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Abstract
The majority of control systems for orbital relative motion are directed toward circular
orbits and larger spacecraft. The direction of the growth in space exploration suggests that
solutions must be developed for relative motion control, and applied to small spacecraft
in eccentric orbits. The solution addresses the problem of relative orbital motion control,
uncoupled from attitude control, utilising model predictive controllers and data-based
system identification methods.

The implemented Model Discovery and Predictive Control (MDPC) solution is designed
to work on smaller spacecraft with limited actuation, low telemetry bandwidth and high
latency. The proposed solution considers the problem of bounding the separation of the
chaser spacecraft relative to the target, with a constant pointing requirement of the chaser
spacecraft towards the target. The onboard actuation system on the chaser spacecraft is
assumed to be a single pair of opposite facing thrusters pointed at the target spacecraft.

The novelty of the solution is the regression based model discovery framework which
utilises the sensor measurements of relative position and velocity to determine the local
relative motion dynamics. The model discovery is made more stable and robust through
stochastic methods. This is utilised by the prediction algorithm in the MPC to optimise
the control sequence to maintain the chaser spacecraft within the specified range bounds.

The simulations of the MDPC performance suggest that the proposed system effectively
satisfies the objectives under a wide range of orbital environments with perturbations
and varying eccentricities. The resulting MDPC framework is also expected to discover
the local dynamics in a faster and more insightful manner compared to neural network
based learning algorithms. The MDPC system has a high degree of autonomy due to its
minimal reliance on data from the ground-segment for control and guidance.
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Sommario
La maggior parte dei sistemi di controllo per il moto relativo orbitale sono orientati verso
orbite circolari e veicoli spaziali di grandi dimensioni. I recenti sviluppi dell’esplorazione
spaziale suggeriscono che debbano essere sviluppate soluzioni per il controllo del moto
relativo applicate a piccoli veicoli spaziali in orbite eccentriche. La soluzione proposta
affronta il problema del controllo del moto orbitale relativo, senza la necessità del con-
trollo dell’assetto, utilizzando sistemi di controllo predittivo e metodi di identificazione
del sistema basati sui dati.

La soluzione MDPC (Model Discovery and Predictive Control) implementata è progettata
per funzionare su veicoli spaziali di piccole dimensioni sottoattuati, con larghezza di banda
per la telemetria limtata e con latenza elevata. La soluzione proposta considera il problema
di delimitare la separazione del veicolo spaziale chaser rispetto ad un target, con una
richiesta costante di puntamento del chaser rispetto al target. Si presume che il sistema
di attuazione a bordo dello spacecraft inseguitore sia una singola coppia di thrusters
opposti puntati verso il target.

La novità della soluzione è il framework di identificazione del modello basato su una re-
gressione che utilizza le misure del sensore di posizione relativa e della velocità per deter-
minare la dinamica del moto relativo locale. L’identificazione del modello è resa più stabile
e robusta attraverso metodi stocastici. Questo modello viene utilizzato dall’algoritmo di
previsione nell’MPC per ottimizzare la sequenza di controllo necessaria a mantenere il
veicolo spaziale chaser entro i limiti specificati.

Le simulazioni delle prestazioni dell’MDPC suggeriscono che il sistema proposto soddisfa
efficacemente gli obiettivi in un’ampia gamma di condizioni orbitali con perturbazioni ed
eccentricità variabili. Ci si aspetta inoltre che il framework MDPC proposta si in gradio di
identificare le dinamiche locali in modo più rapido e approfondito rispetto agli algoritmi di
apprendimento basati sulle reti neurali. Il sistema MDPC ha un alto grado di autonomia
grazie alla sua dipendenza minima dai dati ottenibili del segmento di terra utilizzati per
il controllo e la guida.
Parole chiave: moto relativo, controllo, modello, MPC, identificazione, predizione
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1| Introduction
The motion of spacecraft in formation with the goal of approaching a common final
position and velocity with the intention to meet is called orbital rendezvous. This forms
an important field of study for contemporary research and spaceflight operations. The
wide range of applications stemming from such rendezvous operations include orbital
docking for resupply, spacecraft repair as in the case of the Hubble space telescope. Most
of the orbital rendezvous are performed in larger spacecraft due to the lack of complex
hardware in smaller satellites.

The advent of cheaper and more reliable small satellites have enabled complex missions
undertaken by the small satellites. However, there is not much advantage to docking
two small spacecraft as there is in formation flying. Formation flying is the process of
maintaining a coordinated relative orbital motion at relatively close proximity. An orbital
proven example of such technology is the Tandem-X SAR satellite missions.

Historically, the first rendezvous attempts were successfully made by the crew of the Gem-
ini mission on 16 March 1966. Neil Armstrong and Dave Scott successfully docked with
the Agena module performing the historic feat. Several unmanned docking attempts were
made until the Cosmos 186 spacecraft docked with Cosmos 188, becoming the first un-
manned spacecraft to perform docking. Since then, most of our human space exploration
in the context of the International Space Station has employed docking technologies.
Some deep space rendezvous and proximity manoeuvres include the DART and Hayabusa
missions to distant minor bodies. Most of the contemporary space-faring nations already
have proven rendezvous technologies or are currently under development stages.

The primary branch of cutting-edge research in this field is enabling autonomous control
system development for orbital rendezvous and proximity operations. A coherent global
effort is visible towards development of autonomous control systems for small satellites
for formation flying, proximity operations and rendezvous. Due to the abundance of
opportunities and the relatively high launch cadence, small satellites have become key-
enablers in the field today. The primary research sub-domain for the near-future seems
to be in the direction of complete control autonomy and enabling self-contained control
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architectures independent from ground support.

The typical phases of spacecraft rendezvous are diagrammatically represented in Fig. 1.1.
A common notation is adopted to refer to the two spacecraft undertaking this manoeuvre
and differentiate between them. The spacecraft in the process of actively approaching
another spacecraft is called the “chaser” and the other spacecraft is called the “target”.
Understanding the reasoning behind the naming scheme is very trivial.

V -bar

R-bar

Docking

LaunchPhasingHomingClosing

F inal

Approach

Close Range Rendezvous

Automated Control

Ground Control

Target

Orbit

P0
P1

P2P3

Earth

Target

Chaser

Figure 1.1: Typical spacecraft rendezvous and docking process (reproduced from [27]).

The usual orbital rendezvous process begins with a ground controlled orbital phasing,
which brings the chaser vessel orbit closer to the target orbit. Upon completion, the
automated control begins with the homing phase, where the chaser localises the target
vessel and proceeds to move towards it. The automated control then initiates the closing
phase to fine-tune the approach of the chaser vessel within close range. The last phase is
the final approach phase undertaken by the automated control system, where the chaser
vessel is already within close proximity of the target with the same relative velocity and
orbital shape. The final approach phase is responsible for bringing the chaser vessel to
the docking position by gradually reducing the relative range between the two vessels.

The primary mode of guidance in the automated phases of the rendezvous process is
the relative navigation. There is no ground-segment support and guidance based on an
inertial reference system towards the control of the chaser vessel. The final phase utilises
very strict constraints and tolerances to maintain a rectilinear relative trajectory with a
6-DoF controller.
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1.1. Background
Advancing frontiers in space exploration necessitate cutting-edge technological progress in
autonomous space exploration. There is no lack of problems to be solved in this domain
from an engineering standpoint. However, the current work will focus on the spacecraft
control problem under an autonomous framework for maintaining a bounded relative
range with respect to its target. While this problem is not novel and might seem trivial
due to its simplicity and existence of time-tested solutions, the scope of the work presents
a novel method and several applications that might be ideal for the proposed method.
To understand how the current work integrates into the arena of available solutions, it is
prudent to discuss the historicity and available alternative solutions.

The primary objective of the dissertation is to investigate a coupled system implemented
through mathematical models of the spaceflight mechanics, data-based numerical methods
and control theory. The mathematical formulations are discussed through the derivation of
the relative orbital dynamics governing the chaser spacecraft motion relative to the target.
The investigations concerning the control theory are focused through the implementation
of a model predictive controller capable of controlling the aforementioned relative motion.
Data-based methods are used as a tool to “discover” the system dynamics - model - that
will be implemented in the model predictive controller.

This dissertation attempts to implement a control system capable of solving the au-
tonomous relative motion control problem in orbits of arbitrary eccentricities. The novelty
of the approach presented in this dissertation is the implementation of a model discov-
ery algorithm to identify the concurrent local relative dynamics governing the relative
motion, through sensor measurements. This investigation aims to find a fast, stable and
robust model discovery framework which can be implemented with relatively low compu-
tational loads in model predictive control architectures for relative orbital position control
applications in an elliptic orbit.

The classical solution to the relative orbital motion is provided by the Hill-Clohessy-
Wiltshire model, through linearised time-invariant ODEs. The validity of this model is
limited to the circular orbit of the target spacecraft and small initial separations be-
tween the target and the chaser. The solutions for arbitrarily eccentric target orbit are
manifested through a time-varying nonlinear ODEs. The solution proposed by Yamanaka-
Ankerssen is one such model, but also applicable to small initial separations. The proposed
MPC in this dissertation utilises a constantly linearised dynamics to approximate a full
nonlinear time-variant dynamics.
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Historically, the relative motion of the chaser spacecraft is controlled through classical
control theory implemented through PID controllers or linear-quadratic-Gaussian con-
trollers. The cutting edge however, explores the utility and implementation of a novel
model predictive controllers. This investigation utilises model predictive control where
the model plays a critical role in its performance. The given algorithm, however, distin-
guishes itself from typical approaches by assuming no knowledge of the current dynamics
governing the relative orbital motion. The proposed framework “discovers” the model
using data-based methods, employing the state measurements or estimations available.

The term “guidance” in the orbital control jargon, refers to long-term manoeuvres or plan-
ning in the scale of the orbit. While smaller manoeuvres, such as maintaining requested
attitude or relative position, constitute “control” of the spacecraft. In the context of this
dissertation, the term “control” also refers to maintaining the chaser spacecraft within
the set limits of relative range. The typical ranges where the MPC is envisioned to work
ranges from a few hundred metres to hundreds of kilometres. Hence, the classical mean-
ing of guidance can also be applied to the functions performed by the MPC within some
specific cases.

1.2. Dissertation Scope
The dissertation proposes a control system based on the mathematical formulations of
the orbital relative motion dynamics, principles of the model predictive control using
“learned” plant models. The detailed derivation of the principles are discussed in their
respective chapters, concluding with the integration and testing of the closed-loop control
system. The mathematical formulations are derived with assumptions of Newtonian two-
body problem and Keplerian orbits. The only deviations from these assumptions are
introduced in the form of J2 perturbations.

The model predictive controller is designed without detailed derivations of the state esti-
mator and the coupled attitude determination and control systems. This is done explicitly
to discuss and highlight the novelty of the proposed solution. Derivations and discussions
about the attitude control system and the state estimators would not contribute to the
demonstration of the aforementioned novelty. Stochastic disturbances are neglected in the
state estimation algorithm, which is justified by the principle of separation of estimation
and control. Further resources regarding this principle can be found in Ref [9].
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1.3. Motivation
The case of circular “target” orbit has been thoroughly investigated through linear mod-
els and it reflects in the vast majority of applications of such control schemes for orbital
rendezvous in circular orbits. The relative scarcity of linearised models addressing the
control schemes for elliptical “target” orbits cannot be denied. Upcoming challenges ac-
companied by the miniaturisation of satellites necessitate a closer examination of relative
dynamics-based control schemes and their applications for the elliptical “target” orbit
case.

The literature survey undertaken indicates an overwhelming volume of study in the do-
main of linear MPCs. The primary disadvantage of the linear models employed in model
predictive controllers is the model divergence. Due to the linearisation, the plant dy-
namics used within the MPC are not accurate and quickly lose accuracy due to model
dynamics diverging from the actual evolving dynamics i.e. “ground truth”. These limita-
tions constrict the applications to smaller separations between the chaser and the target
spacecraft. The solution proposed in this thesis aims to address this problem and propose
a robust solution.

The linearised dynamic models also lead to inefficiencies in the control loop behaviours.
This is evident due to inaccuracies in the model contributing to worse performance through
propellant over-expenditure, discontinuous control sequence, etc. The final motivation
arises from the need to increase the degree of autonomy of the control system. This
is done through minimising the role of ground-segment telemetry in the control system.
Considerations of a low-bandwidth telemetry and higher latency resistant control system
are implemented.

Hence, this study explores the development of a model “discovery” algorithm that offers a
fast and simple method to model the local dynamics and use it in the prediction algorithm
for the model predictive controller. To improve the robustness and stability of such
a model “discovery” framework, the possibility of including the perturbations into the
“discovered” local dynamics is explored.

1.4. Objectives
The derivation of the local plant-model for relative orbital motion via data-based methods
in an autonomous framework is a challenging objective. A necessary attribute of the pro-
posed framework for model “discovery” is the reduced reliance on ground-link, simplicity
and speed.



6 1| Introduction

The primary objective is the design and implementation of a model predictive controller
which aims to prove the thesis of this dissertation. The following features are formulated
under the scope of the presented work:

1. To create a tool for identifying the local orbital relative motion dynamics and util-
ising it for optimising the control input sequence of the controller.

2. To provide a framework for control system design to tackle constantly evolving local
dynamics under limited ground-segment support.

3. To enable relative range bounding control for arbitrary orbital eccentricities.

4. The proposed method of model “discovery” reduces the complexity and computa-
tional load when compared to alternative methods implemented through machine
learning, deep learning, support vector machines, etc.

The next step is the realisation of a simulation and analysis environment and conducting
numerical experimentation campaigns.

1.5. Literature Survey
This section provides a summary of the important aspects, relevant history and evolution
of research in the concerned topics. This helps in understanding where the state of art
exists and how does the proposed work fit into the arena of contemporary research.

1.5.1. Relative Orbital Mechanics

The basis of modern tools and formulations utilised to model the relative orbital motion
were laid by the works of Hill-Clohessy-Wiltshire. Who developed a set of equations
describing the motion of a chaser spacecraft in the target centred rotating reference frame.
These equations are classically called the HCW equations of motion [13, 19]. The primary
drawback was the scope of these equations were limited to circular orbits with very small
initial separations, on the order of less than a kilometre.

These drawbacks were addressed by several future works by Lowden and Tschauner and
Hempel. The former developed a linearised solution for elliptical orbits while the latter
formulated simultaneous differential equations for the same [43]. The problem of applica-
tion of these equations for arbitrarily eccentric orbits were still left unsolved.

The first steps in this direction were taken by Carter [12], with his proposed STM solution
as a function of the true-anomaly of the target spacecraft. The work was advanced by the
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groundbreaking generalisation of theses solutions into a explicit time-dependant STM
solution provided by Yamanaka-Ankerson [45]. They provided a simple exact analytical
solution of relative motion for orbits of arbitrary eccentricity.

The Yamanaka-Ankerson solutions are one of the most widely used methods to model
the relative motion. Several improvements and particular solutions for minimum-time
rendezvous[1] and introduction of higher order terms for accuracy[26] and adoption of the
Yamanaka-Ankerson solution into a spherical coordinate frame[24] were made.

Attempts at considering the various perturbations into the generalised solutions were
made by Ross[33] through inclusion of spherical harmonics to account for J2 perturba-
tions. Due to the complex nature of these solutions, Schweighart and Sedwick proposed
an approximation to utilise time-invariant coefficients and make them computationally
efficient[39].

While most of the solutions were presented in a Cartesian reference frame, efforts were
made to utilise the GVE to aid a higher order accuracy due to the nature of the time-
derivatives of orbital elements being smaller and hence offering robust numerical calculus
performance.A state transition matrix capable of propagating spacecraft with large sepa-
rations in elliptical orbits and incorporating the effects of J2 is presented in Ref. [8]. The
dynamics of the relative motion problem in a perturbed orbital environment is exploited
based on Gauss’ variational equations by Okasha and Newman in Ref. [29]. Another
approach, utilising difference in argument of latitude, the difference in orbital radii, and
their first-order derivatives to describe relative trajectories is presented by Baranov in
Ref. [5].

For a more detailed overview on the historicity and various concurrent models of relative
motion, refer to the work presented in Ref. [3, 27].

1.5.2. Control System

The introduction of a model based predictive controller algorithm is a relatively novel
development in the field of control theory. The optimal control theory formed the basis of
the development of model predictive control. The works of Kalman [22, 23] in 1960s, laid
the foundations for optimal control. His work focused on infinite-horizon optimal control
solutions. This led to the formulation of the LQR. These powerful control strategies
focused on minimising a quadratic cost function to find a instantaneous control input
subject to optimised infinite-horizon.

However, they were plagued by the lack of constraints and not considering the actual plant
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nonlinearities. The works in this field in the next decade focused on using an approximate
formulation of the plant dynamics to predict the effect of control sequence on the future
states of the system. This prediction was optimised subject to satisfaction of constraints
based on a dynamic plant model propagation. Such methods were called DMC, proposed
by Cutler and Ramaker [2, 15].

Initial predictive controllers were not stability guaranteeing algorithms due to finite opti-
misation horizons and no information about the stability of the underlying plant dynamics.
This was solved by the introduction of an impulse based model excitation and finite hori-
zon optimisation of a quadratic cost function. This was implemented in the first computer
application called IDCOM [32].

Further improvements included using a linear step input excitation and using least squares
optimisation algorithms was presented in the work by Cutler and Ramaker in 1980 [15].

The modern generalised formulation of MPC was driven by the introduction of two cost
functions concerning the outputs and the control sequence. This algorithm allowed a
better control over the optimisation space to augment the stability margins. The work
proposed by Marquis and Broustail in 1988 [28], introduced the utilisation of modern
state space models into the predictive control framework.

A wide range of modern applications of MPC utilise the state-space formulation with
two cost functions. The work proposed in this dissertation utilises the same framework
of the MPC.

To understand the specific application of orbital control strategies, the following references
are recommended. For general digital control for relative orbital control, a good base can
be formed through Ref. [17]. For a deeper investigation on applications on control of
formations and docking, refer to Ref. [11].

1.6. Primary Contributions
The primary objectives and contributions of the presented work is in the field of model
predictive control for relative motion control of spacecraft. However, a detailed derivation,
justifications and results of the work will be presented further. The main contributions
are listed below:

1. A mathematical, numerical and computational framework for local relative motion
dynamics discovery.

2. A novel method to integrate data-based model discovery methods into model pre-
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dictive controllers for in-space applications with higher autonomy.

3. A distinctive and more accurate prediction model is generated compared to alterna-
tive methods for nonlinear problems (elliptical orbits with higher initial separation).

4. The layout of a control/guidance algorithm with novel formulation of prediction
model is provided accounting for model predictive controller parameter variation.

1.7. Prospective Applications
The motivation for developing a framework for MDPC (Model Discovery and Predictive
Control) controller for relative orbit motion control is to broaden the scope of application
and propose a general and flexible method for varied use cases. There can be several
potential applications for the proposed framework, however, a few of them are enlisted
below to create a general idea.

The application of the framework is foreseen in the following scenarios:

1. Satellite inspections or optical observations under dominant nonlinear relative mo-
tion dynamics.

2. Companion satellite relative range bounding for communications or science appli-
cations.

3. Deep space applications that reduce the possibility of on-ground support for control
and guidance of relative motion.

4. Relative motion control around celestial bodies that deviate significantly from the
Keplerian formulation of orbits, such as asteroids, the presence of mascons leading
to gravitational anomalies, etc.

5. Fast-changing relative motion dynamics laws necessitate prediction methods to
adapt quickly to the local dynamics, such as low orbits around the primary at-
tractor.
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2| Mathematical Formulations
This chapter introduces the mathematical models that will form the basis for further
development of the control system and the model discovery framework. The models
formulate the relative orbital motion dynamics, used in the prediction algorithm of the
model predictive controller. These models are derived from the basic laws of Newtonian
mechanics and Keplerian orbital motion. Finally, the mathematical model describing the
mass of the spacecraft is formulated as a conclusion of this chapter.

The derivation of the mathematical formulations in this chapter have been reproduced
from multiple sources, Ref. [3, 18], and assembled into a desirable model. The frame of
reference used for relative motion analysis is the LVLH frame, diagrammatically shown
in Fig. A.1

2.1. Relative Orbital Motion in LVLH Frame
The basic control problem of the dissertation is focused on the control of the relative
range of a spacecraft relative to another spacecraft in proximity. The spacecrafts forming
this configuration are referred to as the target and the chaser spacecraft. The target
spacecraft forms the centre of the frames of reference in which the chaser spacecraft
motion is described. The objective of the chaser spacecraft is to maintain a relative
trajectory or positional configuration in this target spacecraft centred reference frame.
The only spacecraft under control is assumed to be the chaser spacecraft, which needs to
perform a rendezvous manoeuvre.

2.1.1. State-Space Representation

The primary aim of this section is to develop mathematical models to describe the relative
motion of the chaser spacecraft that can be utilised for control system design. This is
achieved by deriving a state-space representation of the mathematical model of NERM
developed in Section A.

The derivation of the state-space representation/model starts with the assumption of the
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spacecraft state vector:

x =
[
x y z ẋ ẏ ż

]T
(2.1)

The eq. 2.1 defines a state vector which will be employed in the control system. The
scalar components of the vector are defined as follows:

• x, y and z are the relative position components defined in the orthogonal unit basis
vectors of the LVLH frame described in Fig. A.1.

• ẋ, ẏ and ż are the relative velocity components defined in the orthogonal unit basis
vectors of the same LVLH frame.

Now, we can combine our knowledge of the NERM developed in Section A through eq.
A.19, eq. A.20 and eq. A.21, to formulate the relationship between the scalar components
of the state vector and their respective first temporal derivative:

dx

dt
= ẋ (2.2)

dy

dt
= ẏ (2.3)

dz

dt
= ż (2.4)

dẋ

dt
= 2ḟ ẏ − 2ḟy

ṙt

rt

+ xḟ 2 + µ

r2
t

− µ

r3
c

rt − µ

r3
c

x + udx

mc

(2.5)

dẏ

dt
= −2ḟ ẋ + 2ḟx

ṙt

rt

+ yḟ 2 − µ

r3
c

y + udy

mc

(2.6)

dż

dt
= − µ

r3
c

z + udz

mc

(2.7)

By incorporating the disturbance forces described in eq. A.15 into the state-space model
based on state vector x defined in eq. 2.1, we can generalise the set of equations described
above (eq. 2.2 ... eq. 2.7) to form a matrix equation. This would result in the derivation
of the state-space form that forms the basis of the model for control system:

ẋ = ANLx + B (u + up) + V (2.8)

where, matrix ANL is called the state matrix for non-linear system and defined as:



2| Mathematical Formulations 13

ANL =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

ḟ 2 − µ
r3

c
−2ḟ ṙt

rt
0 0 2ḟ 0

2ḟ ṙt

rt
ḟ 2 − µ

r3
c

0 −2ḟ 0 0
0 0 − µ

r3
c

0 0 0


(2.9)

Input matrix namely, matrix B is defined as:

B =



0 0 0
0 0 0
0 0 0
1

mc
0 0

0 1
mc

0
0 0 1

mc


(2.10)

Finally, the additional vector V incorporates the non-linear terms:

V =
[
0 0 0 µ

(
1
r2

t
− rt

r3
c

)
0 0

]T
(2.11)

There was no assumptions in the above derivations which enables us to use the equations
for arbitrary eccentricities. We can linearise the eq. A.18 by assuming ρ ≪ rt:

rc =
√

(rt + x)2 + y2 + z2

= rt

√
1 + 2x

rt

+ x2 + y+z2

r2
t

≈ rt

√
1 + 2x

rt

(2.12)

The expression for µ
r3

c
can now be written using binomial theorem as:

µ

r3
c

≈ µ(
r
√

1 + 2x
rt

)3

≈ µ

r3
t

(
1 + 2x

rt

)− 3
2

≈ µ

r3
t

(
1 − 3x

rt

)
(2.13)
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Now, eq. A.17 can be approximated by substituting eq. 2.13 in it. This results in:

r̈c ≈ − µ

r3
t

(
1 − 3x

rt

)
rt + x

y

z

+ 1
md


udx

udy

udz

 ≈ − µ

r3
t


rt − 2x

y

z

+ 1
md


udx

udy

udz

 (2.14)

Hence, we can write the linearised equations of motion linearised around small separations
between chaser and target spacecrafts. By substituting eq. 2.14 into eq. 2.5, eq. 2.6 and
eq. 2.7 and also assuming ḟ =ω, we can get:

dẋ

dt
=
(

ω2 + 2 µ

r3
t

)
x + ω̇y + 2ωẏ + udx

mc

(2.15)

dẏ

dt
= ω̇x +

(
ω2 − µ

r3
t

)
y − 2ωẋ + udy

mc

(2.16)

dż

dt
= − µ

r3
c

z + udz

mc

(2.17)

These equations can be called the linearised equations of relative motion (LERM). We
can derive the state-space representation using the same procedure as before by applied
to the LERM, while also assuming k = µ

h
3
2

= const. and µ
r3

t
= kω

3
2 . It is apparent that

only the state matrix ANL is changing:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1(

ω2 + 2kω
3
2
)

ω̇ 0 0 2ω 0
−ω̇

(
ω2 − kω

3
2
)

0 −2ω 0 0
0 0 −kω

3
2 0 0 0


(2.18)

Finally, a linearised version of eq. 2.8 can be written as follows:

ẋ = Ax + B (u + up) (2.19)

This concludes the derivation of the state-space model responsible to describe the gov-
erning equations of relative motion. However, we also need to account for the state-space
model describing the behaviour of the chaser spacecraft with regards to its propellant
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expulsion and the corresponding dynamics associated with its mass. This is addressed in
the Section 2.2.

2.2. Mass Model of Chaser Spacecraft
While it is a complicated process to model the mass of the chaser spacecraft, a choice
is made to derive a simplistic state-space representation for the same. This is deemed
adequate for primary investigations and evaluating the performance of the control system,
which is the primary objective of the thesis. The model is derived based on the thrust
equation of a rocket motor with reference to the specific impulse of the rocket motor
shown in eq. 2.20. The specific impulse employed in this model is the net equivalent
specific impulse of the propulsion system used in the chaser spacecraft, whose derivation
is referred from Ref. [41].

ṁ = Fthrust

Ispg0
(2.20)

In the above equation, ṁ denotes the propellant mass expulsion rate due to the thrust
actuation in the chaser spacecraft. Fthrust represents the actuation force of the thrusters
and the Isp is their net equivalent specific impulse. Finally, g0 is the reference value of the
gravitational acceleration on the surface of the Earth, assumed to be g0 = −9.81 m

s2 . An
important point to note while employing this equation is to utilise the scalar magnitude
of the actuation force which will always be positive irrespective of the direction of the
actuation.

Let us assume a state vector which represents the mass of the chaser spacecraft. The
choice is very trivial, as mass is not a vector. This results in the obvious choice of xp

equivalent to the actual mass of the propellant expelled by chaser spacecraft, resulting in
a state scalar. Now the state-space model of the chaser spacecraft’s expelled mass is:

ẋp = Apxp + Bpu (2.21)

where the state matrix Ap= [0] because the mass expelled has no effect on the rate of
mass expulsion. The control vector u is defined previously in eq. A.14. The input vector
Bp is defined as a row matrix with size [1 × 3].

To define the actual elements of the input matrix Bp, we need to impose certain logical
conditions in the modelling framework. The need for this arises due to physical limitations
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of the limited propellant and the necessity of the mass expulsion rate to be negative. It is
trivial to model the input matrix Bp when the chaser spacecraft completely depletes its
propellant:

∀xp ≥ mp0 =⇒
{
Bp =

[
0 0 0

]}
(2.22)

where mp0 represents the initial propellant mass. Finally, to comply with the necessity of
negative expulsion rates, we can define a switching condition:

∀xp < mp0 =⇒
{
Bp = sgn (u)T ·

[
1

Ispg0
1

Ispg0
1

Ispg0

]}
(2.23)

where sgn () function denotes the signum function which returns the sign of each com-
ponent of a vector as a vector. Now we can write an equation to model the current mass
of the chaser spacecraft:

md = mdry + mp0 − xp (2.24)

where mdry is the mass of the chaser spacecraft devoid completely of all stored propellant.
The current value of xp will be determined for the current time during the simulation of
the model through integration of eq. 2.21.
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3| Model Discovery
This chapter presents the methodology and primary reasoning behind the adopted model
discovery methodology. The internal prediction model in the controller is derived from
the results of the data-driven model discovery problem. Starting from the outline of the
contended model discovery methods, the chapter provides justifications for shortlisting
the chosen method before moving on to the adaptation of the procedure to the relative
orbital motion prediction problem before finally concluding with the final model discovery
framework.

3.1. General Concept
Governing equations are of primary importance in the field of engineering. Determining
or knowing the governing equations allows understanding the physical phenomenon and
provides insights into development of methods to control it. Classically, these equations
are derived from the basic universal principles and conservation laws. However, contem-
porary research [7, 10, 30, 34] is conducted in fields where either the governing equations
are unknown, partially known or influenced by a superposition of multiple factors, often
too much to analytically consider or evaluate their respective independent degree of in-
fluences on the system. This necessitates a method to discover the governing equations
behind such physical processes through measurement data.

Application of data-driven model discovery has been employed for a long time in the fields
of vibrations, finance, fundamental physics, aerodynamics, chaos theory, etc. Oftentimes,
data-driven model discovery methods are attributed to a low degree of physical insight
into the physical process and higher computational loads. This is primarily due to the
numerical nature of the problem solving algorithms. Such methods are essentially “blind”
to the actual physical laws, they only ensure that the measurements are correlated via
numerically determined coefficients to a high degree of accuracy without any insights on
if such systems could actually exist.

The primary concern for such methods is to strike a balance between the model efficiency
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and descriptive capacity of the derived models. Often, models are either efficient and
accurate numerically or analytically descriptive, but not both. It is this conundrum that
drives the forefront of the cutting edge in this field. While many methods are available to
solve this problem, every method prerequisites time-rich sensor measurements to ensure
accurate model derivation.

If broken down to the lowest level of complexity, data-driven model discovery is akin to
the process of curve-fitting through numerical regression. It computes the coefficients of
the contribution of each input variable to the output variables via measurements of the
same. To improve the accuracy of such methods, several approaches and considerations
are available such as neural networks, model dynamic decomposition, principal component
analysis, numerical regression, etc. Each of these methods offers a unique set of possibil-
ities and features but depends heavily on the correct choice of candidate coordinates to
describe the dynamics.

The optimal choice of the coordinates is usually at one’s own discretion, driven by the
intuition and cognisance of oneself. This introduces another avenue for our problem,
namely the identification and employing the correct candidate coordinates that will be
used to discover the system. This is addressed in the following sections in detail.

Ultimately, the evaluation of the performance of the model discovery methodology is
primarily performed by its model prediction capabilities. The benchmarking is performed
with reference sensor measurements independent of the measurement set used for model
discovery. This is also described in this chapter along with the choice of performance
parameters for benchmarking.

3.2. Model Discovery Methods
While many different methods exist for deriving the model of the system from measure-
ments, the efficacy of some methods is better for the purpose of this dissertation. Primar-
ily, model discovery is performed in either the time domain or the frequency domain. For
the proposed solution, it is computationally and analytically preferred to employ time-
domain methods. The justifications for such assumptions are driven by the formulation
of relative orbital motion equations being formulated in the time domain.

One of the possible methods for approaching a model discovery problem is the classical
machine learning or neural networks [4, 6, 31, 44, 46]. The idea behind the usage of
classical neural networks in model discovery is the relative ease of modelling such model
discovery architectures. Sometimes trivially referred to as “black-box” systems, neural
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networks are infamously less intuitive in their insights into the dynamics.

The major drawbacks of the neural networks based model discovery can be listed as
follows:

• Neural networks are good at understanding systems through interpolation of train-
ing data-set. For purposes of MPC, prediction of the system states is essentially a
forecast/extrapolation.

• Low level interpretability of the discovered models.

• Lack of conditioning methods to "inform" the neural network of physical constraints.

• Discovered model is usually not sparse i.e. the coordinates used for model identifica-
tion is more than what is needed to describe it parsimoniously with fewest possible
coordinates Ref. [10, 34, 35, 38].

When generalised and interpret-able models are required to be generated through model
discovery, it is highly preferred to have parsimonious models that are described by the
fewest possible coordinates with the maximum contribution to the system dynamics. Such
methods are referred to as sparse model identification methods. Such systems are most
difficult to implement via neural networks due to the conflicting nature of neural networks
being anti-parsimonious. Nevertheless, methods such as symbolic regressions, simultane-
ous linear regressions and sparse regressions are available to be used for our applications.

Another feature of critical importance is the ability to inform the model discovery frame-
work of any preexisting knowledge of the dynamics to aid the speed or the accuracy of the
discovered system dynamics. A relatively novel method proposed in Ref. [10] by Brunton
et al, presents a framework for sparse model discovery through numerical regression meth-
ods employing sensor measurements. While this method has been successfully utilised in
several domains, it is extremely rare to find its applications in relative orbital dynamics
and control. The proposed work of this thesis primarily focuses on the implementation of
this strategy in the model prediction framework of the model predictive controller.

3.3. SINDy Algorithm
The SINDy algorithm was developed to offer a model identification framework which
offers interpretability and also flexibility for generalisation. It offers a method to identify
the dynamical governing equations based on sensor measurements. There have been
several applications which show the interoperability and flexibility of this framework,
from structures [25], chemical kinetics [20], ray optics [42] and fundamental physics [16].
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These are just representative of the potential applications of this novel method. There ex-
ist provisions to introduce pre-existing knowledge of physical systems into this framework
to aid the regression process to identify the model. Fundamentally, SINDy algorithm
focuses on sparsity inducing regression methods and algorithms. It is also proven that the
SINDy algorithm is faster, more robust and computationally light compared to neural
networks [21].

While SINDy algorithm is a great method for the purposes of MPC, it is heavily depen-
dant on the quality of the measurements, volume of measurements, sparsification function
definition and also on the choice of the basis coordinates used to describe the dynamics
in the regression problem.

For our application, we have already developed the mathematical models of our relative
motion in Chapter. 2. We know the formulation, what we need to find is the coefficients
of the governing equations that are applicable in the spatial and temporal locality of the
chaser spacecraft. This would allow us to dynamically tune our MPC performance based
on the local dynamics without a need for ground-segment support.

3.3.1. Discovery Framework

This section will lay down the mathematical and schematic descriptions of the discovery
framework proposed by the SINDy algorithm. The fundamental basis of the algorithm
is rooted in a regular multi-dimensional linear regression problem. Let us now familiarise
ourselves with the jargon used in the context of the SINDy algorithm. The mathematical
equation that describes such a problem in the context of SINDy algorithm is given by:

Ẋ = Θ (X)Ξ (3.1)

where, Ẋ is called the target function or target matrix, Θ denotes the matrix of coor-
dinates used in the regression also known as feature library and finally, Ξ is called the
regression coefficient matrix. It is often the case in dynamics that the targets are the
derivatives of a state vector x or a combination of functions whose domain is the state
vector. This is represented by the Θ being a function of the state vector, denoted as
Θ (X). Most often, in the context of control systems or state space representations, the
derivative of the state vector is only dependent on the state vector or a linear/nonlinear
combination of states only. In our case, according to the mathematical models of the
relative motion, the derivative of the state vector is only a function of the state vector as
denoted in (eq. 2.2 ... eq. 2.7).
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The diagrammatic representation of eq. 3.1 is given in the Fig. 3.1:

ẋ1 ẋ2 ẋ3

Ẋ

=

1 x1 x2 x3 x2
1 x2

2
... x1x2

. . .

Θ (X)

ξ1 ξ2 ξ3

Ξ

Figure 3.1: SINDy framework.

The coefficients matrix Ξ is characterised by several coefficients denoted by coloured
circles. The intensity of the colour represents the magnitude of the coefficients. In the
context of regression, the magnitude of the coefficients represents the degree of correlation
of the corresponding feature in Θ to the target in Ẋ. The correspondence of each feature
to its target is represented by a unique colour.

The target and features matrices are populated by the measurement data acquired by the
sensors. Due to the presence of noise and the nature of numerical methods, there will exist
at least a weak correlation between the targets and features which are physically unrelated.
This results in inaccurate coefficients in the regression process. This is represented in the
Fig. 3.1, matrix Ξ, through very mild correlation coefficients in lighter colours.

The process of eliminating the mild correlation coefficients through numerical methods
or physical knowledge of the system results in a well-conditioned coefficient matrix which
has just enough coefficients to describe the dynamics of the system. Such a coefficient
matrix is called a sparse coefficient matrix. Sparse coefficient matrices offer good extrap-
olation/prediction performance because they capture the system dynamics accurately.

There exist methods to sparsify the coefficients, usually implemented through regression
regularisers or optimisers. Such a process is figuratively represented below:
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ẋ1 ẋ2 ẋ3

Ẋ

=

1 x1 x2 x3 x2
1 x2

2
... x1x2

. . .

Θ (X)

ξ1 ξ2 ξ3

Ξ

ξ1 ξ2 ξ3

Ξ

≈

w1 w2 w3

W

Regression: Find coefficients

Sparsify: Relaxation

Figure 3.2: SINDy framework: Coefficient sparsification [48].

It is evident from the Fig. 3.2 above that the coefficients depicting mild correlation are
eliminated and form the sparse/relaxed coefficients matrix W.

An important point to note before proceeding further is the dependence of SINDy al-
gorithm accuracy on the quality of the measurements. Any physical sensor measurement
is characterised by the presence of noise and biases. Some workaround strategies are
discussed to avoid performance degradation in the sections following this.

3.3.2. Candidate Library

The term "library" refers to the collection of measurements or functions that contribute
possibly to the targets. Wherein the term "targets” refers to the collection of measure-
ments or functions that form the L.H.S of the regression formulation. The choice of an
optimum library aids in the accuracy and speed of model discovery. The prior knowledge
of the underlying mathematical models helps us in identifying candidates for the library
selection. Within the SINDy framework, the terminology used to describe the collec-
tion of terms that are prospective candidates for the regression coordinates is “features”.
Hence, in this section, the terminology will be used interchangeably, as is in modern model
identification methods.

The SINDy framework assumes that the model can be described as a linear combination
of features. If the system under investigation does not obey such governing equations,
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SINDy method fails to obtain good results.

From the discussions in the Chapter 2, concluding with eq. 2.18, we can proceed to for-
mulate our regression feature library. To convert our understanding of the mathematical
models into a regression formulation, we must write the state equation presented in eq.
2.19 in the formulation used in the SINDy framework, as shown in Fig. 3.1. Such a
formulation can be expressed as follows:

ẋ = Ax + Bu ⇔ Ẋ = Θ (X)Ξ (3.2)

Rearranging by forming an augmented matrix by transposing the individual matrices:

ẋ = Ax + Bu ⇒ ẋT =
[
xT uT

] AT

BT

 (3.3)

It is important to note that X represents the feature vector in the context of regression,
while x represents the state vector in the context of relative orbital motion. While eq.
3.3 is completely valid, there are some considerations to be made before finalising the
formulation.

To account for practical implementation of SINDy method, or any regression based meth-
ods, it is generally advised to keep the formulation very simple and try to minimise the
unknown parameters. This strategy is key to reducing computational loads for regression,
improving robustness of solution and also augment model identification accuracy.

Since measurements of external acceleration ad can be obtained easily compared to ob-
taining accurate measurements of u. Measuring the force imparted on the spacecraft by
the actuators and the perturbations is impractical. Under such considerations, we can try
to simplify our formulation by assuming a good mass state estimator. This allows us to
have an accurate estimation of the spacecraft mass which could be measured and sampled
to be used further in model discovery. As per eq. 2.10, B matrix can be completely
determined if we have an accurate estimation of the spacecraft mass. By dividing matrix
u by the mass of the chaser spacecraft mc, we need to multiply B with mc to balance the
equation. Which results in:

ẋT =
[
xT uT

mc

]  AT

BT mc

 =
[
xT aT

d

] AT

BT
I

 (3.4)

where ad represents the disturbance acceleration discussed in eq. A.15 and:
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BI =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


(3.5)

The final library used in the regression problem is determined to be the augmented matrix
containing the relative state measurements xp and the control acceleration measurements
ad. The SINDy regression equation can be expanded using eq. 2.1, eq. 2.18 and eq. 3.5
and substituting into eq. 3.4 to derive an alternative formulation of the equation as:

Ẋ =
[
xT aT

d

] AT

BT
I





ẋ

ẏ

ż

ẍ

ÿ

z̈



T

=



x

y

z

ẋ

ẏ

ż

adx

ady

adz



T 

0 0 0
(
ω2 + 2kω

3
2
)

−ω̇ 0
0 0 0 ω̇

(
ω2 − kω

3
2
)

0
0 0 0 0 0 −kω

3
2

1 0 0 0 −2ω 0
0 1 0 2ω 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



(3.6)

We can alternatively expand the notation ad into its individual contributions. This leads
to the following equation:

ad = af + ap (3.7)

Where af corresponds to the acceleration imparted by the spacecraft actuation systems
and ap corresponds to the acceleration imparted by the orbital perturbations. Hence ad

represents the total external acceleration on the body. We can now rewrite the eq. 3.6 as:
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ẋ

ẏ

ż

ẍ

ÿ

z̈



T

=



x

y

z

ẋ

ẏ

ż

(afx + apx)
(afy + apy)
(afz + apz)



T 

0 0 0
(
ω2 + 2kω

3
2
)

−ω̇ 0
0 0 0 ω̇

(
ω2 − kω

3
2
)

0
0 0 0 0 0 −kω

3
2

1 0 0 0 −2ω 0
0 1 0 2ω 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



(3.8)

By splitting the external accelerations af and ap terms:



ẋ

ẏ

ż

ẍ

ÿ

z̈



T

=



x

y

z

ẋ

ẏ

ż

afx

afy

afz



T 

0 0 0
(
ω2 + 2kω

3
2
)

−ω̇ 0
0 0 0 ω̇

(
ω2 − kω

3
2
)

0
0 0 0 0 0 −kω

3
2

1 0 0 0 −2ω 0
0 1 0 2ω 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



+



0
0
0
0
0
0

apx

apy

apz



T

(3.9)

By borrowing the same equation notation from eq. 3.3, we can formulate eq. 3.9 as
follows:

ẋT =
[
xT aT

f

] AT

BT
I

+ ΥT (3.10)

where Υ denotes the matrix including the contribution of perturbation acceleration on
the R.H.S in eq. 3.9.

The eq. 3.10 still does not conform to the SINDy equation, eq. 3.1. We can now introduce
another assumption to make it compatible. According to Fig. B.1, the acceleration of
the various perturbations are on the order of ap < 10−4 km

s
. If the chaser spacecraft is
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actuated with higher forced accelerations af compared to ap, we can assume a minor role
of the perturbations in the relative motion dynamics.

We can also note that most of the perturbations faced by the chaser spacecraft are also
simultaneously faced by the target spacecraft. By assuming ρ ≪ r, both spacecraft ex-
perience almost similar perturbation forces. Hence, the relative perturbation acceleration
vector in the LVLH frame, ap, is negligible in magnitude even compared to the pertur-
bation acceleration vector in the inertial frame of reference.

With these considerations, we can assume Υ to be negligible and reformulate eq. 3.10
into:

ẋT ≈
[
xT aT

f

] AT

BT
I

 (3.11)

By comparing eq. 3.11 and SINDy equation, eq. 3.1:

ẋT ≈
[
xT aT

f

] AT

BT
I

 ⇔ Ẋ = Θ (X)Ξ (3.12)

and assuming that X =
[
xT aT

f

]
, we can conclude that:

Θ (X) ≡
[
xT aT

f

]
⇒ Θ (X) = X (3.13)

Ξ ≡

AT

BT
I

 (3.14)

To successfully implement this equation into the SINDy framework, we must ensure that
the measurements that constitute the library Θ (X) and targets Ẋ must be obtainable
accurately and with a high measurement sampling rate. By observing eq. 3.9, we can see
that all the measurements pertaining to Θ (X) and Ẋ are physically measurable directly
or through a good implementation of navigational filters and/or state estimators.

3.3.3. Regulariser

The regression equation is determined and an optimum selection of the regression strat-
egy has to be formulated to discover the system. SINDy algorithm employs an iterative
regression solver that utilises an optimiser and a regulariser to iteratively improve the co-



3| Model Discovery 27

efficient matrix. The default implementation utilises a STLSQ optimiser. The optimiser
minimises a cost function that evaluates the regression fitness or accuracy. The objective
function of the STLSQ optimiser based regression is denoted below:

min
Ξ

1
2 ∥ Ẋ − Θ (X)Ξ ∥2 (3.15)

For more control over the selection of coefficients in Ξ, a thresholder is introduced. The
thresholder imposes a constraint on the minimum absolute value any coefficient can take
in Ξ to avoid elimination in the iterative optimisation.

For each iteration, the smallest correlation coefficients which are smaller than a threshold
value are eliminated before proceeding to the next iteration. The mathematical equation
for the thresholded STLSQ optimiser could be formulated as:

min
Ξ

1
2 ∥ Ẋ − Θ (X)Ξ ∥2 +λR (Ξ) (3.16)

where λ is a hyper-parameter associated with tuning the thresholder and R (·) denotes
arbitrary regulariser function which promotes sparsity.

To maintain the convex nature of the objective function, we must avoid the L0 norm.
Hence, typically, L1 and L2 norms are used as regularisers. The equations representing
them are listed below:

||v||1 =
∑

i

|vi| (3.17)

||v||2 =
√∑

i

v2
i (3.18)

where v represents an arbitrary vector with components vi. The key difference between
these regularisers, are their sparsity promoting behaviour. Mathematically, these norms
can be represented as hyper-surfaces in multi-dimensional function-spaces.

The shape of these surfaces are representative of how the regulariser promotes the it-
eration step along each dimension. To analyse the effects we can assume an arbitrary
2-dimensional function-space, which is graphically represented in Fig. 3.3.
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Figure 3.3: Regularisation comparison.

where θ1 and θ2 represent the coordinates that span the multi-dimensional function space
of the coefficients in matrix Ξ. The point β represents the global minima of the objective
function formulated in eq. 3.16. The optimisation of the objective function starts at a
particular initial coordinate in the function space of θ1 and θ2 which is represented as
the origin of the arbitrary coordinate axes. While only two coordinates are shown in the
Fig. 3.3 for representational purposes, the principle remains the same even for higher
dimensional function-spaces.

The L2 norm promotes the solution in iteration steps equally in all the coordinates, while
the L1 norm promotes the solution along the basis vectors corresponding to the function
space. Each iteration expands the volume spanned by the n-dimensional rhomboid and
sphere, in the case of L1 and L2 norms respectively, until the volume spanned touches
the minima β.

The Fig. 3.3 represents one iteration step, which results in the solution moving from the
origin of the axes i.e. initial value to the point denoted by k. It is evident that the L2
norm solution does not promote the solution selectively in any direction, which results in
non-zero coefficients along each coordinate axes. Whereas, L1 norm promotes the solution
along a particular axis θ2 which has a non-zero coefficient contribution while θ1 remains
zero. This is the sparsity promoting behaviour of the L1 norm, which ensures that the
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solution moves in a direction to keep the contributions of all but one axis non-zero. Hence,
for the purposes of this thesis, a weighted L1 norm is used as a regulariser. The eq. 3.16
can be alternatively written as:

min
Ξ

1
2 ∥ Ẋ − Θ (X)Ξ ∥2 +λ||Ξ||1 (3.19)

3.3.4. Thresholding

Referring to eq. 3.16, a higher value of λ would result in the elimination of more coefficients
during the optimisation. While this would result in a sparse matrix, it might eliminate
coefficients that are important but have a lesser value than λ. It is also important to note
that STLSQ optimiser offers a single threshold value for all the coefficients in Ξ.

Let us substitute eq. 3.13 and eq. 3.14 into eq. 3.19 to derive the objective function for
our regression problem previously formulated. This results in the following expression:

min
Ξ

1
2

∥∥∥∥∥∥ẋT −
[
xT aT

f

] AT

BT
I

∥∥∥∥∥∥
2

+ λ

∥∥∥∥∥∥
AT

BT
I

∥∥∥∥∥∥
1

(3.20)

On closer inspection of eq. 3.9, we can see that the coefficients corresponding to Ξ

vary a lot in their magnitudes. This means that a common thresholder cannot be used
to drive regression optimisation. A variable thresholder uniquely specific to every ele-
ment/coefficient in Ξ is required. Such a thresholder can be modelled as follows:

min
Ξ

1
2

∥∥∥∥∥∥ẋT −
[
xT aT

f

] AT

BT
I

∥∥∥∥∥∥
2

+ [λ]
∥∥∥∥∥∥
AT

BT
I

∥∥∥∥∥∥
1

(3.21)

where [λ] denotes a threshold matrix with the same size as ΞT . Each element in [λ]
corresponds to a threshold on a unique and corresponding coefficient in Ξ. We can utilise
this to impose unique thresholds on each coefficient to control the regression iterations
better.

3.3.5. Constraints

Although our regression problem is formulated, we need to use pre-existing knowledge of
the system dynamics to "inform" the numerical regression method. Any system/model
discovery method can be classified based on the resulting "discovered" model behaviour
compared to the baseline system. The classifications are shown in the Fig. 3.4 below:
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Model discovery methods

Under-indentified:
The identified system

coefficients in Ξ cannot
be uniquely established
from measurements in
Θ (X) and Ẋ which

results in negative DoFs

Exact-indentified:
The identified system

coefficients in Ξ can be
uniquely established

from measurements in
Θ (X) and Ẋ which
results in zero DoFs

Over-indentified: The
identified system coeffi-

cients in Ξ have no exact
solution. Multiple values

of a single/multiple
coefficient Ξ satisfy
the system, which

results in multiple DoFs

Figure 3.4: Model discovery methods classification

Our mathematical models are well defined and provide exact solutions to the relative
orbital motion. The measurements chosen are physically possible to acquire with good
temporal and spatial resolutions. This ensures that our model discovery methods are not
under-identified. However, we need to ensure that the model discovery framework does
not produce arbitrary non-unique coefficients that fit the measured targets but fail in
model prediction due to lack of physical insight of the system. The coefficients discovered
for such a system would result in an over-identified system. This is ensured by "informing"
the model discovery framework about the physical dynamics through constraints.

The constraints on the coefficients in Ξ could establish relationships between the various
individual coefficients or even include linear combinations of functions of the coefficients.

A method has been developed under the investigation of this thesis to impose physical
constraints on Ξ. Recalling the formulation of Ξ as per eq. 3.14 and using eq. 3.9, Ξ can
be expanded as:

Ξ =



0 0 0
(
ω2 + 2kω

3
2
)

−ω̇ 0
0 0 0 ω̇

(
ω2 − kω

3
2
)

0
0 0 0 0 0 −kω

3
2

1 0 0 0 −2ω 0
0 1 0 2ω 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



(3.22)
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Using the notation of Fig. 3.1 for coefficients in Ξ and comparing it with eq. 3.22, we
can write a family of equations as:

ξ1,4 = ω2 + 2kω
3
2

ξ1,5 = −ω̇

ξ2,4 = ω̇

ξ2,5 = ω2 − kω
3
2

ξ3,6 = −kω
3
2

ξ4,5 = −2ω

ξ5,4 = 2ω

ξ4,1 = ξ5,2 = ξ6,3 = ξ7,4 = ξ8,5 = ξ9,6 = 1

(3.23)

We can notice a few relationships among the coefficients ξ which can be converted into
constraints for the iterative regression. The relationships can be formulated mathemati-
cally as:

ξ1,4 − ξ2,5 + 3ξ3,6 = 0
ξ1,5 + ξ2,4 = 0
ξ4,5 + ξ5,4 = 0

ξ4,1 = ξ5,2 = ξ6,3 = ξ7,4 = ξ8,5 = ξ9,6 = 1

(3.24)

Typically, affine equality constraints are imposed as a simultaneous linear equation to be
solved along with the objective function. It is usually represented as:

CiΞ = di (3.25)

where Ci denotes a matrix of coefficients that are formulated from a single relationship
equation shown in eq. 3.24 and di denote the scalar term on the right hand side of those
equations. Which converts the regression problem shown in eq. 3.21, into simultaneous
equations shown below:

min
Ξ

1
2

∥∥∥∥∥∥ẋT −
[
xT aT

f

] AT

BT
I

∥∥∥∥∥∥
2

+ [λ]
∥∥∥∥∥∥
AT

BT
I

∥∥∥∥∥∥
1

CiΞ = di


(3.26)
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Mathematically, using matrix algebra, we can rewrite the relationships shown in eq. 3.24
into a matrix notation borrowed from eq. 3.25. For each relationship, we can write a
single equation in the denoted form. Since we have four relationships, re-formulation
would result in four matrix equations which mathematically denote our model discovery
constraints. The eq. 3.26 can be rewritten as:

min
Ξ

1
2

∥∥∥∥∥∥ẋT −
[
xT aT

f

] AT

BT
I

∥∥∥∥∥∥
2

+ [λ]
∥∥∥∥∥∥
AT

BT
I

∥∥∥∥∥∥
1

C1Ξ = d1

C2Ξ = d2

C3Ξ = d3

C4Ξ = d4



(3.27)

By vectorising the matrix equation denoting the relationships between the coefficients in
Ξ, also known as constraint matrix, we can write eq. 3.27 as:

min
Ξ

1
2

∥∥∥∥∥∥ẋT −
[
xT aT

f

] AT

BT
I

∥∥∥∥∥∥
2

+ [λ]
∥∥∥∥∥∥
AT

BT
I

∥∥∥∥∥∥
1

CeqΞeq = deq


(3.28)

where Ceq and deq are vectorised equality constraint matrices comprising of Ci and di

respectively. The sizes of these matrices are as follows:

• Ceq: [Nc, Nf × Nt]

• Ξeq: [Nf × Nt, Nt]

• deq: [Nc, Nt]

where Nt, Nf and Nc represent the number of targets in Ẋ, number of features in X
and number of constraints in eq. 3.24 respectively. The Ξeq is generated by vertically
appending Ξ to itself Nt times.

From the notation, we know that ξi,j corresponds to the coefficient of the contribution
of ith feature in X towards the jth target in Ẋ. The general equation for populating the
elements of the constraint matrix Ceq can be written as:
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Suppose we need to impose the mth constraint h × ξi,j = k:

Ceq [j, (i+m×Nf )] = h; deq [m,1] = k (3.29)

For example, imposing the first constraint according eq. 3.24 would result in such formu-
lation:

We know the first constraint as:

ξ1,4 − ξ2,5 + 3ξ3,6 = 0 (3.30)

This constraint corresponds to three unique coefficients in Ξ, hence we must populate
three elements in Ceq and since it is only one constraint, one element in deq. Using the
general formula from eq. 3.29, we can populate constraint matrices as:



Ceq [4, (1+1×6)] = 1
Ceq [5, (2+1×6)] = −1

Ceq [6, (3+1×6)] = 3
deq [1,1] = 0

(3.31)

The regression problem which is developed until now and formulated in eq. 3.28, is
complete and can be solved using an iterative regression solver.

However, it should be noted that while we have only imposed four constraints, this is not
sufficient to reduce the DoFs of the model discovery regression to zero. This would mean
that the model discovery would result in a coefficient matrix Ξ which is over-identified
according to Fig. 3.4. To compensate for this, a strategy to implement an additional fifth
constraint is developed in the next chapter.

3.3.6. Optimiser

The standard STLSQ regression optimiser penalises the model fitting error Ẋ − Θ (X)
and the sparsity of the discovered coefficients matrix elements in Ξ. The hyper-parameter
λ controlling the sparsity of Ξ can be tweaked to obtain desired levels of sparsity in the
discovered models. Higher values of λ penalise the regularisation of Ξ, which results in
a highly sparse Ξ matrix after the regression problem shown in eq. 3.28 converges and
vice-versa.
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Since the fundamental philosophy is sparsity promoting regularised model discovery re-
gression, we can utilise a novel objective function called the SR3 proposed in Ref. [48].
The SR3 algorithm proposes an objective function which generates more robust dis-
covered models of the system. This is done by introducing an additional term in the
regression objective function which penalises the variation in the coefficient matrix over
each iteration. While the STLSQ objective function promotes sparsity, SR3 promotes
both sparsity, correlation and robustness of the discovered model.

The SR3 objective function can be mathematically formulated similarly to the STLSQ
objective function in eq. 3.19 as:

min
Ξ

1
2 ∥ Ẋ − Θ (X)Ξ ∥2 +λ||Ξ||1 + 1

2ν
∥ Ξ − W ∥2 (3.32)

where W represents a coefficient matrix similar to Ξ, but it is generated through relax-
ation of the coefficients in Ξ. This process is shown graphically in Fig. 3.2. The process
of relaxation is done by elimination of coefficients which correspond to a weak correlation,
during every iteration. The threshold for elimination can be tweaked pragmatically in the
algorithm.

We can now assemble the combined regression equation for model discovery using the SR3
optimiser with L1-norm sparsity promoting regulariser, coefficient dependent thresholding
and coefficient constraints. By using eq. 3.28 and substituting it into eq. 3.32, we obtain
the complete system of objective equations for the regression, which will be referred
henceforth as CSR3 algorithm:

min
Ξ

1
2

∥∥∥∥∥∥ẋT −
[
xT aT

f

] AT

BT
I

∥∥∥∥∥∥
2

+ [λ]
∥∥∥∥∥∥
AT

BT
I

∥∥∥∥∥∥
1

+ 1
2ν

∥∥∥∥∥∥
AT

BT
I

− W

∥∥∥∥∥∥
2

W =
AT

BT
I

⊙


AT

BT
I


i,j

> η


CeqΞeq = deq



(3.33)

where η represents the coefficient specific matrix of relaxation thresholds, ⊙ represents
an element-wise multiplication operation, the expression enclosed in curly braces is an
element-wise conditional binary operator on the matrix.
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Finally, the only undefined variable is η. Since the actual values of the thresholds would
depend on the coefficient values in Ξ, which in-turn depend on the spatial and temporal
locality of the chaser spacecraft. Hence, we need to dynamically generate these thresholds
depending on the locality. The procedure to dynamically generate thresholds will be
discussed in the following chapter.

3.4. Model Discovery Robustness
The regression based model discovery method detailed in the previous section is char-
acterised by two main drawbacks. Since it is essentially a data based method, it relies
on accuracy and quality of data measurements. According to the framework laid out
for model discovery, the measurements that are used are essentially the classical state
vectors for relative motion and mass. These measurements are sourced from on-board
sensors which adds measurement noise and bias to them. This would hamper the model
discovery method’s efficacy in its trajectory prediction performance.

Another drawback is the stability of the discovered model. It is a well investigated prob-
lem that numerical regression methods can produce an accurate coefficient matrix which
describes the dynamics. However, for implementing the discovered model as the predic-
tor in the associated MPC, we need models that are not prone to stochastic instability.
Slight variations in discovered coefficients can produce largely varying trajectory predic-
tions when integrated over a long interval, even under the same constraints. Another
outcome of this is degraded model discovery repeatability. With the same measurements
and constraints the probability of obtaining the same discovered model while running the
algorithm multiple times is very low.

These will form the basis of investigation for this section as well as methods to make the
model discovery framework robust and resistant to degraded sensor measurement quality.

3.4.1. Data Processing

The performance of CSR3 algorithm deteriorates in the presence of inaccurate mea-
surement data. The primary foreseen application of autonomous MDPC controllers are
foreseen in cubesats. Most cubesats performing tandem missions or proximity operations
rely on GNSS, onboard IMUs and radio ranging to measure or estimate relative po-
sition and velocities. Within the scope of this thesis, it is assumed that the available
measurements for model discovery are obtained from radio ranging.

The choice for radio ranging only is driven by the satisfactory performance and frugality
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of the systems, which is often the reason for their prevalence in cubesats. This ensures
that the developed MDPC can be potentially used in rudimentary cubesats. The typical
accuracy of radio ranging methods in cubesats are on the order of 10−2 m, m

s
[47] and

measurement frequency in the order of [104 − 103] Hz as demonstrated in 2010 in the
PRISMA mission by Swedish National Space Board.

There is a lack of accurate relative acceleration measurement which is required for model
discovery regression as targets in Ẋ matrix. Hence, a numerical differentiation based
estimation is implemented to pre-process the relative position and velocity measurements
to estimate the relative acceleration. It is well known that numerical differentiation causes
dynamics artefacts in the measurements and can be characterised by large errors based
on the quality of the original measurements. To avoid this issue, smoothed high-order
numerical finite differentiation methods are utilised.

The differentiation method used is the fourth-order moving-mean windowed finite dif-
ference scheme. The choice of the optimum window size depends on the measurement
frequency and the bandwidth of the system dynamics. The chosen window size is 5. This
ensures that there is no loss of dynamics information during differentiation of measure-
ments. This is essentially a low-pass filter connected to a numerical differentiator.

3.4.2. Simultaneous Model Discovery

While the problem of measurement accuracy and quality was trivial to solve, the prob-
lem concerning the discovered coefficient stability and robustness is more complicated to
solve. The term stochastic hardening refers to the process of making the model discov-
ery framework more resistant to stochastic performance deterioration. The diagrammatic
representation of the stochastic hardening is depicted in Fig. 3.5.

The model discovery process produces, as an output, the coefficient matrix Ξ which rep-
resents the system matrix A. To understand the inherent variance in the model discovery
coefficient matrix, we can apply the model discovery framework multiple times to generate
multiple models representing the same underlying dynamics.

This is performed by sub-sampling the sensor measurement data-set into multiple subsets
denoted in the Fig. 3.5 by ẋn and xn, where n denotes the number of sub-sampled data-
sets. Then model discovery is performed on each data-set to generate n independent
coefficient matrices Ξn. This process is called simultaneous model discovery.
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Ξ

Ẋ1 Θ (X)1 Ξ1

= . . .

Ẋ2 Θ (X)2 Ξ2

= . . .

Ẋ3 Θ (X)3 Ξ3

= . . .

Figure 3.5: Simultaneous Model discovery framework.

The strategy used for sub-sampling the data-set is crucial in determining if the obtained
coefficient matrices are genuinely correlated to the underlying physical dynamics. Since
the actual coefficients of the system matrix are time and state dependent, the system
model evolves with time. Hence, if sub-sampling of data is performed without care, the
resulting coefficient matrices would not represent the same linearised models. They would
correspond to slightly evolved system models, each linearised in a different interval.
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Two different and simple sub-sampling strategies are analysed and one is chosen among
it for the final implementation. The algorithms can be represented as follows:

• Stacked sub-sampling: This refers to sub-sampling of measurements into n dif-
ferent data-sets based on subdividing the original data-set into n consecutive equal
chunks of measurements bagged into the corresponding data-set.

• Distributed sub-sampling: This refers to sub-sampling of measurements into n

different data-sets based on distributing every nth consecutive measurement being
bagged into the corresponding data-set.

The stacked sub-sampling method results in n different models which are linearised in
n consecutive intervals, whereas, distributed sub-sampling results in n different models
linearised in the same interval but with each subset having reduced temporal resolution
of measurements by a factor of n compared to stacked sub-sampling.

The choice of sub-sampling strategy is driven by the nature of sensor measurements.
Since, the SINDy algorithm based model discovery method requires measurements with
high temporal resolution, if the distributed sub-sampling results in subsets with adequate
temporal resolution, it should be preferred over stacked sub-sampling. If this is not the
case and not enough temporal resolution can be maintained by distributed sub-sampling,
stacked sub-sampling can be utilised.

For the purpose of this thesis, a distributed sub-sapling strategy is utilised. This choice
is driven by the assumption of adequately high sampling frequency of the sensors, as
substantiated by Ref. [47].

3.4.3. Monte-Carlo Based Multiple Shooting

To understand the uncertainty propagation in the context of the simultaneously discovered
models, multiple shooting schemes are utilised. In this scheme, all the n different models
are propagated using an IVP formulation for the same interval as the original sensor
measurements. The divergence of the models can be analysed by looking at the solutions
of the IVP and comparing it with the "ground truth" of the sensor measurements.

A simulation of this method is performed assuming relevant initial conditions typical to
an orbital relative motion problem and the results are shown in the Fig. 3.6 below:



3| Model Discovery 39

0
2
4

x
[k
m
]

−1

−0.5

0

y
[k
m
]

0 500 1,000 1,500 2,000 2,500 3,000

−1

0

1

Time [s]

z
[k
m
]

True trajectory

Discovered model propagation : 95th percentile

Figure 3.6: Monte-Carlo multiple shooting trajectories.

It can be observed from the Fig. 3.6, that the different models generated in the simul-
taneous model discovery scheme result in diverging trajectories when propagated in an
IVP problem. By "shooting" several models forward in time, we now have enough data
to analyse their accuracy and stability parameters, which can be exploited to formulate
an effective model which is more robust.

3.4.4. Robust Model Assembly

The objective of this section is to formulate mathematical methods followed to improve
the model discovery stability and robustness based on the Monte-Carlo analysis. While
many statistical tools exist to perform this task, we require a simple method that pro-
vides adequately stable models with least complexity and computational loads. This is
necessitated by the lack of on-board computational power in cubesats.

The proposed method is called the weighted averaging of coefficients based on the root
of normalised mean-squared error or RNMSE weights. The mathematical formulation
utilised to compute the trajectory propagation RNMSE is shown below:

ERNMSE, n =

√√√√ M∑
i=1

(ρ̂i − ρi)2

ρ2
i

(3.34)

where ERNMSE, n denotes the propagation error, ρ and ρ̂ denote the relative position
"ground truth" and relative position from propagated models respectively. M denotes the
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total samples in the propagated trajectory and n denotes the total number of trajectories
or essentially the total number of simultaneously discovered models.

With each simultaneously discovered model associated with its corresponding ERNMSE, n,
we can formulate the effective model which is assembled from all the n models. This is
performed by averaging the coefficients of the Ξn matrices based on weights associated to
their corresponding ERNMSE, n. This can be mathematically denoted as:

Ξeff =
∑n

i=1

(
1

ERNMSE, i

)
Ξi∑n

i=1

(
1

ERNMSE, i

) (3.35)

where n denotes the total number of simultaneously discovered models. The inverse of
RNMSE is used as weights to promote models which correspond to least RNMSE. The
final output of the model discovery framework is the coefficient matrix Ξeff , which is a
stable and robust model coefficient matrix discovered from sensor measurements. The
resulting model performance is shown in the Fig. 3.7 below:
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Figure 3.7: Assembled model performance.

It is evident that the robust model assembly method improves the model stability and
robustness, as denoted by the corresponding trajectory. Although the assembled model
still diverges, this is expected due to the effective linearisation performed on model dis-
covery in the interval of measurement data-set. But this can be tackled by reducing the
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linearisation interval which would lead to a less diverging model. This will be elaborated
in the next chapter.

As a final note, the yet untouched topic regarding coefficient specific thresholding matrix
η. This will be elaborated further in the next chapter.
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4| Prediction Performance
Analysis

This chapter details the procedure undertaken to analyse the prediction performance
of the model discovery framework laid-out in Chapter 3. The chosen methodology for
analysis is comparison of "ground truth" relative trajectory of the chaser spacecraft and
the predicted trajectory obtained from propagating the discovered model.

The following sections describe the testing campaign algorithmic layout, the simulation
parameters and the initial conditions used for the purpose of this testing campaign along
with the obtained results and the relevant inferences drawn.

4.1. Testing Campaign Layout
The testing procedure is initiated with generation of ground truth trajectory data and
simulated sensor measurements of the features and targets relevant for model discovery.
Then the data-set is partitioned into two consecutive chunks namely, discovery data-set
and prediction data-set. The intention behind such splitting is to conduct linearised model
discovery based on the first data-set and use the discovered model to generate future
trajectory prediction and compare its performance with the "ground truth" prediction
data-set.

The performance of the model discovery framework is measured in both the discovery
and prediction data-set to draw insights into the interpolatory fitness performance in the
discovery data-set and extrapolatory accuracy in the prediction data-set. It is crucial
to understand both the performances because the interpolatory fitness represents how
well the system has been understood based on the limited data-set. The extrapolatory
accuracy indicates if the discovered model remains stable enough to maintain accuracy in
future predictions outside the linearisation interval Tlin. The extrapolatory performance
is of utmost importance in the MPC predictor module.

The implementation schematic is shown in Fig. 4.1 including the software and interfaces.



44 4| Prediction Performance Analysis

Si
m

ul
at

e
th

e
re

l.
or

bi
ta

l
m

ot
io

n
in

Si
m

ul
in

k®
{0
,2
T
li
n
}.

Sa
m

pl
e

no
is

y
se

ns
or

da
ta

us
ed

fo
r

m
od

el
di

sc
ov

er
y.

C
on

ve
rt

Si
m

ul
in

k®
da

ta
in

to
nu

m
py

ar
ra

y
fo

rm
at

in
g.

Sa
ve

da
ta

in
to

.c
sv

ev
er

y
M

at
la

b®
ru

n
an

d
ap

pe
nd

da
ta

ev
er

y
su

bs
eq

ue
nt

M
at

la
b®

ru
ns

.
C

ol
le

ct
.c

sv
da

ta
of

al
lr

un
s

an
d

pl
ot

re
su

lt
s

Sp
lit

Si
m

ul
in

k®
"g

ro
un

d
tr

ut
h"

da
ta

in
to

:
•

D
is

co
ve

ry
{0
,T

li
n
}

•
P

re
di

ct
io

n
{T

li
n
,2
T
li
n
}

ea
ch

da
ta

se
t

is
T
li
n

lo
ng

.

C
SR

3
P

yS
IN

D
y

R
eg

re
ss

io
n:

P
re

-p
ro

ce
ss

da
ta

se
t,

es
ti

m
at

e
co

effi
ci

en
ts

,
di

sc
ov

er
sy

st
em

m
at

ri
x

A
an

d
in

pu
t

m
at

ri
x
B

.

T
ra

je
ct

or
y

pr
ed

ic
ti

on
er

ro
rs

,c
od

e
be

nc
hm

ar
k-

in
g,

da
ta

po
st

-p
ro

ce
ss

in
g

fo
r

ex
po

rt
to

M
at

la
b®

T
ra

je
ct

or
y

pr
ed

ic
ti

on
th

ro
ug

h
IV

P
us

in
g

di
sc

ov
er

ed
sy

st
em

fo
r

{T
li
n
,2
T
li
n
}.

U
se

fin
al

st
at

e
ve

ct
or

of
"D

is
-

co
ve

ry
"

da
ta

se
t

as
IC

.

It
er

at
e

ov
er

al
l
co

m
b
in

at
io

n
s

of
li
n
ea

ri
sa

ti
on

in
te

rv
al

,
sa

m
p
li
n
g

ti
m

e
an

d
or

b
it

al
in

it
ia

l
co

n
d
it

io
n
s

Im
p
le

m
en

te
d

as
a

st
an

d
al

on
e

ca
ll
ab

le
py

th
on

m
et

h
od

W
in

.
C

M
D

D
is

co
ve

ry
da

ta
se

t
"g

ro
un

d
tr

ut
h"

S
IN

D
y

m
od

el P
re

di
ct

io
n:

S
IN

D
y

m
od

el

P
re

di
ct

io
n

da
ta

se
t

"g
ro

un
d

tr
ut

h"

W
in

do
w

s
co

m
m

an
d-

lin
e

da
ta

pi
pi

ng

(W
in

.
C

M
D

)

Figure 4.1: Testing campaign flowchart.
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As represented in Fig. 4.1, the testing process begins with generation of "ground truth"
data. The corresponding high-level block representation of "ground truth" simulation is
shown in Fig. 4.2. It is performed by propagating the chaser and target spacecraft using
Newtonian 2BP ODE with J2 perturbation contributions in the ECEI reference frame,
see eq. B.1. Then the orbital states are rotated into the target spacecraft centred LVLH
frame using a rotation matrix computed at each simulation step based on the target
spacecraft orbital position in ECEI frame. Refer to Chapter 2 for detailed description of
the LVLH frame and the 2BP ODE.

2BP + J2

Target ODE

2BP + J2 +M

Chaser ODE

∫

Integrator

∫

Integrator

ECEI → Hill

Rotation
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Multiply
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R
E
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I
2
H
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l

x

−x
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E
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I
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H
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uECEI Ẏc Yc

Ẏt Yt

Yc

Yt

x

Figure 4.2: Ground truth simulation: Block representation.

Since the position vector of the target spacecraft in the targeted centred LVLH frame is
always zero, the relative position of the chaser spacecraft in the same frame is obtained
directly from the ECEI-LVLH rotation operation. The relative velocity of the chaser
spacecraft is obtained by taking the vectorial difference of both the spacecrafts’ velocities
represented in the target centred LVLH frame. The mathematical equations utilised for
the same are already introduced in Chapter 2 and omitted here for the sake of conciseness.

4.2. Spacecraft Actuator Configuration
Since, the primary focus of the thesis is to control the relative range of the chaser spacecraft
with persistent target pointing, the attitude determination and control systems required
to satisfy such pointing requirements is beyond the scope of this thesis.

The chaser spacecraft is assumed to be fitted with a pair of opposite facing thrusters/actuators
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which provide thrust along the longitudinal axis of the chaser spacecraft, aligned such that
they always point towards and away from the target spacecraft.

Hence, the thrust unit vector is assumed as follows:

Q̂ = −ρ

ρ
(4.1)

where ρ represents the relative position vector of the chaser spacecraft in the target
centred LVLH frame.

For the purposes of simplicity, the thrust applied during the "ground truth" simulation
by the chaser spacecraft was modelled as a thrust vector pointing at the target spacecraft
with a sinusoidal magnitude. The maximum limit of the thrust magnitude was set to be
1N . This can be represented as:

Q = −Qmax sin (ωQt)
[
ρ

ρ

]
=⇒ {Qmax = 1N ; ωQ = 4ωorb} (4.2)

where ωQ represents the frequency of the sinusoidal thrust input and ωorb denotes the
frequency of the orbit based on the SMA of the target spacecraft. The t denotes the
simulation time of the "ground truth" simulation.

Finally, the target spacecraft is assumed to have no thrusters and hence is governed by
the homogeneous solution to the 2BP and J2 perturbations.

4.3. Sensor Modelling
The chosen baseline to model the sensor was chosen to be the radio ranging sensors
validated in the PRISMA mission. The sensor model is characterised by sensor noise
and bias. The simplistic sensor model is chosen to aid in the ease of modelling and it is
sufficient for the needs of a preliminary investigation. The main objective is to study the
performance of the model discovery framework without a state estimator, directly fed by
the sensor measurements. The schematic diagram of the same is represented in Fig. 4.3,
where x and x̂ represent the "ground truth" and sensor measured values.

Based on the typical specifications of the PRISMA sensor suite, the values of sensor
bias, noise and sampling resolution and frequency have been chosen. The chosen values
are reported in Table 4.1.
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Figure 4.3: Sensor modelling schematic

Parameters Position Velocity Mass

Bias: µ 1.0 e−2 m 1.0 e−2 m
s

0 kg

Noise: σ 1.0 e−2 m 1.0 e−2 m
s

1.0 e−1 kg

Sampling freq. 1.0 e3 - 10.0 e3 Hz 1.0 e3 - 10.0 e3 Hz 1.0 e3 - 10.0 e3 Hz

Discretisation 1.0 e−3 m 1.0 e−3 m
s

1.0 e−3 kg

Table 4.1: Sensor modelling parameters

The parameter values chosen do not represent an actual sensor suite, however, are typical
and adequate for simulating our problem. Modern sensor suites offer higher accuracy,
resolution and sampling frequency, but a diminished performance case approach has been
assumed for model discovery.

4.4. Prediction Performance Augmentation
In Chapter 3, the framework for model discovery was established and a method was pro-
posed to increase the stability of the numerical regression solution. Different methods
were discussed about imposing physical knowledge to drive the model discovery through
constraining and thresholding. However, two things were left out to be discussed later
namely, coefficient specific thresholding discussed in the context of eq. 3.33 and intro-
duction of an additional constraint to make the model discovery framework have a null
DoF. These topics will be addressed in this section along with development of a method
to estimate a first preliminary guess of the system model coefficient matrix to initiate the
model discovery iterative framework and to help augment its computational speed.
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4.4.1. Model Initial Guess

Let us begin by recalling the expanded analytical matrix formulation of the Ξ matrix,
from eq. 3.22. After imposing the constraints discussed in eq. 3.24, the only free DoFs of
the Ξ matrix can be attributed to the unconstrained zero elements of Ξ matrix. Hence,
if a method can be developed to provide a good first guess estimate for the coefficients
corresponding to the constraints in eq. 3.24, we can formulate the complete first guess
formulation of the Ξ matrix.

By observing eq. 3.24 and correlating each coefficient with their corresponding analytical
expression from eq. 3.22, we can determine that there exists only three unique variables
that formulate all these coefficients. These variables are namely, ω, ω̇ and k. We can
express the analytical forms of these variables, borrowing from discussion preceding eq.
2.18 and utilising the notations of orbital mechanics models from Chapter 2:

k = µ

h
3
2
; kω

3
2 = µ

r3
t

; ω̇ = ω̇ (4.3)

To obtain the estimates of these variables, the control system requires a complicated suite
of sensors and estimation hardware or maintain a frequent contact with ground based
control stations for updating these variables into the system. For the purpose of this thesis,
these were deemed unacceptable because the former case is not typical of a cubesat while
the later case reduces the degree of autonomy of the satellite control. Hence, to maintain
a high degree of autonomy while also restricting the on-board hardware requirements, the
following method was formulated.

Upon observing the various quantities that could be utilised to drive the estimation of
these three variables, the following characteristics were necessary:

• The quantities used must be easily estimated with on-board sensors

• The reliance on ground-segment support must be minimal

• Frequency and latency of ground-segment support, if required, must be very infre-
quent and high-latency tolerant. This is typical for cubesats in deep-space missions
where signal delays are considerably high. While also frequent ground-segment sup-
port drives the mission costs and increases the chances of failure in the case of
severance of telemetry.

After narrowing down the possible solutions, the most acceptable method is presented
henceforth.
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Since our control system design already has good estimates and measurements of the
relative motion, we can exploit the measurements to estimate some variables. Recalling
eq. 3.9, we can isolate the equation corresponding to the local z − axis as:

z̈ = −kω
3
2 z + afz + apz (4.4)

which can be rearranged as:

kω
3
2 = afz + apz − z̈

z
(4.5)

In this formulation, among the terms on the R.H.S, we already have estimations or
measurements of afz, z and z̈. And the only unmeasured term apz, which is the relative
perturbation acceleration in the LVLH frame in the direction perpendicular to the orbit,
has already been established as a minimal value in prospective applications. Hence, by
eliminating apz from the eq. 4.5 by assuming minimal contribution, we can rearrange it
as:

kω
3
2 ≈ afz − z̈

z
(4.6)

Substituting the analytical variables with their estimated counterparts lead to:

k̂ω
3
2 ≈ âfz − ˆ̈z

ẑ
(4.7)

We have obtained the first variable estimate, we can utilise this to estimate the other
two variables now. However, to estimate the other two variables, we cannot exploit the
available measurement data. The choice was made to utilise a constant of orbit with
very low variance to estimate the other two variables. The next estimation is driven by
the assumption of knowledge of the magnitude of the specific orbital momentum of the
spacecraft. However, to keep autonomy of the MDPC system high, the update frequency
of the estimate of specific orbital momentum magnitude is limited to once per orbit, unless
the original orbit is changed considerably during the interval.

Hence, we can proceed now with the second estimation with the added assumption of
availability of ĥ once per orbit. We can write:
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ω =
kω

3
2

k

 2
3

(4.8)

which can be combined with the substitution of k from eq. 4.3, resulting in:

ω =
kω

3
2

µ

h
3
2

 2
3

= h

kω
3
2

µ

 2
3

(4.9)

which can be written with their estimated counterparts leading to:

ω̂ ≈ ĥ

 k̂ω
3
2

µ


2
3

(4.10)

substituting eq. 4.7 and reformulating:

ω̂ ≈ ĥ

(
âfz − ˆ̈z

µẑ

) 2
3

(4.11)

This gives us the estimated values for our second variable. The estimation of the third
variable is not that straightforward due to the lack of measurements regarding the orbital
state in the ECEI frame. However, since this estimation only functions as a first estimate
for the regression algorithm, it is not required to be accurate. Rather, a higher accuracy of
estimation would only help with the convergence speed of the model discovery algorithm.

We can estimate the third variable using the following method:

Using basic orbital mechanics, we can write:

ωc = hc

r2
c

(4.12)

where subscript c denotes parameters pertaining to the chaser spacecraft. By taking the
derivative in time, we obtain:

ω̇c = −2hc

r3
c

d

dt
rc (4.13)

Since, d
dt

(rc) actually denotes the orbital velocity of the chaser spacecraft, we can use the
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general equations of orbital motion from Ref. [14] to write:

vc =
√

2
(

µ

rc

− µ

2ac

)
(4.14)

where ac represents the SMA of the chaser spacecraft orbit. By using basic substitutions,
we can alternatively write the same equation using classical orbital mechanics notations
as:

vc = µ

hc

√
1 + 2ec cos fc + e2

c (4.15)

we can now substitute this into eq. 4.13 and obtain:

ω̇c = −2hc

r3
c

µ

hc

√
1 + 2ec cos fc + e2

c = −2 µ

r3
c

√
1 + 2ec cos fc + e2

c (4.16)

Let us assume
√

1 + 2ec cos fc + e2
c = κc. Due to the lack of estimations of the eccentricity

of orbit, we are forced to rely on the expected value of κc. This can be found using
statistical methods to find expected values applied to the complete domain to the function.

The expected value of κc computed in the entire domain of κc, fc : {0, 2π}; ec : {0, 1} ,
is given below:

κc = 3
2 (4.17)

by substituting this result into eq. 4.16, we obtain an expression for the expected value
of ω̇c as:

ω̇c = −2 µ

r3
c

3
2 = −3 µ

r3
c

(4.18)

A final substitution is required to obtain the estimated expected value of the third variable
in terms of the measurements.

We can assume rc ≈ rt hence, by substituting eq. 4.3 and eq. 4.6 into eq. 4.18, we obtain:

̂̇ωc ≈ −3 âfz − ˆ̈z
ẑ

(4.19)
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Summarising the first guess equations for the three variables, we get:

k̂ω
3
2 ≈ âfz − ˆ̈z

ẑ
; ω̂ ≈ ĥ

(
âfz − ˆ̈z

µẑ

) 2
3

; ̂̇ωc ≈ −3 âfz − ˆ̈z
ẑ

(4.20)

We can collect these equations into the matrix form to write the final formulation of the
initial guess for the Ξ matrix for the model discovery. By using the formulation of eq.
3.22, and substituting values from eq. 4.20, we can write:

Ξ̂0 =



0 0 0 ĥ2
(

âfz−ˆ̈z
µẑ

) 4
3

+ 2
(

âfz−ˆ̈z
ẑ

)
3
(

âfz−ˆ̈z
ẑ

)
0

0 0 0 −3
(

âfz−ˆ̈z
ẑ

)
ĥ2
(

âfz−ˆ̈z
µẑ

) 4
3

−
(

âfz−ˆ̈z
ẑ

)
0

0 0 0 0 0
(

ˆ̈z−âfz

ẑ

)
1 0 0 0 −2ĥ

(
âfz−ˆ̈z

µẑ

) 2
3

0

0 1 0 2ĥ
(

âfz−ˆ̈z
µẑ

) 2
3

0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



(4.21)

where Ξ̂0 denotes the estimated first guess of Ξ matrix to initialise the model discovery
procedure.

4.4.2. Coefficient Specific Thresholding

We have finally developed all the prerequisite methods and formulations to tackle the prob-
lem of coefficient specific thresholding. The problem of coefficient specific thresholding
arises due to the nature of the Ξ matrix which was introduced in eq. 3.33. The coeffi-
cients comprising the matrix typically range from 10−8 −100 in their orders of magnitude.
Hence, a single scalar threshold cannot be used to eliminate the discovered regression
coefficients in every iteration.

We can utilise the knowledge about the estimated first guess coefficient matrix Ξ̂0 to in-
form the expected order of magnitude of the coefficients and formulate their corresponding
thresholds. The shape of the coefficient specific thresholds matrix η is same as the Ξ ma-
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trix, with each element in Ξ mapped to its corresponding threshold in η. The formulation
adopted for the η matrix is as follows:

Ξ̂ =



0 0 0
(

ω2 + 2k̂ω
3
2

)
− ˆ̇ω 0

0 0 0 ˆ̇ω
(

ω2 − k̂ω
3
2

)
0

0 0 0 0 0 −k̂ω
3
2

1 0 0 0 −2ω̂ 0
0 1 0 2ω̂ 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



(4.22)

By adopting the notation utilised in eq. 3.22, we can write the formulation of η as:

η =



∞ ∞ ∞
(

ω2 + 2k̂ω
3
2

)
T − ˆ̇ωT ∞

∞ ∞ ∞ ˆ̇ωT
(

ω2 − k̂ω
3
2

)
T ∞

∞ ∞ ∞ ∞ ∞ −k̂ω
3
2 T

0 ∞ ∞ ∞ −2ω̂T ∞
∞ 0 ∞ 2ω̂T ∞ ∞
∞ ∞ 0 ∞ ∞ ∞
∞ ∞ ∞ 0 ∞ ∞
∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ ∞ 0



(4.23)

where T denotes the thresholding factor whose value can be changed to tune the relaxation
in thresholding. If a very loose thresholding is required, the value of T can be very small,
for tighter thresholding the value of T should approach 1. The exact value chosen for
implementation is T = 10−2. This means that during iterations of the model discovery
regression, any value which is less than one-hundredth of the estimated first guess value
would be rejected. The thresholding value of ∞ represents the physical non-correlation
and hence any non-zero value of that coefficient is inaccurate.

To avoid incompatibilities and clashing behaviours between thresholds and constraints,
all coefficients that have been constrained with absolute equality constraints have their
corresponding thresholds set to 0. Hence, the elements in η where a corresponding value
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of 1 is expected in Ξ̂, has been thresholded to 0. This is because the actual value is
regulated by the already imposed absolute constraints, discussed previously in subsection
3.3.5. On the contrary, the constraints imposed on other coefficients are not absolute,
they are constraints imposed on the linear combination of multiple coefficients, hence we
can also impose specific thresholds correspondingly, without constraint violations.

4.4.3. Final Additional Constraint

The discussions preceding this section have addressed mathematical models of relative
motion, the model discovery framework modelling and optimisation. The goal of this
subsection is to introduce an additional constraint on the model discovery model which,
although not strictly required, improves the convergence performance as discussed in
Section 3.3.5.

Since the model discovery framework utilises measurements and parameters which are
scalar values, it lacks insight into the vectorial information regarding the orientation in the
coordinate system. Examining the model discovery model, we can see that the coefficient
matrix Ξ is computed numerically through regression. We have also imposed relative
components to ensure that the discovered coefficients maintain the linear combination
relationship which is necessitated by the physics. The coefficient dependent thresholding
ensures fast model discovery and eliminates non-typical values during iterations. Still,
there is a problem of an inversion of the discovered value of the ω in the Ξ matrix.

There exist specific combinations of chaser spacecraft states where ambiguous values of ω

can be derived through solving the inverse problem. Hence, there are some situations in
the relative motion where the value of ω can be substituted with its additive inverse −ω

and still obtain the same sensor measurements.

To solve this, an additional constraint on the model discovery framework is introduced.
This constraint fixes the values that can be assumed by the coefficient matrix elements
corresponding to the 2ω. This can be denoted using the notation used in eq. 3.24:

|ξ5,4 − 2ω̂| = ϵ (4.24)

where ϵ is the constraint tolerance. Unlike other absolute and relative constraints pre-
viously imposed, this is essentially a softer constraint due to the nature inequality con-
straints. This concludes the setup of the model discovery framework and associated
optimisations. We can now proceed to discuss the prediction accuracy testing campaign.
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4.5. Testing Campaign
The purpose of the model discovery framework is to deliver an accurate system model
which can be used for predicting the chaser spacecraft trajectory and generate an op-
timised control sequence in the MPC. This can be performed only if the trajectory
prediction of the model discovery framework provides reliable and accurate predictions.
Hence, it is imperative to simulate the model discovery framework under varied scenarios
and benchmark its performance.

The testing campaign is designed to cover a wide range of operating scenarios of the
chaser spacecraft, although not all-encompassing, it is designed to establish the effect of
measurement sampling frequency, relative motion non-linearity and initial conditions on
the prediction performance.

4.5.1. Initial Conditions and Simulation Parameters

On closer inspection of the NERM, we can see that the degree of nonlinearity is a
function of the orbit eccentricity e and the true anomaly f , both of which are used as
simulation variables. The model discovery framework discovers the linearised model which
is linearised in the interval of the measurement sampling used for the process. This means
that the linearised models must be discovered multiple times during the orbit to ensure
the accuracy of the prediction algorithm. Hence, the linearisation interval is also used
as a simulation variable. Finally, the dependency of the model discovery framework on
the measurement sampling frequency leads to the assumption of the sampling time as the
final simulation variable.

However, the actual measurement sampling time is not used. This is due to the simultane-
ous model discovery algorithm dividing the actual measurement data-set into distributed
data-sets. Hence, the effective sampling time of the distributed data-set Ts, eff is used as
the final simulation variable. The simulation output variable used as the figure of merit
for the prediction performance is the trajectory prediction mean squared error compared
to the "ground-truth" data-set.

Two different outputs are obtained, each corresponding to two types of performance tests.
The first performance test is aimed at the interpolatory performance of the model dis-
covery framework. It calculates the error of the discovered model trajectory propagation
within the measurement interval used for the model discovery. Hence, it corresponds to
how good of a fit does the discovered model offer compared to the actual physics. The
second test tests the stability of the discovered model by extrapolating the trajectory
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propagation outside the measurement interval used for model discovery. Then it com-
putes the extrapolated trajectory error compared with the "ground truth" measurements
for the corresponding interval. An important note is that the extrapolation performance
test only computes the error based on the "ground truth" data outside the linearisation
interval. It does not use measurements outside the linearisation interval to "discover" the
model. So essentially, it is a test to see if a model which is "discovered" based on past
data can be used for accurate trajectory prediction in the future.

The initial conditions used to initialise every simulation consists of fixed parameters and
simulation variables. The initial state vector for each spacecraft is generated based on the
classic orbital Keplerian elements formulation in eq. 4.25, below:

KepT =
[
aT eT iT ΩT ωT f0T

]
KepC =

[
aC (eT + δe) (iT + δi) ΩC ωC f0C

] (4.25)

The fixed parameters used for each simulation is summarised below:

Parameters Value

aT , aC 7106.14 km

δe 0.001
iT 98.3°
δi 0.01°
ΩT , ΩC 0°
ωT , ωC 270°
Ts 10−3 s

Table 4.2: Test campaign: Fixed parameters.

where Ts denotes the sensor measurement sampling time. The variable parameters are cy-
cled iteratively between every simulation to cover all combinations of variable parameters.
They are summarised in Table 4.3:

The total number of simultaneous model discovery frameworks used for each simulation
can be found using the formula:

Nsm = Ts, eff

Ts

(4.26)
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Parameters Range Discretisation

f0T , f0C [0 − π] Rad 5
eT , eC [0 − 0.6] 5
Tlin [10 − 300] s 5
Ts, eff [0.01 − 1] s 5

Table 4.3: Test campaign: Variable parameters.

From table 4.3, we can see that a total of 625 unique combinations of variable parameters
exist. And each combination is tested for interpolatory and extrapolatory performance.

4.5.2. Results

A total of 1250 simulations were run, encompassing all possible combinations of the vari-
able parameters, simulating all possible scenarios that the relative motion can undergo
which affect the NERM.

Testing Campaign Plots
The 4th dimension which is represented in different plots was chosen to be the orbital
eccentricity. The results are shown in this section in a series of 3-dimensional plots.
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Figure 4.4: Test campaign results: Eccentricity = 0.0.
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Figure 4.5: Test campaign results: Eccentricity = 0.15.
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Figure 4.6: Test campaign results: Eccentricity = 0.3.



4| Prediction Performance Analysis 59

0 100 200 300
0

0.5
1

−4

−3

−2

−1

0

1

Tlin. [s]Ts, eff [s]

lo
g 1

0
(E

M
S
E

d
i
s
c
.
)
[m

2
]

0 0.79 1.57 2.36 3.14

f0 [Rad]

(a) Model discovery error.

0 100 200 300
0

0.5
1

−4

−3

−2

−1

0

1

Tlin. [s]Ts, eff [s]

lo
g 1

0

( E
M

S
E

p
r
e
d
.

)
[m

2
]

0 0.79 1.57 2.36 3.14

f0 [Rad]

(b) Model prediction error.

Figure 4.7: Test campaign results: Eccentricity = 0.45.
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Figure 4.8: Test campaign results: Eccentricity = 0.6.

Testing Campaign Inferences
The main inferences drawn from the testing of the model discovery framework with all
possible scenarios can be summarised in the following list:
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1. The trajectory error in discovery EMSEdisc.
is always smaller than the trajectory

error in prediction EMSEpred.
, for the same combination of simulation parameters;

2. The changes Ts, eff do not seem to affect the error in trajectory prediction, which
keeping the other parameters constant;

3. Increasing the linearisation interval Tlin leads to a faster increase in the trajectory
prediction error. However, the rate of change of error seems to reduce considerably
after a certain extent of increasing the linearisation interval Tlin.

4. The increase in the orbital eccentricity e results in an increase in both the errors.

5. The minimum recorded value of prediction error is log10
(
EMSEpred.

)
= −3.94 m2,

which corresponds to EMSEpred.
≈ 0.000115 m2 with e = 0 and Tlin = 10 s.

6. The maximum recorded value of prediction error is log10
(
EMSEpred.

)
= 1.98 m2,

which corresponds to EMSEpred.
≈ 95.5 m2 with e = 0.6 and Tlin = 300 s.

The first inference is expected due to the nature of linearisation. The extrapolatory error
will always be greater than the interpolatory error due to the linearisation being done
in the past and extrapolation being done outside the linearisation interval in the future.
The second inference can be explained by understanding that the NERM dynamics have
a typical characteristic period in the order of orbital time periods. The change in the
sampling times are very marginal and do not approach the orbital period, hence, the
dynamics information is not lost due to increasing sampling times.

Since the nature of NERM is non-linear, it is expected that the discovered model would
diverge from the actual dynamics. By increasing the linearisation interval Tlin, we are
forcing the model discovery framework to linearise the model when the measurements
show higher degree of nonlinearity. Hence, it results in loss of information of the actual
dynamics and results in poor performance, which is the reason for the third inference.

The fourth and the fifth inferences are helpful to decide if the developed model discovery
framework can actually be implemented for MPC purposes. As it can be seen that the
maximum mean-squared prediction error in trajectory is nearly 100 m2, it is understood
that this framework cannot be used in applications which require higher precision. This
framework can be utilised for applications where the controller is expected to have an
average accuracy in the order of 10 m. However, this is only in the worst-case scenario i.e.
very high orbital eccentricity of e = 0.6, and linearisation interval Tlin = 300 s. The model
discovery framework has better accuracy even in a highly eccentric orbit with e − 0.6, if
the linearisation interval is made smaller.
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For example, with a linearisation interval of Tlin ≈ 85 s, the prediction error drops to the
order of 1 m. However, the drawback of this approach is that the prediction horizon of
the MPC is reduced. Hence a balance between the accuracy and prediction horizon is
required in such scenarios.

Testing Campaign Conclusion
To decide what parameters would be optimal, a look-up table is generated with the results
above. This can be used by the control system to dynamically change the parameters of
the model prediction framework, based on the linear interpolation conducted on the look-
up table with constraints on maximum error. This allows the control system to decide
and find the best compromise between the acceptable error and the prediction horizon of
the MPC.

Finally, it can be concluded that the model discovery framework offers a very good perfor-
mance even in highly eccentric orbits. Hence, it can be a good algorithm to implement as
the prediction algorithm in the MPC. The integration of this framework with the MPC
is discussed in the next chapter, along with the associated design and implementation.
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5| Control System
Implementation

The focus of this chapter is to introduce the concept of a MPC, discuss the various
mathematical models used to implement the controller and finally the parameters used to
tune the MPC. The chapter starts with the history and the general outline of a MPC
and slowly builds on it to develop the mathematical models.

5.1. Introduction
Historically, MPC is a relatively new technology, only being developed in 1976. While
primal implementations of this scheme utilised linear impulse responses and approximate
piecewise functions for plant models for forecasting, modern MPCs are able to utilise full
nonlinear state-space matrix plant models along with constraints and bounds optimised
using quadratic programming techniques.

MPC are also commonly called finite time moving horizon controllers. They are a novel
method utilised in system controls and are considered as advanced implementations. The
core principle of control using an MPC is to solve an optimal control problem within a
set of constraints, boundary conditions, bounds and a finite time boundary, also called
the horizon. A graphical representation of this problem can be found in Fig. 5.1.

The MPC utilises the state estimates and propagates them, treating them as IC. Then
it finds the optimum sequence of control inputs in time that produce an optimal con-
trol trajectory based on a cost function or objective function, subject to constraints and
bounds. Some implementations use a different horizon for control inputs and trajectory
forecast. This can be used to tune the response speed of the MPC.



64 5| Control System Implementation
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Figure 5.1: Model predictive controller principle.

While the MPC computes an optimal control sequence within the corresponding horizon,
the actual control input implemented is the first input within the optimal control sequence.
The ideal optimum sequence of control inputs is considered to reach a non-saturated
steady-state control input at or before control horizon. This entire procedure completes
one cycle of the MPC, which is repeated at every sampling instance.

5.2. Mathematical Modelling
Essentially, the mathematical formulation of a MPC is the same as an optimisation
problem subject to constraints and bounds. However, to develop a customised and holistic
mathematical model, it is prudent to discuss individual processes that are performed
within an MPC and how to model them individually.

The block diagram representation of the MPC utilised for this thesis is shown in Fig.
5.2. The only external input to the implemented MPC is the current state estimate x̂,
shown on the right. While the only output is the next sample for the control input uk=1,
shown on the left.
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Figure 5.2: Model predictive controller basic schematic.

The current state estimate is used to generate a reference trajectory utilised as the guid-
ance trajectory. Simultaneously, an iterative optimisation is conducted through a cycle of
computing optimal control sequence, generating a trajectory forecast based on the control
sequence and finally using a cost function to penalise any deviations of this trajectory pre-
diction compared to the guidance trajectory. Once the optimisation converges, the first
optimal control input in the optimal sequence, responsible for the optimal trajectory, is
exported as the MPC output.

Throughout this optimisation, several "hard" and "soft: constraints are imposed on the
optimisation problem. Usually, the range bounds are treated as "soft" constraints and the
limits on the chaser spacecraft actuator thrust limits are considered as "hard" constraints.
Finally, the optimiser algorithm used guarantees constraint non-violation at every itera-
tive step. This is to ensure robust control and also to account for anomalies when the
optimisation does not converge before the next sample instant and a premature control
input has to be exported. The implemented optimiser ensures that even a premature
export of the control input does not lead to constraint violation.



66 5| Control System Implementation

Let us now begin to methodically develop the mathematical models concerning each sub-
system within the MPC, starting from the guidance algorithm or the reference trajectory
generator.

5.2.1. MPC Guidance Algorithm

The primary goal of this thesis is to develop a MPC for bounding the chaser space-
craft trajectory within specified range limits with respect to the target spacecraft. Since
there are no preferential or directional bounds, the trajectory limits are not individu-
ally or uniquely posed on each orthogonal basis. Rather, the trajectory is bounded by
two concentric spherical surfaces centred on the target spacecraft, each having a radius
corresponding to the minimum and maximum relative range limits.

Due to this particular requirement, there is no reference trajectory that guides the motion
of the chaser spacecraft’s motion. A simpler method was chosen to implement the relative
range bounding as a relative range limit violation penalty in the optimisation problem.
The penalty will be levied on any trajectory which leads to violation of the relative range
limits. The mathematical formulation of the penalty will be discussed in the subsequent
discussions.

Although, there is no optimal guidance algorithm, since the MPC already has provisions
for a finite horizon optimisation, the optimal trajectory followed by the MPC will not be
arbitrarily inefficient. One aspect of finite horizon optimisation is the lack of information
on optimal trajectories beyond the horizon. This means that the MPC will follow a
locally optimal solution in the context of a global optima computed with an infinite
horizon optimisation.

To ensure that the finite horizon optimal solution closely resembles the infinite horizon
solution, we must increase the prediction horizon to the MPC. However, due to the
cyclical nature of the relative orbital motion, the optimum prediction horizon need not
be arbitrarily large, it can be similar in order to the orbital period. The exact choice
of the prediction horizon must also take into account the prediction model stability and
accuracy degradation due to increasing prediction horizon. Further elaborate discussion
regarding the trade-off is targeted later in this chapter.

5.2.2. Control Sequence Generation

The first step in the optimisation within the MPC is to generate the control input
sequence that will be used within the forecasting algorithm to predict the effect of the
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application of the control sequence on the trajectory. In our case, the control inputs are
the thruster actuation forces. Since there is only a single pair of thrusters in the chaser
spacecraft, the thrust can be modelled with a single scalar value which can range within
[umin − umax]. The chosen maximum thrust value for the thruster is 1 N .

The thrust vector is always aligned pointing towards the target spacecraft, hence, we can
simply use the magnitude of the thrust vector as an optimisation control variable. This
is also due to the fact that the direction of the thrust cannot be controlled by the MPC,
hence, the MPC must regulate the magnitude of the thrust to maintain an optimum
trajectory. Hence the thrust scalar can take any values in the range u ϵ [−1 N − 1 N ],
where the negative values of thrust signify a thrust vector û pointing in the opposite
direction of the relative position vector ρ.

Although the optimisation algorithm can be run with only limits on the minimum and
maximum thrust, it is computationally inefficient. This is because the control input
sequence will be generated independently and randomly for each sampling instance. This
can be solved by using a parametric thrust function defined in the control horizon. The
parametric thrust function is a mathematical description of the thrust profile shape which
is a function of time and tuning parameters only. At the same time, it reduces the
optimisation variables. Instead of optimisation control variables equal to the number of
samples in the control horizon, the parametric equation needs only a few optimisation
control variables equal to the number of parameters in the equation. This reduces the
computational load, provides a provision to include physical limitations of the thrusters
and also provides the control over what kind of behaviour is expected from the MPC.

There are many thrust parametric thrust profiles that can be chosen. Typical choices
are impulsive profiles, continuous constant thrust profile, ramp thrust profile, logistical
thrust profile, e.t.c. The particular thrust profile utilised for the purposes of this thesis
is an exponential-decay parametric thrust profile. The mathematical expression of the
exponential-decay parametric thrust profile is given in eq. 5.1, below:

u(t) = ae−bt; {0 ≤ t ≤ TCH} (5.1)

where u(t) denotes the magnitude of thrust as a function of time, a is the value of the initial
thrust magnitude of the exponential curve which can take any value in [umin − umax], b is
the exponential decay factor of the thrust profile which can lie in the interval [0 ≤ b ≤ 5]
and finally, TCH denotes the control horizon. The exact limiting value of bmax = 5 has
been arbitrarily chosen because beyond that value, the thrust profile starts to resemble
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an impulsive thrust profile. Some example thrust profile curves are represented in Fig.
5.3 for representational purposes.
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(a) Exponential Thrust Profile; a = 1.
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(b) Exponential Thrust Profile; a = 0.75.

Figure 5.3: MPC thrust profile.

But since the MPC which is implemented, works in the discrete-time domain, we can
write the eq. 5.1 in it’s discrete-time notation as:

uk = ae−bTsk; {0 ≤ k ≤ NCH} (5.2)

where uk represents the thrust magnitude at the kth sample instance, Ts denotes the
MPC sample time and finally, NCH denotes the number of samples that comprises the
control horizon.

To conclude, we must address the reasoning behind the choice of an exponential-decay
parametric thrust profile. It is evident that introducing a thrust profile would deviate from
the optimal control sequence. But it is also important to include physical considerations
about thruster response times and performance into the thrust profile. The exponential
decay curve also introduces a bias in the controller. Due to the inherent nature of the
curve, more control impulse is imparted in the beginning of the control horizon and
slowly the control effort is reduced. This means that the optimiser will now provide
optimal control sequences which prioritise imparting most of the required impulse at the
beginning of the control action. This also helps in reducing the response time of the
MPC.
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5.2.3. Trajectory Forecast

Once the optimisation iteration is initiated and a control sequence is generated using the
parametric thrust profile, we must utilise the control sequence to forecast the trajectory
of the chaser spacecraft. This is done by imposing the current state estimate x̂ as the
IC, the generated control sequence as the BC, and propagating them using the dynamics
established by the model discovery framework for the prediction horizon TP H , using the
sample time Ts as the integration time step.

An important aspect of the forecasting is that the model generated by the model discovery
framework has been linearised in the past. Hence, the forecasting or prediction horizon
TP H is limited to the linearisation interval Tlin of the model discovery framework. This
ensures good model stability and accuracy of prediction which has been discussed in the
previous chapter. This process of utilising a past linearised model in the current instance
trajectory forecasting of the MPC is shown in Fig. 5.4 below:

Time

Measurements

MPC Control

∆Tlin

Model Discovery

Figure 5.4: Linearisation and MPC forecasting scheme.

Until the current cycle of the linearisation interval expires, the discovered model is not
updated. The same model is utilised over multiple instances of the optimisation cycle of
the MPC. The exact number of times it is reused can be calculated by using the formula
NMR = Tlin

Ts
where, NMR denotes the number of times the discovered model is re-used

before updating through a new model discovery cycle initiation.

The accuracy required by the integration scheme utilised by the forecasting algorithm
is determined by the order of accuracy of the discovered model in prediction. The best
order of accuracy attainable by model discovery in prediction is ≈ 10−3 m. Hence, the
numerical integration scheme for trajectory forecasting is the RK4 scheme.

The trajectory bounds are defined in relative range ρ, not the relative position vector
ρ. Hence, the trajectory forecasting outputs the forecasts of relative ranges ρk for the
prediction horizon TP H .
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5.2.4. Cost Function Formulation

The MPC framework is designed to find an optimal control input sequence which is
feasible, does not violate the essential constraints and which tries to keep the relative-
range within the requested bounds. To understand how this can be translated into an
optimisation problem, we must understand the optimisation space. In the case of the
MPC being designed for the purpose of this thesis, we can represent the optimisation
space as represented in the Fig. 5.5
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Figure 5.5: MPC optimisation space.

The optimisation space is an imaginary function space where the control optimisation
problem is defined. In our case, the three coordinate directions are defined by the control
input u, the relative range ρ and time t. Each of these axes is either constrained or finitely
bounded, the enclosed space which is defined by the intersections of all the regions which
are unconstrained or unbounded forms the constrained optimisation space. This is the
region in the imaginary hyper-space where the MPC optimisation problem is allowed to
exist. The only exception is given to violation of bounded surfaces defined in the figure
as relative-range bounds. The optimisation problem can violate the limitations of these
surfaces.

The optimum solution of the MPC problem exists as a surface in the figure, which
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represents all possible solutions where there is no control input and the relative-range
is within the bounds and defined within the prediction horizon. The goal of our MPC
optimiser is to find a locus in this hyperspace connecting the initial point in this space
lying in t = 0 surface, with a final point in the t = TP H surface, connected by a set of
points allowed by the dynamics of the system and the resulting locus being as close to
the optimum solution surface.

For the optimisation problem to be able to do this, we must re-formulate this into a "hill-
descent" minimisation problem. This is the standard optimisation problem format, where
a minima is found for the formulated problem. In our case, we must define a function or
a linear combination of functions such that it "descends" from all directions towards the
optimum solution space.

Control Sequence Penalty
It is trivial to understand why any non-zero control input sequence must be penalised to
find an optimum solution. However, a cost function must be formulated which allows the
optimiser to find the direction of "descent" in the cost function hyper-space, hence finding
the optimum solution where the cost function has its lowest value within the constrained
optimisation space.

The cost function twice differentiated must give a finite value. This is essentially a condi-
tion which ensures that the function is continuous and so is its gradient. This is essential
for all "gradient descent" optimisation algorithms. For a function defined in a multivariate
domain, the gradient of the function assumes the continuity requirements instead of its
derivatives.

The chosen cost function is a simple quadratic formulation most typically used in QP
problems. The mathematical formulation of the control sequence cost function at any
given time is given as:

CU(t) = u(t)2 (5.3)

where CU(t) denotes the control cost at a given time and u(t) denotes the control input
at that same instance. To find the normalised net control sequence cost in the control
horizon, we integrate it and normalise it with the integration interval, to obtain CU :

CU =
∫ t=TCH

t=0 u(t)2dt

TCH

(5.4)
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by substituting the expression of thrust profile from eq. 5.1, we obtain:

CU =
∫ t=TCH

t=0

(
ae−bt

)2
dt

TCH

(5.5)

by expanding it further:

CU =
a2
(
1 − e−2bTCH

)
2bTCH

(5.6)

Hence, by implementing the thrust profile function, we can directly compute the nor-
malised net control sequence cost of any optimisation iteration, just by substituting the
optimisation variable a and b (thrust profile parameters) into the eq. 5.6.

The continuity of the function can be verified by computing the partial gradients of the
function with respect to the optimisation variables. The partial derivatives can be found
below:

∂CU

∂a
=a − ae−2bTCH

bTCH

∂2CU

∂a2 =1 − e−2bTCH

bTCH

 ∀ b ̸= 0 (5.7)

∂CU

∂b
=

a2e−2bTCH

(
−2bTCH + e2bTCH − 1

)
2b2TCH

∂2CU

∂b2 =
a2e−2bTCH

(
−2b2T 2

CH − 2bTCH + e2bTCH − 1
)

b3TCH


∀ b ̸= 0 (5.8)

On further inspection, we can also see that the cost function is convex in the domain
b > 0. This is because

(
∂2CU

∂b2 , ∂2CU

∂b2 > 0 ∀ {b, TCH > 0}
)
.

Range Bounds Violation Penalty
The cost function for the range bounds violation cannot be developed using a simple
quadratic cost function. This is due to the fact that there exist no reference trajectory
which can be used as a baseline to compute the predicted trajectory error. The basic
responsibility of the range bounds violation penalty is to penalise the portion of the
predicted trajectory that violates the relative range bounds.

As discussed in the previous section, the cost function must be continuous and twice
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differentiable in the domain of the constrained optimisation problem. Hence a suitable
candidate for the trajectory cost function must satisfy both these conditions namely, be
continuous and twice differentiable and also penalise the bounds violations. An added
advantage could be to have a cost function that is convex within the optimisation problem
domain.

A choice was made to penalise the extent of bounds violation in a linear manner. Hence,
a suitable candidate was found from the field of neural networking. One of the activation
functions being used predominantly in this field is called the ReLU. The typical charac-
teristics of these cost functions are that they offer linear costs activated after a threshold
value. For any value less than the threshold, the ReLU function returns a zero. This is
the required behaviour in our case, since only the trajectory which lies beyond the thresh-
old (Range bounds) must be penalised linearly while any trajectory which lies within the
bounds must not be penalised.

However, the disadvantage of a ReLU functions is that they are only piecewise linear,
hence by definition, they do not have a continuous second derivative. This would pose a
problem in the QP approach in the optimisation. Therefore, an approximation for the
ReLU function was formulated, namely CReLU, as follows:

fCReLU(x) = x − p
1
d

+ e(p−x) (5.9)

where x is the input variable, p is the function threshold and d is the slope scaling factor
which controls the slope of the linear arm of the function, as shown in Fig. 5.6:
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Figure 5.6: CReLU function: parametric combinations.
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We can now utilise this knowledge to construct our range cost function CR(ρ) as follows:

CR(ρ) = ρmin − ρ
1

dmin
+ e(ρ−ρmin) + ρ − ρmax

1
dmax

+ e(ρmax−ρ) (5.10)

where ρmin and ρmax denote the minimum and maximum range bounds, dmin and dmax are
the slope scaling factor for the corresponding minimum and maximum bounds violation
arms of the function. These 4 parameters can be selected appropriately to customise
our cost function and to choose how to relatively penalise the range bounds violation.
To penalise the maximum range bound violation more than the minimum range bound
violation we can simply choose dmin > dmax. An example of this is shown below:
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Figure 5.7: MPC range bounds violation cost function.

This results in a cost function which allows customisation to tweak the relative bound
limits and also the relative penalty of maximum and minimum bounds violation indepen-
dently. However, this function is defined in the continuous-time domain which cannot be
actually applied in the MPC. This is because the MPC forecasting algorithm outputs a
discrete-time range prediction. To make the trajectory cost function compatible with the
forecasting algorithm, we must define it in discrete-time domain, which can be written as:

CRk
(ρk) = ρmin − ρk

1
dmin

+ e(ρk−ρmin) + ρk − ρmax
1

dmax
+ e(ρmax−ρk) (5.11)

where the subscript k denotes the sampling instance at which the function is evaluated.
We can also formulate the function above to get the normalised net trajectory forecast
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cost using the following formula:

CR =

∑NP H
k=0

(
ρmin−ρk

1
dmin

+e(ρk−ρmin) + ρk−ρmax
1

dmax
+e(ρmax−ρk)

)
NP H

(5.12)

However, the normalised net control sequence cost in eq. 5.6 is normalised with the
prediction horizon but the normalised net trajectory forecast cost in eq. 5.12 is normalised
with the number of samples in the prediction horizon. To make both these compatible,
we must normalise the eq. 5.12 with the prediction horizon. This results in:

CR =

∑NP H
k=0

(
ρmin−ρk

1
dmin

+e(ρk−ρmin) + ρk−ρmax
1

dmax
+e(ρmax−ρk)

)
TP H

(5.13)

An important aspect of this cost function is its independence with regards to the thrust
parameters a and b. Since, the thrust parameters are utilised as the optimisation variables,
this function can be treated as a constant with regards to the lack of gradient in a and b.

5.3. Control Sequence Optimisation
The optimisation of the control sequence must be conducted through a minimisation of
an objective function which is a function of the optimisation variables (thrust parameters)
a and b. The objective function which is utilised is constructed by a combination of the
normalised net trajectory forecast cost and the normalised net control sequence cost. The
exact formulation can be derived by using eq. 5.6, eq. 5.13 and a relative gain Grel which
controls the relative penalty of trajectory cost and the control cost.

Cnet(a, b) =CR + GrelCU

Cnet(a, b) =

∑NP H
k=0

(
ρmin−ρk

1
dmin

+e(ρk−ρmin) + ρk−ρmax
1

dmax
+e(ρmax−ρk)

)
TP H

+ Grel

a2
(
1 − e−2bTCH

)
2bTCH

(5.14)

We can utilise the principles of QP to solve for the minima of this objective function.
However, we must define the domain under which the objective function is continuous
and convex. Since the term CR is independent of a and b, we can treat it as an arbitrary
constant. Hence, the objective function is a linear combination of a constant and a convex
function CU as already discussed in eq. 5.8. Which makes the objective function convex
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in the domain of convexity of the function CU .

According to eq. 5.8, the function CU is convex in the domain b > 0. Similarly, we
can incorporate the thrust limits into the thrust parameters, as per discussion of eq.
5.1. Utilising this knowledge, we can represent our optimisation problem in a new space
defined by the optimisation variables (thrust parameters). This is shown in the figure
below:
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Figure 5.8: MPC constrained optimisation domain.

This is essentially a transformed representation of the principle shown in Fig. 5.5. We
can finally write the mathematical expression of the optimisation problem in the MPC,
as follows:

min
a,b

Cnet =

∑NP H
k=0

(
ρmin−ρk

1
dmin

+e(ρk−ρmin) + ρk−ρmax
1

dmax
+e(ρmax−ρk)

)
TP H

+ Grel

a2
(
1 − e−2bTCH

)
2bTCH

a ∈ [−1, 1]
b ∈ (0, 5]


(5.15)

As a note, there is no explicit constraint or bounds established for the relative range control
within the objective function. The control is achieved through the minimisation of the
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cost function within the optimisation domain defined through constraints, as denoted in
Fig. 5.8.

The assumption made about the convexity of the objective function with respect to the
optimisation variables a and b, is only valid under the assumption of very small prediction
horizons. This stems from the fact that the normalised net range violation cost function
is non-linearly dependent on the optimisation variables for a larger prediction horizon.

To tackle this issue, a sequential quadratic programming optimiser algorithm was utilised
to minimise the objective function. The specific SQP optimiser is characterised by the
use of quadratic programming subproblems at every iteration. The SQP optimiser is
considered as a novel and cutting-edge method in quadratic optimisation methods. This
helps in avoiding explicit dependence on the gradient based optimisation techniques such
as Newton gradient optimiser. An additional advantage is the relaxation of the require-
ment of a convex objective function in the entire optimisation domain. This is because
the SQP optimiser constructs an approximate quadratic sub-problem at every iteration,
which is then used to find the "descent" direction.

Hence, SQP optimiser only requires a twice-differentiable continuous objective function
with linear constraints. This is the primary reason behind the choice of the cost functions
to be continuous and twice-differentiable in the optimisation domain. The constraints
defined for our problem are inequality constraints forming a well defined boundary, which
helps the SQP algorithm in faster and more stable convergence along with ensuring both
feasibility and ensuring constraint non-violation at every iteration.

Regardless, only the choice of the optimiser algorithm is changed, there is no change in
the formulation of the optimisation problem described in eq. 5.15. The exact formulation
and software implementation of the algorithm is beyond the scope of this thesis, but can
be found in Ref. [37].

5.4. MPC Software Integration
With a completely developed mathematical model of the MPC and the associated model
discovery and plant dynamics, we can now assemble them into one single simulation envi-
ronment. This is done in a similar way to the model discovery framework implementation,
explained through Fig. 4.1. We can use the same type of flowchart representation and
depict the implementation of the MPC framework integrated with the associated model
discovery and plant dynamics, as represented below:
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Figure 5.9: Execution flowchart.

While the figure above represents the software interactions and implementations, we need
to also understand the classical block representation of the closed-loop control system.
The majority of the closed-loop system is implemented in the same software, except the
model discovery algorithm.

This is due to lack of software tools available to implement the chosen model discovery
framework along with the closed-loop control system, within the same software. However,
the model discovery framework is not actively participating in the closed-loop simulation.
It is "called" only at simulation time instances when the MPC controller needs a new
and linearised estimate of the local dynamics, i.e. every Tlin s. Finally, the control sys-
tem design concludes with the closed-loop block representation, as shown in the classical
notation below:
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Figure 5.10: Complete block diagram representation.

This concludes the modelling of the complete closed-loop control system. We can now
proceed to setup and run the simulations to test and analyse the closed-loop performance
of the control system. This is discussed in detail in the following chapter.
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6| Simulation Campaign
The simulation campaign was undertaken to establish a benchmark of the performance
of the designed MPC and model discovery framework working in tandem closed-loop
control system configuration. The campaign was designed to test the functionality of
the closed-loop control system and also to analyse the effects of the orbital environment,
MPC parameters i.e. prediction and control horizons and the relative range bounds.

Before proceeding to presentation of the results, the specific notations used in the results
must be introduced. The notations used and their meaning is summarised below:

Terms Usage Meaning

dT dT : dmin/dmax Trajectory cost function: slope scaling factors
Grel Grel Cost function relative gain
Ts Ts MPC time step (samling time)
aT aT Initial SMA of target spacecraft
eT eT Initial eccentricity of target spacecraft
fT fT Initial true-anomaly of target spacecraft
NH NP H/NCH MPC prediction and control horizon time steps
ρlim ρmin/ρmax Relative range bounds
Tlin Tlin Linearisation interval of model discovery

Table 6.1: Simulation campaign notations.

We can now proceed with the results pertaining to the simulation campaign. The cam-
paign has been broadly divided into functional testing, orbital environment study, MPC
horizons study and finally the MPC bounds study. Each focusing on understanding the
effects of the corresponding factors in the control system performance. Each study has
been conducted under various simulation settings to cover a wide range of cases. Primary
focus was laid on the effect of degree of non-linearity on the control system performance
through variation of the SMA, eccentricity and true-anomaly.
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6.1. MPC Functional Testing
Before proceeding with the analysis of the closed-loop control system performance, it
is imperative to establish its capability to effectively control the spacecraft within the
constraints and bounds. To this end, a simulated spacecraft tandem system was subjected
to the control system on the chaser spacecraft. The target spacecraft is under no controlled
inputs and hence is governed by the homogeneous NERM. As discussed in the preceding
chapters, the constraints of the control system are manifested in the thruster maximum
thrust limit (umax = 1N), persistently target facing thruster pair and the bounds for
the control system are the relative range limits ρlims implemented indirectly through an
objective function.

To offer a comparison, two simulations were run, one without any controlled input and
one with it. The simulation was run with a short simulation time of 900s, just to verify
the closed-loop control system efficacy. A primary characteristic of all the conducted
simulations is the lack of control inputs during the first linearisation interval. This is
because during the first linearisation interval, the MPC lacks information of the plant
model.

The results can be seen in the figure below, with the relevant information about the orbit
locality, controller and bounding parameters shown in their corresponding sub-figures:
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(b) Simulation B.

Figure 6.1: Simulation Environment: LEO, elliptical, set-1.
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It is evident from Fig. 6.1b that the implemented closed-loop control system is working
effectively to keep the chaser spacecraft within the requested bounds while limiting the
control input within the constraints. Due to the lack of exact tuning methods to choose
the MPC objective function weights and MPC horizons, for a primary investigation, the
chosen values were derived through a hit-and-trial basis but with basic understanding of
the underlying implications.

6.2. Orbital Environment Study
The control system designed in this thesis is successful in controlling the relative range
of the chaser spacecraft within the bounds. However, to study the effects of various
orbital environments on the control system performance, a series of simulations were
conducted for multiple initial conditions. The chosen orbital environments for the test
can be summarised as follows:

Case Type SMA [km] Eccentricity

Beyond GEO+: Circular ≈ 82106 0
Beyond GEO+: Highly Elliptical ≈ 82106 0.5
Approx. GEO+: Circular ≈ 42116 0
Approx. GEO+: Highly Elliptical ≈ 42116 0.5
LEO: Circular ≈ 7106 0
LEO: Highly Elliptical∗ ≈ 7106 0.5

+ GEO is representative of only the SMA of the case, not the orbit properties.
∗ LEO with e = 0.5 is not physically possible due to perigee inside Earth.

Table 6.2: Orbital environment study: Simulation cases.

The choice of the orbital environment is not representative of physical possibility or
practicality of such an environment, it only serves to authenticate the control system
performance at various degrees of non-linearity of relative dynamics, resulting from the
mathematical values of the chosen Keplerian orbital elements.

6.2.1. Beyond GEO

This section reports the results of the simulations under the orbital environment study
conducted under that case "Beyond GEO" as per Table 6.2. A typical characteristic of
this orbital environment is low degree of non-linearity in relative dynamics. Important
comments and observations are discussed in relevant sub-sections.
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Circular Orbit
Circular orbits offer ideal cases for orbital relative motion controllers. They are char-
acterised by linear relative motion dynamics. This case is made easier by the very high
SMA of the orbital environment. A higher SMA also results in the smaller augmentation
of the non-linearity of the dynamics, if present.

The first set of simulations under these conditions represents motion without control effort,
as shown in Fig. 6.2a, and corresponding motion controlled by the MPC, as shown in
Fig. 6.2b. The bounds for relative range are chosen far from the initial relative range
and kept narrow. This is essentially commanding the controller to maintain the chaser
spacecraft at a fixed range separation with very small allowed deviation.

83

83.5

84

84.5

85

R
el

.
ra

ng
e
ρ
[k
m
]

Controller Disengaged
dT : 10/10; Grel : 10

4; Ts : 5s
aT : 82106.15km; eT : 0.0; fT : 1.53Rad
NH : 60/12; ρlim : 55/56km; Tlin : 300s

0 500 1,000 1,500 2,000 2,500 3,000

1

0

−1

Time t [s]

T
hr

us
t
u
[N

]

(a) Simulation A.

76

78

80

82

84

R
el

.
ra

ng
e
ρ
[k
m
]

Controller Engaged
dT : 10/10; Grel : 10

4; Ts : 5s
aT : 82106.15km; eT : 0.0; fT : 1.53Rad
NH : 60/12; ρlim : 75.8/76km; Tlin : 300s

0 500 1,000 1,500 2,000 2,500 3,000

1

0

−1

Time t [s]

T
hr

us
t
u
[N

]

(b) Simulation B.

Figure 6.2: Simulation Environment: Beyond GEO, circular, set-1.

As it can be seen from the results obtained in Fig. 6.2, it is evident that the MPC is able to
execute the requested range bounding manoeuvre with great accuracy and limited control
effort. The resulting trajectory attains the requested bounding within approximately 700s

of the controller engagement. Another point to note is a lack of considerable overshoot
in the controlled trajectory. This is because the predictor applies corrective control input
to prevent overshoot (at approx. 600s), which is almost at the prediction horizon (300s)
of the expected overshoot instance (900s), if no preventive input was applied. Which
means that the MPC could predict the overshoot and find an optimal control sequence
to prevent this, with great accuracy. This is the expected performance advantage of a
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typical MPC.

The next simulation makes the requested bounds much farther from the initial separation,
as can be witnessed in Fig. 6.3. This is equivalent to giving a reference signal very far
from the current output, in a classical control system perspective. As expected, there is
an overshoot in the resulting trajectory, as shown in Fig. 6.3b. Without any change in the
MPC parameters or orbital environment, the cause of the overshoot can be attributed
to a lack of a larger prediction horizon. This results in the MPC unable to recognise an
overshoot within its optimisation horizon and does not compensate for it. This results in
over-actuation and a sub-optimal control sequence. However, the MPC can be seen to
be quickly responding to correct the overshoot once it predicts it within the prediction
horizon, this can be witnessed in Fig. 6.3b.
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(b) Simulation C.

Figure 6.3: Simulation Environment: Beyond GEO, circular, set-2.

A potential solution to this problem of overshoot is to increase the prediction horizon.
But due to the nature of the model discovery framework, any prediction horizons larger
than the linearisation intervals would result in diverging prediction accuracy. Hence, a
practical solution would be to request the bounds in a staggered manner, slowly moving
from current separation to the final desired bounds. This would be analogous to a ramp
reference signal in classical control theory. Since the controller is not designed to account
for actuator saturation and compensate with orbital manoeuvres, we witness sluggish
responses in the trajectory correction. The comparison between both these cases can be
witnessed below for reference.
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(b) Simulation C.

Figure 6.4: Simulation Environment: Beyond GEO, circular, set-3.

Highly Elliptical Orbit
The worse performing case (Fig. 6.4b) was simulated for a highly eccentric orbit to test
the limits of the control system. However, we get very similar performances as seen in
Fig. 6.5. This is due to the "diluted" non-linearity in dynamics due to a very high SMA.
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Figure 6.5: Simulation Environment: Beyond GEO, elliptical, set-1.
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6.2.2. GEO

Let us put the control system to a tougher test in a stronger non-linear orbital environment
by reducing the orbital SMA. With a smaller orbital SMA, the controller would be
unable to reach the same bounds as was the case in the previous case of beyond GEO
orbit. Hence, the bounds were decided to be placed closer to the initial separation. This
is analogous to giving a step reference signal with a smaller magnitude to the controller,
in classical control system jargon.

No changes to the MPC parameters are done to ensure that these simulations offer
insights into the isolated effects of orbital environment on the control system performance
without contamination due to effects of change is MPC parameters.

Circular Orbit
As discussed in the previous section, the first simulations are conducted within a circular
orbit scenario, as seen in Fig. 6.6. Two individual simulations are conducted, with the
MPC disabled (Fig. 6.6a) and with MPC enabled (Fig. 6.6b), for comparative purposes.

40

42

44

46

R
el

.
ra

ng
e
ρ
[k
m
]

Controller Disengaged
dT : 10/10; Grel : 10

4; Ts : 5s
aT : 42106.26km; eT : 0.0000; fT : 1.47Rad
NH : 60/12; ρlim : 40/41km; Tlin : 300s

0 500 1,000 1,500 2,000 2,500 3,000

1

0

−1

Time t [s]

T
hr

us
t
u
[N

]

(a) Simulation A.

40

41

42

43

R
el

.
ra

ng
e
ρ
[k
m
]

Controller Engaged
dT : 10/10; Grel : 10

4; Ts : 5s
aT : 42106.26km; eT : 0.0; fT : 1.47Rad
NH : 60/12; ρlim : 40/41km; Tlin : 300s

0 500 1,000 1,500 2,000 2,500 3,000

1

0

−1

Time t [s]

T
hr

us
t
u
[N

]

(b) Simulation B.

Figure 6.6: Simulation Environment: GEO, circular, set-1.

The MPC is able to accurately bring the trajectory to the requested bounds, against the
direction of natural motion, and maintain it. The control sequence applied by the MPC
can be seen to be smooth and efficient in Fig. 6.6b.



88 6| Simulation Campaign

Highly Elliptical Orbit
As discussed previously, in larger orbits, the effect of higher eccentricity on the intensity
of the non-linearity of the relative dynamics is low. This can be witnessed again in the
Fig. 6.7, where the MPC can be seen to handle the requested bounds with relative ease.
A slight difference in Fig. 6.7b from Fig. 6.6b can be seen approximately at 1850s into
simulation. The MPC can be seen to prevent the escape from bounds in Fig. 6.6b, but
this is absent in Fig. 6.7b.
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Figure 6.7: Simulation Environment: GEO, elliptical, set-1.

6.2.3. LEO

Since the MPC is able to handle the higher orbital SMAs with relative ease, we can
push it to the toughest test. The low-Earth orbit is the most challenging environment
due to highly non-linear behaviours at very low eccentricities and the higher effect of the
J2 perturbations which are a challenge for the model discovery framework.

Highly Elliptical Orbit
To simulate the toughest orbital environment, a choice was made to position the tandem
spacecraft formation at the perigee of the low-Earth orbit. The perigee of an elliptical
orbit is characterised by the highest degree of relative motion non-linearity in the entire
orbit. The resulting motion under control and without is presented in Fig. 6.1.
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(b) Simulation B.

Figure 6.8: Simulation Environment: LEO, elliptical, set-2.

With due consideration to the tough orbital environment, the bounds were chosen to be
placed within the natural trajectory limits. This meant that the MPC would not need to
employ excessive actuation which could saturate the actuators. This can be seen in Fig.
6.8b. However, even this orbital environment could be handled with ease by the designed
MPC. However, this could be suspected due to the short simulation times. Hence, long-
term simulations are conducted in the next section with experimentation on the change
of MPC parameters and their effect on the performance.

6.3. MPC Parameter Study: LEO
Within the scope of the previous sub-section, it is well established that the MPC can
handle a wide range of orbital environments, even with the default MPC parameters.
To investigate the effects of the change in the MPC parameters on the performance, the
simulations were conducted on the most demanding orbital environment - low-Earth orbit
with high eccentricity and J2 perturbations.

To analyse the efficacy of the MPC on longer intervals, simulations were carried out for
the whole duration of a single orbit. This would also ensure that the model discovery
was working as expected, under varying true-anomaly and the long-term stability of the
algorithm in under heavy J2 perturbations. However, the main concern was the lack of
control authority to counter the perturbations and non-linearity over long intervals.
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6.3.1. Orbital Period Simulation: MPC parameters

The first set of simulations conducted under this study are done to establish a baseline
performance. The same MPC parameters were used as in previous sections, to first
understand the effect of a long interval simulation. The results are presented in Fig. 6.9,
with natural motion shown in Fig. 6.9a and the controlled trajectory in Fig. 6.9b.

10

15

20

R
el

.
ra

ng
e
ρ
[k
m
]

Controller Disengaged
dT : 10/10; Grel : 10

4; Ts : 5s
aT : 7106.14km; eT : 0.5; fT : 0.0Rad

NH : 60/12; ρlim : 10/13.5km; Tlin : 300s

0 1,000 2,000 3,000 4,000 5,000 6,000

1

0

−1

Time t [s]

T
hr

us
t
u
[N

]

(a) Simulation A.

8

10

12

14
R

el
.

ra
ng

e
ρ
[k
m
]

Controller Engaged
dT : 10/10; Grel : 10

4; Ts : 5s
aT : 7106.14km; eT : 0.5; fT : 0.0Rad

NH : 60/12; ρlim : 10/13.5km; Tlin : 300s

0 1,000 2,000 3,000 4,000 5,000 6,000

1

0

−1

Time t [s]

T
hr

us
t
u
[N

]

(b) Simulation B.

Figure 6.9: Simulation Environment: LEO, elliptical, set-3.

It can be clearly observed that the MPC is facing much more difficulty in maintaining
a smooth trajectory under long-term simulations. This can be attributed to two primary
factors.

The first is the naturally occurring heavy non-linearity and extreme perturbations at the
perigee. This is encountered by the MPC in Fig. 6.9b towards the end of the simulation.
We can witness the sudden saturation of the actuators near perigee. However, an actual
orbit of the same SMA and eccentricity cannot occur physically due to the perigee being
inside the Earth. Thus, the MPC would not be expected to encounter such extreme
dynamics in actual applications.

The second reason is the fast changing dynamics being linearised over a relatively long
interval compared to the short orbital periods. This produces slight inaccuracies in the
trajectory prediction algorithm. The primary assumption of utilising constantly updating
linear models to predict the trajectory is that the linearisation interval must be much
smaller than the orbital period. This was satisfied for the case of higher orbits, but
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failed for lower orbits. This problem is also exemplified at the perigee due to even closer
proximity to Earth, which in turn results in a fast evolving dynamics.

A prospective solution for this would be to reduce the linearisation interval to compensate
for the lower orbit’s fast changing dynamics. But this would reduce the prediction horizon
of the MPC. To strike a balance, it is suggested to implement an adaptive algorithm to
select the linearisation interval from the lookup table generated from the results of the
testing campaign as per sub-section 4.5.2. This would allow the MPC to choose the
highest linearisation interval within an acceptable prediction error based on the current
true-anomaly within the orbit.

MPC Horizons Study
To understand the effect of altering the MPC horizons on its performance, a comparative
simulation was run. The chosen MPC horizon for the new simulation, as shown in Fig.
6.10b, is twice the default parameters shown in Fig. 6.9b.
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(b) Simulation B.

Figure 6.10: Simulation Environment: LEO, elliptical, set-4.

The primary difference observed in the new MPC performance compared to the default
MPC horizons, is the trajectory smoothness at the cost of bound violations at the perigee.
This can be explained by understanding the nature of the model discovery framework and
its role in deciding the MPC prediction horizon.

As discussed previously, the accuracy of prediction quickly worsens if the prediction hori-
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zon exceeds the linearisation interval. This leads to inaccurate predictions of the tra-
jectory, especially in orbit localities of high nonlinearity i.e. perigee. Hence, the MPC
performance degrades at that corresponding locality. But for the rest of the orbit, the
prediction accuracy is still maintained under acceptable limits, ensuring a more optimised
control sequence implementation resulting in a smoother trajectory.

MPC Linearisation Interval Study
To verify the hypothesis regarding the shorter linearisation interval leading to a smoother
control input and tolerance against the constantly evolving relative dynamics, a new
simulation was run by reducing the linearisation interval. The MPC with a smaller
linearisation interval of 150s compared to the default MPC linearisation interval of 300s,
does work to a certain extent according to the prediction of the hypothesis. This can be
seen in the comparison shown in Fig. 6.11.
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(b) Simulation B.

Figure 6.11: Simulation Environment: LEO, elliptical, set-5.

There are no major performance improvements due to the reduction in the linearisation
interval. This might seem counter-intuitive due to the fact that a smaller linearisation
interval must lead to a more accurate and updated model discovery framework. However,
since the simulation was conducted by altering the linearisation interval only, without the
corresponding reduction in the prediction and control horizons, the accuracy of the MPC
predictions are worse. This compensates for any augmentation of prediction accuracy due
to reduction of linearisation interval.
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Hence, this simulation indicates that due to the coupled nature of the model discovery
framework and the MPC prediction horizons, both parameters must be changed in tan-
dem to see its effect on the actual performance. Any change in either parameter without a
corresponding change in the other, would bear undesirable effects on MPC performance.

6.4. MPC Bounds Study: LEO
A final study was conducted on the effect of the nature of the relative range bounds on the
MPC performance. Again, as a benchmark, the worst case of low-Earth highly elliptical
orbit at the perigee was chosen as the initial condition for the simulation. The study aims
to understand the effect of imposing narrow bounds within the natural trajectory bounds
compared to imposing them outside the limits of the natural motion.

To ensure uniformity, the MPC parameters were reverted back to the default values as
prior to the MPC parameters study was conducted.

6.4.1. Narrow Bounds Within Original Trajectory

For the first case, the narrow bounds were imposed within the original trajectory bounds
but offset from the mean relative range. The resulting performance can be seen in Fig.
6.12. When compared to the natural trajectory shown in Fig. 6.12a, the controlled motion
can be seen to maintain the requested bounds for the majority of the orbital duration.
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(b) Simulation B.

Figure 6.12: Simulation Environment: LEO, elliptical, set-6.
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As was the case with many of the previous simulations, the MPC performance is ham-
pered at the perigee towards the end of the simulation. This can be witnessed through
the saturation of the actuator inputs and the violation of the requested bounds conse-
quentially. However, this can be overcome by a higher powered actuator assembly.

6.4.2. Narrow Bounds Outside Original Trajectory

As a final case, the narrow relative range bounds are assigned outside the natural motion
limits and against the natural motion drift. The natural motion can be seen drifting
towards higher relative ranges in Fig. 6.12a. This can be attributed to the strong influence
of the J2 perturbations. This leads to the most difficult scenario that the MPC has been
put to test in.
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(b) Simulation B.

Figure 6.13: Simulation Environment: LEO, elliptical, set-7.

The combination of an under-actuated control system and the extreme difficulty intrinsic
to the simulation conditions have made the MPC not attain the desired goals. The chaser
spacecraft can be seen moving closer to the desired bounds, although working through
actuator saturation, in Fig. 6.13b.

But nearing the end of the simulation, when approaching the perigee, the MPC is com-
pletely unable to control the motion as requested and leads to the chaser spacecraft drifting
away due to the overpowering relative motion dynamics and the orbital J2 perturbations.

It can be a good reminder to recall that the simulation conditions employed in this
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simulation is not physically possible and only acts as a worst case testing scenario. Hence,
the MPC, designed under this thesis, is expected to perform much better in simulation
conditions resembling real-life applications.
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7| Conclusion and Future Scope
In this dissertation the implementation of a model discovery based predictive controller
was analysed. The main objective was to study the feasibility, scope and validity of the
proposed control system. Through theoretical foundations in spaceflight mechanics, con-
trol theory and data-based numerical methods, a framework was developed and integrated
to form the MDPC.

The validity of the solution was established through simulations of its accuracy in a two-
body environment with J2 perturbations. The feasibility and scope of the implemented
control system was analysed through a simulation campaign with varying simulation en-
vironments and control system parameters. The primary findings of the campaign were
discussed in the preceding sections.

This section accumulates concisely, the findings and their explanations, limitations of the
solution and the future scope of improvement in the implemented solution.

7.1. Important Findings
The important findings of this dissertation will be discussed addressing the sub-system
level findings and finally, the complete system level findings.

7.1.1. Model Discovery

The important findings pertaining to the standalone implementation of the model discov-
ery framework can be listed as follows:

1. The resulting discovered model coefficients offer a high degree of insight into the
actual local dynamics.

2. The discovered model is able to compensate, to a certain degree, for the presence of
disturbance forces and accelerations.

3. The model discovery framework offers satisfactory accuracy in prediction outside
the interval of measurement collection.
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4. Stochastic methods employed ensure the model stability and robustness.

5. The constrained regression based method of model discovery is computationally
more efficient than neural networks based training approaches.

7.1.2. Model Predictive Controller

The important findings pertaining to the standalone implementation of the model predic-
tive controller can be listed as follows:

1. The MPC optimisation algorithm guarantees non-violation of constraints and bounds
at every iteration.

2. The controller is highly responsive to predicted bounds violation.

3. The controller is capable of providing a sub-optimal but constructive control se-
quence in the case of non fulfilment of optimisation convergence at the global minima
before the MPC sampling interval.

7.1.3. Complete Control System: MDPC

The important findings pertaining to the complete implementation of the model discovery
and predictive controller can be listed as follows:

1. The MDPC parameters are adaptive, based on look-up tables which correlate the
prediction error with the orbit locality and MPC horizons.

2. The MDPC is able to successfully provide effective control sequences under the
presence of heavy perturbations and intensive non-linearity in the local dynamics.

3. The MDPC is able to predict the future trajectory while including the prospective
control sequences within constraints and prioritise the maximum impulse deliverance
at the earliest.

7.2. Solution Limitations
The main limitations of the complete implementation of the MDPC framework are pri-
marily found in the scope of its application. They can be enumerated as follows:

1. The model discovery framework considers the coefficients of the system matrix to
remain invariant within the linearisation interval.

2. The model discovery framework needs knowledge about the magnitude of the specific
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orbital momentum to maintain its accuracy if the scale of the orbit alteration due
to the manoeuvres are large.

3. The model discovery algorithm needs to be employed more frequently in orbital
environments characterised by highly non-linear dynamics.

4. The controller prediction horizon is implicitly linked to the measurement interval
utilised in the model discovery algorithm, in the context of the implemented solution.

5. The MDPC framework has no methods to mathematically account for significantly
different gravitational fields to the idealised two-body problem such as gravitational
fields of the asteroids.

6. The MPC is not modelled to account and compensate for actuator saturation in
the control sequence optimisation.

7.3. Future Scope of Work
The understanding of the limitations of the implemented solution leads naturally to the
possible branches of future work in this field. The main objective of the dissertation is
satisfied through the implemented MDPC system, however it could be improved.

The main directions of improvement in the model discovery framework can be listed as:

1. Inclusion of system matrix coefficient variance within the linearisation interval and
prediction horizon

2. Include mathematical formulation of perturbation accelerations into the state-space
model and regression framework.

3. The current solution requires a very minimal ground-segment dependence to es-
timate the specific orbital momentum. Future work can focus on eradicating the
necessity of ground-segment support for increased autonomy.

4. Account for actuator saturation into the MPC control sequence optimisation algo-
rithm.

5. Include a parallel algorithm to perform large orbital scale manoeuvres to optimise
the control effort by accounting for the actuation efficiencies at various locales in
the orbits such as efficiency of orbit raising manoeuvres is maximal at the perigee.
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7.4. Salient Features
Finally, concluding this chapter, we can list the important salient features of the proposed
solution as follows:

1. The MDPC is effective in practically highly eccentric orbits of e = 0.6

2. The solution is valid for larger initial separation in order of a few hundred kilometres.

3. The range prediction algorithm is accurate and stable even in the presence of large
perturbations and time-varying nonlinear dynamics.

4. The implemented solution is computationally efficient and simple.

5. The proposed solution is sparse in its actuation requirements i.e a single pair of
thrusters aligned perpetually towards the target spacecraft.

6. Utilises a simple and robust optimisation algorithm characterised by convexity in
the objective function enabling robust convergence and guarantees a global minima.

7. The MDPC can function with complete autonomy which enables impromptu ma-
noeuvres to be conducted without ground-segment support.

8. The model discovery framework is faster than neural networks based learning meth-
ods while also being more transparent in their insights into the actual local dynamics.



101

Bibliography
[1] K. T. Alfriend and Y. Kashiwagi. “minimum-time orbital rendezvous between neigh-

boring elliptic orbits, ” Journal of Optimization Theory and Applications. 4(4):
260–276, 1969.

[2] F. Allgöwer, T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J. Wright. Nonlinear
predictive control and moving horizon estimation — an introductory overview. In
P. M. Frank, editor, Advances in Control, pages 391–449, London, 1999. Springer
London. ISBN 978-1-4471-0853-5.

[3] F. Ankersen and N. Guidance. Control and Relative Dynamics for Spacecraft Prox-
imity Maneuvers. PhD thesis, Aalborg University, Aalborg, Denmark, Dec. 2010.

[4] P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning
from examples without local minima. Neural Netw, 2, 1989.

[5] A. A. Baranov. “an algorithm for calculating parameters of multi-orbit maneuvers
in remote guidance. ” Cosmic Research, 28(1):61–67, 1990.

[6] P. W. Battaglia et al. Relational inductive biases, deep learning, and graph networks.
01261 (4, June 2018.

[7] P. Benner, S. Gugercin, and K. Willcox. A survey of projection-based model reduction
methods for parametric dynamical systems. SIAM Rev, 57, 2015.

[8] L. S. Breger and J. P. How. “J2-modified GVE-based MPC for formation flying
spacecraft, ” in AIAA Guidance, Navigation, and Control Conference (GNC), (San
Francisco, California, US). Aug. 2005.

[9] C. Brezinski. Computational Aspects of Linear Control. Numerical Algorithms, 1.
Springer US, 2002. ISBN 978-1-4020-0711-8. URL https://books.google.it/
books?id=YypLfQhopfQC.

[10] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from
data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci.
U. S. A, 113, 2016.

https://books.google.it/books?id=YypLfQhopfQC
https://books.google.it/books?id=YypLfQhopfQC


102 | Bibliography

[11] P. A. Capó-Lugo and P. M. Bainum. Orbital Mechanics and Formation Flying: A
Digital Control Perspective. Woodhead Publishing in mechanical engineering, Wood-
head Publishing Limited, 2011.

[12] T. E. Carter. “state transition matrices for terminal rendezvous studies: Brief survey
and new example. ” Journal of Guidance, Control, and Dynamics, 21:148–155, Jan.
1998.

[13] W. H. Clohessy and P. S. Wiltshire. “terminal guidance system for satellite ren-
dezvous, ” Journal of Aerospace Sciences. 27:653–658, Sept. 1960.

[14] H. D. Curtis. Orbital Mechanics for Engineering Students. Elsevier Aerospace Engi-
neering Series, Butterworth-Heinemann, 2005.

[15] C. R. Cutler and B. L. Ramaker. Dynamic matrix control a computer control algo-
rithm. Joint Automatic Control Conference, 17:72, 1980. doi: 10.1109/JACC.1980.
4232009.

[16] M. Dam, M. Brøns, J. J. Rasmussen, V. Naulin, and J. S. Hesthaven. Sparse identi-
fication of a predator-prey system from simulation data of a convection model. Phys.
Plasmas, 24:022310, 2017.

[17] W. Fehse. Automated Rendezvous and Docking of Spacecraft. Cambridge University
Press, 2003.

[18] P. A. Felisiak. Control of spacecraft for rendezvous maneuver in an elliptical orbit.
2016.

[19] G. W. Hill. “researches in the lunar theory. ” American Journal of Mathematics, 1:
5–26, 1878.

[20] M. Hoffmann, C. Fröhner, and F. Noé. Reactive SINDy: Discovering governing
reactions from concentration data. J. Chem. Phys. 150, 150:025101, 2019.

[21] E. Kaiser, J. N. Kutz, and S. L. Brunton. Sparse identification of nonlinear dynamics
for model predictive control in the low-data limit. Proc. R. Soc. A, 474:20180335,
2018.

[22] R. E. Kálmán. A new approach to linear filtering and prediction problems" transac-
tion of the asme journal of basic. 1960.

[23] R. E. Kálmán. Contributions to the theory of optimal control. 1960.

[24] C. D. Karlgaard and F. H. Lutze. “second-order relative motion equations, ” Journal
of Guidance, Control, and Dynamics. 26(1):41–49, 2003.



| Bibliography 103

[25] Z. Lai and S. Nagarajaiah. Sparse structural system identification method for nonlin-
ear dynamic systems with hysteresis/inelastic behavior. Mech. Syst. Signal Process,
117, 2019.

[26] H. S. London. “second approximation to the solution of the rendezvous equations. ”
AIAA Journal, 1(7):1691–1693, 1963.

[27] Y. Luo, J. Zhang, and G. Tang. Survey of orbital dynamics and control of space
rendezvous. Chinese Journal of Aeronautics, 27(1):1–11, 2014. ISSN 1000-9361. doi:
https://doi.org/10.1016/j.cja.2013.07.042. URL https://www.sciencedirect.com/
science/article/pii/S1000936113001787.

[28] P. Marquis and J. P. Broustail. Smoc, a bridge between state space and model
predictive controllers: Application to the automation of a hydrotreating unit. IFAC
Proceedings Volumes, 21:37–45, 1988.

[29] M. Okasha and B. Newman. “Relative motion guidance, navigation and control for
autonomous orbital rendezvous, ” in Proceedings of AIAA Guidance, Navigation and
Control Conference. 2011.

[30] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. Model-free prediction of large
spatiotemporally chaotic systems from data: A reservoir computing approach. Phys.
Rev. Lett. 120, 120:024102, 2018.

[31] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part
ii): Data-driven discovery of nonlinear partial differential equations. arXiv:1711, page
10566, Nov. 2017.

[32] J. Richalet, A. Rault, J. L. Testud, and J. Papon. Paper: Model predictive heuris-
tic control. Automatica, 14(5):413–428, sep 1978. ISSN 0005-1098. doi: 10.1016/
0005-1098(78)90001-8. URL https://doi.org/10.1016/0005-1098(78)90001-8.

[33] I. M. Ross. “linearized dynamic equations for spacecraft subject to j perturbations.
” Journal of Guidance, Control, and Dynamics, 26(4):657–659, 2003.

[34] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Data-driven discovery of
partial differential equations. Sci. Adv, 3, 2017.

[35] H. Schaeffer, R. Caflisch, C. D. Hauck, and S. Osher. Sparse dynamics for partial
differential equations. Proc. Natl. Acad. Sci. U. S. A, 110, 2013.

[36] H. Schaub and J. L. Junkins. Analytical Mechanics of Space Systems. Reston, Vir-
ginia, US: AIAA Education Series, Oct. 2003.

https://www.sciencedirect.com/science/article/pii/S1000936113001787
https://www.sciencedirect.com/science/article/pii/S1000936113001787
https://doi.org/10.1016/0005-1098(78)90001-8


104 7| BIBLIOGRAPHY

[37] K. Schittkowski and C. Zillober. Nonlinear programming: Algorithms, software, and
applications. volume 166, pages 73–107, 01 2006. ISBN 978-1-4020-7760-9. doi:
10.1007/0-387-23467-5_5.

[38] M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data.
2009.

[39] S. A. Schweighart and R. J. Sedwick. “high-fidelity linearized j model for satellite
formation flight, ” Journal of Guidance, Control, and Dynamics. 25(6):1073–1080,
2002.

[40] R. E. Sherrill. Dynamics and Control of Satellite Relative Motion in Elliptic Orbits
using Lyapunov-Floquet Theory. PhD thesis, Auburn University, Auburn, Alabama,
US, May 2013.

[41] M. J. Sidi, S. Dynamics, and C. A. P. E. Approach. Cambridge Aerospace Series,
Cambridge University Press. 1997.

[42] M. Sorokina, S. Sygletos, and S. Turitsyn. Sparse identification for nonlinear optical
communication systems: SINO method. Opt. Express, 24:30433, 2016.

[43] J. Tschauner and P. Hempel. “rendezvous zu einem in elliptischer bahn umlaufenden
ziel, ” Astronautica Acta. 11(2):104–109, 1965.

[44] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos. Data-
driven forecasting of high-dimensional chaotic systems with long-short term memory
networks. Proc. R. Soc. A, 474:20170844, 2018.

[45] K. Yamanaka and F. Ankersen. “new state transition matrix for relative motion
on an arbitrary elliptical orbit, ” Journal of Guidance, Control, and Dynamics. 25:
60–66, Jan. 2002.

[46] E. Yeung, S. Kundu, and N. Hodas. “Learning deep neural network representations
for Koopman operators of nonlinear dynamical systems” in 2019 American Control
Conference (IEEE. New York), 2019.

[47] Z. Zhang, L. Deng, J. Feng, L. Chang, D. Li, and Y. Qin. A survey of precision for-
mation relative state measurement technology for distributed spacecraft. Aerospace,
9(7):362, 2022.

[48] P. Zheng, T. Askham, S. L. Brunton, J. N. Kutz, and A. Y. Aravkin. A unified
framework for sparse relaxed regularized regression: Sr3. 2019.



105

A| Appendix A

Nonlinear Equations of Relative Motion: LVLH Frame
The relative motion in the LVLH frame can be described using exact non-linear equations
of relative motion, also called NERM. The derivation of said equations are performed
in a slightly altered manner to suit the necessities of the control system. The classical
derivation of the same can be found in Ref. [36, 40].

Let us represent a new reference frame called LVLH. The diagrammatic representation
of this reference frame is shown below:

Chaser

Target

rt

ρ

ôr
ôh

ôθ

x

y

z

Figure A.1: Local-vertical local-horizon (LVLH) coordinate frame [18].

With reference to Fig. A.1, the position vector rc for the chaser spacecraft can be written
as follows:
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ρ = xôr + yôθ + zôh (A.1)

or alternatively:

rc = rt + ρ = (rt + x) ôr + yôθ + zôh (A.2)

where the vector rt denotes the position vector of target spacecraft corresponding with
position vector rc of the chaser spacecraft, both in the LVLH frame.

In the continuing analysis and derivations the term f is assumed to denote the true
anomaly of the target spacecraft. We can write the specific orbital momentum of target
spacecraft as:

h = r2
t ḟ (A.3)

We can now impose the specific angular momentum of target spacecraft to be constant,
assuming Keplerian orbital motion, resulting in:

ḣ = 0 = 2rcṙtḟ + r2
t f̈ (A.4)

by rearranging eq. A.4 we can demonstrate:

f̈ = −2 ṙtḟ

rt

(A.5)

To express the rate of change of true anomaly of the target spacecraft in terms of orbital
semi-latus rectum p instead of r , we employ h2 =µp and obtain:

ḟ =
√

µp

r4
t

(A.6)

We can analytically see that the angular velocity vector ω of the target spacecraft is
aligned with its specific angular momentum vector h. Hence, we can express it as:

ω = ḟ ôh = h

r2
t

ôh (A.7)
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From eq. A.5, we write the equation for angular acceleration of the target spacecraft as:

ω̇ = f̈ ôh = −2 ṙtḟ

rt

ôh (A.8)

Keeping in mind the formulation of the relative angular acceleration of the target space-
craft, the eq. A.2 can be differentiated twice with respect to time as follows:

r̈c = r̈t + ω̇ × ρ + ω × (ω × ρ) + 2ω × ρ̇ + ρ̈ (A.9)

The target spacecraft position written in LVLH frame can be formulated as:

rt = rtôr (A.10)

Now, we can combine the eq. A.1, eq. A.7 and eq. A.8 by substituting them in eq. A.9.
By using eq. A.10, we can now write:

r̈c = r̈tôr + f̈ ôh × (xôr + yôθ + zôh) +
ḟ ôh ×

(
ḟ ôh × (xôr + yôθ + zôh)

)
+ 2ḟ ôh × (ẋôr + ẏôθ + żôh) +

(ẍôr + ÿôθ + z̈ôh)
=

(
r̈t − f̈y − 2ẏḟ + ẍ

)
ôr+(

f̈x − ḟ 2y + 2ẋḟ + ÿ
)

ôθ+

z̈ôh

(A.11)

Furthermore, we can apply Newtonian two-body equation, (r̈ = − µ
r3 r), to describe the

Keplerian orbital motion under purely gravitational interactions. By substituting eq.
A.10 into the Newtonian two-body equation, we can find the relative acceleration vector
of the target spacecraft as:

r̈t = − µ

r3
t

rt = − µ

r2
t

ôr (A.12)

Hence, we can rewrite the eq. A.11 by substituting the scalar component of eq. A.12:
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r̈c =
(

− µ

r2
t

+ 2 ṙt

rt

ḟy − ḟ 2x + ẍ1
)

ôr+(
−2 ṙt

rt

ḟx − ḟ 2y + 2ẋḟ + ÿ
)

ôθ + z̈ôh

(A.13)

To move away from the idealised model of two-body problem, let us introduce additional
forces encountered by the spacecrafts. Maintaining the classical terminology, the gravi-
tational two-body forces will be assumed as discussed previously. Addition of two forces
namely, control force u and random disturbance force denoted as ud are introduced. The
nature of disturbance force is defined such that it accounts for all forces that are uncon-
trolled such as spacecraft actuation error, drag, etc.

The definition adopted for control force is:

u =
[
ux uy uz

]T
(A.14)

where the scalar components are aligned with the LVLH basis unit vectors along the
radial direction, along-track direction and out-of-plane direction in the order ux, uy and
uz respectively. The overall disturbance force encountered by the chaser spacecraft can
be expressed in terms of the disturbance acceleration ad:

ud =
[
udx udy udz

]T
= mcad = u + up (A.15)

where mc represents the chaser spacecraft mass and up represents the perturbation force
(eg. J2 perturbation) vector defined in LVLH frame. Accounting for disturbance, to find
the acceleration vector for the chaser spacecraft, we can employ:

r̈ = r̈2 − r̈1 = − µ

r3 r + ad (A.16)

r̈c = − µ

r3
c

rc + ad = − µ

r3
c


rt + x

y

z

+ 1
md


udx

udy

udz

 (A.17)

The chaser spacecraft’s current radius, in presence of disturbances, can be written as:

rc =
√

(rt + x)2 + y2 + z2 (A.18)
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By combining eq. A.13 and eq. A.17, we can find the formulation of the NERM,
described previously as:

ẍ − 2ḟ
(

ẏ − y
ṙt

rt

)
− xḟ 2 − µ

r2
t

= − µ

r3
c

(rt + x) + udx

md

(A.19)

ÿ − 2ḟ
(

ẋ − x
ṙt

rt

)
− yḟ 2 = − µ

r3
c

y + udy

md

(A.20)

z̈ = − µ

r3
c

z + udz

md

(A.21)

The eq. A.19, eq. A.20 and eq. A.21 form the set of exact non-linear equations describing
the chaser spacecraft motion relative to the target spacecraft.
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J2 Perturbation
The equatorial radius of the Earth is approximately 20 kilometres greater than the polar
radius. The internal structure of the Earth is not uniform and is characterised by clusters
of mantle and irregular continental mass distributions and tidal effects. This results in a
non-uniform gravitational field which is modelled as a perturbation called J2 perturbation.
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Figure B.1: Orbital perturbations for Earth orbit (reproduced from [9]).
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The mathematical derivation of the acceleration due to J2 perturbation is beyond the
scope of this dissertation. The equation for the same is borrowed from Ref. [14] and
reported below:

aECI
J2 = 3

2
J2µR2

e

r4

[
x

r

(
5z2

r2 − 1
)
îx + y

r

(
5z2

r2 − 1
)
îy + z

r

(
5z2

r2 − 3
)
îz

]
(B.1)

where J2 is the constant of perturbation magnitude and Re denotes the radius of the
Earth. This enables us model the J2 perturbations into the "ground-truth" simulations.
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