On the left we can see the

approach with complete dataset training, while on the right the approach with balanced

dataset training.

Figure 7.2: Confusion matrices of the VTN-EB0 approach, on the right, and of the conv-

LSTM-EB4 approach, on the left.

7.1. Deepfake detection 69

Figure 7.3: Confusion matrix of the Timesformer approach.

From Table 7.6 we can notice how convolutional LSTM (with Inception-V3 as

backbone) and Video Transformer Network (with EfficientB0 as backbone)

outperform any other proposed model/approach. In Figure 7.6 and Figure 7.5

we show the histograms of these models prediction for all test samples.

As we can see from the confusion matrices and the histograms of the

predictions, every model performs very good on fake samples, classifying

them with a pretty high score (most of the FAKE predictions are values

close to 1). This has to be expected, given the imbalance of the training

dataset. The VTN Transformer performs the best among our models on

pristine samples, considering the balanced accuracy and the AUC, even if it

is trained on the full dataset. We can appreciate this performance by having

a look at the confusion matrix (Figure 7.2) and at the histogram (Figure 7.6).

The convolutional LSTM models perform better on fake videos but worse on

reak ones, even with the balanced dataset.

We can see in Figure 7.1 and in Figure 7.5, how balancing the dataset

helps in better recognizing pristine samples for the conv-LSTM architecture.

Timesformer model performs very well on the fake samples while the

accuracy on pristine samples is very low (Figure 7.3).

In Figure 7.4 we can observe the ROC curves of the models presented.

Calibration plots

It is useful, in order to evaluate our models, to evaluate how well models are

calibrated.

Formally, a model is perfectly calibrated if, for any probability value p,

70 Chapter 7. Experiments

Figure 7.4: ROC curves of the 5 best deepfake detection approaches.

a prediction of a class with classification score p is correct 100 ∗ p% of the

times [53]. As an example, if we consider the samples classified with a score

of 0.30 by a perfectly calibrated classifier, then 30% of those samples belongs

to class 1.

The calibration curve shows the calibration of a classifier. Given a series

of bins (intervals), for every bin (prediction score) the percentage of samples

of class 1 is computed. The curve obtained by connecting the dots is the

calibration plot and can be compared to the perfect calibration plot which

represents a perfect linear relationship. If a plot is below the perfect calibra-

tion curve it means that the model is under confident on the classification

score, so there should be more samples classified as class 1; viceversa, when

the plot is above the perfect calibration curve.

Here we show the calibration plots of the best 3 models: convolutional-

LSTM-IV3, convolutional-LSTM-IV3-balanced, VTN-EB0. As we can see

from Figure 7.7, the overall better calibrated model is the conv-LSTM with-

out balanced dataset training. It is much better calibrated than the other

models in the scores smaller than 0.5. This is maybe due to the fact that this

model is very good in classifying fake samples, also with respect to the other

models (as we can also see from the confusion matrices in Figure 7.1 and

Figure 7.2). On the other hand, the conv-LSTM approach is worse on the

7.1. Deepfake detection 71

(a) Histogram of the predictions for convolu-

tional LSTM with Inception-V3, full dataset,

224× 224 crops.

(b) Histogram of the predictions for convo-

lutional LSTM with Inception-V3, balanced

dataset, 224× 224 crops.

Figure 7.5: Histograms of conv-LTSM architectures.

higher probabilities. This is somewhat expected, since the model performs

much worse on the pristine samples, classifying several samples as fake with

high confidence. Given these considerations and the fact that the test set is

imbalanced towards the fake class, it seems reasonable that the conv-LSTM

curve is the best.

7.1.6 Frame-level models comparison

Unfortunately, video-level models are not yet competitive with frame-based

detectors, at least in the DFDC dataset. This conclusion was also reached by

Selim Sef, winner of the Deepfake Detection Challenge, obtaining good results

on solely EfficientNetB4 and EfficientNetB7. Some metrics performances

obtained by the ICPR work [29] are written in Table 7.7. The crops described

Frame-based classifier Balanced accuracy AUC

EB4, 224× 224 crops 0.888 0.956

EB4, 380× 380 crops 0.929 0.978

EB7, 224× 224 crops 0.926 0.976

Table 7.7: Frame-based classifier results of the ICPR work [29].

72 Chapter 7. Experiments

Figure 7.6: Histogram of the predictions for the Video Transformer Network with EB0,

full dataset, 224× 224 crops.

in the table are not the regions extracted from the frames but they are squares

containing the face detection with no additional margin then rescaled to the

desired dimension. The obtained results are at video level, where the video

label is obtained by majority voting of its frame labels. This approach is

Figure 7.7: Calibration plots of the best 3 models. On the x axis, the prediction score and

on the y axis the true probability. The number of values considered per each plot is 20.

7.2. Flickering detection 73

overall better with respect to aggregating frame features via LSTM or any

other video-level model we propose, but this discrepancy in performance

should not mislead.

In the frame-based approaches only a single frame is considered at a

time, allowing use of traditional CNN architectures to extract features and

classify. Furthermore, frame-based models are trained on potentially millions

of different samples, since multiple frames from the same videos can be used

as different samples. Let us suppose we take 10 frames from each video in the

DFDC, we have almost 1 million samples for an EfficientNetB4 architecture.

Video-based approaches are more challenging. The de-facto standards

(also what works best for us) are architectures based on feature extraction

and recurrency. The aim of these architectures is to try and spot very little

pixel discrepancies across frames. This task is not trivial, since what is fed to

the LSTM layer are not the frames themselves but their high-level features.

To tackle this problem, as an additional experiment, we tried to directly fed

raw images to the LSTM layer but we obtained poor results.

Another potential problem for these architectures is the considerably

lower size of employed datasets. For video-level classification, only a sin-

gle sample for each video must be considered in order to avoid overfitting. If

we consider the DFDC dataset (which is the largest available deepfake video

dataset) we only have almost 120,000 samples, which is not nearly enough

to what is needed to solve the complex problem we are facing and to make

models learn properly.

7.2 Flickering detection

In this section we report the results of our best models on the synthetic

flickering detection.

7.2.1 Test samples labeling

In order to label a test video sample, we process it entirely. Since the models

are trained on 30-frames-long sequences, the entire video, which on average

has 300 frames, is processed in 30-frames chunks with a sliding window be-

tween two chunks of 25 frames. We opt for overlapping chunks since we want

74 Chapter 7. Experiments

to be able to capture flickering in every possible sequence.

A sample is labeled as FLICKERING if at least one chunk is labels as

FLICKERING. The rationale behind this choice is that flickering may not

be constant across the video and, at the same time, it may just be present

in a small portion of the entire sequence.

7.2.2 Evaluation metrics

Accuracy In the flickering detection task we consider accuracy and not the

balanced accuracy because the test set is balanced and the two metrics do

not differ by a significant margin. In addition, we compute two other metrics

(precision and negative predictive value) in order to check the performance

of our models in the positive and negative class predictions.

Precision Precision is the percentage of True Positives among all samples

labeled as positives:

Precision =
TP

TP + FP
(7.6)

Negative Predictive Value Negative Predictive Value (NPV) is the per-

centage of True Negatives among all samples labeled as negatives:

NPV =
TN

TN + FN
(7.7)

7.2.3 Performance evaluation for synthetic training sets

The model tested is the convolutional LSTM with Inception-V3 as a back-

bone, which is described in Chapter 5. We train the model on the synthetic

dataset described in Chapter 6. The obtained performance is 76% accuracy

over the flickering test set described in Chapter 6. The model shows good

performance on the videos with consistent flickering but presents a large

number of false positives, mainly due to the face moving too much in the

video or the video being too dark. To address this fact, we tried decreasing

the flickering frequency (putting less fake frames in the flickering samples)

in the training but it did not help with the performance. To compensate for

the darkness of some videos we tried adding (using sk-image python library)

more contrast in the images, but that overall decreased the performance on

7.3. Performance study using interface data 75

the test set, obtaining 74%. To try and reduce the number of false pos-

itives we tried downsampling the flickering samples and oversampling the

no flickering samples but the performance did not improve. Several other

approaches were tried but did not achieve any good results. Below, we name

some of them:

• considering as input to the conv-LSTM-IV3 architecture a 30-frames-

long sequence where every frame is the pixel-wise difference between a

frame and its successor;

• considering as input the mean pixel-wise difference among consecutive

frames, getting rid of the feature extractor, feeding a 30-floats-long

vector, which is none other than a simple time series, directly to the

LSTM layer;

• considering other machine learning models (Random Forest, XGBoost,

SVM).

Results are shown in Table 7.8.

Dataset Accuracy Precision NPV

stable 0.76 0.68 0.84

stable, contrast enhancement 0.74 0.68 0.80

Table 7.8: Flickering detection results.

7.3 Performance study using interface data

In this section we show results and statistics of the collected annotation using

the Web Interface.

7.3.1 Labels collected

We have collected 925 annotations from users, for a total of 347 different

samples labeled. There is an average of 3.5 annotations per annotated sam-

ple.

As we can see in Table 7.9, all the artifacts are detected in a not negligible

part of the dataset, while the “Other” category is present in only a few

76 Chapter 7. Experiments

annotations (51), meaning that in the vast majority of the videos at least

one of the other inconsistencies is detected.

Present Not Present

Flickering 360 565

Obfuscated Face 201 724

Irregular Traits 247 678

Colors inconsistency 244 681

Irregular Proportions 145 780

Glasses Inconsistency 170 755

Other 51 874

Table 7.9: Collected annotations.

7.3.2 Extracted data

As a first study, we show the number of labeled samples per category. Results

are shown in Table 7.10. As we can see, the sum of samples in every row is

greater than 347. This is due to the fact that some samples have received both

the positive and the negative answer by different users in some categories.

Another useful index is the number of the samples with coherent/incoherent

labels per category, shown in Table 7.11. This table shows how it is very easy

for the users to agree on the negative answer while it is more tricky and chal-

lenging in the positive answers.

Finally we show the percentages per category of coherent labels, in Table

7.12.

Present Not Present

Flickering 196 274

Obfuscated Face 114 307

Irregular Traits 159 310

Colors inconsistency 166 309

Irregular Proportions 117 330

Glasses Inconsistency 91 314

Other 44 345

Table 7.10: Number of samples labeled as one of the classes. Data taken from the collected

annotations.

7.3. Performance study using interface data 77

Coherent

Positive

Coherent

Negative
Incoherent

Flickering 73 151 123

Obfuscated Face 40 233 74

Irregular Traits 37 188 122

Colors inconsistency 38 181 128

Irregular Proportions 17 230 100

Glasses Inconsistency 33 258 58

Other 2 303 42

Table 7.11: Number of samples with coherent/incoherent labels per each class. Data taken

from the collected annotations.

Coherent

Posi-

tive(%)

Coherent

Nega-

tive(%)

Incoherent(%)

Flickering 21 43.5 35.5

Obfuscated Face 11.5 67 21.5

Irregular Traits 10.6 54.2 35.2

Colors inconsistency 11 52.2 36.8

Irregular Proportions 5 66.2 28.8

Glasses Inconsistency 9.5 74.4 16.1

Other 0.6 87.3 12.1

Table 7.12: Number of samples with coherent/incoherent labels (in percentage) per each

class. Data taken from the collected annotations.

7.3.3 Statistics

In this section, we describe some statistics related to the data collected via

the Web Interface. Finally, we compare these values with the accuracy of

our artifacts detection models.

Inter-rater agreement

The inter-rater agreement is a statistics used to check how much several raters

agree on the answers to the same questions/samples. It is the percentage of

the pairs of responses to the same items that are coherent. In our case we

78 Chapter 7. Experiments

consider a general setting with a (potentially different) number of answers

per sample. In order to compute the inter-rater agreement, we consider these

following values per sample:

• npos−pos, the number of pair of answers with coherent positive answers:

npos−pos =

{(
pos
2

)
pos >= 2

0 otherwise
(7.8)

where pos is the number of labels with positive answers for a sample;

• nneg−neg, the number of pair of answers with coherent negative answers:

nneg−neg =

{(
neg
2

)
neg >= 2

0 otherwise
(7.9)

where neg is the number of labels with negative answers for a sample;

• nTOT , the total number of pair of answers.

For the entire dataset of responses, we consider:

• Npos−pos, the total number of pair of labels with coherent positive an-

swers:

Npos−pos =
K∑
i=1

npos−pos[i] (7.10)

where npos−pos[i] is the number of pair of responses with coherent pos-

itive answer for sample i, K is the total number of samples;

• Nneg−neg, the total number of pair of labels with coherent negative

answers:

Nneg−neg =
K∑
i=1

nneg−neg[i] (7.11)

where nneg−neg[i] is the number of pair of responses with coherent neg-

ative answer for sample i, K is the total number of samples;

• NTOT , the total number of pair of labels in the entire dataset:

NTOT =
K∑
i=1

nTOT [i] (7.12)

where nTOT [i] is the total number of pair of responses for sample i, K

is the total number of samples.

7.3. Performance study using interface data 79

The inter-rater agreement can be computed as follows:

IRA =
Npos−pos + Nneg−neg

NTOT

(7.13)

Normalized inter-rater agreement

Normalized inter-rater agreement is a more precise and useful statistics since

it takes into consideration the probability for the raters to give the same

answer by chance. In order to compute this value we need to define 3 quan-

tities:

• fpos, the frequency of the positive answer across all answers. Data taken

from Table 7.9;

• fneg, the frequency of the negative answer across all answers. Data

taken from Table 7.9;

• pe, which is the probability of two raters giving the same answer by

chance:

pe =
∑

l∈labels

f 2
l (7.14)

where labels = {pos, neg}.

The formula for the normalized inter-rater agreement is:

norm IRA =
IRA− pe

1− pe
(7.15)

We can evaluate the statistics meaning given the interval where the value

falls, as showed in Table 7.13.

norm IRA Agreement

< 0 less than chance agreement

0.01 - 0.20 slight agreement

0.21 - 0.40 fair agreement

0.41 - 0.60 moderate agreement

0.61 - 0.80 substantial agreement

0.81 - 0.99 almost perfect agreement

Table 7.13: Meaning of norm IRA. Table taken from [54].

80 Chapter 7. Experiments

Statistics of our setting

As previously state in this section, we have collected 925 annotations over

347 samples of our dataset. We consider each video as a sample and every

category question as a separate independent question. A user gives positive

answer to the question if it detects the inconsistency related to it, negative

otherwise. In Table 7.15 we can see the statistics computed on our responses

dataset.

Looking at the norm IRA, the categories with moderate agreement are

Obfuscated Face and Glasses Inconsistency. This result is coherent

with expectations since these categories should be pretty easily spotted.

Flickering is the only category with fair agreement. It is overall a pretty

good agreement, considering that some videos are pretty difficult to label

and less focused users (or simply less expert users) might find hard to label

them. Other videos are instead very evident and therefore a medium value

for norm IRA has to be expected.

Irregular Traits, Colors Inconsistency and Irregular Proportions

are the categories with slight agreement. Indeed, the agreement on these

categories is little as users tend to give different interpretations to these

classes, mostly to the Irregular Proportions one. At the same time, these

ones are the most difficult categories to be spotted, so a decrease in the

agreement is foregone.

Other is the only category with negative norm IRA. There is no par-

ticular agreement on this class, since it is quite arbitrary. Furthermore, the

number of annotations were this category is selected is quite small, meaning

that this class has not been of particular use for our study.

Npos−pos Nneg−neg

Flickering 270 480

Obfuscated Face 163 768

Irregular Traits 118 660

Colors inconsistency 111 654

Irregular Proportions 32 835

Glasses Inconsistency 134 831

Other 8 1012

Table 7.14: Npos−pos and Nneg−neg computed for each category.

7.3. Performance study using interface data 81

IRA(%) pe(%) Norm IRA

Flickering 65 52.4 0.265

Obfuscated Face 80.6 66 0.43

Irregular Traits 67.4 60.8 0.168

Colors inconsistency 66.3 61 0.135

Irregular Proportions 75.1 73.5 0.06

Glasses Inconsistency 83.6 70 0.45

Other 88.4 89.5 -0.1

Table 7.15: pe, inter-rater and normalized inter-rater agreement of the annotations col-

lected via Web Interface. To compute this table we use data from Table 7.14.

Flickering detection performance comparison with norm IRA

Our best flickering detection model obtains 0.76% as overall accuracy. The

IRA of the flickering class is 65% so our model outperforms human level

agreement in the flickering labeling.

82 Chapter 7. Experiments

Chapter 8

Conclusion

In this work we have explored the problem of deepfake detection exploiting

the time domain focusing on the following research questions:

• What kind of video-level artifacts can we identify in deepfake videos?

– Which one can we detect automatically?

– What is human level performance on detecting coherently incon-

sistencies?

• Can video-based models outperform frame-based classifiers?

– Can Transformer models reach state of the art results on video-

based deepfake detection?

To answer these questions we have investigated two different approaches

to deepfake detection: one based on video-level artifacts/inconsistencies in

videos; the other one based on video-level classifiers. Moreover, we have

performed a data collection campaign asking users to label deepfake videos

according to the detected artifacts.

Studying the DFDC dataset, which is currently the largest deepfake

dataset available on the Web, we have found some recurring video-level arti-

facts and we have decided to name these inconsistencies. There are mainly

two reasons for the presence of these artifacts: deepfake generation happen-

ing frame-by-frame and failing if the face is not correctly recognized by the

face detector.

83

84 Chapter 8. Conclusion

The categories we have defined are: flickering, obfuscated face, propor-

tions inconsistency, color inconsistency, irregular facial traits and glasses in-

consistency.

As a first approach, we have focused on detecting some of these incon-

sistencies via some deep learning approach, namely convolutional LSTMs.

Since there is no available ground truth for the problem we have formulated,

we have proposed a way to reproduce flickering by alternating ‘original’ and

fake video frames. Our models have obtained 0.76 accuracy on our manually

labeled test set.

As a second approach, we have used a Web Interface to make people an-

notate some videos. In particular, users were requested to identify (if any)

inconsistencies in videos. With the collected data, we first have created a new

dataset, composed of users’ answers, and then we have used the annotations

to study the human performance on detecting artifacts. People moderately

agree on detecting obfuscated face and glasses inconsistency, fairly agree on

detecting flickering and slightly agree on the other categories. Focusing on

flickering and comparing our models results with the human level perfor-

mance, we can see how our model is overall better in recognizing flickering

with respect to humans.

Continuing the study on the time domain, we have proposed and com-

pared several video-level classifiers: we have started with a detailed study on

state-of-the-art models, namely convolutional LSTMs, comparing different

preprocessings and different hyperparameters configurations. Afterwards,

we have shown 2 unseen architectures on deepfake detection: Video Trans-

former Network and Timesformer. These models are the state of the art in

video-level classification tasks but no one has ever tried self-attention video-

level models for deepfake recognition. We have examined the performance of

these architectures, comparing different preprocessings and hyperarameters

configurations.

As we have shown in Chapter 7, so far no video-level model is able to

achieve results of state-of-the-art frame-based classifiers on deepfake detec-

tion. The result does not come unexpected and confirms the results obtained

by the winners of the DFDC, showing how EfficientB4 (or B7) architectures

are better. As said in Chapter 7, this result should not mislead since video-

level detection is a much more challenging task than the frame-based.

8.1. Future work 85

Considering the Transformers architectures, the VTN architecture has

achieved state-of-the-art LSTM performance while the Timesformer model

have not really achieve good results on the DFDC. As a general consideration,

finetuning a convolutional feature extractor seems the way to go to achieve

good performances on deepfakes. From the results shown in Chapter 7 we can

see how the VTN architecture is much more balanced and has a considerably

better performance in classifying pristine samples with respect to the LSTM

architectures, while the LSTM architectures are much better at recognizing

fake samples.

8.1 Future work

Time domain artifacts and architectures are yet to be explored deeply. In our

work, we have given possible starting points for the study of inconsistencies

and of self-attention architectures. Some possible research directions could

be the following:

• Collect a larger dataset via Web Interface in order to directly

use that ground truth as training set.

Via the Web Interface, we have collected a restricted number of anno-

tations. Unfortunately, data was not enough to employ it as a training

set, therefore we have used it to test some performances. With more

time and data available, it would be interesting to directly train on

users’ labels in order to try and detect also other inconsistencies that

are not synthetically reproducible. As a further study, a comparison

between synthetic dataset and user label dataset could be performed

on flickering detection.

• Improve flickering detection.

In our work, we have tried reproducing flickering by alternating fake

frames with the frames from the ‘original’ video, stabilizing the detec-

tion in order to avoid introducing wrong abrupt changes. It would be

interesting seeing other ways to reproduce this effect, trying to distin-

guish cases where there is flickering and where the face simply turns in

the video.

86 Chapter 8. Conclusion

• Explore other Transformer architectures.

In our work, we have presented 2 Transformers architectures to deal

with deepfake detection but the number of new architectures coming

up is huge. With more available time, it would be interesting to try

new architectures (or a combination of them) to see whether or not

they can outperform state-of-the-art models.

Bibliography

[1] Somers. Deepfakes, explained. 2020. URL https://mitsloan.mit.

edu/ideas-made-to-matter/deepfakes-explained.

[2] Supasorn Suwajanakorn, Steven M Seitz, and Ira Kemelmacher-

Shlizerman. Synthesizing obama: learning lip sync from audio. ACM

Transactions on Graphics (ToG), 36(4):1–13, 2017.

[3] Jennifer Walter. Deepfakes: The dark origins of fake videos

and their potential to wreak havoc online. 2020. URL https:

//www.discovermagazine.com/technology/deepfakes-the-dark-

origins-of-fake-videos-and-their-potential-to-wreak-havoc.

[4] Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Asselmann. Video

transformer network. arXiv preprint arXiv:2102.00719, 2021.

[5] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time

attention all you need for video understanding? arXiv preprint

arXiv:2102.05095, 2021.

[6] Momina Masood, Marriam Nawaz, Khalid Mahmood Malik, Ali Javed,

and Aun Irtaza. Deepfakes generation and detection: State-of-the-art,

open challenges, countermeasures, and way forward. arXiv preprint

arXiv:2103.00484, 2021.

[7] Yuval Nirkin, Iacopo Masi, Anh Tran Tuan, Tal Hassner, and Gerard

Medioni. On face segmentation, face swapping, and face perception. In

2018 13th IEEE International Conference on Automatic Face & Gesture

Recognition (FG 2018), pages 98–105. IEEE, 2018.

87

https://mitsloan.mit.edu/ideas-made-to-matter/deepfakes-explained
https://mitsloan.mit.edu/ideas-made-to-matter/deepfakes-explained
https://www.discovermagazine.com/technology/deepfakes-the-dark-origins-of-fake-videos-and-their-potential-to-wreak-havoc
https://www.discovermagazine.com/technology/deepfakes-the-dark-origins-of-fake-videos-and-their-potential-to-wreak-havoc
https://www.discovermagazine.com/technology/deepfakes-the-dark-origins-of-fake-videos-and-their-potential-to-wreak-havoc

88 Bibliography

[8] KR Prajwal, Rudrabha Mukhopadhyay, Vinay P Namboodiri, and

CV Jawahar. A lip sync expert is all you need for speech to lip generation

in the wild. In Proceedings of the 28th ACM International Conference

on Multimedia, pages 484–492, 2020.

[9] Justus Thies, Michael Zollhöfer, Christian Theobalt, Marc Stamminger,

and Matthias Nießner. Headon: Real-time reenactment of human por-

trait videos. ACM Transactions on Graphics (TOG), 37(4):1–13, 2018.

[10] Justus Thies, Michael Zollhofer, Marc Stamminger, Christian Theobalt,

and Matthias Nießner. Face2face: Real-time face capture and reenact-

ment of rgb videos. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 2387–2395, 2016.

[11] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehti-

nen, and Timo Aila. Analyzing and improving the image quality of style-

gan. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 8110–8119, 2020.

[12] Thanh Thi Nguyen, Cuong M Nguyen, Dung Tien Nguyen, Duc Thanh

Nguyen, and Saeid Nahavandi. Deep learning for deepfakes creation and

detection: A survey. arXiv preprint arXiv:1909.11573, 2019.

[13] Pierre Baldi. Autoencoders, unsupervised learning, and deep architec-

tures. In Proceedings of ICML workshop on unsupervised and transfer

learning, pages 37–49. JMLR Workshop and Conference Proceedings,

2012.

[14] David Güera and Edward J Delp. Deepfake video detection using recur-

rent neural networks. In 2018 15th IEEE international conference on

advanced video and signal based surveillance (AVSS), pages 1–6. IEEE,

2018.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-

erative adversarial nets. Advances in neural information processing sys-

tems, 27, 2014.

[16] Deepfake. 2020. URL https://en.wikipedia.org/wiki/Deepfake.

https://en.wikipedia.org/wiki/Deepfake

Bibliography 89

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.

MIT Press, 2016. http://www.deeplearningbook.org.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need. In Advances in neural information processing systems,

pages 5998–6008, 2017.

[20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-

senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,

Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is

worth 16x16 words: Transformers for image recognition at scale. arXiv

preprint arXiv:2010.11929, 2020.

[21] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario

Lučić, and Cordelia Schmid. Vivit: A video vision transformer. arXiv

preprint arXiv:2103.15691, 2021.

[22] Dennis Siegel, Christian Kraetzer, Stefan Seidlitz, and Jana Dittmann.

Media forensics considerations on deepfake detection with hand-crafted

features. Journal of Imaging, 7(7):108, 2021.

[23] Xin Yang, Yuezun Li, and Siwei Lyu. Exposing deep fakes using inconsis-

tent head poses. In ICASSP 2019-2019 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 8261–8265.

IEEE, 2019.

[24] Shruti Agarwal, Hany Farid, Yuming Gu, Mingming He, Koki Nagano,

and Hao Li. Protecting world leaders against deep fakes. In CVPR

workshops, volume 1, 2019.

[25] Scott McCloskey and Michael Albright. Detecting gan-generated im-

agery using color cues. arXiv preprint arXiv:1812.08247, 2018.

[26] Pavel Korshunov and Sébastien Marcel. Deepfakes: a new threat

to face recognition? assessment and detection. arXiv preprint

arXiv:1812.08685, 2018.

http://www.deeplearningbook.org

90 Bibliography

[27] Huy H Nguyen, Junichi Yamagishi, and Isao Echizen. Capsule-forensics:

Using capsule networks to detect forged images and videos. In ICASSP

2019-2019 IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP), pages 2307–2311. IEEE, 2019.

[28] Darius Afchar, Vincent Nozick, Junichi Yamagishi, and Isao Echizen.

Mesonet: a compact facial video forgery detection network. In 2018

IEEE International Workshop on Information Forensics and Security

(WIFS), pages 1–7. IEEE, 2018.

[29] Nicolò Bonettini, Edoardo Daniele Cannas, Sara Mandelli, Luca Bondi,

Paolo Bestagini, and Stefano Tubaro. Video face manipulation detection

through ensemble of cnns. In 2020 25th International Conference on

Pattern Recognition (ICPR), pages 5012–5019. IEEE, 2021.

[30] Yuezun Li and Siwei Lyu. Exposing deepfake videos by detecting face

warping artifacts. arXiv preprint arXiv:1811.00656, 2018.

[31] Hyeonseong Jeon, Youngoh Bang, and Simon S Woo. Fdftnet: Facing

off fake images using fake detection fine-tuning network. In IFIP Inter-

national Conference on ICT Systems Security and Privacy Protection,

pages 416–430. Springer, 2020.

[32] Md Shohel Rana and Andrew H Sung. Deepfakestack: A deep

ensemble-based learning technique for deepfake detection. In 2020 7th

IEEE International Conference on Cyber Security and Cloud Computing

(CSCloud)/2020 6th IEEE International Conference on Edge Comput-

ing and Scalable Cloud (EdgeCom), pages 70–75. IEEE, 2020.

[33] Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Christian Riess,

Justus Thies, and Matthias Nießner. Faceforensics: A large-scale

video dataset for forgery detection in human faces. arXiv preprint

arXiv:1803.09179, 2018.

[34] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing

between capsules. arXiv preprint arXiv:1710.09829, 2017.

[35] Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Christian Riess,

Justus Thies, and Matthias Nießner. Faceforensics: A large-scale

Bibliography 91

video dataset for forgery detection in human faces. arXiv preprint

arXiv:1803.09179, 2018.

[36] Pavel Korshunov and Sébastien Marcel. Deepfakes: a new threat

to face recognition? assessment and detection. arXiv preprint

arXiv:1812.08685, 2018.

[37] Irene Amerini, Leonardo Galteri, Roberto Caldelli, and Alberto

Del Bimbo. Deepfake video detection through optical flow based cnn.

In Proceedings of the IEEE/CVF International Conference on Computer

Vision Workshops, pages 0–0, 2019.

[38] Steven S. Beauchemin and John L. Barron. The computation of optical

flow. ACM computing surveys (CSUR), 27(3):433–466, 1995.

[39] Deressa Wodajo and Solomon Atnafu. Deepfake video detection us-

ing convolutional vision transformer. arXiv preprint arXiv:2102.11126,

2021.

[40] Amritpal Singh, Amanpreet Singh Saimbhi, Navjot Singh, and Mamta

Mittal. Deepfake video detection: A time-distributed approach. SN

Computer Science, 1(4):1–8, 2020.

[41] Ekraam Sabir, Jiaxin Cheng, Ayush Jaiswal, Wael AbdAlmageed, Ia-

copo Masi, and Prem Natarajan. Recurrent convolutional strategies for

face manipulation detection in videos. Interfaces (GUI), 3(1):80–87,

2019.

[42] Akash Chintha, Bao Thai, Saniat Javid Sohrawardi, Kartavya Bhatt,

Andrea Hickerson, Matthew Wright, and Raymond Ptucha. Recurrent

convolutional structures for audio spoof and video deepfake detection.

IEEE Journal of Selected Topics in Signal Processing, 14(5):1024–1037,

2020.

[43] Yuezun Li, Ming-Ching Chang, and Siwei Lyu. In ictu oculi: Exposing

ai created fake videos by detecting eye blinking. In 2018 IEEE Interna-

tional Workshop on Information Forensics and Security (WIFS), pages

1–7. IEEE, 2018.

92 Bibliography

[44] Ipek Ganiyusufoglu, L Minh Ngô, Nedko Savov, Sezer Karaoglu, and

Theo Gevers. Spatio-temporal features for generalized detection of deep-

fake videos. arXiv preprint arXiv:2010.11844, 2020.

[45] Valentin Bazarevsky, Yury Kartynnik, Andrey Vakunov, Karthik

Raveendran, and Matthias Grundmann. Blazeface: Sub-millisecond

neural face detection on mobile gpus. arXiv preprint arXiv:1907.05047,

2019.

[46] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and

Zbigniew Wojna. Rethinking the inception architecture for computer

vision. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2818–2826, 2016.

[47] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew

Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1–9, 2015.

[48] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for

convolutional neural networks. In International Conference on Machine

Learning, pages 6105–6114. PMLR, 2019.

[49] Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes,

Menglin Wang, and Cristian Canton Ferrer. The deepfake detection

challenge (dfdc) dataset. arXiv preprint arXiv:2006.07397, 2020.

[50] Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier, and

Andrew Zisserman. A short note about kinetics-600. arXiv preprint

arXiv:1808.01340, 2018.

[51] Dong Huang and Fernando De La Torre. Facial action transfer with

personalized bilinear regression. In European Conference on Computer

Vision, pages 144–158. Springer, 2012.

[52] Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and Victor Lem-

pitsky. Few-shot adversarial learning of realistic neural talking head

models. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 9459–9468, 2019.

Bibliography 93

[53] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On cal-

ibration of modern neural networks. In International Conference on

Machine Learning, pages 1321–1330. PMLR, 2017.

[54] J Richard Landis and Gary G Koch. The measurement of observer

agreement for categorical data. biometrics, pages 159–174, 1977.

	Introduction
	Deepfake generation techniques
	Deepfake generation

	Related work
	Dataset
	Video-level deepfake detection
	Preprocessing
	Architectures

	Artifacts detection
	Artifacts detection via Web Interface
	Automatic flickering detection
	Synthetic dataset generation
	Flickering test set

	Experiments
	Video-level deepfake detection
	Web Interface data
	Flickering detection
	Test set labeling
	Results

	Conclusions
	Acknowledgements
	Abstract
	Sommario
	Introduction
	Work description
	Document structure

	Background
	Facial manipulation approaches
	Deepfakes
	Deepfake generation
	History
	Applications and threats

	Deep learning background
	Models for video classification
	Convolutional LSTMs
	Transformers for video detection

	Related work
	Hand-crafted Features
	Deep learning approaches
	Frame-level deepfake detectors
	Video-level deepfake detectors

	Research problem
	Proposed Methods
	DeepFake detection
	Approach overview
	Data preprocessing for classic deepfake detection
	Detection models employed

	Artifacts detection
	Approach overview
	Artifacts definition
	Flickering detection

	Datasets and Web Interface
	Off-the-shelf employed dataset
	Flickering dataset generation
	Stable videos

	Deepfake Artifacts Dataset generation via Web Interface
	Web Interface

	Experiments
	Deepfake detection
	Training setup
	Evaluation metrics
	LSTM performance comparison
	Transformer performance comparison
	Deepfake detection architectures performance study
	Frame-level models comparison

	Flickering detection
	Test samples labeling
	Evaluation metrics
	Performance evaluation for synthetic training sets

	Performance study using interface data
	Labels collected
	Extracted data
	Statistics

	Conclusion
	Future work

	Bibliography

