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Abstract

Sampling theory is the study of spaces of continuous functions that can be
exactly rebuilt from samples taken on a discrete set of points, and has a
great number of practical applications in communication engineering and
signal processing. The most important function spaces connected to the
classical sampling theory are the Paley-Wiener spaces, which are spaces of
bandlimited functions that have many properties very useful for sampling.
The bandlimited functions can generally be rebuilt from samples taken on
a sequence of equidistant points.

In real applications, a signal effective bandwidth can vary in time. Ad-
justing the sampling rate accordingly should improve the sampling efficiency
and information storage. While this old idea has been pursued in numer-
ous publications, some fundamental problems are not fully solved yet. The
most important regards how to take samples on non-uniform intervals or at
a time-varying rate preserving the possibility to perfectly and stably recon-
struct the signal.

In this work we introduce new properties and new sampling formulas
for some spaces of entire functions, namely the de Branges spaces and the
Paley-Wiener spaces, based on non-uniform sampling sets strongly different
from these of classical results, and we study their applications to signal
processing.

Then we study new spaces of entire functions that generalize the clas-
sical Paley-Wiener spaces, in particular the time-varying bandlimit spaces,
recently introduced by Kempf and Martin. We analyze the classes of oper-
ators connected to these spaces and we investigate the connections between
these spaces and the de Branges spaces.

Moreover we introduce a new class of time-varying bandlimit spaces,
which are unitarily isomorphic to the Kempf-Martin spaces, but with some
different important properties, that make them more controllable and inter-
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pretable.

Finally we study the relation between the de Branges spaces and the
solution of the inverse problem of a canonical systems, which is strongly
connected to the properties of these spaces.
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Summary

After the first two introductory chapters, in this work we present many
results that can mainly be divided in four different parts:

in the first part we develop new non-uniform sampling formulas for the
de Branges spaces and the Paley-Wiener spaces, and then we express
these formulas in terms of the sampling sequence points;

in the the second part we develop a generalization of the Fourier Trans-
form for the de Branges spaces, and then we investigate the isomor-
phism between these spaces and the Kempf-Martin spaces; thanks to
this we derive new characterizations for the Kempf-Martin spaces and
we give a simpler and more general proof of their most important prop-
erties;

in the third part we investigate the consequences of the results of the
first two parts on the applications of the concept of time-varying ban-
dlimit, and we propose a new family of time-varying bandlimit spaces
and a new generalized sampling theory;

in the fourth part we describe an improvement to the Romanov algo-
rithm for the solution of the canonical inverse problem.

In Chapter [1] we introduce the state of art about spaces of entire func-
tions, sampling theorems, and applications. Moreover we explain the moti-
vations for the research presented in this work.

In Chapter [2] we introduce all the already known results that we use in
the next chapters, mainly regarding the reproducing kernel Hilbert spaces,
the Hardy spaces, the model spaces, the de Branges spaces and the Paley-
Wiener spaces.

In the first part of the work (Chapters [3|and |4]) we introduce new proper-
ties and sampling formulas for the de Branges spaces. Moreover we connect
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these results with the Paley-Wiener spaces, and we present new non-uniform
sampling formulas for these spaces. The main aspect of these sampling for-
mulas is that they are based on a set of non-uniform sampling sequences
that is strongly different from the one of classical Paley-Wiener-Levinson
result. Moreover we give a characterization of the sequences for which this
sampling formula is valid. In particular:

o Theorem shows a sampling formula for a de Branges space B(FE)
based on the sequence of zeros of O(z) — 1, where O(z) is any meromor-
phic inner function that is divided by the meromorphic inner function

#(z
@(z) = EE(i))§

o Theorem is a particular case of Theorem and shows a sampling
formula for the Paley-Wiener space PW, based on the sequence of
zeros of O(z) — 1, where ©(z) is any meromorphic inner function that
is divided by the meromorphic inner function ®(z) = >,

o Theorem shows under which conditions a given sequence verifies
the requirements of Theorem 4.2}

o Theorem shows a sampling formula for the Paley-Wiener space
PW, based on a sequence {t,}, such that ¢, # 7n only for a finite
number of n’s, but without constraints on the corresponding t,,’s;

o Theorem |4.18 shows a sampling formula for the Paley-Wiener space
PW,, based on a sequence {t,}, such that ‘gn — tn‘ < 6§ Vn € Z for
some § < g, under a condition that we show to be verified for an
infinite number of sequences;

o Theorem shows a sampling formula for the Paley-Wiener space
PW,, based on a sequence {t,}, such that t, = 0, ‘gn — tn‘ < ¢ if
01

alnl

In| < M for some § < - and some integer M > 0, and ‘%n — tn‘ <
if |n| > M, for some d; such that 0 < é; < ZMé.

Finally, in Section we show that the constraints of the sampling se-
quences in Theorems and are more useful for real applications
with respect to those of the classical Paley-Wiener-Levinson, since they are
more flexible on a finite subsequence of the sampling sequence, and there
always exists a finite subsequence of the sampling sequence such that the
reconstruction performed on it has any desired precision.

In the second part of the work (Chapters [5|and @, first of all we present
a generalization of the Fourier Transform for the de Branges spaces (see
Theorem . This transform induces an isometric isomorphism between
every de Branges space and a corresponding subspace of the space £2(R),
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similar to how the original Fourier Transform induces an isometric isomor-
phism between the Paley-Wiener space PW, and £?[—a,a]. Then, we in-
troduce the Kempf-Martin spaces using the theory of symmetric operators,
according to the arguments presented in [40], and we show that there ex-
ists an isometric multiplier between the Kempf-Martin spaces and the de
Branges spaces (see Theorem . This isomorphism allows us to find a
necessary and sufficient conditions for a function to belong to a Kempf-
Martin space. Finally, we give an alternative and equivalent definition of
the Kempf-Martin spaces based on this isomorphism, and we derive and
improve all the main results presented in [40] from the properties of the de
Branges spaces, without using the theory of simple symmetric operators.

In the third part (Chapter we consider all the results of both the
previous two parts, and we investigate their consequences on the concept
of time-varying bandlimit and on the sampling theory. In Section we
explain the concept of time-varying bandlimit for the de Branges spaces and
the Kempf-Martin spaces, and we give its formal definition. In Sections
and we explain how the time-varying bandlimit functions can be
interpreted as the result of the application of a distortion in the time domain
to the functions of a space of a subaspace of £?(R). Moreover, thanks to
this observation, we define a new family of spaces of time-varying bandlimit
functions V(0), each of which is associated to a meromorphic inner function
©(z). The main properties of these spaces are the following.

e There exists an isometric multiplier between every space V(0) and
a Kempf-Martin space, and thanks to this the spaces V(©) maintain
many of the properties of the Kempf-Martin spaces.

o We can associate to every time-varying bandlimit function F(z) €
V(©) a normalized frequency representation.

e The normalized frequency representation of F'(z) € V(©) is obtained by
applying a weighted Fourier Transform to F(z). This transform induces
an unitary isomorphism between V() and a subspace of £L2(R).

o The spaces V(0) have many properties that are analogous to the ones
of Paley-Wiener spaces for bandlimited functions.

o The spaces V(O) result to be more interpretable and controllable than
other time-varying bandlimit spaces since their functions can be rep-
resented by a summation of simpler functions.

In Section [7.4 we recall the Shannon sampling method, and then we intro-
duce a generalized sampling method for time-varying bandlimit functions
based on the spaces V(0). Since an arbitrary signal effective bandwidth can
change in time, the goal of this method is to improve the sampling efficiency
by adjusting the sampling rate according to the signal effective time-varying
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bandwidth, taking samples of a signal only as frequently as necessary. The
generalized sampling method is mainly composed by the following 4 steps.

1. Analyze the frequency of the raw signals of interest in order to choose
a suitable time-varying bandlimit space.

2. Filter the raw signal to obtain a signal with the desired time-varying
bandlimit.

3. Store the samples on the chosen sampling sequence.

4. Rebuild the filtered function from the discrete samples using the re-
construction formula of time-varying bandlimit spaces.

Finally, in the fourth part (Chapter |8) we introduce the canonical sys-
tems, the canonical inverse problem, and the solution given by Romanov
(see [46], Section 7 (p. 37)), which is constructive, iterative and not explicit.
Then we present an improvement of the results of Romanov. In particular,
in Theorem we gives an explicit solution to Theorem 6 in [46] (p. 21),
which is the main result on which Romanov’s arguments are based. Then,
in Theorem we apply this result to the algorithm for solving the inverse
problem proposed by Romanov. Also our solution is iterative and not ex-
plicit, but unlike that of Romanov, the result of each iteration is explicit in
terms of the results of the previous iteration.

VI



Contents

A Tnfroduct [mofivation 1
2 Preliminary definitions and results| 7
[2.1 Reproducing kernel Hilbert spaces| . . . . . .. ... ... .. 8
[2.2  Hardy spaces and meromorphic inner functions| . . . . . . . . 8
(2.3 Herglotz tunctions| . . . . . . .. .. ... ... ... ... .. 9
[2.4  Functions of bounded type| . . . . . ... 11
2.0 Hermite Biehler functionsl . . . . . ... ... ... ... ... 12
2.6 Model spaces|. . . . . . ... ... Lo 13
2.7 De Branges spaces| . . . . . . ... ... ... ... 14
[2.8 Paley-Wiener spaces| . . . . . . ... ..o 16
3 Sampling formulas for the de Branges spaces| 19
[3.1 Sampling formulas| . . . . . .. ... ... 0L 19
[3.2 Orthogonal bases| . . . . ... ... ... ... ... ..... 25
{4 Sampling formulas for the Paley-Wiener spaces| 29
[4.1 Sampling formulas for non-uniform samplingl . . . . .. . .. 30
[4.2  Representation of a meromorphic inner function| . . . . . . . 34
[4.3  Properties of meromorphic inner tunctions| . . . .. ... .. 40
[4.4  Sampling formulas in terms of the sampling points| . . . . . . 50
[4.5 Approximation of the sampling formulas. . . . . . . ... .. 80
io__Generalization of the Fourier transform| 85
0.1 Generalized Fourier transform| . . . . . .. ... ... .. .. 86
[>.2  Orthogonal subspaces of the de Branges spaces| . . . . . . .. 93
|6 Kempf-Martin Spaces| 97
[6.1 Symmetric linear transformations| . . . . . . . ... ... .. 97

VII



Contents

[6.2  Selt-adjoint extensions|. . . . . . . .. ... ... ..
[6.3  Definition of the Kemptf-Martin spaces|. . . . . . ..
[6.4  Characterization of the Kempt-Martin Spaces|. . . .
[6.5 Alternative definition of the Kempit-Martin spaces| .

[7__Time-varying bandlimit functions and applications|

7.3 Characterization and motivation of the spaces V(0)|

[7.4 Generalized sampling method|. . . . . . . ... ...

{8 Canonical Systems and de Branges Spaces|

[8.1 Canonical inverse problem|( . . . . .. ... ... ..
(8.2 Improved algorithm| . . . . . ... ... ... ....

9 Conclusions and future works|

VIII

1 efinition of time-varying bandlimit| . . . . . . . . .
7.2 Time-varying bandlimit spaces V(O). . . . . . . ..



CHAPTER

Introduction and motivation

Sampling theory is the study of spaces of continuous functions that can be
exactly rebuilt from samples taken on a discrete set of points, and has a
great number of practical applications in communication engineering and
signal processing. The classical sampling theory is strongly connected with
the space of bandlimited functions. Given a > 0, a function F' € £L'(R) is
said to be a-bandlimited if its Fourier transform vanishes outside the closed
interval [—a,a]. The frequency upper bound a is known as the bandlimit
and 2a is referred to as the bandwidth. The Fourier transform of a function
F € LY(R), denoted by F(F), is defined as

A —+o0 .

P(z) = F(F)(:) = [ Fla)e=da.
The classical Whittaker-Kotelnikov-Shannon sampling theorem (see [47])
states that an a-bandlimited function F(t) can be completely rebuilt for
all t € R from its values {F (t,)}, on a sequence of equidistant sampling
points {t,},, with t,41 —t, = 7, by the following sampling formula

F( =Y WF(%). (1.1)

The function G (t,t,) = % is referred as the sampling kernel.
The most important functions spaces connected to the classical sampling

theory are the Paley-Wiener spaces. Given a > 0, the Paley-Wiener space
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Chapter 1. Introduction and motivation

of parameter a (referred as PW,) is a reproducing kernel Hilbert space and
is defined as the set of all entire functions square integrable on R and such
that |F(z)| < Cel ¥z € C, for some positive constant C. The reason why
these spaces are strongly connected to the classical sampling theory is that
the Fourier transform induces an isomorphism between PW, and £*[—a, a]
(in particular £?[—a, a] is the image of PW, via Fourier transform). Then
all the functions of the space PW, are a-bandlimited functions, and they
can be rebuilt using formula with ¢, = “F and sampling kernel given
by
sin (a (t —t,))
a(t—t,)

The Paley-Wiener spaces have many properties that are very useful for sam-
pling, the main ones being the fact that the set of functions {G(t,t,)}, is
an orthonormal basis for PW,, and that 2G(w, z) is the reproducing kernel
of PW,.

The classical sampling theory has been generalized in several directions
including, for example, non-uniform sampling or derivative sampling (see
[52]). Non-uniform sampling consists in exactly rebuild a function starting
from samples taken at irregular intervals. Non-uniform sampling is very
important since it comes natural in many applications, for example in au-
tomotive industry, data communication, medicine or astronomy. Given the
large number of applications, the research is now focusing on new methods to
rebuild signals through non-uniform sampling based on sampling sequences
with weaker and more flexible constraints than those already known. One
of the most important results in non-uniform sampling is the Paley-Wiener-
Levinson theorem (see [31]). It asserts that, given a sequence of reals {t,},
such that

G(t,t,) = (1.2)

nm T
0 :=suplt, — —| < —,
nez a da
then for any F' € PW, we have
S()
Ft)y= ————F (¢ teR .
0 =Y 5=t ) (eR) (13)
where
s t t
S(t) = (t —to) I (1-) (1-).
n=1 tn tn

A generalization of the Paley-Wiener spaces is given by the well-known de
Branges spaces, that are Hilbert spaces of entire functions. Given a Hermite
Biehler function F(z) (i.e. an entire function such that |E(z)| > |E(Z)| for
z € C7), the corresponding de Branges space is given by B(E) = EK(0),

where O(z) = %3 is a meromorphic inner function and IC(©) is the model

space H? © ©OH?. Here, H> = H?*(C") denotes the classical Hardy space
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of the upper half plane. Let {¢,}, be the sequence of real points such that
O(t,) = 1 (that are generally not equidistant), then every function F' € B(E)
can be exactly and uniquely rebuilt starting form its values on the points
{t,,}, with the following sampling formula:

where

is the reproducing kernel of B(E).

In practical applications, the bandlimit a is necessarily the largest fre-
quency that occurs in the set of signals considered. The larger is the value
of a, the smaller is the spacing Z needed between every two consecutive
samples. Even if a given signal appears to have low frequency for most of
its duration, and to have high frequencies only for a short time interval,
the samples need to be taken at a high rate for all time in order to apply
the Shannon sampling formula. This is obviously inefficient and motivates
the extension of signal processing methods such as filtering, sampling and
reconstruction to the setting of time-varying bandwidth.

The first and principal problem is to define what exactly is a time-varying
bandlimit. The traditional notion of bandlimit is determined by the Fourier
transform of the entire signal, hence it is non-local and depends on the
signal global behaviour. This makes it difficult to give a precise definition of
the concept of a time-varying bandlimit. In the literature there are several
approaches to the definition of variable bandlimit, see for example [1], [2],
[10], [18], [26], [50].

Among all these definitions, the most interesting is probably the one re-
cently introduced by Kempf and Martin in [40]. The Kempf-Martin spaces
are based on a non-Fourier generalized sampling theory and use as mathe-
matical engine the functional analytical theory of selfadjoint extensions of
symmetric operators with deficiency indices (1,1) in Hilbert spaces. These
spaces have a sampling formula that is analogous to the one of the Paley-
Wiener spaces. Furthermore, in the paper by Kempf and Martin these spaces
shy away from a formal definition since are defined through their reproducing
kernel, and a more in-depth characterization seems to be desirable.

The Kempf-Martin definition of time-varying bandlimit is based on the
observation that, in conventional Shannon sampling theory, the constant
bandlimit a is inversely proportional to the constant spacing = of the stan-
dard Nyquist sampling sequences. Kempf and Martin then identify the
sample points in each of these sampling sequences (tn(a) =(n+ a)%) for
a € [0,1), appearing in the Shannon sampling formula, with the simple
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Chapter 1. Introduction and motivation

eigenvalues of a self-adjoint operator Z,. They further observe that the fam-
ily {Z, | @ € [0,1)} is the one-parameter family of self-adjoint extensions of
a single symmetric linear transformation Z, which is simple, regular, with
deficiency indices (1, 1), and acts as multiplication by the independent vari-
able on a dense domain in PW,. One can combine the spectra of these
self-adjoint extensions to define a smooth, strictly increasing bijection on
the real line, t(n + «) := t,,(«). If 7 denotes the compositional inverse of ¢,

we observe that
™/ (t) =a (1.4)

is the bandlimit. The derivative +/(¢) is then a measure of the local density
of the sampling sequences {t,(a)}, near the point ¢, and it is proportional
to the constant bandlimit in the case of Shannon sampling.

The crucial observation is that the spectra of the self-adjoint extensions
of such a symmetric operator T" do not need to be equidistant. Hence it
is possible to generalize Shannon sampling theory using the representation
theory of regular simple symmetric linear transformations with deficiency in-
dices (1, 1). Kempf and Martin show that any such symmetric 7" is unitarily
equivalent to multiplication by the independent variable in a local bandlimit
space KM(T), a Hilbert space of functions on R with the same special re-
construction properties as the Paley-Wiener spaces PW, of a-bandlimited
functions.

Kempf and Martin prove that any F' € KM (T) can be rebuilt from its
samples taken on any sampling sequence {t,(a)}, , o € [0,1), where the
t,(a) are the simple eigenvalues of a self-adjoint extension, T, of T'. The
local density of the sampling sequences {t,(«)}, then provides a natural
notion of time-varying bandlimit that recovers the classical definition in the
case where KM(T) = PW,.

Since the Kempf-Martin spaces KM (T') represent a very promising solu-
tion and at the same time they still have an insufficient characterization, in
this work we decided to study this version of time-varying bandlimit func-
tions.

Another important open problem that is strictly connected with the de
Branges spaces and the so-called canonical inverse problem. A canonical
system is a differential equation of the form

ay

J o =zH(x)Y, (1.5)

where

e H(z) is a function (0, L) — Mats(R),0 < L < oo, such that H(z) is
positive semidefinite a.e. for z € (0, L), and that H € £! (0, L’) for all
L' < L.

Y,

e YV = e C?

] <o




0 —1
.J: ,
oy

o z € C is a parameter.

In [11] de Branges shows that if Y (z,z) is the solution of (1.5)), then
E.(z) = Yi(z,2z) +iY_(z,z) is a Hermite Biehler function of z for each
z € (0,L). Given any FE(z), the problem of building H(x) such that
Er(z) = E(z) is known as the canonical inverse problem, and an algorithm
to solve it was proposed by Romanov in [46|. His work can be considered
a far-reaching generalization of the Stiltjes algorithm in the inverse spec-
tral theory of Jacobi matrices. Unlike many other one-dimensional inverse
spectral theories, it is not perturbative, which means that there is no un-
derlying problem with well-understood eigenfunctions to be compared with.
Romanov’s algorithm is mainly based on the result of Theorem 6 in [46] (p.
21), which proves that for any polynomial Hermite Biehler function FE(z)
with no real zeros and such that £(0) = 1, we have

1 E(2)+E#(2) 1
3 ( %(E(Z)—E (z)) ) =M (z)... M,(2) ( 0 ),

where n = deg(E) and the M,’s are 2 x 2 square matrices such that M;(z) =
I+ ZRj,det Rj = tI‘Rj = O,R12 Z 0,R21 S 0.

The problem with this theorem is that it gives an algorithm to build
the matrices {M;};—1 ., without giving their explicit expression in terms of
E(z). Since Romanov’s algorithm for the solution of the canonical inverse
problem is based on an iteration on the degree of F(z) in which this theorem
is applied to each step, its downside is that it does not give an explicit
solution, and that neither the result of each iteration is explicit. Hence for
this reason we think that this problem is still considered not fully solved.






CHAPTER

Preliminary definitions and results

In this section we introduce the functions, the spaces and well-known results
that will be used in all the next chapters. For more details see [11], [25],
[30], [34] and [42].

Before starting with definitions and theorems, we clarify here the meaning
of some notations that we will use throughout this work.

o Let Uy, Us be two vector subspaces of some vector space V.
— The sum U = U; + U, is defined to be the set of all possible sums
Ul + Usg with (TS Z/{Q, Ug € Z/{g.

— The direct sum U = U; B U, is equal to the sum U = U; + Us in
the case U; L Us.

— V & U, denotes the orthogonal complement of i/ in V.

o Let {U,}n>0 be an infinite set of vector subspaces of the same vector
space V, with U,, L U, Ym,n > 0, m # n. Then @,,~oU, denotes the
closure of the subspace formed by all the possible sums }, <~ u,, with
U, € U, and u, # 0 only for a finite number of n. -

e >, stands for 35,5 (and obviously 3, ., stands for 3=,c7 . )-
o {-}, stands for {-},cz.
o L£2(Q) is the space of functions square integrable on (.

« {z} denotes the fractional part of the real value x: {z} =z — |z].
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Chapter 2. Preliminary definitions and results

2.1 Reproducing kernel Hilbert spaces

Definition 2.1. A reproducing kernel Hilbert space (RKHS) H on a subset
) C C is a Hilbert space of functions on 2 with the property that point
evaluation at any z € ) defines a bounded linear functional J, on H.

By the Riesz representation lemma, for any z € () there is a unique point
evaluation vector K, € H so that for any F' € H we have

F(z) = 0.(F) = (F,K.),, .

The reproducing kernel of # is the symmetric function K(z,w) : 2 xQ — C
is defined by

Ky(w, 2) == (K, K.),,, (2.1)
and is a positive definite funcion, which means that foranyn € N, zq,..., 2, €
Q,and cq,...,c, € R we have

Z CiCjK (ZZ‘7Z]‘> = <ZCiKZ“ZCjKZ]‘> Z O
i,j=1 i=1 J=1 H

The classical theory of RKHS of Aronszajn and Moore (see [44]) shows that
there is a bijective correspondence between the positive kernel functions
K(z,w) on Qx and the reproducing kernel Hilbert spaces H on 2. Indeed,
given any positive kernel function K(z,w) there always exsists a RKHS
H(K) which has K(z,w) as its reproducing kernel, while for every RKHS
H(K) the reproducing kernel K3 (z, w) is unique.

2.2 Hardy spaces and meromorphic inner functions

Definition 2.2. For p > 0, the Hardy space H?(CT) on the upper half-plane
C™ is defined as the space of holomorphic functions F(z) on C* such that

+o0 %
| F||%r := sup (/ |F(:z:+iy)]pdac> < 0.
y>0 —o0
The Hardy space H>(C™) is defined as the space of holomorphic functions
F(z) on C* such that

[l = sup |F(2)] < oo.
2eCt+

Definition 2.3. A Blaschke product B € H>*(C™") is a product of the form

Blz) = T £222 (2.2)

—
kZleZ—Zk

where the zeros {zj}r>1 obey the Blaschke condition




2.3. Herglotz functions

Definition 2.4. A meromorphic inner function on the upper half plane is
a meromorphic function © : C — C which is holomorphic in the upper half
plane and such that |©(2)] < 1 for z € C*, |O(z)| =1 for z € R.

Every meromorphic inner function ©(z) obviously belongs to H>(C"),
and can be factored uniquely as

o 2k 2 — 2

O(z) = e = e B(z), (2.3)

el %k — Zk

where b € R, b > 0,7 € C, |y| = 1, and B(2) = [[}2, 22" is a Blaschke

product with no accumulation point. The value of b in (2.3)) is referred as
the logarithmic residue of ©(z).

Definition 2.5. The phase function 7 : R — R of a meromorphic inner
function ©(z) is the unique differentiable function such that ©(t) = **r(®
for t € R, with 7/(¢t) > 0 Vt € R.

For our purpose the case of an inner function with logarithmic residue
b = 0 and a finite number of zeros in its Blaschke product is a degenerate
and not interesting case. Hence in the next chapters, when we will define
a meromorphic inner function, we will always tacitly assume that either
b > 0 or the number of zeros of the Blaskhe product is infinite. With this
assumption, it is easy to see that the image of the phase function 7(t), as ¢
varies in R, is the whole real line. In the next chapters we will also consider
many times the sequence {t,}, of solutions of ©(¢t) = 1 for ¢t € R, which
obviously is the sequence of real points where 7(¢) assumes integer values.
Therefore with our assumptions this sequence is infinite, and we will always
consider its indexes so that 7(t,) = n.

Definition 2.6. The spectral function t : R — R, of a non-constant mero-
morphic inner function ©(z) is defined as the inverse of the phase function:
t(x) =71"Y(z) Vz € R.

2.3 Herglotz functions

Definition 2.7. A function F' : Ct — C is called a Herglotz function
(or Nevanlinna-Herglotz function) if F(z) is analytic on C* and such that
S(F(z)) >0 for all z € C*.

For every Herglotz function F(z) the following representation holds:

F(z)z@—kdz%-/ﬂg(w

where ¢ € R, d € R and u(w) is a positive regular Borel measure obeying
the Herglotz condition
dp(w)

R 1 + w?

1 w
—2z 1+w?

) du(w), »€C*  (2.4)

< 00
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Chapter 2. Preliminary definitions and results

In particular we have
¢ = Re(F(i)),
F

d=tim T (25)

Y—r00 Zy

This representation is referred as the Nevanlinna representation of a Herglotz
function.

There exists a bijective correspondence between the Herglotz functions
and the set of all contractive, analytic functions in C*. Given a Herglotz
function F'(z), the corresponding contractive analytic function is given by

F(z)—i  —iF(z) -1

e = T T SR T

(2.6)

while given a contractive analytic function m(z) then the correspondent
Herglotz function is given by

Fz) =i (Hm(z)) | (2.7)

1 —m(2)

The function m(z) is inner if and only if the positive Borel measure p of
F(z) is singular with respect to the Lebesgue measure. Moreover, m(z) is a
meromorphic inner function if and only if u is a purely discrete measure. A
purely discrete measure is given by

fi= ) Wb, (2.8)

where
« {w,}, is a sequence of strictly positive weights;

o {t,}, is a purely discrete, strictly increasing sequence with no finite
accumulation point;

o {0, }n is a sequence of Dirac delta masses:

1 =1t
(@) = 0 xz#t

If 1 is a purely discrete measure, the representation (2.4)) becomes

1 ty
th—2z 241

F(z) :c+dz—|—z< >wn, zeCT, (2.9)

and the Herglotz condition is given by

wn
Z1+1tg<oo

n

10



2.4. Functions of bounded type

2.4 Functions of bounded type

Definition 2.8. A function F' : {2 — C, which is analytic in a region 2 C C,

is said to be of bounded type in Q if F(z) = ngi where P(z) and Q(z) are

analytic and bounded in €2 and @(z) is not identically zero.

The following theorem is an important known result about functions of
bounded type (see Theorem 9 in [11], p. 22).

Theorem 2.9 (de Branges). Let F(z) be a function which is analytic in the
upper half plane and which does not have the origin as a limit point of zeros.
A necessary and sufficient condition for F(z) to be of bounded type in the
half-plane is that

F(2) = B(z)e "#ef® (2.10)

where B(z) is a Blaschke product, h is a real number, and G(z) is a function
analytic in the upper half-plane such that

% G y +o0
Gl =2 [T i
for some real valued function pu(x) such that

[

N e

The real number h in the representation of F' given in equation ([2.10)) is
referred as the mean type of F'. Thanks to Theorem 10 in [11], we have that
the mean type h of a a bounded type function F is given by

h = limsup y ' log | F(iy)|. (2.11)

Y—r—+00

We observe that any analytic function G(z) bounded in a region Q2 C
C is of bounded type there since it can be written as G(z) = ggz; with
P(z) = G(z) and Q(z) = 1. Considering that in the upper half plane any
meromorphic inner function O(z) is bounded, we obtain that it is also a
function of bounded type, and hence it must have the form given in ([2.10)).
Since a meromorphic inner function must also have the form glven in ([2.3)),

we easily get that the mean type A in is equal to —b in , and then
by (2.11]) we obtain that the logarithmic residue of ©(z) is given by

b= —limsupy *log|O(iy)|. (2.12)
Y—r—+00
It is easy to see that the reciprocal of a function of bounded type on a
region € is of bounded type on 2, and that the product of two functions of
bounded type on a region €2 is of bounded type on 2. We give now some
well-known examples of functions of bounded type.

11



Chapter 2. Preliminary definitions and results

o Every polynomial is of bounded type in any bounded region of C. Every
polynomial is also of bounded type on C*, since any polynomial F'(z)

of degree n can be expressed as F'(z) = 58 with
P(2) = F(z)
T
1
Q(z) = m,

and both P(z) and @Q(z) are bounded on C*. Also the reciprocal of
every polynomial is of bounded type in every bounded region of C, and
on C*.

« The functions sin(z) and cos(z) are of bounded type on C*. Indeed,

P(z) _ -
00 with

for example, we have sin(z) =

P(z) = sin(z)e”,
Q(z) =e€”
and both P(z) and Q(z) are bounded on C*.

)

» Every Herglotz function F(z) is of bounded type on C* since can be

written as F(z) = g%z; with
__F()
Pz) = F(z)+1
Q(z) = W;

and both P(z) and Q(z) are bounded on C*.

2.5 Hermite Biehler functions

Definition 2.10. A Hermite Biehler function E : C — C is an entire
function such that |E(z)| > |E#(z)| for every z € CT, where E#(z) = E(2).

An important and well-known result about these functions is the follow-
ing theorem (see [25]).

Theorem 2.11. Any meromorphic inner function

L X T2 — 2k b
O(z :'ye’bz ——— =7 B(z
@)= 2 (2

can be represented as




2.6. Model spaces

where E(z) is a Hermite Biehler function, given by

0= 1 (1 2o S (L) )

Definition 2.12. Given any meromorphic inner function ©(z), we define as
a de Branges function of ©(z) every Hermite Biehler funtion F(z) such that

E#(z
0(z) = 54

2.6 Model spaces

If F, € H*® and F, € H?, we observe that G := [} F, € H2. Indeed we have

+0o0 %
Gl =sup ([ |Fi(@+ i) I Fa(a + iy)Pda )

y>0 —

—+o00 . 9 %
<sup sup [Fi(2)]) ([ 1o+ i) Pdo )
y>0 \zeCt+ —00

= || F1 2o || Fol 22
< .

Then, given a meromorphic inner function ©(z), it is easy to see that OH?
is a subspace of H?2.

Definition 2.13. Given a meromorphic inner function 6(z), the model space
K(©) on the upper-half plane is defined as

K(©) :=H* © OH>.

Any model space K(0) is a reproducing kernel Hilbert space of analytic
functions on C* with reproducing kernel

i1 0B

5 P z,w e CT.

KK(@)(Z, w) =

Let ©4(z) and O4(2) be two meromorphic inner functions, and set O(z) =
©1(2)O4(z). Then, for the model space K(0) = H? © OH? the following
direct sum decomposition is true:

K(©) = (H*© 60H?) @ 0 (H? © O1H?) = K (0) ® Ok (01). (2.13)

Definition 2.14. Let ©;(z) and ©2(z) be two meromorphic inner functions.
We say that ©4(z) divides Oq(2) if gf—gz; is again a meromorphic inner func-
tion. We define as least common multiple of ©1(z) and O4(z) a meromorphic
inner function ®(z) that is divided by ©;(z) and ©3(z), and that divide any
other meromorphic inner function divided by both of them. In this case we

write & = LCM(@l, @2)

13



Chapter 2. Preliminary definitions and results

The following facts are true:
01(2) divides Oy(z) if and only if ©;H* D O,H?;

2 2 _ 2 _ (2.14)
O1H* NOH* = DH*, where & = LCM(O,, 0,).

2.7 De Branges spaces

Definition 2.15. Given a Hermite Biehler function E(z), the de Branges
space B(E) is defined as the set of all entire functions F'(z) such that

IPte = [ e

and such that both ratios % and F;(S)

positive mean type in the upper half-plane (see [11], p. 50).

2
dt < oo

are of bounded type and of non-

The space B(E) is a vector space over the complex numbers, with scalar

product defined by
too F(1)G()
(F, G im) = / 2P g,
W7 ) TE@)P

Thanks to Theorem 19 in [11] (p. 50), we know that the space B(F) is a
reproducing kernel Hilbert space with reproducing kernel Kpg)(w, 2) given
by
E(z2)E*(w) — E*(2)E(w)

Kpp)(w, 2) = 2w —2) (2.15)
The reproducing kernel can be written also as
K (w, 2) = B(z)A(:(l—_ilU()z)B(w)
_ B(z)A(w) — A(z)B(w)
7(z — W) ’
where we set
A(z) = 5(B(2) + E*(2)), B(z) = %(E(Z) ~ E%(2))
Notice that - L
A(z) = A(zZ) and B(z) = B(2).
If we let w — Z, we obtain
Kpm)(Z,2) = 3}1{11)E B(Z)A(:E)Z__Ii(Z)B(w)
— lim B(z)A(w) — B(2)A(z) + B(2)A(z) — A(z) B(w)
w—Z 7(z — W)
_ —B)A(2) + A()B'(2)

14



2.7. De Branges spaces

It is easy to check that

0

—B(2)A(2) + A()B'(2) = —5 (E¥(2)E(z) - E*(2)E'(2))

so that
E#(2)B(z) — E*(2)E'(2)
2mi '
Two important results about the de Branges spaces are T'heorem 20 and
Theorem 22 in [11] (p. 53, 55). We report here the statements of these
theorems, for sake of completeness and in order to express them clearly
according to the notations used in this work.

(2.16)

KB(E)(Z Z) =

Theorem 2.16 (de Branges). A necessary and sufficient condition for an
entire function F(z) to belong to a de Branges space B(E) is that

iror = [ |5
and that |F(2)|> < ||F(t)||*K (z, z) for all z € C.

Theorem 2.17 (de Branges). Let B(E) be a de Branges space and let 7(t)
be the phase function of ©(z) = EYG)  For g e 0,1), let {t,(0)}n be the

E(z)
sequence of solutions of T(t) = 6 mod 1. Then the sequence {%}

2
dt < oo

is an orthogonal set in B(E).

The next theorem introduce the well-known sampling formula of the de
Branges space.
Theorem 2.18 (de Branges). Let B(E) be a de Branges space, and let
O(z) = E;S) be its corresponding meromorphic inner function. Consider
the sequence {t,}, of solutions of O(t) = 1 fort € R. Then for every
F € B(E) the following sampling formula is verified:

F(z) = Kp) (tn, 2)

The series converges in norm of B(E), and converges uniformly on the com-
pact subsets of C.

The reproducing kernel Kp(gy is given by (2.15), and hence we get

E(2)E*(t,) — E*(2)E(ty)
27i(t, — 2) '

F(t). (2.17)

KB(E) (tn7 Z) =

Since O(t,) = % = ggn; =1, we obtain E(t,) € R and E(t,) = E#(t,,).
Therefore
E(t,) (E(2) — E*(2))

2mi(t, — 2) (218)

K (tn, 2) =

15



Chapter 2. Preliminary definitions and results

From ([2.16)) we have
E#(u)E(u) — E#(u)E’
K (W, u) = (WB(w) ~ B (u) B'(u) (2.19)
2m
and, using E(t,) € R, we get
Ko (1) = E(t) 2 () = (8] (2.20)
B(E)\!'n, 'n n o .
We observe that
#/ — E# /
o) = ECIER) — EFQEG) o)
E(2)?
Since E(t,) € R we have E(t,) = E#(t,), and then
E#(t,) — E'(tn)
/ n n
t,) =
o) =R
Hence ([2.20)) becomes
E(ty)*0'(tn)
Kpp)(tn,t,) = ——"%. 2.22

Now, using (2.18]) and (2.22)), we obtain that (2.17) can be rewritten as

_ K (B) (tnv Z)

Fle) = n K:(E) (tn,tn)
E(:)(1 - O(2)

= B0t — ) )

F(ty)
(2.23)

Another important well-known result about de Branges spaces is the
following.

Theorem 2.19. Let E(z) be a Hermite Biehler function and let ©(z) =
E#(2)
E(2)

be its corresponding meromorphic inner function. Then we have that
B(E) = EK(©)

where K(©) = H?* © OH? is the model space correspondent to O(z).

2.8 Paley-Wiener spaces

Definition 2.20. Given a > 0, the Paley- Wiener space with parameter a,
referred as PW,, is the set of all the entire functions F'(z) square integrable
on R and such that |F(z)| < Ce%?l for some constant C.

16



2.8. Paley-Wiener spaces

The space PW, is a Hilbert space with scalar product given by

o

(F.G)pw, = | F(a)Gla)dr,

—00

and then with norm
1 Elpw, = 1Fll 22wy

The Paley-Wiener theorem shows that PW, is a separable Hilbert space,

and the Fourier transform induces a unitary (up to a rescaling factor i)

isomorphism from PW, onto L%*[—a,a]. Indeed, for Fy, F, € PW, and
Gy = F(F), Gy = F(Iy) € EQ[—a,a] we have

1
(F1, Fa)pw, = §<G1, G2) 2 —a.a]- (2.24)

Thanks to this isomorphism we can represent PW, also in the following
way:

1
o

PW, = {F(z) R =F @) =4 [ Gedy, Ge -, a]}

—a

where F is the Fourier transform. The space PW, is a reproducing kernel
Hilbert space, with reproducing kernel given by

Kpw,(w,z) = %sinc(a(w —Zz)) = W

such that
F(z) = (F(w), K.(w))py,. Vz,w e C.

For every F' € PW, the following sampling formula is verified:

F(z)= zn: F (nZ) sinc (a (z - nﬂ)) ) (2.25)

e (+ (== n2))3,

is an orthonormal basis of the space PW,. Moreover, for every F' € PW,
we have
1F By, = D IF ().

A very important and well-known aspect of the Paley-Wiener space PW, is
that it coincides with the de Branges space B(F) associated to the function
E(z) = e,

and the set

17






CHAPTER

Sampling formulas for the de Branges spaces

3.1 Sampling formulas

In this section we introduce some new sampling formulas for the de Branges
spaces, different from the classical one given in . These formulas are
mainly derived from some inclusion properties for the de Branges spaces, and
are the basis on which we will build all the non-uniform sampling formulas
for the Paley-Wiener spaces in the next chapter.

Theorem 3.1. Let Ey(2), E1(z) be Hermite Biehler functions, and let Eq(z) =
Eo(2)E1(2). Recalling that E5(2) is also a Hermite Biehler function, we have
that B(Ey)E; is a closed subspace of B(E»).

Proof. We give two different proofs of this theorem.

Proof 1. To show that B(FEy)E, is a close subspace of B(E,) it is suffi-
cient to prove that for every G € B(E)y) the entire function F'(z) = G(2)FE;(2)
is such that F' € B(FE,) with equality of norms. We have

2

too | F(t) [P | F(1)
/,oo |E2(t) dt_/m ‘Eo(t)El(t) “
+oo | G(t) |
:/_OO G dt (3.1)
= |Gz
< Q.
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Chapter 3. Sampling formulas for the de Branges spaces

Let Kp(g,) (2, w) be the reproducing kernel of B(Ey). Thanks to ([2.15]), for
2z = x + 1y, with y # 0, we have that

|Eo(2)]” = |Eo(2)?
47y '
Using Theorem [2.16] for every G € B(Ey) we have also

G(Z)P
G| > 7| .
|| ||B(E0) - K ( 0)(2’ Z)

KB(EQ)(Za Z) = (32)

Then,

Kp() (2 2) | F () = K (2, 2) |Gl

E
N

—
n
N

}(37))’(;@)’2
B(Eo) Z?’Z)

B ()P = |Ea(2)]? [F (=)

|Eo(2)? = |Eo(2)]? |Er(2)]?

IB)P - 2 B2

O

Then, for z = z + iy and y > 0, we observe that |E1§ ;} < 1and |Ey(2)]> —
|Eo(Z)|> > 0, and hence we get

z)|? -

|Eo(2) 2 — 15 | Eo(2)

[Eo(2)|? = | Eo(2)?
| ( )|2 ‘EO<§)’2|F(Z)I2
[Eo(2) |2 = | Eo(2)]?
=|F(2)|*.
For y < 0 we observe that }gg} > 1 and |Ey(2)|? — |Eg(2)]? < 0, and then
we finally obtain

|[F(2)]”

K (2, 2) | F | by) >

v

z)|? -
|Eo(2)]* — EBHEO(ZW

BGIP - 1B@E T

K, (2, 2) | F i) =

Bo2) — |BDR,
2 B BER T )
_ PP

Thanks to continuity of Kp(r,)(2, 2) and F(z) we have that Kp(g,)(2, 2) | F |5z, >
|F(2)|? is true also for y = 0, and then

K (2, 2) | Fllge,) > [F(2)]F V2 €C. (3.3)
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3.1. Sampling formulas

Thanks to Theorem[2.16] (3.1) and (3.3)), we obtain F € B(E,) and || F||g(s,) =
|G|B(k), and then B(E)E, is a closed subspace of B(E,).

-
Proof 2. For i = 0,1,2 we set 0;(z) = B, ((), and we observe that

O3(z) = Oy(2)O1(z). Thanks to Theorem we have that the de Branges
spaces B(Ey), B(E1) and B(Es,) are given by

B(Eo) = EoK(©),
B(Ey) = EAK(©4),
B(Ey) = E2K(62)

)

where K(0;) is the model space H? © ©;H?, i = 0,1,2. Thanks to (2.14) we
have ©00,H? C ©yH?, and then we get

K(6¢) = H? © OH? C H? © 000, H? = K(0:0,) = K(6,).
Hence we finally obtain
B(Eo)E1 - EOElK(@()) = EQ’C(@Q) Q EQ’C(@Q) == B(EQ)

The equality of norm can be derived as in Proof 1 by (3.1]), and then we can
conclude that B(E)E; is a closed subspace of B(Es). O

Theorem 3.2. Let ©g(z) and O1(z) be two meromorphic inner functions
such that ©y(z) := LCM (0, 01) = Oy(2)O1(z). Let Ey(2), E1(2) be respec-
tively de Branges functions of ©¢(z), ©1(z), and let Fy(z) = Eo(z)Ei(2).
Then

B(Eo)El + B(El)EO = B(EQ)

Proof. Tt is easy to see that Fs(z) is a de Branges function of ©(z), infact
we have

Ef(z) _ Ef(2) EY(2)
EQ(Z) N E()(Z) E1<Z)

Thanks to Theorem we have that the de Branges spaces B(Ey), B(E)
and B(FEy) are given by

= @0(2)@1(2’) = @2(Z).

B(Ey) = Eo/C(G)),
B(Ey) = EAK(©4),
B(E;) = E2K(62)

where K(©;) is the model space H* © ©;H?, i = 0,1,2. Thanks to (2.14)) we
have ©yH? N O, H? = ©,H?, and then we get

Y

K(0,) = H? © O,H?

3.4
=126 (OyH? N O, H?). (3:4)
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Chapter 3. Sampling formulas for the de Branges spaces

Given two subspaces Uy and U; of the same vector space U, it is well-known
that
U U +U)=UcU)NUcU). (3.5)

Then we have
H? © (K(6g) + K(01)) = O0H?> N O, H?,

and hence

K(60) + K(01) = H? © (6gH* N O, H?). (3.6)
Therefore, by and we get
K(©2) = K(©0) + K(©1).
Finally we obtain

B(Ey)Ey + B(Ey)Ey = EoE1K(00) + EyE1K(04)
— ELK(80) + E.K(0)
= ,K(0y)
O

Theorem 3.3. Let E(z), E1(z) be two Hermite Biehler functions such that

‘EEl((’;)) < M Vx € R for some M > 0, that 51((2)) is of bounded type on CT,
and that (
E(iy
limsupy~!lo : <0.
y—>+oopy & E1(Zy)‘
Then we have
B(E) C B(Ew), (3.7)

and therefore for every G € B(E) we obtain
Ey(2)(1 = ©1(2))

O = 2 B0t — =) 0 )
where E#(Z)
@1(2’) == E1<2) .

The convergence of the series is uniform on the compact subsets of C.

Proof. Consider F' € B(E). By definition of de Branges spaces (see Section
2.7), we have that F' € B(E)) if and only if F' is such that

N

22
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3.1. Sampling formulas

gl ((ZZ)), I;T((ZZ)) are of bounded type and of non-positive

mean type in the upper half-plane. We have

INCOEEON
Moreover we observe that
F(z) _ F(z) E(2) F#(Z) _ F7(2) E(2)
Ey(z)  E(z2) El(Z)’ E\(z)  E(z) Ei(z)
Since F € B(E) 2

and £ 5 are of bounded type Whlle )

and = o (Z) are of bounded type. Thanks to (2.11)) we have that the mean

type h of L 7, verifies

. Ly | Flay) |
h = lim su o .
y%+oopy & E(1y)
F(iy)

+ limsupy ' log

< limsupy ' log |
y—+00

y—-+oo E(iy
(

< limsupy 'lo :
- y—>+<><>py & E(iy)

<0,

where in the last step we used the fact that 28 is of non-positive mean

type. Hence gl ((ZZ)) is of non-positive mean type, and similarly we get that
also I;#((j)) is of non-positive mean type

Therefore F' € B(E;), and ( is proved. Thanks to Theorems [2.1§
and (2.23), for every G € B(E ) we obtam

o B()(1-64(:)
C&) = L B @it — 5

and that the convergence is uniform on the compact subsets of C. O

Theorem 3.4. Let E(z) be a Hermite Biehler function, and let ©(z) be any
meromorphic inner function of the form

O(z) = (2)®1(2), (3.8)

where ®(z) = %#(S) and ®1(z) is any meromorphic inner function. Let {t,},
be the sequence of solutions of O(t) =1 fort € R (with t,, < t,+1 Yn € Z).

Then for every G € B(E) we have
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Chapter 3. Sampling formulas for the de Branges spaces

The series converges in norm of B(E).

Proof. 1f ®1(z) = 1, then set F(z) = 1, otherwise let F;(z) be the Hermite
Biehler function defined in Theorem .11 such that

#(2
dy(z) = %1(<Z>)

Let Ey(z) = E(2)E1(2). Givenany G € B(E), weset F'(z) = G(2)E1(z). We
have F' € B(E,): it is a consequence of Theorem (3.1]in the case Ej(z) # 1,
while it is obvious in the case Fi(z) = 1 (since E(z) = Ey(z)). Thanks to
Theorem we know that a generic Hermite Biehler function F' € B(Es),
for t € R, obeys

K b,
F(Z) . B(EQ)( Z)

= F(t,). 3.10

Then we get

G(2)E(z) =Y Ki) (tn: 2)

G(t,)FE1i(ty),
n KB(Ez)(tnatn) ( ) 1( )

and therefore

o KBy (tn, 2) Er(t,)
#z) = o Kp(,) (tn, tn) B (2)

Recalling (2.23)) we obtain

G(t). (3.11)

— Eita)Ex(2) (1 - O(2)
G = 2 B Bat) et — 5 )

o EE)(-6()
= L B0 — ) )

For any N € Z with N > 0 we observe that

Fy = (F(z) - n;N WF@”)) € B(E,),
and that
.f YK (Ez)(tm Z)El(tn) o Fn
GN - (G(Z) - n;N KZ(EQ)(tmtn)EI(Z) (tn)) B E1<Z) © B<E>’
with

HGN”B(E) = HFN“B(EQ) :
Since (3.10]) converges in norm of B(Es,) by Theorem [2.18, we can conclude
59

that (3.9) convergences in norm of B(E). O
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From Theorem [2.18|we already know that every function of a de Branges
space B(E) can be rebuilt exactly and uniquely given its values on the se-
quence of real points {t,}, for which ®(¢,) = E;#(%) = 1. The important
aspect of the sampling formula in T'heorem is that it shows that a func-
tion of a de Branges space B(E) can be rebuilt exactly and uniquely also
given its values on the sequence of real points {¢,}, for which ©(¢,) = 1
for any meromorphic inner function ©(z) divided by ®(z). Hence for every
function of a de Branges space there are infinite different sequences from
which the function itself can be rebuilt exactly.

Theorem can be proved also as a consequence of with a more
direct proof. However in this thesis we preferred to prove this theorem using
the proposed proof as it is more consistent with the general approach of this
thesis and with the methodology used to prove the other sampling formulas
in the following paragraphs.

3.2 Orthogonal bases

At this point, a natural question is it the set of sampling kernels

{ E(z)(1 - 6(2)) }
E(tn)O' (tn)(tn — 2) n7

appearing in the recontruction formula of Theorem [3.4], is an orthogonal
basis of B(F). The next theorem shows that the answer is positive if the
function ®4(z) in is a Blaschke product multiplied by a constant v with
|v] =1, i.e. ®1(2) is a meromorphic inner function with logarthmic residue

b=0.

Theorem 3.5. Let E(z) be a Hermite Biehler function, and let ©(z) be any
meromorphic inner function of the form

O(z) =12(2)B(2),

where ®(z) = EE#;S), B(z) is a Blaschke product and |y| = 1. Let {t,}, be

the sequence of solutions of ©(t) =1 fort € R. Then the set

[ BE1-60)
(el = {E<tn>@'<tn><tn ) } (3.12)

is an orthogonal basis of B(E).

Proof. Let E;(z) be a de Branges function of the meromorphic inner function

YB(2), s0 that 7B(2) = 252 Setting Ey(z) = E(2)Ey(2) we obtain 6(2) =
B (2)

7.z~ LThanks to T'heorem we have that the set (3.12)) is a subset of
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Chapter 3. Sampling formulas for the de Branges spaces

B(E). First of all we show that it is an orthogonal set in B(E). Now,
consider the functions

Fyo() = Ey(2)(1 - 6(2)) _ Kp () (tn: 2)
2,n Eg(tn>@/(tn)(tn — ,z) KB(EQ)(tTL7 tn)

€ B(Eg) Vn € Z.

We observe that F,(z) = %1(52)) F5,(z) Vn € Z. Therefore for all n,,n, € Z
we get

_ /+Oo Ey (tna)FQ,na (t) Ey (tnb)F27nb (t)
oo E(t)Ei(1) E(t)E (1) (3.13)

= Eq(tn,)Er (tn,) /J:O FZQEZZt()t) F;:lég)dt

ince the set (t 2)
S KB(EQ) n }
{ , (Z)}n {KB(EQ)(tT”tn) n

is an orthogonal set in B(E») thanks to Theorem (2.17), we get that {F,(z)},
is an orthogonal set in B(E). Finally, thanks to Theorem 3.4/ we obtain that
the only function that can be perpendicular to all the elements of the se-
quence {F,(z)}, is the null vector, hence {F},(z)}, is a complete orthogonal
set in B(E), and therefore an orthogonal basis. O

The following theorem introduce another orthogonal set for the de Branges
space B(E).

Theorem 3.6. Let E(z) be a Hermite Biehler function. Consider any two
Hermite Biehler functions E(z), Eo(z) such that E(z) = E1(2)Ey(z), and let
{tn}n e the sequence of solutions of the meromorphic inner function ©1(z) =

# z z
]?Ell((j)) =1 on the real line. Then the functions {F,,(z)}, = {W}n

are an orthogonal set in B(E).

Proof. Thanks to Theorem (2.17) we have that the functions {G,(2)}, =

{W} are an orthogonal set in B(E;). Thanks to Theorem we
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have that B(E;)E, C B(E), and then we get F,,(z) = Kot P20 B(E)

El (tn)
Vn € Z. Moreover we have

1 o 1

(B P = 5= [ Fal@)Ful@) E(x)]?
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CHAPTER

Sampling formulas for the Paley-Wiener spaces

The well-known sampling formula for the Paley Wiener spaces has the
limit of being valid only for sequences of sampling points where the distance
between a point and the next one is always the same. These sequences
are referred as uniform sequences. However, there is another well-known
sampling formula for the Paley-Wiener spaces which works also on non-
uniform sequences. It is a generalization of the sampling formula ,
in the sense that if we apply it to a uniform sampling sequence we obtain
exactly the sampling formula (2.25). This new sampling formula is described
in the following Paley-Wiener-Levinson theorem (see [31]).

Theorem 4.1 (Paley-Wiener-Levinson). Let {t,}, be a sequence of reals

such that
nm
ty— —| <
a

™

D :=sup 1
a

nez
and let S(t) be the entire function defined by

-l (-

n=1
Then, for any F' € PW,

F(t) = En: S,(tj((?_tn)}? (t,) (t €R), (4.1)

and the series on the right hand side converges uniformly on compact subsets
of R.
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Chapter 4. Sampling formulas for the Paley-Wiener spaces

In this chapter, we introduce some different sampling formulas for the
Paley-Wiener spaces, which are based on sets of non-uniform sequences with
different characteristics from those of the Paley-Wiener-Levinson theorem.

4.1 Sampling formulas for non-uniform sampling

We introduce here the first new sampling formula for non-uniform sampling,
which is mainly base on the result of Theorem [3.4]

Theorem 4.2. Fiz any a > 0 and consider the Paley- Wiener space PW,.
Let ©(z) = e B(z) be a meromorphic inner function according to the
representation given in , with logarithmic residue b > 2a. Let {t,}, be
the sequence of solutions of ©(t) =1 fort € R. Then for every G € PW,
we have

_ > eia(tnfz)
G(z)zz(l(tn@_(z)))@,<tn) Glt,). (4.2)

n

The series converges in norm of PW,.

Proof. Consider the Hermite Biehler function

E(z) = e,

so that B(E) = PW,, and let ®(z) = #(S) = e Let ©(2) = v B(z) be

a meromorphic inner function with logarithmic residue b > 2a. Then also
®i(2) = e720(2) = 20292 B(2)O(2) is a meromorphic inner function
since b — 2a > 0, and we have

O(z) = e¥*®(2) = ®(2)P4(2).

Hence E(z) and O(z) satisfy the conditions required in Theorem and
then for every G' € PW, we obtain

E(z)(1-0(z

OO =2 F =2

B e—mz( (Z

Z et (t, — 2)0'

B (1 - @( ))ew(tn z
= - o)

n

G(t).

)
(tn)
)
(G- (4.3)
)G(tn).

By the same theorem we obtain also that the series converges in norm of

PW,. O

As already seen for the de Branges spaces in T'heorem [3.5], we are also
able to establish when the set of sampling kernels {%} is an
orthonormal basis of PW,, finding out an infinite number of orthonormal

bases. This is done by the next theorem.
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4.1. Sampling formulas for non-uniform sampling

Theorem 4.3. Fiz any a > 0 and consider the Paley-Wiener space PW,.
Let ©(z) be a meromorphic inner function of the form ©(z) = ve***B(z),
according to the representation given in . Let {t,}, be the sequence of
solutions of O(t) =1 fort € R. Then the set

— (1 - @(2))em(tn—z)
{Gn}n - { (tn — Z)@/<tn) }n

is an orthogonal basis of PW,.

Proof. Consider the Hermite Biehler function
E(z) = e,

and let ®(z) = E;S) = €%%*. As we already pointed it, we have B(E) =

PW,. Then we have

O(z) = ve** B(z) = y®(2)B(2).
Hence E(z) and ©(z) satisfy the conditions required in Theorem [3.5] and
we get that
E(z)(1 - 6(2))
4.4
o ) 4

is an orthogonal basis of PW,. Finally, proceeding similarly to (4.3) we
easily get

C[U—e(E)ent) [ B)1-6()
{Q&"{ b= )0 0) L‘{ﬂmmwmm—ak; 45)

]

Example 4.4.

Consider ©(z) = €2™#, so that in Theorem [4.2] we have {t,}, = {n}. We
set a = m, and then for any G € PW, we obtain

G(z) =3

n

(1 _ 627riz)ei7r(n—z)
2mi(n — 2)
1— 627ri(z—n))€iﬂ'(n—z)

G(n)

2mi(n — 2) G(n)

in(m(n — 2))

3 (
S

G
zn: 7(n — 2) ().
that is the classical sampling formula for the Paley-Wiener space PW,..
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Chapter 4. Sampling formulas for the Paley-Wiener spaces

Now we want to compare the results of Theorem with those of the
Paley-Wiener-Levinson theorem (Theorem [£.1). Fix a € R, a > 0. Given
any ' € PW,, thanks to these two theorems we have two different sam-
pling formulas for non-uniform sampling, that are valid on two different
families of non-uniform sequences. Kadec showed that the set of sampling
kernels in (4.1]) is a Riesz basis for PW,, while thanks to Theorem we
have seen that the set of sampling kernels in is an orthogonal basis if
O(z) = ve***B(z), where B(z) is a Blaschke product. Hence it makes sense
to compare the properties of the sampling sequences of the Paley-Wiener-
Levinson theorem with the properties of the sequences {t,}, of solutions of
O(t) = 1 for t € R, for O(z) = ve***B(z), since in both cases the corre-
sponding sampling kernels are bases of PW,.

It is easy to see that for every sequence {t,}, in Theorem we have

1
[ty — tim| > (\m—n|—2>7r Vn,m € Z,n # m,
a

while in the sequences in Theorem there is no for lower bounds for
|tn — tim]. Indeed given any € > 0 small as desired and any integer M < oo
big as desired, it is possible to find a suitable sequence {t¢,}, such that M
different elements are contained in a real interval of length €. To see this,
we need to show that it is possible to find a meromorphic inner function
O(z) such that M different elements of the sequence {t,}, of solutions of
O(t) = 1 are contained in a real interval of length e. We recall that the
phase function 7(t) of a meromorphic inner function ©(z) is the unique
differentiable function such that ©(t) = e*® for + € R, with 7/(t) > 0
Vt € R and 7(t,) =n Vn € Z (so that ©(t,) = 1). Then, given any Blaschke
product

for ©(z) = ve***B(z) we obtain

o 1 O(2) a1 & ()
") = 5560 _7r+27rz:: 2r — {2

Fix any ¢ € R and any ¢ > 0, and consider the interval [¢, c+¢€]. Without loss
of generality we set v = 1, and let B(z) be the Blaschke product of N = [@1
distinct zeros {zg }r—1,.n such that ¢ < R(z) < c+e, S(z) =9 < 1 for all
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4.1. Sampling formulas for non-uniform sampling

k=1,...,N. Hence for t € [c,c+ €] we get

iy o L9
"= et

where we observed that, since § < 1, ﬁ > 1 for enough small e. Then we
have

cte cte M
e+ e) —7(c) :/ 7(s)dt >/ Lt =M,
c c €

and we obtain that 7(t) € N at least M times in [c,c + €| since it is a
continuous function. Then O(t) = >™"(®) = 1 at least M times in [c,c + €],
and then there are M elements of the sequence in an interval of length €, as
desired.

Now we compare the upper bounds of |t,, —t,,|. For every sequence {t,},
in Theorem [4.1] we easily get

1
[t — tm] < (|m—n|+2)7T Vn,m € Z,n # m,
a

while for Theorem [4.2] we have

|m — nl|mr

[tn — tm] < Vn,m € Z,n # m.

To see this, it is sufficient to show that
0
thsl —tn < — VneZ
a
We have

O'(z a a
Y0 500 =5 s P \zk =k (40

U

Now consider the spectral function t(s) =
defined since 7/(t) > 0 Vt € R), then t(n )
hence we obtain

thal — tn = t/ d:/ ———d</ —ds = —.
+ /n (ds= ] Zaep®™ =) a® =%

(s) exists and is well
t

(t
and t(n + 1) = t,11, and
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Chapter 4. Sampling formulas for the Paley-Wiener spaces

Hence we can conclude that the difference in the upper bound of |¢, — t,,]
gives a little more a flexibility to the sampling sequences of the Paley-Wiener-
Levinson theorem, while difference in the lower bound gives much more
flexibility to the sampling sequences of Theorem ([4.2)).

4.2 Representation of a meromorphic inner function

The sampling kernels in Theorem and Theorem are expressed in
terms of the meromorphic inner function ©(z). Hence now it is interesting
to establish when for a given a sequence {t, },, there exists a sampling formula
of the form given in Theorem [4.2] and express it in terms of the sequence
itself. This means to find necessary and sufficient conditions for a given
sequence {t,}, to be the sequence of solutions of O(f) = 1 on the real line
for some meromorphic inner function 6(z) with logarithmic residue b > 0.

For this purpose the first step is to give a representation of any mero-
morphic inner function ©(z) in terms of the sequence {¢,}, of solutions of
O(t) = 1 for t € R. We obtain this fundamental result in Theorem
Then we use this result to prove T'heorem where the representation of
a de Branges function E(z) of ©(z) is given in terms of the same sequence
{tn}n. This representation will be very useful in the next sections.

Before introducing these theorems, we need the following deifinition.

Definition 4.5. Let {t,}, C R and {t,},, C (0,00) be two sequences with
the following properties:

1. {t,}n is astrictly increasing sequence with no finite accumulation point;

2.t >0‘v’n€Z;

3 Zn 1+t2 < 007

4. 3,1 = 4o0.

A couple of sequences ({t,}n, {t,}») that verifies this properties is referred
as a bandlimit pair. Moreover we define a normalized bandlimit pair as a
bandlimit pair such that )

nHtQ = .

Obviously, given an bandlimit pair, we can obtain a normalized bandlimit
pair multiplying all the elements of the sequence {t/}, by —*—

n 1+t2

Theorem 4.6. A function © : C — C is a meromorphic inner function if
and only if there exist a bandlimit pair ({t,},{t,}) and a complex number
a, S(a) >0, so that O(z) is given by the formula

O(z) Znt{n(tl—z t2+1)+a
(t—z t2+1)+a'

4.7
SN (4.7)
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4.2. Representation of a meromorphic inner function

In particular any meromorphic inner functz’on ©(z) has infinite different
representations of the type given in , one for every different value of

S Ea) (that can be any posztwe Teal number since ({t,},{t!}) is a ban-

dlimit pair). Setting f =3, = t2+1, the elements of the sequence {t,}, are all

and only the solutions of O(t ) =1 fort € R, the elements of the sequence

{t! }n are given by t,, = 2“&“;, and « is given by

263(0(0) ey (y@(zw —2R(O(4)) + 1) (4.8)
E | | |

NEOE CIOE

Proof. Thanks to Corollary 4.6 in [40] (p. 1628) we have that a function
O(z) on C is a meromorphic inner function obeying O(i) = 0 if and only if
there is a bandlimit pair ({¢,},{t,}) so that ©(z) is given by

it St (P - )
o) - iR - 2 Y —

where {t,}, consists in the sequence of solutions of ©(t) = 1 for t € R, and
the sequence {t! }, is such that ¢/ = gf‘fgj)) .

First we show that any meromorphic inner function ©(z) can be ex-
pressed with the representation given in (4.7). Let w = O(i) (clearly w
must safisty |w| < 1 since ©(z) is inner). We recall here that for any fixed

h € D, the Mobius transformation, given by

z—h
1—zh

Fh(Z) =

is an analytic automorphism of the unit disk with compositional inverse F'_j,.
In particular, given any meromorphic inner function ¥(z), then the compo-
sition F}, o U is again a meromorphic inner function (called the Frostman
shift of W(z)). If we set h = w in the Mobius transformation, then the
meromorphic inner function ®(z), given by

B(2) = w-1 (Fu(2) 00O(2)) = Z: 1 (F_(%(;;;) ’

satisfies ®(i) = 0. Moreover it is easy to check that for ¢ € R we have
U(t) =1 if and only if ©(t) = 1. Hence we can apply the above mentioned
Corollary 4.6 in |40], and we can write

/ 4 11
Z_Zznt fztn ztn _ Z ( tn_i)

TL

)
z+1 Z” tn—z tn+zt% Z ( - tnl_;,_i)

th—=z

O(2) =
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Chapter 4. Sampling formulas for the Paley-Wiener spaces

for a bandlimit pair ({¢,},{t,}). Now, since the inverse of F,,(z) is given
by F_.,(2), we get

O(2) = F_y(2) 0 (HQ(ZO - 2.
fiEbrraE=——

n NM\tp—=z2 tn+1

14
. <w - 1) Zn tgl (tnl—z B tnl—z> + (|w|2 - ’LU) Z (tnl z tnl-‘ri)
)+

C@-1)%,.t, (; )+ (k- .t (B - )
(|w|2_1)z (t — — - +)+z( 2w+|w|2+1)znt2;1 (4.9)
(o =) oty (725 — g37) +i20 — [wl = ) T,

St (gt = o) =18 (o)
St (7 ) -8 (BB
_Tufh (s ) - 35 - s (L
TS (s o)~ 8 ()

Now we set o = 215‘|Sw|2 + 18 (W#), and we observe that S(a) =
B (%) =0 (%W) > 0 Vw such that |w| < 1. Hence we
obtain

2nty (tnlfz t2+1) +a
2n 'ty (tnlfz t2+1) +a

as we wanted to show. By construction the sequence {t¢,}, consists in the
sequence of solutions of O(t) =1 for ¢ € R, and this can easily verified also
in the new representation of ©(z). We can also verify that w = ©(7), indeed

ol (t_z_t2+1)+a

2nty (tnl—z' - t2+1) ta

_ i () — 8 (L 5
i () e (1435
()

(-1%2)

O(z) =

o(i) =

Moreover we have




4.2. Representation of a meromorphic inner function

then we observe

O'(t,) = lim ©'(t) =

t—tn t%
_ 2iS(a)
- Ot
Now we show the inverse implication: any O(z) with the form given in
(4.7) is a meromorphic inner function. We observe that

and hence we obtain ¢/,

-
R(a)? — S(a)? + B2 o~ (4.10)
(Rerostrer) (e )
(3?(04)2 + (S(e) +5)? R(a)® + (S(e) +8)2 )
and hence we get
o =1 8y
R(a)? + (S(e) +5)2
since 3, () > 0. Setting w = (i), by ([#.10) we get
20%(w) _ 48R(0)3(0)
1 —|w]? 453 (ev)
= R(«a)
and
|w|? — 2R (w) + 1
(M)
_ 62(3%(04)2 + (S(a) + 8)?) — 483(er) — 2(R(e)? — S(a)* + %)
403 ()
_ 43 ()% + 4683 () — 463 ()
43 (@)
= ().

Therefore we have

o = —

283(w) o <|w|2 — 2R(w) + 1) |

1 —fw|? 1 —fw/?

and hence (4.8)) is verified. Then, thanks to (4.9)), we obtain

O(:) = Fu()o (2—1(2)).

w —

where

_ 2on t; (tnl—z B tnl—z)
2ty (tnl—z - tn1+z) -
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Thanks again to Corollary 4.6 in [40], ®(z) is a meromorphic inner function
which satisfy ®(i) = 0, and the same is obviously true for 2=®(z). There-
fore, thanks to the above described properties of the MOblllS tranfsorm, we
obtain that also

O(2) = Fu(2) o <w_1<I>(z)>

w—1

is a meromorphic inner function, as we wanted to show. Finally it is easy
to see that the elements of the sequence {t,}, are all and only the solutions
of ©(t) =1 for t € R, while the expression for {t/,},, can be verified in the
same way of the other implication.

O

Example 4.7.

Consider ©(z) = €*™*. Then in Theoremwe set § = 7 and we obtain
O(i) = e ",
e 2 —27 1
o= (e 1- :—% - ) — im tanh(r)
{tn}n = {n},
— 2" +1

{t,}n = {6_%1 — } — {tanh(m)}.

— €

Then, recalling that 3", (n - — nQ"H) = —mcot(nz), by (4.7) we get

tanh(m n( - = )—iﬂtanh(w)

n—z n2+1

B )

~ tanh(m) ¥, (5 — 22 ) +ir tanh(r)’
(
(

—mcot(mz) —im

—mcot(mz) + im

— 627rzz’

as expected.

Theorem 4.8. Let the couple ({t,}n,{t)}n) be a bandlimit pair such that
1

ZW«X%

n#0 |tn

for some q € Z, ¢ > 0. Let

@(z) _ 2n t;z (tnl—z - t?fil) +a'
2ty (tnl—z - t%ti1) +a
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4.2. Representation of a meromorphic inner function

be the meromorphic inner function associated to ({t,}n,{t) }n) according to
Theorem [{.6. Let E(z) be given by

c 1 tn ? up(z
E(z)==z <Zt;‘<tn—z_t2+1>+a> 1T <1—tn>e”(),

nEL,tn#0

1 i Inft,=0
= 0, otherwise

and p is the smallest nonnegative integer for which the series

1
2: Hnw+1

n#0

is convergent. Then the function E(z) is a de Branges function of ©(z).
Moreover, if t|, = d for some constant d and all n € Z, then the product in
(6.13) converges for u,(z) = i.e. forq=1.

2z
tn’

Proof. By (2.4) we have that

S(z) = (?* <tn1—z - tzt—n%l) M)

is a Herglotz function, i.e. an analytical function with non-negative real part
on C*. Thanks to [51] (p. 56) we have that the product

P(z) = 2° H <1_;>6u(z)

NnEZ,tn#0

converges uniformly to an entire function whose zeros are all and only the
elements of the sequence {t,},. Hence

is an entire function. We observe that
P(z) = P*(2)

and that
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We set z = = + iy and we consider the case y > 0. Recalling that J(a) > 0,

we have
R(S(2)) = R(5#(z)),
(s <>>|—]y22+%<a>
(¢ xy) Ty (4.12)
> —(tn ety ()
= |S(5%(2))],
and then

[S(2)] > [S7(2)].

Hence we obtain
[E(2)] = [S(2)|P(2)] > [S*(2)[| P(2)] = |S%(2)||1P*(2)| = | E* (2)].
and therefore E(z) is a Hermite Biehler function. Finally, we have

E#(z) _ S*(2)P*(2) _ 5%(z)
E(z)  S(x)P(z)  S(2)

and then F(z) is a de Branges function of ©(z).
Finally we observe that, if ¢/ = d for some constant d and all n € Z, then

Z t2 +1 d Z t2 T
since ({tn}n, {t,, = d},) is a bandlimit pair. Hence we get
1

1 2
ZtQS Z +Zt2+1§ Z +Zt2 0,

tn#0 "1 tn#0,|tn|<1 [tn|>1 "1 tn#0,tn|<1 n

=0(2),

t

where in the last step we considered the fact that the number of ¢,, for which
|t,] < 1 is finite since the sequence {t,}, has no accumulation points. Then
p < 1. Since the product

11 (1 . Z) eta(?) (4.13)
n€Z,tn#0 tn

converges for all ¢ > p (see [51] (p. 55)), we can conclude that in our case
it converges for ¢ = 1. O

4.3 Properties of meromorphic inner functions

In this section, given a meromorphic funtcion ©(z), we study the important
relations between the sequence {t,}, of solutions of O(t) = 1 for t € R,
and other properties of ©(z) (in particular the logarithmic residue and the
properties of the phase and the spectral function). These results will be very
useful for the next sections.
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4.3. Properties of meromorphic inner functions

Lemma 4.9. Let the couple ({t,}n,{t},}n) be a bandlimit pair, and let

(2) = 2nt (t — t2+1) +a
2t (t — t2+1) +a

be a meromorphic inner function, according to Theorem [§.6. Let T(x) be its
phase function, and let t(x) be its spectral function. Then we have

S(0) Lo ity
T (Zn t (tnl_m t2+1> + R« )) + ()?
t'(n) = Lt'n Vn € Z.

3(@)

() =

Proof. By the definition the phase function 7(z) is the unique function that
verifies

O(z) = 2@ Vo € R.

Then we get
R o €))
T = 3o

2iS(00) L -tz
27” (Z (t —z t?fil) ) (Z (t —z t2+1> + oz) (4.14)
S(0) Lo e

(Z (t — t%fil) + gce(04)>2 + %(04)2'

Moreover

8
L
3
/Q 8
L
\RE
|
&

[]

Proposition 4.10. Let the couple ({t,}n,{t),}n) be a bandlimit pair such
that t,, = t' ¥Yn € Z for some constant t' > 0, and let

'3 (tnl—z t2+1> ta
v (tnl—z o t2+1> + a

O(z) =
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be any of the associated meromorphic inner function according to Theorem
with phase function 7(x). If |t, — Tn| < 0 Vn € Z, for some § < 5-
and a > 0, then there exist two real constants A and B such that A > % and
0 < B < 2 and that

B<7(zr)<A VxeR.

Proof. By Lemma [4.9 we have

3() T g

m'(z) = 5 (4.16)
©(Suth (75 = 25) + R(@) + S(a)?
First we show that there exists A > 0 such that
T'(r) <A VreR
Consider a generic ng € N and set
1 1
=yt :
Sng (ZL’) nz>:1 (th_n s + tno_n — :L‘>
For |z — Tng| < g we get
tn n tn -n 2
|Sn0($)|: Zt/< o+ + 0 X )
n>1 (tnotn — T)(tng—n — ) (4.17)
T\ ., 1 '
<2 (5 + ) 'y 5,
2a/) 33 (gn -0 — %)

where we observed that |t n —2| > [thgin — 21| = |Zng —2| > (Zn—0) — 5=
(with obviously n — ¢ — 5= > 0 for any n > 1). Moerover we have
tnotn + tng—n — 22| < [tngan + tng—n — 2n0] + 219 — 21|

41
<254+ L (4.18)
a

Setting
1 t
C=2(0+ ) (),
+2a ’§<Zn_5—;)2+zt%+l+| (Oz)|

n

and € = min (%, e — 5), for x s.t. |z — t,,| < € we observe that
I )
|z —t,,| = €
and that
x—zno < —tp,| + tno—zno < <7T—6>+6:7T.
a a 2a 2a

42



4.3. Properties of meromorphic inner functions

Then we obtain

() =) TR v il
m ((tn:_x) + Spo () — 22, tgfil + 3%(04)) + ()2
/ 1 1 (4.19)
=T (Mfﬁ_c)Q‘i'%(a)z

The function

g9(s) = , 2
4 (5-C) +S(a)
is such that
. ~ S(a)
limg(s) = —~

and moreover in the interval —e < s < € we have ‘t?l' — C' > 0 by the choice

of . Then g(s) is bounded in the set —e < s < € and there exists A; > 0
such that

9(5) < A

Since g(s) doesn’t depend on ng, also A; doesn’t depend on ng. Then for
[ty — x| < € we obtain

() < A;.
On the other side, for x such that |z — Tne| < 3> and |z —t,,,| > € we easily
get
t' (62 + anl (ln— _W)2>
/ T < a 2a
(@) 73(a)
¢ <612+Zn21 (“n—;—ﬂ)2>
and also Ay = w%(;) 2 doesn’t depend on the choice of ng.

Then we have obtained
() < A = max(A, Az).
Now show that there exist B > 0 such that
7(z) > B Vz eR.
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Consider a generic ng € N. For |2z — Tng| < & we get
a 2a

t +
7'(x) _Sla) = T 2n>1 Gy
_ / 2

T (g + (@) — Za 21 + R(@) + S(a)?

no

/ 1 1
S(Oz)t ("5”05’52 2zt (Zn+6+2’2)2>
, 2 :
i (s + ) + (e

|tn0 —;B‘

>

Consider the function h(s) given by
i1 1
e (7 Zo Gty

h(s) = 2
(O s

It is easy to check that

%

(@)

nglir(l)h(s) i > 0,
and then A(s) > 0 in the closed interval —5> < s < =. Since h(s) is
continuous, there exists B > 0 such that in the same interval we have

h(s) > B.

Whereas h(s) doesn’t depend on ng, neither does B, and then we conclude
that
() > B VreR.

Finally, to see that A > 2 and that B < 2 it is sufficient to observe that
since

nt_s5<t,<nl465 Vnez
a a

we get
T(ﬂﬂ—5)§n§7<nﬂ+5> Vn € Z,
a a

and hence
n

Hm 7(nZ)

=1 (4.20)

Now, for 7'(z) > B > 2 Vz € R we would have

n n
lim - — lim nt
neT(ng) R (0) 4 [ 1(s)ds
< i n
im ——
~ n—+oo 7(0) 4+ Bng (4.21)
__a
"~ Br
<1,
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4.3. Properties of meromorphic inner functions

while for 7'(z) < A < 2 Vo € R we would have

. n . n
lim — = lim —
nerng) SR (0) 4 3 1 (s)ds
> i n
im —
~ n—+too 7(0) 4 An? (4.22)
_a
- Ar
> 1.
Hence we have shown that A > 2 and that B < 2. O]

Proposition 4.11. Let the couple ({t,}n,{t!,}n) be a bandlimit pair such
that t,, =t' VYn € Z for some constant t' > 0, and let

. '3 (tnlfz - t?fil) +a
v 2n (tnlfz - t?fil) +a

O(2)

be any of the associated meromorphic inner function according to Theorem
with phase function 7(x). If |t, — In| < Vn € Z for some § < 5- and
a > 0, then there exists D > 0 such that

|7"(z)] < D, VzeR.

Proof. Deriving the formula for 7/(z) given in Lemma we get

(a)?)

TH(LC) :%<Oé) 2on ﬁ ((Zn t (tnl—z — t?fil) + %(a))z Ly
(el o)

— 3(a) (Z” ﬁy (2 (Z” t (tnl—czz - t%fil) + R(« )) (4.23)

' <(Z” v (ks — ) + R(@) + S

2t/
™ Zn n—1)3
(tn—z) g )

=r'(c)

where
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Consider a generic ng € N, and |z — Zng| < Z. Set:
) a 2a

91(90):2?5’( S 1_:6),

tnngn - tnofn

n>1
gaa) =t (1 )
: n#0 (tagtn — )2 )
1
golx) = 3¢ () |
’ 7;) (tngtn — 2)?
Recalling (4.18]), we observe that
s 1
p@<2(64 )Y ———— =Gy
n>1 (gn —0— %)
1
g2(z)| <t 7 =1 G,
w0 (In— 0 — I)
1
|g3(2)| <t Z =: Gs,

2 (tn—5-x)

and we underline that the constants on the right side don’t depend on ny.
Now we set

(S0 5255 (9(2)? + S(0)?)

f(x) = " 2 - 29($),
(= 755)
so that by we have
() =7V 55

We observe that
. (2 + 2000 (25 + o) : w0 07
<(tn0t/x)2 + 92(x)>

_2< - —I—gl(x)+3‘%(a)>.

tny —

Multiplying the numerator and denominator of the fraction by (t,, — z)* we
get

2+ 2ps(z) ) (' + pa(2))” + pa() ,
f<x>=<(”° ) ) )—2( - +p1(x)>,

(t + pa(2))”
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4.3. Properties of meromorphic inner functions

where

Now we can write

f(z) - l,sl(l’) + s2(2),
where
oy 2 + )
1 (' + p2())? |
2p(w) ((# + (@)’ + pal)
82(1‘) - (t’ +p2(x))2 QPI(I)'

With a straightforward calculation we get

o [ =2'p2() + pa()* + 20'py () — p1()* + pa()
=2 0+ )2 )

Y

and then

t/

tny — @

<2

s1(z)

t/2

3
(%@£+G%£)+%&K%+%mﬂ>

. ((2’;)3 (Gt o))+ (5‘;)2%)2)
=:C1,

where we used the fact that go(z) > 0 Vo € R. It is fundamental to observe
that C'; doesn’t depend on ny. Moreover we have

o) <2020 ((t +(50) @ mE@D) + (;;)2%@2)

+2(Gr+ [R()))
= CQ

where we used again the fact that go(z) > 0 Vo € R. We get that also Cy
doesn’t depend on ngy. Then for [z — Zny| < 7= we have obtained

A2
17 (2)] < 22 (O + Cy) =: D.

~ S(a)
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Chapter 4. Sampling formulas for the Paley-Wiener spaces

Since D doesn’t depend on ng, and considering that the union of all the
intervals |z — Tno| < - as ng varies in Z is the whole real line, we finally
get

|7"(x)| < D, VzeR.

Lemma 4.12. Consider a meromorphic inner function ©(z) given by
1 tn —

_ 2n t;l (tn—z B t%—i—l) +a
1 n ’

Yonty (tn—z - t?f—i—l) o

where ({t,},{t,}) is a bandlimit pair and (o)) > 0. Let b be the logarithmic
residue of ©(z). Then

(4.24)

O(z)

(4.25)

b= —limsupy 'log

Yy—r+0o0

>t ! ) ia
— "\t,—iy t2+1 '
Proof. For y > 0 we observe that

2

o ' 1 _ Y Y e
S (Ztn (tn—z'y — t,%—l—l) —i—oz) = zn: (t%—i-yz) + () > S(a).

n

Since () > 0, we get
tn

>t L +a
"\t,—1y 241

n

> 0.

and hence

=0.

so(l ),
"\t,—iy 2+1

n

limsupy ' log

Yy—+00

Thanks to (2.12]) we obtain

b= —limsupy ' log |O(iy)|

Yy—+00

= — limsupy ™' log Zntn (tnizy — t?fil) +a|
ymtoo 2ty (tniiy - tzfil) +a

= —limsupy 'log | ¢ < ! — — b )—f—a
Y—st00 — " \t,—iy t2+1

— limsupy 'log | _ ¢ < S ) +a

Y——+o00 —~ " \t,—iy t2+1

= —limsupy 'log|> ¢/ < S >+a ,
Y—>+o00 —~ " \t,—1y t2+1

as we wanted to show. O
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4.3. Properties of meromorphic inner functions

Proposition 4.13. Consider a meromorphic inner function ©(z) given by

Xt (naz t2+1)+0‘
2t (t - t2+1> +a

where ({t,.},{t,}) is a bandlimit pair and I(a) > 0. Let b be the logarithmic
residue of ©(z). If

O(z) = (4.26)

1m1%((““” =c>0, (4.27)

y—rtoo Zn (tnt_;;'y)z
then b > 2¢ > 0.

Proof. Consider the representation of ©(z) given in (4.7). A simple calcula-
tion gives

oy 2i3(0) En e

—1 = —1

o) (St ity —dh) to) (St (s — dh) +a)

we obtain
o' (i S
lim (—z(zy)> = lim [ —¢ (tn —ty)®
o)) =\ () v
S s
_ mn( gl )
ymree Z (tn_zy)Q

where in the last step we used L’Hopital’s rule. Hence we get

TN (L (/)R Y D SN e
y—+oo O(iy) y—+o0 P —

n (tn_iy)2

— 9 lim g(w

tl
—r . S
Yy—>+00 Zn o 7niy)2

> 2¢
>0
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Chapter 4. Sampling formulas for the Paley-Wiener spaces

Then for every € > 0 we set b, = 2c¢ — €, and there exists M, > 0 such that

—R (z %/((Z))) > b, Yy > M,. Thanks to this we obtain

by = M) = [ beds < [ (Z (2)((;5)) ) ds =N (/Aj Zg((zlj)) ds)

= —R (log(O(iy)) — log(O(iM,))) = —R (log (@@(S\Z))»
O(iy)

O(iM,)
< —log|O(iy)],

_ —1og| — log[6(iy)] + log (M,

where in the last step we observed that log |©(iM,)| < 0 since |O(iM,)| < 1.
Then we get
—y log |O(iy)| + vy Mcbe > b,.

Recalling (2.12)), we have that b is given by

b = lim sup (—yil log ’@(ZQ)D

Y—r—+00

= lim sup (—y’l log |O(iy)| + yilMebe)

Yy—r—+00

> b,

> 0.
Hence we get b > 2c — € for every € > 0, and we can conclude that

b>2c>0.

4.4 Sampling formulas in terms of the sampling points

In this section we introduce many new sampling formulas for non uniform
sampling. In Theorems [4.14] we derive the expression of the sampling for-
mula of Theorem in terms of the sampling points, as we had set out
in Section [£.2] Moreover we introduce also new sampling formulas directly
expressed in terms of the sampling points (T heorems |4.17] |4.18 and |4.19)).
These sampling formulas result to have less strong constraints than Paley-
Wiener-Levinson theorem for a finite, but big as desired, subsequence of the
sampling sequence.

Theorem 4.14. Let {t,}, C R and {t,}, C (0,00) be two sequences with
the following properties:

1. {t,}n is a strictly increasing sequence with no finite accumulation point;
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4.4. Sampling formulas in terms of the sampling points

t,>0VneZ;
ty .
Zn 1442 < 00;

5, b, = +00;

b:= —limsup, .,y 'log ‘Zn t (tniiy t2+1> + oz‘ >0,
where

1 tn
a=—limy 16>, 1 (tn+zy t%+1)'

Then for everya € R s.t. 0 <a < g and for every G € PW, we have

G(z) =
) Zn: (t, — 2) (Zm t, (tml_z — t%i7il> +a)

The series converges in norm of PW,.

t;eia(tnfz)

G(tn).

Proof. First of all we observe that a necessary condition for property (5) is

that
t
2 / _ n = —
yggloo t( — 1y t%+1>+a 0

and that « actually Verlﬁes this condition.
Thanks to properties (1)-(4) we have that ({t,},{t,,}) is a bandlimit
pair, and thanks to Theorem [4.6) we get that the function

2nt (t—z t2+1)+0‘
2t (t—z t2+1)+a

is a meromorphic inner function such that {t,}, is the sequence of solutions
of ©(t) =1 for t € R. By Lemma we have that the logarithmic residue
of ©(2) is equal to b. Again thanks to Theorem [£.6] we have

O(z) = (4.28)

2i ()
O'(t,) = T
and by a simple calculation we get
21 ()

1-0(z) = St (tn1z t2+1) +a

Fix any a« € Rst. 0 < a < % (we can do this since b > 0). Hence by
Theorem [4.2] for every G € PW, we finally obtain

(1 0(z)et)
G(z) = Z (t, — 2)0(t,) G(tn)

n

B Z t/ ta(tn—=z)
n —z) (Z (t B +1> +O‘>

o1

G(tn).
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By the same theorem we obtain also that the series converges in norm of
PW,. O

Thanks to Theorem [4.14] given a Paley-Wiener function and a suitable
bandlimit pair ({¢,,},{t,,}) (where the points of the sequence {t,},, are gen-
erally not equidistant), it is possible to rebuild exactly and uniquely the
function from its values on the points on the sequence {t¢,},, and the sam-
pling formula is expressed only in terms of these values and the bandlimit
pair.

Example 4.15.

We consider the bandlimit pair

{tn}n = {n}
{t! }, = {tanh(7)}.

Properties (1), (2), (4) of Theorem are easily verified. For property (3)
we have

t 1
zn: n —l—nt% = tanh(m) > T 7 tanh(7) coth(m) = 7.

n

For property (5) we have

1
@ = —tanh(m) lim > <n i n;:— 1)

Yy——+00 o
= —im tanh(7) yggloo coth(my)

= —im tanh(7),

and then &(a) > 0. Moreover for y > 0 we obtain

1 t 1 n
t! - a| = |tanh — —i
;"(tn—iy t%+1>+a anh(r) (zn:(n—iy n2+1> z7r>

= tanh() |im coth(my) — in|
_ 2mtanh(m)
ey —

Consequently there exists A > 0 such that for y big enough we get

>t L )y
"\t,—1y 2+1

n

< Ae™?m,

Hence also property (5) of Theorem is verified, with ¢ = 27, and then

the theorem can be applied. We set @ = § = 7, and hence for any G € PW;
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4.4. Sampling formulas in terms of the sampling points

we obtain
tlneia(tnfz)
tn = 2) (E" ta (tnlfz B t%til) + O‘)
tanh(m)e™("=2)

n—z) (tanh(w) >on ( L ) +im tanh(w))

G(Z) G(tn)

o

G(n)

T

- Eni (n—2) (—ez(gtz()wz) a0
s,
_ Zn: (1- e;:z‘;;—j));)m(n—z) )

that is the classical sampling formula for the Paley-Wiener space PW,..

The result of Theorem is mainly based on Theorem But in
Chapter [3] we proved also other inclusion properties. Theorems [4.17]
and introduce different sampling formulas derived mainly from the in-
clusion property in Theorem [3.3] Before introducing these 3 theorems we
need to recall the well-known Phragmen-Lindelof theorem (see [51], p. 80).

Theorem 4.16 (Phragmen-Lindelof). Let F(z) be continuous on a closed
sector of opening 7/u and analytic in the open sector. Suppose that on the
bounding rays of the sector,

[F ()| < M,
and that for some v < u,
[F(z) < e
whenever z lies inside the sector and |z| = r is sufficiently large. Then

|F(2)| < M throughout the sector.

Theorem 4.17. Let a > 0 and let K = {ny}r—o,. x be a finite set of con-
secutive integers of any size. Let {t,}, be a strictly increasing sequence such
that t, = Tn Vn € Z\ K, and that

g(no —1) <tpy < .. <ty < g(nK +1).

Then YG € PW, the following sampling formula holds:

G(z) =Y (H ;::;;%) G(ta),

n m#n

and the convergence of the series is uniform on the compact subsets of C.
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Proof. We prove the theorem supposing that t; = 0. The proof for the case
to # 0 can easily derived from this one.

It is immediate to see that the couple ({¢,},{t, =1}) is a bandlimit
pair, since it verifies all the conditions required in Definition [1.5 Let

E(z) = e (so that PW, = B(F)) and

Ei(z) = (; (tnl—z t2t+1) +a> =[] < T ) ﬁ, (4.29)

n#0

t
where a = n_
ZnEK (t%—‘,—l

-1 (ZT;— z> ST sin(az)’ (430)

and t,, # 7n only for a finite number of n € Z. Proceeding as in the proof
of Theorem [4.8] we easily obtain that E(z) is a Hermite Biehler function.
We easily observet that

1 In oI

We want to show that E(z) and E;(z) satisfy the conditions of Theorem
, which means that ‘M‘ < M for all x € R and for some M > 0, that

El((zz) is of bounded type on C* and that
i 1, | Ely) ‘
lim su HNo : <0.
y—>+oopy & E;(1y)

We start by proving that ‘%‘ < M for all z € R and for some M > 0.
We can write

n#0 m#0,n o ( +1 m=#£0

a
t — 2 z —Zz z
. ) i tdaz [ ( )e "
Im Im
a m##0 a

First suppose that ¢,, # Zng for some ng # 0, and that ¢, = Zn for n # ny.
Then

t — = s t — =
Ei(z) =) zi 11 ( T Z>€“"‘—W3HZH< T Z)‘fam
tm

Els

—H(

m#0

T

Ei(z) =— I Gf_ﬁe%+?“ﬁ5m,

a't0 m#0,ng Em

o4
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S(x) =~ —p—=[] (“m_z>efm

(gno) +1 m#0

us — z s — z
Ol e e el 1 e s

Then, for x € R, since trivially

lim —
z—+oo Ipng — 1
a
we get
i £

. 1 gn ) gm—x =
:xl—l>rinoo (;(wn_x_(;rn)2+1>+w>xn< T )e“

a

: : I
= lim —a(—1 + cot (ax))g sin (ax)

—iax

= lim |—e
r—+0oo

=1.

Considering that Fj(x) is a continuous function with no zeros on the real
line, we can conclude that it has a lower bound M > 0 such that F;(x) > M
Vr € R.

Now, suppose ng, # 0Vk =0, ..., K. We iterate on k = 0, ..., K, beginning
from k& = 0. We start considering the sequence {t,}, = {n}, and for every
iteration we replace ny with ¢,,. Let {tx,}, be the sequence obtained after
having replaced ny with ¢,,, and define

Bue) = | 2| s = i | | A T () e,

7\ ten — 2 (gn)Q +1 A0 n

so that Ey g(z) = Ei(z). The first iteration is clearly given by the case
described above, with t;,, = no and ¢y, = n for n # ny. For k > 1 we get

T m i t ng
El,k(z):; H (’M>eam+’wz5k(z)7

us jus —
ank m#0,ng am ank <

55



Chapter 4. Sampling formulas for the Paley-Wiener spaces

where

En t*?’n_ TFZ
Si(z) = — —5—= I ( 3 )m

(gnk) +1 m=#0

Y 12T <W>efm_z

n#EN n m#0,n

- 1] (tk 17:;1—Z> eT7 4 iaz 11 <t 17;m—2>egzm.

m#0

Therefore, proceeding as above, for z € R we trivially get

lim =% —— =1,
z—+o00o Enk—x
a

and hence, observing that tx_1,, = Zn, we obtain

[ Ee(@)]
. 1 n k— lm_gj z
= lim || ) — L +ia |z ] < )egm
r—too oy tk—l,n — X (gn) + 1 m£0 m
= lim [Eyp1(2)]
=1.

Then in particular we get lim, 1o |E1(2)] = lim, 100 |1,k (2)] = 1. Con-
sidering that Ej(z) is a continuous function with no zeros on the real line,

similarly to above we can conclude that Ej(x) has a lower bound M > 0
such that

|Ey(z)] > M VreR.
Therefore we finally obtain that

’ E(z)
By (x)

<M VzeR. (4.31)

Now we want to show that E((Z ] is of bounded type on the upper half

plane. We recall (| and we write
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where

1 n
a

) = ; tn—z_(zn)2+1 e

We observe that sin(az)e'®* is obsiously bounded on C*. We have

. t, —x + 1y n )
N - "
(ZL"i_Zy) zn: (tn_x)2+y2 (En)2+1 +a |,

and hence we observe that (N (z +iy)) > a > 0 for all y > 0. Then we get
that |[N(z)| > a for all z € C*. Now we write

E(z) a 1 ™ —z
Ei(z)  sin(az)e™N(z) jcp \tan —2 )
A N
Since ﬁ and sin(az)e’* are bounded on C*, we get that "0 is of
bounded type on C*. The product [],cx (%:__ZZ) is of bounded type since

all the polynomials and their reciprocals are of bounded type on C*, as we
pointed out in section . Then we conclude that Z:& is of bounded type

E(z)
on CT since the product of two functions of bounded type is obviously of
bounded type.

It remains to show that ()

1
E(z)

is of non-positive mean type. We have that

limsupy ™' log | E; (iy)|

y—+0o0

4.32
= limsupy ' (log |s(y) + ia| + log |sin(iay)| + f(y)) (4.32)
y—+00
where
1 In
S(y) = Z - ¢ )
T\l () 41
t, — iy Ty
f(y)zZlog - —lo - ‘
nek a a
It is easy to check that
limsupy ™' log | sin(iay)| = a,
ymree (4.33)

limsupy ' f(y) = 0.

Yy—>+o0
Define ¢ as the maximum distance between two successive elements of {t, },:

o= rqr;gg(tml —tn).
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We observe that 4 is for sure finite since by definition ¢,11 — ¢, # Z only for
a finite number of n € Z. Then for y > 0 we have

) tn 41 In .
log |s(y) + ia| = log | ; y_ e +ia

tn +1y a .
> log | (zn: (t%—i—y? — (EH)Q + 1) +za)

> log a—l—yz L )

w (Zn+ 5)2 + 12
= log (a - % (cot(a(d — iy)) — cot(a(d + zy)))) :
Since

lim a — Z; (cot(a(d —iy)) — cot(a(d + iy))) = 2a,

Yy—00

we get

1 s
limsupy ' log Z ( all ) +1ia

y—+oo w \th— 1y N (gn)2 +1
ia (4.34)
> limsup y ' log (a — — (cot(a(d —iy)) — cot(a(d + zy))))
Yy——+00 2
=0.
From (4.32)), (4.33)), (4.34) we obtain
limsupy ™' log | E; (iy)| > a.
y——+oo
Then we can conclude that
. - E(iy) ’ . - e ‘
lim su o = | = lim su o -
i VN ] e S VA
= limsupy ! (ay — log |E (i
= a — limsup (y‘l log |E1(zy)|)
Yy—r—+00
<0.

We have shown that the conditions of Theorem [3.3| are satisfied for E(z)
and Fi(z). Then for every G € PW, we get
E(2)(1 - ©1(2))
G(z) = tn )
= Bei 9
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where

# Zn 1 2tn ra
@1(2) _ El (Z) — (tn—Z tn+1> 7 (436)
Ei(z) %, (tnl_z — tgtL) +

and the convergence of the series is uniform on the compact subsets of C.
Thanks to Theorem [£.6 we have

O} (t,) = 2iS(«a) = 2ia,

and by (4.29)), for n # 0 we have

z

Bit) =1, ef 0 (tm—tn>€§2n7
1 ()

and for n = 0 we have

_ b
A= 11 ((w)) |

Moreover, thanks to (4.36) and (4.29), by a simple calculation we get

Bi(2)(1 - 04(2)) = 2iaz [[ (tm - "‘) T

™
m#0 Em

Hence we finally obtain

. B()1-0,(2)
G = L B et — 2
t

tm Z-tn z tm — 2 ZZn
=(H t W)ﬂ®+zt(llt_¢em)awy
m7#0 m m n

n#0 " \m#0,n

=2 (H t:__ti;gz) G(tn).

Theorem 4.18. Fiza > 0, and let {t, },, be a sequence such that ‘gn — tn‘ <

6 Vn € Z for some § < 5. Let A > 0 be the constant defined in Proposition
with respect to the bandlimit pair ({t,}n, {t,}n) with t, = 1 Vn € Z.
Suppose that there exists a constants K > 0 such that

x(z) I] (1 - tx) e | > K,
n#0 " (4.37)
1 1
for t,, + oA <z <tpy41— SR Vng € 7,
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where x(z) = = if to = 0 and x(x)
G € PW, we get

(1—2) ifto #0

G(z) =

ty, — 2 Zzin
S (I {250
n m#£n -

_tn

and the convergence of the series is uniform on the compact subsets of C

Proof. We prove the theorem supposing that t; = 0. The proof for the case
to # 0 can easily derived from this one
N = e

Let E(z) = e***. Consider the couple ({t,}n, {t,}n) witht/, =1Vn € Z
it is easy to see that it is a bandlimit pair since it verifies all the conditions re-
quired in Section[1.2] Let ©(z) be a meromorphic inner function associated
to this bandlimit pair accoding to Theorem [4.6, given by

1 tn _
on(s) - 2l — ith) 47
1 — )
Zn( lz_t?ler )+Oé
where o = 3,4 ( t%fil - L
the function

(4.38)

) + ta. Thanks to Theorem E we know that

tn
<Z (t —z ti+1> +O‘>
is a de Branges function of ©(z). We define

E1 (Z)

(4.39)

zZ _ 2
Z) H egn tn

n0
:(Z<t1—z t2+1>+z< :

+1a
n#0 +1 t") )
() e e ™
n#0 n n#0
1
= (_ + Z (

—— ) +ia]z]] < )
n#0 < tn > ) n#0 tn
60
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z

zZ
The product [, .oea" " converges since

z|§n—tn|

= |I (& %‘"tﬂl

n#0

Z _Z
Il e%n tn

n#0

azlog(16)
= e ™ ,

1
n—s

where we used the fact that 3,5, ﬁ = log(16). It is easy to see that

also F4(z) is a de Branges function of ©(z), since

z z

B _ B Mhpoe? * B g
El(z) El(Z) Hn;ﬁO ey_% E1(2>

We want to show that E(z) and E,(z) satisfy the conditions of Theorem
which means that ‘ 51 (é)) < M for all x € R and for some M > 0, that

E,El ((ZZ)) is of bounded type on C* and that
: - E(iy)
lim su o - < 0.
y%+oopy & E(1y)

We start by proving that 51 (é)) < M for all x € R and for some M > 0.
We recall that the phase function of ©(z) is the unique function 7(x) such
that Vx € R we get

@1(J7> _ 627ri’r(x).
Setting f(z) = —1 4+ X, (tn%x - i), we get

Q2mir(z) _ f(z) —ia

f(x) +ia’

and hence .
W) + 2min(z),

where n(x) is an integer that depends on z. Using the well-known identity

omir(z) = log (

1 T —1
arccot(z) = 3 log (x n )
i
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we obtain . fo) — i
x) —ia
— o [ T
o) = gl ( f() +m> +nlo)
1 f@)
= % IOg % + n(x)
= —— arccot <M> + n(z)
7r a
Then, recalling that cot(—z) = —cot(z) and that cot(x) = cot(x + nm)
Vn € Z, we get
cot(nr(zx)) = _f(:p),
a

which means

f(z) = —acot(nr(x)).
() = (25 e,

and we observe that, for x # ¢, Vn € Z, g,(x) is differentiable and we have

gnlz) _ 1 1

Now for n # 0 we set

gu(x)  tn th—x

Then, defining g(x) = 21,20 gn(7), We get

"(z 1 1
g( ):74_27_
T nﬂ)t

g(x) t, — 1’

and hence ()
gL _ _ xr) = acot(nr(x)). )
o(0) f(z) t(r7(x)) (4.40)

Now, fix ng > 0, and consider x such that ¢,,, < v < t,,+1. We recall that the
spectral function ¢(r) of ©(z) is given by the inverse of the phase function
(t(r) = 771(r)), and we observe that t(n) = ¢, Vn € Z. We analyze the case

t (no+3) <& < togs1. Solving ([EA0) we get

g<x> _ Cnoeft<"0+%) acot(m‘(s))ds’

where the real constant ¢, is given by

wofo(ns )

We recall that by Proposition we have B < 7'(z) < A Vx € R for
some A > 0,B > 0, and that by Proposition we have |7"(z)| < D,
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Vx € R, for some D > 0. We recall also the well-known formula of the
second derivative of the inverse function:

oy, nipy = 4" 9(@)
o) = o) = (a) =~
Then for the function t(r) = 77(r) we get
wei - | T @@ | D
1t"(r)| = )’ < E : M.

Now, by Lemma [£.9 we have t/(n) = It = T ¥n € Z, then we observe that

t'(r) > 0 Vr € Z since t(r) is strictly increasing, and hence for ¢(ny + 3) <
r < tp,+1 We get

+1

t'(r)=t(ng+1)— /no

r

t"(s)ds < g + My(ng+1—r).

Recalling that cot(7r) < 0 for ng + % <r < ng+ 1, we obtain
’ acot(mwr(s))ds
9(2)] = leng e C0)
fT(x)l acot(mr)t' (r)dr (441>

n0+§

f:{jlg a Cot’,(ﬂ'r)(§+M0(no+1fT‘))d1“‘

- |Cno|6
> |Cno|e

Now we set
h(r) = (1+ £ Ma(no + 1 = 7)) log(sin(r(r — o))

+ aMo /T log(sin(7(s — ng)))ds,

s n0+%

and we observe that

cih(r) =a cot(m(r — ng)) (Z + Mo(no +1 - T>>

GMO

log(sin(m(r — ng)))
+ &WM) log(sin(7(r — ng)))

=q cot(mr) <Z + My(no+ 1 — 7“)) ;

where in the last step we used the fact that cot(xz + nw) = cot(z) Vn € Z.
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Hence we can write

(z)
/ a cot(mr) <7T + My(no +1 — r)) dr
a

no—i—%
= Kl + %M{)(TLQ +1— 7‘)) log(sin(m(r —ny)))
(z)
M, r
+2 0/ log(sin(m(s —no)))ds]
& n0+% no-l—%

_ (1 + %Mo(no +1- T(w))) log(sin(r(7(x) — no)))

M, rr(x)
4 20 / log(sin(7(s — ng)))ds.
T no-i—%
Now we set
a .
I (r) = (WMO(nO i1 m) log(sin(w(r — ng)))
M r
4 2% / log(sin( (s — 10)))ds,
T Jno+3
so that
/ a cot(mr) <W+M0(n0+1 —7“)) dr
no % a
= log(sin(m(7(x) — ng))) + h1(7(x)),
and then

| ( )l > |C |€ n;+)% acot(rrr)( +M0(”0+1*r))dr

= |, | sin(m(7(z) — ng))e

Now for ¢ (no + %) <z < tp,41 we have

ha(r(2))

|Ey(2)] =|(f(x) +im)g |H€ n
n#0

>|epo | | —a cot(m(7(2)) + dal sin(m(7(x) — no))
M) T e¥n
n#0
=|cn,| |—acot(m(7(x) —ng)) + ial sin(m(7(x) — ng))
M) T e¥n o
n#0

=|cnolae™ =D T eTn
n#0

Obviously we have hy(ng + 3) = 0, and moreover
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M no+1
hi(ng + 1) _ 4 / ’ log(sin(7(s — ng)))ds
T Jno+3
M. 1
:u/ log(sin(7s))ds
m )y
__ @Molog(2)
— o .
Since
dh 1
C}y) = acot(nr) (My(ng+1—7)) <0, ng+ g Sr<motl,
we have that
My log(2 1
—aozog()S}h(r)SQ n0+§§7”<n0+1,
T

which means

My log(2 1
_‘“’20‘5() < hy(r(z)) <0, t(no + 2) <@ <tpgta-
N

Hence for ¢ (no + %) <z < tpy+1 we get

T

|E1($)| > |cn0|aeh1(r(x)) H .
n#0
> Jengla2 5 T[ eFr .
n#0

_z
tn

Now, by definition of ¢,, we have

=t + D)
~t(w3) 11 (t” "fi”“”) A
n#£0 n

n#0

|
=
@
o)<}
@
—+

Using Proposition and recalling that t/(r) = %

1 1
t (no + 2> >ty + /2 t'(r)dr
0
1

Ztno—i_ﬂa
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and )

1
t (no + 2) S f}n0+1 — /2 t/<7")d7”
0

< tlngt1 — A

1 1 1
tng + 57 <1 5 S tnott — 5
oA s ("0+2)— T 24
and by (4.37)) there exists K such that

tn —t(no+3)) ‘Lo
t(no—l-;)n( gno 2>)e an

Then we have

=
N—"

|Cno| =
n#0 n#0
(s _s{ont)
> K H e in 3
n#0
From this we obtain
e . t<n0+§)_t(n0+%) e
|Cn0|H€% n > K He in Tn Hegn tn
n#0 n#0 n#0

> K H ezB(g\nTi(s)gm
n#0

—KHe -

n>1

Q\:i

1 1
— KeE ZnZl gn(%n—é)

=: My > 0,
where we used the fact that

e s) ==Ly

since t'(s) = #(8)) < + thanks to Proposition 4.10] and that 37,5, T g 3
obviously converges. It is important to underline that M is mdependent on
no.

Now consider the case t,, < x <t (ng + %) Similarly to above we have

no+1 t’ Js < 1
< [, Wl < 5

1
+3

9(z) = cnoeﬁ("“%) reotlrr(ends
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Recalling that cot(7r) > 0 for ng < r < ng + %, we obtain

90)] = e o) oD
= |Cn,

B |C ‘e 7:0(?% a cot(mr)t' (r)dr
= |Cn, .

nO+L
- |C”0|€_ ff(z) : aCOt(WT)t’(r)dr.

We observe that

£(r) = #'(no) + / '

no

t"(s)ds < Ty Mo(r — ng),
a
and hence we get

n, +l .
|g(x)| > \cn0|ef ff(i) 2 acot(ﬂr)(z+M0(T,nO))dT'

From this inequality, proceeding similarly to the case ¢ (no + %) <x <tpgt1
after equation , we obtain that there exists M3, independent on ny,
such that

|Ey(x)| > My > 0.

Then, for t,, < © < t,,+1, we finally have
|Ey(x)| > min(M;, My) =: M3 > 0, (4.43)

where M3 doesn’t depend on ny.

For the case ny < 0 we consider the function the function g(x) on the
interval ¢,,_; < = < t,, and, proceeding in a completely analogous way
to the case ng > 0, we get the same result of . Then we set My =
inf{|E(x)],t_1 <z < t1}, and we observe that M, > 0 since F;(z) doesn’t
have zeros on the real line. Finally we set M = min{Mj, M4} > 0, and
recalling that FEj(z) is continuous everywhere, and hence in particular on
z =t, VYn € Z, we can conclude that

|Ey(x)] > M VxeR. (4.44)
Therefore we finally obtain that
E(x)
<M VzeR 4.45
22 (4.49
E(z)

Now we want to show that is of bounded type on the upper half

plane. We write

g((i)) = ((Zn: (tn 1_ z tgti 1> * m) : (go (tnt: z) e) emz) _1

= (N(z)P(z)efmz)i1 ,

Ei(z2)
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where

We can write N(z) as

. t, —x+ 1y tn
Nz +iy) = <Z<(tn—x)2—l—y t2+1> Ha)

n

and hence we observe that (N (z +iy)) > a > 0 for all y > 0. Then we get
that |[N(z)| > a for all z € C*.

Now we want to apply the Phragmen-Lindelof theorem (i.e., Theorem
(4.16)) to the function P(z) on the closed sector Q; = {z = x + iy : © >
0,y > 0}. For x € R we have

Moreover, for y > 0 we get

Wy
t_n

1_7

tn
— 2ayy H

1
2\ 2
n>1 t t

1
2\ 2
(142
2
_ Y
LA T

n>1

|Piy)] = ey [

n>1

1+ =
1+

e~ 2%y cosh(ay).

The function e=2%y cosh(ay) is obviously bounded for y > 0, and then there
exists P» > 0 so that |P(z)| < P, for y > 0. Given a sequence of complex

numbers {z,}, all different from zero, the greatest lower bound of positive
numbers 7 for which the series

2.

n ’an

is convergent is called the ezponent of convergence of the sequence {z,},
(see definition in [51] p. 66). For all v > 1 the zeros of P(z) satisfy
1 1
- <

—
™ s
n#0 n#0 gn‘ - %)

68
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while for v = 1 we have

1
<ZIT

2a n;éO

DR

n#0

and the sum on the right side dlverges since the sum on the left side obviously
diverges. Then the exponent of convergence of the zeros of P(z) is A = 1,
and thanks to Theorem 6 in [51] (p. 69) we get that the canonical product

11 (tnt; Z) &

n#0
has order p = 1. From this we easily obtain that also P(z) has order p = 1.
Therefore |P(r)| < e for every € > 0. In particular we can take e = %, SO

that [P(|2])] < €12

Finally we are in the conditions to apply T'heorem to the function
P(z) on the sector €2;. Indeed we have shown that |P(z)| < P, for z € R
and |P(iy)| < P, for y > 0. Since the bounding rays of the sector €2; are
the semiaxis {y = 0,2 > 0} and {z = 0,y > 0}, setting Py = max(P, P»),
we get |P(2)| < Py on the bounding rays of €2;. Moreover the opening of )

3
is Z and |P(2)] < €l** for all z € C, hence v = 2 and p = 2 according to

the definition of v and y in the statement of Theorem (4.16]), and we have
v < pas required. Then all the conditions of the theorem are satisfied for the
sector €y, and we get |P(z)| < By for z € Q4. Similarly we get |P(2)| < Py
for z€ Qy:={z=x+iy: 2z <0,y > 0}, and therefore |P(z)| < P, for all

z € C*. We can conclude that El((z)) is of bounded type on C*, since

iaz 1
E(z) _¢7vm

Ei(z)  P(z)
and P(z) are all bounded on C*.

%((ZZ)) is of non-positive mean type. We have that

iaz
where e'*, N(

limsupy " log | B (iy)]|

Y—r—+00
(4.46)
=limsupy ' [log|s1(y) + | +log |y| + s2(y) + Z ,
y—+o0 n#0 a

where

n#0 t
1 t
azZ(— >+m
20 tn t%—i—l
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We observe that

:Zlogt

n#0

V
DO |
—
e}
0Q
/N
—_
+
—~
Bl
Q
3
T
N
S~—
S~—
Do
~_—

72 cosh(ay)
72+ 4ay?
Since
72 cosh(ay)

lim su —— —q
y—>+oop Y w2 + 4a?y?

Y

we get

limsupy 'ss(y) > a. (4.47)

Y—r+00

Moreover for y > 0 we have
Z tn +1y t, fa
A\t +tyr i+l
tn + 1y t, n
— a
2 + y2 241
a+ Z 2 4 >

1
> log a+yz +6) oy
n n Y

= log <a (cot(a(d —iy)) — cot(a(d + zy)))) :

log |s1(y) + a| = log

> log |

= log

/N

Since

lim a — i; (cot(a(d —iy)) — cot(a(d + iy))) = 2a,

Yy—00

70



4.4. Sampling formulas in terms of the sampling points

we get

limsupy ' log|si(y) + af

Y—r+00

> limsupy ' log <a - z'; (cot(a(d — 1y)) — cot(a(d + Zg)))) (4.48)

Yy—r+0o0

= 0.

Obviously we have
limsupy ' log |y| = 0,

Y——+00
4.49
> 2o 49
n#0 En
From (4.46), (4.47), (4.48), (4.49) we obtain
limsupy ™' log | E; (iy)| > a.
Yy—r—+00
Then we can conclude that
. _ E(iy) | : _ e ‘
lim su o . = lim su o -
e B By | AR R Ey)
= limsupy ! (ay — log | F(i
fm sup y (ay — log | Ex(iy)]) (4.50)
= a — limsup (y‘l log |E1(zy)|)
Yy—r—+00
<0.

We have shown that the conditions of T'heorem [3.3| are satisfied for F(z)
and Fi(z). Then for every G € PW, we get
Ei(2)( = 61(2))
G(z) = tn),
=2 B, - - "

and the convergence of the series is uniform on the compact subsets of C.
Thanks to (4.38) and Theorem [4.6| we have

O'(t,) = 2ia,
and by (4.39)), for n # 0 we have

z

ean b —tn ) 42
El(tn):tn(ﬂn) 11 ( - )ea ;

and for n = 0 we have
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Ei(2)(1 = 04(z

= 2102 I | g
! ( *m )
Hence we ﬁnaﬂy Oblain

Moreover, thanks to (4.38) and by a simple calculation we get

m#£0 \ a
Gy — 5 B -6u)

(L)L) (1 — o) )

25

:(Hmz‘) 0y Z (Ht—zz—m
#0 m n;éO m#0,n
Z( . ;i?)a(tn).

a\:!

m

e
tr — tn

Theorem 4.19. Fiza > 0, and let {t,}, be a sequence such that ‘ n—t, ‘ <
if In| < M for some 6 < 5 and some integer M > 0, and ‘

if |In| > M, for some 61 such that 0 < 6,

we get

mn—t| <
ZMG. Then for every G € PW,
tm, — 2
Gz)=> | 11

— z—tn
eam | G(tn),
n m#n tm - tn ) "

and the convergence of the series is uniform on the compact subsets of C

= M6

TN T
a

Proof. We prove the theorem supposing that ty = 0, and the proof for the
case tg # 0 can easily obtained from this one.

First of all we observe that for |n| > M we have ‘ n—t ‘
= ¢§. Then, considering the result of Theorem

4.18| i
show that for all € > 0 there exists a constants K, > 0 such that
T H (1 — x)

o <
Tnl =
it is sufficient to

|l > K., for
n#0 t”
We define

tno + € S x < tno+1

—$£<1—> gi

ln
First we consider ny > M and x such that 0 < t,, +€ <z < t,,41
some fixed e. We observe that

£-9-

S

_67

Vng € Z.

€, for
?>0 forz >0
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For n > ng+ 1 we have

=< "0“ < 1 and then 1 — = > 0, while for n <0
we easily get 1 — = = > 0. Then we obtain

forn < —-M,n>ng+1

for —M<n<0

On the other hand for 0 < n < ng we get £ > ‘o > 1, hence 1 — £ < 0
and we obtain

n

x -
(1_ )ean
_i_il
( n—l—é)ea

23|,

for M <n < ng,

for 0 < n < M.

T o
al) :—M1;[n<0 (1 - Al = 5) ea
fa(z) = H <1_ p ‘ >€fﬂ

o<n<M

xz X
@) =12 (1= _r
) =(1=37) (1527 IR
11 1—% et
n>no+1 n—

fro(@) =2 fi(2) f2(2) f5

=
IN
3
AN
3
o
—
—_
|
&
~_
)
B

x)fllno( )

and then we have

[f (@) = [ fag ()]

for t,, + e <z <ty 41

Vno > M.  (4.51)
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Moreover we define

x .
gl(l') H (1 — T, _ 5 ) ea"r7
n< M "t T
x £
92(1') H 1 - T 01 ea",
—M<n<0 T Ty
T z
x) = 1-— ear,
() 0<1n—£M< ot =
T z
x 1-— ea",
94( ) n1>_[M ( gn + 7éln)
9(@) = 2g1(2)g2(2) g3 (x) ga(2)

n<0

(1”:6
at T

Now, for t,, + € < x < t,,4+1 — € we have

fuo (@) i) fa() f3(2) fane ()

g(x) 91(7)ga(2)g3(w)ga(z)
and we observe that
hilx) _
91(x)
fa() [1-rr<n<o (1 - ;r;f_(s) ean
g2 . =
2( ) H—M<n<0 (1— T 51 >ea
™ Tl
fg(:L‘) HO<n<M <1 - ;’5-1—6) cer
93(x . =
( ) HO<?’L<M (1_Tr'n,+ 51 >€a
a T T
Famo (2) (1 N i) <1 - tn:+1> Mnng+1 (1 gnfin> eer
g4(.f13') x

s
a

(1 o Zno) (1 - ;r(ni'i‘l)> 1_[n>n0+1 (1 -

Since the products in 2&

g2(z)

and

f3(x)
g3()

are finite and all the factors in these

products are continuous and different from 0 in the compact sets t,, + € <
x < tpo41—€for ng > M, we get that there exist two constants Go ., Gg > 0
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such that
fQ(x) = 2,€9 M 2 G?),ea for tno + € S x S tn0+1 — €,
92() g3(x)

\V/no > M.
For t,, + € <z <t,,41 —€ and n > ng + 1 we observe that

T = €T Sz
1———— et >0, [1-—"5]e* >0,
a %n Zn

ant =
and that

d x z et _1%+
— l——-|ean | =— £
dx §n+%

Hence, recalling that

thy > i tuost < —(no+1) + ——

no — —No — Y T = n T/ 1\
=g Tng oH =g (no+1)
we get

%
(ng+1)

n

Q

T(ng+ 1) 4zl — ) Eowtii
> ]I (1— GAGLRE) R 7

a
and

xz
+
T 01
ng T +e a"0” T e
a0 Iy,
H - s 01 e ¢ .
n>ng+1 al + =,

01
<
Observing also that
T T T 01
r— —ng| < |x—tpy| + [tng — —n0| < (— —€) + —,
a a a
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we obtain
f4,no(x) > <2n0+wno> (2 n0+1)+" "0+1) > P(no) =
ga(z) ety EICTEs)) "<n )
7110 ”(n0+1
where

H(n0)7

As ng goes to +oo, we easily get

lim H(ng) = —— lim P(ny) =-—"

ng—-+o0 T 6)2 ng—-4o0o

Then, given any ¢y < ——, there exists N, such that

(a—)

f47n0 ($)
9a(z)

Define

HLE = min{H(n0)7 M <Ny S N6}7

62

CRD

G4,e = min{Hl,ea HQ,G}'

HQ,E -

Hence we have

f4,n0 (:E)
9a()

and finally we get

o (2)
g()

2 G276G3,€G4,6 = Ge7

for t,, +e<x<t,411—€ Vnyg> M.

76

—¢€, for t,,+e<az<t, 41 —

Z G4,€7 for tno + € S x S tn0+1 - €

€, Vng> N,.

Vng > M,

(4.52)



Now we observe that
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x Ll
(x):wH<1_7rn_ 61)ea ( 7T
n<0 a ZIn| alt
X
=x R — 1- —

o (4.53)
— z csch (a\/a)Qsm ( ( ax + a\/—46, +x ))
/1

2

sin ( (am + a\/—46; + x2>) ,

®\=|

where the last step is obtained as follows. First of all we recall the following
well-known products

sin(x) :xﬁ (1 — :) (1—|— ’

n m) ’
1 +oo 2
esch(z) = = [] Lz
T n=1 n2 + -
Then we have

7r2

csch <a )
Vo) = e 1
Moreover, setting

- 51 (4.54)

we obtain

(3 o T o)
h(z) = 5

E:)E ax—l—m/ﬂ)) (; (ax—i—a\/m))
(-~

ax + av/—40, + 22
n=1

2
1+_—ax+wh/—4&;+x2
2mn 2mn

1_(m%+av—4&g+x2 1%_ax+wu/—4&y+x2
2mn 2mn
2 2,.2 2
o _a’z® —da*h
B 615111 << 2wn) (2mn)? >
((1__ ax >2<_ -

4&251
21 (27m)2

™ (mn)?
2
5 24 aﬂgl ax n? + —‘;il ar
—a% ] ar) (nt e ar
n? ™ n? ™
n=1
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Chapter 4. Sampling formulas for the Paley-Wiener spaces

Hence, using (4.54)), we get

— xcsch (aﬁ)z h(x)

2 2 2
400 n2 772 aﬂg1 ar nQ aﬂ&
’ n2 4+ <& n2 ™ n?
n=1 2

i X
= 1 + s 41 1 T T 1 ’
nS1 Nt Ntz

and then the last step of (4.53) is proved. Now we observe that

. _ — 2) _
xgrfoo( ax + ay/ 451—1—1’) 0,

. . (1
IETOO —x sin (2 (—a:c + ay/—46, + x2>)
. x
= xggloo —3 (—am + ay/—46; + a:2>

and that

i E (—a2x2 + a?(—46; + x2)>
z—+oo 2 ax + av/—46, + 22

_ lim 2xa’d,
T—=+00 qr + a\/m

= ad;.

Moreover for every €; > 0 it is easy to see that there exist two constants

A1 e, Bie, > 0 such that such that for ng > A; ., we have

. 1
sin <2 (ax + ay/—46, + x2)>‘ > By,

for Eno—kel <zr< E(no—l—l) — €.
a a

Then, thanks to (4.56) and (4.57) we have that there exist two constants

Ay, Bae, > 0 such that such that for ng > Az, we have

lg(z)| > Ba, for Eno%—el <x< E(no—i—l)—el.
a a

Fix some €; < 3, and take Az, > 0 such that ’tn - gn‘ <€ forn > As,,.

Then for ng > A, := max{A4s,, Aa., } we get

T T
tno—i-ezano—el—l—ezgng—l—el,

T s
tnoﬂ—ega(no—i-l)—i—el—egg(no+1)—61,
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4.4. Sampling formulas in terms of the sampling points

and hence

lg(z)| > Be := Ba,, for t,,+e<ax<tpi1—€ Vno>A. (4.58)

Thanks to (4.51)), (4.52) and (4.58) we get

|f(@)] > | frno()] > GeBe = Dy,
for t,, +e<ax<t,11—€ Vny>A.

For 0 < ng < A, we observe that the function f(x) is different from 0 and
continuous in the finite union of compact sets

by +€<x<t,+1—€ 0<ng<A.
and hence there exists D, such that
|f(z)| > Do, for t,,+e<z<t,+1—€ 0<ny<A.
Then we obtain
|f(z)] > max{D; ., Dy} := K, for t,,+e<x<tpi1—€ Vng>D0.

For the case ny < 0, with arguments completely analogous to the case ng > 0
we obtain that there exists K5, such that

|f(z)| > Ka, for tp,1+e<ax<t, —e Vny>D0.
Moreover we set
Ks.=inf{|f(z)],t.1+e<z<—€)U(e<z<t;—€)},
and hence we finally get
|f(2)| = max{Ky, Ko, K5} = K,
for t,, +e<x<t,11—€ Vny€LZ.
O

As we did for the result of Theorem [4.2] it is now interesting to compare
the results of Theorem [4.17] and Theorem |4.19] with those of the Paley-
Wiener-Levinson theorem (Theorem [4.1)), and with those of Theorem
too (we don’t mention Theorem ce the sampling sequences of this
theorem are exactly the same of those of T"heorem .

We have already observed that for the sequences for which the Paley-
Wiener-Levinson theorem is valid obeys the following constraints

1
|tn—tm|><|m—n|—2>ﬂ Vn,m € Z,n # m,
a
INm
|tn—tm|<<|m—n|+2) Vn,m € Z,n # m,
a
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Chapter 4. Sampling formulas for the Paley-Wiener spaces

while for the sequences of Theorem [4.2] we have

|m — n|m
[ty — tm| < ———

Vn,m € Z,

and that given any € > 0 small as desired and any integer M < oo big as
desired, it is possible to find a suitable sequence {t,}, such that M elements
are contained in an interval of R of length e.

In Theorem[4.17], the set K is a finite set of consecutive integers of any size
and without constraints. Hence we easily see that we have no constraints on
the maximum or minimum distance between two successive elements. The
downside is of course that all the sampling points ¢, for n ¢ K are fixed to
equidistant values.

In Theorem |4.19 we have that ‘gn — tn‘ <0 Vn € Z, for some § < o-,
than it is easy to see that

[tn — tm| >(\m—n!—1)Z Vn,m € Z,n # m,
a

[th — tm| <(\m—n!—i—1)Z Vn,m € Z,n # m.
a

In particular also in this case we have that there is no lower bound for
|tn — tm|, but unlike Theorem and Theorem we can have at most
2 elements that stay in the same interval of length less than Z, since [¢,41 —
tn—ll > g.

We obtained that Theorem and Theorem have less strong
constraints than Paley-Wiener-Levinson theorem for a finite, but big as de-
sired, subsequence of the sampling sequence. The downside is that they have
stronger constraints on all the others sampling points. However, in the next
section we show that the constraints of the sampling sequences in T heorem

and Theorem are more useful for real applications.

4.5 Approximation of the sampling formulas

In real applications very often it is required to reconstruct a signal only
on a predetermined compact subset of C and with a predetermined preci-
sion, since the sum cannot be performed on all the infinte set of sampling
points. In this section we show that for this purpose the sampling formulas of
Theorems and are better then those of the Paley-Wiener-Levinson
theorem. The main reason for this derives from the fact that the sampling
sequence of all these theorems (including those of the Paley-Wiener-Levinson
theorem) converge uniformly on the compact subsets of C, along with the
fact that Theorems and allow more felxibility for a finite, but big
as desired, subsequence of the sampling sequence. We already know that
the sampling formulas of these theorems converge uniformly on the compact
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4.5. Approximation of the sampling formulas

subsets of C, as a consequence of Theorem [2.18] However we give here an ex-
plicit proof of the uniform convergence for the case of Theorem |4.17, which
is the most interesting for the purpose of this section, in order to obtain
also a numerical estimate of the error obtained performing the recostruction
only on a finite subsequence of the sampling sequence. We start with the
following well-known Lemma and we include a proof also for it, for sake of
a precise reference and for sake of completeness.

Lemma 4.20. Fiz any a > 0 and let {t,}, be an increasing sequence of
reals for which there exists € > 0 such that |t,.1 —t,| > € Vn € Z. Then for
every F' € PW, we have

4
Ft)? < —|F .
anl (tn)] 7r€|| lPw.

Proof. We recall that all the functions in PW, are entire. Given xy € R,
thanks to the mean value property we have that

|F (zo)|” < 21/ ‘F (xo—i-rew)‘zde

holds for all » > 0. Therefore, setting z = x + iy we get

F(x // )2dzd
| 7r52 |2— 20m|<5 2 dudy

for every xy € R and every ¢ > 0 (multiply both sides by r and integrate
between 0 and §). Then we obtain

SIF @< 5 3 [ I (b )P ey
gWZ/_E/_HF(tn—l—x—iriy)Fdxdy

1 5 ptnds o
:WZ/_(s/t_a |F' (z + iy)|” dxdy.

Now, take § < §. Then the intervals (¢, — d,t, + d) are pairwise disjoint,
and hence

2 2< 1 é tn+6F ] Qdd
SIF@ < 53 [ [ IF i)l dedy

1 1 +o00 ] 9
<— [ [ IF@+iy)P dudy
Wl (4.59)
< = [ 1Flpw.dy
2
= ﬁHF”PWa'
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Chapter 4. Sampling formulas for the Paley-Wiener spaces

Since (4.59)) is valid for every ¢ < ¢, we finally get

4
Ft)? < —||F .
Enjl (tn)] —m” (=%

O

Theorem 4.21. Let a > 0 and let K = {ny }x—o,.. x be a finite set of con-
secutive integers of any size. Let {t,}, be a strictly increasing sequence such
that t, = =n Vn € Z\ K, and that

g(no — 1) <ty <..<tp <

S

Given G € PW, and N > 0, set

Gn(z)= ) (H tt:__tiezﬁ) G (tn).

n=—N \m#n

Then, for any compact subset Q C C, Gy(2) converges uniformly to G(z)
in Q as N — 400, and in particular there exists C > 0 (dependent only on
{tn}n) such that for every G € PW, we have
C
sup |Gy (2) — G(2)] <

Y Gllpw., N> N,
z€Q (N — No)% H pra 0

where Ny is the smallest positive integer for which |ty,| > xo and |[t_n,| > xo,
with To = MaX,tiyecq |z

Proof. We are exactly on the same conditions of Theorem (4.17). From the
proof of this theorem we know that

. BE1-0()
G = 2 Ber - 5o

tm — 2 Zgin
_n<Huw%f“)GW)

m#£n

where

and

(4.60)




4.5. Approximation of the sampling formulas

We set
My :=sup|E(2)(1 — ©(2))| = sup |[E(z) — E¥(2)| < 2sup|E(z)]

z€Q) z€Q z€Q
By Theorem (4.17) we know also that lim, .+ |E;(x)| = 1, and thanks to
the continuity of F(z) on R we get

1

E(l’) < 00.

My := sup
zeR

Obviously we have

Gn(z) —G(z) = ZOO EIE(;S()%(’E:) (ifzz)z)G(tn)

= z)(1-06(2))
+n_z_:oo @ I _Z)G(tn).

Let Ny be the smallest positive integer for which |ty,| > z¢ and |t_y,| >
T, where 9 = max,iiyeq |r|. By Theorem and (4.60) we have that
©)(t,) = 2ia. Hence for z € Q and N > N, we obtain

« _E(x)(0-6()

MM, X |G(t)]
ng\f:-ﬂ E1<tn)@/(tn>(tn — Z) (tn)‘ = T LI N LA

2

n=N-+1

1
i1 [tn — Tol? '

We set € = min{Zn, min{|t, 41 —tn|}nex }, and we easily observe that [t, 1 —
tn| > € ¥n € Z. Then by Lemma we get

.%'0‘ .
Using the Holder inequality we get

> o ( 5 |G<tn>|2)

n=N+1 "1 - ZBOl n=N+1

N|=

+o0 9 4
> 1G] < EHGHPWG-
n=N+1
Moreover we have
+00 1 400 1
— <
io 1
< -
_n N+1€7’L—N0|2
1 &
T s Z n+N Np)2
< 1
- 62(N— N())
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Chapter 4. Sampling formulas for the Paley-Wiener spaces

Therefore we obtain

+o00
Ei(2)(1 —6(2)) C
n g - - 1 G o)
B B0t~ | = gt
where C' = %, and then
B -6()
I t,)| = 0.
N—1>I—I|—100 igg RNl El(tn)@/(tn)(tn — Z) G( n) 0
Similarly we get
~N-1
Ei(z)(1 - 6(2)) C
tn S - __ 1 G o)
n:z_oo By ()0 (t) (tn — 2) (n) (N — No)? 1Gllpw
and
—N-1
. Ei(2)(1-06(2))
1 ) = 0.
N oo et | 2 ()0 (t) (6 — z)G( n)| =0
Then we finally obtain
sup |Gn(z) — G(z)] < LHGH
Zeg N - (N _ NO)% PWa s

and
lim sup|Gy(z) — G(z)| =0.

N—=+00 ,c
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CHAPTER

Generalization of the Fourier transform

For F' € L'(R) the Fourier transform F(F) of F(z) is defined as

Pla) = F(F)() = [ T R)ed, xeR.

—00

Let F' € L'(R) be such that 7' € L'(R). Then the Fourier inversion theorem
states that

Flz) = / T ite () d. (5.1)

T 2r )

As pointed out in Section the Fourier transform induces a unitary iso-
morphism between the Paley-Wiener space PW, and the space £?[—a, a,
which has far-reaching consequences. In this section we present a general-
ization of the Fourier transform for the de Branges spaces, that define an
isomorphism between these spaces and a class of subspaces of £?(R).

Given an infinite set of subspaces U,, of the same vector space U, with
a small abuse of notation in this section we will use the symbol @, U, to
denote the closure of the subspace formed by all the possible sums -, - uy,
with u, € U, and u,, # 0 only for a finite number of n, before showing that
the subspaces {U, },, are pairwise perpendicular, and only later we will show
that they are actually pairwise perpendicular.
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Chapter 5. Generalization of the Fourier transform

5.1 Generalized Fourier transform

Let O(z) = ve?®*B(z) be a meromorphic inner function according to the
representation given in ([2.3), with logarithmic residue 2b > 0. To see this,
we proceed as follows. We set

Oo(2) = e***,
@1< ) - ’}/B< )7
so that ©(z) = Oy(2)O1(z). For n > 0, we set
Kn(©) := 05K (6y) N (@ 07'60,K (@0)>

m=1

_ eQinbzIC <€2inbz) N (é 62imbz’yB(Z)lC (ezmbz)>l ‘
m=1

We will show later (see([5.12))) that, excluding the degenerate cases Og(z) = 1
or ©1(z) = 1, we have

(5.2)

K.(©) # {0}
for at least one value of n > 0. For n > 0 we set
L3[b(2n —1),b(2n+1)] = F (e K,(0)). (5.3)

We recall that the Fourier transform induces an isomorphism from PW,
onto £2?[—b,b], and that the following property of the Fourier Tranfsorm is
true:

F(F(z)e**)(s) = F(F(2)) (s — so) - (5.4)

Then it is easy to see that £2[b(2n — 1),b(2n +1)] = F (eQi”bzPWb) Ob-
serving that

€_ibzlén(@) g eQinbz (6—ibzlc<€2inbz>) — €2inbz7)Wb
we obtain
L3[0(2n —1),b(2n +1)] C L2[b(2n — 1),b(2n + 1)]. (5.5)

According to (.5)), for F,G € L[b(2n — 1),b(2n + 1)] we define the scalar
product
(F,G) ez pev-1)pen+1)] = (F G) c2pen-1)pen-+1)

b(2N+1) (5.6)
= F(x)G(x)dx.
b(2N—1)
Moreover we define
L3 = L[~ (@ L3[b(2n —1),b(2n + 1)]) : (5.7)
n>0
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5.1. Generalized Fourier transform

We recall that @,-¢L3[0(2n — 1),b(2n + 1)] denotes the closure of the
subspace formed by all the possible sums 3,50 Fy,, with F, € L[b(2n —
1),b6(2n + 1)] and F,, # 0 only for a finite number of n € Z. Then we easily
get that £& C L2[—b,+00), and hence we can endow L% with the scalar
product and the norm of £2[—b, +00).

Theorem 5.1. Let O(z) = ve***B(z) be a meromorphic inner function
according to the representation given in , with logarithmic residue 2b >
0. Let E(z) be a de Branges function of ©(z). For F' € B(E) consider the
transform Fg given by

) Yoo o—ilztb)t
FolF)(2) = F ( El(i g%) (2) = / L FO g (69)

Then .

is a unitary (up to a rescaling factor %) isomorphism, and

1

(F1, Fa)p(p) = g(fE(Fl)a]}E(Fz)ﬁg (5.9)
for all Fy, F5 € B(E).
Proof. We set
@0( ) 21bz
O1(2) = 73(2)7

so that ©(z) = ©y(z)01(z), and we observe that ©(z) = LOM (Oy(z), O1(2)).
Obviously Ey(z) = e ®* is a de Branges function of ©y(z). Set Fi(z) =

53(2) = E(z)e®® . Since F(z) is Hermite Biehler and then entire, also
#

Er(2) is entire. Morcover ]?Ell((zz)) - @i(f;)?(g - go( = 0O4(2), and then

"5%8“ = io15) > 1 on the upper half plane.

Hence E)(z) is a Hermite Biehler function, and is a de Branges function
of ©1(z). In this way we have obtained that Fy(z) and F1(z) are respectively
de Branges functions of O¢(z) and ©1(z) such that E(z) = E1(2)Ey(z). Then
we can apply Theorem [3.2] and we obtain

Recalling Theorem we get

B(E) = EK(O)
— EK(000,) (5.10)
— E(K(6y) + K(61)).
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Chapter 5. Generalization of the Fourier transform

We observe that -
H? = @ O5K(0y),

n=0
and then we get

K(000,) = H* © 0,0, H?

— (é @glC(@@) S (é @8@1’C(@0)> :

n=0 n=1

— (é @g/C(@O)> N (é 63@1K(@0)>L.

n=0 n=1

N 00 1

We recall that, given three subspaces of finite-dimension U, Us,Us C H?2, we
have

(U P th) Us = Uy NUs) P(Uhy N Us).

Hence

K(©01) = lim ((é oK @0> (7@ ere IC(@@)L)

1
(@gic @m@ /C(@@) )
*n=0 m l

We observe that

O7K (6y) m( @ ore, K ( @0)> = {0},
so that .
Ok (6,) N (?% ore, K (@0)>L — OrK (0y) N (SB()@ 0,k (@0)>L.

Therefore we obtain

K(©401) = lim é (@g/c (©p) N (é ore, kK (@0)> )

n=0 m=1

:]\P_Igoé\[} (@”IC(@O (@@ O IC(@O)>L)

n=0 m=1

iy (@”IC (©0) N (@ eye IC(@O)>L> .

n=0 m=1

= K (60) & (é (@g/c (©0) N <é oo,k (@0)> )) .

n=1 m=1
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5.1. Generalized Fourier transform

Recalling we get
K(©¢61) = K (00) & (@ ’én(@)> )

and by (5.10]) we finally obtain
5.11
= EK(0g) & (@ E,( ) (5.11)

n>0

Thanks to this we can also observe that, excluding the degenerate cases
Op(z) =1 or O1(2) = 1, we have

K.(0) # {0} (5.12)

for at least one value of n > 0, because otherwise we would have
EK(©) =B(E) = EK(0y),
which is impossible for ©,(z) # 1.

As already pointed out, the Fourier transform induces an isomorphism

from PW,, onto L?[—b,b], and then
Fu(EK(80)) = F(EK(O)) = F(PW,) = L*[~b,b]. (5.13)
Moreover, for n > 0 we get

Fp(EKA(9)) = F(EK.(0))
= F (eX*(PW, ne ™K (vB(2))))
= L4[b(2n — 1),b(2n + 1)].

Then we finally obtain

Fo(B(E)) — Fo(EK(4)) & (@ fE<Ei€n<6>>)

n>0

= L*[- (QB L3[b(2n —1),b(2n + 1)])

n>0

s

Now it remains only to prove that Fp is a unitary isomorphism. We set
F, € EK,(0) and F,, € EX,,(©) for some n,m > 1, n # m. Then we can
write

Fo(2) = 2™ B (2)H,(2),
Fo.(z) = eQimszl(z)Hm(z),
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Chapter 5. Generalization of the Fourier transform

for some H,(2), Hy(z) € EoK(©) = PW,. Then

(Fo P i) = /_ ;Oo Wdt

Now it is easy to see that e*™ H, (), e*™" H,,(t) € PW (ags1)p, Where ¢ =
max(m,n), and then we have

+oo . -
<Fn7 Fm>B(E) = / 62Zb(n—m)tHn(t>Hm(t)dt

o0

_ <62mthn(t), e2imthm(t)>PW(2q+1)b (5.14)

= (F(e™ Hy (1)), F (™ Hyn (1)) Py 1

—0,
where in the last step we observed that the support of F(e? ™ H,,(t)) is [(2n—
1)b, (2n+ 1)b], while the support of F(e?™ H,,(t)) is [(2m — 1)b, (2m +1)b],
and since n and m are two integers with n # m, the intersection of the
two supports is null. Hence we have EX,(0) L EK,,(©) for n # m. In

an analogous way we obtain EX(0y) L EK,(©) Vn > 0. Now, thanks to
(5.11), every F' € B(E) can be expressed as

F(z) = f Fo(2),

for some N > 0, Iy € EK(Oy), F), € El@n(@) for all n such that 1 <n < N
and Fy # 0. Setting

F1<Z> = ZOZF,,ZJ(Z),

FQ(Z) = ZOZFTL’Q(Z)’

thanks to (5.14)) we obtain

“+00

(F1, B gy = > (Fu, Fno)see)- (5.15)

n=0

Similarly, given G, € LE[b(2n—1),b(2n+1)], G € LE[D(2m—1),b(2m+1)],
we easily get
<Gna Gm>£2@ =0, (516)
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since the intersection of the support of G, (z) with the support of G,,(2) is
null. Given Gy, Gy € L2 we can write

Cr(z) = ZOO G (2),

Ga(z) = Ej) Gna(2),

where Go1,Goa € L*[—b,b] and G,,1,Gpno € LE[b(2n — 1),b(2n + 1)] for all
n > 1. Then by 15.16: we obtain

+o0o

<G1, GQ)L%_) = Z<Gn71, Gn’2>£%. (517)

n=0

Thanks to and , to show that Fj is a unitary isomorphism be-
tween B(E) and L2 it is sufficient to prove that it is a unitary isomorphism
between every orthogonal subspace EK (0p), {EK,(©)}ns0 and the corre-
sponding image £2[—b,b], {L%[b(2n — 1),b(2n + 1)]},50. Thanks to (5.13)
we have

Fr (EK (80)) = F (PWy) = L2[—b, 1],

and this is obviously a unitary isomorphism since JF is a unitary isomorphism
between PW,, and L2[—b,b]. For all n > 0 we have

Fi (EKa(0)) = F (EoKn(©)) = L3[b(2n — 1),0(2n + 1)].

For all n > 0 we observe that e 2™*E,K,(©) C PW,, and that F is a
unitary isomorphism between e~2"?E(K,(©) and F (e—zmszO,@n(@)) C

L%[—b,b]. We recall that by definition we have Fg (e‘Qi”szl@n(@)) =
]-"(e’%"bZEOICn(@)). Then, given Fy, Fy € e 2™ EK,(0) and G1,G, €
Fr (e*Qi"szI@n(G)) such that

61(2) = FolF0(e) = 7 ( gy ) )

)
Ga(2) = Fo(F)e) = 7 (o ) 4)
by we have

Fy(t) Fg(t)> _ 1

Fi, F = . - G, G bl
(£, 2>3(E) <E(t)€7'bt’E(t)€7'bt o 27T< 1 2>£2[ b,b] (5.18)

Thanks to (5.4)) we have that multiplying a function by e2** before applying
the Fourier transform induces a translation by —2nb in the image function.
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Therefore, given

we get

e2znbz
Fo0)(z) = Fol@™ R()(z) = F (F“) () = Gh(= — 2nb),
Fp(Ua)(2) = Fp(@™Fy(t))(z) = F (

By (5.18) we obtain

<U1, U2 22nth ( ) 2mth2( )) B(E)
2mbt F ( ) 2inbt
ezbt ’ (t)ezbt £2(R)

< eZbH )<) >£2(]R)
(
)

< () > (5.19)
ezbt (t ezbt W,

= §<G1’ G2) 21—
1

27 —(G1(z — 2nb), G2(z — 2nb)) £2[(2n—1)b,(2n+1)8] -

= %(ﬁE(m%]:_E(U2)>£g[(2n—1)b,(2n+1)b]-

Then the transformation between EK,(©) and L3[b(2n —1),b(2n+1)] is a

unitary (up to a rescaling factor ;=) isomorphism for all n > 0. Hence we

” 2
can conclude that Fg is a unitary isomorphism between B(E) and £Z, with
1 . .
(v By = 5 (Fe(), Fe(F))ey
for all Fy, F;, € B(E). O

In the conditions of Theorem [5.1], we can consider the transform

Too p—ilztb)t

Fp(F)(2) = [ L FO g

as a generalization of the Fourier transform for the de Branges spaces.
Indeed, when FE(z) = e ®* we have B( ) = PWb, and the transform

Fe(F(1)(z) E() =L

The transform Fz can be easily inverted using the Fourier inversion the-
orem.
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Theorem 5.2. Let O(z) = ve**B(2) be a meromorphic inner function
according to the representation given in (2.3)), with logarithmic residue 2b >
0. Let E(z) be a de Branges function of ©(z), and let F(z) € B(E) be such
that

b =Fp(F) € Ll(R).
Then we have

F(z) = Fp  (®)(2) = E(’Zfb / :OO D) dt. (5.20)

Proof. 1t is a straightforward consequence of the Fourier inversion theorem
(5.1]) applied to (5.8). The integral is between —b and +oo since ® € L2
and then ®(t) = 0 for t < —b (see (5.7))).

O

A simple but important consequence of this inversion theorem is that
F € B(E) if and only if there exists ® € £3 such that

F(z) = E(;sz /_:OO G (t)dt. (5.21)

5.2 Orthogonal subspaces of the de Branges spaces

The result of Theorem has many important consequences. In this sec-
tion we show a suddivision of the de Branges spaces in othogonal subspaces
and some other immediate properties, then in the next chapters we will see
other imortant applications.
For N > 0 we set )

By(E) = EKn(O),
while for N = 0 we set

By(E) = EK(Oy).
We endow By (FE) with the same scalar product of B(E), and we recall that
the scalar product of LE[b(2N — 1),b(2N + 1)] is given by (5.6). By
we have that Fp is a unitary isomorphism between By (FE) and L3[b(2N —
1),b(2N + 1)]. Hence F € By(E) if and only if there exists ® € LE[b(2N —
1),b(2N + 1)] such that

iz ~(2N+1)b
F(z) = ZE) /( CER g (pat

2m 2N—1)b

Theorem 5.3. Let O(z) = ve***B(2) be a meromorphic inner function
according to the representation given in (2.3)), with logarithmic residue 2b >
0. Let E(z) be a de Branges function of ©(z), and let F' € B(E) such that

® = Fp(F) € L'(R).
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Then
[F(x+iy)| < (29) B + ig)|e”l| Fla) Vo € Ry > 0.

Proof. Thanks to ((5.20]) we have that

E ibz +oo
F(z) = (';)e / GO () dt.
s —b

Using Holder inequality and recalling (5.9) we get
: |E(x +iy)| [+
P +iy)| < =5 [ ()]t

N N )

E . +o0 1
= BELWL ™ cin) o

2T
1
+o00 2
6_2yt‘| ) ||F||B(E)

t=—b

pit(a+iy)

pit(atiy)

< B + i) ([

_1 .
= (2y) 2 |E(x + iy)le” | Fl|sce),

0o ||
< | =

where we used the fact that || F[|s) = |||z thanks to the unitary isomor-
phism between B(E) and £2 described in Theorem [5.1] O

Theorem 5.4. Let ©(z) = ve***B(z) be a meromorphic inner function

according to the representation given in (2.3|), with logarithmic residue 2b >
0. Let E(z) be a de Branges function of ©(z), and let F € By(E). Then

[F +iy)| < (20)2|B(x + iy) || 55,
Proof. The proof is very similar to that of the previous theorem. We set
o = Fp(F),

and we observe that ® € L3[b(2N — 1),b(2N + 1)], hence the support of
®(2) is the inverval [b(2N — 1),b(2N + 1)] and therefore ® € £'(R). Then,
thanks to ([5.20) we have




5.2. Orthogonal subspaces of the de Branges spaces

Using Holder inequality and recalling (5.9) we get

F(x + < 7/
Pz + )l < 2 b(2N—1) ‘

it(z+iy)

|B(t)|dt

3 b(2N+1) 3
’ dt) ( / \d)(t)]%lt)
b(2N—1)

1
E ' b(2N+1) 2
_ | (x+2y)\ </ 6—2ytdt> ||(I)||£2

2 b(2N—1) e

pit(atiy)

< LBl (e
b

- 2T (2N-1)

, BENTY N1y :
O N N

= (20)3| E(x + iy) || F|| 5.
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CHAPTER

Kempf-Martin Spaces

The whole Kempf-Martin theory presented in [40] is based on the theory of
simple symmetric operators, which is the pillar upon which all the article is
built. Indeed, the proof of all the crucial results about the Kempf-Martin
spaces, such as the definition of the reproducing kernel, the sampling for-
mula, the Livsic characteristic function properties and its explicit formu-
lation, make extensive use of this theory. However, for our purpose it is
not necessary to go here into the details of this theory, but it is sufficient
to summerize the definitions and the fundamental results that are impor-
tant to understand the Kempf-Martin spaces. We will give this overview in
Sections and In Section[6.4 we will investigate the isomorphism
between the Kempf-Martin spaces and the de Branges spaces, and thanks
to this isomorphism we will derive a necessary and sufficient condition for a
function to belong to a Kempf-Martin space. In Section [6.5 we will give an
alternative and equivalent definition of the Kempf-Martin spaces based on
the same isomorphism, and we will derive and improve all the main results
presented in [40] from the properties of the de Branges spaces, without using
the theory of simple symmetric operators.

6.1 Symmetric linear transformations

Let H be a separable Hilbert space. Let T be a linear transformation T’
defined on a domain Dom(T") C H.
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Chapter 6. Kempf-Martin Spaces

The adjoint operator of T' is defined as follows. Suppose that Dom(7) is
dense in H. Let Dom™(T") be the set of all ¢ € H such that there is a pair

(1, 1) with
(T, vy = (¢,0*) V¢ € Dom(T).

Then the adjoint operator of T, denoted by 7™, is defined to be
T* =" on Dom™(T).
The linear transformation 7T is called:

1. symmetric if

(T'v,y) = (z,Ty) Vz,y € Dom(T);

2. self-adjoint if
e Dom(T) is dense in H,
« T =T
3. densely defined if Dom(T) is dense in H;

4. simple if there is no non-trivial proper subspace S C H so that the
restriction of 7" to Dom (7T") N S is self-adjoint;

5. regular if T — tI is bounded below on Dom(7') for all t € R;
6. closed if the graph of T is closed in H & H;

The deficiency indices, (ny,n_) of a linear transformation 7" are defined as
ny = dim (Ker (77 F 1)) .

We will use the notation S to denote the family of all closed simple sym-
metric linear transformations with equal indices (1, 1) defined on a domain
in some separable Hilbert space. ST will denote the subfamily of all closed
regular simple symmetric transformations with indices (1,1). Note that any
symmetric T always has a minimal closed extension, so there is no loss of
generality in assuming that T is closed.

Consider the map

zZ—1
b(z) =
(2) z+1
with compositional inverse
1—2z
b Yz) =1
(=) 1+2

The map b is an analytic bijection of the open upper half-plane C*onto the
open unit disk D). Moreover b is a bijection of the real line R onto T\{1},
where T is the unit circle.
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Let V denote the family of all completely non-unitary (c.n.u.) partial
isometries with deficiency indices (1, 1) acting on a separable Hilbert space.
Here the defect or deficiency indices of a partial isometry V are defined by
ny = dim(Ker(V)) and n_ := dim (Ran(V)l> . As shown in many standard
texts (see for example [5], [45]), the map T + b(T') defines a bijection of
S,, (closed simple symmetric linear transformations with indices (n,n)) onto
V,. Namely, given any T € S,, we can define b(T) as an isometric linear
transformation from Ran(7" + ) onto Ran(7" — ). We can then view V =
b(T) as a partial isometry on H with initial space Ker(V)* = Ran(T + i).
Conversely, given any V' € V,, we can define b=*(V) = T on the domain
Ran ((V — I)V*V), and then T € S,, and T = b1 (b(T)).

6.2 Self-adjoint extensions

Given T' € S let V. = b(T) € V. We can build a one parameter family of
unitary extensions of V' as follows. Fix two vectors ¢4 of equal norm such
that

¢4 € Ker(V) = Ker (T* — i) = Ran(T +i)*

and
¢_ € Ran(V)* = Ker (T* + i) = Ran(T — i)™
Define
Ua) =V + H;HQ (o) b0 €T and Up:=U(e2);0€[0,1),
+

where T is the unit circle in the complex plane. The set of all U(«) (or Uy )
is the one-parameter family of all unitary extensions of V' on H. The U(«)
extend V' in the sense that U(a)V*V =V for all a € T, they agree with V
on its initial space. We write V' C U(a) to denote that U(«) extends V' in
this way. Similarly, the subset notation 1" C S for closed linear transforma-
tions 7', .S denotes that Dom(7") C Dom(S) and S|, =T, i.e. Sis an
extension of 7. We then define

T(a) == b (U(@)), Tp=T (c)

so that T'C T'(«) C T* for all « € T. The functional calculus implies that
each T'(«) is a densely defined self-adjoint operator if and only if 1 is not
an eigenvalue of U(«), and the set of all T'(«) (for which this expression is
defined) is the set of all self-adjoint extensions of 7. Note the assumption
that V' be c.n.u. implies that 1 is an eigenvalue to at most one U(«).
Given a transformation T € S, every different choice of deficiency vec-
tors ¢, defines a different parameterization {Tj}ocjo1) of the self-adjoint
extensions of T". Indeed the same self-adjoint extensions of T' can be associ-
ated to two different values of § € [0, 1) in the parametrizations derived from
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two different pairs of deficiency vectors ¢4.. Moreover, for every two different
pairs of deficiency vectors ¢4 there is always a not null subset of self-adjoint
extensions of T" that are associated to two different values of 6 € [0,1) in the
corresponding parametrizations.

Lemma 2.2 in [40] shows that, given a transformation T' € S%, for each
0 € ]0,1) the spectrum o(7p) of the self-adjoint extension Ty (i.e. the set of
all the eigenvalues of Tp) is given by

o (Ty) = {ta(0)},

where {t,,(0)} is a strictly increasing sequence of eigenvalues of multiplicity
one with no finite accumulation point. The spectra of all the self-adjoint
extensions of T" have the following properties:

o ta(0) = 0 (Ty) N [tx(0), tn41(0));
e o(Tp)No(Ts) =0 for O # B;
o Usepy o (Tp) = R.

Hence the spectra of all the self-adjoint of T' extensions cover the real line
exactly once.
Theorem 2.6 in [40] shows that the function ¢(x), = € R, defined by

t(n+0) =t,(0), ne€Z,60el0,1), (6.1)

turns out to be a smooth, strictly increasing function on R, referred as the
spectral function of T'. Moreover, defining ¢/,(0) = t'(n+80), for any 6 € [0, 1)
the couple ({t,(0)}n, {t,(0)},) is a bandlimit pair.

Finally, Theorem 2.8 in [40] shows that there exsists a bijective corre-
spondence between the transformations 7' € S and the bandlimit pairs
({tn}, ,{t.},). Indeed, given a transformation 7' € S* and a couple of defi-
ciency vectors ¢4, then ({¢,,(0)},,{t,(0)},) is a bandlimit pair. Conversely,
given any bandlimit pair ({t,},,{t,},) it is possible to build a couple of
vectors ¢ for which there exists a unique transformation 7' € S so that
¢+ are equal norm deficiency vectors for 7" and that ({¢,(0)}, ,{t,(0)},) =

{tn}n {tn}n)-

6.3 Definition of the Kempf-Martin spaces

In the previous sections we summerized the definitions and the results that
are necessary to define the Kempf-Martin spaces. We recall that, as we
pointed out in Section given any positive kernel function K (z,w), there
always exsist a RKHS H(K') which has K (z, w) as its reproducing kernel. For
every bandlimit pair ({¢,},, {t, }»), Proposition 2.18 in [40] defines a unique
corresponding positive kernel funtion expressed in terms of the bandlimit
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pair itself. Since every linear transformation 7' € S is associated to a unique
corresponding bandlimit pair, it can be associated also to a unique positive
kernel function Kr(t,s). The Kempf-Martin space KM (T') associated to
T is then defined as the unique RKHS that has Kir)(t,s) = Kr(t,s)
as reproducing kernel. Sometimes we will write KM ({t,, }n, {t,}») in place
of KM(T), obviously meaning the Kempf-Martin space whose kernel is the
one defined by the bandlimit pair ({t, }, {t, }»)-

Since Proposition 2.18 in [40] is the fundamental result for the definition
of the Kempf-Martin spaces, we report its precise statement as presented by
Kempf and Martin.

Theorem 6.1 (Kempf-Martin). For any T € S® and a fired equal-norm
deficiency vectors ¢+ € Ker (T F1i), there exists a choice of orthonor-
mal eigenbases {p,(0) | 0 € [0,1)}, of eigenvectors for Ty so that if ¢y =
Ol ([T(2)]), then for s,t € R

Ky (t, s) = (4, ¢s)
= HOCN (X i s ) 0

is a smooth, real-valued, positive kernel function on R x R, where

= (s (f_(?)) -

n

n

(6.2)

Another crucial result for the Kempf-Martin theory is Theorem 2.24
in [40]. It shows that any F(t) € KM(T) obeys the sampling formula

F(t) = Kicamer) (ta(0),1) F (ta(9)) , (6.3)

for all # € [0,1). Therefore the Kempf-Martin spaces have the same special
reconstruction properties as the Paley-Wiener spaces of bandlimited func-
tions: any F' € KM(T') can be reconstructed perfectly from its samples
taken on {¢,(0)}. It turns out that the classical Paley-Wiener spaces are a
special case of the Kempf-Martin spaces.

For every T € S, Section 3 in [40] defines the Livsic characteristic
function ©(z) associated to T', which is a meromorphic inner function such
that ©(i) = 0, with the following special property. For every 6 € [0,1), the
sequence {t,(0)} associated to T" according to (§6.1)) is the set of solutions of

O(t) =€ teR, (6.4)

as shown in Corollary 3.18.
The first part of Section 4 in [40] shows that ©(z) can be expressed as

. 1 1 4 / 1 1
Z =12 L—zlhiln _ Ynly (tn_z tn—i)
. 1 1 ;T , 1 1 ’
zZ+ Zn tn—2 tn+itn Zn tn ( )

tn—z  tnti

O(z) =
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where ({t,,},,{t},}») is the bandlimit pair associated to 7. Moreover the
spectral function #(x) of ©(z) coincides with the spectral function of T' de-
fined in (6.1), and ¢'(n) = t,.

Finally, Theorem 4.8 in [40] connects the theory of Kempf-Martin spaces
to the theory of meromorphic model spaces of Hardy spaces by showing that
any Kempf-Martin space XM (T'), with Livsic characteristic function (), is
the image of the model space K (0) := H>*©O%H? under the multiplication by
a fixed function M (t), and that this multiplication defines an onto isometry.

6.4 Characterization of the Kempf-Martin Spaces

In [40], the definition of the Kempf-Martin spaces is given through their re-
producing kernel, without a really in-depth characterizations of the functions
that belong to these spaces. In this section we investigate the isomorphism
between the Kempf-Martin space and the de Branges spaces, which has many
far-reaching consequences that we will see also in the next chapters. Thanks
to this isomorphism, we also give a necessary and sufficient condition for a
function belong to a Kempf-Martin space.

Theorem 6.2. Given any reqular simple symmetric linear transformation T’
with deficiency indices (1,1), let E(z) be a de Branges function of the Livsic
characteristic function ©(z) of KM(T). Then there exists an isometric
multiplier N(t) from the Kempf-Martin space KM(T') onto the restriction
on R of the de Branges space B(E):

KM(T)N(t) = B(E)|g, teR. (6.5)
The multiplier is given by

N(t) =i\ Kp)(t,t) = i|E(t)|\/T'(1),

where Kppy(w, 2) is the reproducing kernel of B(E) and 7(t) is the phase
function of ©(z) = EYG) - Moreover it is isometric since, for Fi(t), F5(t) €

KM(T) and G4(t) :EE\Z/)(t)Fl(t), Go(t) = N(t)Fy(t) € B(E), we have
(G1,G2)E) = (F1, F2)kmr)- (6.6)

Proof. From Theorem 4.8 in [40] (p. 1628) we have that on the real line
there exists an isometric multiplier M (¢) from K(©) onto XM(T'), where
©(z) is the Livsic characteristic function of T' (see Section 3.12 in [40], p.
1620), and K(O) is the model space H? © OH2 We have

M(t) =2m (1-6(t) " (- f(t),

where
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then VF(t) € KM(T) there exists H € K(O) such that
F(t)=M(t)H(t), teR, (6.7)

and VH € K(O©) there exists F(t) € KM(T) such that (6.7) is verified.
Let E(z) be a de Branges function of ©(z). We already know that the de
Branges space B(F) is given by

B(E) = EK(6).

Hence, given any G € B(F) we can write
G(t)=E@t)H(t)= —=F(t), teR (6.8)

for some H € K(©) and F(t) € KM(T), and given any F(t) € KM(T)
there exist H € K(0) and G € B(F) so that is verified. Hence we
obtained that there exists a multiplier N (t) from KM(T') onto B(E), given
by N(t) = 5. We have:

E(t) E(t) — E*#(t)

MO = 3@ ~ an-orere

Now, from equation (11) in [40], p. 1612 (see aldo (3.45) and (3.38) in [19]),

we have

(sin(m(t))
T

ft) = (=nt"® (7 (t)).

Moreover, for t € R we have:

#
(E(t) — E¥(t))* = E(t)E*(t) (EE#(Z) - EE(S;) - 2>
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Hence
2i|E(t)| sin(77(t))

2sin(m7(t))4/t'(7(t))
ilB()|
V@)
= il E(t)l\/7'(t) (6.9)

— i|E(t)| ﬁggw
) .\/E#’(t)E(t) — E#({)E/(t)
=3 2m1

Using ([2.16|) we finally obtain

N(t) = i\/KB(E)(t,t).

Moreover, from ([6.9) we have that N (t) = i|E(t)|/7(t), then for F(t), F5(t) €
KM(T) we set

Gi(t) =il E(@)]\/7'(1) Fi(t) € B(E),

Go(t) = il E()]\/7'() F2(t) € B(E),

and we obtain:

= [ ROBD (0 (6.10)

and as a consequence
1G1llsy= [[Fillieamn-
This shows that with a rescaling we have an isometry between B(FE) and

KM(T). O

Corollary 6.3. For every regular simple symmetric linear transformation T
with deficiency indices (1,1), let ©(z) be the Livsic characteristic function
O(z) of KM(T). Then on the real line there exists an isometric multi-
plier N(t) from the Kempf-Martin space KM(T) onto the model space space

K(©), given by
N(@t) =/ i@Q;gt). (6.11)
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Proof. From Theorem 4.8 in [40] (p. 1628) we already know that on the real
line there exists an isometric multiplier between M(T') and IC(©). Hence
we just need to show that the multiplier has the expression given in ((6.11]).
Let E(z) be a de Branges function of ©(z). Then, since B(E) = EK(O),
thanks to Theorem [6.2], on the real line there exists an isometric multiplier
from the Kempf-Martin space KM (T') onto the model space space K(O),

given by N(t) = % Now, recalling (6.9)), we obtain

. N{t)  |BE®)| ~—  JEQE#({) E#(t)
— i\/e(t)r (1) = iy/ermrO7(t) = ¢ S (eriT0)
e
N 2m

O

The next theorems give a necessary and sufficient condition for a function
F(z) to belong to KM(T).

Theorem 6.4. Let ({tp}n, {t),}n) be a bandlimit pair such that

1 1
—1i 1] t — >0 6.12
im sup ogzn:n<tn_l.y tn—¢> : (6.12)
and that )
— < X0
2

for some ¢ € Z, ¢ > 0. Let Let KM({t,}n,{t),}n) be the corresponding
Kempf-Martin space. Let E(z) be given by

= () ) I 0 o

nEZL,tn#0

L i In|t,=0
€= 0, otherwise

u(z) = mz (2)"

and p is the smallest nonnegative integer for which the series

1
Z |tn|p+1

n#0
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is convergent. Then a function F(t), t € R, belongs to KM ({t,}n, {t,}n) if

and only if there exists a function G € L%

F(t) = !

1 KB(E)(t,t

such that

)FE<G(t))7

Proof. Thanks to Theorem [6.2] we have that

N)F(t) = iv/Kp (LU F(t) € B(E).

Let T be the regular simple symmetric linear transformation with deficiency
indices (1, 1) corresponding to the bandlimit pair ({¢,}n, {t/,}.), and let O(z)
be the Livsic characteristic function of T'. By T'heorem 4.4 and Proposition
4.5 in [40] (p. 1627) we have that ©(z) has the form

H(t)

) 11
Z_ZZnt 2 tp—

_z+zznt72t1+t

O(2)

/
n
/
n

IR Cetalre)

A e

_ St (55 )

St (FE )t
where a =iy, t2+1 Then by Theorem 4.8 we get that F(z) given in
verifies O(z) = E;( %) Thanks to Lemma [4.12 and to (6.12) we obtain

b= —limsupy 'log

Yy—+o0 tn -z

2o

tn _
_t%+1>+a

—limsupy ' log

Yy—r+00

> 0.

e

Hence we can apply Theorem to H(

if and only if there exists a function G' € L2
= Fu(G(t)).
H(t), the proof is complete.

H(t)

) N S
Since F'(t) = in/Kp(s)(t:1)

t, — 2

=)
bty — i

t), and we obtain that H(t) € B(E)

such that

6.5 Alternative definition of the Kempf-Martin spaces

According to the unitary isomorphism between the Kempf-Martin spaces and
the de Branges spaces proved in Theorem [6.2] we introduce the following
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equivalent definition of the Kempf-Martin spaces. For every Hermite Biehler
function F(z), the corresponding Kempf-Martin space X M(E) is given by

eam(s) — B B(E)|:

- - . LeR _
oot ) IBONTO (6:14)

Since the original Kempf-Martin spaces are defined only on the real line, here
the functions of the de Branges space B(E) are considered to be restricted
on the real line. Obviously, the Kempf-Martin space KM (E) coincides with
the Kempf-Martin space KM (T') with Livsic characteristic function given

by O(z) = EE#(S). The Livsic characteristic function of the original Kempf-
Martin spaces is such that ©(z) = 0, but nothing prevents us from extending
the definition also to functions for which ©(7) # 0.

The goal of this section is to show that, starting from this equivalent def-
inition of the Kempf-Martin spaces, we can derive and improve all the most
important results for the Kempf-Martin spaces presented in [40] without
using the theory of simple symmetric operators.

We will prove these results in a different order than that given in [40].
In particular first we will derive the result of Theorem 2.24 and the main
results of Section 3. Only after this we will give an equivalent proof of
Propostion 2.18. Finally we will derive the main results of Section 4.

Theorem 2.24 in [40] derives the sampling formula (6.3]), while the main
goal of Section 3 in [40] is to define the Livsic characteristic function ©(z) of
a Kempf-Martin space, and to prove Corollary 3.18, which states that, for
every 6 € [0, 1), the sequence {t,(0)}, defined in is the set of solutions
of

O)=e?" tecR. (6.15)
For the alternative definition of the Kempf-Martin spaces, all these results
are obtained in the next theorem, and we improve them showing that the

sampling formula ([6.3)) converges in norm, and uniformly on the intervals of
R.

Theorem 6.5. Let E(z) be a Hermite Biehler function, and let ©(z) =

E;(S). For every 6 € [0,1), let the sequence {t,(0)} be the set of solutions of

O)=e? teR, (6.16)
Then for every 0 € [0,1) and F(t) € KM(E) the following sampling formula

holds:
F(t) = Y Ke (ta(6). 1) F (1,(0))

The series converges in norm, and uniformly on the intervals of R.

Proof. Given a Hermite Biehler function E(z), the classical sampling formula
(2.17)) for the de Branges space B(E) is based on the sampling sequence {¢,, },
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of solutions of ©(t) = 1 for t € R, where O(z) = EE#;S). Now consider the in-
ner function Oy(2) = e 2"?0O(z), for some 0 € [0,1). Then Fy(z) = ™ E(z)
is a de Branges function of Oy(z). We observe that the corresponding de
Branges space B(Ey) = EpkC(Oy) is obviously equal to B(F) = EX(0©), since
both E(z) and O(z) are just multiplied by a constant. Indeed, by (2.15)) we

can easily see that also the reproducing kernel remains the same:
Ey(2)Ef (w) — Ef (2)Ey(w)
2mi(w — 2)
e E(2)e” ™ E# (W) — e ™ E# (2)e™ (W)
2mi(w — z)
E(z)E*(w) — E#(2)E(W)
- 2mi(W — 2)
= KB(E)(UJ, Z)

Therefore, for all 6 € [0, 1), every function G € B(FE) can be rebuilt exactly
also with samples taken on the sampling sequence {t,(f)} of soultions of

O(t) = e*™? for t € R, and by (2.17)) we get

K (ta(0),2)
G(z) =
( ) n KB(E) (tnw)?tn(e))
Now, given F' € KM(E), according to (6.14) set G(t) = N(t)F(t) € B(E),

Kpgy)(w,z) =

G (£.(0)) . (6.17)

where
N(t) = ix/Kn (b, 0). (6.18)
By we have
PN = 3 g 28O0 1,(6) N0, (0)
and then

and then
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Hence, recalling that the repoducing kernel of a RKHS is unique, we obtain
that the reproducing kernel of K M(E) is given by

Therefore, by (6.19) and (6.20) we get

N0 K (ta0),1
Pty =2 N(t)N(tn(Q))Ki(E) (ta(6). 1(6))
Kieme) (tn(0), 1)

=2 K a0), (@) )

Moreover, by (6.18) and (6.20) we get

F (ta(0)) .
(6.21)

K (t,t) (6.22)
(t,t

and hence we finally get
F(t) =3~ Kims) (ta(0),1) F (£a(0))

Now, for M € Z, M > 0 we set

owr= (o= £, o002 ) e
_ U N (£(0)) K (1(6). 1)
%@‘@@ZEMW%m@wmmmmw
Gu(t)
N e KM(E),

with
”GMHB(E) = HFMHICM(E)‘
Given any interval [«, 8] C R, by Theorem we have
lim sup |Gu(t)] =0,
M—H—oote[o}?ﬁ]| M( )|

Mligkloo ||GM”B(E) =0.
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Therefore, since Gy (t) = Fp(t)N(t) and N(t) has neither poles nor zeros
on R, we obtain

FM(t)N(t)‘
lim sup |F, = lim sup |——~=
Mﬁ“’%e[w]' )] M=o elap) | N(t)

1

< - lim sup |Gum(t
infiefa,g [N ()] M=+ sejag) Ga?)

:07

and

(Bl = Jim Gl = 0.

Hence the series converges in norm, and uniformly on the intervals of R. [

The main goal of Section 2 in [40] is to use the theory of simple symmetric
operators to prove the crucial result of Proposition 2.18 (Theorem in
this work). For the equivalent definition of the Kempf-Martin spaces, we
derive the same result in the next theorem. Before proving the theorem, we
need the following lemma, which is an interlocutory but fundamental result.

Lemma 6.6. Let E(z) be a Hermite Biehler function, and let t be the spec-

tral function of ©(z) = EE#;S). Let Kxpmg) be the reproducing kernel of
the Kempf-Martin space KM(E). Then, for every 6 € [0,1), the sequence
{Kime)(t(n +0),2)}, is an orthonormal basis of KM(E). Moreover for

every n,m € Z and 6,3 € [0,1) we have

<K;CM(E) (t(ﬂ + 9)» '), KICM(E) (t(m + B)’ ')>/CM(E)

(=1)msin(a(B — 0)) /' (n + O)t (m + B) (6.21)
S w(B) ) ™ -

Proof. By ([6.20) we have

KICM (Tu S)
S

_ Kpwy(r,s)
N(T)N(S) 1
’\/ [E(s)|y/7'(s)

E( )E*(r) — E#(s)E(r) 1 '
(r) y\/w (r) 2mi(s — ) |E(s)|\/7'(s)
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We observe that

(B(s)B* (r) — E#(s)E(r))?
E(s)E*(r)  E*(s)E()
=Bl ENE (S)E#()<E#<8>E<>+E<5>E#<r>_2>
(80, 20
| 2(s) P |<@8) o -2)

—|E(s)]2|E(r) (e 2mi(7(s)— r<r>>+ezm =) _ 9)
=|E(s)P|E(r)]* (2cos(2m(7(s) — 7(r))) — 2)

— _ 4’E(S)’ ‘E(T’)‘Z (1 COS(27T(2<S) ( ))))

= — 4| E(s)]*| E(r)|* sin(x (7 (s) — 7(r)))*.

Therefore we get

K (1) = — - POET) Z EP(9F() 1
BT 2mils =) E() /7 (5)

_ (_1)LT(s)—7—(r)j t,<T(T))SiH<7T(T<S) B T(T))) t/(T(s)).

w(s—r)

Now, set n = [7(r)|,0 ={7(r)},m = [7(s)], 8 = {7(s)} so that r = t(n+0),
s =t(m + (). Then we obtain

Kxpme)(t(n+0),t(m + 3))
_ (—1)m_" Sin(ﬂ'(m +B—-n— 9)) \/t’(n + Q)t’(m n B)

t(m+B) —t(n+0) T
(=)™ msin(r(8 — 0)) /' (n+ 0)¢ (m + B)
T ta(B) — ta(0) - '

Now fix any 6 € [0,1) and consider the sequence {Kxpmg)(t(n +0),-)}n.
Recalling (2.1]) we get

(Kicmm(t(n +0),), K (Hm + B), )

KM(E)
= Kieme)(t(n +0), t(m + 5)) (6.22)
(=1 msin(a(B — 0)) /' (n + O)t (m + B)
 tw(B) — ta(0) a 7

and then (6.21]) is proved. It remains to show that { Kxmm)(t(n+6), )}, is
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an othonormal basis. We observet that
(Kieme) (tn +0), ), Kicme (Hn+0),-))

 lim sin(m(8 —0)) t'(n+0)
=0 t,(B) —t,(0) 7

KM(E)

_ . sin(@(8-0)) t(n+0) 6.23

_}Blgbt(n—i—ﬂ)—t(n—FH) T (6:23)
'(n+6

= lim t’(nﬂ—i- 5 t'(n+9) (by I'Hopital)

=1.

The result of (6.23)) could be derived as an immediate consequence of (6.22)),
but for sake of completeness we prefer to prove it explicitly also in this case.
Moreover, for n,m € Z, n # m, we get

(Kicpa(m)(t(n +0), ), Kicme)(tn +6),))

KM(E)
_ Jipg S5 =6)) (0 +6) (6.24)
B=0t,(6) —tn(0)
~0.

Hence, by and we have obtained that the elements of the se-
quence { Kip(p) (t(n+60), ) }n are pairwise orthonormal. Then { Ky aq(g) (t(n+
0),)}, is an orthonormal sequence in XM (E). Thanks to Theorem [6.5] for
every F' € KM(T) we have

F(t) =Y Kimm) (ta(0),1) F (t.(0))

=Y Kicmm)(t(n+60),t)F (t.(0)) .

Then, for every 6 € [0, 1) the only function that is perpendicular to all the
elements of the sequence {Kyar)(t(n + 0),-)}, is the null vector, hence
{Kicme) (t(n+6),-)}n is a complete orthonormal sequence in KM (E), and
therefore an orthonormal basis. O
Theorem 6.7. Let E(z) be a Hermite Biehler function and let ©(z) = E;S) .
For s,t € R, the reproducing kernel of the space KM(E) can be expressed
as

t'(n)
(t—to) (5 — tn)

= (2 1)

(t —t,)?
and {t, }n is the set of solutions of O(t) =1 fort € R.

Ko (i) = 10D (5

where

) (—1)7 O (s),

=
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Proof. For semplicity we set

Pn(0) == Kemem (tHn +0), ).
Fix any «a € [0, 1) so that § # a. Then, expanding ¢,(#) in the orthonormal
basis {¢n(a)}, we get

1= (&n(0), on(0)) e pa(i
sin?(m(a — 0)) t'(n+ 0)t'(k + oz).
v (te(@) = 1.(0))° m?

Solving for t'(n + 6) we obtain

t(n+6) = Fu (a(0))7, (6.25)

where

=

0= (S ihr)

Expanding (¢n(6), ¢ (8))xam(p) in the orthonormal basis {@x(a)},c, and

using and ([6.25]) we have
(0n(0), o (B)) cpmu(my = Z(%( ) Ok(@)) iy (k@) Om(B)) iy

1)rem t'(k+ o)
- % (ta(0) — 1)) (£ (B) — ta())
sin(r(a — 0)) sin(m(a — 3)/#/(n + )t (m + )
t'(k+ a)

n Z )y (ttn+0) —t(k + ) (t(m + B) — t(k + a))
fa( (n+0)) fa(t(m + B)).
Finally we get
Kim)(t, s) = (Kxam) (), Kieme) (s, ) kame)
= (Sry (1) = (1)), 617y (7(5) = 17(5))) ) e

_ (1)l t'(k +a) ) 1)
D0 (g gy ) D
for any a € [0, 1), and setting for a« = 0 the proof is over. ]

The goal of the first part of Section 4 in [40] (up to Section 4.6, pp.
1624-1628) is to derive a representation for the Livsic characteristic function
in terms of the sequence {t,},, obtained in equation (25) (p. 1628):

Zn (tnl—z tn— z) t/
2 (tnl—z T tn +2) t |
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In the proof of this result, an important role is played by the equation

t/
> i =, (6.27)

n

which is the key property of the normalized time-varying bandlimit pairs
({t.}n, {t) }») and then a fundamental pillar of all the Kempf-Martin theory.
For the alternative definition of the Kempf-Martin spaces we derive a much
more general result in the following theorem, for which and are
the particular case given by zy = 1.

Theorem 6.8. Let O(z) be a meromorphic inner function, and let t(z) be
its spectral function. For alln € Z set t, = t(n) and t,, = t'(n). Then, for
any n € Z, ©(z) can be expressed as

t t! t .
ot (T T D) T
O(z) = z (t”;, e ’*") —. (6.28)
P + Zm#n (tmﬁz B tmTtn) +am
Moreover, for every zero zy of ©(z), ©(z) can be written as
Zn 172 - iz t;7,
o) = Zrloz )t (6.29)
2n (tn—z - tn—%> ty
and the following equality holds:
%(20>t,
L =T. 6.30
2 o= Ra0) P+ S (6.50)

Proof. Let E(z) be a de Branges function of ©(z), and let M(E) be its
associated Kempf-Martin space. Then, by (6.25)), for every 6 € [0,1) and
a € ]0,1) such that a # 6, we have

/ - 2 t'(m+ ) -
t(n+0) = sin?(m(a — 6)) <%: (tn(0) — tm(a))2> |

Setting o = 0 we get
t/
(; (t(n+0) —tn)
Given [ € (0,1) and € such that 0 < e < 3, we have

2

sin?(76)

2> t'(n+0) =

[ <Z (e tm>2> fn+d)

A +Z<— b .t )
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and
2

B
/6 s111§(7r6) = — 7 cot(mf3) + 7 cot(me).
Therefore we get

t! t! t! t!

= —mcot(nf) + m cot(me).

As € goes to 07, t,(e) — t, — et asymptotically. Hence the term ﬁ
on the left hand side asymptotically goes to % as € — 0. On the right
hand side, 7 cot(me) = ﬂzf;((:z)) asymptotically goes to £ as ¢ — 0F. Then,
as € — 0T we can cancel the simple poles % on both sides, and we obtain

t! ( t! t! )
——"— + lim o - = = 7 cot(mf3).
ta(B) —t, = 0+ gﬂ ta(B) —tm  tn(€) — tm

We observe that

t;n . t;n _ tn(ﬁ) - tn(e)
tn(ﬁ) —lm tn(‘f) —lm (tn(ﬁ) - tm)(tn(e) - tm)’

and that
(ta(B) = ta)(ta(€) = t) >0 Vm #n,

since t,, < t,(B) < tn41. Hence

Bt (8 (o)
1a(B) —tw a(©) — t (a(B) — ) (Fa(€) — )

and by the monotonic convergence theorem we get

>0 Ym # n,

t! t t! t!
lim - - = = - R :
0+ gﬂ (tn(ﬁ) —tm tale) — tm> Tgﬂ (tn(ﬂ) — b b — tm)

Therefore we obtain

t! t! t!
——+ o - —n = 7 cot(mf3). 6.32
AT (m(ﬁ) i tn—tm) () (6.32)
Setting
0 if m=n,
fm,n = v .
= ifm#n,
we get

%j (Mﬁt)m_tm — fmm) = 7 cot(n3). (6.33)

115



Chapter 6. Kempf-Martin Spaces

Moreover, since t, () covers the real line exactly once as n varies in Z and
S varies [0, 1), we can set z = t,() and for all x € R we can write

>

where we used the fact that cot(r7(z)) = cot(m(n+ ) = cot(r3). Now we

define y
f(:(])zz< - _fm,n>u

m \T — 1ty

t

T — 1ty

— fmn> = 7 cot(n7(x)), (6.34)

so that
f(z) = meot(nr(x)).

Hence, recalling that — cot(x) = cot(—z), we have

arccot (_f(x)) = —771(x),

™

and using the well-known identity

we obtain
2mit(x) = log <_ (
and therefore
O(z) = 2@
—f (x) —im
- —flz) +im (6.35)
(s fu) i
N Zm( . +fm,n) T

tm—x

It is easy to see that by extending the last expression to all C we obtain a
meromorphic function, and hence ([6.28)) is proved.
Now, let zy be any zero of ©(z). In order to obtain ©(zy) = 0, by (6.35))

we need /
t

;(tm—zo+f’> T ( )

Since ©(z) = % = % = ﬁ, we get the ©(z) has a pole for z = %,

and therefore by ([6.35) we need also

(.

+ﬁm>+m:0. (6.37)
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Hence we finally get

Lom <tw§%x T fm") — = (Zm (tmt/inzo - fm”) B z'7r)
O(z) = : : g ‘
Yom (tm’ix + fm,n> + T — (Zm (tmT% + fmm) + m)
_ Zm (tml—m o tml—zo) t;n
2o <tmlfx o ﬁ) t;n'

3(20)t!
2 o — () Sy "
O
From this theoren we can also derive the following result.
Theorem 6.9. Let F'(z) be any Herglotz function such that
O(z) = ]im (6.38)

is a meromorphic inner function. Then F(z) can be uniquely represented as

1 t, — éR(Zo)
e =2 (tn —z  (ta = R(20))* + 3(20)?

n

) wy, z€CT, (6.39)

where

o {t,}n is the sequence of poles of F(z) on the real line;

(F(2)+i)? .
Fi(z) 7

¢ Wp = hmz—)tn
o 2o is any point for which F(zy) = 1.

Moreover the following equality holds:

3(z0)wp, B
2 RGP+ S (640)
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Proof. We already know that there exists an infinite number of Herglotz
functions that verify . Indeed, according to Section , there exists a
bijection between the Herglotz functions corresponding to a purely discrete
measure and the meromorphic inner functions. In particular, given Herglotz
function F(z) corresponding to a purely discrete measure, the meromorphic
inner function ©(z) associated to F(z) is given by (6.38):

F(z)—i
)= e+
If 2y is any zero of ©(z), by Theorem 6.8 we have

1 /
tn—ZO ) tn

1 1 /
th—2 tn zo) tn
—R(20)

=
S
i (m (- m(zo»?w(zo)?
T
N

)
1 R(z0) ) "
)

tn—2 o (tn— )) +3(20)?
1 - %(Zo)
tn—z  (tn— §)‘E(Zo))”'\f(ZO)z

tn—%(20) )
T (55 ) i
where in the last step we used ((6.30)). Hence by (2.7) we get

. Z tn — %(Zo) i
th—2  (tn— R(20))2 + ()2 ) 7
Since {t,}, is the sequence of solutions of O(t) = 1 for ¢t € R we get it is
also the sequence of poles of F'(z) on the real line. We observe that

2iF(z)
0z) = L&)
SRGEED
and hence, recalling Theorem we have
, 2
t = .
tO(t)
Therefore we obtain
t 2 . (F(2) +1i)?

Wy, = — = lim

T O(t,) ot F(z)

Since zj is any point for which ©(zy) = 0, by (6.38]) we easily get that it is
any point for which F'(zy) = i. Realling (6.30)), we finally obtain

own oI
2 o W) + () 2 o — () £ Sy -
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It’s interesting to notice that, given a Herglotz function F'(z) correspond-

ing to a purely discrete measure and such that F'(i) = ¢ and lim,,_, Fl(iy) =0,

then (2.9) is a particular case of Theorem [6.9 Indeed, by (2.9) and (2.5)

we get

1 tn
F(Z):Z<tn_z_t2+1>wnv Z€C+7

n

which is exactly the same equation representation of F(z) that we obtain
setting zp = 7 in (6.39)). Obviously we have

F(i)

1 ty
2 - W
ty—1 12+1

) 1
2 (t%+1>w”’

and then also (6.40)) is verified. Therefore we obtain that in this case the

positive weights {w,},, of the purely discrete measure are given by
Lo

Finally it is important to observe that also the generalized sampling
theory described in C'hapters 5,6 in [19] can be totally derived without the
use of the theory of simple symmetric operators. We don’t go more in details
since it essentially uses all the results already proved for the equivalent
definition of the Kempf-Martin space. Indeed, in particular it is based on
the sequences t,, that, given any « € [0, 1), verify the equation

l

Il
-~

Wy = hmz—nfn

t t(t—ty,)

t —ntn ap> (t —tm) (tn — tm)

m#n
which we already obtained in (6.32).

= mcot(mar),

119






CHAPTER

Time-varying bandlimit functions and
applications

7.1 Definition of time-varying bandlimit

The bandlimit of a bandlimited function is strictly connected with the den-
sity of the sampling points, indeed the well-known Nyquist theorem states
that an a-bandilimted function can be rebuilt extactly from samples taken
with a uniform sampling such that ¢,,; — ¢, < .. The classical notion
of bandlimit for any Paley-Wiener space PW, can be interpreted as a
measure of the density of any of the Nyquist sampling sequence. Since
PW, = e K (%), the phase function 7(t) of ©(t) = €% is simply
7(t) = &t. It follows that the bandlimit a is given by

a =TT .

Working in analogy with the classical Paley-Wiener spaces PW,, we can
construct a precise and meaningful definition of time-varying bandlimit for
any de Branges space and Kempf-Martin space. Given a Hermite Biehler
function E(z), by Theorem we know that, for every 6 € [0,1), all the
functions of the de Branges space B(E) can be rebuilt exactly with samples
taken on the sampling sequence {t,()}, of solutions of O(t) = ¢*™, t € R.
Similarly, thanks to , we know that all the functions of Kempf-Martin
space LM(T) can be rebuilt exactly with samples taken on the sampling
sequence {t,(0)}, of solutions of O(t) = 2™ t € R, where O(z) is the
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Livsic characteristic function of T. In both cases, for every 6 € [0,1), the
sampling sequence {t,(0)} obviously satisfies

T(t,(0)) =n+46,

1,(0) = t(n + 0), (7.1)

where t(x) is the spectral function of ©(z). Since n € Z and 0 € [0, 1), we
have that, as n and 6 vary in their domains, n + 6 takes once and only once
every real value. In particular, given z € R, we have x = n+6 with n = |z

and 0 = {z}, and hence
t(z) =t ({}).

Moreover, since t(x) is a strictly increasing function, it is easy to see that ev-
ery real value ¢t € R belongs to one and only one sampling sequence {¢,(0)},,
and precisely it is the element with index n = |7(¢)] of the sequence cor-
responding to # = {7(¢)}. Thanks to all these observations, the spectral
function ¢(z) can be interpreted as the function that describes how the value
of t,,(0) varies as 6 € [0,1) and n € Z vary in their domain.

Given a meromorphic inner function ©(z), the value of 7/(t) > 0 deter-
mines how quickly the phase of ©(t) is rotating on the real line, and hence
measures the local density of points {t,,(0)},, as n and € vary in their domain.
Therefore, it is natural to extend the notion of bandlimit to the time-varying
setting by defining the time-varying bandlimit a(¢) of de Branges spaces and
Kempf-Martin spaces as

a(t) = n7'(t),

so that this definition is totally coherent with the classical notion of ban-
dlimit for the Paley-Wiener spaces. This formal definition of the time-
varying bandlimit is the same given in [40].

However, this formal definition doesn’t give an easy interpretation of
the concept of time-varying bandlimit. Indeed, it difficult to give a precise
interpretation of the concept of time-varying bandlimit, since the traditional
notion of bandlimit is determined by the Fourier transform of the entire
signal and hence it is time-independent and non-local.

In |19] the following interpretation of time-varying bandlimit is given.
The Nyquist sampling rate of a bandlimited signal is the critical sampling
rate below which there is insufficient information to recover the signal and
above which redundance exists. It is defined as the inverse of twice the
bandwidth of the signal. In principle, if the information density vary in time,
also the Nyquist rate can vary in time. Hence the time-varying bandlimit of
a signal can be interpreted as half of the inverse of the time-varying Nyquist
rate of the signal.

In the next section we introduce a new family of time-varying-bandlimit
spaces which are consistent with this interpretation, but which also allow
a direct interpretation of the concept of time-varying bandlimit in the time
domain.
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7.2 Time-varying bandlimit spaces V(0)

In this section we define the spaces spaces V(0©), which are a new family of
reproducing kernel Hilbert spaces of time-varying bandlimit functions, and
we derive an useful expression for their reproducing kernel.

Let ©(z) = ve?®* B(z) be a meromorphic inner function according to the
representation given in ([2.3)), with logarithmic residue 2b > 0 and phase
function 7(t). Consider the space V() given by

e—zbt

(1)

V(O) = {F L F(t) = G(t), for GeK(O), te R} .

The scalar product and the norm of V(0) are given by

—+00

(F,Gye) = / FOGH) (t)dt,

—0o0

+o0
IFI}e = [ IF@P ()t

Recalling that the functions of K(©) are holomorphic and without poles on
the real line, and that 7(¢) is analytic on the real line and such that 7/(¢) > 0
Vt € R, we can conclude that all the functions of the space V(0) are analyitc
on R.

Let E(z) be a de Branges function of ©(z). Recalling Theorem [2.19] it
is easy to see that

efzbt

V(©) = E(t)T'(t)B(E)‘R? teR, (7.2)

where the functions of B(E) are considered to be restricted on the real
line. .b Given Fi(t), Fy(t) € B(E), and Gi(t) = ﬁ\;’:l_mﬂ(t), Gy(t) =

WFQ(t) € V(©) we observe that

—+00

(G1, Ga)yiey = / GG vt

= [ ARG g

= /_:O Fy(t)Fy(t)

= (F1, %) p(p)-

1

induces a unitary isomorphism be-
BN Y P

Hence the multiplication by -

tween B(E)|g and V(0O).
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Thanks to (6.14)) and ([7.2)) we also have that

V(O) = de~ |§Et;|/CM( ) (7.4

=ie "\ /O()KM(E

where E(z) is a de Branges function of ©(z) and KM(E) is the corre-
spondent Kempf-Martin space. Given Fy, Fy € KM(E), and G;i(t) =

yB(t)Fi(t), Gy = iy/vB(t)Fy(t) € V(O), by (6.10) and we obviously

have

(G1, Ga)ye) = (Fi, Fa)km(k)-
Theorem 7.1. Let ©(z) be a meromorphic inner function given by
2nt (tn z t2+1) +a

2t (tn z t2+1)+a

according to the representation given in (4.7), with phase function T(t). Then
V(0) is a RKHS with kernel given by

O(z) =

Mf(s), t,s € R,

Kve)(t:s) = f()=——

where

In particular we have
KV(@)(t,t) =1 VteR.
Proof. Let E(z) be a de Branges function of ©(z), and let K M(E) be the

correspondent Kempf-Martin space. We observe that

g(t) +a
O(t) =

() O a,

- ; Zf —t 27 (75)
t(t—s)
g(t _zn:(t—t V(s — 1)’
Then by Theorem [6.7 and (7.4) we get
Kye)(t, s) = e"O1)? Kipm (1, s)e"O(s)?

g(t) = g(s) (7.6)

=f) f(s), t,seR,
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where

Moreover we have

t -1 (7.7)

- (Z (0 - t>2>

and then .
Ky(e) (t,t) = <(ant—n7f)2> 11t1—r>2 g(ti:g(s)

=Ly 90 =9() (7.8)

gt)s=t t—s

=1.

O

7.3 Characterization and motivation of the spaces V(0)

In this section we give some important characterizations of the spaces V(0):
we derive a family of sampling formulas, we introduce a family of orthonor-
mal basis, and we show that a weighted version of the Fourier transform
induces a unitary isomorphism between these spaces and a class of sub-
spaces of L2(R). Moreover we explain why these spaces are suitable for
sampling and recostrunction of time-varying bandlimit functions.

Theorem 7.2. Let ©(z) be a meromorphic inner function given by

! | 7] —

_ St (i ) £
o / 1 _ tn ’
Zn tn (tn—z t%+1> t+a

O(z)

according to the representation given in , with phase function 7(t) and
spectral function t(x). For 6 € [0,1) and n € Z set t,(0) = t(n+0). Then
for every 0 € [0,1) and every function G € V(0©) the following sampling
formula holds:

G(t) =Y Kye) (ta(0),1) G(t.(6))

gt (0)) — g(t) (7.9)
= ST G T (OG(0),
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where

1 t
ty=>t - .
g() zn:n<tn—t t%—l—l)
The series converges in norm, and uniformly on the intervals of R. For the
case 0 = 0 the sampling formula becomes

G(t) = Z(—l)”e‘ibt”ﬂf(t)G(tn).

t, —t

n

Proof. Let E(z) be a de Branges function of O(z), and let KM(E) be the
correspondent Kempf-Martin space. Given G € V(0) such that G(t) =

ie=",/O(t)F(t) with F € KM(E), thanks to Theorem 6.5 we have
—ie™O(t)"2G(t) = F(t)
= zn:KICM(E) (tn(0),8) F (tn(0))
=3 Kiemm) (ta(60),1) (=)™ O O(t,(6)) 2 G(ta(0)),
and then :
G(t) = 3 Kca (12(0), ) € O=0(0) 36(1,(9) G (1(6)
= g Ky(e) (ta(0),1) G(t4(0))

g dtn() — g()
= S TEEN G G F00(0))

In particular, for the case 8§ = 0, we observe that
1 L
Tim g'(6,) 2 g(ta) =\t

and then we obtain

Now, for N € Z, N > 0 we set

Fu(t) = <F<t> — Y Kwe (ta(6),0) F(m(@») e KM(E),

Gn(t) = (G(t) - _Z}N Kin) (ta(0), 1) M(lf)M(tn(@))G(tn(@)))
= M(t)Fn(t) € V(O),
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7.3. Characterization and motivation of the spaces V(0O)

where M (t) = ie=™,/O(t), and

HFN<t>HICM(E) = ||GN(75)HV(9)
Given any interval |«, 8] C R, by Theorem we have
li F =
Wim sup, [En(®)] =0,

ngfoo N Wl pzy = O

Therefore, since Fy(t) = %V(%) and |M(t)| =1 for all t € R, we obtain

lim sup |Gu(f)] = lim sup |Ey(t)M(0)

N—+400 telonB] N—+4o00 telonB]

= lim sup |F;
N~>+oote[a/8]| N( >’

=0,

and
th HGNHV = Nl_igloo ||FNHICM(E) = 0.

Hence the series converges in norm, and uniformly on the intervals of R. [

Theorem 7.3. Let O(z) be a meromorphic inner function, with spectral
function t(z). For 6 € [0,1) and n € Z set t,,(0) = t(n+0). Then for every
6 €10,1) the set

{Kye) (tn(0),t) }n

is an orthonormal basis of V(O).

Proof. Let E(z) be a de Branges function of ©(z), and let M(E) be the
correspondent Kempf-Martin space. Thanks to (7.8)), for § € [0,1) and
n, m € Z we have

(Kvee) (ta(6),1), Kvie) (tn(0),1))
= Kye)(tn(0),1 ())
— oibtn(0) @(tn(é) KKM( 1 (tn(0), tm (0)) e OO(t,,(0))2

— oibta(6) 0(t,(0)® <KICM(E) (tn(0),t) , Kicpme) (6 (0), t)>

V(o)

V(©)
Thanks to (6.24]), for m # n we obtain
(Kye) (ta(0),1) , Kv(o) (tm(0), t)>v(®) =0
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Chapter 7. Time-varying bandlimit functions and applications

Moreover, using ([6.23)), for m = n we get

(Evie) (ta(6). 1), Kvie) (ta(6).1)) o

— OB, (6)* (Kicpm) (00(0),1), Kiane) (ta(6),1))
= (Kicmee) (ta(0), 1) Kicpa(my (£(6), 1))

—ibty () 1
Vo) € O(t,(0))z.

V()

Therefore we have shown that

{Kyve) (ta(0),1)}n

is an orthonormal set. Hence, thanks to Theorem [7.2, we obtain that
the only function that is perpendicular to all the elements of the sequence
{Kye) (tn(8),t)}, is the null vector, hence {Kyey (tn(f),t)}n is a complete
orthonormal sequence in V(0©), and therefore an orthonormal basis.

[]

Now we set A
@O(Z) — eszz7

©1(2) = vB(2),
so that ©(z) = ©(2)01(z), and we observe that ©(z) = LOM (O(z), ©1(z)).
Setting £,(0) = B>, O1K (0) N (@™ _, O76,K (6))", thanks to (5.11)
the space V(©) can be represented as

efzbt

V(0) = <IC(@0) ® <€|9 /Q(@)))

7'/<t) n>0

! <wa@e—“’z (@/@4@)))

7'/<t) n>0

We observe that the sampling sequences of the spaces V(0) are the same
of the corresponding de Branges space B(E). Hence we can inherit also the
definition of time-varying bandlimit given in Section Therefore, for any
a € [0, 1), the functions of the space V(0O) can be rebuilt with samples taken
on the sampling sequence {¢,(«)},, where

to(a) =t(n + ),

and t(x) is the spectral function of ©(z). Now, given F' € V(0©), consider
F(z) and F(t(z)) for x € R. For any a € [0,1) F(z) can be rebuilt on
samples taken on the sampling sequence {t(n+a)},, and then it is easy to see
that F'(t(x)) can be rebuilt on samples taken on the sampling sequence {n+
a},. Then, according to the definition of time-varying bandlimit, F'(¢(z))
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7.3. Characterization and motivation of the spaces V(0O)

has a time-constant bandlimit. We have obtained that replacing « with ¢(z)
in F(z) we cancel the effect of the time-varying bandlimit, flattening it to
a time-constant bandlimit. Since F(t(7(x))) = F(x), the function F(z) can
be interpreted as the result of the application of a distortion 7(x) to the
time domain of the time-constant bandlimit function F(¢(x)).

Now we define the space

V(0) = {F(t(x)), F € V(O)},

equipped with the scalar product and the norm of £L%(R). Given F,G € V(0©)
we observe that

(F((@), G e = [ P
/ " PG (t)dt (7.9)
(F

(OVT'(0), GO T (1) 2wy

By definition of V(0) we have

F(t)\/7'(t) € e ™ K(O) = PWy @ e (@ lén(@)> .

n>0

Hence F(t)y/7/(t) is the restriction on the real line of a function of e=®*K(O).

We recall also that the scalar product and the norm in PW, are the same
of L2(R). Since e~ D¥*IC, (©) C PW, and |e~ 2| = 1 for x € R, the
scalar product and the norm of £?(R) are a scalar product and a norm also
for every space e~™?K,,(0). Moreover we know that the space e~ *K(0) is
the closure of the subspace formed by all the possible finite sums of elements
of PW,, and of {e=?*K,,(©)}n>0, then the norm £2(R) is a norm also for the
whole space e K(©).

Therefore, by we get that there exists a unitary isomorphism be-
tween the restriction on R of the space e~®*kC(0) and the space V(0). We
have obtained that canceling the distortion of the time-varying bandlimit to
the functions of the space V(0) we get the space of time-constant bandlimit
functions V(0), which is unitarily isomorphic to the space of bandlimited
functions e~®*kC(©). Then we can interpret the space V(©) as the space
obtained applying a distorsion in the time domain to the space e=®*K(0).

More is true. Indeed, recalling here the definitions of £ given in (5.7),
the next theorem shows that the weighted Fourier transform F, =, given by

FralF)e) = [ ;°° Flt)e =/ (t)dt,

induces an isomorphism between V(0) and L%.
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Chapter 7. Time-varying bandlimit functions and applications

Theorem 7.4. Let ©(z) = ve**B(2) be a meromorphic inner function
according to the representation given in (2.3), with logarithmic residue 2b > 0

and phase function 7(t). Let F(t) € V(©). Then the weighted Fourier
transform

Fom: V@) > L3, FualF)e) = [ +: Flt)e [ ()dt,

is a unitary isomorphism between V(©) and L.

Proof. Let E(z) be a de Branges function of ©(z), and let F'(t) € V(O) be

such that F(t) = ﬁ@(t), where G(t) € B(F). We observe that

FralB)s) = [ F@e oo
oo it A
_ [ . G(t)E(S) me—lst S0
oo e st
:/m G(O) e
= Fu(G)(s).
Now the conclusion follows easily from Theorem [5.1] O

This theorem is, for spaces V(0), analogous to what Paley-Wiener the-
orem is for the Paley-Wiener spaces. Moreover now we can associate to
every time-varying bandlimit function F'(t) € V(©) a concept of frequency
representation, that is the frequency representation of the function obtained
canceling the distortion of the time-varying bandlimit effect.

In conclusion, summarizing the previous observations, the spaces V(O)
are very interesting for sampling and reconstruction of time-varying ban-
dlimit functions, for the following reasons:

1. For every meromorphic inner function ©(z), there exists an isomor-
phic multiplier between every space V(0) and the Kempf-Martin space
KM(T) that has Livsic characteristic function ©(z), and then the
space V(O) maintains many of the properties of the Kempf-Martin
space KM(T'). Indeed, for example, the functions of the space V(O)
can be rebuilt exactly with samples taken on the same sequences from
which the functions of M (T') can be rebuilt, and for every 6 € [0, 1),

the sequence
{Kve) (tn(8), ) }n

is an orthonormal basis for the space V(0©), as the sequence

{Kxamry (tn(0),°) bn

is an orthonormal basis for the space KM (T).
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7.4. Generalized sampling method

2. We can associate to every time-varying bandlimit function F'(t) € V(O)
a frequency representation, that is the frequency representation of the
function obtained flattening the distortion of the time-varying ban-
dlimit effect in F'(z). We define this frequency representation and the
corresponding bandwidth as the normalized frequency representation
and the normalized bandwidth of F(t).

3. The normalized frequency representation of F' € V(0) is obtained ap-
plying the weighted Fourier transform F  to F(z). This transform
induces a unitary isomorphism between V(0) and £%, and hence it is,
for the spaces V(0), the analogous of what the Fourier transform is for
the Paley-Wiener spaces.

4. Thanks to the previous point, the spaces V(0) are, for time-varying
bandlimit functions, analogous to what the Paley-Wiener spaces are
for bandlimited functions.

5. Thanks to all these observations, the spaces V() result to be more in-
terpretable and controllable than other time-varying bandlimit spaces.
Indeed, by ([7.8), every function F(t) € V(©) can be written as

FO= (R (@ 70)).

T/ n>0

for Fy € PW, and F,(2) € e ™ K,(0) C e2*PW,. We recall that
F(F,) € L[b(2n — 1),b(2n + 1)]. Then the normalized bandwidth of
the function F(z) is defined by the values of n for which F,(z) # 0,
while the shape of the signal, for every interval [b(2n — 1), b(2n+1)] in
the normalized frequency domain, is controlled by F,(z).

For these reasons in the next sections we propose a generalization of the
sampling method for time-varying bandlimit functions based on the repro-
ducing kernel and the sampling formula of the spaces V(O).

7.4 Generalized sampling method

The classical Shannon sampling method allows sampling and perfect recon-
struction of bandlimited signals with time-constant bandlimits. However, it
is clear that in real applications the effective bandwidth of a signal could
vary in time. In this case, sampling a signal at a constant rate is clearly not
optimally efficient, since choosing the highest needed sampling rate leads
to wasteful redundancy, while taking a lower sampling rate causes loss of
information.

To improve the sampling efficiency, we generalize the classical Shannon
sampling method, and we propose a method which allows the samples to
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be taken only as often as necessary according to the behavior of the given
signals (and hence to its time-varying bandlimit), and maintains the ability
to perfectly and stably reconstruct the continuous signals from their discrete
values on the set of sampling points.

Therefore, the goal of this section is to generalize the Shannon sampling
theorem, following the sampling scheme of the Shannon method, but for
time-varying bandlimit functions. As already pointed out, the bandlimit
as a function of time is ill-defined since the bandlimit of a signal is simply
time-independent. However, we can consider the bandlimit of a time-varying
bandlimit function as the bandlimit of its normalized frequency representa-
tion defined in Section [7.2] that is to say the bandlimit of the function
obtained flattening the distortion in the time domain introduced by the
time-varying bandlimit. Our generalized sampling method is mainly based
on the reconstruction properties of the spaces V(0).

First of all we recap the behavior of the classical Shannon sampling
method. Suppose to have a set of raw signals, i.e. a continuous function
Frow : R — C. The Shannon sampling method consists of the following four
steps.

1. Analyze the frequency of the raw signals of interest F,,(t) in order to
choose a suitable bandlimit b.

2. Filter F,4,(t) to obtain a bandlimited function F'(t) such that F(F')(s) =
0 for s ¢ [—b, b]:

+oo
F(t) = (PFaw) (t) = Frow(s)Kpw,(t, s)ds, (7.10)
where ;
Kpw,(t,s) = —sinc(b(t — s))
™
is the reproducing kernel of the Paley-Wiener space PW,,.
3. Store the samples {F (t,)},, for t, = ¥n.

4. Reconstruct F'(t) for all ¢t € R from the discrete samples using the
Shannon sampling theorem:

F(t) =2 Kpw, (£, ). (7.11)

A given arbitrary raw signal F,,,(t) generally hasn’t bandlimit b, so we
need to first pre-filter it in order to consider only the frequencies inside the
interval [—b,b]. The bandlimit is chosen in step (1) so that the frequencies
of Frqu(t) outside the interval [—b,b] are negligible.
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In step (2), we approximate the raw signal F,..,(t) with the filtered signal
F(t) such that F(F)(s) = 0 for s ¢ [—b,b]. In order to obtain such F(t)
it is sufficient to multiply the Fourier transform of F,,(t) with the rectan-
gular function which is 1 in [—b, ] and 0 elsewhere. Let Fyq,(w) and F(w)
denote the Fourier transform respectively of F,..,(t) and F'(t). The filtering
operation F(t) = (PF,q,) (t) in the frequency domain becomes

F(w) = Fqu(w) rect <§;)>

Thanks to the Fourier transform properties, in the time domain this is equiv-
alent to the convolution of Fq,(t) with the function £sinc(bt):

F(t) = (PFu) (1) = 1/+°°ﬁ () rect <2b) dw

= Frau(t <b sinc bt)
[t (bt

Hence F(t) is obtained applying the scalar product of the Kempf-Martin
space PW,, between F,.,(t) and the reproducing kernel of PW,, even if
Faw(t) generally is not in PW,.

The resulting signal F'(t) has support contained in [—b, b]. Therefore in
steps (3) and (4) the sampling theorem is applied. The samples {F (¢,)},,
are taken on a set of equidistant points such that ¢,,,; — ¢, = 7, and the
continuous bandlimited signal F(¢) is perfectly reconstructed for all ¢ € R
from these samples according to (|7.11)).

Now, let’s introduce the scheme of the generalized sampling theory. It
consists of the following four steps.

:}

1. Analyze the frequency of the raw signals of interest Fq,(t) in order
to choose a suitable time-varying bandlimit space, which is specified
by the normalized bandlimit pair ({¢,},{¢,}) and the corresponding
meromorphic inner function ©(z) according to Theorem given by

tn \
2t (tn z t2+1> v
Zn n (tn—z t2+1> + ZW

O(z) =

2. Filter F,q,(t) to obtain a function F'(t) with the desired time-varying
bandlimit:

F(t) = (PFaw) (t) = [ ;OO Fraw(8)Ky(e) (t, )7’ (s)ds, (7.12)
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where

Kvie)(t:3) = F(Of () X 57— t?(ltn - S>672ibtn7

f(t) = (=1)lr®lemr ( g(t) —im ))é |

g (t)(g(t) +im
(1 t
9(t) :zn:t” (tn—t - t,%+1> '

3. Store the samples {F'(¢,)}, on the chosen sampling sequence {t,}.

4. Reconstruct F(t) for all ¢ € R from the discrete samples using the
same reconstruction formula of time-varying bandlimit spaces V(©)

(see ([7.9)):
F(t) =3 Kye) (t,ta) F (ta) (7.13)
where X
Koo (1) = S (-1 Vo),

In step (1) we choose a suitable bandlimit pair, according to the frequency
of the raw signals of interest F}.q,(t).

An arbitrary raw signal F,,(t) generally doesn’t have the chosen time-
varying bandlimit. Hence in step (2) we need to filter the raw signal Fq,, ()
in order to obtain the better approximation F(t) of F.q,(t) in the set of
functions with the desired time-varying bandlimit, which are the functions
that can rebuilt exactly by the sampling formula (7.13).

Working in analogy with the classical Shannon sampling method, we
define the filter operator P as the scalar product of V(0) between F, ., (t)
and the reproducing kernel of V(0), even if F,,,(t) generally is not in V(©):

F(t) = (PFrow) (1)

= <Fraw(5)7 KV(@) (ta S)>V(@)
+oo

= Fraw(s)Kye)(t, s)7'(s)ds.

—00

By Theorem [7.3] we have that
{Kve) (tn ) }n

is an orthonormal basis of V(©), and expanding Ky e)(t, s) in this basis, we
get
Kye)(t,s) =Y Kye) (ta(0), s) Kye) (ta(0),t)
" y ) (7.14)
= f(®)f(s) > 7 e

134




7.4. Generalized sampling method

To be consistent with our purposes, the filter operator P need to satisfy the
following two constraints:

o the resulting signal F(t) = (PF,q)(t) must have the desired time-
varying bandlimit, i.e.

F(t)= Z Kye) (t.tn) F(tn);

o the operator P must be a projection, which means P? = P.
We see this in the following theorem.
Theorem 7.5. Let ©(z) be a meromorphic inner function, given by
tn -
2t (t — t2+1) -
2ty (tnfz - t2+1) +im

with phase function 7(t). Given a continuous function G(t) : R — C, let the
operator P be defined as

(PG) (1) = [ :o G (5) Kot 5)7"(s)ds.

Take any G(t) for which (PG)(t) is finite for every t € R. Then
o for the function F(t) = (PG) (t) the following sampling formula holds:

F(t) =Y Kye) (t,tn) F (t);

O(z) =

- (PPG)(t) = (PG)(1).
Proof. By Theorem [7.3] for every 6 € [0,1) we have that

{Kyve) (ta(0), ) }n
is an orthonormal basis of V(©). Hence, expanding Ky e)(t, s) in this basis
we get
=Y Kye) (ta(0), 5) Kve) (ta(0),1) - (7.15)
Therefore we have

F(t) = /_J:O G(s)Kye)(t,s)T'(s)ds
- /_—::o G(S) ( Jio KV(G)) (tn, S) Ky(@) (tn, t)) T’(s)dg

n=—0oo

_ZKV(@ (tn,t) (/

— 00

_ZKV(@ (tn, 1) (PG) (t,)

= ZKV(@) (tn,t) F (t,) .

—+00

G (s)Kye)(tn, S)T'(s)ds> (7.16)
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Hence we have obtained that the resulting signal F'(¢) has the desired time-
varying bandlimit.

It remains to show that (P?G)(t) = (PG)(t). This is equivalent to show
that, given F(t) = (PG)(t), then F(t) = (PF)(t). If F(t) were in V(0),
F(t) = (PF)(t) would be an easy consequence of the definition of the re-
producing kernel Ky e)(t,s), but F(t) is not necessarily in V(©). Since
Kye) (tn,-) € V(©) we observe that

PEyo) (tnst) = [ Koo (tns5) Kvie)(t,9)7'(a)d
= Kye) (tn,t) .
Then, by (7.16)), for F(t) = (PFq.) (t) we obtain
PF(t) = an PKye) (tn,t) F (tn)
=Ky (ta,t) F (ts)
- F(),
and we conclude that (P2G)(t) = (PG)(t). O

Finally, in steps (3) and (4) the sampling formula for time-varying ban-
dlimit functions is applied. The samples {F'(¢,)}, are taken on the chosen
sampling sequence {t,},, and the signal F'(¢) is perfectly reconstructed for
all t € R from these samples according to (|7.13]).
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CHAPTER

Canonical Systems and de Branges Spaces

8.1 Canonical inverse problem

A canonical system is a differential equation of the form

J‘g 2H(2)Y, (8.1)

where

e H(z) is a function (0, L) — Maty(R),0 < L < oo, such that H(z) >0
a.e., and H € L' (0,L') for all L’ < L. Without loss of generality we
can assume that tr(H(x)) =

Y,
e V = (CQ.
] e
g 0 —1 .
1 0 |
e 2z C.

The parameter z in ({8.1) is referred to as the spectral parameter. Let
tr H(x) =1 a. e. and let M(x, z) be a matrix solution to (8.1]). Then

1M (2, 2)|| < e[ M (0, 2)],
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where
M| = inf{t > 0: [|[MY|cz <t|Y||ce for all Y € C?},

and
1Y [lc2 = [Yi* + [Y_ |,

The solution that satisfies the boundary condition M (0, z) = I is called the
fundamental solution. When L < oo the fundamental solution at x = L
is called the monodromy matriz. A crucial aspect is that the determinant
of a matrix solution to does not depend on z, and in particular for
the fundamental solution we have det M(x,z) = 1 for all x < L. The
fundamental solution is real entire in z for all z < L.

The chain rule states that, if 0 < a < b, then the fundamental solutions
satisfy M (b, z) = N(b, z)M (a, z) where N(z, z) is a solution of on (a,b)
with N(a,z) = 1.

For more details see [46], p. 4-5. We recall also the following important
and useful result in [46]:

Theorem 8.1 (Romanov). Given a > 0, the finite interval I = (0,a) and a

e
vector e = +] € R? of unit norm, the monodromy matriz of the canonical
e_
. . . ei €€ . .
system (H,a) with the Hamiltonian H(z) = s |7 €1, is easily
ere_ e
verified to be
2
ae_ey  ae”
M(z):I—sz:]—l—zl 9 1
—ael. —ae_ey

The matriz R obeys R? = 0,R1s > 0,Ry < 0. Conwversely, for any
nonzero matrix R satisfying these three properties there exists an a > 0
and e € R% |le|| = 1, such that I + zR is a monodromy matriz for the

corresponding canonical system, given by a = Rijs — Raj,e. = y/Ris/a,
e, = (sign Ry11) \/—Ra1/a.

In |11] de Branges shows that if Y'(x,z) is the solution of (8.1)), then

E.(z) = Yi(z,2z) +iY_(z,z) is a Hermite Biehler function of z for each

€ (0,L). Given any E(z), the problem of building H (z) such that Fy(z) =
E(z) (and then ©1 = ©) is known as the canonical inverse problem.

An iterative algorithm to solve this problem was proposed by Romanov
in [46], Section 7 (p. 37). The downside of this solution is that it is not
explicit, and that neither the result of each iteration is explicit. We report
here the algorithm proposed by Romanov, for completeness and to express
it with the notations of this work.

138



8.2. Improved algorithm

Theorem 8.2 (Romanov). Let E(z) be a Hermite Biehler function having
no real zeros and such that E(0) = 1. Let ©(2) be defined by

@+(Z) 1 E(Z)+E#(Z)
O(z) = [ o (2) ] —2 L(E(2) - E#(2)) ]

Lett;,j > 0,tg = 0, be the set of zeroes of ©_(z) ordered by |t;| < |tj+1],

(8.2)

J

O (2) = O_(0) 1:_[ (1 _ :)

Yoo, () 1
@N+(Z) (J;O o (tj)z—tj +a+bz) @N (Z),
a and b being the constants in the linear term in the Nevanlinna represen-
tation of the Herglotz function g—f. Then En(z) = Oni(2) +iOn_(2) is a
Hermite Biehler polynomial function of degree N > 1 having no real zeros
and such that E(0) = 1. Let (Hy, Ly) be the corresponding canonical system
constructed using the algorithm for the polynomial case (see Sections 4.2,

4.4 in [46]). Let

2

1 —1
R —0_(0)
™ z
Define
Hy (z —max{0,L — Ly}), = >max{0,L— Ly}
Hy(z) = 0 0
v () <0 1), 0 <z <max{0,L — Ly}

IN—h+x _
Fy(z) = /l  Hy(s)ds, Ly = max {L, Ly}
-
Then, as N — +o00, Fy converges in C(0, L) to a monotone non-decreasing
function, F. The canonical system (©,L) := (F', L) is such such that © =
O and that there is no € > 0 such that H(z) = (-, e)e,e = (0,1)T , for a.e.
z € (0,¢e).

8.2 Improved algorithm

In this section we propose an improvement to the Romanov algorithm,
mainly based on the result of Theorem [8.3 The big advantage of the pro-
posed solution is that, even if it is not yet explicit, the result of every iteration
is explicit in terms of the result of the previous iteration.
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Let E(z) be a Hermite Biehler function having no real zeros, such that
E(0) =1, and let ©(z) be defined by

l@@)} 1

(z) = O_(2) T2

E(z) + E#(z2)
{(B) - B*(2)|

Let {t,}n>0 be the set of zeroes of ©_(z) ordered by [t,| < |t,41], with
to = 0. Using the canonical product for ©_(z), for each N > 0 we have

O_(z) = On_(2)e""*Ry(2),

On-(2) = @L(O)Z]ﬁl (1 - Z) )

n=1 t”
z =z
Ry(z) =[] (1 - ) e,
n>N tn
where ©”_(0),ay € R. Let
@+<Z) > Mn /vbntn
= — b
O_(z) ;_%(tn—z 1+1t2 +ho+ oz,

04 (2)
O_(z)

—gi% >0 Vn >0 (see Section 5 in [46], p. 23-24), so that

be the Nevanlinna representation of the Herglotz function , with p,, =

E(z) = ©,(2) +i0_(2)
:<§%¢T2_ff%>+%+%y3@) (8.3)

n=0

Define

o0

Mty

b=by—
n=0 1 + t721

)

and

En(z) =Oni(2) +iOn_(2) = <NX—:1 = b+i+cz> On_(2). (8.4)

n=0 tn -z

is a Hermite Biehler polynomial having no real zeroes, and En(0) = 1 since
E(0) =1 and hence py = 1/0"_(0). If ¢ = 0, En(2) is a polynomial of degree
N:

En(2) = anzy +ay_12" P+ ... +arz + ao.
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With a simple computation we get
an =02 (0)(0+i)(-1)" " ] —
.
ox =60 (0 T ) (- X
N— 1 N-1
+ O (0)(b+1) ((—1)N—1 ) (1 — tn>
N-1 b4 N-1
=ay ((;}un) Eat z::tn)

and hence we observe that

%(CLN) 7A O,

oSN (3.6)
%(aNaN—l) = ‘N‘bQ_{__ll'u > 0.

If ¢ # 0, En(2) is a polynomial of degree N + 1:
En(2) = an 2V a2 + .+ a2 + ag.

Similarly to above we get
et (8.7)

hence we observe that $(ayy1) # 0 and

S(ans1) #0

%(EN_HCLN) = ’CLN+1|2 > 0.

(8.8)

Now, let En(z) be a generic Hermite Biehler polynomial function of degree
N having no real zeroes, such that Ex(0) = 1, and given by

En(z) =an2N +an_12V 7+ a2+ ao.

Then, by definition, Oy (z) and ©y_(z) must be polynomials, and hence

Ox- () = @'_<0>z£[1 (1-7).
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WhereN:N—lifc:O, or N =N —2if¢>0. Then
EN(Z) = @N+(Z) + Z@N_(Z)

has the same form in (8.4]), and we the same argoments above we conclude
that for Ey(z) we have
S(an) # 0,

%(aNaN_l) > 0. (89)

Theorem 8.3. Let E(z) be a polynomial Hermite Biehler function of degree
N > 1 having no real zeros and such that E(0) = 1. Consider the sequences
of vectors {O,,(2) }n=o..n and {Sy}n=1, N and function E,(z) given by

[@us(2)] 1| E(2)+E*(2)
0= |or'] = 3 L (BG) - E#(z))] ’
On(2) = lgitz;] = (I +25,)0,-1(2) (n>1) (8.10)

E.(2) = 0,1(2) +10,_(z).

where o, and B3, are the coefficients of 2N =" and 2N in the (N —n+1)-
degree polynomial E,_1(z).
Then

where
M,(z)=1-25,

4 z —R(a,)S(avy) R(aun)? ] (n

S(@nfn) | —S(an)®  Rlon)S(om)

Proof. Let
E(z) = anz™ +ay_ 12" 4 .+ a1z + ao,

be the polynomial representation of F(z).
We define

Ey(2) =(b1z + bo)E(2) + (c12 + o) E*(2)
=(ban + 0151\1)21\7+1 + (hiay—1 + c1@n-1 + boan + CoaN)ZN
+ Pyn-1(2),

where by, by, ¢1,¢o € C and Py_1(2) is a polynomial of degree N —1. We want
to choose by, by, g, ¢1 so that Fg(z) = Py_1(z) is a polynomial of degree N—1
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and that Fg(0) = 1. Hence by, by, ¢o, ¢; must satisfy the following system of

equations:
biany + ciay =0,

biany—1 + cian—1 + boan + coan = 0,
bo +co = 1.

Now we define

1| Eo(z)+ EZ(2)
973 1) - B )
1 [ku(z) ku(z)} l E(z) 4+ E*#(2)
2 |[kan(2) k()] [3(E(2) — E7(2))
= K(2)0(2),
where
k11(2) —iki2(2) = (b1 + 1)z + (by + Co),
ki1(2) 4 iki2(2) = (by + 1)z + (b + o),
ko1(2) — ikao(2) = —i(by — ¢1)z — i(by — o),
ko1(2) + ikoo(2) = i(by — c1)z + i(by — o),
and then k11(2z) = R(by + ¢1)z + R(bo + o),
kio(2z) = —=S(by — 1)z — by — <o),
ko1 (z) = (b1 + 1)z + S(bo + <o),
kaa(z) = R(by — 1)z + R(by — o).
Hence
R(bg+ cg) —S(bg — o Rb4+c1) =S —
Bz = sgbo + coi 3‘%(1(70 - co))] e Hbl + c1; R |

= A() —|— ZAl.

We observe
det(Ao) = ’b0‘2 — ’00‘2,

det(Al) = ’b1‘2 — ’01‘2.

Then Ay is invertible if |by| # |co|. In this condition we have

A_l _ 1 [ §R(b0 — CO) %(bo — Co)]
‘ bo|> — |col* | =S(bo 4 co)  R(bo + co)
and
_ 1 Y11 Y12
S=ATA = —— ,
o |bo\2 - |Co‘2 [721 722]
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where
y1 = Re(by — co)R(by + ¢1) + S(bo — o) (b1 + 1),
y2 = —R(by — o) (by — 1) + S(bg — co)R(b1 — 1),
a1 = —S(bo + co)R(by + ¢1) + R(bo + ¢0)S (b1 + 1),
Yoo = %(bo + Co)g(bl — Cl) + %(bo + C[))é)%(bl — Cl).

Now we want to consider all the solutions of the system for which
Ay is invertible. Observe that since ay # 0, if b, = 0 or ¢; = 0 then
by = ¢; = 0 thanks to first equation of (8.11)), and if b; = ¢; = 0 we obtain
|bg| = |co| thanks to second equation of and hence Ay is not invertible.
Then we need by, ¢y # 0.

We set by = X where h = u +iv € C\ {0} (with u,v € R) is a
parameter. Obviously as h varies on C\ {0}, b; can take every value on
C\ {0}. Then solving the system (8.11]) we obtain that all its solutions for

which by, c¢; # 0 can be written as:

bl = @7
2
haN
6 =——
1 9 )
—h%(ENaN_l) + iaN (814)
bO = ~ ;
2% (ay)
h%(aNaN,l) —ay
Ch =
0 23 (an)

as h varies on C\ {0}.

We observe that with this choice, for by and ¢; we have

R(by + c1) = v3(an),
(b + 1) = —uS(ay),
R(by — c1) = uR(an),
(b, — 1) = vR(an),

§R(bo — Co) = %(CLN)

o) = Ran) vS(avan-1)
S(bo = o) Slan) ~ S(an)
of? = fof? = — 2 )
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A straightforward calculation gives
_ uR(an)?
S _ 1 U%(QN) %(QIJ\\]]) :
1bol? — |col? | —uS(ay) uR(ay)

1 F(aw)%(aw) —R(ay)? ]

%(ENCLN_l) %((ZN)2 —%(QN)%(CLN)
with
det(S) =0,
tr(S) = 0.

It is very important to observe that S does not depend on h. Moreover we
recall that by we have S(ayan_1) > 0, and then we obtain that the
matrix S has the form

S S g o
S:< " 12>:< ! >,With0'2+0'10'220,821ZO,SHSO.

09 —O0O

01(2) == A1 ®(2) = (I + 29)0(2). (8.15)

We observe that

then (I 4+ 25)(1 — z5) = I, and
I—28=(+z8)"
Then
O(z) = (I —259)04(2). (8.16)

We observe that
Ey(z) = ©14(2) +1i0:1-(2)

is a polynomial of degree N — 1. Moreover we have E;(0) = 1 since ©,(0) =
1
L)]. It is important to observe that ©(z) and E;(z) do not depend on the

parameter h.
Now we show that Ej(z) is also a Hermite Biehler function without real
zeros on the real line. Thanks to Paragraph 4.2 in [46] (p. 17, 18), we know

that there exists £(z) such that:
1. E(z) is a Hermite Biehler polynomial of degree N — 1;

2. E(2)

= (b1z+bo) E(2) 4 (é124 &) E#(2) for some by, by, é1, ¢ € C, with
b17 é1 # 0)
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3. B(0) = 1;
4. BE(t) #0VYteR.

In particular £(z) is a polynomial of degree N — 1 with £(0) = 1, hence
b1, bg, 1, o must satisfy system (8.11]), and hence by (8.14) we have

A ha
by = AN

2
~ han
Gr=——F5-,

2

> —h%(CLNCLN_l) +an
0 23 (ay) ’
N iz%(aNaN,l) —anN
Co =

A

for some b € C\ 0. If we set h = h in (8.14) we get Eg(z) = E(z), then
recalling (8.12)), (8.13), (8.15) and we can apply Lemma 9 in [46]
(p. 19), obtaining that Fi(z) = ©1,(2) +i0;_(2) is a polynomial Hermite
Biehler function without real zeros on the real line.

We set

—R(an)S(an)  R(an)?

M(z)=1—-25=1+ m —%(CLN)2 R(an)S(an) )

(8.17)

so that
O(z) = M(2)01(2).

Now, setting for convenience Og(z) = O(z), we repeat the same approach
iterating from n =1 to n = N — 1, calculating ©,,(z) according to ©,,_1(z).
We can do this because, for each iteration n, the obtained polynomial £, (z)
is a polynomial Hermite Biehler function having no real zeros and such that
E(0) =1, like E(z). Let a,, and 3, be the coefficients of zN=""! and V="
in the (N —n + 1)-degree polynomial E, 1(z), and let h,, = wu,, + iv, be the
value of the parameter h. Then proceeding like above and we obtain

1 [—%(Ozn)%(an) R(a,)? ]
S@nBa) [ —S(en)®  Rlaw)S(en)]”
Ou(2) = (I +25,)0, 1(2).
E,(2) = 0,1 (2) +10,-(2),

Sp = —

Mn(z):I—zSn:I—kzl[

S(@n ) —S(an)? R(an)S(an)

146



8.2. Improved algorithm

For every iteration n, ©, 4(z), ©, _(z) are polynomials of degree (N — n)
such that ©,(0) = Lﬂ Moreover E,(z) is a Hermite Biehler polynomial
such that E,(0) = 1, hence it verifies (8.9). In the last step (n = N) we
obtain Oy (z) = (1) since ©(0) = (1) and ©y(z) must be a polynomial of
degree 0, hence a constant. Thanks to this, at the end of the iterations we

get

O(z) = My(2)... My(2) Ll)] :

]

Corollary 8.4. In the conditions of Theorem consider the representa-
tion of E,_1(2) given by (8.4):

N
En—l(z) = ( Ml + b + an) @(nfl)f(z) + Z@(nfl)f(z) (818)

—b, b
My(z) =T+ o [ "] ,
Zk 0 Mkn -1 bn

while if ¢, # 0

Mn(z):]+z[% (1)1

Proof. By Theorem [8.3] for n =1,...N, we have

M,(z) =1-2zS,
:I+Z[

—R(n)S () R(a)? 1 (8.19)
S(@nfn)

_%(O‘n)Q R(an)S(an)|

2 N-1
If ¢ = 0in (8.18)), thanks to (8.5) and we have §(@,f,) = m‘%%’%’”,

and we obtain

b2+ 1 —R(an)S()  R(,)?
)= 15 BEL[ROM) R
‘O‘n|2 n= 0 Hn —S(an) R(an)S(an)
b2 _ bn ng
S b2+1  B2+1
quzv 0 Hn _biﬁ bgfﬁ
oz —b, b?
Y
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If ¢ # 0, thanks to and (8.8) we have a,, € R and 3(@,,) = o2, and
then we obtain

M(2) = T+ 2— [—%n)%(an) R(an)?

n _S(O‘n)z %(O‘n)%@‘n)

-
= ZOO

Corollary 8.5. In the conditions of Theorem forn=1,..,N, let

_ 1 S(aw)* (o))
Hn( ) |an|2 [_%(an)%(&n) %(an)Q 7
_ |a"|2 T
T, J(@nﬂn) + Ty,
J;O_O:

and
H(z)=Hy(x) x,-1 <<,

L= IN.
Then the canonical system (H, L) is such that ©(z) = O(z2).

Proof. 1t is a straightforward consequence of the application of the chain
rule to the result of Theorem [R.1l O

Theorem 8.6. Let E(z) be a Hermite Biehler function having no real zeros
and such that E(0) = 1. Let ©(z) be defined by

0.()] 1| EE+E(:)
6(2):[@_21 %((z E#(z)]'

Lett;,j > 0,tg =0, be the set of zeroes of ©_(z) ordered by |t;| < |t;+1],

Ox (1) =6 0): I (1-7)

Jj=0

(8.20)

O, (t;) 1
Onyi(z) = <~ +a+bz|Oy_(2),
jzo O_(tj)z—t
a and b being the constants in the linear term in the Nevanlinna represen-
tation of the Herglotz function g—f. Then Ex(z) = Oni(2) +1On_(2) is a
Hermite Biehler polynomial function of degree N > 1 having no real zeros
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and such that E(0) = 1. Let (Hy, Ly) be the corresponding canonical system
constructed in Corollary[8.5, iterating onn =1,...,N:

H ( ) 1 %(O&N,H)Q _%(QN,n)%<@N,n>
n\T) = )
v anal [~R(ann)S(ana)  Rlann)
TNg = __owal? +
N,n %(aN,nﬁNm) N,TL*l?
INO = 0,
and
Hy(x) = Hyn(x) Tnp—1 <@ < Ty,
LN = IN,N-
Let )
1119, -1 .
L==|= —0_(0)
T z H(E)
Define
Hy (z —max{0,L — Ly}), = >max{0,L — Ly}
H = 00
v () <0 1), 0<z<max{0,L — Ly}

IN—h+z _
Fy(x) = /l . Hy(s)ds,ly = max{L, Ly}
-
Then, as N — +o00, Fy converges in C(0, L) to a monotone non-decreasing
function, F. The canonical system (©,L) := (F', L) is such such that © =
O, and that there is no € > 0 such that H(z) = (-, e)e,e = (0,1)T | for a.e.
xz € (0,¢).

Proof. The result is a simple consequence of Corollary applied to the
algorithm for solving the inverse problem in the regular case, described in
Theorem 8.2 O
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CHAPTER

Conclusions and future works

In the first part of this work we have shown that the functions of the Paley-
Wiener spaces can be rebuilt exactly from many different families of non-
uniform sampling sequences, with various types of constraints, very differ-
ent from those already known. Furthermore, we have shown that some of
these families of non-uniform sampling sequences can be very useful for real
applications, since they allow to perfectly reconstruct a function with any
given precision from any finite and large enough set of samples. However
some details regarding these sampling sequences are not yet fully under-
stood. Probably the most important yet unanswered questions concern the
bandlimit pairs that satisfy property 5 in Theorem [4.14]

o Is it possible to obatain an explicit necessary and sufficient condition
to know if a bandlimit pair satisfies this property?

« Given a sequence {t,},, is it always possible to find a sequence {t/ },
such that ({¢,}n, {t,}n) is a bandlimit pair that verifies this property?

« Given a finite subsequence, is it always possible to build a bandlimit
pair such that {t,}, contains this subsequence and verifies this prop-

erty?

Other interesting questions about the described sampling sequences are the
following.
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 Does exist a sequence {t, }, that verifies the condition (4.37)) in Theorem
4.18/ and such that ’gn = tn‘ doesn’t necessarily have a limit as n goes
to +oo?

o Is it possible to give an alternative proof of the Paley-Wiener-Levinson
theorem deriving it from [3.3] similarly to what we did for Theorem
In other words, is the Paley-Wiener-Levinson theorem a partic-
ular case of a more general theorem?

The answers to these questions would make the sampling theorems described
in this work even more useful in real applications since they would allow to
more easily derive the sequences that can be used to reconstruct a bandlim-
ited function.

In the second part we have investigated the isomorphism between the
Kempf-Martin spaces and the de Branges spaces and its consequences, as
for example a necessary and sufficient condition for a function to belong the a
Kempf-Martin space. Moreover we have also shown that all the results about
the Kempf-Martin spaces can be obtained without the use of the theory of
simple symmetric operators. An already known necessary and sufficient
condition to establish if a function belongs to a de Branges spaces is based
on the Weyl-Titchmarsh transform, but it is valid only for the de Branges

spaces B(E) for which ©(z) = E;(S) is a Weyl-Titchmarsh meromorphic
inner fucntion. A Weyl-Titchmarsh meromorphic inner function is defined
as follows. Let g(z) be a real locally integrable function on (a,b), and fix a
selfadjoint boundary condition 3 at b. The Weyl-Titchmarsh m-function of

(q; b, ), evaluated at a, is defined by the formula

, z€C,

where u,(x) is a non-trivial solution of the Schrodinger equation
—ul(x) + q(z)u,(x) = zu,(x), z € (a,b),

satisfying the boundary condition /3. It is well-known that m(z) is a Herglotz
function, and therefore we can define the corresponding meromorphic inner

function ©f 5(z) according to (2.6), given by

m(z) —i

?,B(Z) = W

We call ©f 5(2) the Weyl-Titchmarsh inner function of ¢(x). The prob-
lem with the Weyl-Titchmarsh inner functions is that, given a real locally
integrable function ¢(z), it is possible to build the corresponding Weyl-
Titchmarsh inner function, but given a meromorphic inner function it is not
yet known a method to establish if it is a Weyl-Titchmarsh inner function or

152



not, and to eventually build the corresponding function ¢(z). To solve this
problem, it would be interesting to investigate in depth what relationship
exists between the Weyl-Titchmarsh transform and the generalization of the
Fourier Tranfsorm introduced in this work, in order to eventually exploit the
isomorphism induced by this transform between a de Branges space and the
corresponding space Lg.

In the thid part we have explained the concept of time-varying bandlimit
for the Kempf-Martin spaces. Then we have introduced a new family of
spaces of time-varying bandlimit functions, referred as spaces V(©), which
are compatible with an improved definition of the concept of time-varying
bandlimit. At the end, we have presented a generalization of the Shan-
non sampling method for time-varying bandlimit functions. The sampling
formulas presented for the spaces V(©) and the derived generalized sam-
pling method are based on the sampling sequences {t,(6)}, of solutions of
O(t) = €™ for t € R. The same is true also for the Paley-Wiener spaces,
indeed we know that for any a > 0 the space PW, is associated to the
meromorphic inner function ©(z) = €™ and the corresponding sampling
sequences are given by {t,(6)}, with ¢, = =(n + ). From the theorems of
the first part of this work we know that the functions of the Paley-Wiener
spaces can be rebuilt also from many other sequences, that satisfy different
constraints, all derived from the theorems presented in Chapter [3 It would
be very interesting use the same theorems to derive similar results for the
spaces V(©). In this way, the generalized sampling method would become
much more flexible, since it would allow to reconstruct the functions of the
spaces V() not only starting from the sampling sequences defined by the
function ©(z), but also from their perturbations which satisfy some given
constraints.

In the fourth part we have improved the algorithm to solve the canonical
inverse problem, presenting an explicit formula for the solution of every
iteration. A very important aspect of the inverse canonical problem is its
connection with the Weyl-Titchmarsh’s inner functions, which we briefly
summarize here following the arguments proposed in [4]. Let ¢(z) be a
locally summable function on (0, L), and consider the Schrodinger equation

—yo(x) + q(2)y.(z) = zy.(z). (9.1)

Suppose u,(z) and v,(z) are the linearly independent solutions of this equa-
tion, satisfying some boundary condition « at 0. Then ug(x) and vy(z) are
the solutions of —y”(z) + ¢(x)y.(z) = 0. Let

U(Q)(w) ugvo () )

wovo(z)  vA(x) ©-2)

H(z) = (

Then the Schrodinger equation (9.1]) is equivalent to the canonical system
JY!(x) = zH(2)Y,(x). (9.3)
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Indeed, if y, () solves Schrodinger equation (9.1)) then

i) = [ 0] o[ 1t o)) 1 o))

’ Y, () up()  vp(x) Y. ()

solves the canonical system . Moreover, a fundamental detail is that the
Hermite Biehler function E(z) = Y;*(L)+14Y, (L) results to be a de Branges
function of the Weyl-Titchmarsh inner function of ¢(z). Hence, given any
meromorphic inner function ©(z), solving the problem of finding the function
q(x) associated to ©(z) would give also the solution of the canonical inverse
problem for the Hamiltonians with the form given in . For this reason
investigating the relationship between the Weyl-Titchmarsh transform and
the generalization of the Fourier transform presented in this paper assumes
an even greater importance than that already described above.
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