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Abstract

Sampling theory is the study of spaces of continuous functions that can be
exactly rebuilt from samples taken on a discrete set of points, and has a
great number of practical applications in communication engineering and
signal processing. The most important function spaces connected to the
classical sampling theory are the Paley-Wiener spaces, which are spaces of
bandlimited functions that have many properties very useful for sampling.
The bandlimited functions can generally be rebuilt from samples taken on
a sequence of equidistant points.

In real applications, a signal effective bandwidth can vary in time. Ad-
justing the sampling rate accordingly should improve the sampling efficiency
and information storage. While this old idea has been pursued in numer-
ous publications, some fundamental problems are not fully solved yet. The
most important regards how to take samples on non-uniform intervals or at
a time-varying rate preserving the possibility to perfectly and stably recon-
struct the signal.

In this work we introduce new properties and new sampling formulas
for some spaces of entire functions, namely the de Branges spaces and the
Paley-Wiener spaces, based on non-uniform sampling sets strongly different
from these of classical results, and we study their applications to signal
processing.

Then we study new spaces of entire functions that generalize the clas-
sical Paley-Wiener spaces, in particular the time-varying bandlimit spaces,
recently introduced by Kempf and Martin. We analyze the classes of oper-
ators connected to these spaces and we investigate the connections between
these spaces and the de Branges spaces.

Moreover we introduce a new class of time-varying bandlimit spaces,
which are unitarily isomorphic to the Kempf-Martin spaces, but with some
different important properties, that make them more controllable and inter-
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pretable.
Finally we study the relation between the de Branges spaces and the

solution of the inverse problem of a canonical systems, which is strongly
connected to the properties of these spaces.
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Summary

After the first two introductory chapters, in this work we present many
results that can mainly be divided in four different parts:

• in the first part we develop new non-uniform sampling formulas for the
de Branges spaces and the Paley-Wiener spaces, and then we express
these formulas in terms of the sampling sequence points;

• in the the second part we develop a generalization of the Fourier Trans-
form for the de Branges spaces, and then we investigate the isomor-
phism between these spaces and the Kempf-Martin spaces; thanks to
this we derive new characterizations for the Kempf-Martin spaces and
we give a simpler and more general proof of their most important prop-
erties;

• in the third part we investigate the consequences of the results of the
first two parts on the applications of the concept of time-varying ban-
dlimit, and we propose a new family of time-varying bandlimit spaces
and a new generalized sampling theory;

• in the fourth part we describe an improvement to the Romanov algo-
rithm for the solution of the canonical inverse problem.

In Chapter 1 we introduce the state of art about spaces of entire func-
tions, sampling theorems, and applications. Moreover we explain the moti-
vations for the research presented in this work.

In Chapter 2 we introduce all the already known results that we use in
the next chapters, mainly regarding the reproducing kernel Hilbert spaces,
the Hardy spaces, the model spaces, the de Branges spaces and the Paley-
Wiener spaces.

In the first part of the work (Chapters 3 and 4) we introduce new proper-
ties and sampling formulas for the de Branges spaces. Moreover we connect
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these results with the Paley-Wiener spaces, and we present new non-uniform
sampling formulas for these spaces. The main aspect of these sampling for-
mulas is that they are based on a set of non-uniform sampling sequences
that is strongly different from the one of classical Paley-Wiener-Levinson
result. Moreover we give a characterization of the sequences for which this
sampling formula is valid. In particular:

• Theorem 3.5 shows a sampling formula for a de Branges space B(E)
based on the sequence of zeros of Θ(z)−1, where Θ(z) is any meromor-
phic inner function that is divided by the meromorphic inner function
Φ(z) = E#(z)

E(z) ;

• Theorem 4.2 is a particular case of Theorem 3.5 and shows a sampling
formula for the Paley-Wiener space PWa based on the sequence of
zeros of Θ(z) − 1, where Θ(z) is any meromorphic inner function that
is divided by the meromorphic inner function Φ(z) = e2πiz;

• Theorem 4.14 shows under which conditions a given sequence verifies
the requirements of Theorem 4.2;

• Theorem 4.17 shows a sampling formula for the Paley-Wiener space
PWa based on a sequence {tn}n such that tn ̸= π

a
n only for a finite

number of n’s, but without constraints on the corresponding tn’s;

• Theorem 4.18 shows a sampling formula for the Paley-Wiener space
PWa based on a sequence {tn}n such that

∣∣∣π
a
n− tn

∣∣∣ ≤ δ ∀n ∈ Z for
some δ < π

2a
, under a condition that we show to be verified for an

infinite number of sequences;

• Theorem 4.19 shows a sampling formula for the Paley-Wiener space
PWa based on a sequence {tn}n such that t0 = 0,

∣∣∣π
a
n− tn

∣∣∣ ≤ δ if
|n| < M for some δ < π

2a
and some integer M > 0, and

∣∣∣π
a
n− tn

∣∣∣ ≤ δ1
π
a

|n|
if |n| ≥ M , for some δ1 such that 0 < δ1 ≤ π

a
Mδ.

Finally, in Section 4.5 we show that the constraints of the sampling se-
quences in Theorems 4.2, 4.17 and 4.19 are more useful for real applications
with respect to those of the classical Paley-Wiener-Levinson, since they are
more flexible on a finite subsequence of the sampling sequence, and there
always exists a finite subsequence of the sampling sequence such that the
reconstruction performed on it has any desired precision.

In the second part of the work (Chapters 5 and 6), first of all we present
a generalization of the Fourier Transform for the de Branges spaces (see
Theorem 5.1). This transform induces an isometric isomorphism between
every de Branges space and a corresponding subspace of the space L2(R),
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similar to how the original Fourier Transform induces an isometric isomor-
phism between the Paley-Wiener space PWa and L2[−a, a]. Then, we in-
troduce the Kempf-Martin spaces using the theory of symmetric operators,
according to the arguments presented in [40], and we show that there ex-
ists an isometric multiplier between the Kempf-Martin spaces and the de
Branges spaces (see Theorem 6.2). This isomorphism allows us to find a
necessary and sufficient conditions for a function to belong to a Kempf-
Martin space. Finally, we give an alternative and equivalent definition of
the Kempf-Martin spaces based on this isomorphism, and we derive and
improve all the main results presented in [40] from the properties of the de
Branges spaces, without using the theory of simple symmetric operators.

In the third part (Chapter 7) we consider all the results of both the
previous two parts, and we investigate their consequences on the concept
of time-varying bandlimit and on the sampling theory. In Section 7.1 we
explain the concept of time-varying bandlimit for the de Branges spaces and
the Kempf-Martin spaces, and we give its formal definition. In Sections
7.2 and 7.3 we explain how the time-varying bandlimit functions can be
interpreted as the result of the application of a distortion in the time domain
to the functions of a space of a subaspace of L2(R). Moreover, thanks to
this observation, we define a new family of spaces of time-varying bandlimit
functions V(Θ), each of which is associated to a meromorphic inner function
Θ(z). The main properties of these spaces are the following.

• There exists an isometric multiplier between every space V(Θ) and
a Kempf-Martin space, and thanks to this the spaces V(Θ) maintain
many of the properties of the Kempf-Martin spaces.

• We can associate to every time-varying bandlimit function F (z) ∈
V(Θ) a normalized frequency representation.

• The normalized frequency representation of F (z) ∈ V(Θ) is obtained by
applying a weighted Fourier Transform to F (z). This transform induces
an unitary isomorphism between V(Θ) and a subspace of L2(R).

• The spaces V(Θ) have many properties that are analogous to the ones
of Paley-Wiener spaces for bandlimited functions.

• The spaces V(Θ) result to be more interpretable and controllable than
other time-varying bandlimit spaces since their functions can be rep-
resented by a summation of simpler functions.

In Section 7.4 we recall the Shannon sampling method, and then we intro-
duce a generalized sampling method for time-varying bandlimit functions
based on the spaces V(Θ). Since an arbitrary signal effective bandwidth can
change in time, the goal of this method is to improve the sampling efficiency
by adjusting the sampling rate according to the signal effective time-varying
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bandwidth, taking samples of a signal only as frequently as necessary. The
generalized sampling method is mainly composed by the following 4 steps.

1. Analyze the frequency of the raw signals of interest in order to choose
a suitable time-varying bandlimit space.

2. Filter the raw signal to obtain a signal with the desired time-varying
bandlimit.

3. Store the samples on the chosen sampling sequence.

4. Rebuild the filtered function from the discrete samples using the re-
construction formula of time-varying bandlimit spaces.

Finally, in the fourth part (Chapter 8) we introduce the canonical sys-
tems, the canonical inverse problem, and the solution given by Romanov
(see [46], Section 7 (p. 37)), which is constructive, iterative and not explicit.
Then we present an improvement of the results of Romanov. In particular,
in Theorem 8.3 we gives an explicit solution to Theorem 6 in [46] (p. 21),
which is the main result on which Romanov’s arguments are based. Then,
in Theorem 8.6 we apply this result to the algorithm for solving the inverse
problem proposed by Romanov. Also our solution is iterative and not ex-
plicit, but unlike that of Romanov, the result of each iteration is explicit in
terms of the results of the previous iteration.
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CHAPTER1
Introduction and motivation

Sampling theory is the study of spaces of continuous functions that can be
exactly rebuilt from samples taken on a discrete set of points, and has a
great number of practical applications in communication engineering and
signal processing. The classical sampling theory is strongly connected with
the space of bandlimited functions. Given a > 0, a function F ∈ L1(R) is
said to be a-bandlimited if its Fourier transform vanishes outside the closed
interval [−a, a]. The frequency upper bound a is known as the bandlimit
and 2a is referred to as the bandwidth. The Fourier transform of a function
F ∈ L1(R), denoted by F(F ), is defined as

F̂ (z) = F(F )(z) =
∫ +∞

−∞
F (x)e−ixzdx.

The classical Whittaker-Kotelnikov-Shannon sampling theorem (see [47])
states that an a-bandlimited function F (t) can be completely rebuilt for
all t ∈ R from its values {F (tn)}n on a sequence of equidistant sampling
points {tn}n, with tn+1 − tn = π

a
, by the following sampling formula

F (t) =
∑

n

sin (a (t− tn))
a (t− tn) F (tn) . (1.1)

The function G (t, tn) = sin(a(t−tn))
a(t−tn) is referred as the sampling kernel.

The most important functions spaces connected to the classical sampling
theory are the Paley-Wiener spaces. Given a > 0, the Paley-Wiener space
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Chapter 1. Introduction and motivation

of parameter a (referred as PWa) is a reproducing kernel Hilbert space and
is defined as the set of all entire functions square integrable on R and such
that |F (z)| ≤ Cea|z| ∀z ∈ C, for some positive constant C. The reason why
these spaces are strongly connected to the classical sampling theory is that
the Fourier transform induces an isomorphism between PWa and L2[−a, a]
(in particular L2[−a, a] is the image of PWa via Fourier transform). Then
all the functions of the space PWa are a-bandlimited functions, and they
can be rebuilt using formula (1.1) with tn = nπ

a
and sampling kernel given

by

G(t, tn) = sin (a (t− tn))
a (t− tn) . (1.2)

The Paley-Wiener spaces have many properties that are very useful for sam-
pling, the main ones being the fact that the set of functions {G(t, tn)}n is
an orthonormal basis for PWa, and that a

π
G(w, z) is the reproducing kernel

of PWa.
The classical sampling theory has been generalized in several directions

including, for example, non-uniform sampling or derivative sampling (see
[52]). Non-uniform sampling consists in exactly rebuild a function starting
from samples taken at irregular intervals. Non-uniform sampling is very
important since it comes natural in many applications, for example in au-
tomotive industry, data communication, medicine or astronomy. Given the
large number of applications, the research is now focusing on new methods to
rebuild signals through non-uniform sampling based on sampling sequences
with weaker and more flexible constraints than those already known. One
of the most important results in non-uniform sampling is the Paley-Wiener-
Levinson theorem (see [31]). It asserts that, given a sequence of reals {tn}n

such that
δ := sup

n∈Z

∣∣∣∣tn − nπ

a

∣∣∣∣ < π

4a,

then for any F ∈ PWa we have

F (t) =
∑

n

S(t)
S ′ (tn) (t− tn)F (tn) (t ∈ R), (1.3)

where
S(t) = (t− t0)

∞∏
n=1

(
1 − t

tn

)(
1 − t

t−n

)
.

A generalization of the Paley-Wiener spaces is given by the well-known de
Branges spaces, that are Hilbert spaces of entire functions. Given a Hermite
Biehler function E(z) (i.e. an entire function such that |E(z)| > |E(z)| for
z ∈ C+), the corresponding de Branges space is given by B(E) = EK(Θ),
where Θ(z) = E(z)

E(z) is a meromorphic inner function and K(Θ) is the model
space H2 ⊖ ΘH2. Here, H2 = H2(C+) denotes the classical Hardy space

2
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of the upper half plane. Let {tn}n be the sequence of real points such that
Θ(tn) = 1 (that are generally not equidistant), then every function F ∈ B(E)
can be exactly and uniquely rebuilt starting form its values on the points
{tn}n with the following sampling formula:

F (z) :=
∑

n

KB(E) (tn, z)
KB(E) (tn, tn)F (tn) ,

where

KB(E)(w, z) = E(z)E(w) − E(z)E(w)
2πi(w − z)

is the reproducing kernel of B(E).
In practical applications, the bandlimit a is necessarily the largest fre-

quency that occurs in the set of signals considered. The larger is the value
of a, the smaller is the spacing π

a
needed between every two consecutive

samples. Even if a given signal appears to have low frequency for most of
its duration, and to have high frequencies only for a short time interval,
the samples need to be taken at a high rate for all time in order to apply
the Shannon sampling formula. This is obviously inefficient and motivates
the extension of signal processing methods such as filtering, sampling and
reconstruction to the setting of time-varying bandwidth.

The first and principal problem is to define what exactly is a time-varying
bandlimit. The traditional notion of bandlimit is determined by the Fourier
transform of the entire signal, hence it is non-local and depends on the
signal global behaviour. This makes it difficult to give a precise definition of
the concept of a time-varying bandlimit. In the literature there are several
approaches to the definition of variable bandlimit, see for example [1], [2],
[10], [18], [26], [50].

Among all these definitions, the most interesting is probably the one re-
cently introduced by Kempf and Martin in [40]. The Kempf-Martin spaces
are based on a non-Fourier generalized sampling theory and use as mathe-
matical engine the functional analytical theory of selfadjoint extensions of
symmetric operators with deficiency indices (1,1) in Hilbert spaces. These
spaces have a sampling formula that is analogous to the one of the Paley-
Wiener spaces. Furthermore, in the paper by Kempf and Martin these spaces
shy away from a formal definition since are defined through their reproducing
kernel, and a more in-depth characterization seems to be desirable.

The Kempf-Martin definition of time-varying bandlimit is based on the
observation that, in conventional Shannon sampling theory, the constant
bandlimit a is inversely proportional to the constant spacing π

a
of the stan-

dard Nyquist sampling sequences. Kempf and Martin then identify the
sample points in each of these sampling sequences

(
tn(α) = (n+ α)π

a

)
for

α ∈ [0, 1), appearing in the Shannon sampling formula, with the simple
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Chapter 1. Introduction and motivation

eigenvalues of a self-adjoint operator Zα. They further observe that the fam-
ily {Zα | α ∈ [0, 1)} is the one-parameter family of self-adjoint extensions of
a single symmetric linear transformation Z, which is simple, regular, with
deficiency indices (1, 1), and acts as multiplication by the independent vari-
able on a dense domain in PWa. One can combine the spectra of these
self-adjoint extensions to define a smooth, strictly increasing bijection on
the real line, t(n + α) := tn(α). If γ denotes the compositional inverse of t,
we observe that

πγ′(t) = a (1.4)
is the bandlimit. The derivative γ′(t) is then a measure of the local density
of the sampling sequences {tn(α)}n near the point t, and it is proportional
to the constant bandlimit in the case of Shannon sampling.

The crucial observation is that the spectra of the self-adjoint extensions
of such a symmetric operator T do not need to be equidistant. Hence it
is possible to generalize Shannon sampling theory using the representation
theory of regular simple symmetric linear transformations with deficiency in-
dices (1, 1). Kempf and Martin show that any such symmetric T is unitarily
equivalent to multiplication by the independent variable in a local bandlimit
space KM(T ), a Hilbert space of functions on R with the same special re-
construction properties as the Paley-Wiener spaces PWa of a-bandlimited
functions.

Kempf and Martin prove that any F ∈ KM(T ) can be rebuilt from its
samples taken on any sampling sequence {tn(α)}n , α ∈ [0, 1), where the
tn(α) are the simple eigenvalues of a self-adjoint extension, Tα, of T . The
local density of the sampling sequences {tn(α)}n then provides a natural
notion of time-varying bandlimit that recovers the classical definition in the
case where KM(T ) = PWa.

Since the Kempf-Martin spaces KM(T ) represent a very promising solu-
tion and at the same time they still have an insufficient characterization, in
this work we decided to study this version of time-varying bandlimit func-
tions.

Another important open problem that is strictly connected with the de
Branges spaces and the so-called canonical inverse problem. A canonical
system is a differential equation of the form

J
dY

dx
= zH(x)Y, (1.5)

where

• H(x) is a function (0, L) → Mat2(R), 0 < L ≤ ∞, such that H(x) is
positive semidefinite a.e. for x ∈ (0, L), and that H ∈ L1 (0, L′) for all
L′ < L.

• Y =
[
Y+

Y−

]
∈ C2;

4
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• J =
[

0 −1
1 0

]
;

• z ∈ C is a parameter.

In [11] de Branges shows that if Y (x, z) is the solution of (1.5), then
Ex(z) = Y+(x, z) + iY−(x, z) is a Hermite Biehler function of z for each
x ∈ (0, L). Given any E(z), the problem of building H(x) such that
EL(z) = E(z) is known as the canonical inverse problem, and an algorithm
to solve it was proposed by Romanov in [46]. His work can be considered
a far-reaching generalization of the Stiltjes algorithm in the inverse spec-
tral theory of Jacobi matrices. Unlike many other one-dimensional inverse
spectral theories, it is not perturbative, which means that there is no un-
derlying problem with well-understood eigenfunctions to be compared with.
Romanov’s algorithm is mainly based on the result of Theorem 6 in [46] (p.
21), which proves that for any polynomial Hermite Biehler function E(z)
with no real zeros and such that E(0) = 1, we have

1
2

 E(z) + E#(z)
1
i

(
E(z) − E#(z)

)  = M1(z) . . .Mn(z)
(

1
0

)
,

where n = deg(E) and the Mj’s are 2×2 square matrices such that Mj(z) =
I + zRj, detRj = trRj = 0, R12 ≥ 0, R21 ≤ 0.

The problem with this theorem is that it gives an algorithm to build
the matrices {Mj}j=1,...,n without giving their explicit expression in terms of
E(z). Since Romanov’s algorithm for the solution of the canonical inverse
problem is based on an iteration on the degree of E(z) in which this theorem
is applied to each step, its downside is that it does not give an explicit
solution, and that neither the result of each iteration is explicit. Hence for
this reason we think that this problem is still considered not fully solved.

5
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CHAPTER2
Preliminary definitions and results

In this section we introduce the functions, the spaces and well-known results
that will be used in all the next chapters. For more details see [11], [25],
[30], [34] and [42].

Before starting with definitions and theorems, we clarify here the meaning
of some notations that we will use throughout this work.

• Let U1,U2 be two vector subspaces of some vector space V .

– The sum U = U1 + U2 is defined to be the set of all possible sums
u1 + u2 with u1 ∈ U2, u2 ∈ U2.

– The direct sum U = U1 ⊕ U2 is equal to the sum U = U1 + U2 in
the case U1 ⊥ U2.

– V ⊖ U1 denotes the orthogonal complement of U1 in V .

• Let {Un}n≥0 be an infinite set of vector subspaces of the same vector
space V , with Un ⊥ Um ∀m,n ≥ 0, m ̸= n. Then ⊕n>0 Un denotes the
closure of the subspace formed by all the possible sums ∑n≥0 un, with
un ∈ Un and un ̸= 0 only for a finite number of n.

• ∑
n stands for ∑n∈Z (and obviously ∑n ̸=m stands for ∑n∈Z,n ̸=m).

• {·}n stands for {·}n∈Z.

• L2(Ω) is the space of functions square integrable on Ω.

• {x} denotes the fractional part of the real value x: {x} = x− ⌊x⌋.

7
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Chapter 2. Preliminary definitions and results

2.1 Reproducing kernel Hilbert spaces

Definition 2.1. A reproducing kernel Hilbert space (RKHS) H on a subset
Ω ⊂ C is a Hilbert space of functions on Ω with the property that point
evaluation at any z ∈ Ω defines a bounded linear functional δz on H.

By the Riesz representation lemma, for any z ∈ Ω there is a unique point
evaluation vector Kz ∈ H so that for any F ∈ H we have

F (z) = δz(F ) = ⟨F,Kz⟩H .

The reproducing kernel of H is the symmetric function K(z, w) : Ω×Ω → C
is defined by

KH(w, z) := ⟨Kw, Kz⟩H , (2.1)
and is a positive definite funcion, which means that for any n ∈ N, z1, . . . , zn ∈
Ω, and c1, . . . , cn ∈ R we have

n∑
i,j=1

cicjK (zi, zj) =
〈

n∑
i=1

ciKzi
,

n∑
j=1

cjKzj

〉
H

≥ 0.

The classical theory of RKHS of Aronszajn and Moore (see [44]) shows that
there is a bijective correspondence between the positive kernel functions
K(z, w) on Ω×Ω and the reproducing kernel Hilbert spaces H on Ω. Indeed,
given any positive kernel function K(z, w) there always exsists a RKHS
H(K) which has K(z, w) as its reproducing kernel, while for every RKHS
H(K) the reproducing kernelKH(z, w) is unique.

2.2 Hardy spaces and meromorphic inner functions

Definition 2.2. For p > 0, the Hardy space Hp(C+) on the upper half-plane
C+ is defined as the space of holomorphic functions F (z) on C+ such that

∥F∥Hp := sup
y>0

(∫ +∞

−∞
|F (x+ iy)|pdx

) 1
p

< ∞.

The Hardy space H∞(C+) is defined as the space of holomorphic functions
F (z) on C+ such that

∥F∥H∞ := sup
z∈C+

|F (z)| < ∞.

Definition 2.3. A Blaschke product B ∈ H∞(C+) is a product of the form

B(z) =
∞∏

k=1

zk

zk

z − zk

z − zk

, (2.2)

where the zeros {zk}k≥1 obey the Blaschke condition∑
k≥1

ℑ(zk)
|zk|2

< ∞.

8
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2.3. Herglotz functions

Definition 2.4. A meromorphic inner function on the upper half plane is
a meromorphic function Θ : C → C which is holomorphic in the upper half
plane and such that |Θ(z)| < 1 for z ∈ C+, |Θ(x)| = 1 for x ∈ R.

Every meromorphic inner function Θ(z) obviously belongs to H∞(C+),
and can be factored uniquely as

Θ(z) = γeibz
∞∏

k=1

zk

zk

z − zk

z − zk

= γeibzB(z), (2.3)

where b ∈ R, b ≥ 0, γ ∈ C, |γ| = 1, and B(z) = ∏∞
k=1

zk

zk

z−zk

z−zk
is a Blaschke

product with no accumulation point. The value of b in (2.3) is referred as
the logarithmic residue of Θ(z).
Definition 2.5. The phase function τ : R → R of a meromorphic inner
function Θ(z) is the unique differentiable function such that Θ(t) = e2πiτ(t)

for t ∈ R, with τ ′(t) > 0 ∀t ∈ R.
For our purpose the case of an inner function with logarithmic residue

b = 0 and a finite number of zeros in its Blaschke product is a degenerate
and not interesting case. Hence in the next chapters, when we will define
a meromorphic inner function, we will always tacitly assume that either
b > 0 or the number of zeros of the Blaskhe product is infinite. With this
assumption, it is easy to see that the image of the phase function τ(t), as t
varies in R, is the whole real line. In the next chapters we will also consider
many times the sequence {tn}n of solutions of Θ(t) = 1 for t ∈ R, which
obviously is the sequence of real points where τ(t) assumes integer values.
Therefore with our assumptions this sequence is infinite, and we will always
consider its indexes so that τ(tn) = n.
Definition 2.6. The spectral function t : R → R, of a non-constant mero-
morphic inner function Θ(z) is defined as the inverse of the phase function:
t(x) = τ−1(x) ∀x ∈ R.

2.3 Herglotz functions

Definition 2.7. A function F : C+ → C is called a Herglotz function
(or Nevanlinna-Herglotz function) if F (z) is analytic on C+ and such that
ℑ(F (z)) ≥ 0 for all z ∈ C+.

For every Herglotz function F (z) the following representation holds:

F (z) = c+ dz +
∫
R

( 1
w − z

− w

1 + w2

)
dµ(w), z ∈ C+, (2.4)

where c ∈ R, d ∈ R+ and µ(w) is a positive regular Borel measure obeying
the Herglotz condition ∫

R

dµ(w)
1 + w2 < ∞.

9
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In particular we have
c = Re(F (i)),

d = lim
y→∞

F (iy)
iy

≥ 0.
(2.5)

This representation is referred as the Nevanlinna representation of a Herglotz
function.

There exists a bijective correspondence between the Herglotz functions
and the set of all contractive, analytic functions in C+. Given a Herglotz
function F (z), the corresponding contractive analytic function is given by

m(z) = F (z) − i

F (z) + i
= −iF (z) − 1

−iF (z) + 1 , (2.6)

while given a contractive analytic function m(z) then the correspondent
Herglotz function is given by

F (z) = i

(
1 +m(z)
1 −m(z)

)
. (2.7)

The function m(z) is inner if and only if the positive Borel measure µ of
F (z) is singular with respect to the Lebesgue measure. Moreover, m(z) is a
meromorphic inner function if and only if µ is a purely discrete measure. A
purely discrete measure is given by

µ :=
∑

n

wnδtn , (2.8)

where

• {wn}n is a sequence of strictly positive weights;

• {tn}n is a purely discrete, strictly increasing sequence with no finite
accumulation point;

• {δtn}n is a sequence of Dirac delta masses:

δtn(x) =

1 x = tn;
0 x ̸= tn.

If µ is a purely discrete measure, the representation (2.4) becomes

F (z) = c+ dz +
∑

n

(
1

tn − z
− tn
t2n + 1

)
wn, z ∈ C+, (2.9)

and the Herglotz condition is given by∑
n

wn

1 + t2n
< ∞.

10
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2.4. Functions of bounded type

2.4 Functions of bounded type

Definition 2.8. A function F : Ω → C, which is analytic in a region Ω ⊆ C,
is said to be of bounded type in Ω if F (z) = P (z)

Q(z) where P (z) and Q(z) are
analytic and bounded in Ω and Q(z) is not identically zero.

The following theorem is an important known result about functions of
bounded type (see Theorem 9 in [11], p. 22).

Theorem 2.9 (de Branges). Let F (z) be a function which is analytic in the
upper half plane and which does not have the origin as a limit point of zeros.
A necessary and sufficient condition for F (z) to be of bounded type in the
half-plane is that

F (z) = B(z)e−ihzeG(z) (2.10)
where B(z) is a Blaschke product, h is a real number, and G(z) is a function
analytic in the upper half-plane such that

ℜ(G(x+ iy)) = y

π

∫ +∞

−∞

dµ(t)
(t− x)2 + y2

for some real valued function µ(x) such that∫ +∞

−∞

|dµ(t)|
1 + t2

< ∞.

The real number h in the representation of F given in equation (2.10) is
referred as the mean type of F . Thanks to Theorem 10 in [11], we have that
the mean type h of a a bounded type function F is given by

h = lim sup
y→+∞

y−1 log |F (iy)|. (2.11)

We observe that any analytic function G(z) bounded in a region Ω ⊆
C is of bounded type there since it can be written as G(z) = P (z)

Q(z) with
P (z) = G(z) and Q(z) = 1. Considering that in the upper half plane any
meromorphic inner function Θ(z) is bounded, we obtain that it is also a
function of bounded type, and hence it must have the form given in (2.10).
Since a meromorphic inner function must also have the form given in (2.3),
we easily get that the mean type h in (2.10) is equal to −b in (2.3), and then
by (2.11) we obtain that the logarithmic residue of Θ(z) is given by

b = − lim sup
y→+∞

y−1 log |Θ(iy)|. (2.12)

It is easy to see that the reciprocal of a function of bounded type on a
region Ω is of bounded type on Ω, and that the product of two functions of
bounded type on a region Ω is of bounded type on Ω. We give now some
well-known examples of functions of bounded type.

11
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• Every polynomial is of bounded type in any bounded region of C. Every
polynomial is also of bounded type on C+, since any polynomial F (z)
of degree n can be expressed as F (z) = P (z)

Q(z) with

P (z) = F (z)
(z + i)n

,

Q(z) = 1
(z + i)n

,

and both P (z) and Q(z) are bounded on C+. Also the reciprocal of
every polynomial is of bounded type in every bounded region of C, and
on C+.

• The functions sin(z) and cos(z) are of bounded type on C+. Indeed,
for example, we have sin(z) = P (z)

Q(z) with

P (z) = sin(z)eiz,

Q(z) = eiz,

and both P (z) and Q(z) are bounded on C+.

• Every Herglotz function F (z) is of bounded type on C+ since can be
written as F (z) = P (z)

Q(z) with

P (z) = F (z)
F (z) + i

,

Q(z) = 1
F (z) + i

,

and both P (z) and Q(z) are bounded on C+.

2.5 Hermite Biehler functions

Definition 2.10. A Hermite Biehler function E : C → C is an entire
function such that |E(z)| > |E#(z)| for every z ∈ C+, where E#(z) = E(z).

An important and well-known result about these functions is the follow-
ing theorem (see [25]).

Theorem 2.11. Any meromorphic inner function

Θ(z) = γeibz
∞∏

k=1

zk

zk

z − zk

z − zk

= γeibzB(z)

can be represented as

Θ(z) = E#(z)
E(z) , z ∈ C

12
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2.6. Model spaces

where E(z) is a Hermite Biehler function, given by

E(z) = e−i b
2 z

∞∏
k=1

(
1 − z

zk

)
exp

{
k∑

n=1

1
n

ℜ
(

1
zn

k

)
zn

}
.

Definition 2.12. Given any meromorphic inner function Θ(z), we define as
a de Branges function of Θ(z) every Hermite Biehler funtion E(z) such that
Θ(z) = E#(z)

E(z) .

2.6 Model spaces

If F1 ∈ H∞ and F2 ∈ H2, we observe that G := F1F2 ∈ H2. Indeed we have

∥G∥H2 = sup
y>0

(∫ +∞

−∞
|F1(x+ iy)|2|F2(x+ iy)|2dx

) 1
2

≤ sup
y>0

(
sup
z∈C+

|F1(z)|
)(∫ +∞

−∞
|F2(x+ iy)|2dx

) 1
2

= ∥F1∥H∞∥F2∥H2

< ∞.

Then, given a meromorphic inner function Θ(z), it is easy to see that ΘH2

is a subspace of H2.
Definition 2.13. Given a meromorphic inner function Θ(z), the model space
K(Θ) on the upper-half plane is defined as

K(Θ) := H2 ⊖ ΘH2.

Any model space K(Θ) is a reproducing kernel Hilbert space of analytic
functions on C+ with reproducing kernel

KK(Θ)(z, w) := i

2π
1 − Θ(z)Θ(w)

z − w̄
, z, w ∈ C+.

Let Θ1(z) and Θ2(z) be two meromorphic inner functions, and set Θ(z) =
Θ1(z)Θ2(z). Then, for the model space K(Θ) = H2 ⊖ ΘH2 the following
direct sum decomposition is true:

K(Θ) =
(
H2 ⊖ Θ0H2

)
⊕ Θ0

(
H2 ⊖ Θ1H2

)
= K (Θ0) ⊕ Θ0K (Θ1) . (2.13)

Definition 2.14. Let Θ1(z) and Θ2(z) be two meromorphic inner functions.
We say that Θ1(z) divides Θ2(z) if Θ2(z)

Θ1(z) is again a meromorphic inner func-
tion. We define as least common multiple of Θ1(z) and Θ2(z) a meromorphic
inner function Φ(z) that is divided by Θ1(z) and Θ2(z), and that divide any
other meromorphic inner function divided by both of them. In this case we
write Φ = LCM(Θ1,Θ2).

13
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The following facts are true:
Θ1(z) divides Θ2(z) if and only if Θ1H2 ⊇ Θ2H2;
Θ1H2 ∩ Θ2H2 = ΦH2, where Φ = LCM(Θ1,Θ2).

(2.14)

2.7 De Branges spaces

Definition 2.15. Given a Hermite Biehler function E(z), the de Branges
space B(E) is defined as the set of all entire functions F (z) such that

∥F∥2
B(E) =

∫ +∞

−∞

∣∣∣∣∣F (t)
E(t)

∣∣∣∣∣
2

dt < ∞

and such that both ratios F (z)
E(z) and F #(z)

E(z) are of bounded type and of non-
positive mean type in the upper half-plane (see [11], p. 50).

The space B(E) is a vector space over the complex numbers, with scalar
product defined by

⟨F,G⟩B(E) =
∫ +∞

−∞

F (t)G(t)
|E(t)|2 dt.

Thanks to Theorem 19 in [11] (p. 50), we know that the space B(E) is a
reproducing kernel Hilbert space with reproducing kernel KB(E)(w, z) given
by

KB(E)(w, z) = E(z)E#(w) − E#(z)E(w)
2πi(w − z) . (2.15)

The reproducing kernel can be written also as

KB(E)(w, z) = B(z)A(w) − A(z)B(w)
π(z − w)

= B(z)A(w) − A(z)B(w)
π(z − w) ,

where we set

A(z) = 1
2(E(z) + E#(z)), B(z) = i

2(E(z) − E#(z)).

Notice that
A(z) = A(z) and B(z) = B(z).

If we let w → z, we obtain

KB(E)(z, z) = lim
w→z

B(z)A(w) − A(z)B(w)
π(z − w)

= lim
w→z

B(z)A(w) −B(z)A(z) +B(z)A(z) − A(z)B(w)
π(z − w)

= −B(z)A′(z) + A(z)B′(z)
π

.

14
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2.7. De Branges spaces

It is easy to check that

−B(z)A′(z) + A(z)B′(z) = − i

2
(
E#′(z)E(z) − E#(z)E ′(z)

)
,

so that
KB(E)(z, z) = E#′(z)E(z) − E#(z)E ′(z)

2πi . (2.16)

Two important results about the de Branges spaces are Theorem 20 and
Theorem 22 in [11] (p. 53, 55). We report here the statements of these
theorems, for sake of completeness and in order to express them clearly
according to the notations used in this work.
Theorem 2.16 (de Branges). A necessary and sufficient condition for an
entire function F (z) to belong to a de Branges space B(E) is that

∥F (t)∥2 =
∫ +∞

−∞

∣∣∣∣∣F (t)
E(t)

∣∣∣∣∣
2

dt < ∞

and that |F (z)|2 ≤ ∥F (t)∥2K(z, z) for all z ∈ C.
Theorem 2.17 (de Branges). Let B(E) be a de Branges space and let τ(t)
be the phase function of Θ(z) = E#(z)

E(z) . For θ ∈ [0, 1), let {tn(θ)}n be the
sequence of solutions of τ(t) = θ mod 1. Then the sequence

{
KB(E)(tn(θ),z)

E(tn(θ))

}
n

is an orthogonal set in B(E).
The next theorem introduce the well-known sampling formula of the de

Branges space.
Theorem 2.18 (de Branges). Let B(E) be a de Branges space, and let
Θ(z) = E#(z)

E(z) be its corresponding meromorphic inner function. Consider
the sequence {tn}n of solutions of Θ(t) = 1 for t ∈ R. Then for every
F ∈ B(E) the following sampling formula is verified:

F (z) =
∑

n

KB(E) (tn, z)
KB(E) (tn, tn)F (tn) . (2.17)

The series converges in norm of B(E), and converges uniformly on the com-
pact subsets of C.

The reproducing kernel KB(E) is given by (2.15), and hence we get

KB(E)(tn, z) = E(z)E#(tn) − E#(z)E(tn)
2πi(tn − z) .

Since Θ(tn) = E#(tn)
E(tn) = E(tn)

E(tn) = 1, we obtain E(tn) ∈ R and E(tn) = E#(tn).
Therefore

KB(E)(tn, z) =
E(tn)

(
E(z) − E#(z)

)
2πi(tn − z) . (2.18)

15
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From (2.16) we have

KB(E)(u, u) = E#′(u)E(u) − E#(u)E ′(u)
2πi , (2.19)

and, using E(tn) ∈ R, we get

KB(E)(tn, tn) = E(tn)E
#′(tn) − E ′(tn)

2πi . (2.20)

We observe that

Θ′(z) = E#′(z)E(z) − E#(z)E ′(z)
E(z)2 . (2.21)

Since E(tn) ∈ R we have E(tn) = E#(tn), and then

Θ′(tn) = E#′(tn) − E ′(tn)
E(tn) .

Hence (2.20) becomes

KB(E)(tn, tn) = E(tn)2Θ′(tn)
2πi . (2.22)

Now, using (2.18) and (2.22), we obtain that (2.17) can be rewritten as

F (z) =
∑

n

KB(E) (tn, z)
KB(E) (tn, tn)F (tn)

=
∑

n

E(z)(1 − Θ(z))
E(tn)Θ′(tn)(tn − z)F (tn).

(2.23)

Another important well-known result about de Branges spaces is the
following.

Theorem 2.19. Let E(z) be a Hermite Biehler function and let Θ(z) =
E#(z)
E(z) be its corresponding meromorphic inner function. Then we have that

B(E) = EK(Θ)

where K(Θ) = H2 ⊖ ΘH2 is the model space correspondent to Θ(z).

2.8 Paley-Wiener spaces

Definition 2.20. Given a > 0, the Paley-Wiener space with parameter a,
referred as PWa, is the set of all the entire functions F (z) square integrable
on R and such that |F (z)| ≤ Cea|z| for some constant C.

16



“thesis” — 2022/4/11 — 20:00 — page 17 — #27

2.8. Paley-Wiener spaces

The space PWa is a Hilbert space with scalar product given by

⟨F,G⟩PWa =
∫ ∞

−∞
F (x)G(x)dx,

and then with norm
∥F∥PWa = ∥F∥L2(R).

The Paley-Wiener theorem shows that PWa is a separable Hilbert space,
and the Fourier transform induces a unitary (up to a rescaling factor 1

2π
)

isomorphism from PWa onto L2[−a, a]. Indeed, for F1, F2 ∈ PWa and
G1 = F(F1), G2 = F(F2) ∈ L2[−a, a] we have

⟨F1, F2⟩PWa = 1
2π ⟨G1, G2⟩L2[−a,a]. (2.24)

Thanks to this isomorphism we can represent PWa also in the following
way:

PWa =
{
F (z) : F (z) = F−1(G) = 1

2π

∫ a

−a
G(y)eizy dy , G ∈ L2[−a, a]

}
where F is the Fourier transform. The space PWa is a reproducing kernel
Hilbert space, with reproducing kernel given by

KPWa(w, z) = a

π
sinc(a(w − z)) = sin(a(w − z))

π(w − z) ,

such that
F (z) = ⟨F (w), Kz(w)⟩PWa

∀z, w ∈ C.

For every F ∈ PWa the following sampling formula is verified:

F (z) =
∑

n

F
(
n
π

a

)
sinc

(
a
(
z − n

π

a

))
, (2.25)

and the set {
sinc

(
a
(
z − n

π

a

))}
n

is an orthonormal basis of the space PWa. Moreover, for every F ∈ PWa

we have
∥F∥2

PWa
=
∑

n

|F (n)|2.

A very important and well-known aspect of the Paley-Wiener space PWa is
that it coincides with the de Branges space B(E) associated to the function
E(z) = e−iaz.

17
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CHAPTER3
Sampling formulas for the de Branges spaces

3.1 Sampling formulas

In this section we introduce some new sampling formulas for the de Branges
spaces, different from the classical one given in (2.17). These formulas are
mainly derived from some inclusion properties for the de Branges spaces, and
are the basis on which we will build all the non-uniform sampling formulas
for the Paley-Wiener spaces in the next chapter.

Theorem 3.1. Let E0(z), E1(z) be Hermite Biehler functions, and let E2(z) =
E0(z)E1(z). Recalling that E2(z) is also a Hermite Biehler function, we have
that B(E0)E1 is a closed subspace of B(E2).

Proof. We give two different proofs of this theorem.
Proof 1. To show that B(E0)E1 is a close subspace of B(E2) it is suffi-

cient to prove that for everyG ∈ B(E0) the entire function F (z) = G(z)E1(z)
is such that F ∈ B(E2) with equality of norms. We have

∫ +∞

−∞

∣∣∣∣∣ F (t)
E2(t)

∣∣∣∣∣
2

dt =
∫ +∞

−∞

∣∣∣∣∣ F (t)
E0(t)E1(t)

∣∣∣∣∣
2

dt

=
∫ +∞

−∞

∣∣∣∣∣ G(t)
E0(t)

∣∣∣∣∣
2

dt

= ∥G∥2
B(E0)

< ∞.

(3.1)
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Let KB(E0)(z, w) be the reproducing kernel of B(E0). Thanks to (2.15), for
z = x+ iy, with y ̸= 0, we have that

KB(E0)(z, z) = |E0(z)|2 − |E0(z)|2
4πy . (3.2)

Using Theorem 2.16, for every G ∈ B(E0) we have also

∥G∥2
B(E0) ≥ |G(z)|2

KB(E0)(z, z)
.

Then,

KB(E2)(z, z)∥F∥2
B(E2) = KB(E2)(z, z)∥G∥2

B(E0)

≥
KB(E2)(z, z)
KB(E0)(z, z)

|G(z)|2

= |E2(z)|2 − |E2(z)|2
|E0(z)|2 − |E0(z)|2

|F (z)|2
|E1(z)|2

=
|E0(z)|2 − |E1(z)|2

|E1(z)|2 |E0(z)|2

|E0(z)|2 − |E0(z)|2
|F (z)|2.

Then, for z = x + iy and y > 0, we observe that |E1(z)|
|E1(z)| < 1 and |E0(z)|2 −

|E0(z)|2 > 0, and hence we get

KB(E2)(z, z)∥F∥2
B(E2) ≥

|E0(z)|2 − |E1(z)|2
|E1(z)|2 |E0(z)|2

|E0(z)|2 − |E0(z)|2
|F (z)|2

≥ |E0(z)|2 − |E0(z)|2
|E0(z)|2 − |E0(z)|2

|F (z)|2

= |F (z)|2.

For y < 0 we observe that |E1(z)|
|E1(z)| > 1 and |E0(z)|2 − |E0(z)|2 < 0, and then

we finally obtain

KB(E2)(z, z)∥F∥2
B(E2) ≥

|E0(z)|2 − |E1(z)|2
|E1(z)|2 |E0(z)|2

|E0(z)|2 − |E0(z)|2
|F (z)|2

≥ |E0(z)|2 − |E0(z)|2
|E0(z)|2 − |E0(z)|2

|F (z)|2

= |F (z)|2.

Thanks to continuity ofKB(E2)(z, z) and F (z) we have thatKB(E2)(z, z)∥F∥2
B(E2) ≥

|F (z)|2 is true also for y = 0, and then

KB(E2)(z, z)∥F∥2
B(E2) ≥ |F (z)|2 ∀z ∈ C. (3.3)
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3.1. Sampling formulas

Thanks to Theorem 2.16, (3.1) and (3.3), we obtain F ∈ B(E2) and ∥F∥B(E2) =
∥G∥B(E0), and then B(E)E1 is a closed subspace of B(E2).

Proof 2. For i = 0, 1, 2 we set Θi(z) = E#
i (z)

Ei(z) , and we observe that
Θ2(z) = Θ0(z)Θ1(z). Thanks to Theorem 2.19 we have that the de Branges
spaces B(E0),B(E1) and B(E2) are given by

B(E0) = E0K(Θ),
B(E1) = E1K(Θ1),
B(E2) = E2K(Θ2),

where K(Θi) is the model space H2 ⊖ ΘiH2, i = 0, 1, 2. Thanks to (2.14) we
have Θ0Θ1H2 ⊆ Θ0H2, and then we get

K(Θ0) = H2 ⊖ Θ0H2 ⊆ H2 ⊖ Θ0Θ1H2 = K(Θ0Θ1) = K(Θ2).

Hence we finally obtain

B(E0)E1 = E0E1K(Θ0) = E2K(Θ0) ⊆ E2K(Θ2) = B(E2).

The equality of norm can be derived as in Proof 1 by (3.1), and then we can
conclude that B(E)E1 is a closed subspace of B(E2).

Theorem 3.2. Let Θ0(z) and Θ1(z) be two meromorphic inner functions
such that Θ2(z) := LCM(Θ0,Θ1) = Θ0(z)Θ1(z). Let E0(z), E1(z) be respec-
tively de Branges functions of Θ0(z), Θ1(z), and let E2(z) = E0(z)E1(z).
Then

B(E0)E1 + B(E1)E0 = B(E2).

Proof. It is easy to see that E2(z) is a de Branges function of Θ(z), infact
we have

E#
2 (z)
E2(z)

= E#
0 (z)
E0(z)

E#
1 (z)
E1(z)

= Θ0(z)Θ1(z) = Θ2(z).

Thanks to Theorem 2.19 we have that the de Branges spaces B(E0),B(E1)
and B(E2) are given by

B(E0) = E0K(Θ),
B(E1) = E1K(Θ1),
B(E2) = E2K(Θ2),

where K(Θi) is the model space H2 ⊖ ΘiH2, i = 0, 1, 2. Thanks to (2.14) we
have Θ0H2 ∩ Θ1H2 = Θ2H2, and then we get

K(Θ2) = H2 ⊖ Θ2H2

= H2 ⊖ (Θ0H2 ∩ Θ1H2).
(3.4)
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Given two subspaces U0 and U1 of the same vector space U , it is well-known
that

U ⊖ (U0 + U1) = (U ⊖ U0) ∩ (U ⊖ U1). (3.5)
Then we have

H2 ⊖ (K(Θ0) + K(Θ1)) = Θ0H2 ∩ Θ1H2,

and hence
K(Θ0) + K(Θ1) = H2 ⊖ (Θ0H2 ∩ Θ1H2). (3.6)

Therefore, by (3.4) and (3.6) we get

K(Θ2) = K(Θ0) + K(Θ1).

Finally we obtain

B(E0)E1 + B(E1)E0 = E0E1K(Θ0) + E0E1K(Θ1)
= E2K(Θ0) + E2K(Θ1)
= E2K(Θ2)
= B(E2).

Theorem 3.3. Let E(z), E1(z) be two Hermite Biehler functions such that∣∣∣ E(x)
E1(x)

∣∣∣ ≤ M ∀x ∈ R for some M > 0, that E(z)
E1(z) is of bounded type on C+,

and that
lim sup
y→+∞

y−1 log
∣∣∣∣∣ E(iy)
E1(iy)

∣∣∣∣∣ ≤ 0.

Then we have
B(E) ⊆ B(E1), (3.7)

and therefore for every G ∈ B(E) we obtain

G(z) =
∑

n

E1(z)(1 − Θ1(z))
E1(tn)Θ′

1(tn)(tn − z)G(tn),

where
Θ1(z) = E#

1 (z)
E1(z)

.

The convergence of the series is uniform on the compact subsets of C.

Proof. Consider F ∈ B(E). By definition of de Branges spaces (see Section
2.7), we have that F ∈ B(E1) if and only if F is such that

∫ +∞

−∞

∣∣∣∣∣ F (t)
E1(t)

∣∣∣∣∣
2

dt < ∞,
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and that both the ratios F (z)
E1(z) ,

F #(z)
E1(z) are of bounded type and of non-positive

mean type in the upper half-plane. We have∫ +∞

−∞

∣∣∣∣∣ F (t)
E1(t)

∣∣∣∣∣
2

dt ≤ M
∫ +∞

−∞

∣∣∣∣∣F (t)
E(t)

∣∣∣∣∣
2

dt = M ||F ||B(E) < ∞.

Moreover we observe that
F (z)
E1(z)

= F (z)
E(z)

E(z)
E1(z)

,
F#(z)
E1(z)

= F#(z)
E(z)

E(z)
E1(z)

.

Since F ∈ B(E) we have that F (z)
E(z) and F #(z)

E(z) are of bounded type, while E(z)
E1(z)

is of bounded type on C+ by hypothesys. Hence we obtain that both F (z)
E1(z)

and F #(z)
E1(z) are of bounded type. Thanks to (2.11) we have that the mean

type h of F
E1

verifies

h = lim sup
y→+∞

y−1 log
∣∣∣∣∣ F (iy)
E1(iy)

∣∣∣∣∣
≤ lim sup

y→+∞
y−1 log

∣∣∣∣∣F (iy)
E(iy)

∣∣∣∣∣+ lim sup
y→+∞

y−1 log
∣∣∣∣∣ E(iy)
E1(iy)

∣∣∣∣∣
≤ lim sup

y→+∞
y−1 log

∣∣∣∣∣F (iy)
E(iy)

∣∣∣∣∣
≤ 0,

where in the last step we used the fact that F (z)
E(z) is of non-positive mean

type. Hence F (z)
E1(z) is of non-positive mean type, and similarly we get that

also F #(z)
E1(z) is of non-positive mean type.

Therefore F ∈ B(E1), and (3.7) is proved. Thanks to Theorems 2.18
and (2.23), for every G ∈ B(E) we obtain

G(z) =
∑

n

E1(z)(1 − Θ1(z))
E1(tn)Θ′

1(tn)(tn − z)G(tn),

and that the convergence is uniform on the compact subsets of C.

Theorem 3.4. Let E(z) be a Hermite Biehler function, and let Θ(z) be any
meromorphic inner function of the form

Θ(z) = Φ(z)Φ1(z), (3.8)

where Φ(z) = E#(z)
E(z) and Φ1(z) is any meromorphic inner function. Let {tn}n

be the sequence of solutions of Θ(t) = 1 for t ∈ R (with tn < tn+1 ∀n ∈ Z).
Then for every G ∈ B(E) we have

G(z) =
∑

n

E(z)(1 − Θ(z))
E(tn)Θ′(tn)(tn − z)G(tn). (3.9)
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The series converges in norm of B(E).

Proof. If Φ1(z) = 1, then set E1(z) = 1, otherwise let E1(z) be the Hermite
Biehler function defined in Theorem 2.11 such that

Φ1(z) = E#
1 (z)
E1(z)

.

Let E2(z) = E(z)E1(z). Given anyG ∈ B(E), we set F (z) = G(z)E1(z). We
have F ∈ B(E2): it is a consequence of Theorem 3.1 in the case E1(z) ̸= 1,
while it is obvious in the case E1(z) = 1 (since E(z) = E2(z)). Thanks to
Theorem 2.18, we know that a generic Hermite Biehler function F ∈ B(E2),
for t ∈ R, obeys

F (z) =
∑

n

KB(E2)(tn, z)
KB(E2)(tn, tn)F (tn). (3.10)

Then we get

G(z)E1(z) =
∑

n

KB(E2)(tn, z)
KB(E2)(tn, tn)G(tn)E1(tn),

and therefore
G(z) =

∑
n

KB(E2)(tn, z)E1(tn)
KB(E2)(tn, tn)E1(z)

G(tn). (3.11)

Recalling (2.23) we obtain

G(z) =
∑

n

E1(tn)E2(z) (1 − Θ(z))
E1(z)E2(tn)Θ′

2(tn)(tn − z)G(tn)

=
∑

n

E(z)(1 − Θ(z))
E(tn)Θ′(tn)(tn − z)G(tn).

For any N ∈ Z with N > 0 we observe that

FN :=
F (z) −

N∑
n=−N

KB(E2)(tn, z)
KB(E2)(tn, tn)F (tn)

 ∈ B(E2),

and that

GN :=
G(z) −

N∑
n=−N

KB(E2)(tn, z)E1(tn)
KB(E2)(tn, tn)E1(z)

G(tn)
 = FN

E1(z)
∈ B(E),

with
∥GN∥B(E) = ∥FN∥B(E2) .

Since (3.10) converges in norm of B(E2) by Theorem 2.18, we can conclude
that (3.9) convergences in norm of B(E).
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From Theorem 2.18 we already know that every function of a de Branges
space B(E) can be rebuilt exactly and uniquely given its values on the se-
quence of real points {tn}n for which Φ(tn) = E#(tn)

E(nt) = 1. The important
aspect of the sampling formula in Theorem 3.4 is that it shows that a func-
tion of a de Branges space B(E) can be rebuilt exactly and uniquely also
given its values on the sequence of real points {tn}n for which Θ(tn) = 1
for any meromorphic inner function Θ(z) divided by Φ(z). Hence for every
function of a de Branges space there are infinite different sequences from
which the function itself can be rebuilt exactly.

Theorem 3.4 can be proved also as a consequence of (2.13) with a more
direct proof. However in this thesis we preferred to prove this theorem using
the proposed proof as it is more consistent with the general approach of this
thesis and with the methodology used to prove the other sampling formulas
in the following paragraphs.

3.2 Orthogonal bases

At this point, a natural question is it the set of sampling kernels{
E(z)(1 − Θ(z))

E(tn)Θ′(tn)(tn − z)

}
n

,

appearing in the recontruction formula of Theorem 3.4, is an orthogonal
basis of B(E). The next theorem shows that the answer is positive if the
function Φ1(z) in (3.8) is a Blaschke product multiplied by a constant γ with
|γ| = 1, i.e. Φ1(z) is a meromorphic inner function with logarthmic residue
b = 0.

Theorem 3.5. Let E(z) be a Hermite Biehler function, and let Θ(z) be any
meromorphic inner function of the form

Θ(z) = γΦ(z)B(z),

where Φ(z) = E#(z)
E(z) , B(z) is a Blaschke product and |γ| = 1. Let {tn}n be

the sequence of solutions of Θ(t) = 1 for t ∈ R. Then the set

{Fn(z)}n =
{

E(z)(1 − Θ(z))
E(tn)Θ′(tn)(tn − z)

}
n

(3.12)

is an orthogonal basis of B(E).

Proof. Let E1(z) be a de Branges function of the meromorphic inner function
γB(z), so that γB(z) = E#

1 (z)
E1(z) . Setting E2(z) = E(z)E1(z) we obtain Θ(z) =

E#
2 (z)

E2(z) . Thanks to Theorem 3.4 we have that the set (3.12) is a subset of
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B(E). First of all we show that it is an orthogonal set in B(E). Now,
consider the functions

F2,n(z) = E2(z)(1 − Θ(z))
E2(tn)Θ′(tn)(tn − z) = KB(E2)(tn, z)

KB(E2)(tn, tn) ∈ B(E2) ∀n ∈ Z.

We observe that Fn(z) = E1(tn)
E1(z) F2,n(z) ∀n ∈ Z. Therefore for all na, nb ∈ Z

we get

⟨Fna , Fnb
⟩B(E) =

∫ +∞

−∞

Fna(t)Fnb
(t)

|E(t)|2
dt

=
∫ +∞

−∞

Fna(t)
E(t)

Fnb
(t)

E(t)
dt

=
∫ +∞

−∞

E1(tna)F2,na(t)
E(t)E1(t)

E1(tnb
)F2,nb

(t)
E(t)E1(t)

dt

= E1(tna)E1(tnb
)
∫ +∞

−∞

F2,na(t)
E2(t)

F2,nb
(t)

E2(t)
dt

= E1(tna)E1(tnb
)
∫ +∞

−∞

F2,na(t)F2,nb
(t)

|E2(t)|2
dt

= E1(tna)E1(tnb
)⟨F2,na , F2,nb

⟩B(E2).

(3.13)

Since the set
{F2,n(z)}n =

{
KB(E2)(tn, z)
KB(E2)(tn, tn)

}
n

is an orthogonal set in B(E2) thanks to Theorem (2.17), we get that {Fn(z)}n

is an orthogonal set in B(E). Finally, thanks to Theorem 3.4 we obtain that
the only function that can be perpendicular to all the elements of the se-
quence {Fn(z)}n is the null vector, hence {Fn(z)}n is a complete orthogonal
set in B(E), and therefore an orthogonal basis.

The following theorem introduce another orthogonal set for the de Branges
space B(E).

Theorem 3.6. Let E(z) be a Hermite Biehler function. Consider any two
Hermite Biehler functions E1(z), E2(z) such that E(z) = E1(z)E2(z), and let
{tn}n be the sequence of solutions of the meromorphic inner function Θ1(z) =
E#

1 (z)
E1(z) = 1 on the real line. Then the functions {Fn(z)}n =

{
KB(E1)(tn,z)E2(z)

E1(tn)

}
n

are an orthogonal set in B(E).

Proof. Thanks to Theorem (2.17) we have that the functions {Gn(z)}n ={
KB(E1)(tn,z)

E1(tn)

}
n

are an orthogonal set in B(E1). Thanks to Theorem 3.1, we
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have that B(E1)E2 ⊆ B(E), and then we get Fn(z) = KB(E1)(tn,z)E2(z)
E1(tn) ∈ B(E)

∀n ∈ Z. Moreover we have

⟨Fn, Fm⟩B(E) = 1
2π

∫ ∞

−∞
Fn(x)Fm(x) 1

|E(x)|2dx

= 1
2π

∫ ∞

−∞

Fn(x)
E(x)

Fm(x)
E(x)

dx

= 1
2π

∫ ∞

−∞

KB(E1)(tn, x)
E1(tn)E1(x)

KB(E1)(tm, x)
E1(tn)E1(x)

dx

= 1
2π

∫ ∞

−∞

KB(E1)(tn, x)
E1(tn)

KB(E1)(tm, x)
E1(tn)

1
|E1(x)|2dx

= ⟨Gn, Gm⟩B(E1) = 0.
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CHAPTER4
Sampling formulas for the Paley-Wiener spaces

The well-known sampling formula (2.25) for the Paley Wiener spaces has the
limit of being valid only for sequences of sampling points where the distance
between a point and the next one is always the same. These sequences
are referred as uniform sequences. However, there is another well-known
sampling formula for the Paley-Wiener spaces which works also on non-
uniform sequences. It is a generalization of the sampling formula (2.25),
in the sense that if we apply it to a uniform sampling sequence we obtain
exactly the sampling formula (2.25). This new sampling formula is described
in the following Paley-Wiener-Levinson theorem (see [31]).
Theorem 4.1 (Paley-Wiener-Levinson). Let {tn}n be a sequence of reals
such that

D := sup
n∈Z

∣∣∣∣tn − nπ

a

∣∣∣∣ < π

4a
and let S(t) be the entire function defined by

S(t) = (t− t0)
∞∏

n=1

(
1 − t

tn

)(
1 − t

t−n

)
Then, for any F ∈ PWa

F (t) =
∑

n

S(t)
S ′ (tn) (t− tn)F (tn) (t ∈ R), (4.1)

and the series on the right hand side converges uniformly on compact subsets
of R.
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In this chapter, we introduce some different sampling formulas for the
Paley-Wiener spaces, which are based on sets of non-uniform sequences with
different characteristics from those of the Paley-Wiener-Levinson theorem.

4.1 Sampling formulas for non-uniform sampling

We introduce here the first new sampling formula for non-uniform sampling,
which is mainly base on the result of Theorem 3.4.

Theorem 4.2. Fix any a > 0 and consider the Paley-Wiener space PWa.
Let Θ(z) = γeibzB(z) be a meromorphic inner function according to the
representation given in (2.3), with logarithmic residue b ≥ 2a. Let {tn}n be
the sequence of solutions of Θ(t) = 1 for t ∈ R. Then for every G ∈ PWa

we have
G(z) =

∑
n

(1 − Θ(z))eia(tn−z)

(tn − z)Θ′(tn) G(tn). (4.2)

The series converges in norm of PWa.

Proof. Consider the Hermite Biehler function

E(z) = e−iaz,

so that B(E) = PWa, and let Φ(z) = E#(z)
E(z) = e2iaz. Let Θ(z) = γeibzB(z) be

a meromorphic inner function with logarithmic residue b ≥ 2a. Then also
Φ1(z) = e−i2azΘ(z) = ei2(b−2a)zB(z)Θ(z) is a meromorphic inner function
since b− 2a > 0, and we have

Θ(z) = e2iazΦ1(z) = Φ(z)Φ1(z).

Hence E(z) and Θ(z) satisfy the conditions required in Theorem 3.4, and
then for every G ∈ PWa we obtain

G(z) =
∑

n

E(z)(1 − Θ(z))
E(tn)(tn − z)Θ′(tn)G(tn).

=
∑

n

e−iaz(1 − Θ(z))
e−iatn(tn − z)Θ′(tn)G(tn).

=
∑

n

(1 − Θ(z))eia(tn−z)

(tn − z)Θ′(tn) G(tn).

(4.3)

By the same theorem we obtain also that the series converges in norm of
PWa.

As already seen for the de Branges spaces in Theorem 3.5, we are also
able to establish when the set of sampling kernels

{
(1−Θ(z))eia(tn−z)

(tn−z)Θ′(tn)

}
n

is an
orthonormal basis of PWa, finding out an infinite number of orthonormal
bases. This is done by the next theorem.
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Theorem 4.3. Fix any a > 0 and consider the Paley-Wiener space PWa.
Let Θ(z) be a meromorphic inner function of the form Θ(z) = γe2iazB(z),
according to the representation given in (2.3). Let {tn}n be the sequence of
solutions of Θ(t) = 1 for t ∈ R. Then the set

{Gn}n =
{

(1 − Θ(z))eia(tn−z)

(tn − z)Θ′(tn)

}
n

is an orthogonal basis of PWa.

Proof. Consider the Hermite Biehler function

E(z) = e−iaz,

and let Φ(z) = E#(z)
E(z) = e2iaz. As we already pointed it, we have B(E) =

PWa. Then we have

Θ(z) = γe2iazB(z) = γΦ(z)B(z).

Hence E(z) and Θ(z) satisfy the conditions required in Theorem 3.5, and
we get that {

E(z)(1 − Θ(z))
E(tn)Θ′(tn)(tn − z)

}
n

(4.4)

is an orthogonal basis of PWa. Finally, proceeding similarly to (4.3) we
easily get

{Gn}n =
{

(1 − Θ(z))eia(tn−z)

(tn − z)Θ′(tn)

}
n

=
{

E(z)(1 − Θ(z))
E(tn)Θ′(tn)(tn − z)

}
n

. (4.5)

Example 4.4.

Consider Θ(z) = e2πiz, so that in Theorem 4.2 we have {tn}n = {n}. We
set a = π, and then for any G ∈ PWπ we obtain

G(z) =
∑

n

(1 − e2πiz)eiπ(n−z)

2πi(n− z) G(n)

=
∑

n

(1 − e2πi(z−n))eiπ(n−z)

2πi(n− z) G(n)

=
∑

n

sin(π(n− z))
π(n− z) G(n),

that is the classical sampling formula for the Paley-Wiener space PWπ.
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Now we want to compare the results of Theorem 4.2 with those of the
Paley-Wiener-Levinson theorem (Theorem 4.1). Fix a ∈ R, a > 0. Given
any F ∈ PWa, thanks to these two theorems we have two different sam-
pling formulas for non-uniform sampling, that are valid on two different
families of non-uniform sequences. Kadec showed that the set of sampling
kernels in (4.1) is a Riesz basis for PWa, while thanks to Theorem 4.3 we
have seen that the set of sampling kernels in (4.2) is an orthogonal basis if
Θ(z) = γe2iazB(z), where B(z) is a Blaschke product. Hence it makes sense
to compare the properties of the sampling sequences of the Paley-Wiener-
Levinson theorem with the properties of the sequences {tn}n of solutions of
Θ(t) = 1 for t ∈ R, for Θ(z) = γe2iazB(z), since in both cases the corre-
sponding sampling kernels are bases of PWa.

It is easy to see that for every sequence {tn}n in Theorem 4.1 we have

|tn − tm| >
(

|m− n| − 1
2

)
π

a
∀n,m ∈ Z, n ̸= m,

while in the sequences in Theorem 4.2 there is no for lower bounds for
|tn − tm|. Indeed given any ϵ > 0 small as desired and any integer M < ∞
big as desired, it is possible to find a suitable sequence {tn}n such that M
different elements are contained in a real interval of length ϵ. To see this,
we need to show that it is possible to find a meromorphic inner function
Θ(z) such that M different elements of the sequence {tn}n of solutions of
Θ(t) = 1 are contained in a real interval of length ϵ. We recall that the
phase function τ(t) of a meromorphic inner function Θ(z) is the unique
differentiable function such that Θ(t) = e2πiτ(t) for t ∈ R, with τ ′(t) > 0
∀t ∈ R and τ(tn) = n ∀n ∈ Z (so that Θ(tn) = 1). Then, given any Blaschke
product

B(z) =
∞∏

k=1

zk

zk

z − zk

z − zk

,
∑

n

ℑzn

|zn|2
< ∞,

for Θ(z) = γe2iazB(z) we obtain

τ ′(t) = 1
2πi

Θ′(z)
Θ(z) = a

π
+ 1

2π

∞∑
k=1

ℑ(zk)
|zk − t|2

.

Fix any c ∈ R and any ϵ > 0, and consider the interval [c, c+ϵ]. Without loss
of generality we set γ = 1, and letB(z) be the Blaschke product ofN =

⌈
Mπ

ϵ

⌉
distinct zeros {zk}k=1,...,N such that c ≤ ℜ(zk) ≤ c+ ϵ, ℑ(zk) = δ < 1 for all
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k = 1, ..., N . Hence for t ∈ [c, c+ ϵ] we get

τ ′(t) = 1
2πi

Θ′(z)
Θ(z)

= a

π
+ 1
π

N∑
k=1

ℑ(zk)
|zk − t|2

≥ 1
π

N∑
k=1

δ

(ℜ(zk) − t)2 + δ2

>
1
π

N∑
k=1

δ

ϵ2 + δ2

>
N

π

≥ M

ϵ
,

where we observed that, since δ < 1, δ
ϵ2+δ2 > 1 for enough small ϵ. Then we

have
τ(c+ ϵ) − τ(c) =

∫ c+ϵ

c
τ ′(s)dt >

∫ c+ϵ

c

M

ϵ
dt = M,

and we obtain that τ(t) ∈ N at least M times in [c, c + ϵ] since it is a
continuous function. Then Θ(t) = e2πiτ(t) = 1 at least M times in [c, c + ϵ],
and then there are M elements of the sequence in an interval of length ϵ, as
desired.

Now we compare the upper bounds of |tn − tm|. For every sequence {tn}n

in Theorem 4.1 we easily get

|tn − tm| <
(

|m− n| + 1
2

)
π

a
∀n,m ∈ Z, n ̸= m,

while for Theorem 4.2 we have

|tn − tm| < |m− n|π
a

∀n,m ∈ Z, n ̸= m.

To see this, it is sufficient to show that

tn+1 − tn ≤ π

a
∀n ∈ Z.

We have
τ ′(t) = 1

2π
Θ′(z)
Θ(z) = a

π
+ 1
π

∞∑
k=1

ℑ(zk)
|zk − t|2

≥ a

π
(4.6)

Now consider the spectral function t(s) = τ−1(s) (t(s) exists and is well
defined since τ ′(t) > 0 ∀t ∈ R), then t(n) = tn and t(n + 1) = tn+1, and
hence we obtain

tn+1 − tn =
∫ n+1

n
t′(s)ds =

∫ n+1

n

1
τ ′(t(s))ds ≤

∫ n+1

n

π

a
ds = π

a
.
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Hence we can conclude that the difference in the upper bound of |tn − tm|
gives a little more a flexibility to the sampling sequences of the Paley-Wiener-
Levinson theorem, while difference in the lower bound gives much more
flexibility to the sampling sequences of Theorem (4.2).

4.2 Representation of a meromorphic inner function

The sampling kernels in Theorem 4.2 and Theorem 4.3 are expressed in
terms of the meromorphic inner function Θ(z). Hence now it is interesting
to establish when for a given a sequence {tn}n there exists a sampling formula
of the form given in Theorem 4.2, and express it in terms of the sequence
itself. This means to find necessary and sufficient conditions for a given
sequence {tn}n to be the sequence of solutions of Θ(t) = 1 on the real line
for some meromorphic inner function Θ(z) with logarithmic residue b > 0.

For this purpose the first step is to give a representation of any mero-
morphic inner function Θ(z) in terms of the sequence {tn}n of solutions of
Θ(t) = 1 for t ∈ R. We obtain this fundamental result in Theorem 4.6.
Then we use this result to prove Theorem 4.8, where the representation of
a de Branges function E(z) of Θ(z) is given in terms of the same sequence
{tn}n. This representation will be very useful in the next sections.

Before introducing these theorems, we need the following deifinition.
Definition 4.5. Let {tn}n ⊂ R and {t′n}n ⊂ (0,∞) be two sequences with
the following properties:

1. {tn}n is a strictly increasing sequence with no finite accumulation point;

2. t′n > 0 ∀n ∈ Z;

3. ∑n
t′
n

1+t2
n
< ∞;

4. ∑n t
′
n = +∞.

A couple of sequences ({tn}n, {t′n}n) that verifies this properties is referred
as a bandlimit pair. Moreover we define a normalized bandlimit pair as a
bandlimit pair such that ∑n

t′
n

1+t2
n

= π.
Obviously, given an bandlimit pair, we can obtain a normalized bandlimit

pair multiplying all the elements of the sequence {t′n}n by π∑
n

t′
n

1+t2
n

.

Theorem 4.6. A function Θ : C → C is a meromorphic inner function if
and only if there exist a bandlimit pair ({tn} , {t′n}) and a complex number
α, ℑ(α) > 0, so that Θ(z) is given by the formula

Θ(z) =
∑

n t
′
n

(
1

tn−z
− tn

t2
n+1

)
+ α∑

n t′n
(

1
tn−z

− tn

t2
n+1

)
+ α

. (4.7)
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In particular any meromorphic inner function Θ(z) has infinite different
representations of the type given in (4.7), one for every different value of∑

n
t′
n

t2
n+1 (that can be any positive real number since ({tn} , {t′n}) is a ban-

dlimit pair). Setting β = ∑
n

t′
n

t2
n+1 , the elements of the sequence {tn}n are all

and only the solutions of Θ(t) = 1 for t ∈ R, the elements of the sequence
{t′n}n are given by t′n = 2iℑ(α)

Θ′(tn) , and α is given by

α = − 2βℑ(Θ(i))
1 − |Θ(i)|2 + iβ

(
|Θ(i)|2 − 2ℜ(Θ(i)) + 1

1 − |Θ(i)|2

)
. (4.8)

Proof. Thanks to Corollary 4.6 in [40] (p. 1628) we have that a function
Θ(z) on C is a meromorphic inner function obeying Θ(i) = 0 if and only if
there is a bandlimit pair ({tn} , {t′n}) so that Θ(z) is given by

Θ(z) = z − i

z + i

∑
n

1
tn−z

1
tn−i

t′n∑
n

1
tn−z

1
tn+i

t′n
=
∑

n t
′
n

(
1

tn−z
− 1

tn−i

)
∑

n t′n
(

1
tn−z

− 1
tn+i

) ,
where {tn}n consists in the sequence of solutions of Θ(t) = 1 for t ∈ R, and
the sequence {t′n}n is such that t′n = 2iℑ(α)

Θ′(tn) .
First we show that any meromorphic inner function Θ(z) can be ex-

pressed with the representation given in (4.7). Let w = Θ(i) (clearly w
must safisty |w| < 1 since Θ(z) is inner). We recall here that for any fixed
h ∈ D, the Mobius transformation, given by

Fh(z) := z − h

1 − zh̄

is an analytic automorphism of the unit disk with compositional inverse F−h.
In particular, given any meromorphic inner function Ψ(z), then the compo-
sition Fh ◦ Ψ is again a meromorphic inner function (called the Frostman
shift of Ψ(z)). If we set h = w in the Mobius transformation, then the
meromorphic inner function Φ(z), given by

Φ(z) = w − 1
w − 1 (Fw(z) ◦ Θ(z)) = w − 1

w − 1

(
Θ(z) − w

1 − Θ(z)w̄

)
,

satisfies Φ(i) = 0. Moreover it is easy to check that for t ∈ R we have
Ψ(t) = 1 if and only if Θ(t) = 1. Hence we can apply the above mentioned
Corollary 4.6 in [40], and we can write

Φ(z) = z − i

z + i

∑
n

1
tn−z

1
tn−i

t′n∑
n

1
tn−z

1
tn+i

t′n
=
∑

n t
′
n

(
1

tn−z
− 1

tn−i

)
∑

n t′n
(

1
tn−z

− 1
tn+i

) ,
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for a bandlimit pair ({tn} , {t′n}). Now, since the inverse of Fw(z) is given
by F−w(z), we get

Θ(z) = F−w(z) ◦
(
w − 1
w − 1Φ(z)

)
=

w−1
w−1

∑
n

t′
n( 1

tn−z
− 1

tn−i)∑
n

t′
n( 1

tn−z
− 1

tn+i)
+ w

1 + ww−1
w−1

∑
n

t′
n( 1

tn−z
− 1

tn−i)∑
n

t′
n( 1

tn−z
− 1

tn+i)

=
(w − 1)∑n t

′
n

(
1

tn−z
− 1

tn−i

)
+ (|w|2 − w)∑n t

′
n

(
1

tn−z
− 1

tn+i

)
(w − 1)∑n t′n

(
1

tn−z
− 1

tn+i

)
+ (|w|2 − w)∑n t′n

(
1

tn−z
− 1

tn−i

)
=

(|w|2 − 1)∑n t
′
n

(
1

tn−z
− tn

t2
n+1

)
+ i(−2w + |w|2 + 1)∑n

t′
n

t2
n+1

(|w|2 − 1)∑n t′n
(

1
tn−z

− tn

t2
n+1

)
+ i(2w − |w|2 − 1)∑n

t′
n

t2
n+1

=
∑

n t
′
n

(
1

tn−z
− tn

t2
n+1

)
− iβ

(
|w|2−2w+1

1−|w|2
)

∑
n t′n

(
1

tn−z
− tn

t2
n+1

)
− iβ

(
−|w|2+2w−1

1−|w|2
)

=
∑

n t
′
n

(
1

tn−z
− tn

t2
n+1

)
− 2βℑ(w)

1−|w|2 − iβ
(

|w|2−2ℜ(w)+1
1−|w|2

)
∑

n t′n
(

1
tn−z

− tn

t2
n+1

)
− 2βℑ(w)

1−|w|2 + iβ
(

|w|2−2ℜ(w)+1
1−|w|2

) .

(4.9)

Now we set α = −2βℑ(w)
1−|w|2 + iβ

(
|w|2−2ℜ(w)+1

1−|w|2
)
, and we observe that ℑ(α) =

β
(

|w|2−2ℜ(w)+1
1−|w|2

)
= β

(
ℑ(w)2+(ℜ(w)−1)2

1−|w|2
)
> 0 ∀w such that |w| < 1. Hence we

obtain

Θ(z) =
∑

n t
′
n

(
1

tn−z
− tn

t2
n+1

)
+ α∑

n t′n
(

1
tn−z

− tn

t2
n+1

)
+ α

,

as we wanted to show. By construction the sequence {tn}n consists in the
sequence of solutions of Θ(t) = 1 for t ∈ R, and this can easily verified also
in the new representation of Θ(z). We can also verify that w = Θ(i), indeed

Θ(i) =
∑

n t
′
n

(
1

tn−i
− tn

t2
n+1

)
+ α∑

n t′n
(

1
tn−i

− tn

t2
n+1

)
+ α

=
i
∑

n

(
t′
n

t2
n+1

)
− iβ

(
1 + 2w(w−1)

1−|w|2
)

i
∑

n

(
t′
n

t2
n+1

)
− iβ

(
1 + 2(w−1)

1−|w|2
)

=

(
−2w(w−1)

1−|w|2
)

(
−2(w−1)

1−|w|2
)

= w.

Moreover we have

Θ′(z) =
2iℑ(α)∑n

t′
n

(tn−z)2(∑
n t′n

(
1

tn−z
− tn

t2
n+1

)
+ α

)2 ,
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then we observe
Θ′(tn) = lim

t→tn

Θ′(t) = 2iℑ(α)
t′n

,

and hence we obtain t′n = 2iℑ(α)
Θ′(tn) .

Now we show the inverse implication: any Θ(z) with the form given in
(4.7) is a meromorphic inner function. We observe that

Θ(i) = iβ + α

iβ + α

=
(

ℜ(α)2 − ℑ(α)2 + β2

ℜ(α)2 + (ℑ(α) + β)2

)
− i

(
2ℜ(α)ℑ(α)

ℜ(α)2 + (ℑ(α) + β)2

)
,

(4.10)

and hence we get

|Θ(i)|2 = 1 − 4βℑ(α)
ℜ(α)2 + (ℑ(α) + β)2 < 1,

since β,ℑ(α) > 0. Setting w = Θ(i), by (4.10) we get

− 2βℑ(w)
1 − |w|2

= 4βℜ(α)ℑ(α)
4βℑ(α)

= ℜ(α)

and

β

(
|w|2 − 2ℜ(w) + 1

1 − |w|2

)

= β
2(ℜ(α)2 + (ℑ(α) + β)2) − 4βℑ(α) − 2(ℜ(α)2 − ℑ(α)2 + β2)

4βℑ(α)

= 4ℑ(α)2 + 4βℑ(α) − 4βℑ(α)
4ℑ(α)

= ℑ(α).

Therefore we have

α = − 2βℑ(w)
1 − |w|2

+ iβ

(
|w|2 − 2ℜ(w) + 1

1 − |w|2

)
,

and hence (4.8) is verified. Then, thanks to (4.9), we obtain

Θ(z) = F−w(z) ◦
(
w − 1
w − 1Φ(z)

)
,

where

Φ(z) =
∑

n t
′
n

(
1

tn−z
− 1

tn−i

)
∑

n t′n
(

1
tn−z

− 1
tn+i

) .
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Thanks again to Corollary 4.6 in [40], Φ(z) is a meromorphic inner function
which satisfy Φ(i) = 0, and the same is obviously true for w−1

w−1Φ(z). There-
fore, thanks to the above described properties of the Mobius tranfsorm, we
obtain that also

Θ(z) = F−w(z) ◦
(
w − 1
w − 1Φ(z)

)
is a meromorphic inner function, as we wanted to show. Finally it is easy
to see that the elements of the sequence {tn}n are all and only the solutions
of Θ(t) = 1 for t ∈ R, while the expression for {t′n}n can be verified in the
same way of the other implication.

Example 4.7.

Consider Θ(z) = e2πiz. Then in Theorem 4.6 we set β = π and we obtain

Θ(i) = e−2π,

α = iπ

(
e−4π − 2e−2π + 1

1 − e−4π

)
= iπ tanh(π)

{tn}n = {n},

{t′n}n =
{
e−4π − 2e−2π + 1

1 − e−4π

}
= {tanh(π)}.

Then, recalling that ∑n

(
1

n−z
− n

n2+1

)
= −π cot(πz), by (4.7) we get

Θ(z) =
tanh(π)∑n

(
1

n−z
− n

n2+1

)
− iπ tanh(π)

tanh(π)∑n

(
1

n−z
− n

n2+1

)
+ iπ tanh(π)

,

= −π cot(πz) − iπ

−π cot(πz) + iπ

= e2πiz,

as expected.

Theorem 4.8. Let the couple ({tn}n, {t′n}n) be a bandlimit pair such that

∑
n̸=0

1
|tn|q+1 < ∞,

for some q ∈ Z, q ≥ 0. Let

Θ(z) =
∑

n t
′
n

(
1

tn−z
− tn

t2
n+1

)
+ α∑

n t′n
(

1
tn−z

− tn

t2
n+1

)
+ α

.
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be the meromorphic inner function associated to ({tn}n, {t′n}n) according to
Theorem 4.6. Let E(z) be given by

E(z) = zc

(∑
n

t′n

(
1

tn − z
− tn
t2n + 1

)
+ α

) ∏
n∈Z,tn ̸=0

(
1 − z

tn

)
eup(z),

(4.11)

c =
{

1, if ∃n | tn = 0
0, otherwise

uq(z) =
q∑

m=1

(
z

tn

)m

,

and p is the smallest nonnegative integer for which the series

∑
n̸=0

1
|tn|p+1

is convergent. Then the function E(z) is a de Branges function of Θ(z).
Moreover, if t′n = d for some constant d and all n ∈ Z, then the product in
(6.13) converges for uq(z) = z

tn
, i.e. for q = 1.

Proof. By (2.4) we have that

S(z) =
(∑

n

t′n

(
1

tn − z
− tn
t2n + 1

)
+ α

)

is a Herglotz function, i.e. an analytical function with non-negative real part
on C+. Thanks to [51] (p. 56) we have that the product

P (z) = zc
∏

n∈Z,tn ̸=0

(
1 − z

tn

)
eu(z)

converges uniformly to an entire function whose zeros are all and only the
elements of the sequence {tn}n. Hence

E(z) = S(z)P (z)

is an entire function. We observe that

P (z) = P#(z)

and that

S#(z) =
(∑

n

t′n

(
1

tn − z
− tn
t2n + 1

)
+ α

)
.
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We set z = x+ iy and we consider the case y > 0. Recalling that ℑ(α) > 0,
we have

ℜ(S(z)) = ℜ(S#(z)),

|ℑ(S(z))| =
∣∣∣∣∣ y

(tn − x)2 + y2 + ℑ(α)
∣∣∣∣∣

>

∣∣∣∣∣ y

(tn − x)2 + y2 − ℑ(α)
∣∣∣∣∣

= |ℑ(S#(z))|,

(4.12)

and then
|S(z)| > |S#(z)|.

Hence we obtain

|E(z)| = |S(z)||P (z)| > |S#(z)||P (z)| = |S#(z)||P#(z)| = |E#(z)|.

and therefore E(z) is a Hermite Biehler function. Finally, we have

E#(z)
E(z) = S#(z)P#(z)

S(z)P (z) = S#(z)
S(z) = Θ(z),

and then E(z) is a de Branges function of Θ(z).
Finally we observe that, if t′n = d for some constant d and all n ∈ Z, then∑

n

1
t2n + 1 = 1

d

∑
n

d

t2n + 1 < ∞,

since ({tn}n, {t′n = d}n) is a bandlimit pair. Hence we get∑
tn ̸=0

1
t2n

≤
∑

tn ̸=0,|tn|<1

1
t2n

+
∑

|tn|≥1

2
t2n + 1 ≤

∑
tn ̸=0,|tn|<1

1
t2n

+ 2
∑

n

1
t2n + 1 < ∞,

where in the last step we considered the fact that the number of tn for which
|tn| < 1 is finite since the sequence {tn}n has no accumulation points. Then
p ≤ 1. Since the product ∏

n∈Z,tn ̸=0

(
1 − z

tn

)
euq(z) (4.13)

converges for all q ≥ p (see [51] (p. 55)), we can conclude that in our case
it converges for q = 1.

4.3 Properties of meromorphic inner functions

In this section, given a meromorphic funtcion Θ(z), we study the important
relations between the sequence {tn}n of solutions of Θ(t) = 1 for t ∈ R,
and other properties of Θ(z) (in particular the logarithmic residue and the
properties of the phase and the spectral function). These results will be very
useful for the next sections.
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Lemma 4.9. Let the couple ({tn}n, {t′n}n) be a bandlimit pair, and let

Θ(z) =
∑

n t
′
n

(
1

tn−z
− tn

t2
n+1

)
+ α∑

n t′n
(

1
tn−z

− tn

t2
n+1

)
+ α

.

be a meromorphic inner function, according to Theorem 4.6. Let τ(x) be its
phase function, and let t(x) be its spectral function. Then we have

τ ′(x) =
ℑ(α)∑n

t′
n

(tn−x)2

π
(∑

n t′n
(

1
tn−x

− tn

t2
n+1

)
+ ℜ(α)

)2
+ ℑ(α)2

,

t′(n) = π

ℑ(α)t
′
n ∀n ∈ Z.

Proof. By the definition the phase function τ(x) is the unique function that
verifies

Θ(x) = e2πiτ(x) ∀x ∈ R.
Then we get

τ ′(x) = Θ′(x)
2πiΘ(x)

=
2iℑ(α)∑n

t′
n

(tn−x)2

2πi
(∑

n t′n
(

1
tn−x

− tn

t2
n+1

)
+ α

) (∑
n t′n

(
1

tn−x
− tn

t2
n+1

)
+ α

)
=

ℑ(α)∑n
t′
n

(tn−x)2

π
(∑

n t′n
(

1
tn−x

− tn

t2
n+1

)
+ ℜ(α)

)2
+ ℑ(α)2

.

(4.14)

Moreover

t′(n) = 1
τ ′(t(n))

= 1
τ ′(tn)

= lim
x→tn

π
(∑

n t
′
n

(
1

tn−x
− tn

t2
n+1

)
+ ℜ(α)

)2
+ ℑ(α)2

ℑ(α)∑n
t′
n

(tn−x)2

= π

ℑ(α)t
′
n.

(4.15)

Proposition 4.10. Let the couple ({tn}n, {t′n}n) be a bandlimit pair such
that t′n = t′ ∀n ∈ Z for some constant t′ > 0, and let

Θ(z) =
t′
∑

n

(
1

tn−z
− tn

t2
n+1

)
+ α

t′
∑

n

(
1

tn−z
− tn

t2
n+1

)
+ α

.

41



“thesis” — 2022/4/11 — 20:00 — page 42 — #52

Chapter 4. Sampling formulas for the Paley-Wiener spaces

be any of the associated meromorphic inner function according to Theorem
4.6, with phase function τ(x). If |tn − π

a
n| ≤ δ ∀n ∈ Z, for some δ < π

2a
and a > 0, then there exist two real constants A and B such that A ≥ a

π
and

0 < B ≤ a
π

and that
B ≤ τ ′(x) ≤ A ∀x ∈ R.

Proof. By Lemma 4.9 we have

τ ′(x) =
ℑ(α)∑n

t′
n

(tn−x)2

π
(∑

n t′n
(

1
tn−x

− tn

t2
n+1

)
+ ℜ(α)

)2
+ ℑ(α)2

(4.16)

First we show that there exists A > 0 such that

τ ′(x) ≤ A ∀x ∈ R.

Consider a generic n0 ∈ N and set

sn0(x) =
∑
n≥1

t′
(

1
tn0+n − x

+ 1
tn0−n − x

)
.

For |x− π
a
n0| ≤ π

2a
we get

|sn0(x)| =

∣∣∣∣∣∣
∑
n≥1

t′
(

tn0+n + tn0−n − 2x
(tn0+n − x)(tn0−n − x)

)∣∣∣∣∣∣
≤ 2

(
δ + π

2a

)
t′
∑
n≥1

1(
π
a
n− δ − π

2a

)2 ,

(4.17)

where we observed that |tn0+n −x| ≥ |tn0+n − π
a
n0|−|π

a
n0 −x| ≥ (π

a
n−δ)− π

2a
(with obviously π

a
n− δ − π

2a
> 0 for any n ≥ 1). Moerover we have

|tn0+n + tn0−n − 2x| ≤ |tn0+n + tn0−n − 2n0| + |2n0 − 2x|

≤ 2δ + π

a
.

(4.18)

Setting

C = 2
(
δ + π

2a

)
t′
∑
n≥1

1(
π
a
n− δ − π

2a

)2 +
∑

n

tn
t2n + 1 + |ℜ(α)|,

and ϵ = min
(

t′

C
, π

2a
− δ

)
, for x s.t. |x− tn0| < ϵ we observe that

t′

|x− tn0|
>
t′

ϵ
≥ C,

and that∣∣∣∣x− π

a
n0

∣∣∣∣ ≤ |x− tn0| +
∣∣∣∣tn0 − π

a
n0

∣∣∣∣ ≤
(
π

2a − δ
)

+ δ = π

2a.
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Then we obtain

τ ′(x) =ℑ(α)
π

∣∣∣∣∣∣∣
t′

(tn0 −x)2 +∑
n≥1

t′

(tn+n0 −x)2(
t′

(tn0 −x) + sn0(x) −∑
n

tn

t2
n+1 + ℜ(α)

)2
+ ℑ(α)2

∣∣∣∣∣∣∣
≤ℑ(α)

π

t′
(

1
|tn0 −x|2 +∑

n≥1
1

(π
a

n−δ− π
2a)2

)
(

t′

|tn0 −x| − C
)2

+ ℑ(α)2
.

(4.19)

The function

g(s) = ℑ(α)
π

t′
(

1
|s|2 +∑

n≥1
1

(π
a

n−δ− π
2a)2

)
(

t′

|s| − C
)2

+ ℑ(α)2

is such that

lim
s→0

g(s) = ℑ(α)
πt′

,

and moreover in the interval −ϵ ≤ s ≤ ϵ we have t′

|s| − C > 0 by the choice
of ϵ. Then g(s) is bounded in the set −ϵ ≤ s ≤ ϵ and there exists A1 > 0
such that

g(s) ≤ A1.

Since g(s) doesn’t depend on n0, also A1 doesn’t depend on n0. Then for
|tn0 − x| < ϵ we obtain

τ ′(x) ≤ A1.

On the other side, for x such that |x− π
a
n0| ≤ π

2a
and |x− tn0 | ≥ ϵ we easily

get

τ ′(x) ≤
t′
(

1
ϵ2 +∑

n≥1
1

(π
a

n−δ− π
2a)2

)
πℑ(α) .

and also A2 =
t′

(
1

ϵ2 +
∑

n≥1
1

(π
a n−δ− π

2a)2

)
πℑ(α) doesn’t depend on the choice of n0.

Then we have obtained

τ ′(x) ≤ A = max(A1, A2).

Now show that there exist B > 0 such that

τ ′(x) ≥ B ∀x ∈ R.
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Consider a generic n0 ∈ N. For |x− π
a
n0| ≤ π

2a
we get

τ ′(x) =ℑ(α)
π

∣∣∣∣∣∣∣
t′

(tn0 −x)2 +∑
n≥1

t′

(tn+n0 −x)2(
t′

(tn0 −x) + sn0(x) −∑
n

tn

t2
n+1 + ℜ(α)

)2
+ ℑ(α)2

∣∣∣∣∣∣∣
≥ℑ(α)

π

t′
(

1
|tn0 −x|2 +∑

n≥1
1

(π
a

n+δ+ π
2a)2

)
(

t′

|tn0 −x| + C
)2

+ ℑ(α)2
.

Consider the function h(s) given by

h(s) = ℑ(α)
π

t′
(

1
|s|2 +∑

n≥1
1

(π
a

n+δ+ π
2a)2

)
(

t′

|s| + C
)2

+ ℑ(α)2
.

It is easy to check that

lim
s→0

h(s) = ℑ(α)
πt′

> 0,

and then h(s) > 0 in the closed interval − π
2a

≤ s ≤ π
2a

. Since h(s) is
continuous, there exists B > 0 such that in the same interval we have

h(s) ≥ B.

Whereas h(s) doesn’t depend on n0, neither does B, and then we conclude
that

τ ′(x) ≥ B ∀x ∈ R.
Finally, to see that A ≥ a

π
and that B ≤ a

π
it is sufficient to observe that

since
n
π

a
− δ ≤ tn ≤ n

π

a
+ δ ∀n ∈ Z,

we get
τ
(
n
π

a
− δ

)
≤ n ≤ τ

(
n
π

a
+ δ

)
∀n ∈ Z,

and hence
lim

n→+∞

n

τ(nπ
a
) = 1. (4.20)

Now, for τ ′(x) ≥ B > a
π

∀x ∈ R we would have

lim
n→+∞

n

τ(nπ
a
) = lim

n→+∞

n

τ(0) +
∫ n π

a
0 τ ′(s)ds

≤ lim
n→+∞

n

τ(0) +Bnπ
a

= a

Bπ
< 1,

(4.21)
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while for τ ′(x) ≤ A < a
π

∀x ∈ R we would have

lim
n→+∞

n

τ(nπ
a
) = lim

n→+∞

n

τ(0) +
∫ n π

a
0 τ ′(s)ds

≥ lim
n→+∞

n

τ(0) + Anπ
a

= a

Aπ
> 1.

(4.22)

Hence we have shown that A ≥ a
π

and that B ≤ a
π
.

Proposition 4.11. Let the couple ({tn}n, {t′n}n) be a bandlimit pair such
that t′n = t′ ∀n ∈ Z for some constant t′ > 0, and let

Θ(z) =
t′
∑

n

(
1

tn−z
− tn

t2
n+1

)
+ α

t′
∑

n

(
1

tn−z
− tn

t2
n+1

)
+ α

.

be any of the associated meromorphic inner function according to Theorem
4.6, with phase function τ(x). If |tn − π

a
n| ≤ δ ∀n ∈ Z for some δ < π

2a
and

a > 0, then there exists D > 0 such that

|τ ′′(x)| ≤ D, ∀x ∈ R.

Proof. Deriving the formula for τ ′(x) given in Lemma 4.9 we get

τ ′′(x) =ℑ(α)
π

∑
n

2t′

(tn−x)3

((∑
n t

′
(

1
tn−x

− tn

t2
n+1

)
+ ℜ(α)

)2
+ ℑ(α)2

)
((∑

n t′
(

1
tn−x

− tn

t2
n+1

)
+ ℜ(α)

)2
+ ℑ(α)2

)2

− ℑ(α)
π

(∑
n

t′

(tn−x)2

)2 (
2
(∑

n t
′
(

1
tn−x

− tn

t2
n+1

)
+ ℜ(α)

))
((∑

n t′
(

1
tn−x

− tn

t2
n+1

)
+ ℜ(α)

)2
+ ℑ(α)2

)2

=τ ′(x)2 π

ℑ(α)


∑

n
2t′

(tn−x)3(∑
n

2t′

(tn−x)2

)2 (g(x)2 + ℑ(α)2) − 2g(x)

 ,

(4.23)

where

g(x) =
∑

n

t′
(

1
tn − x

− tn
t2n + 1

)
+ ℜ(α).
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Consider a generic n0 ∈ N, and |x− π
a
n0| ≤ π

2a
. Set:

g1(x) =
∑
n≥1

t′
(

1
tn0+n − x

+ 1
tn0−n − x

)
,

g2(x) =
∑
n̸=0

t′
(

1
(tn0+n − x)2

)
,

g3(x) =
∑
n̸=0

t′
(

1
(tn0+n − x)3

)
.

Recalling (4.18), we observe that

|g1(x)| ≤ 2
(
δ + π

2a

)
t′
∑
n≥1

1(
π
a
n− δ − π

2a

)2 =: G1,

|g2(x)| ≤ t′
∑
n̸=0

1(
π
a
n− δ − π

2a

)2 =: G2,

|g3(x)| ≤ t′
∑
n̸=0

1(
π
a
n− δ − π

2a

)3 =: G3,

and we underline that the constants on the right side don’t depend on n0.
Now we set

f(x) :=

(∑
n

2t′

(tn−x)3

)
(g(x)2 + ℑ(α)2)(∑

n
2t′

(tn−x)2

)2 − 2g(x),

so that by (4.23) we have

τ ′′(x) =τ ′(x)2 π

ℑ(α)f(x).

We observe that

f(x) =

(
2 t′

(tn0 −x)3 + 2g3(x)
)((

t′

tn0 −x
+ g1(x) + ℜ(α)

)2
+ ℑ(α)2

)
(

t′

(tn0 −x)2 + g2(x)
)2

− 2
(

t′

tn0 − x
+ g1(x) + ℜ(α)

)
.

Multiplying the numerator and denominator of the fraction by (tn0 −x)4 we
get

f(x) =

(
2 t′

(tn0 −x) + 2p3(x)
) (

(t′ + p2(x))2 + p4(x)
)

(t′ + p2(x))2 − 2
(

t′

tn0 − x
+ p1(x)

)
,
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where
p1(x) = (tn0 − x)2(g1(x) + ℜ(α)),
p2(x) = g2(x) (tn0 − x)2 ,

p3(x) = 2g3(x) (tn0 − x)2 ,

p4(x) = (tn0 − x)2 ℑ(α)2.

Now we can write
f(x) = t′

tn0 − x
s1(x) + s2(x),

where

s1(x) =
2
(
(t′ + p2(x))2 + p4(x)

)
(t′ + p2(x))2 − 2,

s2(x) =
2p3(x)

(
(t′ + p2(x))2 + p4(x)

)
(t′ + p2(x))2 − 2p1(x).

With a straightforward calculation we get

s1(x) =2
(

−2t′p2(x) + p2(x)2 + 2t′p1(x) − p1(x)2 + p4(x)
(t′ + p2(x))2

)
,

and then∣∣∣∣∣ t′

tn0 − x
s1(x)

∣∣∣∣∣ ≤2

2t′G2
π
2a

+G2
2

(
π
2a

)3
+ 2t′ π

2a
(G1 + |ℜ(α)|)

t′2


+ 2


(

π
2a

)3
(G1 + |ℜ(α)|)2 +

(
π
2a

)2
ℑ(α)2

t′2


=:C1,

where we used the fact that g2(x) > 0 ∀x ∈ R. It is fundamental to observe
that C1 doesn’t depend on n0. Moreover we have

|s2(x)| ≤
2G3

π
2a

t′2

(t′ +
(
π

2a

)2
(G1 + |ℜ(α)|)

)2

+
(
π

2a

)2
ℑ(α)2


+ 2 (G1 + |ℜ(α)|) ,

=: C2

where we used again the fact that g2(x) > 0 ∀x ∈ R. We get that also C2
doesn’t depend on n0. Then for |x− π

a
n0| ≤ π

2a
we have obtained

|τ ′′(x)| ≤ πA2

ℑ(α) (C1 + C2) =: D.
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Since D doesn’t depend on n0, and considering that the union of all the
intervals |x − π

a
n0| ≤ π

2a
as n0 varies in Z is the whole real line, we finally

get
|τ ′′(x)| ≤ D, ∀x ∈ R.

Lemma 4.12. Consider a meromorphic inner function Θ(z) given by

Θ(z) =
∑

n t
′
n

(
1

tn−z
− tn

t2
n+1

)
+ α∑

n t′n
(

1
tn−z

− tn

t2
n+1

)
+ α

, (4.24)

where ({tn} , {t′n}) is a bandlimit pair and ℑ(α) > 0. Let b be the logarithmic
residue of Θ(z). Then

b = − lim sup
y→+∞

y−1 log
∣∣∣∣∣∑

n

t′n

(
1

tn − iy
− tn
t2n + 1

)
+ α

∣∣∣∣∣ . (4.25)

Proof. For y > 0 we observe that

ℑ
(∑

n

t′n

(
1

tn − iy
− tn
t2n + 1

)
+ α

)
=
∑

n

(
y

t2n + y2

)
+ ℑ(α) > ℑ(α).

Since ℑ(α) > 0, we get

lim
y→+∞

log
∣∣∣∣∣∑

n

t′n

(
1

tn − iy
− tn
t2n + 1

)
+ α

∣∣∣∣∣ > 0.

and hence

lim sup
y→+∞

y−1 log
∣∣∣∣∣∑

n

t′n

(
1

tn − iy
− tn
t2n + 1

)
+ α

∣∣∣∣∣ = 0.

Thanks to (2.12) we obtain

b = − lim sup
y→+∞

y−1 log |Θ(iy)|

= − lim sup
y→+∞

y−1 log

∣∣∣∣∣∣
∑

n t
′
n

(
1

tn−iy
− tn

t2
n+1

)
+ α∑

n t′n
(

1
tn−iy

− tn

t2
n+1

)
+ α

∣∣∣∣∣∣
= − lim sup

y→+∞
y−1 log

∣∣∣∣∣∑
n

t′n

(
1

tn − iy
− tn
t2n + 1

)
+ α

∣∣∣∣∣
− lim sup

y→+∞
y−1 log

∣∣∣∣∣∑
n

t′n

(
1

tn − iy
− tn
t2n + 1

)
+ α

∣∣∣∣∣
= − lim sup

y→+∞
y−1 log

∣∣∣∣∣∑
n

t′n

(
1

tn − iy
− tn
t2n + 1

)
+ α

∣∣∣∣∣ ,
as we wanted to show.
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Proposition 4.13. Consider a meromorphic inner function Θ(z) given by

Θ(z) =
∑

n t
′
n

(
1

tn−z
− tn

t2
n+1

)
+ α∑

n t′n
(

1
tn−z

− tn

t2
n+1

)
+ α

, (4.26)

where ({tn} , {t′n}) is a bandlimit pair and ℑ(α) > 0. Let b be the logarithmic
residue of Θ(z). If

lim
y→+∞

ℑ

∑n
t′
n

(tn−iy)3∑
n

t′
n

(tn−iy)2

 = c > 0, (4.27)

then b ≥ 2c > 0.

Proof. Consider the representation of Θ(z) given in (4.7). A simple calcula-
tion gives

−iΘ
′(iy)

Θ(iy) = −i
2iℑ(α)∑n

t′
n

(tn−iy)2(∑
n t′n

(
1

tn−iy
− tn

t2
n+1

)
+ α

) (∑
n t′n

(
1

tn−iy
− tn

t2
n+1

)
+ α

) .
Recalling that

lim
y→+∞

(∑
n

t′n

(
1

tn − iy
− tn
t2n + 1

)
+ α

)
= 0,

lim
y→+∞

(∑
n

t′n

(
1

tn − iy
− tn
t2n + 1

)
+ α

)
= 2iℑ(α),

we obtain

lim
y→+∞

(
−iΘ

′(iy)
Θ(iy)

)
= lim

y→+∞

−i
∑

n
t′
n

(tn−iy)2∑
n t′n

(
1

tn−iy
− tn

t2
n+1

)
+ α


= lim

y→+∞

−2i
∑

n
t′
n

(tn−iy)3∑
n

t′
n

(tn−iy)2

 ,
where in the last step we used L’Hopital’s rule. Hence we get

lim
y→+∞

ℜ
(

−iΘ
′(iy)

Θ(iy)

)
= lim

y→+∞
ℜ

−2i
∑

n
t′
n

(tn−iy)3∑
n

t′
n

(tn−iy)2


= 2 lim

y→+∞
ℑ

∑n
t′
n

(tn−iy)3∑
n

t′
n

(tn−iy)2


≥ 2c
> 0
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Then for every ϵ > 0 we set bϵ = 2c − ϵ, and there exists Mϵ > 0 such that
−ℜ

(
iΘ′(iy)

Θ(iy)

)
> bϵ ∀y > Mϵ. Thanks to this we obtain

bϵ(y −Mϵ) =
∫ y

Mϵ

bϵ ds ≤
∫ y

Mϵ

−ℜ
(
i
Θ′(is)
Θ(is)

)
ds = −ℜ

(∫ y

Mϵ

i
Θ′(is)
Θ(is) ds

)

= −ℜ (log(Θ(iy)) − log(Θ(iMϵ))) = −ℜ
(

log
(

Θ(iy)
Θ(iMϵ)

))

= − log
∣∣∣∣∣ Θ(iy)
Θ(iMϵ)

∣∣∣∣∣ = − log |Θ(iy)| + log |Θ(iMϵ)|

≤ − log |Θ(iy)| ,

where in the last step we observed that log |Θ(iMϵ)| < 0 since |Θ(iMϵ)| < 1.
Then we get

−y−1 log |Θ(iy)| + y−1Mϵbϵ ≥ bϵ.

Recalling (2.12), we have that b is given by

b = lim sup
y→+∞

(
−y−1 log |Θ(iy)|

)
= lim sup

y→+∞

(
−y−1 log |Θ(iy)| + y−1Mϵbϵ

)
≥ bϵ

> 0.

Hence we get b ≥ 2c− ϵ for every ϵ > 0, and we can conclude that

b ≥ 2c > 0.

4.4 Sampling formulas in terms of the sampling points

In this section we introduce many new sampling formulas for non uniform
sampling. In Theorems 4.14 we derive the expression of the sampling for-
mula of Theorem 4.2 in terms of the sampling points, as we had set out
in Section 4.2. Moreover we introduce also new sampling formulas directly
expressed in terms of the sampling points (Theorems 4.17, 4.18 and 4.19).
These sampling formulas result to have less strong constraints than Paley-
Wiener-Levinson theorem for a finite, but big as desired, subsequence of the
sampling sequence.

Theorem 4.14. Let {tn}n ⊂ R and {t′n}n ⊂ (0,∞) be two sequences with
the following properties:

1. {tn}n is a strictly increasing sequence with no finite accumulation point;
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2. t′n > 0 ∀n ∈ Z;

3. ∑n
t′
n

1+t2
n
< ∞;

4. ∑n t
′
n = +∞;

5. b := − lim supy→+∞ y−1 log
∣∣∣∑n t

′
n

(
1

tn−iy
− tn

t2
n+1

)
+ α

∣∣∣ > 0,
where
α = − limy→+∞

∑
n t

′
n

(
1

tn+iy
− tn

t2
n+1

)
.

Then for every a ∈ R s.t. 0 < a ≤ b
2 and for every G ∈ PWa we have

G(z) =
∑

n

t′ne
ia(tn−z)

(tn − z)
(∑

m t′m
(

1
tm−z

− tm

t2
m+1

)
+ α

)G(tn).

The series converges in norm of PWa.
Proof. First of all we observe that a necessary condition for property (5) is
that

lim
y→+∞

∑
n

t′n

(
1

tn − iy
− tn
t2n + 1

)
+ α = 0,

and that α actually verifies this condition.
Thanks to properties (1)-(4) we have that ({tn} , {t′n}) is a bandlimit

pair, and thanks to Theorem 4.6 we get that the function

Θ(z) =
∑

n t
′
n

(
1

tn−z
− tn

t2
n+1

)
+ α∑

n t′n
(

1
tn−z

− tn

t2
n+1

)
+ α

(4.28)

is a meromorphic inner function such that {tn}n is the sequence of solutions
of Θ(t) = 1 for t ∈ R. By Lemma 4.12 we have that the logarithmic residue
of Θ(z) is equal to b. Again thanks to Theorem 4.6 we have

Θ′(tn) = 2iℑ(α)
t′n

,

and by a simple calculation we get

1 − Θ(z) = 2iℑ(α)∑
n t′n

(
1

tn−z
− tn

t2
n+1

)
+ α

.

Fix any a ∈ R s.t. 0 < a ≤ b
2 (we can do this since b > 0). Hence by

Theorem 4.2 for every G ∈ PWa we finally obtain

G(z) =
∑

n

(1 − Θ(z))eia(tn−z)

(tn − z)Θ′(tn) G(tn)

=
∑

n

t′ne
ia(tn−z)

(tn − z)
(∑

m t′m
(

1
tm−z

− tm

t2
m+1

)
+ α

)G(tn).
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By the same theorem we obtain also that the series converges in norm of
PWa.

Thanks to Theorem 4.14, given a Paley-Wiener function and a suitable
bandlimit pair ({tn} , {t′n}) (where the points of the sequence {tn}n are gen-
erally not equidistant), it is possible to rebuild exactly and uniquely the
function from its values on the points on the sequence {tn}n, and the sam-
pling formula is expressed only in terms of these values and the bandlimit
pair.

Example 4.15.

We consider the bandlimit pair

{tn}n = {n}
{t′n}n = {tanh(π)}.

Properties (1), (2), (4) of Theorem 4.14 are easily verified. For property (3)
we have

∑
n

t′n
1 + t2n

= tanh(π)
∑

n

1
1 + n2 = π tanh(π) coth(π) = π.

For property (5) we have

α = − tanh(π) lim
y→+∞

∑
n

(
1

n− iy
− n

n2 + 1

)
= −iπ tanh(π) lim

y→+∞
coth(πy)

= −iπ tanh(π),

and then ℑ(α) > 0. Moreover for y > 0 we obtain∣∣∣∣∣∑
n

t′n

(
1

tn − iy
− tn
t2n + 1

)
+ α

∣∣∣∣∣ =
∣∣∣∣∣tanh(π)

(∑
n

(
1

n− iy
− n

n2 + 1

)
− iπ

)∣∣∣∣∣
= tanh(π) |iπ coth(πy) − iπ|

= 2π tanh(π)
e2πy − 1

Consequently there exists A > 0 such that for y big enough we get∣∣∣∣∣∑
n

t′n

(
1

tn − iy
− tn
t2n + 1

)
+ α

∣∣∣∣∣ < Ae−2πy.

Hence also property (5) of Theorem 4.14 is verified, with c = 2π, and then
the theorem can be applied. We set a = c

2 = π, and hence for any G ∈ PWπ
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we obtain

G(z) =
∑

n

t′ne
ia(tn−z)

(tn − z)
(∑

n t′n
(

1
tn−z

− tn

t2
n+1

)
+ α

)G(tn)

=
∑

n

tanh(π)eiπ(n−z)

(n− z)
(
tanh(π)∑n

(
1

n−z
− n

n2+1

)
+ iπ tanh(π)

)G(n)

=
∑

n

eiπ(n−z)

(n− z) (−π cot(πz) + iπ)G(n)

=
∑

n

(1 − e2πiz)eiπ(n−z)

2πi(n− z) G(n)

=
∑

n

(1 − e−2πi(n−z))eiπ(n−z)

2πi(n− z) G(n)

=
∑

n

sin(π(n− z))
π(n− z) G(n),

that is the classical sampling formula for the Paley-Wiener space PWπ.

The result of Theorem 4.14 is mainly based on Theorem 3.1. But in
Chapter 3 we proved also other inclusion properties. Theorems 4.17, 4.18
and 4.19 introduce different sampling formulas derived mainly from the in-
clusion property in Theorem 3.3. Before introducing these 3 theorems we
need to recall the well-known Phragmen-Lindelof theorem (see [51], p. 80).
Theorem 4.16 (Phragmen-Lindelof). Let F (z) be continuous on a closed
sector of opening π/µ and analytic in the open sector. Suppose that on the
bounding rays of the sector,

|F (z)| ≤ M,

and that for some ν < µ,
|F (z)| ≤ erν

whenever z lies inside the sector and |z| = r is sufficiently large. Then
|F (z)| ≤ M throughout the sector.
Theorem 4.17. Let a > 0 and let K = {nk}k=0,...,K be a finite set of con-
secutive integers of any size. Let {tn}n be a strictly increasing sequence such
that tn = π

a
n ∀n ∈ Z \ K, and that

π

a
(n0 − 1) < tn0 < ... < tnK

<
π

a
(nK + 1).

Then ∀G ∈ PWa the following sampling formula holds:

G(z) =
∑

n

 ∏
m ̸=n

tm − z

tm − tn
e

z−tn
π
a m

G(tn),

and the convergence of the series is uniform on the compact subsets of C.
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Proof. We prove the theorem supposing that t0 = 0. The proof for the case
t0 ̸= 0 can easily derived from this one.

It is immediate to see that the couple ({tn} , {t′n = 1}) is a bandlimit
pair, since it verifies all the conditions required in Definition 4.5. Let
E(z) = e−iaz (so that PWa = B(E)) and

E1(z) =
(∑

n

(
1

tn − z
− tn
t2n + 1

)
+ α

)
z
∏
n̸=0

(
tn − z

π
a
n

)
e

z
π
a n , (4.29)

where α = ∑
n∈K

(
tn

t2
n+1 −

π
a

n

(π
a

n)2
+1

)
+ ia. The product in (4.29) converges,

since
z
∏
n̸=0

(
π
a
n− z
π
a
n

)
e

z
π
a n = sin(az)

a
, (4.30)

and tn ̸= π
a
n only for a finite number of n ∈ Z. Proceeding as in the proof

of Theorem 4.8, we easily obtain that E(z) is a Hermite Biehler function.
We easily observet that

E1(z) =

∑
n

 1
tn − z

−
π
a
n(

π
a
n
)2

+ 1

+ ia

 z ∏
n̸=0

(
tn − z

π
a
n

)
e

z
π
a n

We want to show that E(z) and E1(z) satisfy the conditions of Theorem
3.3, which means that

∣∣∣ E(x)
E1(x)

∣∣∣ < M for all x ∈ R and for some M > 0, that
E(z)
E1(z) is of bounded type on C+ and that

lim sup
y→+∞

y−1 log
∣∣∣∣∣ E(iy)
E1(iy)

∣∣∣∣∣ ≤ 0.

We start by proving that
∣∣∣ E(x)

E1(x)

∣∣∣ < M for all x ∈ R and for some M > 0.
We can write

E1(z) =
∑
n̸=0

 z
π
a
n

∏
m̸=0,n

(
tm − z

π
a
m

)
e

z
π
a m −

π
a
n(

π
a
n
)2

+ 1
z
∏

m̸=0

(
tm − z

π
a
m

)
e

z
π
a m


−
∏

m̸=0

(
tm − z

π
a
m

)
e

z
π
a m + iaz

∏
m ̸=0

(
tm − z

π
a
m

)
e

z
π
a m .

First suppose that tn0 ̸= π
a
n0 for some n0 ̸= 0, and that tn = π

a
n for n ̸= n0.

Then
E1(z) = z

π
a
n0

∏
m ̸=0,n0

(
π
a
m− z
π
a
m

)
e

z
π
a m + tn0 − z

π
a
n0 − z

S(z),
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where

S(z) = −
π
a
n0(

π
a
n0
)2

+ 1
z
∏

m ̸=0

(
π
a
m− z
π
a
m

)
e

z
π
a m

+
∑

n ̸=n0

 z
π
a
n

∏
m̸=0,n

(
π
a
m− z
π
a
m

)
e

z
π
a m −

π
a
n(

π
a
n
)2

+ 1
z
∏

m ̸=0

(
π
a
m− z
π
a
m

)
e

z
π
a m


−
∏

m̸=0

(
π
a
m− z
π
a
m

)
e

z
π
a m + iaz

∏
m ̸=0

(
π
a
m− z
π
a
m

)
e

z
π
a m .

Then, for x ∈ R, since trivially

lim
x→±∞

tn0 − x
π
a
n0 − x

= 1,

we get

lim
x→±∞

|E1(x)|

= lim
x→±∞

∣∣∣∣∣∣
(∑

n

(
1

π
a
n− x

−
π
a
n

(π
a
n)2 + 1

)
+ ia

)
x
∏

m ̸=0

(
π
a
m− x
π
a
m

)
e

x
π
a m

∣∣∣∣∣∣
= lim

x→±∞

∣∣∣∣−a(−i+ cot (ax))1
a

sin (ax)
∣∣∣∣

= lim
x→±∞

∣∣∣−e−iax
∣∣∣

= 1.

Considering that E1(x) is a continuous function with no zeros on the real
line, we can conclude that it has a lower bound M > 0 such that E1(x) > M
∀x ∈ R.

Now, suppose nk ̸= 0 ∀k = 0, ..., K. We iterate on k = 0, ..., K, beginning
from k = 0. We start considering the sequence {tn}n = {n}, and for every
iteration we replace nk with tnk

. Let {tk,n}n be the sequence obtained after
having replaced nk with tnk

, and define

E1,k(z) =

∑
n

 1
tk,n − z

−
π
a
n(

π
a
n
)2

+ 1

+ ia

 z ∏
n̸=0

(
tk,n − z

n

)
e

z
π
a n ,

so that E1,K(z) = E1(z). The first iteration is clearly given by the case
described above, with t0,n0 = n0 and t0,n = n for n ̸= n0. For k ≥ 1 we get

E1,k(z) = z
π
a
nk

∏
m ̸=0,nk

(
tk−1,m − z

π
a
m

)
e

z
π
a m + tk,nk

− z
π
a
nk − z

Sk(z),
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where

Sk(z) = −
π
a
nk(

π
a
nk

)2
+ 1

z
∏

m ̸=0

(
tk−1,m − z

π
a
m

)
e

z
π
a m

+
∑

n̸=nk

 z
n

∏
m ̸=0,n

(
tk−1,m − z

π
a
m

)
e

z
π
a m −

π
a
n(

π
a
n
)2

+ 1
z
∏

m̸=0

(
tk−1,m − z

π
a
m

)
e

z
π
a m


−
∏

m ̸=0

(
tk−1,m − z

π
a
m

)
e

z
π
a m + iaz

∏
m ̸=0

(
tk−1,m − z

π
a
m

)
e

z
π
a m .

Therefore, proceeding as above, for x ∈ R we trivially get

lim
x→±∞

tk,nk
− x

π
a
nk − x

= 1,

and hence, observing that tk−1,nk
= π

a
nk, we obtain

lim
x→±∞

|E1,k(x)|

= lim
x→±∞

∣∣∣∣∣∣∣
∑

n

 1
tk−1,n − x

−
π
a
n(

π
a
n
)2

+ 1

+ ia

x ∏
m̸=0

(
tk−1,m − x

π
a
m

)
e

z
π
a m

∣∣∣∣∣∣∣
= lim

x→±∞
|E1,k−1(z)|

= 1.

Then in particular we get limx→±∞ |E1(x)| = limx→±∞ |E1,K(x)| = 1. Con-
sidering that E1(x) is a continuous function with no zeros on the real line,
similarly to above we can conclude that E1(x) has a lower bound M > 0
such that

|E1(x)| > M ∀x ∈ R.

Therefore we finally obtain that∣∣∣∣∣ E(x)
E1(x)

∣∣∣∣∣ < M ∀x ∈ R. (4.31)

Now we want to show that E(z)
E1(z) is of bounded type on the upper half

plane. We recall (4.30) and we write

E(z)
E1(z)

=


∑

n

 1
tn − z

−
π
a
n(

π
a
n
)2

+ 1

+ ia

 z
∏

n ̸=0

(
tn − z

π
a
n

)
e

z
π
a n

 eiaz


−1

=
(
N(z)sin(az)

a
eiaz

∏
n∈K

(
tn − z
π
a
n− z

))−1

,
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where

N(z) =

∑
n

 1
tn − z

−
π
a
n(

π
a
n
)2

+ 1

+ ia

 .
We observe that sin(az)eiaz is obsiously bounded on C+. We have

N(x+ iy) =

∑
n

 tn − x+ iy

(tn − x)2 + y2 −
π
a
n(

π
a
n
)2

+ 1

+ ia

 ,
and hence we observe that ℑ(N(x+ iy)) ≥ a > 0 for all y ≥ 0. Then we get
that |N(z)| ≥ a for all z ∈ C+. Now we write

E(z)
E1(z)

= a

sin(az)eiazN(z)
∏

n∈K

(
π
a
n− z

tn − z

)
.

Since 1
N(z) and sin(az)eiaz are bounded on C+, we get that a 1

N(z)
sin(az)eiaz is of

bounded type on C+. The product ∏n∈K

( π
a

n−z

tn−z

)
is of bounded type since

all the polynomials and their reciprocals are of bounded type on C+, as we
pointed out in section 2.4. Then we conclude that E1(z)

E(z) is of bounded type
on C+ since the product of two functions of bounded type is obviously of
bounded type.

It remains to show that E1(z)
E(z) is of non-positive mean type. We have that

lim sup
y→+∞

y−1 log |E1(iy)|

= lim sup
y→+∞

y−1 (log |s(y) + ia| + log | sin(iay)| + f(y))
(4.32)

where

s(y) =
∑

n

 1
tn − iy

−
π
a
n(

π
a
n
)2

+ 1

 ,
f(y) =

∑
n∈K

log
∣∣∣∣∣tn − iy

π
a
n

∣∣∣∣∣− log
∣∣∣∣∣

π
a

− iy
π
a
n

∣∣∣∣∣ .
It is easy to check that

lim sup
y→+∞

y−1 log | sin(iay)| = a,

lim sup
y→+∞

y−1f(y) = 0.
(4.33)

Define δ as the maximum distance between two successive elements of {tn}n:

δ = max
n∈Z

(tn+1 − tn).

57



“thesis” — 2022/4/11 — 20:00 — page 58 — #68

Chapter 4. Sampling formulas for the Paley-Wiener spaces

We observe that δ is for sure finite since by definition tn+1 − tn ̸= π
a

only for
a finite number of n ∈ Z. Then for y > 0 we have

log |s(y) + ia| = log

∣∣∣∣∣∣∣
∑

n

 tn + iy

t2n + y2 −
π
a
n(

π
a
n
)2

+ 1

+ ia

∣∣∣∣∣∣∣
≥ log

∣∣∣∣∣∣∣ℑ
∑

n

 tn + iy

t2n + y2 −
π
a
n(

π
a
n
)2

+ 1

+ ia


∣∣∣∣∣∣∣

= log
(
a+ y

∑
n

1
t2n + y2

)

≥ log

a+ y
∑

n

1(
π
a
n+ δ

)2
+ y2


= log

(
a− ia

2 (cot(a(δ − iy)) − cot(a(δ + iy)))
)
.

Since
lim

y→∞
a− ia

2 (cot(a(δ − iy)) − cot(a(δ + iy))) = 2a,
we get

lim sup
y→+∞

y−1 log

∣∣∣∣∣∣∣
∑

n

 1
tn − iy

−
π
a
n(

π
a
n
)2

+ 1

+ ia

∣∣∣∣∣∣∣
≥ lim sup

y→+∞
y−1 log

(
a− ia

2 (cot(a(δ − iy)) − cot(a(δ + iy)))
)

= 0.

(4.34)

From (4.32), (4.33), (4.34) we obtain
lim sup
y→+∞

y−1 log |E1(iy)| ≥ a.

Then we can conclude that

lim sup
y→+∞

y−1 log
∣∣∣∣∣ E(iy)
E1(iy)

∣∣∣∣∣ = lim sup
y→+∞

y−1 log
∣∣∣∣∣ eay

E1(iy)

∣∣∣∣∣
= lim sup

y→+∞
y−1 (ay − log |E1(iy)|)

= a− lim sup
y→+∞

(
y−1 log |E1(iy)|

)
≤ 0.

(4.35)

We have shown that the conditions of Theorem 3.3 are satisfied for E(z)
and E1(z). Then for every G ∈ PWa we get

G(z) =
∑

n

E1(z)(1 − Θ1(z))
E1(tn)Θ′

1(tn)(tn − z)G(tn),
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where

Θ1(z) = E#
1 (z)
E1(z)

=
∑

n

(
1

tn−z
− tn

t2
n+1

)
+ α∑

n

(
1

tn−z
− tn

t2
n+1

)
+ α

, (4.36)

and the convergence of the series is uniform on the compact subsets of C.
Thanks to Theorem 4.6 we have

Θ′
1(tn) = 2iℑ(α) = 2ia,

and by (4.29), for n ̸= 0 we have

E1(tn) = tn
e

z
π
a n(

π
a
n
) ∏

m̸=0,n

(
tm − tn

π
a
m

)
e

tn
π
a m ,

and for n = 0 we have

E1(0) =
∏

m̸=0

 tm(
π
a
m
)
 .

Moreover, thanks to (4.36) and (4.29), by a simple calculation we get

E1(z)(1 − Θ1(z)) = 2iaz
∏

m ̸=0

(
tm − z

π
a
m

)
e

z
π
a m .

Hence we finally obtain

G(z) =
∑

n

E1(z)(1 − Θ1(z))
E1(tn)Θ′

1(tn)(tn − z)G(tn)

=
∏

m̸=0

tm − z

tm
e

z−tn
π
a m

G(0) +
∑
n̸=0

z

tn

 ∏
m ̸=0,n

tm − z

tm − tn
e

z−tn
π
a m

G(tn).

=
∑

n

 ∏
m̸=n

tm − z

tm − tn
e

z−tn
π
a m

G(tn).

Theorem 4.18. Fix a > 0, and let {tn}n be a sequence such that
∣∣∣π

a
n− tn

∣∣∣ ≤
δ ∀n ∈ Z for some δ < π

2a
. Let A > 0 be the constant defined in Proposition

4.10 with respect to the bandlimit pair ({tn}n, {t′n}n) with t′n = 1 ∀n ∈ Z.
Suppose that there exists a constants K > 0 such that∣∣∣∣∣∣χ(x)

∏
n̸=0

(
1 − x

tn

)
e

x
π
a n

∣∣∣∣∣∣ ≥ K,

for tn0 + 1
2A ≤ x ≤ tn0+1 − 1

2A, ∀n0 ∈ Z,

(4.37)

59



“thesis” — 2022/4/11 — 20:00 — page 60 — #70

Chapter 4. Sampling formulas for the Paley-Wiener spaces

where χ(x) = x if t0 = 0 and χ(x) =
(
1 − x

t0

)
if t0 ̸= 0. Then for every

G ∈ PWa we get

G(z) =
∑

n

 ∏
m̸=n

tm − z

tm − tn
e

z−tn
π
a m

G(tn),

and the convergence of the series is uniform on the compact subsets of C.

Proof. We prove the theorem supposing that t0 = 0. The proof for the case
t0 ̸= 0 can easily derived from this one.

Let E(z) = e−iaz. Consider the couple ({tn}n, {t′n}n) with t′n = 1 ∀n ∈ Z:
it is easy to see that it is a bandlimit pair since it verifies all the conditions re-
quired in Section 4.2. Let Θ(z) be a meromorphic inner function associated
to this bandlimit pair accoding to Theorem 4.6, given by:

Θ1(z) =
∑

n

(
1

tn−z
− tn

t2
n+1

)
+ α∑

n

(
1

tn−z
− tn

t2
n+1

)
+ α

, (4.38)

where α = ∑
n̸=0

(
tn

t2
n+1 − 1

tn

)
+ ia. Thanks to Theorem 4.8, we know that

the function

Ẽ1(z) =
(∑

n

(
1

tn − z
− tn
t2n + 1

)
+ α

)
(4.39)

is a de Branges function of Θ(z). We define

E1(z) =Ẽ1(z)
∏
n̸=0

e
z

π
a n

− z
tn

=
∑

n

(
1

tn − z
− tn
t2n + 1

)
+
∑
n̸=0

(
tn

t2n + 1 − 1
tn

)
+ ia


z
∏
n̸=0

(
tn − z

tn

)
e

z
tn

∏
n̸=0

e
z

π
a n

− z
tn

=
−1

z
+
∑
n̸=0

( 1
tn − z

− 1
tn

)
+ ia

 z ∏
n̸=0

(
tn − z

tn

)
e

z
π
a n .
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The product ∏n ̸=0 e
z

π
a n

− z
tn converges since∣∣∣∣∣∣
∏
n̸=0

e
z

π
a n

− z
tn

∣∣∣∣∣∣ =
∏
n̸=0

e
z| π

a n−tn|
π
a |ntn|

≤
∏
n̸=0

e
z

2|ntn|

≤
∏
n≥1

e

z
π
a n(n− 1

2)

= e

az
π

∑
n≥1

1
n(n− 1

2)

= e
az log(16)

π ,

where we used the fact that ∑n≥1
1

n(n− 1
2) = log(16). It is easy to see that

also E1(z) is a de Branges function of Θ(z), since

E#
1 (z)
E1(z)

=
Ẽ#

1 (z)∏n ̸=0 e
z

π
a n

− z
tn

Ẽ1(z)
∏

n̸=0 e
z

π
a n

− z
tn

= Ẽ#
1 (z)
Ẽ1(z)

= Θ(z).

We want to show that E(z) and E1(z) satisfy the conditions of Theorem
3.3, which means that

∣∣∣ E(x)
E1(x)

∣∣∣ < M for all x ∈ R and for some M > 0, that
E(z)
E1(z) is of bounded type on C+ and that

lim sup
y→+∞

y−1 log
∣∣∣∣∣ E(iy)
E1(iy)

∣∣∣∣∣ ≤ 0.

We start by proving that E(x)
E1(x) < M for all x ∈ R and for some M > 0.

We recall that the phase function of Θ1(z) is the unique function τ(x) such
that ∀x ∈ R we get

Θ1(x) = e2πiτ(x).

Setting f(x) = − 1
x

+∑
n ̸=0

(
1

tn−x
− 1

tn

)
, we get

e2πiτ(x) = f(x) − ia

f(x) + ia
,

and hence
2πiτ(x) = log

(
f(x) − ia

f(x) + ia

)
+ 2πin(x),

where n(x) is an integer that depends on x. Using the well-known identity

arccot(x) = i

2 log
(
x− i

x+ i

)
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we obtain
τ(x) = 1

2πi log
(
f(x) − ia

f(x) + ia

)
+ n(x)

= 1
2πi log

 f(x)
a

− i
f(x)

a
+ i

+ n(x)

= − 1
π

arccot
(
f(x)
a

)
+ n(x).

Then, recalling that cot(−x) = − cot(x) and that cot(x) = cot(x + nπ)
∀n ∈ Z, we get

cot(πτ(x)) = −f(x)
a

,

which means
f(x) = −a cot(πτ(x)).

Now for n ̸= 0 we set
gn(x) =

(
tn − x

tn

)
e

x
tn ,

and we observe that, for x ̸= tn ∀n ∈ Z, gn(x) is differentiable and we have

g′
n(x)
gn(x) = 1

tn
− 1
tn − x

.

Then, defining g(x) = x
∏

n̸=0 gn(x), we get

g′(x)
g(x) = 1

x
+
∑
n̸=0

1
tn

− 1
tn − x

,

and hence
g′(x)
g(x) = −f(x) = a cot(πτ(x)). (4.40)

Now, fix n0 > 0, and consider x such that tn0 < x < tn0+1. We recall that the
spectral function t(r) of Θ(z) is given by the inverse of the phase function
(t(r) = τ−1(r)), and we observe that t(n) = tn ∀n ∈ Z. We analyze the case
t
(
n0 + 1

2

)
≤ x < tn0+1. Solving (4.40) we get

g(x) = cn0e

∫ x

t(n0+ 1
2) a cot(πτ(s))ds

,

where the real constant cn0 is given by

cn0 = g
(
t
(
n0 + 1

2

))
.

We recall that by Proposition 4.10 we have B ≤ τ ′(x) ≤ A ∀x ∈ R for
some A > 0, B > 0, and that by Proposition 4.11 we have |τ ′′(x)| ≤ D,
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∀x ∈ R, for some D > 0. We recall also the well-known formula of the
second derivative of the inverse function:

g(x) = f−1(x) =⇒ g′′(x) = − f ′′(g(x))
f ′(g(x))3 .

Then for the function t(r) = τ−1(r) we get

|t′′(r)| =
∣∣∣∣∣ τ ′′(t(x))
τ ′(t(x))3

∣∣∣∣∣ ≤ D

B3 =: M0.

Now, by Lemma 4.9 we have t′(n) = π
a
t′n = π

a
∀n ∈ Z, then we observe that

t′(r) > 0 ∀r ∈ Z since t(r) is strictly increasing, and hence for t(n0 + 1
2) ≤

r < tn0+1 we get

t′(r) = t′(n0 + 1) −
∫ n0+1

r
t′′(s)ds ≤ π

a
+M0(n0 + 1 − r).

Recalling that cot(πr) ≤ 0 for n0 + 1
2 ≤ r < n0 + 1, we obtain

|g(x)| = |cn0 |e
∫ x

t(n0+ 1
2) a cot(πτ(s))ds

= |cn0 |e
∫ τ(x)

n0+ 1
2

a cot(πr)t′(r)dr

≥ |cn0|e
∫ τ(x)

n0+ 1
2

a cot(πr)(π
a

+M0(n0+1−r))dr
.

(4.41)

Now we set

h(r) =
(

1 + a

π
M0(n0 + 1 − r)

)
log(sin(π(r − n0)))

+ aM0

π

∫ r

n0+ 1
2

log(sin(π(s− n0)))ds,

and we observe that

d

dr
h(r) =a cot(π(r − n0))

(
π

a
+M0(n0 + 1 − r)

)
− aM0

π
log(sin(π(r − n0)))

+ aM0

π
log(sin(π(r − n0)))

=a cot(πr)
(
π

a
+M0(n0 + 1 − r)

)
,

where in the last step we used the fact that cot(x + nπ) = cot(x) ∀n ∈ Z.
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Hence we can write∫ τ(x)

n0+ 1
2

a cot(πr)
(
π

a
+M0(n0 + 1 − r)

)
dr

=
[(

1 + a

π
M0(n0 + 1 − r)

)
log(sin(π(r − n0)))

+aM0

π

∫ r

n0+ 1
2

log(sin(π(s− n0)))ds
]τ(x)

n0+ 1
2

=
(

1 + a

π
M0(n0 + 1 − τ(x))

)
log(sin(π(τ(x) − n0)))

+ aM0

π

∫ τ(x)

n0+ 1
2

log(sin(π(s− n0)))ds.

Now we set

h1(r) =
(
a

π
M0(n0 + 1 − r)

)
log(sin(π(r − n0)))

+ aM0

π

∫ r

n0+ 1
2

log(sin(π(s− n0)))ds,

so that ∫ τ(x)

n0+ 1
2

a cot(πr)
(
π

a
+M0(n0 + 1 − r)

)
dr

= log(sin(π(τ(x) − n0))) + h1(τ(x)),
and then

|g(x)| ≥ |cn0 |e
∫ τ(x)

n0+ 1
2

a cot(πr)(π
a

+M0(n0+1−r))dr

= |cn0| sin(π(τ(x) − n0))eh1(τ(x)).

Now for t
(
n0 + 1

2

)
≤ x < tn0+1 we have

|E1(x)| = |(f(x) + iπ)g(x)|
∏
n̸=0

e
z

π
a n

− z
tn

≥|cn0| |−a cot(π(τ(x)) + ia| sin(π(τ(x) − n0))

eh1(τ(x)) ∏
n ̸=0

e
x

π
a n

− x
tn

=|cn0| |−a cot(π(τ(x) − n0)) + ia| sin(π(τ(x) − n0))

eh1(τ(x)) ∏
n ̸=0

e
x

π
a n

− x
tn

=|cn0|aeh1(τ(x)) ∏
n̸=0

e
x

π
a n

− x
tn .

Obviously we have h1(n0 + 1
2) = 0, and moreover
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h1(n0 + 1) =aM0

π

∫ n0+1

n0+ 1
2

log(sin(π(s− n0)))ds

=aM0

π

∫ 1

1
2

log(sin(πs))ds

= − aM0 log(2)
2π .

Since

dh1(r)
dr

= a cot(πr) (M0(n0 + 1 − r)) < 0, n0 + 1
2 ≤ r < n0 + 1,

we have that

−aM0 log(2)
2π ≤ h1(r) ≤ 0, n0 + 1

2 ≤ r < n0 + 1,

which means

−aM0 log(2)
2π ≤ h1(τ(x)) ≤ 0, t

(
n0 + 1

2

)
≤ x < tn0+1.

Hence for t
(
n0 + 1

2

)
≤ x < tn0+1 we get

|E1(x)| ≥ |cn0|aeh1(τ(x)) ∏
n ̸=0

e
x

π
a n

− x
tn

≥ |cn0|a2− aM0
2π

∏
n̸=0

e
x

π
a n

− x
tn .

Now, by definition of cn0 we have

cn0 = g
(
t
(
n0 + 1

2

))

= t
(
n0 + 1

2

) ∏
n̸=0

tn − t
(
n0 + 1

2

)
tn

 e t(n0+ 1
2)

tn

= t
(
n0 + 1

2

) ∏
n̸=0

tn − t
(
n0 + 1

2

)
tn

 e t(n0+ 1
2)

π
a n

∏
n̸=0

e
t(n0+ 1

2)
tn

−
t(n0+ 1

2)
π
a n .

Using Proposition 4.10 and recalling that t′(r) = 1
τ ′(t(r)) we get

t
(
n0 + 1

2

)
≥ tn0 +

∫ 1
2

0
t′(r)dr

≥ tn0 + 1
2A,
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and
t
(
n0 + 1

2

)
≤ tn0+1 −

∫ 1
2

0
t′(r)dr

≤ tn0+1 − 1
2A.

Then we have
tn0 + 1

2A ≤ t
(
n0 + 1

2

)
≤ tn0+1 − 1

2A,

and by (4.37) there exists K such that

|cn0| =

∣∣∣∣∣∣t
(
n0 + 1

2

) ∏
n̸=0

tn − t
(
n0 + 1

2

)
tn

 e t(n0+ 1
2)

π
a n

∣∣∣∣∣∣
∏
n̸=0

e
t(n0+ 1

2)
tn

−
t(n0+ 1

2)
π
a n

≥ K
∏
n̸=0

e
t(n0+ 1

2)
tn

−
t(n0+ 1

2)
π
a n .

From this we obtain

|cn0|
∏
n̸=0

e
x

π
a n

− x
tn ≥ K

∏
n̸=0

e
t(n0+ 1

2)
tn

−
t(n0+ 1

2)
π
a n

∏
n̸=0

e
x

π
a n

− x
tn

= K
∏
n̸=0

e
t(n0+ 1

2)−x

tn
+

x−t(n0+ 1
2)

π
a n

= K
∏
n̸=0

e
( π

a n−tn)(t(n0+ 1
2)−x)

tn
π
a n

≥ K
∏
n̸=0

e
−δ

2B( π
a |n|−δ) π

a |n|

= K
∏
n≥1

e
−δ

B( π
a n−δ) π

a n

= Ke
1
B

∑
n≥1

1
π
a n( π

a n−δ)

=: M1 > 0,

(4.42)

where we used the fact that∣∣∣∣t(n0 + 1
2

)
− x

∣∣∣∣ =
∣∣∣∣∣
∫ x

n0+ 1
2

t′(s)ds
∣∣∣∣∣ ≤

∫ n0+1

n0+ 1
2

|t′(s)|ds ≤ 1
2B,

since t′(s) = 1
τ ′(t(s)) <

1
B

thanks to Proposition 4.10, and that ∑n≥1
1

π
a

n( π
a

n−δ)
obviously converges. It is important to underline that M1 is independent on
n0.

Now consider the case tn0 < x ≤ t
(
n0 + 1

2

)
. Similarly to above we have

g(x) = cn0e

∫ x

t(n0+ 1
2) π cot(πτ(s))ds

.
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Recalling that cot(πr) > 0 for n0 < r ≤ n0 + 1
2 , we obtain

|g(x)| = |cn0|e
∫ x

t(n0+ 1
2) a cot(πτ(s))ds

= |cn0|e
∫ τ(x)

n0+ 1
2

a cot(πr)t′(r)dr
.

= |cn0|e−
∫ n0+ 1

2
τ(x) a cot(πr)t′(r)dr

.

We observe that

t′(r) = t′(n0) +
∫ r

n0
t′′(s)ds ≤ π

a
+M0(r − n0),

and hence we get

|g(x)| ≥ |cn0 |e−
∫ n0+ 1

2
τ(x) a cot(πr)(π

a
+M0(r−n0))dr

.

From this inequality, proceeding similarly to the case t
(
n0 + 1

2

)
≤ x < tn0+1

after equation (4.41), we obtain that there exists M3, independent on n0,
such that

|E1(x)| ≥ M2 > 0.
Then, for tn0 < x < tn0+1, we finally have

|E1(x)| ≥ min(M1,M2) =: M3 > 0, (4.43)

where M3 doesn’t depend on n0.
For the case n0 < 0 we consider the function the function g(x) on the

interval tn0−1 < x < tn0 and, proceeding in a completely analogous way
to the case n0 > 0, we get the same result of (4.43). Then we set M4 =
inf{|E1(x)|, t−1 < x < t1}, and we observe that M4 > 0 since E1(z) doesn’t
have zeros on the real line. Finally we set M = min{M3,M4} > 0, and
recalling that E1(z) is continuous everywhere, and hence in particular on
z = tn ∀n ∈ Z, we can conclude that

|E1(x)| ≥ M ∀x ∈ R. (4.44)

Therefore we finally obtain that∣∣∣∣∣ E(x)
E1(x)

∣∣∣∣∣ < M ∀x ∈ R. (4.45)

Now we want to show that E(z)
E1(z) is of bounded type on the upper half

plane. We write

E(z)
E1(z)

=
(∑

n

(
1

tn − z
− tn
t2n + 1

)
+ ia

)
z

∏
n̸=0

(
tn − z

tn

)
e

z
π
a n

 eiaz

−1

=
(
N(z)P (z)e−iaz

)−1
,
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where

P (z) = z

∏
n̸=0

(
tn − z

tn

)
e

z
π
a n

 e2iaz,

N(z) :=
(∑

n

(
1

tn − z
− tn
t2n + 1

)
+ ia

)
.

We can write N(z) as

N(x+ iy) =
(∑

n

(
tn − x+ iy

(tn − x)2 + y2 − tn
t2n + 1

)
+ ia

)
,

and hence we observe that ℑ(N(x+ iy)) ≥ a > 0 for all y ≥ 0. Then we get
that |N(z)| ≥ a for all z ∈ C+.

Now we want to apply the Phragmen-Lindelof theorem (i.e., Theorem
(4.16)) to the function P (z) on the closed sector Ω1 = {z = x + iy : x ≥
0, y ≥ 0}. For x ∈ R we have

|P (x)| =
∣∣∣∣∣E1(x)
E(x)

∣∣∣∣∣ 1
|N(x)| ≤ 1

aM
=: P1.

Moreover, for y ≥ 0 we get

|P (iy)| = e−2ayy
∏
n≥1

∣∣∣∣1 − iy

tn

∣∣∣∣
∣∣∣∣∣1 − iy

t−n

∣∣∣∣∣
= e−2ayy

∏
n≥1

(
1 + y2

t2n

) 1
2
(

1 + y2

t2−n

) 1
2

≤ e−2ayy
∏
n≥1

(
1 + y2

π2

a2 (n− 1
2)2

)
= e−2ayy cosh(ay).

The function e−2iayy cosh(ay) is obviously bounded for y > 0, and then there
exists P2 > 0 so that |P (z)| < P2 for y ≥ 0. Given a sequence of complex
numbers {zn}n all different from zero, the greatest lower bound of positive
numbers γ for which the series

∑
n

1
|zn|γ

is convergent is called the exponent of convergence of the sequence {zn}n

(see definition in [51] p. 66). For all γ > 1 the zeros of P (z) satisfy

∑
n̸=0

1
|tn|γ

≤
∑
n̸=0

1(∣∣∣π
a
n
∣∣∣− π

2a

)γ < ∞,
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while for γ = 1 we have ∑
n̸=0

1∣∣∣π
a
n
∣∣∣+ π

2a

≤
∑
n̸=0

1
|tn|

,

and the sum on the right side diverges since the sum on the left side obviously
diverges. Then the exponent of convergence of the zeros of P (z) is λ = 1,
and thanks to Theorem 6 in [51] (p. 69) we get that the canonical product∏

n̸=0

(
tn − z

tn

)
e

z
tn

has order ρ = 1. From this we easily obtain that also P (z) has order ρ = 1.
Therefore |P (r)| ≤ er1+ϵ for every ϵ > 0. In particular we can take ϵ = 1

2 , so
that |P (|z|)| ≤ e|z|

3
2 .

Finally we are in the conditions to apply Theorem (4.16) to the function
P (z) on the sector Ω1. Indeed we have shown that |P (x)| ≤ P1 for x ∈ R
and |P (iy)| ≤ P2 for y ≥ 0. Since the bounding rays of the sector Ω1 are
the semiaxis {y = 0, x ≥ 0} and {x = 0, y ≥ 0}, setting P0 = max(P1, P2),
we get |P (z)| ≤ P0 on the bounding rays of Ω1. Moreover the opening of Ω1

is π
2 and |P (z)| ≤ e|z|

3
2 for all z ∈ C, hence ν = 3

2 and µ = 2 according to
the definition of ν and µ in the statement of Theorem (4.16), and we have
ν < µ as required. Then all the conditions of the theorem are satisfied for the
sector Ω1, and we get |P (z)| ≤ P0 for z ∈ Ω1. Similarly we get |P (z)| ≤ P0
for z ∈ Ω2 := {z = x + iy : x ≤ 0, y ≥ 0}, and therefore |P (z)| ≤ P0 for all
z ∈ C+. We can conclude that E1(z)

E(z) is of bounded type on C+, since

E(z)
E1(z)

=
eiaz 1

N(z)

P (z) ,

where eiaz, 1
N(z) and P (z) are all bounded on C+.

It remains to show that E1(z)
E(z) is of non-positive mean type. We have that

lim sup
y→+∞

y−1 log |E1(iy)|

= lim sup
y→+∞

y−1

log |s1(y) + α| + log |y| + s2(y) +
∑
n ̸=0

z
π
a
n

 , (4.46)

where
s1(y) =

∑
n

(
1

tn − iy
− tn
t2n + 1

)
,

s2(y) =
∑
n̸=0

log
∣∣∣∣tn − iy

tn

∣∣∣∣ ,
α =

∑
n̸=0

(
1
tn

− tn
t2n + 1

)
+ ia.
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We observe that

s2(y) =
∑
n̸=0

log
∣∣∣∣tn − iy

tn

∣∣∣∣
=
∑
n̸=0

log
(

1 + y2

t2n

) 1
2

≥ 1
2
∑
n̸=0

log
(

1 + y2

(π
a
(|n| + 1

2))2

)

=
∑
n≥1

log
(

1 + y2

(π
a
(n+ 1

2))2

)

= log
∏
n≥1

(
1 + y2

(π
a
(n+ 1

2))2

)

= log π
2 cosh(ay)
π2 + 4a2y2 .

Since

lim sup
y→+∞

y−1π
2 cosh(ay)
π2 + 4a2y2 = a,

we get
lim sup
y→+∞

y−1s2(y) ≥ a. (4.47)

Moreover for y > 0 we have

log |s1(y) + α| = log
∣∣∣∣∣∑

n

(
tn + iy

t2n + y2 − tn
t2n + 1

)
+ α

∣∣∣∣∣
≥ log

∣∣∣∣∣ℑ
(∑

n

(
tn + iy

t2n + y2 − tn
t2n + 1

)
+ α

)∣∣∣∣∣
= log

(
a+ y

∑
n

1
t2n + y2

)

≥ log

a+ y
∑

n

1(
π
a
n+ δ

)2
+ y2


= log

(
a− ia

2 (cot(a(δ − iy)) − cot(a(δ + iy)))
)
.

Since

lim
y→∞

a− ia

2 (cot(a(δ − iy)) − cot(a(δ + iy))) = 2a,
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we get

lim sup
y→+∞

y−1 log |s1(y) + α|

≥ lim sup
y→+∞

y−1 log
(
a− ia

2 (cot(a(δ − iy)) − cot(a(δ + iy)))
)

= 0.

(4.48)

Obviously we have
lim sup
y→+∞

y−1 log |y| = 0,
∑
n̸=0

z
π
a
n

= 0.
(4.49)

From (4.46), (4.47), (4.48), (4.49) we obtain

lim sup
y→+∞

y−1 log |E1(iy)| ≥ a.

Then we can conclude that

lim sup
y→+∞

y−1 log
∣∣∣∣∣ E(iy)
E1(iy)

∣∣∣∣∣ = lim sup
y→+∞

y−1 log
∣∣∣∣∣ eay

E1(iy)

∣∣∣∣∣
= lim sup

y→+∞
y−1 (ay − log |E1(iy)|)

= a− lim sup
y→+∞

(
y−1 log |E1(iy)|

)
≤ 0.

(4.50)

We have shown that the conditions of Theorem 3.3 are satisfied for E(z)
and E1(z). Then for every G ∈ PWa we get

G(z) =
∑

n

E1(z)(1 − Θ1(z))
E1(tn)Θ′

1(tn)(tn − z)G(tn),

and the convergence of the series is uniform on the compact subsets of C.
Thanks to (4.38) and Theorem 4.6 we have

Θ′(tn) = 2ia,

and by (4.39), for n ̸= 0 we have

E1(tn) = tn
e

z
π
a n(

π
a
n
) ∏

m̸=0,n

(
tm − tn

π
a
m

)
e

tn
π
a m ,

and for n = 0 we have

E1(0) =
∏

m̸=0

 tm(
π
a
m
)
 .
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Moreover, thanks to (4.38) and (4.39), by a simple calculation we get

E1(z)(1 − Θ1(z)) = 2iaz
∏

m̸=0

(
tm − z

π
a
m

)
e

z
π
a m .

Hence we finally obtain

G(z) =
∑

n

E1(z)(1 − Θ1(z))
E1(tn)Θ′

1(tn)(tn − z)G(tn)

=
∏

m ̸=0

tm − z

tm
e

z−tn
π
a m

G(0) +
∑
n̸=0

z

tn

 ∏
m̸=0,n

tm − z

tm − tn
e

z−tn
π
a m

G(tn).

=
∑

n

 ∏
m ̸=n

tm − z

tm − tn
e

z−tn
π
a m

G(tn).

Theorem 4.19. Fix a > 0, and let {tn}n be a sequence such that
∣∣∣π

a
n− tn

∣∣∣ ≤
δ if |n| < M for some δ < π

2a
and some integer M > 0, and

∣∣∣π
a
n− tn

∣∣∣ ≤ δ1
π
a

|n|
if |n| ≥ M , for some δ1 such that 0 < δ1 ≤ π

a
Mδ. Then for every G ∈ PWa

we get

G(z) =
∑

n

 ∏
m̸=n

tm − z

tm − tn
e

z−tn
π
a m

G(tn),

and the convergence of the series is uniform on the compact subsets of C.

Proof. We prove the theorem supposing that t0 = 0, and the proof for the
case t0 ̸= 0 can easily obtained from this one.

First of all we observe that for |n| ≥ M we have
∣∣∣π

a
n− tn

∣∣∣ ≤ δ1
π
a

|n| ≤
π
a

Mδ
π
a

M
= δ. Then, considering the result of Theorem 4.18, it is sufficient to

show that for all ϵ > 0 there exists a constants Kϵ > 0 such that∣∣∣∣∣∣x
∏
n̸=0

(
1 − x

tn

)
e

x
π
a n

∣∣∣∣∣∣ ≥ Kϵ, for tn0 + ϵ ≤ x ≤ tn0+1 − ϵ, ∀n0 ∈ Z.

We define
f(x) = x

∏
n̸=0

(
1 − x

tn

)
e

x
π
a n .

First we consider n0 ≥ M and x such that 0 < tn0 + ϵ ≤ x ≤ tn0+1 − ϵ, for
some fixed ϵ. We observe that

d

ds

(
1 − x

s

)
= x

s2 > 0 for x > 0.
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For n > n0 + 1 we have x
tn
<

tn0+1
tn

< 1 and then 1 − x
tn
> 0, while for n < 0

we easily get 1 − x
tn
> 0. Then we obtain

∣∣∣∣(1 − x

tn

)
e

x
π
a n

∣∣∣∣ ≥

∣∣∣∣∣∣
1 − x

π
a
n− δ1

π
a

|n|

 e x
π
a n

∣∣∣∣∣∣ for n ≤ −M,n > n0 + 1,

∣∣∣∣(1 − x

tn

)
e

x
π
a n

∣∣∣∣ ≥
∣∣∣∣∣
(

1 − x
π
a
n− δ

)
e

x
π
a n

∣∣∣∣∣ for −M < n < 0.

On the other hand for 0 < n < n0 we get x
tn
>

tn0
tn

> 1, hence 1 − x
tn
< 0,

and we obtain

∣∣∣∣(1 − x

tn

)
e

x
π
a n

∣∣∣∣ ≥

∣∣∣∣∣∣
1 − x

π
a
n+ δ1

π
a

n

 e x
π
a n

∣∣∣∣∣∣ for M ≤ n < n0,

∣∣∣∣(1 − x

tn

)
e

x
π
a n

∣∣∣∣ ≥
∣∣∣∣∣
(

1 − x
π
a
n+ δ

)
e

x
π
a n

∣∣∣∣∣ for 0 < n < M.

Now we define

f1(x) =
∏

n≤−M

1 − x
π
a
n− δ1

π
a

|n|

 e x
π
a n ,

f2(x) =
∏

−M<n<0

(
1 − x

π
a
n− δ

)
e

x
π
a n ,

f3(x) =
∏

0<n<M

(
1 − x

π
a
n+ δ

)
e

x
π
a n ,

f4,n0(x) =
(

1 − x

tn0

)(
1 − x

tn0+1

) ∏
M≤n<n0

1 − x
π
a
n+ δ1

π
a

n

 e x
π
a n

∏
n>n0+1

1 − x
π
a
n− δ1

π
a

n

 e x
π
a n ,

fn0(x) =xf1(x)f2(x)f3(x)f4,n0(x).

and then we have

|f(x)| ≥ |fn0(x)| , for tn0 + ϵ < x < tn0+1 − ϵ, ∀n0 > M. (4.51)

73



“thesis” — 2022/4/11 — 20:00 — page 74 — #84

Chapter 4. Sampling formulas for the Paley-Wiener spaces

Moreover we define

g1(x) =
∏

n≤−M

1 − x
π
a
n− δ1

π
a

|n|

 e x
π
a n ,

g2(x) =
∏

−M<n<0

1 − x
π
a
n− δ1

π
a

|n|

 e x
π
a n ,

g3(x) =
∏

0<n<M

1 − x
π
a
n+ δ1

π
a

n

 e x
π
a n ,

g4(x) =
∏

n≥M

1 − x
π
a
n+ δ1

π
a

n

 e x
π
a n ,

g(x) = xg1(x)g2(x)g3(x)g4(x)

= x
∏
n<0

1 − x
π
a
n− δ1

π
a

|n|

 e x
π
a n
∏
n>0

1 − x
π
a
n+ δ1

π
a

n

 e x
π
a n .

Now, for tn0 + ϵ < x < tn0+1 − ϵ we have

fn0(x)
g(x) = f1(x)f2(x)f3(x)f4,n0(x)

g1(x)g2(x)g3(x)g4(x) ,

and we observe that

f1(x)
g1(x) = 1

f2(x)
g2(x) =

∏
−M<n<0

(
1 − x

π
a

n−δ

)
e

x
π
a n

∏
−M<n<0

(
1 − x

π
a

n− δ1
π
a |n|

)
e

x
π
a n

,

f3(x)
g3(x) =

∏
0<n<M

(
1 − x

π
a

n+δ

)
e

x
π
a n

∏
0<n<M

(
1 − x

π
a

n+ δ1
π
a |n|

)
e

x
π
a n

,

f4,n0(x)
g4(x) =

(
1 − x

tn0

) (
1 − x

tn0+1

)∏
n>n0+1

(
1 − x

π
a

n− δ1
π
a n

)
e

x
π
a n

(
1 − x

π
a

n0

)(
1 − x

π
a

(n0+1)

)∏
n>n0+1

(
1 − x

π
a

n+ δ1
π
a n

)
e

x
π
a n

.

Since the products in f2(x)
g2(x) and f3(x)

g3(x) are finite and all the factors in these
products are continuous and different from 0 in the compact sets tn0 + ϵ ≤
x ≤ tn0+1 −ϵ for n0 > M , we get that there exist two constants G2,ϵ, G3,ϵ > 0
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such that∣∣∣∣∣f2(x)
g2(x)

∣∣∣∣∣ ≥ G2,ϵ,

∣∣∣∣∣f3(x)
g3(x)

∣∣∣∣∣ ≥ G3,ϵ, for tn0 + ϵ ≤ x ≤ tn0+1 − ϵ, ∀n0 > M.

For tn0 + ϵ < x < tn0+1 − ϵ and n > n0 + 1 we observe that1 − x
π
a
n− δ1

π
a

n

 e x
π
a n > 0,

1 − x
π
a
n+ δ1

π
a

n

 e x
π
a n > 0,

and that

d

dx

1 − x
π
a
n− δ1

π
a

n

 e x
π
a n

 = −
e

x
π
a n

(
δ1
π
a

n
+ x

)
π
a
n
(

π
a
n− δ1

π
a

n

) < 0,

d

dx

1 − x
π
a
n+ δ1

π
a

n

 e x
π
a n

 = −
e

x
π
a n

(
− δ1

π
a

n
+ x

)
π
a
n
(

π
a
n+ δ1

π
a

n

) < 0.

Hence, recalling that

tn0 ≥ π

a
n0 − δ1

π
a
n0
, tn0+1 ≤ π

a
(n0 + 1) + δ1

π
a
(n0 + 1) ,

we get ∣∣∣∣∣∣
1 − x

π
a
n− δ1

π
a

n

 e x
π
a n

∣∣∣∣∣∣
≥

∏
n>n0+1

1 −
π
a
(n0 + 1) + δ1

π
a

(n0+1) − ϵ

π
a
n− δ1

π
a

n

 e
π
a (n0+1)+ δ1

π
a (n0+1) −ϵ

π
a n ,

and ∣∣∣∣∣∣
1 − x

π
a
n+ δ1

π
a

n

 e x
π
a n

∣∣∣∣∣∣
≤

∏
n>n0+1

1 −
π
a
n0 − δ1

π
a

n0
+ ϵ

π
a
n+ δ1

π
a

n

 e
π
a n0− δ1

π
a n0

+ϵ

π
a n .

Observing also that∣∣∣∣x− π

a
n0

∣∣∣∣ ≤ |x− tn0| +
∣∣∣∣tn0 − π

a
n0

∣∣∣∣ ≤
(
π

a
− ϵ

)
+ δ1

π
a
n0
,
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we obtain

∣∣∣∣∣f4,n0(x)
g4(x)

∣∣∣∣∣ ≥

(
ϵ

π
a

n0+ δ1
π
a n0

)(
ϵ

π
a

(n0+1)+ δ1
π
a (n0+1)

)
(

π
a

−ϵ+ δ1
π
a n0

π
a

n0

)(
π
a

−ϵ+ δ1
π
a (n0+1)

π
a

(n0+1)

) P (n0) := H(n0),

where

P (n0) =
∏

n>n0+1

(
1 −

π
a

(n0+1)+ δ1
π
a (n0+1) −ϵ

π
a

n− δ1
π
a n

)
e

π
a (n0+1)+ δ1

π
a (n0+1) −ϵ

π
a n

(
1 −

π
a

n0− δ1
π
a n0

+ϵ

π
a

n+ δ1
π
a n

)
e

π
a n0− δ1

π
a n0

+ϵ

π
a n

.

As n0 goes to +∞, we easily get

lim
n0→+∞

H(n0) = ϵ2(
π
a

− ϵ
)2 lim

n0→+∞
P (n0) = ϵ2(

π
a

− ϵ
)2 .

Then, given any ϵ0 <
ϵ2

(π
a

−ϵ)2 , there exists Nϵ such that

∣∣∣∣∣f4,n0(x)
g4(x)

∣∣∣∣∣ ≥ ϵ2

(π
a

− ϵ)2 − ϵ0, for tn0 + ϵ ≤ x ≤ tn0+1 − ϵ, ∀n0 > Nϵ.

Define
H1,ϵ = min{H(n0), M < n0 ≤ Nϵ},

H2,ϵ = ϵ2

(π
a

− ϵ)2 − ϵ0,

G4,ϵ = min{H1,ϵ, H2,ϵ}.

Hence we have∣∣∣∣∣f4,n0(x)
g4(x)

∣∣∣∣∣ ≥ G4,ϵ, for tn0 + ϵ ≤ x ≤ tn0+1 − ϵ, ∀n0 > M,

and finally we get∣∣∣∣∣fn0(x)
g(x)

∣∣∣∣∣ ≥ G2,ϵG3,ϵG4,ϵ =: Gϵ,

for tn0 + ϵ ≤ x ≤ tn0+1 − ϵ, ∀n0 > M.

(4.52)
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Now we observe that

g(x) =x
∏
n<0

1 − x
π
a
n− δ1

π
a

|n|

 e x
π
a n
∏
n>0

1 − x
π
a
n+ δ1

π
a

n

 e x
π
a n .

=x
∏
n≥1

1 + x
π
a
n+ δ1

π
a

n

1 − x
π
a
n+ δ1

π
a

n


= − x csch

(
a
√
δ1

)2
sin

(1
2

(
−ax+ a

√
−4δ1 + x2

))
sin

(1
2

(
ax+ a

√
−4δ1 + x2

))
,

(4.53)

where the last step is obtained as follows. First of all we recall the following
well-known products

sin(x) = x
+∞∏
n=1

(
1 − x

πn

)(
1 + x

πn

)
,

csch(x) = 1
x

+∞∏
n=1

n2

n2 + x2

π2

.

Then we have
csch

(
a
√
δ1

)
= 1
a
√
δ1

+∞∏
n=1

n2

n2 + a2δ1
π2

. (4.54)

Moreover, setting

h(x) = sin
(1

2

(
−ax+ a

√
−4δ1 + x2

))
sin

(1
2

(
ax+ a

√
−4δ1 + x2

))
,

we obtain

h(x) =
(1

2

(
−ax+ a

√
−4δ1 + x2

))(1
2

(
ax+ a

√
−4δ1 + x2

))
+∞∏
n=1

(
1 − −ax+ a

√
−4δ1 + x2

2πn

)(
1 + −ax+ a

√
−4δ1 + x2

2πn

)
(

1 − ax+ a
√

−4δ1 + x2

2πn

)(
1 + ax+ a

√
−4δ1 + x2

2πn

)

= − a2δ1

+∞∏
n=1

((
1 + ax

2πn

)2
− a2x2 − 4a2δ1

(2πn)2

)
((

1 − ax

2πn

)2
− a2x2 − 4a2δ1

(2πn)2

)

= − a2δ1

+∞∏
n=1

(
1 + ax

πn
+ a2δ1

(πn)2

)(
1 − ax

πn
+ a2δ1

(πn)2

)

= − a2δ1

+∞∏
n=1

n2 + a2δ1
π2

n2 + ax

πn

n2 + a2δ1
π2

n2 − ax

πn

 .
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Hence, using (4.54), we get

− x csch
(
a
√
δ1

)2
h(x)

= x
+∞∏
n=1

(
n2

n2 + a2δ1
π2

)2
n2 + a2δ1

π2

n2 + ax

πn

n2 + a2δ1
π2

n2 − ax

πn


= x

∏
n≥1

1 + x
π
a
n+ δ1

π
a

n

1 − x
π
a
n+ δ1

π
a

n

 ,
and then the last step of (4.53) is proved. Now we observe that

lim
x→+∞

(
−ax+ a

√
−4δ1 + x2

)
= 0, (4.55)

and that
lim

x→+∞
−x sin

(1
2

(
−ax+ a

√
−4δ1 + x2

))
= lim

x→+∞
−x

2

(
−ax+ a

√
−4δ1 + x2

)
= lim

x→+∞
−x

2

(
−a2x2 + a2(−4δ1 + x2)
ax+ a

√
−4δ1 + x2

)

= lim
x→+∞

2xa2δ1

ax+ a
√

−4δ1 + x2

= aδ1.

(4.56)

Moreover for every ϵ1 > 0 it is easy to see that there exist two constants
A1,ϵ1 , B1,ϵ1 > 0 such that such that for n0 > A1,ϵ1 we have∣∣∣∣sin(1

2

(
ax+ a

√
−4δ1 + x2

))∣∣∣∣ > B1,ϵ1 ,

for π

a
n0 + ϵ1 < x <

π

a
(n0 + 1) − ϵ1.

(4.57)

Then, thanks to (4.56) and (4.57) we have that there exist two constants
A2,ϵ1 , B2,ϵ1 > 0 such that such that for n0 > A2,ϵ1 we have

|g(x)| > B2,ϵ1 , for π

a
n0 + ϵ1 < x <

π

a
(n0 + 1) − ϵ1.

Fix some ϵ1 <
ϵ
2 , and take A3,ϵ1 > 0 such that

∣∣∣tn − π
a
n
∣∣∣ < ϵ1 for n > A3,ϵ1 .

Then for n0 > Aϵ := max{A3,ϵ1 , A2,ϵ1} we get

tn0 + ϵ ≥ π

a
n0 − ϵ1 + ϵ ≥ π

a
n0 + ϵ1,

tn0+1 − ϵ ≤ π

a
(n0 + 1) + ϵ1 − ϵ ≤ π

a
(n0 + 1) − ϵ1,
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and hence

|g(x)| ≥ Bϵ := B2,ϵ1 , for tn0 + ϵ ≤ x ≤ tn0+1 − ϵ, ∀n0 > Aϵ. (4.58)

Thanks to (4.51), (4.52) and (4.58) we get

|f(x)| ≥ |fn0(x)| ≥ GϵBϵ =: D1,ϵ,

for tn0 + ϵ ≤ x ≤ tn0+1 − ϵ, ∀n0 > Aϵ.

For 0 < n0 ≤ Aϵ we observe that the function f(x) is different from 0 and
continuous in the finite union of compact sets

tn0 + ϵ ≤ x ≤ tn0+1 − ϵ, 0 < n0 ≤ Aϵ.

and hence there exists D2,ϵ such that

|f(x)| ≥ D2,ϵ, for tn0 + ϵ ≤ x ≤ tn0+1 − ϵ, 0 < n0 ≤ Aϵ.

Then we obtain

|f(x)| ≥ max{D1,ϵ, D2,ϵ} := K1,ϵ, for tn0 + ϵ ≤ x ≤ tn0+1 − ϵ, ∀n0 > 0.

For the case n0 < 0, with arguments completely analogous to the case n0 > 0
we obtain that there exists K2,ϵ such that

|f(x)| ≥ K2,ϵ, for tn0−1 + ϵ ≤ x ≤ tn0 − ϵ, ∀n0 > 0.

Moreover we set

K3,ϵ = inf{|f(x)|, (t−1 + ϵ < x < −ϵ) ∪ (ϵ < x < t1 − ϵ)},

and hence we finally get

|f(x)| ≥ max{K1,ϵ, K2,ϵ, K3,ϵ} := Kϵ,

for tn0 + ϵ ≤ x ≤ tn0+1 − ϵ, ∀n0 ∈ Z.

As we did for the result of Theorem 4.2, it is now interesting to compare
the results of Theorem 4.17 and Theorem 4.19 with those of the Paley-
Wiener-Levinson theorem (Theorem 4.1), and with those of Theorem 4.2
too (we don’t mention Theorem 4.14 since the sampling sequences of this
theorem are exactly the same of those of Theorem 4.2).

We have already observed that for the sequences for which the Paley-
Wiener-Levinson theorem is valid obeys the following constraints

|tn − tm| >
(

|m− n| − 1
2

)
π

a
∀n,m ∈ Z, n ̸= m,

|tn − tm| <
(

|m− n| + 1
2

)
π

a
∀n,m ∈ Z, n ̸= m,
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while for the sequences of Theorem 4.2 we have

|tn − tm| < |m− n|π
a

∀n,m ∈ Z,

and that given any ϵ > 0 small as desired and any integer M < ∞ big as
desired, it is possible to find a suitable sequence {tn}n such that M elements
are contained in an interval of R of length ϵ.

In Theorem 4.17, the set K is a finite set of consecutive integers of any size
and without constraints. Hence we easily see that we have no constraints on
the maximum or minimum distance between two successive elements. The
downside is of course that all the sampling points tn for n /∈ K are fixed to
equidistant values.

In Theorem 4.19 we have that
∣∣∣π

a
n− tn

∣∣∣ ≤ δ ∀n ∈ Z, for some δ < π
2a

,
than it is easy to see that

|tn − tm| > (|m− n| − 1) π
a

∀n,m ∈ Z, n ̸= m,

|tn − tm| < (|m− n| + 1) π
a

∀n,m ∈ Z, n ̸= m.

In particular also in this case we have that there is no lower bound for
|tn − tm|, but unlike Theorem 4.17 and Theorem 4.19 we can have at most
2 elements that stay in the same interval of length less than π

α
, since |tn+1 −

tn−1| > π
α
.

We obtained that Theorem 4.17 and Theorem 4.19 have less strong
constraints than Paley-Wiener-Levinson theorem for a finite, but big as de-
sired, subsequence of the sampling sequence. The downside is that they have
stronger constraints on all the others sampling points. However, in the next
section we show that the constraints of the sampling sequences in Theorem
4.17 and Theorem 4.19 are more useful for real applications.

4.5 Approximation of the sampling formulas

In real applications very often it is required to reconstruct a signal only
on a predetermined compact subset of C and with a predetermined preci-
sion, since the sum cannot be performed on all the infinte set of sampling
points. In this section we show that for this purpose the sampling formulas of
Theorems 4.17 and 4.19 are better then those of the Paley-Wiener-Levinson
theorem. The main reason for this derives from the fact that the sampling
sequence of all these theorems (including those of the Paley-Wiener-Levinson
theorem) converge uniformly on the compact subsets of C, along with the
fact that Theorems 4.17 and 4.19 allow more felxibility for a finite, but big
as desired, subsequence of the sampling sequence. We already know that
the sampling formulas of these theorems converge uniformly on the compact
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subsets of C, as a consequence of Theorem 2.18. However we give here an ex-
plicit proof of the uniform convergence for the case of Theorem 4.17, which
is the most interesting for the purpose of this section, in order to obtain
also a numerical estimate of the error obtained performing the recostruction
only on a finite subsequence of the sampling sequence. We start with the
following well-known Lemma and we include a proof also for it, for sake of
a precise reference and for sake of completeness.

Lemma 4.20. Fix any a > 0 and let {tn}n be an increasing sequence of
reals for which there exists ϵ > 0 such that |tn+1 − tn| ≥ ϵ ∀n ∈ Z. Then for
every F ∈ PWa we have

∑
n

|F (tn)|2 < 4
πϵ

∥F∥PWa .

Proof. We recall that all the functions in PWa are entire. Given x0 ∈ R,
thanks to the mean value property we have that

|F (x0)|2 ≤ 1
2π

∫ 2π

0

∣∣∣F (x0 + reiθ
)∣∣∣2 dθ

holds for all r > 0. Therefore, setting z = x+ iy we get

|F (x0)|2 ≤ 1
πδ2

∫∫
|z−z0,m|≤δ

|F (z)|2dxdy

for every x0 ∈ R and every δ > 0 (multiply both sides by r and integrate
between 0 and δ). Then we obtain

∑
n

|F (tn)|2 ≤ 1
πδ2

∑
n

∫∫
|z|≤δ

|F (tn + z)|2 dxdy

≤ 1
πδ2

∑
n

∫ δ

−δ

∫ δ

−δ
|F (tn + x+ iy)|2 dxdy

= 1
πδ2

∑
n

∫ δ

−δ

∫ tn+δ

tn−δ
|F (x+ iy)|2 dxdy.

Now, take δ < ϵ
2 . Then the intervals (tn − δ, tn + δ) are pairwise disjoint,

and hence ∑
n

|F (tn)|2 ≤ 1
πδ2

∑
n

∫ δ

−δ

∫ tn+δ

tn−δ
|F (x+ iy)|2 dxdy

≤ 1
πδ2

∫ δ

−δ

∫ +∞

−∞
|F (x+ iy)|2 dxdy

≤ 1
πδ2

∫ δ

−δ
∥F∥PWady

= 2
πδ

∥F∥PWa .

(4.59)
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Since (4.59) is valid for every δ < ϵ
2 , we finally get

∑
n

|F (tn)|2 ≤ 4
πϵ

∥F∥PWa .

Theorem 4.21. Let a > 0 and let K = {nk}k=0,...,K be a finite set of con-
secutive integers of any size. Let {tn}n be a strictly increasing sequence such
that tn = π

a
n ∀n ∈ Z \ K, and that

π

a
(n0 − 1) < tn0 < ... < tnK

<
π

a
(nK + 1).

Given G ∈ PWa and N > 0, set

GN(z) =
N∑

n=−N

 ∏
m̸=n

tm − z

tm − tn
e

z−tn
π
a m

G(tn).

Then, for any compact subset Ω ⊂ C, GN(z) converges uniformly to G(z)
in Ω as N → +∞, and in particular there exists C > 0 (dependent only on
{tn}n) such that for every G ∈ PWa we have

sup
z∈Ω

|GN(z) −G(z)| ≤ C

(N −N0)
1
2
∥G∥PWa , N > N0,

where N0 is the smallest positive integer for which |tN0| > x0 and |t−N0| > x0,
with x0 = maxx+iy∈Ω |x|.

Proof. We are exactly on the same conditions of Theorem (4.17). From the
proof of this theorem we know that

G(z) =
∑

n

E1(z)(1 − Θ1(z))
E1(tn)Θ′

1(tn)(tn − z)G(tn)

=
∑

n

 ∏
m̸=n

tm − z

tm − tn
e

z−tn
π
a m

G(tn).

where

E1(z) =
(∑

n

(
1

tn − z
− tn
t2n + 1

)
+ ia

)
z
∏
n̸=0

(
tn − z

π
a
n

)
e

z
π
a n ,

and

Θ1(z) = E#
1 (z)
E1(z)

=
∑

n

(
1

tn−z
− tn

t2
n+1

)
− ia∑

n

(
1

tn−z
− tn

t2
n+1

)
+ ia

(4.60)
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We set
M1 := sup

z∈Ω
|E(z)(1 − Θ(z))| = sup

z∈Ω
|E(z) − E#(z)| < 2 sup

z∈Ω
|E(z)|

By Theorem (4.17) we know also that limx→±∞ |E1(x)| = 1, and thanks to
the continuity of E(x) on R we get

M2 := sup
x∈R

∣∣∣∣∣ 1
E(x)

∣∣∣∣∣ < ∞.

Obviously we have

GN(z) −G(z) =
+∞∑

n=N+1

E1(z)(1 − Θ(z))
E1(tn)Θ′(tn)(tn − z)G(tn)

+
−N−1∑
n=−∞

E1(z)(1 − Θ(z))
E1(tn)Θ′(tn)(tn − z)G(tn).

Let N0 be the smallest positive integer for which |tN0 | > x0 and |t−N0| >
x0, where x0 = maxx+iy∈Ω |x|. By Theorem 4.6 and (4.60) we have that
Θ′

1(tn) = 2ia. Hence for z ∈ Ω and N ≥ N0 we obtain∣∣∣∣∣∣
+∞∑

n=N+1

E1(z)(1 − Θ(z))
E1(tn)Θ′(tn)(tn − z)G(tn)

∣∣∣∣∣∣ ≤ M1M2

a

+∞∑
n=N+1

|G(tn)|
|tn − x0|

.

Using the Holder inequality we get

+∞∑
n=N+1

|G(tn)|
|tn − x0|

≤

 +∞∑
n=N+1

|G(tn)|2
 1

2
 +∞∑

n=N+1

1
|tn − x0|2

 1
2

.

We set ϵ = min{π
a
n,min{|tn+1 − tn|}n∈K}, and we easily observe that |tn+1 −

tn| ≥ ϵ ∀n ∈ Z. Then by Lemma 4.20 we get
+∞∑

n=N+1
|G(tn)|2 < 4

πϵ
∥G∥PWa .

Moreover we have
+∞∑

n=N+1

1
|tn − x0|2

≤
+∞∑

n=N+1

1
|tn − tN0 + tN0 − x0|2

≤
+∞∑

n=N+1

1
ϵ|n−N0|2

= 1
ϵ2

+∞∑
n=1

1
(n+N −N0)2

≤ 1
ϵ2(N −N0)

.
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Therefore we obtain∣∣∣∣∣∣
+∞∑

n=N+1

E1(z)(1 − Θ(z))
E1(tn)Θ′(tn)(tn − z)G(tn)

∣∣∣∣∣∣ ≤ C

(N −N0)
1
2
∥G∥PWa ,

where C = 4M1M2
πaϵ

, and then

lim
N→+∞

sup
z∈Ω

∣∣∣∣∣∣
+∞∑

n=N+1

E1(z)(1 − Θ(z))
E1(tn)Θ′(tn)(tn − z)G(tn)

∣∣∣∣∣∣ = 0.

Similarly we get∣∣∣∣∣
−N−1∑
n=−∞

E1(z)(1 − Θ(z))
E1(tn)Θ′(tn)(tn − z)G(tn)

∣∣∣∣∣ ≤ C

(N −N0)
1
2
∥G∥PWa ,

and
lim

N→+∞
sup
z∈Ω

∣∣∣∣∣
−N−1∑
n=−∞

E1(z)(1 − Θ(z))
E1(tn)Θ′(tn)(tn − z)G(tn)

∣∣∣∣∣ = 0.

Then we finally obtain

sup
z∈Ω

|GN(z) −G(z)| ≤ C

(N −N0)
1
2
∥G∥PWa ,

and
lim

N→+∞
sup
z∈Ω

|GN(z) −G(z)| = 0.
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For F ∈ L1(R) the Fourier transform F(F ) of F (x) is defined as

F̂ (x) := F(F )(x) =
∫ +∞

−∞
F (t)e−itxdt, x ∈ R.

Let F ∈ L1(R) be such that F̂ ∈ L1(R). Then the Fourier inversion theorem
states that

F (x) = 1
2π

∫ +∞

−∞
eitxF̂ (t)dt. (5.1)

As pointed out in Section 2.8, the Fourier transform induces a unitary iso-
morphism between the Paley-Wiener space PWa and the space L2[−a, a],
which has far-reaching consequences. In this section we present a general-
ization of the Fourier transform for the de Branges spaces, that define an
isomorphism between these spaces and a class of subspaces of L2(R).

Given an infinite set of subspaces Un of the same vector space U , with
a small abuse of notation in this section we will use the symbol ⊕n Un to
denote the closure of the subspace formed by all the possible sums ∑n≥0 un,
with un ∈ Un and un ̸= 0 only for a finite number of n, before showing that
the subspaces {Un}n are pairwise perpendicular, and only later we will show
that they are actually pairwise perpendicular.
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5.1 Generalized Fourier transform

Let Θ(z) = γe2ibzB(z) be a meromorphic inner function according to the
representation given in (2.3), with logarithmic residue 2b > 0. To see this,
we proceed as follows. We set

Θ0(z) = e2ibz,

Θ1(z) = γB(z),

so that Θ(z) = Θ0(z)Θ1(z). For n > 0, we set

K̃n(Θ) := Θn
0 K (Θ0) ∩

(
n⊕

m=1
Θm

0 Θ1K (Θ0)
)⊥

= e2inbzK
(
e2inbz

)
∩
(

n⊕
m=1

e2imbzγB(z)K
(
e2nibz

))⊥

.

(5.2)

We will show later (see(5.12)) that, excluding the degenerate cases Θ0(z) = 1
or Θ1(z) = 1, we have

K̃n(Θ) ̸= {0}
for at least one value of n > 0. For n > 0 we set

L2
Θ[b(2n− 1), b(2n+ 1)] := F

(
e−ibzK̃n(Θ)

)
. (5.3)

We recall that the Fourier transform induces an isomorphism from PWb

onto L2[−b, b], and that the following property of the Fourier Tranfsorm is
true:

F(F (z)eis0z)(s) = F(F (z)) (s− s0) . (5.4)

Then it is easy to see that L2[b(2n − 1), b(2n + 1)] = F
(
e2inbzPWb

)
. Ob-

serving that

e−ibzK̃n(Θ) ⊆ e2inbz
(
e−ibzK(e2inbz)

)
= e2inbzPWb

we obtain

L2
Θ[b(2n− 1), b(2n+ 1)] ⊆ L2[b(2n− 1), b(2n+ 1)]. (5.5)

According to (5.5), for F,G ∈ L2
Θ[b(2n − 1), b(2n + 1)] we define the scalar

product
⟨F,G⟩L2

Θ[b(2N−1),b(2N+1)] := ⟨F,G⟩L2[b(2N−1),b(2N+1)]

=
∫ b(2N+1)

b(2N−1)
F (x)G(x)dx.

(5.6)

Moreover we define

L2
Θ := L2[−b, b] ⊕

(⊕
n>0

L2
Θ[b(2n− 1), b(2n+ 1)]

)
, (5.7)
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We recall that ⊕n>0 L2
Θ[b(2n − 1), b(2n + 1)] denotes the closure of the

subspace formed by all the possible sums ∑n>0 Fn, with Fn ∈ L2
Θ[b(2n −

1), b(2n+ 1)] and Fn ̸= 0 only for a finite number of n ∈ Z. Then we easily
get that L2

Θ ⊆ L2[−b,+∞), and hence we can endow L2
Θ with the scalar

product and the norm of L2[−b,+∞).

Theorem 5.1. Let Θ(z) = γe2ibzB(z) be a meromorphic inner function
according to the representation given in (2.3), with logarithmic residue 2b >
0. Let E(z) be a de Branges function of Θ(z). For F ∈ B(E) consider the
transform F̃E given by

F̃E(F )(z) := F
(

F (t)
E(t)eibt

)
(z) =

∫ +∞

−∞
F (t)e

−i(z+b)t

E(t) dt. (5.8)

Then
F̃E : B(E) → L2

Θ

is a unitary (up to a rescaling factor 1
2π

) isomorphism, and

⟨F1, F2⟩B(E) = 1
2π ⟨F̃E(F1), F̃E(F2)⟩L2

Θ
(5.9)

for all F1, F2 ∈ B(E).

Proof. We set
Θ0(z) = e2ibz,

Θ1(z) = γB(z),

so that Θ(z) = Θ0(z)Θ1(z), and we observe that Θ(z) = LCM(Θ0(z),Θ1(z)).
Obviously E0(z) = e−ibz is a de Branges function of Θ0(z). Set E1(z) =
E(z)
E0(z) = E(z)eibz. Since E(z) is Hermite Biehler and then entire, also

E1(z) is entire. Moreover E#
1 (z)

E1(z) = E#(z)E0(z)
E#

0 (z)E(z)
= Θ(z)

Θ0(z) = Θ1(z), and then
|E1(z)|
|E#

1 (z)|
= 1

|Θ1(z)| > 1 on the upper half plane.
Hence E1(z) is a Hermite Biehler function, and is a de Branges function

of Θ1(z). In this way we have obtained that E0(z) and E1(z) are respectively
de Branges functions of Θ0(z) and Θ1(z) such that E(z) = E1(z)E0(z). Then
we can apply Theorem 3.2, and we obtain

B(E) = B(E0)E1 + B(E1)E0.

Recalling Theorem 2.19 we get

B(E) = EK(Θ)
= EK(Θ0Θ1)
= E(K(Θ0) + K(Θ1)).

(5.10)
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We observe that
H2 =

∞⊕
n=0

Θn
0 K(Θ0),

and then we get
K(Θ0Θ1) = H2 ⊖ Θ0Θ1H2

=
( ∞⊕

n=0
Θn

0 K(Θ0)
)

⊖
( ∞⊕

n=1
Θn

0 Θ1K(Θ0)
)
.

=
( ∞⊕

n=0
Θn

0 K(Θ0)
)

∩
( ∞⊕

n=1
Θn

0 Θ1K(Θ0)
)⊥

.

= lim
N→∞

( N⊕
n=0

Θn
0 K (Θ0)

)
∩
( ∞⊕

n=1
Θn

0 Θ1K (Θ0)
)⊥
 .

We recall that, given three subspaces of finite-dimension U1,U2,U3 ⊂ H2, we
have

(U1
⊕

U2)
⋂

U3 = (U1 ∩ U3)
⊕

(U2 ∩ U3).
Hence

K(Θ0Θ1) = lim
N→∞

( N⊕
n=0

Θn
0 K (Θ0)

)
∩
( ∞⊕

n=1
Θn

0 Θ1K (Θ0)
)⊥


= lim
N→∞

N⊕
n=0

Θn
0 K (Θ0) ∩

( ∞⊕
m=1

Θm
0 Θ1K (Θ0)

)⊥
 .

We observe that

Θn
0 K (Θ0) ∩

( ∞⊕
m=n+1

Θm
0 Θ1K (Θ0)

)
= {0},

so that

Θn
0 K (Θ0) ∩

( ∞⊕
m=0

Θm
0 Θ1K (Θ0)

)⊥

= Θn
0 K (Θ0) ∩

(
n⊕

m=0
Θm

0 Θ1K (Θ0)
)⊥

.

Therefore we obtain

K(Θ0Θ1) = lim
N→∞

N⊕
n=0

Θn
0 K (Θ0) ∩

( ∞⊕
m=1

Θm
0 Θ1K (Θ0)

)⊥


= lim
N→∞

N⊕
n=0

Θn
0 K (Θ0) ∩

(
n⊕

m=1
Θm

0 Θ1K (Θ0)
)⊥


=
∞⊕

n=0

Θn
0 K (Θ0) ∩

(
n⊕

m=1
Θm

0 Θ1K (Θ0)
)⊥
 .

= K (Θ0) ⊕

 ∞⊕
n=1

Θn
0 K (Θ0) ∩

(
n⊕

m=1
Θm

0 Θ1K (Θ0)
)⊥
 .
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Recalling (5.2) we get

K(Θ0Θ1) = K (Θ0) ⊕
(⊕

n>0
K̃n(Θ)

)
,

and by (5.10) we finally obtain

B(E) = EK(Θ0Θ1)

= EK(Θ0) ⊕
(⊕

n>0
EK̃n(Θ)

)
.

(5.11)

Thanks to this we can also observe that, excluding the degenerate cases
Θ0(z) = 1 or Θ1(z) = 1, we have

K̃n(Θ) ̸= {0} (5.12)

for at least one value of n > 0, because otherwise we would have

EK(Θ) = B(E) = EK(Θ0),

which is impossible for Θ1(z) ̸= 1.
As already pointed out, the Fourier transform induces an isomorphism

from PWb onto L2[−b, b], and then

F̃E(EK(Θ0)) = F(E0K(Θ0)) = F(PWb) = L2[−b, b]. (5.13)

Moreover, for n > 0 we get

F̃E(EK̃n(Θ)) = F(E0K̃n(Θ))
= F

(
e2inbz(PWb ∩ e−ibzK(γB(z)))

)
= L2

Θ[b(2n− 1), b(2n+ 1)].

Then we finally obtain

F̃E(B(E)) = F̃E(EK(Θ0)) ⊕
(⊕

n>0
F̃E(EK̃n(Θ))

)

= L2[−b, b] ⊕
(⊕

n>0
L2

Θ[b(2n− 1), b(2n+ 1)]
)

= L2
Θ.

Now it remains only to prove that F̃E is a unitary isomorphism. We set
Fn ∈ EK̃n(Θ) and Fm ∈ EK̃m(Θ) for some n,m ≥ 1, n ̸= m. Then we can
write

Fn(z) = e2inbzE1(z)Hn(z),
Fm(z) = e2imbzE1(z)Hm(z),
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for some Hn(z), Hm(z) ∈ E0K(Θ) = PWb. Then

⟨Fn, Fm⟩B(E) =
∫ +∞

−∞

Fn(t)Fm(t)
|E(t)|2 dt

=
∫ +∞

−∞
e2ib(n−m)tHn(t)Hm(t)|E1(t)2|

|E(t)|2 dt

=
∫ +∞

−∞
e2ib(n−m)tHn(t)Hm(t)dt.

Now it is easy to see that e2inbtHn(t), e2imbtHm(t) ∈ PW(2q+1)b, where q =
max(m,n), and then we have

⟨Fn, Fm⟩B(E) =
∫ +∞

−∞
e2ib(n−m)tHn(t)Hm(t)dt

= ⟨e2inbtHn(t), e2imbtHm(t)⟩PW(2q+1)b

= ⟨F(e2inbtHn(t)),F(e2imbtHm(t))⟩PW(2q+1)b

= 0,

(5.14)

where in the last step we observed that the support of F(e2inbtHn(t)) is [(2n−
1)b, (2n+ 1)b], while the support of F(e2imbtHm(t)) is [(2m− 1)b, (2m+ 1)b],
and since n and m are two integers with n ̸= m, the intersection of the
two supports is null. Hence we have EK̃n(Θ) ⊥ EK̃m(Θ) for n ̸= m. In
an analogous way we obtain EK(Θ0) ⊥ EK̃n(Θ) ∀n > 0. Now, thanks to
(5.11), every F ∈ B(E) can be expressed as

F (z) =
+∞∑
n=0

Fn(z),

for some N ≥ 0, F0 ∈ EK(Θ0), Fn ∈ EK̃n(Θ) for all n such that 1 ≤ n ≤ N
and FN ̸= 0. Setting

F1(z) =
+∞∑
n=0

Fn,1(z),

F2(z) =
+∞∑
n=0

Fn,2(z),

thanks to (5.14) we obtain

⟨F1, F2⟩B(E) =
+∞∑
n=0

⟨Fn,1, Fn,2⟩B(E). (5.15)

Similarly, given Gn ∈ L2
Θ[b(2n−1), b(2n+1)], Gm ∈ L2

Θ[b(2m−1), b(2m+1)],
we easily get

⟨Gn, Gm⟩L2
Θ

= 0, (5.16)
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since the intersection of the support of Gn(z) with the support of Gm(z) is
null. Given G1, G2 ∈ L2

Θ we can write

G1(z) =
+∞∑
n=0

Gn,1(z),

G2(z) =
+∞∑
n=0

Gn,2(z),

where G0,1, G0,2 ∈ L2[−b, b] and Gn,1, Gn,2 ∈ L2
Θ[b(2n − 1), b(2n + 1)] for all

n ≥ 1. Then by (5.16) we obtain

⟨G1, G2⟩L2
Θ

=
+∞∑
n=0

⟨Gn,1, Gn,2⟩L2
Θ
. (5.17)

Thanks to (5.15) and (5.17), to show that F̃E is a unitary isomorphism be-
tween B(E) and L2

Θ it is sufficient to prove that it is a unitary isomorphism
between every orthogonal subspace EK (Θ0) , {EK̃n(Θ)}n>0 and the corre-
sponding image L2[−b, b], {L2

Θ[b(2n − 1), b(2n + 1)]}n>0. Thanks to (5.13)
we have

F̃E (EK (Θ0)) = F (PWb) = L2[−b, b],
and this is obviously a unitary isomorphism since F is a unitary isomorphism
between PWb and L2[−b, b]. For all n > 0 we have

F̃E

(
EK̃n(Θ)

)
= F

(
E0K̃n(Θ)

)
= L2

Θ[b(2n− 1), b(2n+ 1)].

For all n > 0 we observe that e−2inbzE0K̃n(Θ) ⊆ PWb, and that F is a
unitary isomorphism between e−2inbzE0K̃n(Θ) and F

(
e−2inbzE0K̃n(Θ)

)
⊆

L2[−b, b]. We recall that by definition we have F̃E

(
e−2inbzEK̃n(Θ)

)
=

F
(
e−2inbzE0K̃n(Θ)

)
. Then, given F1, F2 ∈ e−2inbzEK̃n(Θ) and G1, G2 ∈

F̃E

(
e−2inbzEK̃n(Θ)

)
such that

G1(z) = F̃E(F1)(z) = F
(

F1(t)
E(t)eibt

)
(z),

G2(z) = F̃E(F2)(z) = F
(

F2(t)
E(t)eibt

)
(z),

by (2.24) we have

⟨F1, F2⟩B(E) =
〈

F1(t)
E(t)eibt

,
F2(t)
E(t)eibt

〉
PWb

= 1
2π ⟨G1, G2⟩L2[−b,b]. (5.18)

Thanks to (5.4) we have that multiplying a function by e2inbz before applying
the Fourier transform induces a translation by −2nb in the image function.
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Therefore, given
U1(z) = e2inbzF1(z) ∈ EK̃n(Θ),
U2(z) = e2inbzF2(z) ∈ EK̃n(Θ),

we get

F̃E(U1)(z) = F̃E(e2inbtF1(t))(z) = F
(
F1(t)e2inbz

E(t)eibt

)
(z) = G1(z − 2nb),

F̃E(U2)(z) = F̃E(e2inbtF1(t))(z) = F
(
F2(t)e2inbz

E(t)eibt

)
(z) = G2(z − 2nb).

By (5.18) we obtain

⟨U1, U2⟩B(E) = ⟨e2inbtF1(t), e2inbtF2(t)⟩B(E)

=
〈
F1(t)e2inbt

E(t)eibt
,
F2(t)e2inbt

E(t)eibt

〉
L2(R)

=
〈

F1(t)
E(t)eibt

,
F2(t)
E(t)eibt

〉
L2(R)

=
〈

F1(t)
E(t)eibt

,
F2(t)
E(t)eibt

〉
PWb

= 1
2π ⟨G1, G2⟩L2[−b,b]

= 1
2π ⟨G1(z − 2nb), G2(z − 2nb)⟩L2[(2n−1)b,(2n+1)b].

= 1
2π ⟨F̃E(U1), F̃E(U2)⟩L2

Θ[(2n−1)b,(2n+1)b].

(5.19)

Then the transformation between EK̃n(Θ) and L2
Θ[b(2n− 1), b(2n+ 1)] is a

unitary (up to a rescaling factor 1
2π

) isomorphism for all n > 0. Hence we
can conclude that F̃E is a unitary isomorphism between B(E) and L2

Θ, with

⟨F1, F2⟩B(E) = 1
2π ⟨F̃E(F1), F̃E(F2)⟩L2

Θ

for all F1, F2 ∈ B(E).

In the conditions of Theorem 5.1, we can consider the transform

F̃E(F )(z) =
∫ +∞

−∞
F (t)e

−i(z+b)t

E(t) dt.

as a generalization of the Fourier transform for the de Branges spaces.
Indeed, when E(z) = e−ibz we have B(E) = PWb, and the transform
F̃E(F (t))(z) becames equal to the Fourier transform since e−ibt

E(t) = 1.
The transform F̃E can be easily inverted using the Fourier inversion the-

orem.
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Theorem 5.2. Let Θ(z) = γe2ibzB(z) be a meromorphic inner function
according to the representation given in (2.3), with logarithmic residue 2b >
0. Let E(z) be a de Branges function of Θ(z), and let F (z) ∈ B(E) be such
that

Φ = F̃E(F ) ∈ L1(R).
Then we have

F (z) = F̃E
−1(Φ)(z) = E(z)eibz

2π

∫ +∞

−b
eitzΦ(t)dt. (5.20)

Proof. It is a straightforward consequence of the Fourier inversion theorem
(5.1) applied to (5.8). The integral is between −b and +∞ since Φ ∈ L2

Θ
and then Φ(t) = 0 for t < −b (see (5.7)).

A simple but important consequence of this inversion theorem is that
F ∈ B(E) if and only if there exists Φ ∈ L2

Θ such that

F (z) = E(z)eibz

2π

∫ +∞

−b
eitzΦ(t)dt. (5.21)

5.2 Orthogonal subspaces of the de Branges spaces

The result of Theorem (5.1) has many important consequences. In this sec-
tion we show a suddivision of the de Branges spaces in othogonal subspaces
and some other immediate properties, then in the next chapters we will see
other imortant applications.

For N > 0 we set
BN(E) = EK̃N(Θ),

while for N = 0 we set
B0(E) = EK(Θ0).

We endow BN(E) with the same scalar product of B(E), and we recall that
the scalar product of L2

Θ[b(2N − 1), b(2N + 1)] is given by (5.6). By (5.19)
we have that F̃E is a unitary isomorphism between BN(E) and L2

Θ[b(2N −
1), b(2N + 1)]. Hence F ∈ BN(E) if and only if there exists Φ ∈ L2

Θ[b(2N −
1), b(2N + 1)] such that

F (z) = E(z)eibz

2π

∫ (2N+1)b

(2N−1)b
eitzΦ(t)dt.

Theorem 5.3. Let Θ(z) = γe2ibzB(z) be a meromorphic inner function
according to the representation given in (2.3), with logarithmic residue 2b >
0. Let E(z) be a de Branges function of Θ(z), and let F ∈ B(E) such that

Φ = F̃E(F ) ∈ L1(R).
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Then

|F (x+ iy)| ≤ (2y)− 1
2 |E(x+ iy)|eyb∥F∥B(E) ∀x ∈ R, y > 0.

Proof. Thanks to (5.20) we have that

F (z) = E(z)eibz

2π

∫ +∞

−b
eitzΦ(t)dt.

Using Holder inequality and recalling (5.9) we get

|F (x+ iy)| ≤ |E(x+ iy)|
2π

∫ +∞

−b

∣∣∣eit(x+iy)
∣∣∣ |Φ(t)|dt

≤ |E(x+ iy)|
2π

(∫ +∞

−b

∣∣∣eit(x+iy)
∣∣∣2 dt) 1

2
(∫ +∞

−b
|Φ(t)|2dt

) 1
2

= |E(x+ iy)|
2π

(∫ +∞

−b
e−2ytdt

) 1
2

∥Φ∥L2
Θ

≤ |E(x+ iy)|
[−1

2y e
−2yt

]+∞

t=−b

 1
2

∥F∥B(E)

= (2y)− 1
2 |E(x+ iy)|eyb∥F∥B(E),

where we used the fact that ∥F∥B(E) = ∥Φ∥L2
Θ

thanks to the unitary isomor-
phism between B(E) and L2

Θ described in Theorem 5.1.

Theorem 5.4. Let Θ(z) = γe2ibzB(z) be a meromorphic inner function
according to the representation given in (2.3), with logarithmic residue 2b >
0. Let E(z) be a de Branges function of Θ(z), and let F ∈ BN(E). Then

|F (x+ iy)| ≤ (2b) 1
2 |E(x+ iy)|eb(N+1)|y|∥F∥B(E).

Proof. The proof is very similar to that of the previous theorem. We set

Φ = F̃E(F ),

and we observe that Φ ∈ L2
Θ[b(2N − 1), b(2N + 1)], hence the support of

Φ(z) is the inverval [b(2N − 1), b(2N + 1)] and therefore Φ ∈ L1(R). Then,
thanks to (5.20) we have

F (z) = E(z)eibz

2π

∫ b(2N+1)

b(2N−1)
eitzΦ(t)dt.
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Using Holder inequality and recalling (5.9) we get

|F (x+ iy)| ≤ |E(x+ iy)|
2π

∫ b(2N+1)

b(2N−1)

∣∣∣eit(x+iy)
∣∣∣ |Φ(t)|dt

≤ |E(x+ iy)|
2π

(∫ b(2N+1)

b(2N−1)

∣∣∣eit(x+iy)
∣∣∣2 dt) 1

2
(∫ b(2N+1)

b(2N−1)
|Φ(t)|2dt

) 1
2

= |E(x+ iy)|
2π

(∫ b(2N+1)

b(2N−1)
e−2ytdt

) 1
2

∥Φ∥L2
Θ

≤ |E(x+ iy)|
(∫ b(2N+1)

b(2N−1)
e2b(2N+1)|y|dt

) 1
2

∥F∥B(E)

= (2b) 1
2 |E(x+ iy)|eb(N+1)|y|∥F∥B(E).
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CHAPTER6
Kempf-Martin Spaces

The whole Kempf-Martin theory presented in [40] is based on the theory of
simple symmetric operators, which is the pillar upon which all the article is
built. Indeed, the proof of all the crucial results about the Kempf-Martin
spaces, such as the definition of the reproducing kernel, the sampling for-
mula, the Livsic characteristic function properties and its explicit formu-
lation, make extensive use of this theory. However, for our purpose it is
not necessary to go here into the details of this theory, but it is sufficient
to summerize the definitions and the fundamental results that are impor-
tant to understand the Kempf-Martin spaces. We will give this overview in
Sections 6.1, 6.2 and 6.3. In Section 6.4 we will investigate the isomorphism
between the Kempf-Martin spaces and the de Branges spaces, and thanks
to this isomorphism we will derive a necessary and sufficient condition for a
function to belong to a Kempf-Martin space. In Section 6.5 we will give an
alternative and equivalent definition of the Kempf-Martin spaces based on
the same isomorphism, and we will derive and improve all the main results
presented in [40] from the properties of the de Branges spaces, without using
the theory of simple symmetric operators.

6.1 Symmetric linear transformations

Let H be a separable Hilbert space. Let T be a linear transformation T
defined on a domain Dom(T ) ⊂ H.
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The adjoint operator of T is defined as follows. Suppose that Dom(T ) is
dense in H. Let Dom∗(T ) be the set of all ψ ∈ H such that there is a pair
(ψ, ψ∗) with

⟨Tϕ, ψ⟩ = ⟨ϕ, ψ∗⟩ ∀ϕ ∈ Dom(T ).
Then the adjoint operator of T , denoted by T ∗, is defined to be

T ∗ψ = ψ∗ on Dom∗(T ).

The linear transformation T is called:

1. symmetric if

⟨Tx, y⟩ = ⟨x, Ty⟩ ∀x, y ∈ Dom(T );

2. self-adjoint if

• Dom(T ) is dense in H,
• T = T ∗;

3. densely defined if Dom(T ) is dense in H;

4. simple if there is no non-trivial proper subspace S ⊂ H so that the
restriction of T to Dom (T ) ∩ S is self-adjoint;

5. regular if T − tI is bounded below on Dom(T ) for all t ∈ R;

6. closed if the graph of T is closed in H ⊕ H;

The deficiency indices, (n+, n−) of a linear transformation T are defined as

n± := dim (Ker (T ∗ ∓ i)) .

We will use the notation S to denote the family of all closed simple sym-
metric linear transformations with equal indices (1, 1) defined on a domain
in some separable Hilbert space. SR will denote the subfamily of all closed
regular simple symmetric transformations with indices (1, 1). Note that any
symmetric T always has a minimal closed extension, so there is no loss of
generality in assuming that T is closed.

Consider the map
b(z) := z − i

z + i

with compositional inverse

b−1(z) = i
1 − z

1 + z

The map b is an analytic bijection of the open upper half-plane C+onto the
open unit disk D. Moreover b is a bijection of the real line R onto T\{1},
where T is the unit circle.
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6.2. Self-adjoint extensions

Let V denote the family of all completely non-unitary (c.n.u.) partial
isometries with deficiency indices (1, 1) acting on a separable Hilbert space.
Here the defect or deficiency indices of a partial isometry V are defined by
n+ := dim(Ker(V )) and n− := dim

(
Ran(V )⊥

)
. As shown in many standard

texts (see for example [5], [45]), the map T 7→ b(T ) defines a bijection of
Sn (closed simple symmetric linear transformations with indices (n, n)) onto
Vn. Namely, given any T ∈ Sn we can define b(T ) as an isometric linear
transformation from Ran(T + i) onto Ran(T − i). We can then view V =
b(T ) as a partial isometry on H with initial space Ker(V )⊥ = Ran(T + i).
Conversely, given any V ∈ Vn, we can define b−1(V ) = T on the domain
Ran ((V − I)V ∗V ), and then T ∈ Sn and T = b−1(b(T )).

6.2 Self-adjoint extensions

Given T ∈ S let V = b(T ) ∈ V . We can build a one parameter family of
unitary extensions of V as follows. Fix two vectors ϕ± of equal norm such
that

ϕ+ ∈ Ker(V ) = Ker (T ∗ − i) = Ran(T + i)⊥

and
ϕ− ∈ Ran(V )⊥ = Ker (T ∗ + i) = Ran(T − i)⊥.

Define

U(α) := V + α

∥ϕ+∥2 ⟨·, ϕ+⟩ϕ−;α ∈ T and Uθ := U
(
ei2πθ

)
; θ ∈ [0, 1),

where T is the unit circle in the complex plane. The set of all U(α) (or Uθ )
is the one-parameter family of all unitary extensions of V on H. The U(α)
extend V in the sense that U(α)V ∗V = V for all α ∈ T, they agree with V
on its initial space. We write V ⊆ U(α) to denote that U(α) extends V in
this way. Similarly, the subset notation T ⊂ S for closed linear transforma-
tions T, S denotes that Dom(T ) ⊂ Dom(S) and S|Dom(T ) = T , i.e. S is an
extension of T . We then define

T (α) := b−1(U(α)), Tθ = T
(
ei2πθ

)
so that T ⊂ T (α) ⊂ T ∗ for all α ∈ T. The functional calculus implies that
each T (α) is a densely defined self-adjoint operator if and only if 1 is not
an eigenvalue of U(α), and the set of all T (α) (for which this expression is
defined) is the set of all self-adjoint extensions of T . Note the assumption
that V be c.n.u. implies that 1 is an eigenvalue to at most one U(α).

Given a transformation T ∈ SR, every different choice of deficiency vec-
tors ϕ± defines a different parameterization {Tθ}θ∈[0,1) of the self-adjoint
extensions of T . Indeed the same self-adjoint extensions of T can be associ-
ated to two different values of θ ∈ [0, 1) in the parametrizations derived from
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two different pairs of deficiency vectors ϕ±. Moreover, for every two different
pairs of deficiency vectors ϕ± there is always a not null subset of self-adjoint
extensions of T that are associated to two different values of θ ∈ [0, 1) in the
corresponding parametrizations.

Lemma 2.2 in [40] shows that, given a transformation T ∈ SR, for each
θ ∈ [0, 1) the spectrum σ(Tθ) of the self-adjoint extension Tθ (i.e. the set of
all the eigenvalues of Tθ) is given by

σ (Tθ) = {tn(θ)},

where {tn(θ)} is a strictly increasing sequence of eigenvalues of multiplicity
one with no finite accumulation point. The spectra of all the self-adjoint
extensions of T have the following properties:

• tn(θ) = σ (Tθ) ∩ [tn(0), tn+1(0));

• σ (Tθ) ∩ σ (Tβ) = ∅ for θ ̸= β;

• ⋃
θ∈[0,1) σ (Tθ) = R.

Hence the spectra of all the self-adjoint of T extensions cover the real line
exactly once.

Theorem 2.6 in [40] shows that the function t(x), x ∈ R, defined by

t(n+ θ) = tn(θ), n ∈ Z, θ ∈ [0, 1), (6.1)

turns out to be a smooth, strictly increasing function on R, referred as the
spectral function of T . Moreover, defining t′n(θ) = t′(n+θ), for any θ ∈ [0, 1)
the couple ({tn(θ)}n, {t′n(θ)}n) is a bandlimit pair.

Finally, Theorem 2.8 in [40] shows that there exsists a bijective corre-
spondence between the transformations T ∈ SR and the bandlimit pairs
({tn}n , {t′n}n). Indeed, given a transformation T ∈ SR and a couple of defi-
ciency vectors ϕ±, then ({tn(0)}n , {t′n(0)}n) is a bandlimit pair. Conversely,
given any bandlimit pair ({tn}n , {t′n}n) it is possible to build a couple of
vectors ϕ± for which there exists a unique transformation T ∈ SR so that
ϕ± are equal norm deficiency vectors for T and that ({tn(0)}n , {t′n(0)}n) =
({tn}n , {t′n}n).

6.3 Definition of the Kempf-Martin spaces

In the previous sections we summerized the definitions and the results that
are necessary to define the Kempf-Martin spaces. We recall that, as we
pointed out in Section 2.1, given any positive kernel function K(z, w), there
always exsist a RKHS H(K) which hasK(z, w) as its reproducing kernel. For
every bandlimit pair ({tn}n, {t′n}n), Proposition 2.18 in [40] defines a unique
corresponding positive kernel funtion expressed in terms of the bandlimit
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pair itself. Since every linear transformation T ∈ SR is associated to a unique
corresponding bandlimit pair, it can be associated also to a unique positive
kernel function KT (t, s). The Kempf-Martin space KM(T ) associated to
T is then defined as the unique RKHS that has KKM(T )(t, s) := KT (t, s)
as reproducing kernel. Sometimes we will write KM({tn}n, {t′n}n) in place
of KM(T ), obviously meaning the Kempf-Martin space whose kernel is the
one defined by the bandlimit pair ({tn}n, {t′n}n).

Since Proposition 2.18 in [40] is the fundamental result for the definition
of the Kempf-Martin spaces, we report its precise statement as presented by
Kempf and Martin.
Theorem 6.1 (Kempf-Martin). For any T ∈ SR and a fixed equal-norm
deficiency vectors ϕ± ∈ Ker (T ∗ ∓ i), there exists a choice of orthonor-
mal eigenbases {ϕn(θ) | θ ∈ [0, 1)}n of eigenvectors for Tθ so that if ϕt :=
ϕ⌊τ(t)⌋([τ(t)]), then for s, t ∈ R

KKM(T )(t, s) := ⟨ϕt, ϕs⟩

= f(t)(−1)⌊τ(t)⌋
(∑

k

t′(k)
(t− tk) (s− tk)

)
(−1)⌊τ(s)⌋f(s)

(6.2)

is a smooth, real-valued, positive kernel function on R × R, where

f(t) :=
(∑

n

t′(n)
(t− tn)2

)− 1
2

.

Another crucial result for the Kempf-Martin theory is Theorem 2.24
in [40]. It shows that any F (t) ∈ KM(T ) obeys the sampling formula

F (t) =
∑

n

KKM(T ) (tn(θ), t)F (tn(θ)) , (6.3)

for all θ ∈ [0, 1). Therefore the Kempf-Martin spaces have the same special
reconstruction properties as the Paley-Wiener spaces of bandlimited func-
tions: any F ∈ KM(T ) can be reconstructed perfectly from its samples
taken on {tn(θ)}. It turns out that the classical Paley-Wiener spaces are a
special case of the Kempf-Martin spaces.

For every T ∈ SR, Section 3 in [40] defines the Livsic characteristic
function Θ(z) associated to T , which is a meromorphic inner function such
that Θ(i) = 0, with the following special property. For every θ ∈ [0, 1), the
sequence {tn(θ)} associated to T according to (6.1) is the set of solutions of

Θ (t) = ei2πθ, t ∈ R, (6.4)

as shown in Corollary 3.18.
The first part of Section 4 in [40] shows that Θ(z) can be expressed as

Θ(z) = z − i

z + i

∑
n

1
tn−z

1
tn−i

t′n∑
n

1
tn−z

1
tn+i

t′n
=
∑

n t
′
n

(
1

tn−z
− 1

tn−i

)
∑

n t′n
(

1
tn−z

− 1
tn+i

) ,
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where ({tn}n, {t′n}n) is the bandlimit pair associated to T . Moreover the
spectral function t(x) of Θ(z) coincides with the spectral function of T de-
fined in (6.1), and t′(n) = t′n.

Finally, Theorem 4.8 in [40] connects the theory of Kempf-Martin spaces
to the theory of meromorphic model spaces of Hardy spaces by showing that
any Kempf-Martin space KM(T ), with Livsic characteristic function Θ(z), is
the image of the model space K (Θ) := H2⊖ΘH2 under the multiplication by
a fixed function M(t), and that this multiplication defines an onto isometry.

6.4 Characterization of the Kempf-Martin Spaces

In [40], the definition of the Kempf-Martin spaces is given through their re-
producing kernel, without a really in-depth characterizations of the functions
that belong to these spaces. In this section we investigate the isomorphism
between the Kempf-Martin space and the de Branges spaces, which has many
far-reaching consequences that we will see also in the next chapters. Thanks
to this isomorphism, we also give a necessary and sufficient condition for a
function belong to a Kempf-Martin space.
Theorem 6.2. Given any regular simple symmetric linear transformation T
with deficiency indices (1, 1), let E(z) be a de Branges function of the Livsic
characteristic function Θ(z) of KM(T ). Then there exists an isometric
multiplier N(t) from the Kempf-Martin space KM(T ) onto the restriction
on R of the de Branges space B(E):

KM(T )N(t) = B(E)|R, t ∈ R. (6.5)

The multiplier is given by

N(t) = i
√
KB(E)(t, t) = i|E(t)|

√
τ ′(t),

where KB(E)(w, z) is the reproducing kernel of B(E) and τ(t) is the phase
function of Θ(z) = E#(z)

E(z) . Moreover it is isometric since, for F1(t), F2(t) ∈
KM(T ) and G1(t) = N(t)F1(t), G2(t) = N(t)F2(t) ∈ B(E), we have

⟨G1, G2⟩B(E) = ⟨F1, F2⟩KM(T ). (6.6)

Proof. From Theorem 4.8 in [40] (p. 1628) we have that on the real line
there exists an isometric multiplier M(t) from K(Θ) onto KM(T ), where
Θ(z) is the Livsic characteristic function of T (see Section 3.12 in [40], p.
1620), and K(Θ) is the model space H2 ⊖ ΘH2. We have

M(t) = 2π (1 − Θ(t))−1 (−1)⌊τ(t)⌋f(t),

where

f(t) =
(∑

n

t′(n)
(t− t(n))2

)− 1
2

,
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then ∀F (t) ∈ KM(T ) there exists H ∈ K(Θ) such that

F (t) = M(t)H(t), t ∈ R, (6.7)

and ∀H ∈ K(Θ) there exists F (t) ∈ KM(T ) such that (6.7) is verified.
Let E(z) be a de Branges function of Θ(z). We already know that the de
Branges space B(E) is given by

B(E) = EK(Θ).

Hence, given any G ∈ B(E) we can write

G(t) = E(t)H(t) = E(t)
M(t)F (t), t ∈ R (6.8)

for some H ∈ K(Θ) and F (t) ∈ KM(T ), and given any F (t) ∈ KM(T )
there exist H ∈ K(Θ) and G ∈ B(E) so that (6.8) is verified. Hence we
obtained that there exists a multiplier N(t) from KM(T ) onto B(E), given
by N(t) = E(t)

M(t) . We have:

N(t) = E(t)
M(t) = E(t) − E#(t)

2π(−1)⌊τ(t)⌋f(t) .

Now, from equation (11) in [40], p. 1612 (see aldo (3.45) and (3.38) in [19]),
we have

f(t) = (−1)⌊τ(t)⌋ sin(πτ(t))
π

√
t′(τ(t)).

Moreover, for t ∈ R we have:

(E(t) − E#(t))2 = E(t)E#(t)
(
E(t)
E#(t) + E#(t)

E(t) − 2
)

= |E(t)|2
(

1
Θ(t) + Θ(t) − 2

)
= |E(t)|2

(
e−2πiτ(t) + e2πiτ(t) − 2

)
= |E(t)|2 (2 cos(2πτ(t)) − 2)

= −4|E(t)|2
(

1 − cos(2πτ(t))
2

)
= −4|E(t)|2 sin(πτ(t))2.
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Hence
N(t) = 2i|E(t)| sin(πτ(t))

2 sin(πτ(t))
√
t′(τ(t))

= i|E(t)|√
t′(τ(t))

= i|E(t)|
√
τ ′(t)

= i|E(t)|

√√√√ Θ′(t)
2πiΘ(t)

= i

√
E#′(t)E(t) − E#(t)E ′(t)

2πi

(6.9)

Using (2.16) we finally obtain

N(t) = i
√
KB(E)(t, t).

Moreover, from (6.9) we have thatN(t) = i|E(t)|
√
τ ′(t), then for F1(t), F2(t) ∈

KM(T ) we set
G1(t) = i|E(t)|

√
τ ′(t)F1(t) ∈ B(E),

G2(t) = i|E(t)|
√
τ ′(t)F2(t) ∈ B(E),

and we obtain:

⟨G1, G2⟩B(E) =
∫
R
G1(t)G2(t)

1
|E(t)|2dt

=
∫
R
F1(t)F2(t)τ ′(t)dt

= ⟨F1, F2⟩KM(T ).

(6.10)

and as a consequence
∥G1∥B(E)= ∥F1∥KM(T ).

This shows that with a rescaling we have an isometry between B(E) and
KM(T ).

Corollary 6.3. For every regular simple symmetric linear transformation T
with deficiency indices (1, 1), let Θ(z) be the Livsic characteristic function
Θ(z) of KM(T ). Then on the real line there exists an isometric multi-
plier Ñ(t) from the Kempf-Martin space KM(T ) onto the model space space
K(Θ), given by

Ñ(t) =
√
iΘ′(t)

2π . (6.11)
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Proof. From Theorem 4.8 in [40] (p. 1628) we already know that on the real
line there exists an isometric multiplier between KM(T ) and K(Θ). Hence
we just need to show that the multiplier has the expression given in (6.11).
Let E(z) be a de Branges function of Θ(z). Then, since B(E) = EK(Θ),
thanks to Theorem 6.2, on the real line there exists an isometric multiplier
from the Kempf-Martin space KM(T ) onto the model space space K(Θ),
given by Ñ(t) = N(t)

E(t) . Now, recalling (6.9), we obtain

Ñ(t) = N(t)
E(t) = i

|E(t)|
E(t)

√
τ ′(t) = i

√
E(t)E#(t)
E(t)

√
τ ′(t) = i

√√√√E#(t)
E(t) τ

′(t)

= i
√

Θ(t)τ ′(t) = i
√
e2πiτ(t)τ ′(t) = i

√
1

2πi
d

dt
(e2πiτ(t))

=
√
iΘ′(t)

2π

The next theorems give a necessary and sufficient condition for a function
F (x) to belong to KM(T ).

Theorem 6.4. Let ({tn}n, {t′n}n) be a bandlimit pair such that

− lim sup
y→∞

y−1 log
∣∣∣∣∣∑

n

t′n

(
1

tn − iy
− 1
tn − i

)∣∣∣∣∣ > 0, (6.12)

and that ∑
n̸=0

1
|tn|q+1 < ∞

for some q ∈ Z, q ≥ 0. Let Let KM({tn}n, {t′n}n) be the corresponding
Kempf-Martin space. Let E(z) be given by

E(z) = zc

(∑
n

t′n

(
1

tn − z
− tn
t2n + 1

)
+ α

) ∏
n∈Z,tn ̸=0

(
1 − z

tn

)
eu(z), (6.13)

c =
{

1, if ∃n | tn = 0
0, otherwise

u(z) =
p∑

m=1

(
z

tn

)m

,

and p is the smallest nonnegative integer for which the series
∑
n̸=0

1
|tn|p+1
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is convergent. Then a function F (t), t ∈ R, belongs to KM({tn}n, {t′n}n) if
and only if there exists a function G ∈ L2

Θ such that

F (t) = 1
i
√
KB(E)(t, t)

F̃E(G(t)),

Proof. Thanks to Theorem 6.2 we have that

H(t) = N(t)F (t) = i
√
KB(E)(t, t)F (t) ∈ B(E).

Let T be the regular simple symmetric linear transformation with deficiency
indices (1, 1) corresponding to the bandlimit pair ({tn}n, {t′n}n), and let Θ(z)
be the Livsic characteristic function of T . By Theorem 4.4 and Proposition
4.5 in [40] (p. 1627) we have that Θ(z) has the form

Θ(z) = z − i

z + i

∑
n

1
tn−z

1
tn−i

t′n∑
n

1
tn−z

1
tn+i

t′n

=
∑

n t
′
n

(
1

tn−z
− 1

tn−i

)
∑

n t′n
(

1
tn−z

− 1
tn+i

)
=
∑

n t
′
n

(
1

tn−z
− tn

t2
n+1

)
+ α∑

n t′n
(

1
tn−z

− tn

t2
n+1

)
+ α

,

where α = i
∑

n
t′
n

t2
n+1 . Then by Theorem 4.8 we get that E(z) given in (6.13)

verifies Θ(z) = E#(z)
E(z) . Thanks to Lemma 4.12 and to (6.12) we obtain

b = − lim sup
y→+∞

y−1 log
∣∣∣∣∣∑

n

t′n

(
1

tn − z
− tn
t2n + 1

)
+ α

∣∣∣∣∣
= − lim sup

y→+∞
y−1 log

∣∣∣∣∣∑
n

t′n

( 1
tn − z

− 1
tn − i

)∣∣∣∣∣
> 0.

Hence we can apply Theorem 5.1 to H(t), and we obtain that H(t) ∈ B(E)
if and only if there exists a function G ∈ L2

Θ such that

H(t) = F̃E(G(t)).

Since F (t) = 1
i
√

KB(E)(t,t)
H(t), the proof is complete.

6.5 Alternative definition of the Kempf-Martin spaces

According to the unitary isomorphism between the Kempf-Martin spaces and
the de Branges spaces proved in Theorem 6.2, we introduce the following
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equivalent definition of the Kempf-Martin spaces. For every Hermite Biehler
function E(z), the corresponding Kempf-Martin space KM(E) is given by

KM(E) = B(E)|R
i
√
KB(E)(t, t)

= B(E)|R
i|E(t)|

√
τ ′(t)

, t ∈ R. (6.14)

Since the original Kempf-Martin spaces are defined only on the real line, here
the functions of the de Branges space B(E) are considered to be restricted
on the real line. Obviously, the Kempf-Martin space KM(E) coincides with
the Kempf-Martin space KM(T ) with Livsic characteristic function given
by Θ(z) = E#(z)

E(z) . The Livsic characteristic function of the original Kempf-
Martin spaces is such that Θ(i) = 0, but nothing prevents us from extending
the definition also to functions for which Θ(i) ̸= 0.

The goal of this section is to show that, starting from this equivalent def-
inition of the Kempf-Martin spaces, we can derive and improve all the most
important results for the Kempf-Martin spaces presented in [40] without
using the theory of simple symmetric operators.

We will prove these results in a different order than that given in [40].
In particular first we will derive the result of Theorem 2.24 and the main
results of Section 3. Only after this we will give an equivalent proof of
Propostion 2.18. Finally we will derive the main results of Section 4.

Theorem 2.24 in [40] derives the sampling formula (6.3), while the main
goal of Section 3 in [40] is to define the Livsic characteristic function Θ(z) of
a Kempf-Martin space, and to prove Corollary 3.18, which states that, for
every θ ∈ [0, 1), the sequence {tn(θ)}n defined in (6.1) is the set of solutions
of

Θ (t) = ei2πθ, t ∈ R. (6.15)
For the alternative definition of the Kempf-Martin spaces, all these results
are obtained in the next theorem, and we improve them showing that the
sampling formula (6.3) converges in norm, and uniformly on the intervals of
R.

Theorem 6.5. Let E(z) be a Hermite Biehler function, and let Θ(z) =
E#(z)
E(z) . For every θ ∈ [0, 1), let the sequence {tn(θ)} be the set of solutions of

Θ (t) = ei2πθ, t ∈ R, (6.16)

Then for every θ ∈ [0, 1) and F (t) ∈ KM(E) the following sampling formula
holds:

F (t) =
∑

n

KKM(E) (tn(θ), t)F (tn(θ)) .

The series converges in norm, and uniformly on the intervals of R.

Proof. Given a Hermite Biehler function E(z), the classical sampling formula
(2.17) for the de Branges space B(E) is based on the sampling sequence {tn}n
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of solutions of Θ(t) = 1 for t ∈ R, where Θ(z) = E#(z)
E(z) . Now consider the in-

ner function Θθ(z) = e−2πiθΘ(z), for some θ ∈ [0, 1). Then Eθ(z) = eiπθE(z)
is a de Branges function of Θθ(z). We observe that the corresponding de
Branges space B(Eθ) = EθK(Θθ) is obviously equal to B(E) = EK(Θ), since
both E(z) and Θ(z) are just multiplied by a constant. Indeed, by (2.15) we
can easily see that also the reproducing kernel remains the same:

KB(Eθ)(w, z) = Eθ(z)E#
θ (w) − E#

θ (z)Eθ(w)
2πi(w − z)

= eiπθE(z)e−iπθE#(w) − e−iπθE#(z)eiπθE(w)
2πi(w − z)

= E(z)E#(w) − E#(z)E(w)
2πi(w − z)

= KB(E)(w, z).

Therefore, for all θ ∈ [0, 1), every function G ∈ B(E) can be rebuilt exactly
also with samples taken on the sampling sequence {tn(θ)} of soultions of
Θ(t) = e2πiθ for t ∈ R, and by (2.17) we get

G(z) =
∑

n

KB(E) (tn(θ), z)
KB(E) (tn(θ), tn(θ))G (tn(θ)) . (6.17)

Now, given F ∈ KM(E), according to (6.14) set G(t) = N(t)F (t) ∈ B(E),
where

N(t) = i
√
KB(E)(t, t). (6.18)

By (6.17) we have

F (t)N(t) =
∑

n

KB(E) (tn(θ), t)
KB(E) (tn(θ), tn(θ))F (tn(θ))N(tn(θ)).

and then
F (t) =

∑
n

N(tn(θ))KB(E) (tn(θ), t)
N(t)KB(E) (tn(θ), tn(θ))F (tn(θ)) . (6.19)

For G ∈ B(E), with G(t) = F (t)N(t) for F (t) ∈ KM(E) and t ∈ R, we get
F (t)N(t) = G(t)

=
〈
G(s), KB(E)(t, s)

〉
B(E)

,

=
〈
F (s)N(s), KB(E)(t, s)

〉
B(E)

,

and then
F (t) =

〈
F (s)N(s), KB(E)(t, s)

N(t)

〉
B(E)

=
〈
F (s), KB(E)(t, s)

N(t)N(s)

〉
KM(E)

.
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Hence, recalling that the repoducing kernel of a RKHS is unique, we obtain
that the reproducing kernel of KM(E) is given by

KKM(E)(t, s) = KB(E)(t, s)
N(t)N(s)

. (6.20)

Therefore, by (6.19) and (6.20) we get

F (t) =
∑

n

N(tn(θ))2KB(E) (tn(θ), t)
N(t)N(tn(θ))KB(E) (tn(θ), tn(θ))F (tn(θ)) .

=
∑

n

KKM(E) (tn(θ), t)
KKM(E) (tn(θ), tn(θ))F (tn(θ)) .

(6.21)

Moreover, by (6.18) and (6.20) we get

KKM(E)(t, t) = KB(E)(t, t)
|N(t)|2

= KB(E)(t, t)
KB(E)(t, t)

= 1,

(6.22)

and hence we finally get

F (t) =
∑

n

KKM(E) (tn(θ), t)F (tn(θ)) .

Now, for M ∈ Z, M > 0 we set

GM(t) =
G(t) −

M∑
n=−M

KB(E)(tn(θ), t)
KB(E)(tn(θ), tn(θ))G(tn(θ))

 ∈ B(E),

FM(t) =
F (t) −

M∑
n=−M

N(tn(θ))KB(E)(tn(θ), t)
N(t)KB(E)(tn(θ), tn(θ))F (tn(θ))


= GM(t)

N(t) ∈ KM(E),

with
∥GM∥B(E) = ∥FM∥KM(E) .

Given any interval [α, β] ⊂ R, by Theorem 2.18 we have

lim
M→+∞

sup
t∈[α,β]

|GM(t)| = 0,

lim
M→+∞

∥GM∥B(E) = 0.
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Therefore, since GM(t) = FM(t)N(t) and N(t) has neither poles nor zeros
on R, we obtain

lim
M→+∞

sup
t∈[α,β]

|FM(t)| = lim
M→+∞

sup
t∈[α,β]

∣∣∣∣∣FM(t)N(t)
N(t)

∣∣∣∣∣
≤ 1

inft∈[α,β] |N(t)| lim
M→+∞

sup
t∈[α,β]

|GM(t)|

= 0,

and
lim

M→+∞
∥FM∥KM(E) = lim

M→+∞
∥GM∥B(E) = 0.

Hence the series converges in norm, and uniformly on the intervals of R.

The main goal of Section 2 in [40] is to use the theory of simple symmetric
operators to prove the crucial result of Proposition 2.18 (Theorem 6.1 in
this work). For the equivalent definition of the Kempf-Martin spaces, we
derive the same result in the next theorem. Before proving the theorem, we
need the following lemma, which is an interlocutory but fundamental result.

Lemma 6.6. Let E(z) be a Hermite Biehler function, and let t be the spec-
tral function of Θ(z) = E#(z)

E(z) . Let KKM(E) be the reproducing kernel of
the Kempf-Martin space KM(E). Then, for every θ ∈ [0, 1), the sequence
{KKM(E)(t(n + θ), z)}n is an orthonormal basis of KM(E). Moreover for
every n,m ∈ Z and θ, β ∈ [0, 1) we have

〈
KKM(E)(t(n+ θ), ·), KKM(E)(t(m+ β), ·)

〉
KM(E)

= (−1)n+m sin(π(β − θ))
tm(β) − tn(θ)

√
t′(n+ θ)t′(m+ β)

π
.

(6.21)

Proof. By (6.20) we have

KKM(E)(r, s)

= KB(E)(r, s)
N(r)N(s)

= 1
|E(r)|

√
τ ′(r)

KB(E)(r, s)
1

|E(s)|
√
τ ′(s)

= 1
|E(r)|

√
τ ′(r)

E(s)E#(r) − E#(s)E(r)
2πi(s− r)

1
|E(s)|

√
τ ′(s)

.
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We observe that

(E(s)E#(r) − E#(s)E(r))2

=E(s)E(r)E#(s)E#(r)
(
E(s)E#(r)
E#(s)E(r) + E#(s)E(r)

E(s)E#(r) − 2
)

=|E(s)|2|E(r)|2
(

Θ(r)
Θ(s) + Θ(s)

Θ(r) − 2
)

=|E(s)|2|E(r)|2
(
e−2πi(τ(s)−τ(r)) + e2πi(τ(s)−τ(r)) − 2

)
=|E(s)|2|E(r)|2 (2 cos(2π(τ(s) − τ(r))) − 2)

= − 4|E(s)|2|E(r)|2
(

1 − cos(2π(τ(s) − τ(r)))
2

)
= − 4|E(s)|2|E(r)|2 sin(π(τ(s) − τ(r)))2.

Therefore we get

KKM(E)(r, s) = 1
|E(r)|

√
τ ′(r)

E(s)E#(r) − E#(s)E(r)
2πi(s− r)

1
|E(s)|

√
τ ′(s)

= (−1)⌊τ(s)−τ(r)⌋
√
t′(τ(r))sin(π(τ(s) − τ(r)))

π(s− r)
√
t′(τ(s)).

Now, set n = ⌊τ(r)⌋, θ = {τ(r)},m = ⌊τ(s)⌋, β = {τ(s)} so that r = t(n+θ),
s = t(m+ β). Then we obtain

KKM(E)(t(n+ θ), t(m+ β))

= (−1)m−n sin(π(m+ β − n− θ))
t(m+ β) − t(n+ θ)

√
t′(n+ θ)t′(m+ β)

π

= (−1)n+m sin(π(β − θ))
tm(β) − tn(θ)

√
t′(n+ θ)t′(m+ β)

π
.

Now fix any θ ∈ [0, 1) and consider the sequence {KKM(E)(t(n + θ), ·)}n.
Recalling (2.1) we get

〈
KKM(E)(t(n+ θ), ·), KKM(E)(t(m+ β), ·)

〉
KM(E)

= KKM(E)(t(n+ θ), t(m+ β))

= (−1)n+m sin(π(β − θ))
tm(β) − tn(θ)

√
t′(n+ θ)t′(m+ β)

π
,

(6.22)

and then (6.21) is proved. It remains to show that {KKM(E)(t(n+ θ), ·)}n is
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an othonormal basis. We observet that〈
KKM(E)(t(n+ θ), ·), KKM(E)(t(n+ θ), ·)

〉
KM(E)

= lim
β→θ

sin(π(β − θ))
tn(β) − tn(θ)

t′(n+ θ)
π

= lim
β→θ

sin(π(β − θ))
t(n+ β) − t(n+ θ)

t′(n+ θ)
π

= lim
β→θ

π

t′(n+ θ)
t′(n+ θ)

π
(by l’Hopital)

= 1.

(6.23)

The result of (6.23) could be derived as an immediate consequence of (6.22),
but for sake of completeness we prefer to prove it explicitly also in this case.
Moreover, for n,m ∈ Z, n ̸= m, we get〈

KKM(E)(t(n+ θ), ·), KKM(E)(t(n+ θ), ·)
〉

KM(E)

= lim
β→θ

sin(π(β − θ))
tn(β) − tm(θ)

t′(n+ θ)
π

= 0.

(6.24)

Hence, by (6.23) and (6.24) we have obtained that the elements of the se-
quence {KKM(E)(t(n+θ), ·)}n are pairwise orthonormal. Then {KKM(E)(t(n+
θ), ·)}n is an orthonormal sequence in KM(E). Thanks to Theorem 6.5, for
every F ∈ KM(T ) we have

F (t) =
∑

n

KKM(E) (tn(θ), t)F (tn(θ))

=
∑

n

KKM(E)(t(n+ θ), t)F (tn(θ)) .

Then, for every θ ∈ [0, 1) the only function that is perpendicular to all the
elements of the sequence {KKM(E)(t(n + θ), ·)}n is the null vector, hence
{KKM(E)(t(n+ θ), ·)}n is a complete orthonormal sequence in KM(E), and
therefore an orthonormal basis.

Theorem 6.7. Let E(z) be a Hermite Biehler function and let Θ(z) = E#(z)
E(z) .

For s, t ∈ R, the reproducing kernel of the space KM(E) can be expressed
as

KKM(E)(t, s) = f(t)(−1)⌊τ(t)⌋
(∑

n

t′(n)
(t− tn) (s− tn)

)
(−1)⌊τ(s)⌋f(s),

where

f(t) :=
(∑

n

t′(n)
(t− tn)2

)− 1
2

,

and {tn}n is the set of solutions of Θ(t) = 1 for t ∈ R.
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Proof. For semplicity we set
ϕn(θ) := KKM(E)(t(n+ θ), ·).

Fix any α ∈ [0, 1) so that θ ̸= α. Then, expanding ϕn(θ) in the orthonormal
basis {ϕn(α)}n we get

1 = ⟨ϕn(θ), ϕn(θ)⟩KM(E)

=
∑

k

sin2(π(α− θ))
(tk(α) − tn(θ))2

t′(n+ θ)t′(k + α)
π2 .

Solving for t′(n+ θ) we obtain

t′(n+ θ) = π2

sin2(π(α− θ))fα (tn(θ))2 , (6.25)

where

fα(t) :=
(∑

k

t′(k + α)
(t− tk(α))2

)− 1
2

.

Expanding ⟨ϕn(θ), ϕm(β)⟩KM(E) in the orthonormal basis {ϕk(α)}k∈Z and
using (6.21) and (6.25) we have

⟨ϕn(θ), ϕm(β)⟩KM(E) =
∑

k

⟨ϕn(θ), ϕk(α)⟩KM(E) ⟨ϕk(α), ϕm(β)⟩KM(E)

=
∑

k

(−1)n+m

π2
t′(k + α)

(tn(θ) − tk(α)) (tm(β) − tk(α))

sin(π(α− θ)) sin(π(α− β))
√
t′(n+ θ)t′(m+ β)

=
∑

k

(−1)n+m t′(k + α)
(t(n+ θ) − t(k + α))(t(m+ β) − t(k + α))

fα(t(n+ θ))fα(t(m+ β)).
Finally we get
KKM(E)(t, s) = ⟨KKM(E)(t, ·), KKM(E)(s, ·)⟩KM(E)

=
〈
ϕ⌊τ(t)⌋(τ(t) − ⌊τ(t)⌋), ϕ⌊τ(s)⌋(τ(s) − ⌊τ(s)⌋)

)〉
KM(E)

= (−1)⌊τ(t)⌋fα(t)
(∑

k

t′(k + α)
(t− tk(α)) (s− tk(α))

)
fα(s)(−1)⌊τ(s)⌋

for any α ∈ [0, 1), and setting for α = 0 the proof is over.

The goal of the first part of Section 4 in [40] (up to Section 4.6, pp.
1624-1628) is to derive a representation for the Livsic characteristic function
in terms of the sequence {tn}n, obtained in equation (25) (p. 1628):

Θ(z) =
∑

n

(
1

tn−z
− 1

tn−i

)
t′n∑

n

(
1

tn−z
− 1

tn+i

)
t′n
. (6.26)
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In the proof of this result, an important role is played by the equation
∑

n

t′n
t2n + 1 = π, (6.27)

which is the key property of the normalized time-varying bandlimit pairs
({tn}n, {t′n}n) and then a fundamental pillar of all the Kempf-Martin theory.
For the alternative definition of the Kempf-Martin spaces we derive a much
more general result in the following theorem, for which (6.26) and (6.27) are
the particular case given by z0 = i.

Theorem 6.8. Let Θ(z) be a meromorphic inner function, and let t(x) be
its spectral function. For all n ∈ Z set tn = t(n) and t′n = t′(n). Then, for
any n ∈ Z, Θ(z) can be expressed as

Θ(z) =
t′
n

tn−z
+∑

m ̸=n

(
t′
m

tm−z
− t′

m

tm−tn

)
− iπ

t′
n

tn−z
+∑

m̸=n

(
t′
m

tm−z
− t′

m

tm−tn

)
+ iπ

. (6.28)

Moreover, for every zero z0 of Θ(z), Θ(z) can be written as

Θ(z) =
∑

n

(
1

tn−z
− 1

tn−z0

)
t′n∑

n

(
1

tn−z
− 1

tn−z0

)
t′n
, (6.29)

and the following equality holds:
∑

n

ℑ(z0)t′n
(tn − ℜ(z0))2 + ℑ(z0)2 = π. (6.30)

Proof. Let E(z) be a de Branges function of Θ(z), and let KM(E) be its
associated Kempf-Martin space. Then, by (6.25), for every θ ∈ [0, 1) and
α ∈ [0, 1) such that α ̸= θ, we have

t′(n+ θ) = π2

sin2(π(α− θ))

(∑
m

t′(m+ α)
(tn(θ) − tm(α))2

)−1

.

Setting α = 0 we get(∑
m

t′m
(t(n+ θ) − tm)2

)
t′(n+ θ) = π2

sin2(πθ) .

Given β ∈ (0, 1) and ϵ such that 0 < ϵ < β, we have∫ β

ϵ

(∑
m

t′m
(t(n+ θ) − tm)2

)
t′(n+ θ)

= − t′n
tn(β) − tn

+ t′m
tn(ϵ) − tn

+
∑

m̸=n

(
− t′m
tn(β) − tm

+ t′m
tn(ϵ) − tm

)
,
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and ∫ β

ϵ

π2

sin2(πθ) = − π cot(πβ) + π cot(πϵ).

Therefore we get

− t′n
tn(β) − tn

+ t′m
tn(ϵ) − tn

+
∑

m̸=n

(
− t′m
tn(β) − tm

+ t′m
tn(ϵ) − tm

)
= −π cot(πβ) + π cot(πϵ).

(6.31)

As ϵ goes to 0+, tn(ϵ) − tn → ϵt′n asymptotically. Hence the term t′
n

tn(ϵ)−tn

on the left hand side asymptotically goes to 1
ϵ

as ϵ → 0+. On the right
hand side, π cot(πϵ) = π cos(πϵ)

sin(πϵ) asymptotically goes to 1
ϵ

as ϵ → 0+. Then,
as ϵ → 0+ we can cancel the simple poles 1

ϵ
on both sides, and we obtain

t′n
tn(β) − tn

+ lim
ϵ→0+

∑
m ̸=n

(
t′m

tn(β) − tm
− t′m
tn(ϵ) − tm

)
= π cot(πβ).

We observe that
t′m

tn(β) − tm
− t′m
tn(ϵ) − tm

= tn(β) − tn(ϵ)
(tn(β) − tm)(tn(ϵ) − tm) ,

and that
(tn(β) − tm)(tn(ϵ) − tm) > 0 ∀m ̸= n,

since tn < tn(β) < tn+1. Hence

t′m
tn(β) − tm

− t′m
tn(ϵ) − tm

= tn(β) − tn(ϵ)
(tn(β) − tm)(tn(ϵ) − tm) > 0 ∀m ̸= n,

and by the monotonic convergence theorem we get

lim
ϵ→0+

∑
m̸=n

(
t′m

tn(β) − tm
− t′m
tn(ϵ) − tm

)
=
∑

m ̸=n

(
t′m

tn(β) − tm
− t′m
tn − tm

)
.

Therefore we obtain
t′n

tn(β) − tn
+
∑

m ̸=n

(
t′m

tn(β) − tm
− t′m
tn − tm

)
= π cot(πβ). (6.32)

Setting

fm,n =

0 if m = n,
t′
m

tn−tm
if m ̸= n,

we get ∑
m

(
t′m

tn(β) − tm
− fm,n

)
= π cot(πβ). (6.33)
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Moreover, since tn(β) covers the real line exactly once as n varies in Z and
β varies [0, 1), we can set x = tn(β) and for all x ∈ R we can write

∑
m

(
t′m

x− tm
− fm,n

)
= π cot(πτ(x)), (6.34)

where we used the fact that cot(πτ(x)) = cot(π(n+ β)) = cot(πβ). Now we
define

f(x) =
∑
m

(
t′m

x− tm
− fm,n

)
,

so that
f(x) = π cot(πτ(x)).

Hence, recalling that − cot(x) = cot(−x), we have

arccot
(

−f(x)
π

)
= −πτ(x),

and using the well-known identity

arccot(x) = i

2 log
(
x− i

x+ i

)
we obtain

2πiτ(x) = log
(

−f(x) − iπ

−f(x) + iπ

)
,

and therefore
Θ(x) = e2πiτ(x)

= −f(x) − iπ

−f(x) + iπ

=
∑

m

(
t′
m

tm−x
+ fm,n

)
− iπ∑

m

(
t′
m

tm−x
+ fm,n

)
+ iπ

.

(6.35)

It is easy to see that by extending the last expression to all C we obtain a
meromorphic function, and hence (6.28) is proved.

Now, let z0 be any zero of Θ(z). In order to obtain Θ(z0) = 0, by (6.35)
we need ∑

m

(
t′m

tm − z0
+ fm,n

)
− iπ = 0. (6.36)

Since Θ(z) = E(z)
E(z) = E(z)

E#(z)
= 1

Θ(z)
, we get the Θ(z) has a pole for z = z0,

and therefore by (6.35) we need also

∑
m

(
t′m

tm − z0
+ fm,n

)
+ iπ = 0. (6.37)
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Hence we finally get

Θ(x) =
∑

m

(
t′
m

tm−x
+ fm,n

)
− iπ −

(∑
m

(
t′
m

tm−z0
+ fm,n

)
− iπ

)
∑

m

(
t′
m

tm−x
+ fm,n

)
+ iπ −

(∑
m

(
t′
m

tm−z0
+ fm,n

)
+ iπ

)
=
∑

m

(
1

tm−x
− 1

tm−z0

)
t′m∑

m

(
1

tm−x
− 1

tm−z0

)
t′m
.

Moreover, by (6.36) and (6.37) we get

2iπ =
∑
m

(
t′m

tm − z0
+ fm,n

)
−
∑
m

(
t′m

tm − z0
+ fm,n

)

=
∑
m

(
t′m

tm − z0
− t′m
tm − z0

)

= 2iℑ(z0)
∑
m

t′m
(tm + ℜ(z0))2 + ℑ(z0)2 ,

and then we obtain ∑
m

ℑ(z0)t′m
(tm − ℜ(z0))2 + ℑ(z0)2 = π.

From this theoren we can also derive the following result.

Theorem 6.9. Let F (z) be any Herglotz function such that

Θ(z) = F (z) − i

F (z) + i
(6.38)

is a meromorphic inner function. Then F (z) can be uniquely represented as

F (z) =
∑

n

(
1

tn − z
− tn − ℜ(z0)

(tn − ℜ(z0))2 + ℑ(z0)2

)
wn, z ∈ C+, (6.39)

where

• {tn}n is the sequence of poles of F (z) on the real line;

• wn = limz→tn

(F (z)+i)2

F ′(z) ;

• z0 is any point for which F (z0) = i.

Moreover the following equality holds:
∑

n

ℑ(z0)wn

(tn − ℜ(z0))2 + ℑ(z0)2 = 1. (6.40)
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Proof. We already know that there exists an infinite number of Herglotz
functions that verify (6.38). Indeed, according to Section 2.3, there exists a
bijection between the Herglotz functions corresponding to a purely discrete
measure and the meromorphic inner functions. In particular, given Herglotz
function F (z) corresponding to a purely discrete measure, the meromorphic
inner function Θ(z) associated to F (z) is given by (6.38):

Θ(z) = F (z) − i

F (z) + i
.

If z0 is any zero of Θ(z), by Theorem 6.8 we have

Θ(z) =
∑

n

(
1

tn−z
− 1

tn−z0

)
t′n∑

n

(
1

tn−z
− 1

tn−z0

)
t′n

=
∑

n

(
1

tn−z
− tn−ℜ(z0)

(tn−ℜ(z0))2+ℑ(z0)2

)
t′n −∑

n
iℑ(z0)t′

n

(tn−ℜ(z0))2+ℑ(z0)2∑
n

(
1

tn−z
− tn−ℜ(z0)

(tn−ℜ(z0))2+ℑ(z0)2

)
t′n +∑

n
iℑ(z0)t′

n

(tn−ℜ(z0))2+ℑ(z0)2

=
∑

n

(
1

tn−z
− tn−ℜ(z0)

(tn−ℜ(z0))2+ℑ(z0)2

)
t′n − iπ∑

n

(
1

tn−z
− tn−ℜ(z0)

(tn−ℜ(z0))2+ℑ(z0)2

)
t′n + iπ

,

where in the last step we used (6.30). Hence by (2.7) we get

F (z) = i

(
1 + Θ(z)
1 − Θ(z)

)

=
∑

n

(
1

tn − z
− tn − ℜ(z0)

(tn − ℜ(z0))2 + ℑ(z0)2

)
t′n
π
.

Since {tn}n is the sequence of solutions of Θ(t) = 1 for t ∈ R we get it is
also the sequence of poles of F (z) on the real line. We observe that

Θ′(z) = 2iF ′(z)
(F (z) + i)2 ,

and hence, recalling Theorem 4.6, we have

t′n = 2iπ
Θ′ (tn) .

Therefore we obtain

wn := t′n
π

= 2i
Θ′(tn) = lim

z→tn

(F (z) + i)2

F ′(z) .

Since z0 is any point for which Θ(z0) = 0, by (6.38) we easily get that it is
any point for which F (z0) = i. Realling (6.30), we finally obtain

∑
n

ℑ(z0)wn

(tn − ℜ(z0))2 + ℑ(z0)2 =
∑

n

ℑ(z0) t′
n

π

(tn − ℜ(z0))2 + ℑ(z0)2 = 1.
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It’s interesting to notice that, given a Herglotz function F (z) correspond-
ing to a purely discrete measure and such that F (i) = i and limy→∞

F (iy)
iy

= 0,
then (2.9) is a particular case of Theorem 6.9. Indeed, by (2.9) and (2.5)
we get

F (z) =
∑

n

(
1

tn − z
− tn
t2n + 1

)
wn, z ∈ C+,

which is exactly the same equation representation of F (z) that we obtain
setting z0 = i in (6.39). Obviously we have

i = F (i)

=
∑

n

(
1

tn − i
− tn
t2n + 1

)
wn

= i
∑

n

(
1

t2n + 1

)
wn,

and then also (6.40) is verified. Therefore we obtain that in this case the
positive weights {wn}n of the purely discrete measure (2.8) are given by
wn = limz→tn

(F (z)+i)2

F ′(z) .
Finally it is important to observe that also the generalized sampling

theory described in Chapters 5,6 in [19] can be totally derived without the
use of the theory of simple symmetric operators. We don’t go more in details
since it essentially uses all the results already proved for the equivalent
definition of the Kempf-Martin space. Indeed, in particular it is based on
the sequences tn that, given any α ∈ [0, 1), verify the equation

t′n
t− tn

−
∑

m ̸=n

t′m (t− tn)
(t− tm) (tn − tm) = π cot(πα),

which we already obtained in (6.32).
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Time-varying bandlimit functions and

applications

7.1 Definition of time-varying bandlimit

The bandlimit of a bandlimited function is strictly connected with the den-
sity of the sampling points, indeed the well-known Nyquist theorem states
that an a-bandilimted function can be rebuilt extactly from samples taken
with a uniform sampling such that tn+1 − tn ≤ π

2a
. The classical notion

of bandlimit for any Paley-Wiener space PWa can be interpreted as a
measure of the density of any of the Nyquist sampling sequence. Since
PWa = e−iazK (e2iaz), the phase function τ(t) of Θ(t) = e2iat is simply
τ(t) = a

π
t. It follows that the bandlimit a is given by

a = πτ ′.

Working in analogy with the classical Paley-Wiener spaces PWa, we can
construct a precise and meaningful definition of time-varying bandlimit for
any de Branges space and Kempf-Martin space. Given a Hermite Biehler
function E(z), by Theorem 6.5 we know that, for every θ ∈ [0, 1), all the
functions of the de Branges space B(E) can be rebuilt exactly with samples
taken on the sampling sequence {tn(θ)}n of solutions of Θ(t) = ei2πθ, t ∈ R.
Similarly, thanks to (6.3), we know that all the functions of Kempf-Martin
space KM(T ) can be rebuilt exactly with samples taken on the sampling
sequence {tn(θ)}n of solutions of Θ(t) = ei2πθ, t ∈ R, where Θ(z) is the
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Livsic characteristic function of T . In both cases, for every θ ∈ [0, 1), the
sampling sequence {tn(θ)} obviously satisfies

τ(tn(θ)) = n+ θ,

tn(θ) = t(n+ θ), (7.1)

where t(x) is the spectral function of Θ(z). Since n ∈ Z and θ ∈ [0, 1), we
have that, as n and θ vary in their domains, n+ θ takes once and only once
every real value. In particular, given x ∈ R, we have x = n+ θ with n = ⌊x⌋
and θ = {x}, and hence

t(x) = t⌊x⌋({x}).
Moreover, since t(x) is a strictly increasing function, it is easy to see that ev-
ery real value t ∈ R belongs to one and only one sampling sequence {tn(θ)}n,
and precisely it is the element with index n = ⌊τ(t)⌋ of the sequence cor-
responding to θ = {τ(t)}. Thanks to all these observations, the spectral
function t(x) can be interpreted as the function that describes how the value
of tn(θ) varies as θ ∈ [0, 1) and n ∈ Z vary in their domain.

Given a meromorphic inner function Θ(z), the value of τ ′(t) > 0 deter-
mines how quickly the phase of Θ(t) is rotating on the real line, and hence
measures the local density of points {tn(θ)}n, as n and θ vary in their domain.
Therefore, it is natural to extend the notion of bandlimit to the time-varying
setting by defining the time-varying bandlimit a(t) of de Branges spaces and
Kempf-Martin spaces as

a(t) = πτ ′(t),
so that this definition is totally coherent with the classical notion of ban-
dlimit for the Paley-Wiener spaces. This formal definition of the time-
varying bandlimit is the same given in [40].

However, this formal definition doesn’t give an easy interpretation of
the concept of time-varying bandlimit. Indeed, it difficult to give a precise
interpretation of the concept of time-varying bandlimit, since the traditional
notion of bandlimit is determined by the Fourier transform of the entire
signal and hence it is time-independent and non-local.

In [19] the following interpretation of time-varying bandlimit is given.
The Nyquist sampling rate of a bandlimited signal is the critical sampling
rate below which there is insufficient information to recover the signal and
above which redundance exists. It is defined as the inverse of twice the
bandwidth of the signal. In principle, if the information density vary in time,
also the Nyquist rate can vary in time. Hence the time-varying bandlimit of
a signal can be interpreted as half of the inverse of the time-varying Nyquist
rate of the signal.

In the next section we introduce a new family of time-varying-bandlimit
spaces which are consistent with this interpretation, but which also allow
a direct interpretation of the concept of time-varying bandlimit in the time
domain.
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7.2 Time-varying bandlimit spaces V(Θ)

In this section we define the spaces spaces V(Θ), which are a new family of
reproducing kernel Hilbert spaces of time-varying bandlimit functions, and
we derive an useful expression for their reproducing kernel.

Let Θ(z) = γe2ibzB(z) be a meromorphic inner function according to the
representation given in (2.3), with logarithmic residue 2b > 0 and phase
function τ(t). Consider the space V(Θ) given by

V(Θ) :=

F : F (t) = e−ibt√
τ ′(t)

G(t), for G ∈ K(Θ), t ∈ R

 .
The scalar product and the norm of V(Θ) are given by

⟨F,G⟩V(Θ) =
∫ +∞

−∞
F (t)G(t)τ ′(t)dt,

∥F∥2
V(Θ) =

∫ +∞

−∞
|F (t)|2τ ′(t)dt.

Recalling that the functions of K(Θ) are holomorphic and without poles on
the real line, and that τ(t) is analytic on the real line and such that τ ′(t) > 0
∀t ∈ R, we can conclude that all the functions of the space V(Θ) are analyitc
on R.

Let E(z) be a de Branges function of Θ(z). Recalling Theorem 2.19, it
is easy to see that

V(Θ) = e−ibt

E(t)
√
τ ′(t)

B(E)|R, t ∈ R, (7.2)

where the functions of B(E) are considered to be restricted on the real
line. Given F1(t), F2(t) ∈ B(E), and G1(t) = e−ibt

E(t)
√

τ ′(t)
F1(t), G2(t) =

e−ibt

E(t)
√

τ ′(t)
F2(t) ∈ V(Θ) we observe that

⟨G1, G2⟩V(Θ) =
∫ +∞

−∞
G1(t)G2(t)τ ′(t)dt,

=
∫ +∞

−∞
F1(t)F2(t)

1
|E(t)|2

1
τ ′(t)τ

′(t)dt,

=
∫ +∞

−∞
F1(t)F2(t)

1
|E(t)|2

dt,

= ⟨F1, F2⟩B(E).

(7.3)

Hence the multiplication by 1
E(t)

√
τ ′(t)

induces a unitary isomorphism be-
tween B(E)|R and V(Θ).
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Thanks to (6.14) and (7.2) we also have that

V(Θ) = ie−ibt |E(t)|
E(t) KM(E)

= ie−ibt
√

Θ(t)KM(E),
(7.4)

where E(z) is a de Branges function of Θ(z) and KM(E) is the corre-
spondent Kempf-Martin space. Given F1, F2 ∈ KM(E), and G1(t) =
i
√
γB(t)F1(t), G2 = i

√
γB(t)F2(t) ∈ V(Θ), by (6.10) and (7.3) we obviously

have
⟨G1, G2⟩V(Θ) = ⟨F1, F2⟩KM(E).

Theorem 7.1. Let Θ(z) be a meromorphic inner function given by

Θ(z) =
∑

n t
′
n

(
1

tn−z
− tn

t2
n+1

)
+ α∑

n t′n
(

1
tn−z

− tn

t2
n+1

)
+ α

,

according to the representation given in (4.7), with phase function τ(t). Then
V(Θ) is a RKHS with kernel given by

KV(Θ)(t, s) = f(t)g(t) − g(s)
t− s

f(s), t, s ∈ R,

where

f(t) = (−1)⌊τ(t)⌋e−ibt

(
g(t) + α

g′(t)(g(t) + α)

) 1
2

,

g(t) =
∑

n

t′n

(
1

tn − t
− tn
t2n + 1

)
.

In particular we have

KV(Θ)(t, t) = 1 ∀t ∈ R.

Proof. Let E(z) be a de Branges function of Θ(z), and let KM(E) be the
correspondent Kempf-Martin space. We observe that

Θ(t) = g(t) + α

g(t) + α
,

g′(t) =
∑

n

t′n
(tn − t)2 ,

g(t) − g(s) =
∑

n

t′n(t− s)
(t− tn)(s− tn) ,

(7.5)

Then by Theorem 6.7 and (7.4) we get

KV(Θ)(t, s) = eibtΘ(t)
1
2KKM(E)(t, s)e−ibsΘ(s) 1

2

= f(t)g(t) − g(s)
t− s

f(s), t, s ∈ R,
(7.6)
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where

f(t) = (−1)⌊τ(t)⌋e−ibtΘ(t) 1
2

(∑
n

t′n
(tn − t)2

)− 1
2

= (−1)⌊τ(t)⌋e−ibt

(
g(t) + α

g′(t)(g(t) + α)

) 1
2

.

Moreover we have

f(t)f(t) = |Θ(t)| 1
2

(∑
n

t′n
(tn − t)2

)−1

=
(∑

n

t′n
(tn − t)2

)−1 (7.7)

and then

KV(Θ)(t, t) =
(

t′n
(tn − t)2

)−1

lim
t→s

g(t) − g(s)
t− s

= 1
g′(t) lim

s→t

g(t) − g(s)
t− s

= 1.

(7.8)

7.3 Characterization and motivation of the spaces V(Θ)

In this section we give some important characterizations of the spaces V(Θ):
we derive a family of sampling formulas, we introduce a family of orthonor-
mal basis, and we show that a weighted version of the Fourier transform
induces a unitary isomorphism between these spaces and a class of sub-
spaces of L2(R). Moreover we explain why these spaces are suitable for
sampling and recostrunction of time-varying bandlimit functions.

Theorem 7.2. Let Θ(z) be a meromorphic inner function given by

Θ(z) =
∑

n t
′
n

(
1

tn−z
− tn

t2
n+1

)
+ α∑

n t′n
(

1
tn−z

− tn

t2
n+1

)
+ α

,

according to the representation given in (4.7), with phase function τ(t) and
spectral function t(x). For θ ∈ [0, 1) and n ∈ Z set tn(θ) = t(n + θ). Then
for every θ ∈ [0, 1) and every function G ∈ V(Θ) the following sampling
formula holds:

G(t) =
∑

n

KV(Θ) (tn(θ), t)G(tn(θ))

=
∑

n

f(tn(θ))g(tn(θ)) − g(t)
tn(θ) − t

f(t)G(tn(θ)),
(7.9)
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where

f(t) = (−1)⌊τ(t)⌋e−ibt

(
g(t) + α

g′(t)(g(t) + α)

) 1
2

,

g(t) =
∑

n

t′n

(
1

tn − t
− tn
t2n + 1

)
.

The series converges in norm, and uniformly on the intervals of R. For the
case θ = 0 the sampling formula becomes

G(t) =
∑

n

(−1)ne−ibtn

√
t′n

tn − t
f(t)G(tn).

Proof. Let E(z) be a de Branges function of Θ(z), and let KM(E) be the
correspondent Kempf-Martin space. Given G ∈ V(Θ) such that G(t) =
ie−ibt

√
Θ(t)F (t) with F ∈ KM(E), thanks to Theorem 6.5 we have

−ieibtΘ(t)− 1
2G(t) = F (t)

=
∑

n

KKM(E) (tn(θ), t)F (tn(θ))

=
∑

n

KKM(E) (tn(θ), t) (−i)eibtn(θ)Θ(tn(θ))− 1
2G(tn(θ)),

and then

G(t) =
∑

n

KKM(E) (tn(θ), t) eib(tn(θ)−t)Θ(t) 1
2 Θ(tn(θ))

1
2G(tn(θ))

=
∑

n

KV(Θ) (tn(θ), t)G(tn(θ))

=
∑

n

f(tn(θ))g(tn(θ)) − g(t)
tn(θ) − t

f(t)G(tn(θ)).

In particular, for the case θ = 0, we observe that

lim
s→θn

g′(tn)− 1
2 g(tn) =

√
t′n,

and then we obtain

G(t) =
∑

n

(−1)ne−ibtn

√
t′n

tn − t
f(t)G(tn).

Now, for N ∈ Z, N > 0 we set

FN(t) =
F (t) −

N∑
n=−N

KKN (E) (tn(θ), t)F (tn(θ))
 ∈ KM(E),

GN(t) =
G(t) −

N∑
n=−N

KKN (E) (tn(θ), t)M(t) 1
M(tn(θ))G(tn(θ))


= M(t)FN(t) ∈ V(Θ),
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where M(t) = ie−ibt
√

Θ(t), and

∥FN(t)∥KM(E) = ∥GN(t)∥V(Θ) .

Given any interval [α, β] ⊂ R, by Theorem 6.5 we have

lim
N→+∞

sup
t∈[α,β]

|FN(t)| = 0,

lim
N→+∞

∥FN∥KM(E) = 0.

Therefore, since FN(t) = GN (t)
M(t) and |M(t)| = 1 for all t ∈ R, we obtain

lim
N→+∞

sup
t∈[α,β]

|GN(t)| = lim
N→+∞

sup
t∈[α,β]

|FN(t)M(t)|

= lim
N→+∞

sup
t∈[α,β]

|FN(t)|

= 0,

and
lim

N→+∞
∥GN∥V(Θ) = lim

N→+∞
∥FN∥KM(E) = 0.

Hence the series converges in norm, and uniformly on the intervals of R.

Theorem 7.3. Let Θ(z) be a meromorphic inner function, with spectral
function t(x). For θ ∈ [0, 1) and n ∈ Z set tn(θ) = t(n+ θ). Then for every
θ ∈ [0, 1) the set

{KV(Θ) (tn(θ), t)}n

is an orthonormal basis of V(Θ).

Proof. Let E(z) be a de Branges function of Θ(z), and let KM(E) be the
correspondent Kempf-Martin space. Thanks to (7.8), for θ ∈ [0, 1) and
n,m ∈ Z we have〈
KV(Θ) (tn(θ), t) , KV(Θ) (tm(θ), t)

〉
V(Θ)

= KV(Θ)(tn(θ), tm(θ))

= eibtn(θ)Θ(tn(θ)
1
2KKM(E)(tn(θ), tm(θ))e−ibtm(θ)Θ(tm(θ)) 1

2

= eibtn(θ)Θ(tn(θ)
1
2
〈
KKM(E) (tn(θ), t) , KKM(E) (tm(θ), t)

〉
V(Θ)

e−ibtm(θ)Θ(tm(θ)) 1
2 .

Thanks to (6.24), for m ̸= n we obtain〈
KV(Θ) (tn(θ), t) , KV(Θ) (tm(θ), t)

〉
V(Θ)

= 0.
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Moreover, using (6.23), for m = n we get〈
KV(Θ) (tn(θ), t) , KV(Θ) (tn(θ), t)

〉
V(Θ)

= eibtn(θ)Θ(tn(θ)
1
2
〈
KKM(E) (tn(θ), t) , KKM(E) (tn(θ), t)

〉
V(Θ)

e−ibtn(θ)Θ(tn(θ)) 1
2 .

=
〈
KKM(E) (tn(θ), t) , KKM(E) (tn(θ), t)

〉
V(Θ)

= 1.

Therefore we have shown that

{KV(Θ) (tn(θ), t)}n

is an orthonormal set. Hence, thanks to Theorem 7.2, we obtain that
the only function that is perpendicular to all the elements of the sequence
{KV(Θ) (tn(θ), t)}n is the null vector, hence {KV(Θ) (tn(θ), t)}n is a complete
orthonormal sequence in V(Θ), and therefore an orthonormal basis.

Now we set
Θ0(z) = e2ibz,

Θ1(z) = γB(z),
so that Θ(z) = Θ0(z)Θ1(z), and we observe that Θ(z) = LCM(Θ0(z),Θ1(z)).
Setting K̃n(Θ) = ⊕∞

n=1 Θn
0 K (Θ0) ∩ (⊕n

m=1 Θm
0 Θ1K (Θ0))⊥, thanks to (5.11)

the space V(Θ) can be represented as

V(Θ) = e−ibt√
τ ′(t)

(
K(Θ0) ⊕

(⊕
n>0

K̃n(Θ)
))

= 1√
τ ′(t)

(
PWb ⊕ e−ibz

(⊕
n>0

K̃n(Θ)
)) (7.8)

We observe that the sampling sequences of the spaces V(Θ) are the same
of the corresponding de Branges space B(E). Hence we can inherit also the
definition of time-varying bandlimit given in Section 7.1. Therefore, for any
α ∈ [0, 1), the functions of the space V(Θ) can be rebuilt with samples taken
on the sampling sequence {tn(α)}n, where

tn(α) = t(n+ α),

and t(x) is the spectral function of Θ(z). Now, given F ∈ V(Θ), consider
F (x) and F (t(x)) for x ∈ R. For any α ∈ [0, 1) F (x) can be rebuilt on
samples taken on the sampling sequence {t(n+α)}n, and then it is easy to see
that F (t(x)) can be rebuilt on samples taken on the sampling sequence {n+
α}n. Then, according to the definition of time-varying bandlimit, F (t(x))
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has a time-constant bandlimit. We have obtained that replacing x with t(x)
in F (x) we cancel the effect of the time-varying bandlimit, flattening it to
a time-constant bandlimit. Since F (t(τ(x))) = F (x), the function F (x) can
be interpreted as the result of the application of a distortion τ(x) to the
time domain of the time-constant bandlimit function F (t(x)).

Now we define the space

Ṽ(Θ) := {F (t(x)), F ∈ V(Θ)},

equipped with the scalar product and the norm of L2(R). Given F,G ∈ V(Θ)
we observe that

⟨F (t(x)), G(t(x))⟩L2(R) =
∫ +∞

−∞
F (t(x))G(t(x))dx

=
∫ +∞

−∞
F (t)G(t)τ ′(t)dt

= ⟨F (t)
√
τ ′(t), G(t)

√
τ ′(t)⟩L2(R).

(7.9)

By definition of V(Θ) we have

F (t)
√
τ ′(t) ∈ e−ibtK(Θ) = PWb ⊕ e−ibt

(⊕
n>0

K̃n(Θ)
)
.

Hence F (t)
√
τ ′(t) is the restriction on the real line of a function of e−ibzK(Θ).

We recall also that the scalar product and the norm in PWb are the same
of L2(R). Since e−i(2n−1)bzK̃n(Θ) ⊆ PWb and |e−2inbx| = 1 for x ∈ R, the
scalar product and the norm of L2(R) are a scalar product and a norm also
for every space e−ibzK̃n(Θ). Moreover we know that the space e−ibzK(Θ) is
the closure of the subspace formed by all the possible finite sums of elements
of PWb and of {e−ibzK̃n(Θ)}n>0, then the norm L2(R) is a norm also for the
whole space e−ibzK(Θ).

Therefore, by (7.9) we get that there exists a unitary isomorphism be-
tween the restriction on R of the space e−ibzK(Θ) and the space Ṽ(Θ). We
have obtained that canceling the distortion of the time-varying bandlimit to
the functions of the space V(Θ) we get the space of time-constant bandlimit
functions Ṽ(Θ), which is unitarily isomorphic to the space of bandlimited
functions e−ibzK(Θ). Then we can interpret the space V(Θ) as the space
obtained applying a distorsion in the time domain to the space e−ibzK(Θ).

More is true. Indeed, recalling here the definitions of L2
Θ given in (5.7),

the next theorem shows that the weighted Fourier transform F√
τ ′ , given by

F√
τ ′(F )(z) :=

∫ +∞

−∞
F (t)e−izt

√
τ ′(t)dt,

induces an isomorphism between V(Θ) and L2
Θ.
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Theorem 7.4. Let Θ(z) = γe2ibzB(z) be a meromorphic inner function
according to the representation given in (2.3), with logarithmic residue 2b > 0
and phase function τ(t). Let F (t) ∈ V(Θ). Then the weighted Fourier
transform

F√
τ ′ : V(Θ) → L2

Θ, F√
τ ′(F )(z) :=

∫ +∞

−∞
F (t)e−izt

√
τ ′(t)dt,

is a unitary isomorphism between V(Θ) and L2
Θ.

Proof. Let E(z) be a de Branges function of Θ(z), and let F (t) ∈ V(Θ) be
such that F (t) = e−ibt

E(t)
√

τ ′(t)
G(t), where G(t) ∈ B(E). We observe that

F√
τ ′(F )(s) :=

∫ +∞

−∞
F (t)e−ist

√
τ ′(t)dt

=
∫ +∞

−∞
G(t) e

−ibt

E(s)
1√
τ ′(t)

e−ist
√
τ ′(t)dt

=
∫ +∞

−∞
G(t) e

−ibt

E(s)e
−istdt

= F̃E(G)(s).

Now the conclusion follows easily from Theorem 5.1.

This theorem is, for spaces V(Θ), analogous to what Paley-Wiener the-
orem is for the Paley-Wiener spaces. Moreover now we can associate to
every time-varying bandlimit function F (t) ∈ V(Θ) a concept of frequency
representation, that is the frequency representation of the function obtained
canceling the distortion of the time-varying bandlimit effect.

In conclusion, summarizing the previous observations, the spaces V(Θ)
are very interesting for sampling and reconstruction of time-varying ban-
dlimit functions, for the following reasons:

1. For every meromorphic inner function Θ(z), there exists an isomor-
phic multiplier between every space V(Θ) and the Kempf-Martin space
KM(T ) that has Livsic characteristic function Θ(z), and then the
space V(Θ) maintains many of the properties of the Kempf-Martin
space KM(T ). Indeed, for example, the functions of the space V(Θ)
can be rebuilt exactly with samples taken on the same sequences from
which the functions of KM(T ) can be rebuilt, and for every θ ∈ [0, 1),
the sequence

{KV(Θ) (tn(θ), ·)}n

is an orthonormal basis for the space V(Θ), as the sequence

{KKM(T ) (tn(θ), ·)}n

is an orthonormal basis for the space KM(T ).
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2. We can associate to every time-varying bandlimit function F (t) ∈ V(Θ)
a frequency representation, that is the frequency representation of the
function obtained flattening the distortion of the time-varying ban-
dlimit effect in F (z). We define this frequency representation and the
corresponding bandwidth as the normalized frequency representation
and the normalized bandwidth of F (t).

3. The normalized frequency representation of F ∈ V(Θ) is obtained ap-
plying the weighted Fourier transform F√

τ ′ to F (z). This transform
induces a unitary isomorphism between V(Θ) and L2

Θ, and hence it is,
for the spaces V(Θ), the analogous of what the Fourier transform is for
the Paley-Wiener spaces.

4. Thanks to the previous point, the spaces V(Θ) are, for time-varying
bandlimit functions, analogous to what the Paley-Wiener spaces are
for bandlimited functions.

5. Thanks to all these observations, the spaces V(Θ) result to be more in-
terpretable and controllable than other time-varying bandlimit spaces.
Indeed, by (7.8), every function F (t) ∈ V(Θ) can be written as

F (z) = 1√
τ ′(t)

(
F0(z)

(⊕
n>0

Fn(t)
))

,

for F0 ∈ PWb and Fn(z) ∈ e−ibzK̃n(Θ) ⊆ e2inbzPWb. We recall that
F(Fn) ∈ L2[b(2n − 1), b(2n + 1)]. Then the normalized bandwidth of
the function F (z) is defined by the values of n for which Fn(z) ̸= 0,
while the shape of the signal, for every interval [b(2n− 1), b(2n+ 1)] in
the normalized frequency domain, is controlled by Fn(z).

For these reasons in the next sections we propose a generalization of the
sampling method for time-varying bandlimit functions based on the repro-
ducing kernel and the sampling formula of the spaces V(Θ).

7.4 Generalized sampling method

The classical Shannon sampling method allows sampling and perfect recon-
struction of bandlimited signals with time-constant bandlimits. However, it
is clear that in real applications the effective bandwidth of a signal could
vary in time. In this case, sampling a signal at a constant rate is clearly not
optimally efficient, since choosing the highest needed sampling rate leads
to wasteful redundancy, while taking a lower sampling rate causes loss of
information.

To improve the sampling efficiency, we generalize the classical Shannon
sampling method, and we propose a method which allows the samples to
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be taken only as often as necessary according to the behavior of the given
signals (and hence to its time-varying bandlimit), and maintains the ability
to perfectly and stably reconstruct the continuous signals from their discrete
values on the set of sampling points.

Therefore, the goal of this section is to generalize the Shannon sampling
theorem, following the sampling scheme of the Shannon method, but for
time-varying bandlimit functions. As already pointed out, the bandlimit
as a function of time is ill-defined since the bandlimit of a signal is simply
time-independent. However, we can consider the bandlimit of a time-varying
bandlimit function as the bandlimit of its normalized frequency representa-
tion defined in Section 7.2, that is to say the bandlimit of the function
obtained flattening the distortion in the time domain introduced by the
time-varying bandlimit. Our generalized sampling method is mainly based
on the reconstruction properties of the spaces V(Θ).

First of all we recap the behavior of the classical Shannon sampling
method. Suppose to have a set of raw signals, i.e. a continuous function
Fraw : R → C. The Shannon sampling method consists of the following four
steps.

1. Analyze the frequency of the raw signals of interest Fraw(t) in order to
choose a suitable bandlimit b.

2. Filter Fraw(t) to obtain a bandlimited function F (t) such that F(F )(s) =
0 for s /∈ [−b, b]:

F (t) = (PFraw) (t) =
∫ +∞

−∞
Fraw(s)KPWb

(t, s)ds, (7.10)

where
KPWb

(t, s) = b

π
sinc(b(t− s))

is the reproducing kernel of the Paley-Wiener space PWb.

3. Store the samples {F (tn)}n for tn = π
b
n.

4. Reconstruct F (t) for all t ∈ R from the discrete samples using the
Shannon sampling theorem:

F (t) =
∑

n

KPWb
(t, tn). (7.11)

A given arbitrary raw signal Fraw(t) generally hasn’t bandlimit b, so we
need to first pre-filter it in order to consider only the frequencies inside the
interval [−b, b]. The bandlimit is chosen in step (1) so that the frequencies
of Fraw(t) outside the interval [−b, b] are negligible.
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In step (2), we approximate the raw signal Fraw(t) with the filtered signal
F (t) such that F(F )(s) = 0 for s /∈ [−b, b]. In order to obtain such F (t)
it is sufficient to multiply the Fourier transform of Fraw(t) with the rectan-
gular function which is 1 in [−b, b] and 0 elsewhere. Let F̂raw(w) and F̂ (w)
denote the Fourier transform respectively of Fraw(t) and F (t). The filtering
operation F (t) = (PFraw) (t) in the frequency domain becomes

F̂ (w) = F̂raw(w) rect
(
w

2b

)
.

Thanks to the Fourier transform properties, in the time domain this is equiv-
alent to the convolution of F̂raw(t) with the function b

π
sinc(bt):

F (t) = (PFraw) (t) = 1
2π

∫ +∞

−∞
F̂raw(w) rect

(
w

2b

)
dw

= Fraw(t) ∗
(
b

π
sinc (bt)

)

=
∫ +∞

−∞
Fraw(s)

(
b

π
sinc(b(t− s))

)
ds.

Hence F (t) is obtained applying the scalar product of the Kempf-Martin
space PWb between Fraw(t) and the reproducing kernel of PWb, even if
Fraw(t) generally is not in PWb.

The resulting signal F (t) has support contained in [−b, b]. Therefore in
steps (3) and (4) the sampling theorem is applied. The samples {F (tn)}n

are taken on a set of equidistant points such that tn+1 − tn = π
b
, and the

continuous bandlimited signal F (t) is perfectly reconstructed for all t ∈ R
from these samples according to (7.11).

Now, let’s introduce the scheme of the generalized sampling theory. It
consists of the following four steps.

1. Analyze the frequency of the raw signals of interest Fraw(t) in order
to choose a suitable time-varying bandlimit space, which is specified
by the normalized bandlimit pair ({tn} , {t′n}) and the corresponding
meromorphic inner function Θ(z) according to Theorem 4.6, given by

Θ(z) =
∑

n t
′
n

(
1

tn−z
− tn

t2
n+1

)
− iπ∑

n t′n
(

1
tn−z

− tn

t2
n+1

)
+ iπ

.

2. Filter Fraw(t) to obtain a function F (t) with the desired time-varying
bandlimit:

F (t) = (PFraw) (t) =
∫ +∞

−∞
Fraw(s)KV(Θ)(t, s)τ ′(s)ds, (7.12)
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where
KV(Θ)(t, s) = f(t)f(s)

∑
n

t′n
(tn − t)(tn − s)e

−2ibtn ,

f(t) = (−1)⌊τ(t)⌋e−ibt

(
g(t) − iπ

g′(t)(g(t) + iπ)

) 1
2

,

g(t) =
∑

n

t′n

(
1

tn − t
− tn
t2n + 1

)
.

3. Store the samples {F (tn)}n on the chosen sampling sequence {tn}.

4. Reconstruct F (t) for all t ∈ R from the discrete samples using the
same reconstruction formula of time-varying bandlimit spaces V(Θ)
(see (7.9)):

F (t) =
∑

n

KV(Θ) (t, tn)F (tn) , (7.13)

where
KV(Θ) (t, tn) =

∑
n

(−1)ne−ibtn

√
t′n

tn − t
f(t),

In step (1) we choose a suitable bandlimit pair, according to the frequency
of the raw signals of interest Fraw(t).

An arbitrary raw signal Fraw(t) generally doesn’t have the chosen time-
varying bandlimit. Hence in step (2) we need to filter the raw signal Fraw(t)
in order to obtain the better approximation F (t) of Fraw(t) in the set of
functions with the desired time-varying bandlimit, which are the functions
that can rebuilt exactly by the sampling formula (7.13).

Working in analogy with the classical Shannon sampling method, we
define the filter operator P as the scalar product of V(Θ) between Fraw(t)
and the reproducing kernel of V(Θ), even if Fraw(t) generally is not in V(Θ):

F (t) = (PFraw) (t)
=
〈
Fraw(s), KV(Θ)(t, s)

〉
V(Θ)

=
∫ +∞

−∞
Fraw(s)KV(Θ)(t, s)τ ′(s)ds.

By Theorem 7.3 we have that

{KV(Θ) (tn, ·)}n

is an orthonormal basis of V(Θ), and expanding KV(Θ)(t, s) in this basis, we
get

KV(Θ)(t, s) =
∑

n

KV(Θ) (tn(θ), s)KV(Θ) (tn(θ), t)

= f(t)f(s)
∑

n

t′n
(tn − t)(tn − s)e

−2ibtn .
(7.14)
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To be consistent with our purposes, the filter operator P need to satisfy the
following two constraints:

• the resulting signal F (t) = (PFraw)(t) must have the desired time-
varying bandlimit, i.e.

F (t) =
∑

n

KV(Θ) (t, tn)F (tn) ;

• the operator P must be a projection, which means P 2 = P .
We see this in the following theorem.
Theorem 7.5. Let Θ(z) be a meromorphic inner function, given by

Θ(z) =
∑

n t
′
n

(
1

tn−z
− tn

t2
n+1

)
− iπ∑

n t′n
(

1
tn−z

− tn

t2
n+1

)
+ iπ

,

with phase function τ(t). Given a continuous function G(t) : R → C, let the
operator P be defined as

(PG) (t) =
∫ +∞

−∞
G(s)KV(Θ)(t, s)τ ′(s)ds.

Take any G(t) for which (PG)(t) is finite for every t ∈ R. Then
• for the function F (t) = (PG) (t) the following sampling formula holds:

F (t) =
∑

n

KV(Θ) (t, tn)F (tn) ;

• (P 2G)(t) = (PG)(t).
Proof. By Theorem 7.3, for every θ ∈ [0, 1) we have that

{KV(Θ) (tn(θ), ·)}n

is an orthonormal basis of V(Θ). Hence, expanding KV(Θ)(t, s) in this basis
we get

KV(Θ)(t, s) =
∑

n

KV(Θ) (tn(θ), s)KV(Θ) (tn(θ), t) . (7.15)

Therefore we have

F (t) =
∫ +∞

−∞
G(s)KV(Θ)(t, s)τ ′(s)ds

=
∫ +∞

−∞
G(s)

( +∞∑
n=−∞

KV(Θ) (tn, s)KV(Θ) (tn, t)
)
τ ′(s)ds

=
∑

n

KV(Θ) (tn, t)
(∫ +∞

−∞
G(s)KV(Θ)(tn, s)τ ′(s)ds

)
=
∑

n

KV(Θ) (tn, t) (PG) (tn)

=
∑

n

KV(Θ) (tn, t)F (tn) .

(7.16)

135



“thesis” — 2022/4/11 — 20:00 — page 136 — #146

Chapter 7. Time-varying bandlimit functions and applications

Hence we have obtained that the resulting signal F (t) has the desired time-
varying bandlimit.

It remains to show that (P 2G)(t) = (PG)(t). This is equivalent to show
that, given F (t) = (PG)(t), then F (t) = (PF )(t). If F (t) were in V(Θ),
F (t) = (PF )(t) would be an easy consequence of the definition of the re-
producing kernel KV(Θ)(t, s), but F (t) is not necessarily in V(Θ). Since
KV(Θ) (tn, ·) ∈ V(Θ) we observe that

PKV(Θ) (tn, t) =
∫ ∞

−∞
KV(Θ) (tn, s)KV(Θ)(t, s)τ ′(x)dx

= KV(Θ) (tn, t) .

Then, by (7.16), for F (t) = (PFraw) (t) we obtain

PF (t) =
∑

n

PKV(Θ) (tn, t)F (tn)

=
∑

n

KV(Θ) (tn, t)F (tn)

= F (t),

and we conclude that (P 2G)(t) = (PG)(t).

Finally, in steps (3) and (4) the sampling formula for time-varying ban-
dlimit functions is applied. The samples {F (tn)}n are taken on the chosen
sampling sequence {tn}n, and the signal F (t) is perfectly reconstructed for
all t ∈ R from these samples according to (7.13).
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Canonical Systems and de Branges Spaces

8.1 Canonical inverse problem

A canonical system is a differential equation of the form

J
dY

dx
= zH(x)Y, (8.1)

where

• H(x) is a function (0, L) → Mat2(R), 0 < L ≤ ∞, such that H(x) ≥ 0
a.e., and H ∈ L1 (0, L′) for all L′ < L. Without loss of generality we
can assume that tr(H(x)) = 1;

• Y =
[
Y+

Y−

]
∈ C2;

• J =
[

0 −1
1 0

]
;

• z ∈ C.

The parameter z in (8.1) is referred to as the spectral parameter. Let
trH(x) = 1 a. e. and let M(x, z) be a matrix solution to (8.1). Then

∥M(x, z)∥ ≤ ex|z|∥M(0, z)∥,
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where

∥M∥ = inf{t ≥ 0 : ∥MY ∥C2 ≤ t∥Y ∥C2 for all Y ∈ C2},

and
∥Y ∥C2 = |Y+|2 + |Y−|2.

The solution that satisfies the boundary condition M(0, z) = I is called the
fundamental solution. When L < ∞ the fundamental solution at x = L
is called the monodromy matrix. A crucial aspect is that the determinant
of a matrix solution to (8.1) does not depend on x, and in particular for
the fundamental solution we have detM(x, z) = 1 for all x ≤ L. The
fundamental solution is real entire in z for all x ≤ L.

The chain rule states that, if 0 < a < b, then the fundamental solutions
satisfy M(b, z) = N(b, z)M(a, z) where N(x, z) is a solution of (8.1) on (a, b)
with N(a, z) = I.

For more details see [46], p. 4-5. We recall also the following important
and useful result in [46]:

Theorem 8.1 (Romanov). Given a > 0, the finite interval I = (0, a) and a

vector e =
[
e+

e−

]
∈ R2 of unit norm, the monodromy matrix of the canonical

system (H, a) with the Hamiltonian H(x) =
[
e2

+ e+e−

e+e− e2
−

]
, x ∈ I, is easily

verified to be

M(z) = I + zR = I + z

[
ae−e+ ae2

−

−ae2
+ −ae−e+

]

The matrix R obeys R2 = 0, R12 ≥ 0, R21 ≤ 0. Conversely, for any
nonzero matrix R satisfying these three properties there exists an a > 0
and e ∈ R2, ∥e∥ = 1, such that I + zR is a monodromy matrix for the
corresponding canonical system, given by a = R12 − R21, e− =

√
R12/a,

e+ = (signR11)
√

−R21/a.

In [11] de Branges shows that if Y (x, z) is the solution of (8.1), then
Ex(z) = Y+(x, z) + iY−(x, z) is a Hermite Biehler function of z for each
x ∈ (0, L). Given any E(z), the problem of building H(x) such that EL(z) =
E(z) (and then ΘL = Θ) is known as the canonical inverse problem.

An iterative algorithm to solve this problem was proposed by Romanov
in [46], Section 7 (p. 37). The downside of this solution is that it is not
explicit, and that neither the result of each iteration is explicit. We report
here the algorithm proposed by Romanov, for completeness and to express
it with the notations of this work.
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Theorem 8.2 (Romanov). Let E(z) be a Hermite Biehler function having
no real zeros and such that E(0) = 1. Let Θ(z) be defined by

Θ(z) =
[

Θ+(z)
Θ−(z)

]
= 1

2

 E(z) + E#(z)
1
i

(
E(z) − E#(z)

)  . (8.2)

Let tj, j ≥ 0, t0 = 0, be the set of zeroes of Θ−(z) ordered by |tj| ≤ |tj+1|,

ΘN−(z) = Θ̇−(0)z
N−1∏
j=0

(
1 − z

tj

)

ΘN+(z) =
 N∑

j=0

Θ+ (tj)
Θ̇− (tj)

1
z − tj

+ a+ bz

ΘN−(z),

a and b being the constants in the linear term in the Nevanlinna represen-
tation of the Herglotz function Θ+

Θ−
. Then EN(z) = ΘN+(z) + iΘN−(z) is a

Hermite Biehler polynomial function of degree N ≥ 1 having no real zeros
and such that E(0) = 1. Let (HN , LN) be the corresponding canonical system
constructed using the algorithm for the polynomial case (see Sections 4.2,
4.4 in [46]). Let

L = 1
π

∥∥∥∥∥Θ+ − 1
z

∥∥∥∥∥
2

H(E)
− Θ̇−(0)

Define

H̃N(x) =


HN (x− max {0, L− LN}) , x ≥ max {0, L− LN}(

0 0
0 1

)
, 0 ≤ x ≤ max {0, L− LN}

FN(x) =
∫ lN −h+x

lN −h
H̃N(s)ds, lN = max {L,LN}

Then, as N → +∞, FN converges in C(0, L) to a monotone non-decreasing
function, F. The canonical system (Θ, L) := (F ′, L) is such such that Θ =
ΘL and that there is no ε > 0 such that H(x) = ⟨·, e⟩e, e = (0, 1)T , for a.e.
x ∈ (0, ε).

8.2 Improved algorithm

In this section we propose an improvement to the Romanov algorithm,
mainly based on the result of Theorem 8.3. The big advantage of the pro-
posed solution is that, even if it is not yet explicit, the result of every iteration
is explicit in terms of the result of the previous iteration.
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Let E(z) be a Hermite Biehler function having no real zeros, such that
E(0) = 1, and let Θ(z) be defined by

Θ(z) =
[
Θ+(z)
Θ−(z)

]
= 1

2

 E(z) + E#(z)
1
i

(
E(z) − E#(z)

) .
Let {tn}n≥0 be the set of zeroes of Θ−(z) ordered by |tn| ≤ |tn+1|, with
t0 = 0. Using the canonical product for Θ−(z), for each N > 0 we have

Θ−(z) = ΘN−(z)eαN zRN(z),

ΘN−(z) = Θ′
−(0)z

N−1∏
n=1

(
1 − z

tn

)
,

RN(z) =
∏

n≥N

(
1 − z

tn

)
e

z
tn ,

where Θ′
−(0), αN ∈ R. Let

Θ+(z)
Θ−(z) =

∞∑
n=0

(
µn

tn − z
− µntn

1 + t2n

)
+ b0 + cz,

be the Nevanlinna representation of the Herglotz function Θ+(z)
Θ−(z) , with µn =

−Θ+(tn)
Θ′

−(tn) ≥ 0 ∀n ≥ 0 (see Section 5 in [46], p. 23-24), so that

E(z) = Θ+(z) + iΘ−(z)

=
( ∞∑

n=0

(
µn

tn − z
− µntn

1 + t2n

)
+ b0 + cz

)
Θ−(z).

(8.3)

Define
b = b0 −

∞∑
n=0

µntn
1 + t2n

,

and
ΘN+(z) =

(
N−1∑
n=0

µn

tn − z
+ b+ cz

)
ΘN−(z).

Then ΘN(z) :=
[

ΘN+(z)
ΘN−(z)

]
is a polynomial, and

EN(z) = ΘN+(z) + iΘN−(z) =
(

N−1∑
n=0

µn

tn − z
+ b+ i+ cz

)
ΘN−(z). (8.4)

is a Hermite Biehler polynomial having no real zeroes, and EN(0) = 1 since
E(0) = 1 and hence µ0 = 1/Θ′

−(0). If c = 0, EN(z) is a polynomial of degree
N :

EN(z) = aNz
N + aN−1z

N−1 + ...+ a1z + a0.
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With a simple computation we get

aN =Θ′
−(0)(b+ i)(−1)N−1

N−1∏
n=1

1
tn

aN−1 =Θ′
−(0)

(
(−1)N−1

N−1∏
n=1

1
tn

)(
−

N−1∑
n=0

µn

)

+ Θ′
−(0)(b+ i)

(
(−1)N−1

N−1∏
n=1

1
tn

)(
1 −

N−1∑
n=1

tn

)

=aN

((
N−1∑
n=0

µn

)
−b+ i

b2 + 1 + 1 −
N−1∑
n=1

tn

)
,

(8.5)

and hence we observe that
ℑ(aN) ̸= 0,

ℑ(aNaN−1) = |aN |2∑N−1
n=1 µn

b2 + 1 > 0.
(8.6)

If c ̸= 0, EN(z) is a polynomial of degree N + 1:

EN(z) = aN+1z
N+1 + aNz

N + ...+ a1z + a0.

Similarly to above we get

aN+1 = cΘ′
−(0)(−1)N−1

N−1∏
n=1

1
tn

aN = aN+1

(
(b+ i) + 1 −

N−1∑
n=1

tn

)
,

(8.7)

hence we observe that ℑ(aN+1) ̸= 0 and

ℑ(aN+1) ̸= 0
ℑ(aN+1aN) = |aN+1|2 > 0.

(8.8)

Now, let EN(z) be a generic Hermite Biehler polynomial function of degree
N having no real zeroes, such that EN(0) = 1, and given by

EN(z) = aNz
N + aN−1z

N−1 + ...+ a1z + a0.

Then, by definition, ΘN+(z) and ΘN−(z) must be polynomials, and hence

ΘN−(z) = Θ′
−(0)z

N̂∏
n=1

(
1 − z

tn

)
,

ΘN+(z) =
 N̂∑

n=0

µn

tn − z
+ b+ cz

Θ−(z),
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where N̂ = N − 1 if c = 0, or N̂ = N − 2 if c > 0. Then

EN(z) = ΘN+(z) + iΘN−(z)

has the same form in (8.4), and we the same argoments above we conclude
that for EN(z) we have

ℑ(aN) ̸= 0,
ℑ(aNaN−1) > 0. (8.9)

Theorem 8.3. Let E(z) be a polynomial Hermite Biehler function of degree
N ≥ 1 having no real zeros and such that E(0) = 1. Consider the sequences
of vectors {Θn(z)}n=0,...N and {Sn}n=1,...N and function En(z) given by

Θ0(z) =
[
Θ0+(z)
Θ0−(z)

]
= 1

2

 E(z) + E#(z)
1
i

(
E(z) − E#(z)

) ,
Θn(z) =

[
Θn+(z)
Θn−(z)

]
= (I + zSn)Θn−1(z) (n ≥ 1)

Sn = − 1
ℑ(αnβn)

[
−ℜ(αn)ℑ(αn) ℜ(αn)2

−ℑ(αn)2 ℜ(αn)ℑ(αn)

]
,

En(z) = Θn+(z) + iΘn−(z).

(8.10)

where αn and βn are the coefficients of zN−n+1 and zN−n in the (N −n+ 1)-
degree polynomial En−1(z).

Then
Θ(z) = M1(z)M2(z) . . .MN(z)

[
1
0

]
,

where

Mn(z) = I − zSn

= I + z

ℑ(αnβn)

[
−ℜ(αn)ℑ(αn) ℜ(αn)2

−ℑ(αn)2 ℜ(αn)ℑ(αn)

]
(n = 1, ...N).

Proof. Let
E(z) = aNz

N + aN−1z
N−1 + ...+ a1z + a0,

be the polynomial representation of E(z).
We define

EΦ(z) =(b1z + b0)E(z) + (c1z + c0)E#(z)
=(b1aN + c1aN)zN+1 + (b1aN−1 + c1aN−1 + b0aN + c0aN)zN

+ PN−1(z),

where b1, b0, c1, c0 ∈ C and PN−1(z) is a polynomial of degree N−1. We want
to choose b0, b1, c0, c1 so that EΦ(z) = PN−1(z) is a polynomial of degreeN−1
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and that EΦ(0) = 1. Hence b0, b1, c0, c1 must satisfy the following system of
equations:

b1aN + c1aN = 0,
b1aN−1 + c1aN−1 + b0aN + c0aN = 0,

b0 + c0 = 1.
(8.11)

Now we define

Φ(z) = 1
2

 EΦ(z) + E#
Φ (z)

1
i
(EΦ(z) − E#

Φ (z))


= 1

2

[
k11(z) k12(z)
k21(z) k22(z)

] [
E(z) + E#(z)

1
i
(E(z) − E#(z))

]
= K(z)Θ(z),

(8.12)

where
k11(z) − ik12(z) = (b1 + c1)z + (b0 + c0),
k11(z) + ik12(z) = (b1 + c1)z + (b0 + c0),
k21(z) − ik22(z) = −i(b1 − c1)z − i(b0 − c0),
k21(z) + ik22(z) = i(b1 − c1)z + i(b0 − c0),

and then
k11(z) = ℜ(b1 + c1)z + ℜ(b0 + c0),
k12(z) = −ℑ(b1 − c1)z − ℑ(b0 − c0),
k21(z) = ℑ(b1 + c1)z + ℑ(b0 + c0),
k22(z) = ℜ(b1 − c1)z + ℜ(b0 − c0).

Hence

K(z) =
[
ℜ(b0 + c0) −ℑ(b0 − c0)
ℑ(b0 + c0) ℜ(b0 − c0)

]
+ z

[
ℜ(b1 + c1) −ℑ(b1 − c1)
ℑ(b1 + c1) ℜ(b1 − c1)

]
= Λ0 + zΛ1.

We observe
det(Λ0) = |b0|2 − |c0|2,
det(Λ1) = |b1|2 − |c1|2.

Then Λ0 is invertible if |b0| ≠ |c0|. In this condition we have

Λ−1
0 = 1

|b0|2 − |c0|2

[
ℜ(b0 − c0) ℑ(b0 − c0)

−ℑ(b0 + c0) ℜ(b0 + c0)

]

and
S =Λ−1

0 Λ1 = 1
|b0|2 − |c0|2

[
γ11 γ12

γ21 γ22

]
, (8.13)
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where
γ11 = Re(b0 − c0)ℜ(b1 + c1) + ℑ(b0 − c0)ℑ(b1 + c1),
γ12 = −ℜ(b0 − c0)ℑ(b1 − c1) + ℑ(b0 − c0)ℜ(b1 − c1),
γ21 = −ℑ(b0 + c0)ℜ(b1 + c1) + ℜ(b0 + c0)ℑ(b1 + c1),
γ22 = ℑ(b0 + c0)ℑ(b1 − c1) + ℜ(b0 + c0)ℜ(b1 − c1).

Now we want to consider all the solutions of the system (8.11) for which
Λ0 is invertible. Observe that since aN ̸= 0, if b1 = 0 or c1 = 0 then
b1 = c1 = 0 thanks to first equation of (8.11), and if b1 = c1 = 0 we obtain
|b0| = |c0| thanks to second equation of (8.11), and hence Λ0 is not invertible.
Then we need b1, c1 ̸= 0.

We set b1 = haN

2 , where h = u + iv ∈ C \ {0} (with u, v ∈ R) is a
parameter. Obviously as h varies on C \ {0}, b1 can take every value on
C \ {0}. Then solving the system (8.11) we obtain that all its solutions for
which b1, c1 ̸= 0 can be written as:

b1 = haN

2 ,

c1 = −haN

2 ,

b0 = −hℑ(aNaN−1) + iaN

2ℑ(aN) ,

c0 = hℑ(aNaN−1) − iaN

2ℑ(aN) ,

(8.14)

as h varies on C \ {0}.
We observe that with this choice, for b1 and c1 we have

ℜ(b1 + c1) = vℑ(aN),
ℑ(b1 + c1) = −uℑ(aN),
ℜ(b1 − c1) = uℜ(aN),
ℑ(b1 − c1) = vℜ(aN),

while for b0 and c0 we obtain

ℜ(b0 + c0) = 1,
ℑ(b0 + c0) = 0,

ℜ(b0 − c0) = −uℑ(aNaN−1)
ℑ(aN)

ℑ(b0 − c0) = ℜ(aN)
ℑ(aN) − vℑ(aNaN−1)

ℑ(aN) ,

|b0|2 − |c0|2 = −uℑ(aNaN−1)
ℑ(aN) .
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A straightforward calculation gives

S = 1
|b0|2 − |c0|2

−uℜ(aN) uℜ(aN )2

ℑ(aN )
−uℑ(aN) uℜ(aN)

 ,
= 1

ℑ(aNaN−1)

[
ℑ(aN)ℜ(aN) −ℜ(aN)2

ℑ(aN)2 −ℑ(aN)ℜ(aN)

]
,

with
det(S) = 0,

tr(S) = 0.
It is very important to observe that S does not depend on h. Moreover we
recall that by (8.9) we have ℑ(aNaN−1) > 0, and then we obtain that the
matrix S has the form

S =
(
s11 s12

s21 s22

)
=
(
σ σ1

σ2 −σ

)
, with σ2 + σ1σ2 = 0, s21 ≥ 0, s12 ≤ 0.

We define Θ1(z) as

Θ1(z) := Λ−1
0 Φ(z) = (I + zS)Θ(z). (8.15)

We observe that
S2 = 0,

then (I + zS)(I − zS) = I, and

I − zS = (I + zS)−1.

Then
Θ(z) = (I − zS)Θ1(z). (8.16)

We observe that
E1(z) = Θ1+(z) + iΘ1−(z)

is a polynomial of degree N − 1. Moreover we have E1(0) = 1 since Θ1(0) =[
1
0

]
. It is important to observe that Θ(z) and E1(z) do not depend on the

parameter h.
Now we show that E1(z) is also a Hermite Biehler function without real

zeros on the real line. Thanks to Paragraph 4.2 in [46] (p. 17, 18), we know
that there exists Ê(z) such that:

1. Ê(z) is a Hermite Biehler polynomial of degree N − 1;

2. Ê(z) = (b̂1z+ b̂0)E(z)+(ĉ1z+ ĉ0)E#(z) for some b̂1, b̂0, ĉ1, ĉ0 ∈ C, with
b̂1, ĉ1 ̸= 0;
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3. Ê(0) = 1;

4. Ê(t) ̸= 0 ∀t ∈ R.

In particular Ê(z) is a polynomial of degree N − 1 with Ê(0) = 1, hence
b̂1, b̂0, ĉ1, ĉ0 must satisfy system (8.11), and hence by (8.14) we have

b̂1 = ĥaN

2 ,

ĉ1 = − ĥaN

2 ,

b̂0 = −ĥℑ(aNaN−1) + iaN

2ℑ(aN) ,

ĉ0 = ĥℑ(aNaN−1) − iaN

2ℑ(aN) ,

for some ĥ ∈ C \ 0. If we set h = ĥ in (8.14) we get EΦ(z) = Ê(z), then
recalling (8.12), (8.13), (8.15) and (8.16) we can apply Lemma 9 in [46]
(p. 19), obtaining that E1(z) = Θ1+(z) + iΘ1−(z) is a polynomial Hermite
Biehler function without real zeros on the real line.

We set

M(z) = I − zS = I + z

ℑ(aNaN−1)

[
−ℜ(aN)ℑ(aN) ℜ(aN)2

−ℑ(aN)2 ℜ(aN)ℑ(aN)

]
, (8.17)

so that
Θ(z) = M(z)Θ1(z).

Now, setting for convenience Θ0(z) = Θ(z), we repeat the same approach
iterating from n = 1 to n = N − 1, calculating Θn(z) according to Θn−1(z).
We can do this because, for each iteration n, the obtained polynomial En(z)
is a polynomial Hermite Biehler function having no real zeros and such that
E(0) = 1, like E(z). Let αn and βn be the coefficients of zN−n+1 and zN−n

in the (N − n+ 1)-degree polynomial En−1(z), and let hn = un + ivn be the
value of the parameter h. Then proceeding like above and we obtain

Sn = − 1
ℑ(αnβn)

[
−ℜ(αn)ℑ(αn) ℜ(αn)2

−ℑ(αn)2 ℜ(αn)ℑ(αn)

]
,

Θn(z) = (I + zSn)Θn−1(z),
En(z) = Θn+(z) + iΘn−(z),

Mn(z) = I − zSn = I + z
1

ℑ(αnβn)

[
−ℜ(αn)ℑ(αn) ℜ(αn)2

−ℑ(αn)2 ℜ(αn)ℑ(αn)

]
,

Θn−1(z) = Mn(z)Θn(z).
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For every iteration n, Θn,+(z), Θn,−(z) are polynomials of degree (N − n)

such that Θn(0) =
[
1
0

]
. Moreover En(z) is a Hermite Biehler polynomial

such that En(0) = 1, hence it verifies (8.9). In the last step (n = N) we

obtain ΘN(z) =
[
1
0

]
since Θ(0) =

[
1
0

]
and ΘN(z) must be a polynomial of

degree 0, hence a constant. Thanks to this, at the end of the iterations we
get

Θ(z) = M1(z) . . .MN(z)
[
1
0

]
.

Corollary 8.4. In the conditions of Theorem 8.3, consider the representa-
tion of En−1(z) given by (8.4):

En−1(z) =
 N̂∑

k=0

µk,n

tk − z
+ bn + cnz

Θ(n−1)−(z) + iΘ(n−1)−(z). (8.18)

Then, if cn = 0

Mn(z) = I + z∑N−1
k=0 µk,n

[
−bn b2

n

−1 bn

]
,

while if cn ̸= 0

Mn(z) = I + z

[
0 1
0 0

]
.

Proof. By Theorem 8.3, for n = 1, ...N , we have

Mn(z) = I − zSn

= I + z

ℑ(αnβn)

[
−ℜ(αn)ℑ(αn) ℜ(αn)2

−ℑ(αn)2 ℜ(αn)ℑ(αn)

]
.

(8.19)

If c = 0 in (8.18), thanks to (8.5) and (8.6) we have ℑ(αnβn) = |αn|2
∑N−1

k=0 µk,n

b2
n+1 ,

and we obtain

Mn(z) = I + z
b2

n + 1
|αn|2∑N−1

n=0 µn

[
−ℜ(αn)ℑ(αn) ℜ(αn)2

−ℑ(αn)2 ℜ(αn)ℑ(αn)

]

= I + z
b2

n + 1∑N−1
n=0 µn

− bn

b2
n+1

b2
n

b2
n+1

− 1
b2

n+1
bn

b2
n+1


= I + z∑N−1

n=0 µn

[
−bn b2

n

−1 bn

]
.
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If c ̸= 0, thanks to (8.7) and (8.8) we have αn ∈ R and ℑ(αnβn) = α2
n, and

then we obtain

Mn(z) = I + z
1
α2

n

[
−ℜ(αn)ℑ(αn) ℜ(αn)2

−ℑ(αn)2 ℜ(αn)ℑ(αn)

]

= I + z

[
0 1
0 0

]
.

Corollary 8.5. In the conditions of Theorem 8.3, for n = 1, ..., N , let

Hn(x) = 1
|αn|2

[
ℑ(αn)2 −ℜ(αn)ℑ(αn)

−ℜ(αn)ℑ(αn) ℜ(αn)2

]
,

xn = − |αn|2

ℑ(αnβn) + xn−1,

x0 = 0,

and
H(x) = Hn(x) xn−1 ≤ x < xn,

L = xN .

Then the canonical system (H,L) is such that Θ(z) = ΘL(z).

Proof. It is a straightforward consequence of the application of the chain
rule to the result of Theorem 8.1.

Theorem 8.6. Let E(z) be a Hermite Biehler function having no real zeros
and such that E(0) = 1. Let Θ(z) be defined by

Θ(z) =
[

Θ+(z)
Θ−(z)

]
= 1

2

 E(z) + E#(z)
1
i

(
E(z) − E#(z)

)  . (8.20)

Let tj, j ≥ 0, t0 = 0, be the set of zeroes of Θ−(z) ordered by |tj| ≤ |tj+1|,

ΘN−(z) = Θ̇−(0)z
N−1∏
j=0

(
1 − z

tj

)

ΘN+(z) =
 N∑

j=0

Θ+ (tj)
Θ̇− (tj)

1
z − tj

+ a+ bz

ΘN−(z),

a and b being the constants in the linear term in the Nevanlinna represen-
tation of the Herglotz function Θ+

Θ−
. Then EN(z) = ΘN+(z) + iΘN−(z) is a

Hermite Biehler polynomial function of degree N ≥ 1 having no real zeros

148



“thesis” — 2022/4/11 — 20:00 — page 149 — #159
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and such that E(0) = 1. Let (HN , LN) be the corresponding canonical system
constructed in Corollary 8.5, iterating on n = 1, ..., N :

HN,n(x) = 1
|αN,n|2

[
ℑ(αN,n)2 −ℜ(αN,n)ℑ(αN,n)

−ℜ(αN,n)ℑ(αN,n) ℜ(αN,n)2

]
,

xN,n = − |αN,n|2

ℑ(αN,nβN,n) + xN,n−1,

xN,0 = 0,

and
HN(x) = HN,n(x) xN,n−1 ≤ x < xN,n.

LN = xN,N .

Let

L = 1
π

∥∥∥∥∥Θ+ − 1
z

∥∥∥∥∥
2

H(E)
− Θ̇−(0)

Define

H̃N(x) =


HN (x− max {0, L− LN}) , x ≥ max {0, L− LN}(

0 0
0 1

)
, 0 ≤ x ≤ max {0, L− LN}

FN(x) =
∫ lN −h+x

lN −h
H̃N(s)ds, lN = max {L,LN}

Then, as N → +∞, FN converges in C(0, L) to a monotone non-decreasing
function, F. The canonical system (Θ, L) := (F ′, L) is such such that Θ =
ΘL and that there is no ε > 0 such that H(x) = ⟨·, e⟩e, e = (0, 1)T , for a.e.
x ∈ (0, ε).

Proof. The result is a simple consequence of Corollary 8.5 applied to the
algorithm for solving the inverse problem in the regular case, described in
Theorem 8.2.
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CHAPTER9
Conclusions and future works

In the first part of this work we have shown that the functions of the Paley-
Wiener spaces can be rebuilt exactly from many different families of non-
uniform sampling sequences, with various types of constraints, very differ-
ent from those already known. Furthermore, we have shown that some of
these families of non-uniform sampling sequences can be very useful for real
applications, since they allow to perfectly reconstruct a function with any
given precision from any finite and large enough set of samples. However
some details regarding these sampling sequences are not yet fully under-
stood. Probably the most important yet unanswered questions concern the
bandlimit pairs that satisfy property 5 in Theorem 4.14.

• Is it possible to obatain an explicit necessary and sufficient condition
to know if a bandlimit pair satisfies this property?

• Given a sequence {tn}n, is it always possible to find a sequence {t′n}n

such that ({tn}n, {t′n}n) is a bandlimit pair that verifies this property?

• Given a finite subsequence, is it always possible to build a bandlimit
pair such that {tn}n contains this subsequence and verifies this prop-
erty?

Other interesting questions about the described sampling sequences are the
following.
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• Does exist a sequence {tn}n that verifies the condition (4.37) in Theorem
4.18 and such that

∣∣∣π
a
n− tn

∣∣∣ doesn’t necessarily have a limit as n goes
to ±∞?

• Is it possible to give an alternative proof of the Paley-Wiener-Levinson
theorem deriving it from 3.3, similarly to what we did for Theorem
4.18? In other words, is the Paley-Wiener-Levinson theorem a partic-
ular case of a more general theorem?

The answers to these questions would make the sampling theorems described
in this work even more useful in real applications since they would allow to
more easily derive the sequences that can be used to reconstruct a bandlim-
ited function.

In the second part we have investigated the isomorphism between the
Kempf-Martin spaces and the de Branges spaces and its consequences, as
for example a necessary and sufficient condition for a function to belong the a
Kempf-Martin space. Moreover we have also shown that all the results about
the Kempf-Martin spaces can be obtained without the use of the theory of
simple symmetric operators. An already known necessary and sufficient
condition to establish if a function belongs to a de Branges spaces is based
on the Weyl-Titchmarsh transform, but it is valid only for the de Branges
spaces B(E) for which Θ(z) = E#(z)

E(z) is a Weyl-Titchmarsh meromorphic
inner fucntion. A Weyl-Titchmarsh meromorphic inner function is defined
as follows. Let q(x) be a real locally integrable function on (a, b), and fix a
selfadjoint boundary condition β at b. The Weyl-Titchmarsh m-function of
(q; b, β), evaluated at a, is defined by the formula

m(z) = u′
z(a)
uz(a) , z ∈ C,

where uz(x) is a non-trivial solution of the Schrodinger equation

−u′′
z(x) + q(x)uz(x) = zuz(x), x ∈ (a, b),

satisfying the boundary condition β. It is well-known that m(z) is a Herglotz
function, and therefore we can define the corresponding meromorphic inner
function Θa

b,β(z) according to (2.6), given by

Θa
b,β(z) = m(z) − i

m(z) + i
.

We call Θa
b,β(z) the Weyl-Titchmarsh inner function of q(x). The prob-

lem with the Weyl-Titchmarsh inner functions is that, given a real locally
integrable function q(x), it is possible to build the corresponding Weyl-
Titchmarsh inner function, but given a meromorphic inner function it is not
yet known a method to establish if it is a Weyl-Titchmarsh inner function or
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not, and to eventually build the corresponding function q(x). To solve this
problem, it would be interesting to investigate in depth what relationship
exists between the Weyl-Titchmarsh transform and the generalization of the
Fourier Tranfsorm introduced in this work, in order to eventually exploit the
isomorphism induced by this transform between a de Branges space and the
corresponding space LΘ.

In the thid part we have explained the concept of time-varying bandlimit
for the Kempf-Martin spaces. Then we have introduced a new family of
spaces of time-varying bandlimit functions, referred as spaces V(Θ), which
are compatible with an improved definition of the concept of time-varying
bandlimit. At the end, we have presented a generalization of the Shan-
non sampling method for time-varying bandlimit functions. The sampling
formulas presented for the spaces V(Θ) and the derived generalized sam-
pling method are based on the sampling sequences {tn(θ)}n of solutions of
Θ(t) = e2πiθ for t ∈ R. The same is true also for the Paley-Wiener spaces,
indeed we know that for any a > 0 the space PWa is associated to the
meromorphic inner function Θ(z) = e2πiz and the corresponding sampling
sequences are given by {tn(θ)}n with tn = π

a
(n + θ). From the theorems of

the first part of this work we know that the functions of the Paley-Wiener
spaces can be rebuilt also from many other sequences, that satisfy different
constraints, all derived from the theorems presented in Chapter 3. It would
be very interesting use the same theorems to derive similar results for the
spaces V(Θ). In this way, the generalized sampling method would become
much more flexible, since it would allow to reconstruct the functions of the
spaces V(Θ) not only starting from the sampling sequences defined by the
function Θ(z), but also from their perturbations which satisfy some given
constraints.

In the fourth part we have improved the algorithm to solve the canonical
inverse problem, presenting an explicit formula for the solution of every
iteration. A very important aspect of the inverse canonical problem is its
connection with the Weyl-Titchmarsh’s inner functions, which we briefly
summarize here following the arguments proposed in [4]. Let q(x) be a
locally summable function on (0, L), and consider the Schrodinger equation

−y′′
z (x) + q(x)yz(x) = zyz(x). (9.1)

Suppose uz(x) and vz(x) are the linearly independent solutions of this equa-
tion, satisfying some boundary condition α at 0. Then u0(x) and v0(x) are
the solutions of −y′′

z (x) + q(x)yz(x) = 0. Let

H(x) =
(

u2
0(x) u0v0(x)

u0v0(x) v2
0(x)

)
. (9.2)

Then the Schrodinger equation (9.1) is equivalent to the canonical system

JY ′
z (x) = zH(x)Yz(x). (9.3)

153



“thesis” — 2022/4/11 — 20:00 — page 154 — #164

Chapter 9. Conclusions and future works

Indeed, if yz(x) solves Schrodinger equation (9.1) then

Yz(x) =
[
Y +

z (x)
Y −

z (x)

]
:=
[
u0(x) v0(x)
u′

0(x) v′
0(x)

]−1 [
yz(x)
y′

z(x)

]

solves the canonical system (9.3). Moreover, a fundamental detail is that the
Hermite Biehler function E(z) = Y +

z (L)+ iY −
z (L) results to be a de Branges

function of the Weyl-Titchmarsh inner function of q(x). Hence, given any
meromorphic inner function Θ(z), solving the problem of finding the function
q(x) associated to Θ(z) would give also the solution of the canonical inverse
problem for the Hamiltonians with the form given in (9.2). For this reason
investigating the relationship between the Weyl-Titchmarsh transform and
the generalization of the Fourier transform presented in this paper assumes
an even greater importance than that already described above.
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