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Abstract: The aim of this study is to advance understanding of the friction drag
reduction phenomenon induced by transverse forcing. The traditional wall oscilla-
tion technique generates a transverse boundary layer, known as the Stokes layer,
in which the velocity profile is analytically described by the solution of the second
Stokes problem. However, it is challenging to understand whether the reduction
in friction is mainly determined by the wall-normal spatial characteristics of the
Stokes layer velocity profile or by its temporal variation, as both are related to a
previously chosen value of the period of wall oscillation T . A novel approach is
suggested that imposes the transverse velocity profile directly on the flow, keeping
the wall still. Through the proposed method, the spatial and temporal variations
are separated into two parameters: one that measures the wall-normal thickness
of the spanwise velocity profile and the other that represents its temporal period
of oscillation. This allows for the evaluation of their separate influence on friction
drag reduction and gain a more comprehensive understanding of the underlying
physics.
A DNS-based parametric study reveals that the temporal variation of the Stokes
layer dominates the skin friction reduction, while the spatial variation contributes
to a lesser extent. The optimal period of wall oscillation for maximum friction drag
reduction is found to be smaller than the traditionally chosen value in wall oscil-
lation techniques. Evidence is presented through the study of Reynolds stresses
and the behavior of tracer particles varying with the two parameters on why some
velocity profiles are more efficient in providing greater friction reduction. Specif-
ically, certain values of the Stokes layer oscillation period are found to be more
effective in reducing vertical velocity fluctuations, thus reducing turbulent activity
within the transverse boundary layer.
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1. Introduction

The reduction of drag and improvement of flow efficiency have been a long-standing objective in fluid dynamics.
One drag reduction approach that has gained significant attention in past years is the oscillating wall technique.
First introduced by [25] for a turbulent channel flow, it involves periodic perturbations of the walls to modify
the flow patterns and reduce skin-friction drag. The wall movement is described as a sinusoidal function:

W (y = 0, t) = A sin

(
2π

T
t

)
, (1)
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where W (0, t) represents the spanwise component of the mean velocity vector at the wall, t is time, y is the
wall-normal coordinate, A is the oscillation amplitude, and T is the oscillation period.
The flow over the oscillating walls results from the combination of two simpler flows: a canonical turbulent
channel flow in the streamwise direction and an oscillating boundary-layer flow in the transversal (spanwise)
direction, induced by the wall movement itself.
The spanwise velocity profile W (y, t) within the latter is described by the analytical laminar solution of the
second Stokes problem, also known as the Stokes layer [39, 40]:

W (y, t) = A exp

(
−
√

π

Tν
y

)
sin

(
2π

T
t−
√

π

Tν
y

)
. (2)

An important quantity when Eq. (2) is taken into account is the so-called Stokes layer thickness δ =
√
Tν/π

(where ν is kinematic viscosity of the fluid), which is physically defined as the wall-normal location at which
the mean spanwise velocity W reduces to exp−1A, and it is an indicator of how thick or thin such Stokes layer
is. Since δ is explicitly dependent on T , once the wall oscillation period is chosen, the spatial variation of the
velocity profile within the transverse boundary layer is set. According to [9], the analytical laminar solution of
the second Stokes problem (Eq. (2)) is an excellent solution also for the turbulent case.
Although there is not yet a consensus on the mechanism by which this type of forcing leads to skin-friction drag
reduction, extensive literature [see 42, and references therein] provides ample evidence of its positive effects
through both numerical simulations and experimental studies.
The effects of wall motion (Eq. (1)) have been studied for a wide range of oscillation periods, amplitudes
and Reynolds numbers. For example [7] showed, through Direct Numerical Simulation (DNS) of turbulent
channel flow, that the greatest drag reduction occurs when the oscillation period T+ is near 100: at such
T+ and A+ = 20, drag reduction percentages of 44.5%, 39.2% and 34.1% were achieved at Reynolds numbers
Reτ = 100, 200 and 400, respectively (the + superscript stands for quantities that have been made dimensionless
using inner variables, specifically the friction velocity of the reference case uτ,0). In a later study, [38] performed
a review of DNS and experimental research, founding that the optimum period at fixed A+ is in the range of
T+ = 100− 125. Similar results were found by [13], since they established that the ideal oscillation period was
T+ = 100 at Reτ = 200 and T+ = 90 at Reτ = 1000. This shows how the optimal T+ = T+

opt does not change
much with changes in the Reynolds number, even when Reτ becomes high enough to reveal clear large-scale
patterns of the energetic outer log-layer structures, also known as "super-streaks" [18], which are clearly visible
on the small-scale near-wall structures [19].
Despite a large number of studies, the way the Stokes Layer positively interacts with the turbulent structures is
not fully understood yet. According to [1] and [27], drag reduction mechanism is linked to the presence of Quasi-
Streamwise Vortices (QSVs) and longitudinal low-speed streaks, which play a crucial role in the regeneration
cycle of near-wall turbulence [21, 44]. Modifying this cycle by manipulating QSVs and streaks is generally
acknowledged [10] as the basis for the drag-reducing effectiveness of the Stokes layer. As documented, the
dipendence of drag reduction on parameter T is certain, whereas uncertain is whether T directly influences drag
reduction due to the particular temporal frequency ω = 2π/T , or whether the effect is due to the resulting value
of δ(T ), which allows the Stokes layer to penetrate in the right (in terms of reducing drag) wall-normal region
to effectively breaks the connection between streaks and QSVs.
Over the years, several theories have been proposed to explain the reason why the specific value of T+ = 100
is optimal for reducing drag, and this topic has been under discussion for quite some time. As reported in [38],
when the oscillation period T+ is close to the optimal value, it matches the double of the typical survival time
of statistically signficant turbulent structures [37], resulting in the effective disruption of streaks. This leads to
a more uniform near-wall flow and a reduction in turbulence intensity. On the other hand, when T+ exceeds
the optimal value, the near-wall streaks have sufficient time to evolve before the next cycle of the Stokes layer,
leading to a readaptation of near-wall turbulence to its natural state and restoring the unperturbed value of
the friction coefficient. However, when T+ is further increased beyond 100, consequently δ+(T+) increases as
well, and the Stokes layer penetrates into the buffer layer and eventually propagates into the turbulent layer,
increasing turbulence production above the viscous sublayer and negating the beneficial effects within the latter.
In order to explore the bond between the Stokes layer and turbulent structures, it is advantageous to conduct
a statistical comparison of the behavior of drag-reduced flows with the refencence one. Previous studies, such
as [3] and [16], have utilized single-point statistics to compare the budget of turbulent kinetic energy in natural
and controlled flows, specifically in the context of spanwise oscillating walls. [47] have employed a triple
decomposition of the velocity field to describe the budgets of the entire set of Reynolds stresses formed with
the stochastic component of velocity. Their analysis has revealed noteworthy interactions within and among
various budget terms of the stresses. As a result, investigating the changes in these stresses and their budget
terms can certainly be interesting to understand the effects of spanwise forcing on the flow.
This paper examines how different parameters of the Stokes layer, namely T and δ, influence the reduction of
skin-friction drag in a channel flow. The geometry of the channel is shown in Fig. 1. Section 2 describes the DNS
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Figure 1: Schematic geometry of a plane channel flow.

code used to simulate an incompressible turbulent channel flow, including the specifics of the spanwise forcing
employed. Section 3 presents the numerical outcomes of the drag reduction study, with a descriptive analysis in
Section 3.1 and an investigation of the impact of forcing on the flow, by analyzing Reynolds stress budget terms
in Section 3.2. This study also employs the particle tracking technique, which is introduced in Section 4, along
with its computational model in Section 4.1. Finally, Section 5 conducts an analysis to understand the behavior
of the flow under various forcing conditions by inserting tracer particles into the channel and investigating the
existence and behavior of the shear sheltering phenomenon, which is explained in detail in Section 4.

2. Work description

2.1. Numerical method

In this study, the incompressible Navier-Stokes equations for a turbulent channel flow are solved using a com-
putational code developed by [29]. This code utilizes two scalar equations for the wall-normal component of
the velocity and vorticity vectors and eliminates the pressure by employing a method described in [26]. The
DNS solver employs fourth-order-accurate compact finite-difference schemes in the wall-normal direction y and
Fourier expansions in the homogeneous streamwise x and spanwise z directions, providing resolution comparable
to spectral schemes while offering advantages in parallel computing. A pseudo-spectral method is utilized for
evaluating the non-linear terms of the equations. In order to eliminate the related aliasing error, the number of
Fourier modes is expanded by at least a 3/2 factor before transforming from Fourier space into physical space.
Time integration is performed using a partially implicit approach: a second-order Crank-Nicolson scheme is
used for the viscous terms, while convective terms are computed using a third-order low-storage Runge-Kutta
method. The details of the DNS code Compiler and Programming Language (CPL) are explained in [28]. All
simulations were carried out on the CINECA computing system (GALILEO100 cluster).

2.2. Input parameters

The simulations are performed under a Constant Flow Rate (CFR) [36] and the bulk velocity is Ub = 2/3Up,
where Up is the centerline velocity of a laminar Poiseuille flow with the same flow rate. The simulations
have been run at a Reynolds number Re = Uph/ν = 10500, which corresponds (in the unforced case) to
Reτ = uτh/ν = 400, where h is half the distance between the channel walls, and uτ is the friction velocity of
the uncontrolled case. The size of the computational box is (Lx, Ly, Lz) = (4πh, 2h, 2πh) in the streamwise,
wall-normal and spanwise directions. Such computational box has been discretized with Ny = 300 grid points
in the wall-normal direction y, and Nx = 256 and Nz = 256 Fourier modes in the x and z direction respectively,
further increased by a factor of 3/2 to remove aliasing error. The streamwise and spanwise resolutions are
∆x+ ≈ 13 and ∆z+ ≈ 6.5, considering the additional modes used to prevent aliasing error. For the mesh in
the wall-normal direction, a constant-linear nodes distribution was adopted, maintaining ∆y+min = 0.5 until
y+ < 25, after which ∆y+ increases linearly until achieving ∆y+max ≈ 6.2 at the channel centerline. Each
simulation has been run for 10,000 time steps with ∆t+ ≈ 0.15, starting from a well-developed flow condition.
The skin-friction coefficient for the unforced flow case is Cf,0 = 2τx/(ρU

2
b ) = 6.54× 10−3, where τx is the time

and space averaged (in homogeneous direction) streamwise wall-shear stress and ρ is the fluid density. This value
agrees with the one estimated by the empirical formula Cf = 0.0336Re−0.273

τ given by [34]. The primary aim
of this study is to investigate how the addressed spanwise forcing (further described in Section 2.3) affects the
friction coefficient Cf . The friction coefficient Cf is obtained by taking the average over the entire wall surface
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and time, after discarding the initial transient phase in which the flow adapts to the new forcing condition. The
changes in Cf are measured as a percentage with respect to the friction coefficient of the reference case Cf,0
through DR(%) parameter, defined as follow:

DR(%) = 100
Cf,0 − Cf
Cf,0

, (3)

where DR(%) corresponds to the percentage reduction in the energy required to drive the fluid in streamwise
direction at a fixed flow rate (CFR).

2.3. Forcing strategy and validation

(a) (b)

Figure 2: (a) shows DR(%) results comparison between directly imposing the Stokes layer profile and
oscillating wall technique for both present work and Gatti & Quadrio [14] database (at Reτ = 200).
(b) shows DR(%) results comparison between directly imposing the Stokes layer profile and oscillating
wall technique for both Hurst et al. [17] and Ricco & Quadrio [41] database (at Reτ = 400).

To begin, it is important to address a fundamental question regarding the relative importance of δ and T in drag
reduction. In the canonical case of an oscillating wall, the transverse boundary layer is completely determined
by the laminar Stokes’ solution (see Eq. (2)), which is a function of T only, making it difficult to understand
the interaction between turbulent structures and the velocity profile through this single parameter. In order to
investigate their individual influence on drag reduction, we made δ and T independent, enforcing the Stokes layer
directly to a turbulent channel flow, keeping the wall still. This was achieved through the analytical expression
of the Stokes layer, in which δ is no longer a function of T and can be directly changed as an independent
variable, as follow:

W (y, t) = A exp
(
−y
δ

)
sin

(
2π

T
t− y

δ

)
. (4)

From a computational point of view, this means assigning the entire mean spanwise velocity profile W (y, t)
(Eq. (4)) upstream of the convolution calculations (where triadic interactions are included) at each time step,
in order to ensure that the interaction of all modes occurs with the desired mean profile.
In order to verify the accuracy of this technique, we relied on simulations of the classical oscillating wall results,
enforcing the laminar Stokes layer as the mean transverse velocity (Eq. (2)). The results obtained directly
enforcing W (y, t) were compared with oscillating wall results (see Eq. (1)) from both present work and [14]
database at Reτ = 200, and very good corrispondence has been found, as shown in Figure 2a. Subsequently,
when we imposed velocity profiles using the independent parameters T and δ, it was noticed that for the most
impactful forcings on drag reduction, unstable relaminarization of turbulent flow [31] occurred at Reτ = 200.
In order to avoid this phenomenon, the results presented in this paper will refer to simulations conducted at
Reτ = 400.
Figure 2b shows the DR(%) results of our work, compared with the available oscillating walls databases at
Reτ = 400. The small differences in terms of absolute value may be due to the fact that there is not a perfect
correlation between the imposed laminar Stokes layer and the wall motion, although overall the results are
satisfactory.
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Figure 3: Comparison between two different forcing velocity profiles W+(y+, t) for two different δ+

(δ+ = 12 on the left and δ+ = 6 on the right), both plotted at 8 equally spaced phases in a complete
temporal cycle.

The main simulations are about applying various W (y, t) (Eq. (4)) for different (T+, δ+) pairs, and then
analyzing the resulting DR(%) case by case. The selected range of oscillation period values was T+ = 25− 200,
with a ∆T+ = 25 between each value. An additional value of T+ = 10 was then chosen to represent a sufficiently
low-period case. The range of δ+ investigated was δ+ = 2− 20, with a ∆δ+ = 2, to test velocity profiles which
perturbes near wall structures at different wall-normal location zones, as shown in Fig. 3. Obviously, for each
value of T+, the typical case of the canonical Stokes layer has also been simulated, namely where δ+ =

√
T+/π.

As a result, 92 different simulations were carried out for the different (T+, δ+) pairs, together with a reference
simulation of the unforced flow. The forcing oscillation amplitude is set to A+ = 12, that corresponds to most
available database informations [13, 17].

3. Drag reduction results

3.1. Decoupled Stokes layer

(a) (b)

Figure 4: DR(%) for different (T+, δ+) pairs in reference scaling (a) and (b) for different (T ∗, δ∗)
pairs in actual scaling (at Nominal Reτ = 400 and A+ = 12). Black line is the true Stokes layer
(δ =

√
Tν/π).

In this section, the results of the analyses just described are explored, with the aim of making a step towards
a better understanding of the relationship between transverse forcing parameters (T, δ) and Drag Reduction
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(DR). Through a parametric study it is attempted to understand whether it is the spatial variation of the profile
(driven by δ) or its temporal oscillation (T ) that plays a decisive role in DR. In this paper, all variables may
be presented with (+) or (∗) superscript: the former represents quantities made dimensionless with the friction
velocity of the reference case uτ,0, the latter of the actual drag reduced case uτ .
From now on, we will refer to the Stokes layer resulting from arbitrarily chosen δ values as the "decoupled
Stokes layer", while the Stokes layer resulting from δ =

√
Tν/π will be referred to as the "true Stokes layer".

Both Figures 4a and 4b show how DR changes with different types of transverse velocity profiles imposed at
the wall. The results in Fig. 4a are presented based on nominal scaled variables, while those in Fig. 4b are
based on actual inner scaling. Obviously, in the latter figure, DR results are only available for a limited set of
values compared to nominal scaling, since the values of T ∗ and δ∗ are not known in advance.
To clarify, the parameter T controls how the Stokes layer behaves over time, while δ controls its behavior along
the wall-normal direction. A Stokes layer with low values of both δ and T will be very thin and exhibit rapid
temporal behavior, while a layer with high values of these parameters will be thicker and exhibit slower temporal
behavior.
From Figure 4a, the first thing is important to note is that the well-known oscillating wall technique, which
results only in velocity profiles that lie on the black line, is limiting in terms of DR, especially for T+ < 150.
This shows that all previous analyses which had recognized an optimal value for the forcing period T+ = 100
[see 42, and references therein], were biased by the fact that a certain T+ corresponded to a fixed δ+, with the
result that the two contributions (spatial and temporal) could not be evaluated separately and therefore in a
complete and clear way. Consequently, the value of T+ = 100 designated as the optimal value by an extensive
literature (as underlined in Section 1), does not hold any significant meaning. The genuinely optimal periods
are significally smaller, and having a fast temporal oscillation to create a thick Stokes layer shows the potential
to increase DR by 40%. In particular, while with the true Stokes layer we obtain a DRmax(%) = 28.3 for
(T+, δ+(T+)) = (100, 5.64), it is possible to reach a value of DRmax(%) ≈ 40 for (T+

opt, δ
+
opt) = (40, 12) pair

with the decoupled velocity profile.
Focusing initially on the oscillation period, this value of T+

opt is not random or meaningless: in fact, T+
opt = 40

had already been identified as the Lagrangian time scale representing a typical survival time of the statistically
significant turbulent structures by [37]. In particular, through the integral of the autocorrelation function
R(ε+, τ+) (where ε+ and τ+ are spatial and temporal separation), they found that the life-time scale Tl for
the components of velocity at y+ = 10 are T+

l,u = 68, T+
l,v and T+

l,w = 46 (where u, v, and w are the velocity
components in the streamwise x, wall-normal y and spanwise z directions, respectively). The time scale T l
corresponds to the entire lifespan of turbulent structures, as it measures the duration for which the signal
remains correlated while in motion. It seems that when T+ is larger than the optimum, the near-wall streaks
are given enough time to establish their internal dynamics between successive Stokes layer cycles. However,
when T+ ' T+

opt, the forcing time aligns with the characteristic time of streak dynamics and effectively disrupts
the streaks, preventing them from adjusting to their natural life cycle.
In general, an alternative approach to explain the value of T+

opt is to look at the streamwise characteristic length
implied by this value of the period, obtained through the near-wall convection velocity u+c = 10 as λ+ = u+c ·T+

opt.
As reported in Section 1, previous studies on the oscillating wall technique have found that T+

opt = 100, and since
the resulting λ+ = u+c ·T+

opt = 1000 matches the characteristic lenght of the longest near-wall streaks, it may be
a possible explanation for that particular optimal value of the period. Anyway, once we have understood that
the real T+

opt = 40, the theoretical obtained characteristic lenght would become λ+ = u+c · T+
opt = 400, which

does not match anymore with longest streaks’ lenght. Despite that, [24] has shown that the long streaks are
only a by-product of the near-wall cycle and they are not an active part of the near-wall cycle. Therefore, it
is possible that λ+ = 400 corresponds to the lenght scales of the structures that are more directly involved in
the near-wall cycle, and that increasing T+ reduces the effect on the DR, because in this case the interacting
structures are not directly involved in the wall cycle.
Conversely, a deeper analysis needs to be carried out to fully understand the importance of δ+: the absolute
DRmax(%) is obtained for (T+, δ+) = (50, 12), but it cannot be said that δ+ = 12 represents the optimum for
all oscillation periods. Indeed, as T+ deviates from T+

opt, it can be observed that δ+opt gradually decreases (Fig.
5a). Anyway, δ+opt = 12 is not an unexpected value, since it is well established that the dinamically relevant
turbulent structures are located at a height of y+ ≈ 12 from the wall, as reported by [11]. If these specific
structures are forced with T+

opt, it is effective if the transverse boundary layer includes these streaks. On the
other hand, if the period is far from the optimal one, the best result is obtained when the decoupled Stokes layer
remains slightly closer to the wall, only tilting the near-wall structures, which seem to be much less dependent
on the oscillation period value.
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(a) (b)

Figure 5: DR(%) as a function of δ+ for different T+ (a) and as a function of T+ for different δ+ (b).
The results regards simulations conducted at Nominal Reτ = 400 and A+ = 12.

This statement is confirmed by looking at the DR results for δ+ = 2 (Fig. 5b), where a sort of independence
of DR with respect to T+ is clearly visible. Similarly, a certain DR independence, this time with respect to
δ+, can be noticed for curves at very low periods as 10 ≤ T+ ≤ 20 (Fig. 5a). These observations can be
explained by the fact that when the value of δ is small, the Stokes Layer does not interact much with the wall
cycle, because it is located very close to the wall only, without affecting those structures that are most likely
responsible for turbulent production. At the same time, when the period T is very small, it does not interact
with the regeneration cycle of turbulent structures at wall. This might explains why in both cases there appears
to be a certain independence of DR with respect to the forcing parameters.
Based on the information presented in Figure 4a, it is possible to divide the forcing velocity profiles (Eq. (4))
into three different groups depending on the value of δ that characterizes them. The first group, characterized
by 0 ≤ δ+ ≤ 4, produces values of DR that appear to be independent of the T+ parameter. This suggests
that in the very near-wall zone there are turbulent structures that are particularly independent to changes of
the oscillation rate, and that any Stokes layer temporal oscillation (with 0 ≤ δ+ ≤ 4) is sufficient to result in
a DR of approximately 10 − 15%. Then there is the second group, with δ+ between 4 and 10, for which DR
depends on the considered parameter T+ , but still guarantees higher DR with increasing δ+, for a fixed T+.
In this case, regardless the oscillation period, increasing the thickness of the Stokes Layer, while remaining in
the aforementioned zone, results in a positive effect on DR for all temporal variations driven by T+. Finally,
the last group of forcings, characterized by δ+ ≥ 10, act on a wall-normal region that is highly sensitive to the
specific value of T+. In this case, it is only beneficial (until δ+ ≤ 14) to have a thick Stokes layer if T+ is close
to T+

opt, whereas it can be completely counterproductive in the case of slow oscillations, even leading to drag
increase for the (T+, δ+) = (200, 20) case. As discussed later in Section 3.2, it appears that creating a thick
Stokes layer with slow oscillations leads to an increase in sweep and ejection events, effectively increasing the
phenomena characterized by vertical velocity fluctuations.
The results presented in Figure 4b confirm the observations made from Figure 4a, but with the variables T
and δ scaled using the viscous velocity uτ associated with drag reduced flow. It’s worth noting that there is
not necessarily one scaling approach that is superior to another, as each provides a different perspective on the
same results. Nevertheless, the qualitative information obtained from these two approaches is quite similar. For
example, T ∗

opt remains in the range of T ∗ = 30−40, which is markedly different from the classic results obtained
with oscillating walls (see Section 1). In general, T ∗ remains the dominant parameter, except for thin Stokes
layers where changes in the velocity profile height have a significant impact. When T ∗ ≥ 50 and 4 ≤ δ∗ ≤ 10,
it appears that (∂DR/∂δ∗) = 0. However, this effect is likely due to the lack of discrete results in this region,
which makes it challenging to obtain a uniform data grid. In fact, determining the particular pair of (T ∗, δ∗)
requires first finding the Cf and uτ .
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3.2. Reynolds stresses

(a) (b)

(c) (d)

Figure 6: Wall normal profile of mean streamwise velocity and Reynolds stresses (at Nominal Reτ = 400
and A+ = 12):(a) U∗; (b) 〈uu〉∗; (c) 〈vv〉∗; (d) 〈−uv〉∗

.

All variables shown in this analysis are scaled in actual viscous units, therefore considering each case with
respect to its viscous units. Applying scaling based on the actual friction velocity uτ enables proper non-
dimensionalization of the mean flow close to the wall. This facilitates comparison between the drag-reduced
statistics in the near-wall region and the statistics of unactuated turbulent flow at the same friction Reynolds
number Reτ . All quantities enclosed in the 〈·〉 brackets are temporally and spatially averaged along the homo-
geneous x and z directions.
In order to find a physical explanation to the results we have just shown, it is interesting to observe how
the Reynolds stresses behave under different forcing condition with respect to the reference unforced case.
We will analyze three different forcing cases, corresponding to three different (T+, δ+) pairs, appropriately
chosen: (50, 2), (50, 12), and (175, 12), which result in a drag reduction percentage of 10.5%, 39.4%, and 13.8%,
respectively. The general transport equation of the Reynolds stress 〈uiuj〉 is defined as(

∂

∂t
+ Uk

∂

∂xk

)
〈uiuj〉 = Pij − εij + Πij +Dν

ij +Dp
ij +Dt

ij (5)

where the terms on the right-hand side are the production (Pij), viscous dissipation (εij), pressure–strain
correlation (Πij), viscous diffusion (Dν

ij), pressure transport (Dp
ij) and turbulent transport (Dt

ij). The exact
mathematical definition of each right hand side term of Reynolds’ stresses equation can be found in [30]. The
indices i, j and k can range from 1 to 3 and correspond to the streamwise x, wall-normal y, and spanwise z
directions, respectively.
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It is known that the main driver of turbulence is the mutual interaction between streaks and QSVs, which
support and feed each other, forming the well-known wall cycle [23]. Focusing initially on diagonal Reynolds
stresses, it is acknowledged that the major contributions to 〈uu〉 come from wall streaks, while higher values of
〈vv〉 and 〈ww〉 can be linked to a higher intensity of QSVs.
Starting from the analysis of the streamwise Reynolds stress, from Fig. 6b we can notice that the 〈uu〉∗ massively
decreases throughout the height of the channel for the forcing at (T+, δ+) = (175, 12) (except for y∗ ≤ 5), while
it is only partially reduced by the (50, 12) and (50, 2) forcing cases, with respect to the reference case. This
might suggest that streaks are weakened more in the case of forcing at T+ = 175 compared to the other cases,
which seems contradictory since the best DR result is achieved at T+ = 50. Anyway, a similar behavior of 〈uu〉∗
was observed by [47] for two oscillating wall cases at T+ = 100 and T+ = 200, where the streamwise stress peak
near the wall was lower in the latter case than in the former, even though T+ = 100 gave the best DR result.
They have shown that this phenomenon is directly proportional to T+ and therefore not entirely attributable
to DR, and this seems confirmed also by our analysis.
On the other hand, the thickening of the viscous sublayer is actually one of the key factor associated with drag
reduction, as highlighted by [3]. This phenomenon can be observed from the shift of the peak of 〈uu〉∗ towards
higher y∗ values (Fig. 6b). The thickening of the viscous sublayer is also fully confirmed by the analysis of
the wall-normal behavior of the mean longitudial velocity 〈U∗(y∗)〉 shown in Fig. 6a, where it can be seen
that its linear near-wall trend extends to higher values of y∗ for the forcing that ensures a better DR value.
Consequently, the present results provide further evidence that an increase in DR is connected to a thickening of
the viscous sublayer, regardless of the values of the two parameters in the Stokes layer, T and δ. Specifically, the
observed thickening cannot be solely attributed to either T or δ, as exemplified by the cases of (T+, δ+) = (50, 2)
or (T+, δ+) = (175, 12), respectively. However, we did find a significant thickening effect for the combination of
T+ = 50 and δ+ = 12, which represents the most effective friction reduction forcing.
Figure 6c illustrates the variation of 〈vv〉∗ along the wall-normal direction, which reflects the strength of QSVs
and ejections/sweeps phenomena intensity. While the weakening of these structures is evident in the case of
T+ = 50 forcings, this is not observed for the one at T+ = 175. Instead, there is even an increase in 〈vv〉∗ for
y∗ ≤ 75 compared to the unforced case.
The aforementioned behavior can be clarified by examining the results presented in Figures 7a, 7b, and 7c,
which illustrate the redistribution of normal Reynolds stresses resulting from the pressure-strain correlation
terms. These terms are responsible for the energy transfer between diagonal Reynolds stresses due to the effects
of pressure-strain interactions, and determine their relative magnitudes. Specifically, when Πii < 0, energy is
transferred from 〈uiui〉 to the other diagonal Reynolds stresses, and vice versa when Πii > 0. The sum of
the diagonal redistribution terms is always zero (Π11 + Π22 + Π22 = 0). This means that any increase in the
normal stresses due to the pressure-strain correlation is accompanied by a decrease in the other normal stress
component.
The behaviour of Π∗

11 (Fig. 7a) shows that there is no inhibition of energy exchange between the streaks and
QSVs in the cases of (50, 12) and (175, 12) forcings. Instead, even more energy is transferred from 〈uu〉∗ towards
〈vv〉∗ and 〈ww〉∗ (because of a more pronunced negative peak). The difference between these two forcings in
the redistribution patterns can be easily identified by examining Π∗

22 and Π∗
33 curves (Figures 7b and 7c). In

comparison to the unforced case, two opposite behaviors are observed: for the (50, 12) forcing, most of the
energy seems to follow a preferential path from 〈uu∗〉 to 〈ww〉∗, while the opposite behavior is observed for the
T+ = 175 forcing, where a lot of energy goes from 〈uu∗〉 to 〈vv〉∗, since Π∗

22 dominates and Π∗
33 even shows a

negative peak, suggesting that some energy is also transferred from 〈ww〉∗ to the wall normal stress 〈vv〉∗. At
this point, the reason for the greater value of 〈vv〉∗ for the T+ = 175 forcing can be somehow supported by
evidence from the budget terms Πii.
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(a)

(b) (c)

Figure 7: Wall normal profiles of pressure-strain correlation terms (at Nominal Reτ = 400 and A+ =
12): (a) Π∗

11; (b) Π∗
22; (c) Π∗

33.

The observation of an increased energy exchange from 〈uu∗〉 to 〈vv∗〉 when T+ = 175, provides evidence that
there is no inhibition of the vertical fluctuating velocity field. On the contrary, our findings suggest that sweep
and ejection events may be enhanced by slow-oscillations of the Stokes layer.
The wall-normal Reynolds stress is a very important quantity, since it is primarily responsible for the production
of the shear stress 〈−uv〉∗ (shown in Figure 6d) through the production term P12 = ρ 〈vv〉 dUdy . Similarly, 〈−uv〉
comes into play in the production of 〈uu〉 through P11 = −2ρ 〈uv〉 dUdy , thus completing the wall cycle through
the influence of QSVs on the wall streaks.
Finally, taking a step back and looking at the near-wall peak of Π∗

11 ≥ 0 for the T+ = 175 forcing (Fig. 7a), it is
very clear how the trend of redistribution of diagonal Reynolds stresses (this time towards 〈uu〉) increases and
not just a little, even compared to the unforced case: this once again demonstrates how forcings with periods
far from optimal induce greater energy exchange from 〈vv〉 and 〈uu〉, and vice versa (Fig. 7b).
In summary, a main aspect can be inferred from this analysis: a Stokes layer with a period T far from the
optimal one causes an energy exchange activity between longitudinal and wall normal Reynolds stresses, that
exceeds the one of the reference flow, as we have seen through the graphical representations of the Reynolds
stress budget terms. Although not confirmed by the observations of the case (T+, δ+) = (175, 12), this could
explain why, in some cases, a drag increase situation has also been found. Increasing δ beyond the optimal
value leads to a loss of maximum effectiveness in weakening the streaks, which, together with an excitation of
the streaks-QSVs bond due to a non-optimal T , can lead to a consequent increase in skin-friction drag.

4. Lagrangian tracers

To better understand the flow behavior with respect to different pairs of (T+, δ+), an analysis using tracer
particles is now considered. The objective is to establish a relationship between the parameters of the Stokes
layer and the resulting DR value.
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In order to gain fundamental knowledge about fluid particle-tracer interaction and accurately predict velocity
fluctuations, it is useful to examine the statistical properties of particle motion. The Lagrangian frame of refer-
ence is particularly effective in computing statistical properties, as highlighted by previous research conducted
by [46] and [45]. With the advent of Direct Numerical Simulations (DNS) of turbulent flows, it has become
much easier to extract Lagrangian turbulence statistics by tracing fluid particles. These simulations provide
instantaneous realizations of turbulent fields, allowing researchers to investigate particles trajectories with vary-
ing levels of complexity. These particles can be ideal tracers without mass or have finite mass, which makes
inertia important in determining their trajectories.
[48] and [2] computed Lagrangian statistics from DNS of a turbulent channel flow, focusing on the interpolation
method of tracers’ velocity field. In fact, a critical part of particles tracking calculations, which becomes the
sole issue when particles are massless (tracers), is the interpolation required to obtain the particle velocity
from known values of the Eulerian velocity field. Several works compared and evaluated different interpolation
schemes, as [8] and [15].
The relative dispersion of two particles has been the first statistic studied quantitatively in turbulent flows.
This was initially investigated by [43], in the context of dispersion in the atmosphere. Later, the concept
was revisited by [4], also thanks to Kolmogorov’s 1941 theory on isotropic turbulence [12]. In the context of
two-particle dispersion problems, nowadays the literature on Lagrangian properties of particles in turbulence is
extensive [5, 6, 33].
In [32], anisotropy investigation of Lagrangian statistics is presented, with a focus on dispersion when shear
separation effect is removed. This work has shown the shear separation effects on particle dispersion, identifying
how the dynamics of pair separation has different characteristics in each flow direction due to the presence of
shear in the mean velocity field. The particles dispersion is defined as the mean square separation d(t)2 =
d(t) · d(t), where d(t) = xP1

p (t) − xP2
p (t) represents the separation vector between two paired particles P1 and

P2, and xip(t) represents the position of the i-th particle at time t, while the overbar indicates the averaging
operation over all particle pairs.
It is interesting to investigate how the relative dispersion between pairs of particles d(t)2 is influenced by
the Stokes layer generated by wall movement. This is useful to understand how near-wall fluid particles are
influenced by the transverse velocity profile (Eq.(4)). Indeed, a possible explanation for the phenomenon of
friction reduction through wall oscillation is that the wall cycle formed by the reciprocal interaction between
wall streaks and QSVs is somehow shielded by the Stokes layer.
The concept of shear sheltering as a possible explanation for the DR mechanism is not new. It was first
introduced in [20], in the context of the continuous spectrum of the Orr-Sommerfeld equation. Generally, it is
defined as the effect of the mean flow velocity profile in a boundary layer on turbulence [22]. [35] attempted
to establish a relationship between this phenomenon and a decrease in skin-friction drag caused by polymers.
They discovered that the introduction of polymers reinforces the shear sheltering mechanism, which produces a
blocking effect at a certain distance from the wall that prevents large eddies from the channel center to perturbe
near-wall zone. Consequently, the wall cycle is damped, and the near-wall turbulence is weakened, resulting in
a less intense fluctuating field. If this is true, the turbulent activity within the transverse boundary layer would
be inhibited in its velocity fluctuation components, particularly those normal to the wall, which are responsible
for sweep and ejection phenomena.

4.1. Particles computational model

After setting the total number of particles np to be inserted inside the channel, particles are organized into
ngroup = np/4 groups of four, as shown in Fig. 8. The first particle of each group, labeled as P1, is inserted at a
specific point xP1

0 = (x0, y0, z0) in the domain at time t = 0, while the other three particles, namely P2, P3 and
P4 are introduced at same position but shifted by a certain d0,x, d0,y and d0,z, respectively. The initial position
xP1
0 = (x0, y0, z0) and the components of the initial separation vector d0 = (d0,x, d0,y, d0,z) are freely selectable.

Once these two inputs and the total number of tracers as np are chosen, the initial arrangement of all particles
is fully determined, and therefore the entire process of polynomial interpolation can start.

4.1.1 Interpolation scheme

The numerical method to calculate the instantaneous position of particles is based on the integration of their
equation of motion. Since particles are considered ideal and massless, the equation of motion simplifies as:

∂x(x0, t)

∂t
= v(x0, t), (6)

where x(x0, t) and v(x0, t) are respectively the instantaneous position and velocity of the fluid particle identified
by the position vector x0 at time t = 0.
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z

P1(x0, y0, z0)
P2(x0 + d0,x, y0, z0)

P3(x0, y0 + d0,y, z0)

P4(x0, y0, z0 + d0,z)

Figure 8: Initial positioning of a group of particles.

The DNS code affords access to the Eulerian velocity u(t) for each point of a three-dimensional computational
grid at every time step. However, it should be noted that the particle’s instantaneous position x(t) often fails
to align with a point of the 3D computational grid, and the same holds for its velocity v(t), which might be
different from the grid-point one u(t). As a result, proper interpolation of the particle’s Lagrangian velocity
v(t) from the discrete velocity field of the turbulent flow u(t) is needed.
Accurately modeling particle trajectories in turbulent flow requires precise interpolation techniques. The Eu-
lerian velocity field’s spatial variations make interpolation calculations particularly challenging, as numerical
errors can quickly accumulate over time. Turbulent channel flow poses unique challenges, as high-energy small-
scale motions are difficult to interpolate, particularly near the walls where periodicity cannot be applied in the
y-direction. In this context, higher-order polynomial interpolation is limited to particles within (n/2− 1) grid
points off the wall, where n is the interpolating polynomial’s order. However, the present DNS code’s ghost
points can extend this range to (n/2− 2) grid points, but this is still not optimal, as high accuracy is required
near the wall. In our case, to overcome this limitation, a mesh in the wall-normal direction of constant/linear
type was adopted: in this way, the wall-normal resolution is arbitrarily reduced with the aim of recovering
the interpolation’s accuracy where the order of the interpolating polynomial has to be decreased. As the grid
spacing h approaches zero, the approximation error decreases asymptotically at a rate of O(hn+1), meaning
the achieved approximation is of order n+ 1. Thus, although we must decrease the interpolating polynomial’s
order, our approach still achieves acceptable resolution while maintaining the necessary accuracy.
In the present work, sixth-order Lagrange polynomials are used as the interpolating function for the discrete
velocity field, as they are able to achieve the required sufficient accuracy with minimal computational cost.
In order to determine the velocity of a given particle, it is necessary to interpolate the velocity vectors of the
nearest grid points. In our DNS code, this velocity field is obtainable after the calculation of nonlinear terms
for each time step, since such operation is done in the physical space. Once the real velocity field of the 3D grid
is known, the Lagrangian velocity of the particle v(x(t), t) is calculated through polynomial interpolation (all
details of this method can be found in [15]). From here, the position of the i-th particle can be calculated as
follow:

xi(t+ ∆t) = xi(t) + ∆t · v(xi(t), t), (7)

where ∆t is the chosen time step. In the present case, the temporal advancement method is the third-order
Runge-Kutta method, which specifies three sub-iterations to be performed for each ∆t based on certain pro-
gression coefficients. This means that for every time step, the simulation actually performs three sub-iterations
to obtain the desired temporal accuracy. At this point, after calculating the Lagrangian position and velocity
vectors for each particle, the resulting data is stored, allowing the computation of statistics using dedicated
post-processing codes.

4.1.2 Method validation

This paragraph describes the validation process for the employed interpolation and post-processing code, as
discussed in 4.1.1. As previously stated, [32] provides a comprehensive database of relative dispersion for
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Figure 9: Time evolution of mean-square separation, (d+(t))2 for tracer pairs. Different colors stands
for pairs with initial separation vector oriented in streamwise (d0 = d0,x), wall-normal (d0 = d0,y), and
spanwise (d0 = d0,z) directions. Solid lines depict the results of the present study, while dashed lines
represent the results from [32].

turbulent channel flow. Unlike the last validation (Section 2.3), no particles simulation is conducted to compare
the literature results under identical conditions.
The difference between the case in [32] and the current work is the friction Reynolds number, which is Reτ = 150
for the former and Reτ = 200 for our simulation. In both works, particle pairs are released at an injection height
of y+0 = 2 and with an initial separation vector of d+0 = 0.76 or d0 = 0.005h in all three directions, with h being
half channel height. The results are presented with the horizontal axis representing time evolution normalized
with respect to the crossing time τct. This variable is defined as the time required for a fluid particle positioned
at the center of the channel to cover one channel length Lx at a velocity of ucl.
In Figure 9 the results of the described validation are shown, comparing the time evolution of the mean-square
separation (d+(t))2 for different particles pairs. Despite the presence of minor quantitative variations, the overall
results are deemed satisfactory, given the discrepancy in Reτ , the use of a different DNS solver, and the distinct
approach to interpolate the particles velocity v(t).

4.1.3 Simulation parameters

The DNS are conducted under Constant Flow Rate (CFR) conditions at Reτ = uτh/ν = 400 (as for the
simulations described Section 2.1). The computational box size is (Lx, Ly, Lz) = (4πh, 2h, 2πh), discretized
with Ny = 300 grid points in the wall-normal direction y and Nx = 512 and Nz = 256 Fourier modes in the x
and z directions, respectively, with an additional factor of 3/2 to eliminate aliasing error. The streamwise and
spanwise resolutions are approximately ∆x+ = ∆z+ ≈ 6.5. The wall-normal mesh is a constant-linear node
distribution, maintaining ∆y+min = 0.5 until y+ < 25, beyond which ∆y+ increased linearly until it reached
∆y+max ≈ 6.2 at the channel centerline. The low near-wall resolution ∆y+min = 0.5 is chosen to maintain an
optimal accuracy of the interpolation of the particles’ velocity field (as described in sec 4.1.1), as well as to more
accurately represent the transverse velocity profile dictated by the Stokes layer.
The main particles’ analysis is composed of 16 forced simulations, which are performed for different combinations
of the Stokes layer parameters, namely (T+, δ+). Among these, 9 simulations were carried out with T+ = 50,
and δ+ was varied between 2 and 18 with a step size of 2. The remaining 7 simulations were performed with a
constant value of δ+ = 12, while T+ was varied between 25 and 175 with a step size of 25, plus a simulation
with T+ = 10.
In this context, a total of np = 2.2 · 106 particles are released randomly on a plane parallel to the wall for
each simulation, in such a way that the entire x-z plane is adequately filled with a sufficient number of tracers,
representing a high percentage of the flow elements. Particle pairs are injected at a release height of y+0 with
an initial separation of d0 in various directions. The wall-normal injection height of the particles has been set
to y+0 = δ+/2 for each forced simulation, while in the reference case y+0 = 6. The magnitude of the initial
separation vector d0 has been kept constant at d+0 = 0.76 or d0 = 0.019h in all directions.
The temporal evolutions of the results will be visualized through the normalized time t with respect to the
crossing time τct, which in the current simulations (expressed in nominal viscous units) is equal to:

τ+ct =
L+
x

u+cl
=

5026.54

20.08
≈ 250, (8)
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where u+cl is the longitudinal velocity at channel centerline. To collect statistical data and perform ensemble
averaging, a time window of duration ∆T+ was used. This time window is expressed in terms of the number of
crossing times τ+ct , and is equal to ∆T+ = 8.5τ+ct .

5. Particles results

5.1. General particles behaviour

(a) (b)

(c) (d)

Figure 10: Time evolution of the mean-square separation (d∗(t))2 for tracer pairs: (a) unforced reference
case, (b) forced case with (T+, δ+) = (50, 2), (c) forced case with (T+, δ+) = (50, 12), (d) forced case
with (T+, δ+) = (175, 12).

In order to understand the differences in flow behavior in forced simulations compared to the reference case, the
relative dispersion d(t)2 (introduced and described in Section 4) is used. Particles pairs are initially organized
as described in Section 4.1: for each ngroup, 12 different dispersions can be examined. Specifically, three pairs of
particles with different initial separations based on the direction of d0 are considered. For each pair, particles’
distance can be calculated as absolute d(t) or relative to one of the three directions, namely dx(t), dy(t), or dz(t).
This yields to 12 different combinations based on the initial separation and direction of distance considered.
Figure 10 shows time behavior of the mean square separation (d∗(t))2 (scaled in actual viscous units) of three
different particle pairs, initially separated with separation vector oriented in the streamwise (d0 = d0,x), wall-
normal (d0 = d0,y), and spanwise (d0 = d0,z) directions, respectively (consistently with the initial pairs ar-
rangement shown in Fig. 8). In order to examine the effects of different W (y, t) (Eq. (4)) on flow behavior,
three different pairs of (T+, δ+) were considered in addition to the unforced reference case. Specifically, for
Figures 10b, 10c, and 10d, the forcing profiles correspond to (50, 2), (50, 12), and (175, 12), which result in a
drag reduction percentage of 10.5%, 39.4%, and 13.8%, respectively.
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The effect of flow anisotropy can be observed in Fig. 10, for all flow conditions. It is evident that particle pairs
with a wall-normal initial separation d0,y exhibit a greater dispersion compared to those with initial separation
in homogeneous directions d0,x and d0,z. This behavior can be attributed to high local gradient ∂U/∂y of the
mean flow velocity, which immediately increases the distance between particles in the streamwise direction and
decorrelates the longitudinal velocities of the particles pair. This is evident for both reference (Fig. 10a) and
forced cases with injection height y+0 = 6 (Figures 10c and 10d), but when particles’ injection height is even
closer to the wall (i.e., y+0 = δ+/2 = 1 as in Fig. 10b), the effect of wall anisotropy is even more pronounced,
with large differences depending on the orientation of the initial separation vector d0.
In drag reduced flow, it is very interesting to observe the overlap of (d∗(t))2 for pairs of particles with initial
separation in the two homogeneous directions d0,x and d0,z. This happens because particles at the same height
y experience the same mean longitudinal velocity U(y) and transverse velocity W (y) of the Stokes layer. As a
result, it is reasonable to assume that the Stokes layers level the behavior of fluid particles within wall-parallel
x+ − z+ planes at a fixed height y+. Essentially, this means that if we could eliminate any vertical fluctuation
(preventing wall-normal movement), the relative distance between particles with d0,x or d0,z would remain
constant over time.
Additionally, when the flow is spanwise forced by W (y, t) (Eq. (4)) it transfers the oscillatory behaviour to
(d∗(t))2. This behavior becomes more pronounced when the oscillations are faster (lower T+) and the particles
are released closer to the wall (lower y+0 ), as the spanwise shear ∂W/∂y increases when y+ approaches zero.

5.2. Vertical dispersion

(a) (b)

Figure 11: Time evolution of wall-normal relative dispersion due to wall-normal initial separation at
different forcing conditions. In (a), the forcings are characterized by the same δ+ = 12 and different
T+. In (b), the forcings are characterized by the same T+ = 50 and different δ+. The particles’
injection height is equal to y+0 = 6 for the reference case and y+0 = δ+/2 for the forced cases.

The aim of this particles’ study is to investigate whether the shear sheltering effect caused by the Stokes layer is
somehow related to the DR provided by the wall motion. In essence, we are investigating whether a more effective
Stokes layer, which leads to a higher DR, also results in a more pronounced blocking effect. By examining this
potential correlation, our goal is to gain insights into the underlying the mechanisms that drive this phenomenon.
In order to analyze the shear sheltering provided by the Stokes layers (described in Section 1), it is more useful
to look at the component of relative dispersion normal to the wall, namely dy(t)2 = (yP1 − yP2)2 (where yP1

and yP2 are the wall-normal coordinates of the particles pair), than sticking to mean square separation (d∗(t))2.
Figure 11a shows wall-normal relative dispersion (d∗y(t))2 due to wall-normal initial separation (d+0,y = 0.76)
with release height y+0 = 6 for distinct Stokes layers, specifically characterized by same δ+ = 12 but different
T+.
In order to clarify its physical meaning, a lower relative vertical dispersion (d∗y(t))2 indicates that a pair of
particles tends to slowly vary their relative distance in the y direction.
From Figure 11a, it is immediately noticeable that the great majority of forcing conditions reduce (d∗y(t))2

compared to the unforced reference case.
Essentially, the optimal T+ order found in the drag reduction analysis (conducted in Section 3) is confirmed.
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Specifically, the minimum average vertical dispersion is obtained for T+ = 25, followed by T+ = 50 case. This
suggests that at these oscillation periods, the Stokes layer is highly effective in reducing vertical fluctuations,
resulting in the inhibition of turbulent phenomena such as sweeps and ejections.
Furthermore it is evident that moving away from the optimal T+ = 25− 50, results in a decrease in screening
action compared to oscillations with faster temporal variations. Notably, for all forcings with T+ ≥ 125 for
t ≤ 0.2τct, the vertical dispersion (d∗y(t))2 is even greater than the unforced reference case. Surprisingly on one
hand, it is interesting to remember the behavior of the wall-normal Reynolds stress 〈vv〉∗ shown in Fig. 6c.
Indeed, for (T+, δ+) = (175, 12), 〈vv〉∗ at y∗ = y+0 = 6 was higher than the unforced case, indicating that the
intensity of wall-normal fluctuations was not attenuated by the forcing, but rather amplified. The analysis of
the budget terms of the Reynolds stress equations revealed that the slow oscillations of the Stokes layer alter
the energy redistribution among the diagonal stresses. Specifically, they increase the direct energy transfer from
〈uu〉∗ and 〈ww〉∗ to 〈vv〉∗. It is presumed that these two effects are correlated, and this connection can explain
the lower shear sheltering effect guaranteed by high-T+ forcings.
As for the behavior of the Stokes layer at T+ = 10, we notice how it initially appears particularly effective, but
it then results in a (d∗y(t))2 with the highest growth rate over time. Although the reasons for this phenomenon
are difficult to identify, this confirms that there are optimal T+ values that provide better shear sheltering
effect than others, and that Stokes layers oscillations that become increasingly rapid do not necessarily reduce
(d∗y(t))2.
From this analysis, a possible link between DR and shear sheltering effect clearly emerges, since the T+

opt found
in the analysis in Section 3.1 is close to the T+ values that ensure a lower vertical dispersion of the particles.
Obviously, as t tends to infinity, it is expected that the vertical dispersions, regardless of the characteristics of
the forcing, converge to the same value. From this point of view, it is clear that (d∗y(t))2 cannot grow without
limits, being limited by geometric constraints such as the lower and upper walls.
Present results indicate that (d∗y(t))2 ≈ 105 at higher t, namely d∗y(t) ≈ 300. This asymptotic value is much
lower than the theoretically achievable one (dmaxy = 2 · Reτ = 600 − 800, depending on the actual Reτ ) and
seems to suggest that the final distribution of particle pairs is preferably confined within half of the channel.
In Figure 11b, the parameter being changed for the Stokes layers is its thickness δ+, while T+ remains constant
at 50. It is important to remember that, prior to the analysis, it was decided to keep δ/y0 = 2 constant.
Therefore, the (d∗y(t))2 curves in Fig. 11b correspond to different injection points y+0 .
Nonetheless, it can be stated that regardless of y+0 , inserting particles in the middle of a Stokes layer with
T+ = 50 always reduces their tendency to move freely in the wall-normal direction, with respect to the unforced
case. This reduction is not proportional to δ/y0, otherwise we would have seen an overlap of the curves.
Consequently, the differeces in the (d∗y(t))2 behaviour between different forcing may be attributed to δ+ or y+0 .
The analysis conducted in Fig. 11a has shown that a decrease in (d∗y(t))2 is somehow linked to the effectiveness
of the forcing in reducing friction. This suggests that y+0 should be the key factor. In fact, the maximum drag
reduction is achieved for the velocity profile imposed by W (y, t) with (T+, δ+) = (50, 12). Therefore, if the
decrease in (d∗y(t))2 were primarily dependent on the value of δ+, this forcing should ensure the lowest values of
(d∗y(t))2. However, this is not the case, leading to the suspicion that the true difference is made by y+0 . Indeed,
smaller values of y+0 guarantee lower (d∗y(t))2 values, as shown in Fig. 11b.

5.3. Snapshots of particles position

Previous analyses on particle dispersion, while very useful in highlighting the effects of forcings on flow behavior,
have some limitations.
Specifically, the behavior of d2(t), analyzed in Section 5.1, only allows for general conclusions to be drawn
without going into detail on the blocking effect of vertical movements.
On the other hand, (d∗y(t))2 provides insights into the relative behavior between pairs of particles, which is
informative about the effectiveness of Stokes layers as the T+ parameter varies, but is unable to provide an
absolute picture of the influence of a Stokes layer in limiting the vertical movements of fluid elements, since
only the relative behaviour is taken into account.
In order to overcome these possible limitations, in Fig. 12 the instantaneous distribution of particles in the
longitudinal plane x+ − y+ is shown at time instant t = τct (injection vertical point is y+0 = 6). This allows
for a direct comparison between the unforced reference case and the forced cases with increasing T+ and same
δ+ = 12.
These snapshots of particles’ positions underline once again how differences in the T+ parameter of the Stokes
layer have an impact on the wall-normal behavior of fluid particles. In the forced cases with T+ = 25 and
T+ = 50, the effectiveness of the Stokes layer in trapping particles within itself is particularly evident when
compared to the reference case and to slower Stokes layers with all other values of T+.
Even though all forced cases have an identical transverse boundary layer in their wall-normal spatial behavior
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Figure 12: Instantaneous particles position at t = τct for different forcing conditions. Particles have
been injected at y+0 = 6 at t = 0.

Figure 13: Time variation of the average wall-normal position of all injected particles for different
forcings.
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(since δ+ = 12 is the same), it is clear that in the case where T+ ≈ T+
opt, shear sheltering is very effective, which

strongly limits the vertical movement of fluid particles due to induced shear stress.
The qualitative results obtainable from the observation of Fig. 12 are fully confirmed quantitatively by the data
presented in Figure 13, which shows the average y+ position of the particles as a function of time for all forcings
at the same δ+ = 12 and different T+.
After t = τct, y+ for T+ = 25 and T+ = 50 settles at values of 14 and 15 respectively, whereas the reference
case provides y+ = 60. This indicates that, on average, the particles are distributed closer to the wall by about
75% when subjected to the shear induced by the Stokes layer, which therefore has a massive influence on the
wall turbulence.
As T+ increases, the effect of shear sheltering persists, albeit to a lesser extent, as the oscillations of the Stokes
layers become slower. This is evident both visually and quantitatively, as shown in Fig. 12 and Fig. 13,
respectively.
In general, even in this latest analysis, it emerges that the T+ values that better limit vertical movements are
the same ones that guarantee a better DR. A great difference with the analysis of (d∗y(t))2 (see Fig. 11a) is that
there is no forcing that initially makes the particles freer to move in the wall-normal direction than the reference
case. This seems to demonstrate that, at least for the investigated range of T+, every oscillation period of the
Stokes layer results in a certain shear sheltering effect on the flow vertical velocity.
Importantly, the real difference between different-T+ cases is only significant up to t ≤ 3τct, after which the
growth rate of all the curves remains relatively similar. The above statement highlights that the Stokes layer
effect has a limited impact on vertical particles movements, only for a certain time interval. Therefore, it should
not be regarded as an infinite effect, but rather as an initial constraint on the particles’ tendency to move
vertically in the channel.

6. Conclusions

This study proposes a novel method to understand skin friction reduction induced by transverse forcing. By
decoupling the spatial and temporal variations of the velocity profile into two parameters, δ and T , it is revealed
that the temporal variation of the Stokes layer dominates the resulting friction drag reduction, while its wall-
normal spatial behavior contributes to a lesser extent.
The main finding is that the optimal value of T+

opt for maximum friction drag reduction is significantly smaller
than the traditional value found in wall motion techniques. Previous studies have shown that the value of
T+
opt = 100 was the best compromise achievable when considering both temporal and spatial contributions.

However, if the goal is to identify the optimal temporal pattern for reducing friction, the best period of oscillation
appears to be around T+

opt = 40.
This work demonstrates that oscillation periods close to T+

opt result in a greater reduction of friction due to
an inhibitory effect of the wall-normal velocity fluctuation field, leading to lower sweep and ejection intensity
within the Stokes layer. This is evidenced by analysis of Reynolds stresses and observation of tracers behavior.
Specifically, the analysis of tracers suggests that the optimal values for the oscillation period T (in terms of the
resulting drag reduction) also result in a greater effect of shear sheltering.
Regarding the optimal wall-normal thickness of the Stokes layer to ensure better friction reduction, it is found
that there is no fixed value of δ that works better in an absolute way. In fact, the optimal thickness δopt is found
to be variable depending on the particular value of T . However, when the temporal behavior of the velocity
profile is optimal, the best drag reduction value is achieved with a Stokes layer thickness of δ+ = 12.
The findings of this study provide valuable insights into the optimization of future drag reduction strategies,
and offer reliable guidelines for a range of active control techniques, despite being limited to the considered type
of synthetic forcing. However, while this work has attempted to provide quantitative evidence to justify the
results, further research is needed to fully comprehend the underlying reasons behind some of the findings.
There are several potential areas for future research that could enhance our understanding of skin friction
reduction induced by transverse forcing. For example, expanding the investigation beyond the Stokes layer to
examine the effect of oscillation amplitude on drag reduction, and extending the use of spatial and temporal
decoupling to other types of forcing, such as travelling waves, to determine the general applicability of the
outcomes.
Moreover, extending this research to more complex flow regimes, such as those with more complex geometries
and boundary conditions, would be interesting to assess the practical applicability of the proposed approach.
These future studies have the potential to contribute significantly to the advancement of the understanding of
the physics of skin friction reduction, and to the development of optimized drag reduction strategies.
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Abstract in lingua italiana

Questo studio si pone l’obbiettivo di migliorare la comprensione del fenomeno di riduzione di attrito turbo-
lento indotto da un forzamento trasversale. La nota tecnica di oscillazione di parete genera uno strato limite
trasversale, noto come strato di Stokes, in cui il profilo di velocità è descritto analiticamente dalla soluzione
del secondo problema di Stokes. Tuttavia, è molto complicato capire se la riduzione di attrito che ne deriva sia
determinata principalmente dalle caratteristiche spaziali del profilo di velocità indotto, o dalla sua variazione
temporale, in quanto entrambe sono legate al valore del periodo di oscillazione di parete scelto in precedenza, T .
Viene suggerito un nuovo approccio che impone il profilo di velocità trasversale direttamente al flusso. Questo
metodo separa le variazioni spaziali e temporali in due parametri: uno che misura lo spessore del profilo di
velocità trasversale e un altro che ne rappresenta il periodo di oscillazione temporale. Ciò consente di valutare
i due contributi separatamente, acquisendo una comprensione più completa del fenomeno.
Lo studio parametrico DNS rivela che il parametro T dello strato di Stokes è il più influente nella riduzione
di attrito, mentre lo spessore del profilo di velocità contribuisce in misura minore. In particolare, il valore
ottimale di T che garantisce il massimo valore di riduzione di attrito, risulta inferiore (quasi della metà) del
valore tradizionalmente trovato nella classica tecnica di movimento di parete. Inoltre, attraverso lo studio degli
sforzi di Reynolds e del moto delle particelle traccianti, al variare dei due parametri T e δ, si è cercato di
comprendere perché alcuni profili di velocità risultano più efficaci di altri nel garantire maggior riduzione di
attrito. In particolare, è risultato che determinati valori di T detrminano una riduzione delle fluttuazioni di
velocità verticali, inibendo così l’attività turbolenta all’interno dello strato di Stokes.

Parole chiave: Riduzione di attrito, forzamento trasversale, strato limite di Stokes, particelle traccianti
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